SYBASE

Authoring Reference Manual

Sybase Aleri Streaming Platform
3.1

DOCUMENT ID: DC01294-01-0311-01

LAST REVISED: June, 2010

Copyright © 2010 Sybase, Inc.

All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in
new editions or technical notes. Information in this document is subject to change without notice. The

software described herein is furnished under a license agreement, and it may be used or copied only in
accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800)
685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the
above fax number. All other international customers should contact their Sybase subsidiary or local dis-
tributor. Upgrades are provided only at regularly scheduled software release dates. No part of this pub-
lication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechan-
ical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at http://www.sybase.com/detail ?1d=1011207. Sybase and the marks
listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

DB2, IBM and Websphere are registered trademarks of International Business Machines Corporation.
Eclipse isatrademark of Eclipse Foundation, Inc.

Excel, Internet Explorer, Microsoft, ODBC, SQL Server, Visual C++, and Windows are trademarks or
registered trademarks of Microsoft Corp.

Intel isaregistered trademark of Intel Corporation.

JDBC, Solaris, Sun and Sun Microsystems are trademarks or registered trademarks of Sun Microsys-
tems or its subsidiaries in the U.S. and other countries.

Kerberosis atrademark of the Massachusetts Institute of Technology.

Linux isthe registered trademark of Linus Torvaldsin the U.S. and other countries.

Netezzais aregistered trademark of Netezza Corporation in the United States and/or other countries.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

SPARC is aregistered trademark of SPARC International, Inc. Products bearing SPARC trademarks are
based on an architecture developed by Sun Microsystems, Inc.

Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and other
countries.

UNIX isaregistered trademark in the United States and other countries, licensed exclusively through X/
Open Group Ltd.

All other company and product names mentioned may be trademarks of the respective companies with
which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph
(©)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian

http://www.sybase.com/detail?id=1011207

agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of Contents

ADOUL THIS GUILEceeiiiiie e e e viii
1. RelAtEd DOCUMENES . ..iiiniiiiiii et e et e e e e eaaes viii
1. Authoring Preliminariesooen i e e aaas 1
1.1. DataTypesand Literal CONSLANScccueiuieiniiiiii e e e 1
L2 NBITIES ..ttt ettt et et et e e e eaes 1
T =S o 1 2
1.4. Notational CONVENTIONScouiiiiiiiiiiiei et e e e e eaes 2
2. AULNOMNG TN SQL ..ttt e e e et e e e 3
2.0, ALENT SOL OVEIVIEW ouiiiiiiei e e e e e e e e e e e e et e et e e e aanas 3
2.2. SHOrE@DEFINITION ...ttt 3
2.3, SOUICE SIFAIMIS ...t eeii et ettt e et ettt et et et e et e e et e et neean e e e e eennas 4
2.4, CONtINUOUS QUENES .vuiiteiitiiii it e et et e e e e e e e et e e e e e e et e et e et e ataeannas 7
2.4.1. Examples of Materialized View Definitionsccooevvveiiiniiiiiiinneeennn, 11

2.5. Program View Definitioniiiiiiiiiiii e 14
2.6. Pattern View Definitionco.iiiiiiii e 16
2.7. Parameter DEfiNITIONoiieeiii e 18
2.8. Global FUNCtion DEfiNitioNoiiiiiiiiiii e 19
2.9. Data Location DEfiNItIONcuuuiiiiiiinieii e 19
2.10. Connection DEfINItIONccouiiiiiii e 20
2.11. Connection Group DEfiNItioNuiiiiiiiiiieiii e 20
2.12. Distributed Model Definitioncooouuiiiiiiii e 21
2.13. ACCESS CONLIOL ...ttt ettt e e et et eeaa e eees 22
2.14. Aleri SQL EXPrESSIONS ..evvueernieeiiieeiieeeitieeeieesieestseeanaesateesneesnaestnaeranaaenes 23
S0 T o 1l o d o (=== o] 1 23
21410 TYPES OF JOINS coevuneeiiiiie ettt 24

2.14.1.2. EXaMPlES Of JOINS ...covvuiiiiiiiiieeiiiie e 25

2.14.1.3. ReSCONS ON JOINSceuiiiiiieiii e e e e e e e e e 25

2.14.2. Filter EXPrESSIONS .. .cvueiteie e ettt et e e e e e e e e e e e e e e e e ees 25
2.14.3. User Defined Function Library Declarationcccooeevvvvviiieiiievinennnnn. 26
2.14.4. User Defined Function DeClarationooeeuviveveiiinneiiiiineeciiineeeenenn 26

2.15. Adding Commentsin Aleri SQLccuuuiiiiiiieiii e 27
2.16. Current Restrictions on Aleri SQL US0Evvvviviiiiiiiieeeeii e 27
2.17. Best Practices When Writing aDataModel in Aleri SQLooveviiiiiiiiiiieeinee, 28
2.18. Example of an Aleri SQL DataModelccoeeviiiiiiii 28
2.19. Running amodel written in Aleri SQLovvuniiiiiiiii e 29
3. AUhOrNG INATEIML .o e e e aa s 30
B.L XML PredimiNaries . ..o 30
B2, PlatfOrM et 30
IR S - 1 o TP 32
B4 GlODEL ...cee 33
ST O 1 = PP 33
I3 G 1Y o o LU = PP 34
AT v o o 1 [0 N PSP 34
G TS (0] = PSPPI 34
381 SHAEIESS SEOME ..t 35
B.8.2. MEBIMOIY SEOTE ..vuiiiiie et e e e e e e e e en 35
3.8.3. LO0 SIOME vt 35

30, SMBAM o e 36
3.9.1. INSErt-0NlY SLIEAMSceiiiiiieiii et 36
3.9.2. Common Attributes & Elementsoooiiiiiiiiiiiiii e 36

3.9. 2.1 COIUMN et e e e e 37

3.9.2.2. COIUMNEXPIESSION ..vuiveiiiiiiieeee e e e 38

3.9.2.3. FIltErEXPreSSION ...ccvuiiiiiciee e a e 38

Authoring Reference Manual

3.9.2.4. InConnection and OUtCONNECLIONcccvvueiiiiiieeeiiieeeeeiie e 38

BL0.25. LOCE ..iiiiiii et 39

3.9.2.6. INPUIWINAOW ...ceviieiii et 39

3.9.3. SOUICE SEIBAM ... ettt e e ees 40

3.9.4. COPY SIMEAIM ...t ettt 41
3.9.5. UNION SEFEAIM ...ttt e e e e aeas 41
3.9.6. FlTEr SrEaM ..o 42
3.9.7. COMPULE SITEAIM ...evneiieiiie et e e e e e e e e e e e e aeees 42

3.9.8. EXIENA SErEAIM ... 43
3.9.9. AQOregate SIrEAMiiriiiiii et 44
e N 0N o1 IS =" PR 45
I B 1= eS (== 0 o 46
3.9.12. PaLtern SIrEAM ... ieeiieiie ettt 48

3.10. Best Practices When Writing an AleriML DataModelcoeveviiviiiiiennnnene, 49
4. SPLASH Programming LANQUAGEuueeeuuieeeiiieee et e ettt e et e et eeai s 50
I 1= 1001107 = PP 50
4.2. Variable and Type DeClarationscccuuiieuiiiiiiiiiiiieeei e 50
4.3. DElA SITUCIUIES ... et e e enns 51
4.3.1. RECOI EVENES ...coeviiiiiii ittt 51
432 XML VAIUBS ...ttt 52
G R BV < ol (0] £ T 53
e I N B o o = SRR 55
A.3.5. SHEAIMS ...eeetie ettt ettt e e e et e et e e et e e a s 56
4.3.6. SIEAM ITEIBLOIS ...c.ueeeeiei et e eans 57
A.3.7. EVENE CACNES ...oeiiiiieiie et 58
4.3.7.1. Manual iNSEMTIONccvueiiiiiie e 59

4.3.7.2. Changing DUCKELScoouuiiiiiii e 59

4.3.7.3. Managing the size of BUCKELScoovuiiiiiiiiii e, 60

4.3.7.4. Keeping recordsinstead of eventscoovvvviiiiiiiiiiiniiciiieeiee, 60

G B A @ o [o 60

4.3.7.6. Operationson Event Cachescovvvvviiiiiiii e, 61

S = (= 111 1| ST 61
4.4.1. EXPreSSioN SEALEMENES ... ceeveeeeeeiieeeeii et e et e et e e e e e eaea s 61
4.4.2. BIOCK SEALEMENES ...eeeniiiiiieii e e e e e 62
4.4.3. Conditional StALEMENESuiieiiiii e 62
4.4.4, OULPUL SEEEEIMENTScviieeeeee e e e eans 62
A.4.5. WhIle SEEEEIMENESeeeeiieieeii et et e e 63
T o gl 0o o1 63
4.4.7. CONrol SEAEEMENESuieeee e e e e e e e e e e 64
4.4.8. SWItCh SEEEEMENTSenieee e e e e e 64

A5, FUNCLIONS ...ttt et et e et e e e e e et e e e e e eanaaeaes 64
4.6. Using SPLASH Within FIEXSLIEamMScvviiiii i 65
AL RESENVEA WOITS ..oovviiiiiiiiii et ettt e et e e et e e e aa s 69
B. Data Types, Operators and FUNCLIONSoveiiiuiieiiiiie e eaii e 70
B.L DataTYPES ..oeieieiieee et 70
B.2. OPCOUET/CONSIANLS ... et e ettt ettt et e et e e e et eeeebe e eeees 70
B.3. SPECial COIUMNSeiiiiie ettt e e et e e e e e ean s 71
B.4. Nullsand Error Handlingoovuiiiiiiiiii e 71
B.5. ArthMELIC OPEIELOrSuueieieiiiieeii e e e e e e e e e e e e e e e e e eaaeeaanaees 71
B.6. COMPAriSOn OPEIELOIScvvuueeeteeeieeeteeeieeeeeesateeeet e eea e eetn s eranaeranaeeenaeennaees 72
B.7. BOOIEAN OPEIAIOIS . .eevuiieiieiie ettt ettt et e e et e et eeeaba e eees 72
B.8. ArithmEtiC FUNCLIONSuiieiiiii e e e 72
B.9. AQQregation FUNCLIONSiiuuiiiii it e e e e e 74
B.10. SLNQG FUNCLIONSoviiitii it e e e e e e e e e ees 77
B.11. Date and TimMe FUNCLIONSociivviieiiiis e e e e e e e 79
B.12. Calendar FUNCLIONSccouuuieiiiiiie et e et eeabe e eees 80
B.13. Type Conversion FUNCHIONSuiiiiiiiieiiiii e 81
B.14. Null Handling and Rank FUNCLIONScccouuiiiiiiiiici e 83

Authoring Reference Manual

B.15. User-Defined FUNCLIONSiiiiiiiiieiiiii et e e e 83
230 (T 0 S PPN 84
BLA7. ASSIGNMENT ..ottt e e e aee 84
B.18. SEQUENCING ...eettiieieiiie ettt ettt et e et e e et e et e e et e e aee 85
B.19. Conditional EXPreSSIONSccuuuiiitiieiiiiei ettt e et e e et e e e e e 85
B.20. External Data FUNCLIONSc.uuiiiiiiiiiiec e 85
B.21. Unique Value FUNCLIONSccuuiiiiieii e e e e e e 85
C. Pattern MatChing LanNQUABOEcvuuieeieei e eee e ee e e e e e e e e e et e e n e e e e e e eanas 87
L3 I VY 1 1 g I =T 87
(O o (o]0 0 e 1 = PP 87
C.3 ONCIAUSE ..o 88
C.4. COMPULALIONEI ClALISEieeiiiii e 88
G o EXAMPIES ooniiii e e 88
D. User-Defined FUNCLIONSooovtieiiiiie et e e e e e e 91
D.1. User-Defined FUNCLIONS IN C/CH+ ...ooiiiiiieee e 91
D.1.1. Write aUser-Defined FUNCLIONcooiiiiiiiiiii e 1
D.1.2. A SECONd EXAMPIE ...ceniiiiieii e 93
D.1.3. Compile aUser-Defined FUNCLIONc..oviiiiiiiiiiiieiec e 94
D.1.4. Call aUser-Defined FUNCHIONooviiiiiieiiiiii e 94

D.2. User-Defined FUNCHIONS TN JAVAuiiiiiiiieiiiii e 9
D.2.1. Write User-Defined FUNCLIONS IN JAVAuvvvvnieiiiiiiieee e 95
D.2.2. Compile User-Defined FUNCLIONSIN JaVAoevvvviieiiiiiiecciiieceei e 95
D.2.3. Call User-Defined FUNCLIONS TN JAVAceuniiiiiiiiiiiiiiice e 96
D.2.4. Link User-Defined FUNCLIONS iN JAVAovevniiiiiiiiiieiiec e 97

E. Aleri Metadata SIrEAMScieiviieiiiii et e et e et eeeaae e eees 98
N 1= 4 T o oo P 98
E.2. ALEN_SIMEAMS ...ouiiiii e et 98
E.3 ALEN_TabIES oo 98
AN 1= ¢ T e 112] P 99
E.5. Aleri_KeyColUMNS ... e e 99
I 1= T 1= 100
E.7. Aleri_SUDSCIIPLIONSeeveccie e e e e ae s 100
E.8. Aleri_SUBbSCriptions EXtviiiiiiiiiiii e 100
e N 1= O] g 0= (o TP 101
E.10. Aleri_RUNUPEIESuieiiiiiieeeeie e e et eeae s 102
E.11. Aleri_ClOCKUPAALESceeiiiiiiei e 103
E.12. Aleri_Streams MONITOrocvuuiiiieeie e e e e e e e e e e e eaenas 103
E.13. Aleri_CHents MONITOroiiueiiii i e e e e e e e aes 104
F. Data Location Descriptions, Parameters, LimitSovvvvioiiiniiiieiiie e ee i 107
F.1. ActivFinancial Inbound PIUG-iN ... 107
F.2. Aleri Streaming Platform INPULooeui e 110
F.3. Aleri Streaming Platform OUEPULiiiuiiiiiie e 113
F.4. BIoOMBErg PIUG-IN .veeicc e e 115
F.5. Configuring Coral 8 Inbound and Outbound Connectorscccocevvvvinievennennnnn. 116
ST T D = B Y 01 P 116
F.5.2. COral8 TIMESIAIMPS ... eeiiiiieeieiiie ettt 116
F.5.3. OPEIELIONScceieee et 116

F.6. Coral8 INDOUNGuiiiiiei e 116
F.7. Coral8 OULDOUNGuuieiiiiiiee i 118
T DT r= o 7= 5] o | 119
F.O. DA@hase OULPULceevineeiiiie ettt e e et e e e e aaa s 121
F.10. FIlE CSV INPUL ...ttt 124
F.11. FIlE CSV OULPUL ..evvviieeeii e et e et e et e e e et e e e e ae e e e eaen s 126
FL 12, FHE FIX TNPUL et e e e e et e e e aa s 127
F. A3, FIHE FIX OULPUL ...t e e 129
I T =Y I I o T 130
F.A5. FIle XML OULPUL ...oevteieiie ettt e e 132
[I Q= 1o T T PP 133

Vi

Authoring Reference Manual

L7 HTTP PIUG-IN o 134
ST 1 T = o T 134
F.19. IMS CSV TNPUL ettt 135
F.20. IMS CSV OULPUL ...ieieiitiii ettt ettt e e e e e et e e e e e e e eesenaan s 137
F.21. IMS CUSLOM TNPUL ...ttt e et e e e e e e eebaan s 140
F.22. IMS CUSLOM OULPUL ...ttt ettt ettt e e e e e e nnneaaas 142
F.23 IMS FIX INPUL Lo e 144
F.24. IMS FIX OULPUL ...ttt e e e e e 146
F.25. IMS ODJECt AITay TNPUL ...covvnieieii e 149
F.26. IMS ODJeCt Array OULPULeeeereieeieiiie ettt e e e 151
F.27. IMS XML TNPUL «..ee ettt e e e e e eenaaa s 153
F.28. IMS XML OULPUL ...ttt e et e e e e e e nnneaa s 155
F.29. KAb INPUL PIUG-IN e e e e 157
F.30. KAb OULPUL PIUG-IN . e e e e e 160
F.31. Reuters Marketfeed Inbound PIUG-inooooeviiiiiiiii e 163
F.32. Reuters OMM 1nbound PIUG-iNoeieiiiiiiii e 166
F.33. SMTP OULPULuiieiieeeeiitt ettt ettt e e e e e e e bt e e e e e e e eeeneaan s 169
F.34. Sample Plug-in Connector XML File INputcocoeiiiiiiiiiiiiieceeeeen, 171
F.35. Sample Plug-in Connector XML File QULPULccovveiiiiiiiiiieii e, 172
F.36. Socket (ASCHent) CSV INPULveeeir e e e 173
F.37. Socket (AS Clent) CSV OULPULeeeeieeeeeiie et 175
F.38. Socket (As Client) XML INPULuiiiiiiece e 177
F.39. Socket (As Client) XML OULPULccuuveunieieeiiiiiiiie et 178
F.40. Socket (AS Server) XIML TNPULc.unieiie e 179
F.41. Socket (As Server) XML OULPULcvvvnieiiiecieeee e e e e e e e e e e e 181
F.42. Socket (ASSErver) CSV INPUL ...cvvvneiicce e e 182
F.43. Socket (AS SErVer) CSV OULPULeeiiei ettt 184
F.44. SOCKEL FIX TNPUL ..ottt 186
F.45. SOCKEL FIX OULPULciieitiiii ettt ettt e e e e e enenaaa s 187
F.46. Sybasel Q OULPULcoviiiieiiiee ettt e et e e e e eennneaaas 189
F.A7. Teradata OULPULccvueieiieiiii e e e e e e e e e e e e e et e e e e e e e e e eaenas 191
F.48. Tibco ReNdezvOUS PIUG-IN ...vveiii e e 194
F.49. WOMDEE PIUG-IN .« 195
G. LISt Of TIMEZONES ...enieiieii ettt e e e e e e e ea e eees 197
FMOEX et et e s 201

Vii

About This Guide

1. Related Documents

Thisguide is part of aset. The following list briefly describes each document in the set.

Product Overview

Getting Started - the Aleri Studio

Release Bulletin

Installation Guide

Authoring Guide

Authoring Reference

Guide to Programming Interfaces

Utilities Guide

Administrators Guide

Introduction to Data Modeling and
the Aleri Sudio

SPLASH Tutorial

Frequently Asked Questions

Introduces the Aleri Streaming Platform and related Aleri
products.

Provides the necessary information to start using the Aleri Studio
for defining data models.

Describes the features, known issues and limitations of the latest
Aleri Streaming Platform release.

Provides instructions for installing and configuring the Streaming
Processor and Aleri Studio, which collectively are called the Aleri
Streaming Platform.

Provides detailed information about creating a data model in the
Aleri Studio. Since this is a comprehensive guide, you should
read the Introduction to Data Modeling and the Aleri Sudio. first.

Provides detailed information about creating a data model for the
Aleri Streaming Platform.

Provides instructions and reference information for developers
who want to use Aleri programming interfaces to create their own
applications to work with the Aleri Streaming Platform.

These interfaces include:

« the Publish/Subscribe (Pub/Sub) Application Programming In-
terface (API) for Java

the Pub/Sub API for C++

the Pub/Sub API for .NET
» aproprietary Command & Control interface
¢ anon-demand SQL query interface

Collects usage information (similar to UNIX® man pages) for all
Aleri Streaming Platform command line tools.

Provides instructions for specific administrative tasks related to
the Aleri Streaming Platform.

Walks you through the process of building and testing an Aleri
data model using the Aleri Studio.

Introduces the SPLASH programming language and illustrates its
capabilities through a series of examples.

Answers some frequently asked questions about the Aleri Stream-
ing Platform.

viii

About This Guide

Chapter 1. Authoring Preliminaries

All three authoring methods — Aleri Studio, Aleri SQL, and AleriML — share some commonalities in
names, types, and expressions.

1.1. Data Types and Literal Constants

The Sybase Aleri Streaming Platform has the following set of primitive data types:

int32 32-bit integers

int64 64-bit integers

money Fixed-point numbers, with a default precision of 4 decimal digits.
double Double precision floating-point numbers.

date Date and time values, with one second precision.

timestamp Date and time values, with one millisecond precision.
string Character strings of arbitrary length.
More information about data types can be found in Appendix B, Data Types, Operators and Functions.

Constants have the following types:

< Numbers without adecimal point (for example, -101, 8, +93734) have type int32.
» Decimal numbers (for example, -172.76245, 186.756) have type double.

e Decima numbers with a trailing “d” or “D” (for example, -172.7624d, 186.756D) have type
money.

» Character strings in single quotes (for example, 'thisis a string’) are of type string. Character strings
can contain the following escape sequences:

* \b (for backspace)
 \n (for line feed)
* \r (for carriage return)

« \t (for tab)

\ddd (for octal values of at most three digits, asin \013)

« \xhh (for hexadecimal values of at most two digits, asin \x1a)

1.2. Names

The name of any Sybase Aleri Streaming Platform object must adhere to the following rules:

« A name is either a sequence of alphabetic characters, digits, and underscore characters, or a se-
guence of any characters enclosed in double quotes.

1

Authoring Preliminaries

« If anameis not enclosed in double quotes, it must begin with an alphabetic character or an under-
score.

« A name cannot contain spaces unlessit is enclosed in double quotes.

< A name cannot be a Reserved Word unlessit is enclosed in double quotes. Reserved words are case
insensitive, so for example, a name cannot be “AND” or “and” or “AnD”. See Appendix A, Re-
served Words for the list of Reserved Words.

¢ Columns cannot be named “rowid” or “rowtime”.

Note:

Double quotesin AleriML must be written with the XML escape sequence “"”.
1.3. Expressions

Expressions tell how to compute a value from other values. They can be as simple as the expressions 1
and 2+2, or as complex asyou like.

The Sybase Aleri Streaming Platform provides a number of built-in operators and functions for perform-
ing complex calculations, as well as means of defining and calling your own functions. For a complete
list of internal functions and operators, see Appendix B, Data Types, Operators and Functions.

Parentheses can be used to group expressions and change the order of operator precedence. For instance,
(9+1) *7 isan expression that computesto 70, whereas 9+1* 7 computes to 63.

References to columns in streams use the standard dot notation. For instance, to refer to column “Price”
in astream called “Trades’, you write Tr ades. Pri ce. Variables can also be used within expressions.
For instance, if there is a variable named “scale’, you could write the expression scal e *
Trades. price.

There's also an expression for setting a variable, and for combining such expressions by sequencing. The

expresson v : = 9 setsthe value of the variable v to 9, and returns that new value 9. Sequencing is
done with parentheses and semicolon. For instance, (v : = 8; print(string(v)); 7) returns

the value 7, but setsv to 8 and prints the value of v before doing so.
1.4. Notational Conventions

The following conventions are used to describe Aleri SQL and AleriML:

e Square brackets [] represent optional elements.

Curly brackets{ } represent required elements where there is a choice of which element to use.

L]

Thelogical or symbol (|) separates choices within curly brackets{ }.

Asterisk (*) indicates that an element may not be present, or may repeat any number of times. Plus
(+) indicates that an element must appear and may repeat any number of times.

Chapter 2. Authoring in SQL

Aleri SQL isone of three supported tools for creating data models that run on the Sybase Aleri Stream-
ing Platform. Aleri SQL provides a familiar environment for those with experience writing queries in
SQL sinceit is based on the ANSI SQL 99 standard, with extensions for working with streaming data.

Aleri SQL aso has the advantage of being the most concise way of expressing a data model. Setting a
data model up in the Aleri Studio can be more time consuming, due to the nature of visual development
paradigms, and AleriML is more verbose. Therefore, even someone new to SQL may find it the most ef-
ficient authoring environment.

2.1. Aleri SQL Overview

In order to conform with standard SQL, Aleri SQL maps stream processing elements to standard SQL
constructs. Streams are mapped to tables and views. Aleri SQL uses the following basic SQL constructs
to build all the necessary underlying elements of the data model:

Create Store to define a storage manager

Create Table to define a source (input) stream

Create Materialized View todefineacontinuous query that produces a derived stream (other
than a FlexStream or Pattern Stream)

Create Program View to define a FlexStream.

Create Pattern View to define a Pattern Stream.

Create Data L ocation to define a Data L ocation element.

Create Connection to define a Connection element

Create Connection Group to define a startup group

Create Module, Create to implement a distributed model

Cluster

Decl are to define parameters that can be used in expressions
Create Function to define native and external functions.

G ant to set access control

See the Authoring Guide for an explanation of the different elements that make up a data model.

Note

To conform with standard SQL, “Tables’ represent source streams and “Views’ represent de-
rived streams. In this section of the guide, tables are often referred to as “source streams’ and
views (both materialized views and program views) are often referred to as “derived streams’.
Collectively, tables and views may be referred to as “streams’. The use of the word “stream”
conveys the notion that these are not static data sets but have data flowing through them at all
times.

2.2. Store Definition

A store defines the physical storage characteristics for the streams (tables, materialized views, and pro-

3

Authoring in SQL

gram views) assigned to it. Every table, materialized view and program view must be assigned to a store.
There are three types of stores. Log Store, Memory Store and Stateless Store. Log Stores are persistent
— they guarantee data state recovery after failure, since all data is logged to disk. Memory Stores
provide data retention with higher performance than the log store, but they are not persistent — all data
is held in memory. Stateless Stores can be viewed as transient Stores that do not provide data retention.
See the Authoring Guide for a more complete description of the differences between the different store

types.
The syntax for defining a Store in Aleri SQL isasfollows:

CREATE STORE St or eNane

{ LOGSTORE ON Locat i on

[SYNCis{ true|false}] [MEMSTORE | STATELESSSTORE }

[MAXSIZE[IS] Si zelnMo], [INDEX[IS]{HASH|[(TREE)I}]1[;]

where:

e St or eNan® isthe unique name of the Store which must conform to the naming conventions.

LOGSTORE | MEMSTORE | STATELESSSTORE (required) specifies the type of storage man-
ager to be created.

e Locat i on isthefile path where Log Stores are persisted to disk.

Thisis mandatory for Log Stores. It isignored for Memory Stores and Stateless Stores.

SYNC (optional) specifies whether the persisted data is updated synchronously with every stream
being updated, or whether it can be updated asynchronously.

Setting the sync value to t r ue guarantees that every record acknowledged by the system is per-
sisted at the expense of performance.

Setting the value to f al se improves performance, but it does not guarantee a prevention of data
loss. Data could be lost in the case of a hard system shutdown if stream data has not been flushed to
the disk yet.

This property is only meaningful for log Stores. The default valueisfalse.

« MAXSI ZE (optional) specifies the maximum size of the LOGSTORE in MB. This trandlates to the
fullsize attribute in AleriML. If thisoption is not specified, it defaultsto 8 MB. When it is specified
for other types of stores, the Sybase Aleri Streaming Platform ignores it. If the maximum size is
reached the server will shut down.

« | NDEX (optional) specifies the kind of indexing to be used: HASH or TREE. This is optional and
only appliesto Memory Stores. The default value is TREE.

2.3. Source Streams

A source stream is a stream that receives data from an external source. There can be any number of
source streams in a data model. All data flowing into a stream must have the same structure: each record
must have the same set of fields. Although al input channels are called “ streams’, data does not actually
have to arrive as a stream; Source streams place no restriction on how frequently or infrequently data ar-
rives. Therefore, static reference data that is loaded from afile or a database is still 1oaded into the mod-
el viaastream.

The SQL CREATE TABLE statement is used to define a source stream. The Aleri SQL trandator will
create an underlying SourceStream depending on the properties set in the CREATE TABLE statement.

)

Authoring in SQL

A source stream is defined using the following SQL syntax:

CREATE TABLE Tabl eNane [FOR INSERT] (

Col umNane Type[,..n]

[,PRIMARY KEY (KeyCol um [,..n])

][STORE IS] St or eNane

[[[,RETAIN]{[Durati on{ SEC|MIN|HRS|HOUR|DAYS} [(ALWAYS)]}]
[,MAX RECORDS NoOf Recor ds [:SlackValue]]

[. EXPIRESIN Expi ryDurati on { SEC|MIN |HRS | HOUR | DAYS} [FROM Expi r eFr om
Col um]

SET Expi ryCol um [NoOf Ti mes TIMES]]

[AUTO GENERATE Aut 0GenCol urm]

[WHEREFi | ter Expression[{ AND|OR} ..]V]I[;]

Note:

If a WHERE clause or the FOR | NSERT keywords are specified, the Table is marked as insert
only.

where:

« Tabl eNane (required) is the name for the Base Stream being defined. The name must follow the
naming conventions that are specified in Section 1.2, “Names”.

¢ FOR INSERT (optional) directs the tranglator to generate an insert only table. This option is re-
commended when you know that a table will only receive inserts. This not only improves perform-
ance, but it al'so allows you to use this stream in INNER JOINS.

e Col umName (required) is the name of the column that is being defined. This name must follow
the naming conventions and be unique within the stream.

« Type isone of the supported data types. Refer to Section B.1, “Data Types® for alist of supported
types.

« PRIMARY KEY (required) specifies one or more columns on which the table will be keyed.
KeyCol um isthe name of acolumn. A primary key can contain one or more non-null columns. A
primary key must be defined for every table.

« STORE St or eNane (required) specifies which storage manager is to be used. St or eNane is
the name assigned to the storage manager in the CREATE TABLE statement. The persistence prop-
erties of the stream are determined by the type of assigned store.

e RETAIN Dur ati on (optional) defines the retention period for the stream. The value ALWAYS
means that all data is retained. Dur at i on is an integer that represents the number of seconds,
minutes, hours, or days for which the data is to be retained. Either RETAI N or MAX RECORDS
(below) may be specified. Retention periods will be ignored for tables if the | NSERT ONLY,
VWHERE or AUTOGEN clause is specified.

« MAX RECORDS NoOf Recor ds : Sl ackVal ue (optional) specifies retention based on num-
ber of records rather than time. NoOf Recor ds is an integer that represents the maximum number
of recordsto be retained. If there are excess records, the older records are deleted. S| ackVal ue is
an optional parameter that specifies the number of records the stream can have over the defined
max NoOf Recor ds parameter before old records are purged. This improves efficiency by by
avoiding a purge on every incoming record. By default, this value is set to 10% of the NoOf Re-
cor ds parameter. MAX RECORDS or RETAI N (above) may be specified, but not both. Retention
policies can only be defined for non-insert only tables. If | NSERT ONLY, WHERE, or AUTOGEN
are specified, the MAX RECORDS value will be ignored.

5

Authoring in SQL

* EXPIRES IN (optional) specifies that a flag will be set on each record after the specified Ex-
pi ryDur at i on time period has elapsed. The column to be used for the expiry flag is specified by
Expi ryCol um and the value in the column is incremented when the expiry time period has
elapsed. The expired flag may be incremented more than once by specifying a value greater than
one for the optional NoOXf Ti nes parameter. By default, the expiry period is the time since the re-
cord was last updated (or created if it has never been updated); alternatively, the expiry period can
be the time since the timestamp contained in a column specified with Expi r eFr onCol um.

e Expi ryDur at i on specifies the time period after which the expiry flag on a record is set. The
time period is relative to the time the record was last updated unless an alternate time reference is
specified in the Expi r yFr omCol umrm. This must be a positive integer greater than O.

e Expi reFromCol umm is an optional parameter which specifies that the Expiry Duration is relat-
ive to the value in this column rather than the last time the row was updated or deleted. The spe-
cified column must be defined as part of the current stream and must be of type date.

e Expi r yCol umm specifies the name of the column in the current table that will be used to hold the
expiry flag. It will be this column whose value is incremented (updated) in order to indicate that the
record has expired. This column must be of type integer.

« NoOX Ti nes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it is re-
set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

< WHERE (optional) specifies a filter to be applied to the input stream. In other words, any record
that does not pass the filter is not passed down to any dependent derived streams. The inclusion of
the WHERE clause causes this stream to be eligible only for insert-only operations.

e filterExpression The filter expression to be applied. Note that when referring to a column
from the view being defined prefix the column name with a".". For example .columnl. For informa
tion on defining afilter expression see Section 2.4, “ Continuous Queries’.

*« AUTO GENERATE (optional) specifies that an automatically generated sequence number should
be added to each record. The column will be filled in with an increasing sequence of integers start-
ing with 0. The column can be used as a key, or part of a key, in the keys attribute. Therefore, the
autogen feature is particularly useful for streaming data that has no natural primary key, but where
each record is regarded as an insert. This option can only be used with Auto Streams (insert-only)
streams and ignored for regular streams.

¢ AutoGenColumn specifies the name of the column that will contain an automatically generated se-
guence number. The column must be of type int64. Only one column per stream can be auto gener-
ated.

The following example shows the table definition for a simple store.

/[l This is a sinple store used in all the followi ng exanpl es
CREATE STORE "storel" MEMSTORE

/***

The following is an exanple of the npbst basic Table
definition with no options.
This generates a SourceStreamprimtive in Aleri M.

***/

CREATE TABLE Tabl el (

KeyCol um int32, Columl string, Columm2 date,
PRI MARY KEY (KeyCol um), STORE IS "storel");

Authoring in SQL

/**

The following is an exanple of a sinple Insert Only Table
with no options.
This statenment generates a SourceStreamprinmtive in Al eri M.

**/

CREATE TABLE Tabl e2 FOR | NSERT (
KeyCol um string, Columl int32, Columm2 int64,
PRI MARY KEY (KeyCol umm), STORE IS "storel");

/**

The following is an exanple of a Table definition with
all supported options.

This generates a SourceStreamprimtive in Aleri M

The WHERE and AUTO GENERATE cl auses are only supported
for Insert Only Streans.

The MAX RECORDS cl ause can be used instead of the RETAIN
clause used in this exanple for record-based retention.

**/

CREATE TABLE Tabl e3 (
KeyCol um1 i nt 64, KeyColum2 string, Columl noney,
Col um2 int64, Columm3 string, Columm4 date, Col um5 int32,
PRI MARY KEY (KeyCol umml, KeyCol umm2),
STORE | S "storel",
RETAI N 10 SEC,
/1 The EXPI RES cl ause causes the value in Colum5 to be set to 1
[/l after the first 10 M nutes of no activity on the record from
/1 the tinme specified in Colum4. Thereafter the value in Col umb5
/1 is increnented by 1 after every 10 nminutes of no activity
/Il 4 nore times. If there is activity in the record then Col unmb5
/[l is reset to 0 and the process begi ns agai n.
EXPIRES IN 10 M N FROM Col um4 SET Col umm5 5 TI MES);

/**

The following is an exanple of an Insert Only Table with
al |l possible options.

Thi s statenment generates an SourceStreamprimitive in XML with the
insert-only flag turned on. Insert Only Streans cannot have Expiry
and Retention C auses because these generate updates. Wen the AUTO
GENERATE option is specified, a Table can have only have a single
key columm and it nust be of type int64. Note how the columms in
the filter clause are prefixed with a '.'. This is required when
ref erenci ng colums in the Tabl e/ Vi ew bei ng defi ned.

***/

CREATE TABLE Tabl e4 FOR | NSERT (
KeyCol umm i nt 64, Columml int32, Columm2 i nt 64,
PRI MARY KEY (KeyCol urm), STORE IS "storel",
AUTO GENERATE KeyCol um
WHERE . Col unm2 > 10 AND . Col umml > 100);

2.4. Continuous Queries

The Continuous Query takes one or more other streams (tables, materialized views, or program views)
as input, and produces the result as a derived stream or, in SQL terminology, a materialized view. The
SQL CREATE MATERI ALI ZED VI EWstatement defines a Continuous Query that produces a derived
stream. The Aleri SQL transglator will create one or more underlying derived stream elements to generate

Authoring in SQL

the materialized view.
The following isthe Aleri SQL syntax to define a continuous query:

CREATE [MATERI ALI ZED] VI EWViI ewNane

PRIMARY KEY (KeyCol umm [,...])

STORE St or eName

[[[INTERMEDIATE STORE [IS] St or eNane]

[| EXPIRES IN Expi ryDurati on { SEC|MIN |HRS|HOUR | DAYS} [FROM Expi r eFrom
Col um]

SET Expi ryCol um [NoOf Ti nes TIMES]]

|[DECLARE Var i abl eNane [eventCache(CacheDefiniti on)|Vari abl eType]]
]| [CREATE FUNCTION Funct i onName { Functi onDefini ti on} RETURN Ret ur nType]
[..]]

AS SELECT

Expr [[AS] Col umNane] [,Expr ...]

FROM

{ Tabl eNanme | Vi ewNane } [Al i asNane]

[RETAIN{ [[Dur ati on { SEC|MIN |HRS|HOUR | DAYS}]] (ALWAYS)} |

[MAX RECORDS NoOf Recor ds [:SlackVaue]]]

[Join Type { Tabl eNane

| Vi ewNane }][Al i asNane]

[RETAIN{ [[Durati on{ SEC|MIN |HRS|HOUR |DAYS}]] [ALWAYS) } |

[MAX RECORDS NoOf Recor ds [:SlackVaue]]] ON

Lef t Expr essi on = Ri ght Expressi on [AND Lef t Expressi on ..]

[Join Type ..]

[WHEREFi | t er Expressi on[AND |OR 11

[GROUPBY G oupExpression|,..]]

[GROUP ORDER BY Or der Expressi on [(ASC) | DESC] [, ..]]

[GROUPHAVING G oupHavi ngExpressi on [AND |OR ...]]

[HAVING Havi ngExpr essi on[AND |OR]]

[UNION SELECT......] [;]

Components:

* Vi ewNane (required) is the name for the Materialized View being defined. The name must be
unique and should follow the naming conventions specified in Section 1.2, “Names’.

* PRIMARY KEY KeyCol umm (required) defines the primary key for a derived stream. A primary
key can be made up of one or more columns that are defined to be non-null. KeyCol umnm issetto a
column name in the view as defined in the Select statement. A primary key must be defined for
every derived stream.

* STORE SoreName (required) specifies the Store to be used. The persistence properties for the
stream are derived from the type of store specified.

« INTERMEDIATE STORE (optiona) specifies the store that will be used by any intermediate
streams required to build this materialized view. If not specified, it defaults to the STORE value.
Note that there is no direct equivalent to this property in AleriML. Thisis only used to specify to
the trandlator to use a different store for intermediate streams rather than the store for the stream be-
ing defined. This option is typically used for derived streams that use Log Stores because it gives
the ability to store the intermediate streams in a Memory Store or Stateless Store to improve per-
formance.

* RETAIN (optional) specifies the minimum amount of time the Sybase Aleri Streaming Platform
retains the data in the view before archiving or purging it. The duration can be specified in minutes,
hours, or seconds. If this parameter and the MAX RECORDS parameter are not specified, the data
in the view is aways retained. Note that this property can only be specified for a materialized view

8

Authoring in SQL

that is a direct copy of the input table/view (in other words, the column order and the number of
columns of the view must match that of the input specified in SELECT. . . FROM . . , and there
can be no filter or group by clauses). See the description of this property in Section 2.3, “ Source
Streams’ for more information.

MAX RECORDS (optional) specifies the maximum number of records to keep in a derived
stream. When the number of records exceeds this maximum number, the older records are eligible
for purging or archiving. Like the RETAIN property, currently, this property can only be specified
for materialized views that are direct copies of the input table or view. See the description of this
property in Section 2.3, “ Source Streams” for more information.

EXPIRES IN specifies that a flag will be set on each record after the specified Expi r yDur a-

t i on time period has elapsed. The column to be used for the expiry flag is specified by Expi ry-

Col unm and the value in the column is incremented when the expiry time period has elapsed. The
expired flag may be incremented more than once by specifying a value greater than one for the op-
tional NoOf Ti nes parameter. By default, the expiry period is the time since the record was last
updated (or created if it has never been updated); alternatively the expiry period can be the time
since the timestamp contained in a column specified with Expi r eFr onCol urm.

Expi ryDur at i on specifies the time period after the expiry flag on arecord is set. The time peri-
od is relative to the time the record was last updated unless an alternate time reference is specified
in the Expi r yFr omCol umm. This must be a positive integer greater than 0.

Expi r eFr onCol umm is an optional parameter that specifies that the Expiry Duration is relative
to the value in this column rather than the last time the row was updated or deleted. The specified
column must be defined as part of the current stream and type date.

Expi r yCol um specifies the name of the column in the current table that will be used to hold the
expiry flag. This column's value will be incremented (updated) to indicate that the record has ex-
pired. This column must be of type integer.

NoOf Ti nmes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it isre-
Set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

DECL ARE (optional) defines one or more variables and functions that are local to the view being
declared. The variable can be one of the basic types or an eventCache. There may be any number of
local variables and functions defined.

Var i abl eNane is the name of the variable and must follow the standard naming conventions.
Refer to Section 1.2, “Names’ for more information. The variable names must be unique with the
list of variables defined for the current view.

Vari abl eType isthe data type of the variable being defined. The data type must be a supported
data types or an eventCache. Refer to Section B.1, “Data Types’ for alist of supported types.

CacheDef i ni ti on isthe definition for the event cache. Refer to Section 4.3.7, “Event Caches’
for more information on defining and using event aches.

Note:

Although the syntax allows a user to specify more than one | NTERMEDI ATE STORE and
EXPI RES clause for a derived stream, only the last is honored by the translator. The trandator
generates awarning when any clause is repeated.

Funct i onNane is the name of the function being defined. The function name must be unique
within the scope of the view being defined and must follow the standard naming conventions spe-
cified in the section Section 1.2, “Names’.

Authoring in SQL

Functi onDefi ni ti on isthe body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

Ret ur nType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types’.

AS SELECT [Expr AS Col utmmNane] (required) defines the columns of the materialized view
(that is, the structure of the output records for this stream). Expr is an expression that evaluates to
a scalar value. An expression can be a simple reference to a value from the input table/view
(specified in the FROMclause), a formula to calculate a new vaue from the column in the view, or
even a constant. It could also be a complex expression consisting of one or more internal/external
function calls, if-then-else-end statements, and so on. Refer to Section 1.3, “Expressions’ for more
information. If the expression is a direct copy of an input column, the ColumnName can be omit-
ted, in which case the name will match the name of the input column. Each Col urmNane must be
unique within the view.

FROM Tabl eNane | Vi ewNane [Al i asNane] (required)specifies one or more streams that
will be the input(s) to the materialized view being defined. There must be at least one input stream.
An optional Al i asNane can be specified to use when referring to the input stream in subsequent
expressions. If the Aliasis not explicitly specified, the stream name is used in expressions. The Ali-
as Name must follow the proper naming conventions (seeSection 1.2, “Names”).

JoinType (optional) specifies multiple input streams in the FROM clause. This can be one of [I N-
NER] JO N, LEFT JO N, RIGHT JO N, and FULL JO N. Each Join Type is followed by an
ON clause, which specifies the relationship between the tables. See Section 2.14.1, “Join Expres-
sions’ for more information.

WHERE optionally specifies one or more Filter Expressions that evaluatetot r ue or f al se and
are concatenated to each other by either an AND or OR operator. Although both sides of the ex-
pression can be constants, typically at least one side of the filter clause refers to one or more
columns in the input stream(s). See Section 2.14.2, “Filter Expressions’ for more information.

GROUP BY G oupExpr essi on optionally specifies values on which the data is to be grouped.
If aGROUP BY clause is used, at least one Gr oupExpr essi on must be specified. The expres-
sion must be based on a column in one of the input streams. There must be one Gr oupExpr es-
si on for each key column in the materialized view that is being defined, and each G- oupEx-
pr essi on must match the Expr for that column in the SELECT clause.

GROUP ORDER BY O der Expressi on can optionally be used in conjunction with the
GROUP BY clause to order the rows in each group. Or der Expr essi on is any expression not
containing aggregation operations like M N and MAX. It can aso be followed by the keyword ASC
or DESC for ascending or descending order. If ASC/ DESC is not specified, it defaults to ascend-
ing. One or more Order expressions may be specified, separated by commas. This ordered group is
used in functions like RANK, FI RST, and LAST. See Appendix B, Data Types, Operators and
Functions for more information.

GROUP HAVING G oupHavi ngExpr essi on (optiona) is like a WHERE clause for groups
that filter out records from the group before applying aggregation operations. This clause can only
be specified in conjunction with the GROUP BY clause. The Gr oupHavi ngExpr essi on is
identical to afilter expression, except that it is used only when there is aggregation to filter rowsin
agroup before the aggregation operations are applied. This expression must follow all the rules of a
filter expression as described in Section 2.14.2, “Filter Expressions’.

HAVING Havi ngExpr essi on (optional) is a clause similar to the WHERE clause. The main
difference is that the filter is executed after all the rules have been applied. It can have aggregation
clauses and it can refer to columns within the current table. Like the WHERE clause, there may be
one or more filters that are concatenated by ANDY OR operators.

10

Authoring in SQL

¢ UNION SELECT (optiona) alows you to perform a UNI ON on the results of multiple SELECT
statements. The structure of each SELECT statement on which the UNI ONis to be applied must be
the same.

2.4.1. Examples of Materialized View Definitions

We use the following tables as inputs to the examples below.

CREATE STORE "storel" MEMSTORE;
CREATE STORE store2 LOGSTORE ON 'store2' MAXSIZE 16;
CREATE STORE st ore3 MEMSTORE;
CREATE TABLE Tabl el (
KeyCol um1l int 32, KeyColumm2 string, Columml string, Columm2 date,
Col um3 noney,
PRI MARY KEY (KeyCol um1, KeyCol um?2) ,
STORE | S "storel");
CREATE TABLE Tabl e2 (
KeyCol um1 i nt32, Columl string, Colum2 date,
PRI MARY KEY (KeyCol umm1l),
STORE | S "storel");
CREATE TABLE Tabl e3 (
KeyCol um1l int 32, KeyColumm2 string, Columml string, Columm2 date,
Col um3 noney,
PRI MARY KEY (KeyCol urmi, KeyCol urm2),
STORE | S "storel");

The following is an example of the most basic Materialized View definition with no options. It generates
a Compute Stream primitivein AleriML.

CREATE MATERI ALI ZED VI EW Vi ewl
PRI MARY KEY (KeyCol urm1)
STORE | S "storel”
AS SELECT tbl.KeyCol uml, tbl.Columil, tbl.Colum?2 FROM Tabl e2 thl ;

The following is an example of a Materialized View definition that generates a Compute Stream primit-
ivein AleriML and contains all possible options.

Notes:

» This generates a Compute Stream primitivein AleriML.

e The MAX RECORDS clause after Tabl el, | st orel and | st or e2 below can be replaced with
the RETAI N clause to specify retention by time instead of by records.

* When the EXPI RES clause is used, neither the STORE nor the | NTERVEDI ATE STORE can be
set to alog store.

CREATE MATERI ALI ZED VI EW Vi ew_la
PRI MARY KEY (KeyCol um1, KeyCol um2)
STORE | S "storel"
| NTERVEDI ATE STORE "storel"
EXPIRES I N 10 SEC

11

Authoring in SQL

SET ExpiryCol um 3 TI MES

AS SELECT tbl.KeyCol um1l, tbl.KeyColum2, tbl.Columil,
t bl . Col um2, 0 ExpiryCol umm,
/1 Determ nes the maxi mum Col utml value in the last 5 records.
Sequence(aggregate(insert, |storel, string, tbl.Columl),
aggregate(max, \ |storel, string, -1)) Moving Max_Col ummil,
/] Determ nes the maxi mum Col utm2 value in the last 5 records.
Sequence(aggregate(insert, |store2, date, tbl.Colum?2),
aggregate(mn, \ |store2, date, -1)) Myving M n_Col um2

FROM Tabl el t bl MAX RECORDS 20 ;

This statement generates a Filter Stream primitive in AleriML. If the columns in the Materialized View
are not identical to the input, then a Filter Stream will be generated followed by a Compute Stream to
match the specified column definition.

CREATE NMATERI ALI ZED VI EW Vi ew2
PRI MARY KEY (KeyColumm1l) STORE IS "storel"
AS SELECT * FROM Tabl e2 tbhl
WHERE t bl . Col uml1 in (' Chicago', 'London', 'Frankfurt');

This statement generates an Aggregate Stream primitivein AleriML.

CREATE MATERI ALI ZED VI EW Vi ew3
PRI MARY KEY (KeyCol utml) STORE |S "storel"
AS SELECT thbl . KeyCol umml, MAX(tbl.Columl) Max_Col uml,
M N(t bl . Col umm2) M n_Col um2 FROM Tabl el t bl
GROUP BY t bl . KeyCol um1,;

This statement generates a Filter Stream Primitive for the WHERE clause and an Aggregate Stream prim-
itivein AleriML followed by a Compute Stream primitive to fulfill the Havi ng Clause.

Notes:

* When the EXPI RES clause is used, neither the STORE nor the | NTERVEDI ATE STORE can be
set to alog store.

¢ |t is more efficient to use the GROUP HAVI NG clause instead of the WHERE clause. In this ex-
ample, it will be more efficient to combine the WHERE and GROUP HAVI NG clauses into a single
GROUP HAVI NGclause.

e The MAX RECORDS clause can be replaced with the RETAI N clause to specify time based reten-
tion.

e The LOCALSTORAGE clause cannot be specified with an aggregation.

* One can do ajoin by specifying more than one table in the FROMclause. If this is done, however, a
retention clause CANNOT be specified.

CREATE MATERI ALI ZED VI EW Vi ew_3a
PRI MARY KEY (KeyCol unm1)
STORE IS "storel"
| NTERVEDI ATE STORE |'S "st or e3"

12

Authoring in SQL

EXPIRES IN 10 M NUTES SET Expi ryCol umm 3 TI MES
AS SELECT thbl . KeyCol uml, MAX(tbl.Columl) Max_Col uml,
M N(t bl . Col um2) M n_Col um2,
FI RST(tbl . Col um1) First_Col uml,
LAST(t bl . Col umm3) Last Col umm3,
0 Expi ryCol unm
FROM Tabl el tbl MAX RECORDS 20: 10
WHERE t bl . Col um1 IN (' Chicago', 'London')
GROUP BY tbl . KeyCol uiml
GROUP ORDER BY t bl . Col umm2
GROUP HAVI NG t bl . Col uimm3 > 100.0
HAVI NG LAST(t bl . Col um3) > 1000. 0;

This statement generates a Join Stream primitivein AleriML:

CREATE MATERI ALI ZED VI EW Vi ew4
PRI MARY KEY (KeyCol umml, KeyCol umz2)
STORE | S "storel"
AS SELECT tbl1.*, tbl2.Columl Tabl e2_Col uml
FROM Tabl el thl 1
LEFT JO N Table2 tbhl2 ON (thbl 1. KeyCol um1 = t bl 2. KeyCol umm1) ;

The following statement generates a Join Stream primitive in AleriML.
Notes:
« The following clauses can be used with the Joins: WHERE GROUP BY, GROUP ORDER (requires
GROUP BY), and GROUP HAVI NG (requires GROUP BY).
» Retention cannot be specified when performing ajoin.

e A LOCALSTORAGE clause cannot be specified with ajoin.

CREATE MATERI ALI ZED VI EW Vi ew_4a
PRI MARY KEY (KeyCol um1, KeyCol um2)
STORE | S "storel"
EXPIRES IN 5 SEC SET Expi ryCol umm
AS SELECT tbl1.*, tbl2.Columl Tabl e2_Col utml, 0 ExpiryCol um
FROM Tabl el thl 1
LEFT JO N Tabl e2 tbl 2 ON (thl 1. KeyCol um1 = tbl 2. KeyCol umml) ;

The following is an example of a Materialized View with a UNI ON operation with no options.

Notes:

* This statement generates a Union Stream primitive in AleriML.

e If anindividual statement that makes up the Union Stream is not a direct copy of a source table/
view, then intermediate Streams will be generated in addition to the Union Stream.

« The options that can be included in the individual SQL statements follow the same rules as men-
tioned in the previous examples.

e The LOCALSTORAGE clause cannot be specified in a UNI ON statement.

13

Authoring in SQL

CREATE NMATERI ALI ZED VI EW Vi ews
PRI MARY KEY (KeyCol um1, KeyCol umm?2)
STORE | S "storel"
AS SELECT * FROM Tabl el UNI ON SELECT * FROM Tabl e3;

Thefollowing is an example of a Materialized View with a UNI ON operation and all possible options.

Notes:

This statement generates a Union Stream primitivein AleriML.

e If aindividual statement that makes up the Union is not a direct copy of a source table/view, then
intermediate Streams will be generated.

e The options that can be included in the individual SQL statements follow the same rules as men-
tioned in the previous examples.

¢ The LOCALSTORAGE clause cannot be specified in a UNI ON statement.

CREATE NMATERI ALI ZED VI EW Vi ew_5a
PRI MARY KEY (KeyCol umil, KeyColumm?2) STORE IS "storel"
EXPIRES IN 5 SEC SET Expi ryCol um
AS SELECT *, 0 ExpiryCol unm FROM Tabl el RETAIN 1 HOUR UNI ON
SELECT *, 0 ExpiryCol unmm FROM Tabl e3 RETAIN 10 M NUTES ;

The following is an example of a Materialized View that copies the data from another stream directly
and optionally specifies aretention policy on the data.

Notes:

¢ This statement generates a Copy Stream primitivein AleriML.

« In place of the *' one can specify al the column names from the source stream in exactly the same
order it appearsin the Source. A "*'isjust a convenient way representing it.

* |If the source Stream is Materialized View and it isin aLog Store, thisis the only way to specify re-
tention on the data.

« Specifying any other option other than Ret ent i on will not result in a Copy Stream being gener-
ated.

CREATE MATERI ALI ZED VI EW Vi ew6
PRI MARY KEY (KeyCol um1, KeyCol um?2)
STORE | S "storel"
AS SELECT * FROM Tabl el MAX RECORDS 10:5 ;

2.5. Program View Definition

A Program View is an Aleri SQL construct that is used to define a FlexStream element in the data mod-
el. As the name indicates, the PROGRAM is a set of methods written in SPLASH (see Chapter 4,
SPLASH Programming Language) that defines the contents of the view. A Program View isaform of a
Materialized View and can be used wherever a Materialized View is used. The syntax to declare a Pro-
gram View:

14

Authoring in SQL

CREATE PROGRAM VI EWVi ewNarre

PRIMARY KEY (KeyCol umm [,...])

STORE St or eNane [[

[| EXPIRES IN Expi ryDuration {SEC | MIN | HRS | HOUR | DAYS} [FROM Expi r eFr om
Col um]

SET Expi ryCol umm [NoOf Ti mes TIMES]]

|[DECLARE Var i abl eNane [eventCache(CacheDefi niti on)|Vari abl eType]]

] | [CREATE FUNCTION Functi onNanme {FunctionDefi nition} RETURN Ret urnType]

[...]]
AS

Col utmName Type [,...n]

FROM

{ Tabl eNane | Vi ewNane } [,...]

PROGRAM

[Vari abl eNane Vari abl eType ; [..]]

{ [Met hodNane FOR] Tabl eNane { Spl ashPr ogram} [...] }

where

Vi ewNan® is the name of the Program View being defined. The name must be unique and must
follow the naming conventions specified in Section 1.2, “Names’.

PRIMARY KEY KeyCol um specifies one or more columns that will form the key for this view.
A primary key must be defined for every Program View.

STORE St or eNane isthe name of Store that will be used to hold retained data for this view. The
persistence properties for the view are derived from the type of Store specified.

EXPIRES IN specifies that a flag will be set on each record after the specified Expi r yDur a-

t i on time period has elapsed. The column to be used for the expiry flag is specified by Expi ry-

Col unm and the value in the column is incremented when the expiry time period has elapsed. The
expired flag may be incremented more than once by specifying a value greater than one for the op-
tional NoOf Ti nes parameter. By default, the expiry period is the time since the record was last
updated (or created if it has never been updated); alternatively the expiry period can be the time
since the timestamp contained in a column specified with Expi r eFr onCol urm.

Expi ryDur at i on specifies the time period after the expiry flag on arecord is set. The time peri-
od is relative to the time the record was last updated unless an alternate time reference is specified
in the Expi r yFr omCol umm. This must be a positive integer greater than 0.

Expi r eFr onCol umm is an optional parameter that specifies that the Expiry Duration is relative
to the value in this column rather than the last time the row was updated or deleted. The specified
column must be defined as part of the current stream and type date.

Expi r yCol um specifies the name of the column in the current table that will be used to hold the
expiry flag. This column's value will be incremented (updated) to indicate that the record has ex-
pired. This column must be of type integer.

NoOf Ti nmes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it isre-
Set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

DECL ARE (optional) defines one or more variables and functions that are local to the view being
defined. The variable can be one of the basic types or an eventCache. There may be any number of
local variables and functions defined.

Var i abl eNane is the name of the variable and must follow the standard naming conventions.

15

Authoring in SQL

Refer to Section 1.2, “Names’ for more information. The variable names must be unique with the
list of variables defined for the current view.

Vari abl eType isthe data type of the variable being defined. The data type must be a supported
data types or an eventCache. Refer to Section B.1, “Data Types’ for alist of supported types.

e CacheDefi ni ti on isthe definition for the event cache. Refer to Section 4.3.7, “Event Caches’
for more information on defining and using even aches.

Note:

Although the syntax allows a user to specify more than one | NTERMEDI ATE STORE and
EXPI RES clause for a derived stream, only the last is honored by the translator. The trandator
generates awarning when any clause is repeated.

Funct i onNane is the name of the function being defined. The function name must be unique
within the scope of the view being defined and must follow the standard naming conventions spe-
cified in the section Section 1.2, “Names’.

Functi onDefi ni ti on isthe body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

Ret ur nType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types’.

¢ AS Col umNane Type defines the columns for this view and the data type for each column.
Each column name must must be unique within the view and must follow the naming conventions
specified later in this section within the stream. In other words, two columns within the same
stream cannot have the same name. Type is one of the supported data types. Refer to Section B.1,
“Data Types’ for alist of supported types.

* FROM Tabl eNane | Vi ewNane specifies specifies one or more input streams for this view.
There may be any number of input streams defined for a Program View.

« PROGRAM isacallection of variables and methods that determines the output of this view. There
may be any number of variables defined, but there has to be exactly one method defined for each
input stream. Whenever arecord is received on an input stream, the appropriate method is called to
determine how the input will affect the view. Note that variables can be defined inside as well as
outside of the methods. A variable defined outside the methods is form of “global” variable which
isavailableto al the methods defined in this Program View.

Vari abl eNane is the name of a variable, which must follow the naming convention standard
specified in Section 1.2, “Names’. A variable name must be unique within a program view.

Vari abl eType specifies the data type for the variable. The data type must be one of the types
listed in Section B.1, “Data Types'.

Met hodNan® is an optional name that can be specified for a method. If the MethodName is not
provided, then the name is assigned to be the same as the Tabl eNane. The MethodName must
follow the standard naming conventions specified in Section 1.2, “Names”.

Spl ashProgram is the actua SPLASH program that computes the output (if any). See
Chapter 4, SPLASH Programming Language for information on how to write a SPLASH program.

2.6. Pattern View Definition

A Pattern View is an Aleri SQL construct that defines a Pattern Stream in the model. A Pattern View

16

Authoring in SQL

can be used to define complex relationships between records in one or more streams. It is a specialized
form of a Materialized View and can be used anywhere a Materialized View can be used. The syntax to
declare a Pattern View is asfollows:

CREATE PATTERN VI EWVi ewNare

PRIMARY KEY (KeyCol umm [,...])

STORE St or eNarre [[

[| EXPIRES IN Expi ryDur ati on {SEC | MIN | HRS | HOUR | DAY S} [FROM Expi r eFrom
Col um]

SET Expi ryCol umm [NoOf Ti mes TIMES]]

|[DECLARE Var i abl eNane [eventCache(CacheDefi niti on)|Vari abl eType]]

] | [CREATE FUNCTION Functi onNanme {FunctionDefi nition} RETURN Ret urnType]

[...]]
AS

Col umNane Type [,...n]
PATTERN PatternDefinition [...]
where

Vi ewNane isthe name of the Pattern View being defined. The name must be unique and must fol-
low the naming conventions specified in Section 1.2, “Names’.

PRIMARY KEY KeyCol um specifies one or more columns that will form the key for this view.
A primary key must be defined for every Program View.

STORE St or eNane isthe name of Store that will be used to hold retained data for this view. The
persistence properties for the view are derived from the type of Store specified.

EXPIRES IN specifies that a flag will be set on each record after the specified Expi r yDur a-

ti on time period has elapsed. The column to be used for the expiry flag is specified by Expi ry-

Col unm and the value in the column is incremented when the expiry time period has elapsed. The
expired flag may be incremented more than once by specifying a value greater than one for the op-
tional NoOf Ti nmes parameter. By default, the expiry period is the time since the record was last
updated (or created if it has never been updated); alternatively the expiry period can be the time
since the timestamp contained in a column specified with Expi r eFr onCol urm.

Expi ryDur at i on specifies the time period after the expiry flag on arecord is set. The time peri-
od is relative to the time the record was last updated unless an alternate time reference is specified
in the Expi r yFr omCol umm. This must be a positive integer greater than 0.

Expi r eFr omCol umm is an optional parameter that specifies that the Expiry Duration is relative
to the value in this column rather than the last time the row was updated or deleted. The specified
column must be defined as part of the current stream and type date.

Expi r yCol umm specifies the name of the column in the current table that will be used to hold the
expiry flag. This column's value will be incremented (updated) to indicate that the record has ex-
pired. This column must be of type integer.

NoOF Ti mes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it is re-
set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

DECLARE (optional) defines one or more variables and functions that are local to the view being
defined. The variable can be one of the basic types or an eventCache. There may be any number of
local variables and functions defined.

Vari abl eNane is the name of the variable and must follow the standard naming conventions.
Refer to Section 1.2, “Names’ for more information. The variable names must be unique with the

17

Authoring in SQL

list of variables defined for the current view.

L]

Vari abl eType isthe data type of the variable being defined. The data type must be a supported
data type or an eventCache. Refer to Section B.1, “Data Types’ for alist of supported types.

* CacheDef i ni ti on isthe definition for the event cache. Refer to Section 4.3.7, “ Event Caches’
for more information on defining and using even aches.

Note:

Although the syntax allows a user to specify more than one | NTERMVEDI ATE STORE and
EXPI RES clause for a derived stream, only the last is honored by the trandator. The trandator
generates awarning when any clause is repeated.

Functi onNane is the name of the function being defined. The function name must be unique
within the scope of the view being defined and must follow the standard naming conventions spe-
cified in the section Section 1.2, “Names’.

Functi onDefi ni ti on isthe body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

Ret ur nType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types’.

¢« AS Col unmNane Type defines the columns for this view and the data type for each column.
Each column name must must be unique within the view and must follow the naming conventions
specified later in this section within the stream. In other words, two columns within the same
stream cannot have the same name. Type is one of the supported data types. Refer to Section B.1,
“Data Types’ for alist of supported types.

« FROM Tabl eNane | Vi ewmNane specifies specifies one or more input streams for this view.
There may be any number of input streams defined for a Program View.

PATTERN defines a pattern that needs to be detected and the action that needs to be performed
when the pattern is detected. Each Pattern View must have at least one PATTERN clause.

Patt er nDefi ni ti on isthedefinition for the pattern. Refer to the section Appendix C, Pattern
Matching Language for information on defining Patterns.

2.7. Parameter Definition

A parameters can be used in an expression in place of a constant for avalue that may need to be changed
while the Sybase Aleri Streaming Platform is running. A parameter is synonymous to Global variables
described in section Section 3.4, “Global”. The value of the parameter can be changed at runtime by is-
suing a command via the Command and Control interface or from any expression/rule from within the
model.

The syntax for the parameter definition:
DECLARE ParameterName DataType[[DefaultValue]]
where:
e Par anet er Nane isthe name of a parameter. This name must be unique across all the objects in

the SQL file.

» Dat aType isthe datatype for the parameter. It must be any of the supported data types.

18

Authoring in SQL

« Def aul t Val ue optionally specifies the default value for the parameter. If it's not specified, then
it defaultsto NULL.

The defined parameters can be accessed in expressions via the GETPARAM) function. The syntax for
this function isas follows:

GETPARAM (ParameterName)
2.8. Global Function Definition

Just like Parameters, one or more global functions can also be declared. A Global function is available to
any other functions (global or local) and rules/expressions that are defined after the function has been
defined. The syntax for declaring global functionsis as follows:

CREATE FUNCTION Funct i onName{Funct i onDefi ni ti on} RETURN Ret ur nType

where:

e Functi onNan® is the name of the function being defined. The function name must be unique
within the scope of the model and must follow the standard naming conventions specified in the
section Section 1.2, “Names’.

e FunctionDefi ni tion isthe body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions’ for more information on using functions and defining
the body of the function.

* Ret ur nType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types’.

2.9. Data Location Definition

The Data Location construct in Aleri SQL is used to define a corresponding Data Location object in
AleriML. A Data Location defines the location and default characteristics of a source or target for the
Sybase Aleri Streaming Platform. The Data Location definition goes hand in hand with Connector
Definitions described below. The syntax for defining a Data L ocation is as follows:

CREATE DATA LOCATION LocationNane TYPE IS TypeNane [SET Prop-
ertyl=Val uel[, Property2=Value2,...]]
where:

* Locat i onNan® isthe name of the datalocation. This must be unique across the entire model and
must follow the naming conventions described in section Section 1.2, “Names’.

« TypeNarne isthe location type meaning the type of data that the connector provides. For example,
xml_in, jdbc_in, or smtp_out.

e Propertyl isthe first property or attribute that needs to be set for a given location type. The
name of the property depends on the type of data location being specified. If the property nameisa
keyword or if it contains spaces then the it must be surrounded in double quotes. There may be any
number of properties specified.

e Val uel isthevalue for the property. If the value is a keyword or contains spaces it must be sur-
rounded by single quotes.

19

Authoring in SQL

Note:

The validity of the values supplied for TypeNane, Propertyl, Val uel not verified
during compile time. If there are any errorsit will be flagged during run time.

2.10. Connection Definition

Connections alow data to be imported from external sources into the Sybase Aleri Streaming Platform
(inbound connectors) and export data from the Sybase Aleri Streaming Platform to external sources
(outbound connectors). One or more connections can be associated with a view/table. Tables can be as-
sociated with both inbound and outbound connectors whereas views can be associated with only out-
bound connectors. The syntax for defining a connector is as follows

CREATE {input | output} CONNECTION Connect i onNanme FOR Tabl eVi ewNane

{FROM Locat i onNane | TYPE [19] TypeNane} [SET Pr op-
ertyl=Val uel[, Property2=Val ue2,...]]
where:

e Connect i onNane isthe name for the connection. It must be unique within the scope of a model
and following the naming conventions described in the section Section 1.2, “Names”.

e Locati onNane isthe name of apreviously defined Data L ocation.

« TypeNane represents the type of connector to create. This can only be provided if the Loca-
t i onNane parameter is not specified.

e Propertyl isthe first property or attribute that needs to be set for a given location type. The
name of the property depends on the type of data location being specified. If the property nameisa
keyword or if it contains spaces then the it must be surrounded in double quotes. There may be any
number of properties specified.

e Val uel isthevalue for the property. If the value is a keyword or contains spaces it must be sur-
rounded by single quotes.

Note:

The validity of the values supplied for TypeName, Propertyl, Val uel isnot verified
during compile time. If there are any errorsit will be flagged during run time.

One or more Connections can be associated with a given Data L ocation.

The CREATE CONNECTI ON statement must follow the CREATE TABLE statement, or you
get an error saying that the Tabl eVi ewNane does not exist.

2.11. Connection Group Definition

When one or more connections are defined in amodel the question quickly arises, how to control the or-
der in which the connectors are started up. This where the Connection Group comes in. One can assign a
set of connectors to a group and specify whether the connectors should be started up or not. Also, if the
connections in a group needs to be automatically started then the connections defined within a group are
started in parallel. When multiple connection groups are defined each connection group that needs to be
started is started in the order in which the groups are defined. For more information on Connection
Groups refer to the document Section 2.13, “ Access Control”.

20

Authoring in SQL

The syntax for defining a Connection Group is as follows

CREATE CONNECTI ON GROUP Gr oupNane (Connectionl [,Connection2...]) TYPE[IY
{start | nostart}

where:

¢ G oupNane isthe name for the connection group. It must be unigque within the scope of a model
and following the naming conventions described in the section Section 1.2, “Names”.

e Connectionl isthe name of a previously defined Connection that should be associated with
this group. There must be at least one connection associated with every group.

 start | nostart specifies whether to automatically start the connections within the group when the
Platform starts or not. If the connections are not automatically started they can be manually started
viathe command and control interface.

Note:

All connections specified within a group are started in parallel whereas the connection groups
themselves are processed in the order in which they are defined.

A connection can be specified only once in only one group. If it appear more than once in a
group or if it is specified in more than group it will be flagged as an error.

2.12. Distributed Model Definition

Aleri SQL allows a data model to be distributed across multiple servers through the definition of Mod-
ules and Clusters. Refer to the Authoring Guide for more information.

There are two parts to defining a distributed model. The first part defines a module. A module contains
all of the Stores and Streams (tables and views) that will be executed on a single instance of the Sybase
Aleri Streaming Platform.

A module is defined by enclosing a set of CREATE (store/tabl e/ vi ew) statements within a
CREATE MODULE statement. It uses the following Aleri SQL syntax:

CREATE MODULE ModuleName
BEG N

ObjectDefinitions

END[;]

where:

e Modul eNane isthe name of the module. The module name follows the standard naming conven-
tion rules and must be unique across the entire model.

* BEGIN specifies the beginning of the module. All stores and streams defined after this point be-
long to the specified module.

e (bj ect Definitions represents any number of stores, streams, and derived streams that may
be created. When created,these objects bel ong to the specified module.

* END signals the end of the module. This keyword must be provided before creating another mod-
ule. If thisis not provided, then all objects listed at the end of the file are considered to be part of
the current module.

21

Authoring in SQL

The second part to defining a distributed module involves assigning individual modules to run on specif-
ic servers. Thisis done viathe following syntax:

CREATE CLUSTER ClusterName

ModuleName HostName CommandPort

[, ModuleName2 HostName2 CommandPort2...] [;]
where:

e Cl ust er Nane is the name of the cluster. It follows the standard object naming conventions and
must be unique with a given model.

« Modul eName is the name of the module for which the instance information is to be specified. It
may appear only once in each Cluster specification.

¢ Host Nane isthe name of the host on which the Sybase Aleri Streaming Platform will be running.

e ConmmandPort isthe TCP/IP port on which the Sybase Aleri Streaming Platform is listening for
Command and Control information. This number must be positive and less than 65536.

More than one cluster section can be specified in a given model. The cluster to be used is decided at
runtime. Every module may be reference by one cluster. Additionally, a cluster may be defined at any
point in the model. But it's unnecessary to define all the modules before referencing one in a cluster
definition.

CREATE CLUSTER
clusterl nmodul el "amazon. al eri.com' 11190,
nodul e2 "tigris.aleri.com 11190

CREATE MODULE nodul el
BEG N
CREATE STORE st ore0 MEMSTORE;
CREATE TABLE Streanl FOR | NSERT(
a int64, PRI MARY KEY(a),
STORE | S store0);
END

CREATE MODULE nodul e2
BEG N
CREATE STORE st orel MEMSTORE;
CREATE MATERI ALI ZED VI EW St r eanilCopy
PRI MARY KEY(a)
STORE | S storel
AS SELECT * FROM Streand;
CREATE MATERI ALI ZED VI EW Der i vedSt r eaml
PRI MARY KEY (a)
STORE | S store0
AS SELECT a.a, NULL*O nullcol FROM StreanilCopy a;
END

2.13. Access Control

Access control can be specified either at the model level or for an individual stream. The syntax for spe-
cifying access control is:

GRANT [{privilege} [, ...]] [ON SreamName] TO [{rale} [,...]]

where:

22

Authoring in SQL

e privil ege can have one of the following options: cont r ol , query, subscri be, publ i sh
or al | . There may be more than one privilege given to each r ol e. The default is al | , which
means that the specified role(s) has been granted all the possible privileges.

e StreanNane isthe name of the stream (table or view) for which the access control is being spe-
cified. If that is not provided, then this access control specification is put into effect at the model
level. control.

« rol e isthe name of the role for which the access control is being specified. There may be more
than one role specified, in which case the specified privilege is applied to al of the specified roles.
Note that the role does not have to exist at tranglation time.

There may be more than one Gr ant statement specified for a given stream, in which case the resultant
Access Control for the stream is a union of al access controls specified. The Access Control setting for
any intermediate streams (ones generated by the trandlator in order to create the specified Stream) de-
faults to the Access Control of the intermediate stream'’s inputs. This can only be modified by manually
editing the generated AleriML file.

2.14. Aleri SQL Expressions
2.14.1. Join Expressions

A Join Expression follows the FROM keyword and is specified by including aJoi nType followed by
the elements of the Join. The syntax is:

FROM

{ TableName | ViewName} [AliasName]

JoinType { Table Name | ViewName} [AliasName ON]
[LeftExpression = RightExpression]

[AND LeftExpression...]

[JoinType...]

The supported Join typesarel NNER JO N, LEFT JO N,RI GHT JO N,and FULL JO N.

A Joi n Expressi on alows data from two or more tables to be combined by matching records with
common values in the specified fields. The join operation is performed before applying any complex fil-
ters (filters based on columns from more than one stream), aggregations, or computations. The expres-
sion following the ON keyword specifies how two tables are related to each other. This expression may
contain more than one sub-expression concatenated by an AND clause.

Currently, each sub-expression is restricted to a simple between two columns, for example, Al i -
asl.Col 1 = Alias2.

The only currently supported operator is“=".

One of the two columns must come from the first stream being joined, and the other column must come
from the second stream being joined.

Note:

At least one side of a Join clause must be akey column.

As mentioned earlier, more than two tables can be Joined together. In this case, the Aleri SQL to Aler-
iML tranglator will generate the AleriML to perform the Join in asingle step as long as there is only one
driving stream (that is, the many side of a one-to-many Join). If there are many driving tables in the
Joi n expression, the trandator will generate a sub-Join for every driving stream and will combine the
results together.

23

Authoring in SQL

Notes:

e The order of the Joins can be controlled to some extent by grouping the Joins using parentheses.
See Section 2.14.1.2, “Examples of Joins” for details.

» The trandator does not optimize based on the data in the tables because it does not know anything
about them. This is the nature of streams and continuous queries. the query structures are defined
before the data arrives. The translator only tries to optimize the generated AleriML to generate the
least number of sub-Joins.

2.14.1.1. Types of Joins

As mentioned earlier, four different types of Joins are supported by the Sybase Aleri Streaming Plat-
form. The type of join controls whether a record gets selected for processing. Here is an explanation of
each of the Join types:

¢ INNER JOIN — When the columns being Joined do not match, no rows are selected from either
of the tables being Joined.

e LEFT JOIN — When the columns being Joined do not match, all the rows belonging to the stream
on the left side of the Join type are selected, and only those rows where the Join keys match are se-
lected from the stream on the right side of the Join type. Usually the left side of the Join typein this
case isthe "many" side of a one-to-many relationship.

¢ RIGHT JOIN — Thisisthe reverse of the LEFT JOIN. Note that any Join Expression can be writ-
ten to be a RIGHT JOIN or a LEFT JOIN by rearranging the Join clause. The two Join types are
supported only for convenience.

e FULL JOIN — A full Join occurs when the rows from both sides of a Join are included even if the
Join keys do not match. Rules are generated to merge the columns being Joined (they contain val-
ues from both streams). If it is known that the two tables being joined do not have any overlapping
keys with compatible row definitions, it is more efficient to do a union instead of afull outer Join.

An important point to understand in Joins is how the keys of the Join Stream are determined. Thisis es-
pecialy true if a Derived Stream is defined with no aggregation. The reason for this is that the keys of
the derived stream must match the keys of the intermediate Join Stream.

Therules for determining the keys of the Join Stream are:
« If aone-to-many relationship exists between the streams being Joined, the key of the stream on the
“many” side becomes the key for the Join Stream and ultimately the key of the derived stream be-
ing defined via SQL.

« If a one-to-one relationship exists between the streams being Joined, the following rules apply for
selecting akey for the Join table:

« If the Join type is an INNER JOIN or a FULL JOIN, the key field(s) currently consists of the
keys of the stream on the left side of the Join type.

 If the Join typeisa LEFT JOIN or aRIGHT JOIN, the key field(s) is derived from the stream on
the left or right side of the Join type.

The Sybase Aleri Streaming Platform does not currently support many-to-many relationships.

24

Authoring in SQL

If the key fields of the derived stream are required to be different from the keys of the final intermediate

Join Stream, the stream must be defined as an Aggregate Stream using the GROUP BY clause.

21412 E

xamples of Joins

A simple INNER JOIN — Joins st r eant to st r ean®:

streanml a INNER JO N strean2 b ON (a.columl = b.col umai)

A more complex inner join first joins stream?2 and stream3, and then joins the result to stream1:

streanl a

I NNER JO N (strean2 b INNER JO N
stream8 ¢ ON b.colum?2 = c.col uml)

ON (a.colum2 = b. col um?2)

A complex join using multiple join types — left joins st r eand to the result of the right join between
strean® and st reanB andinner joinsst r ean? to st r eantl:

streanl a

LEFT JON (strean?2 b RIGHT JO N
stream8 ¢ ON (b.columl = c.colum3))
ON (c.colum2 = a.col umil)
I NNER JO N strean¥ d ON (d.colum4 = a.col uml)

2.14.1.3. Restrictions on Joins

To be efficient and support the condition that all streams must have a primary key, the Sybase Aleri

Streaming Platform places some restrictions on Joins to ensure that there are no duplicate key valuesin

the output. The following rules and restrictions apply to Joins:

« All the keys of at least one side of the Join must be completely mapped on to fields on the other

side of the Join. In other words, many-to-many relationships are not allowed.

« Both sides of a Join constraint must refer to columns in the tables that are being Joined. One of

these columns must be from the table on the left side of the Join, and the other must be a column in
the table on the right side of the Join.

* When defining a stream with no aggregation, the keys of the "many" side of a one-to-many or

many-to-one relationship must be directly copied to the key fields of the stream being defined. In
the case of a one-to-one relationship without aggregation, the keys of at least one of the streams
must be directly copied to the key field of the view being defined. In a complex multi-level Join,
these rules refer to the final Join being performed.

* When the view being defined has no aggregation, and it depends on a full-outer Join between two

tables having a one-to-many relationship, the Join is effectively aleft or right outer Join. Thisis be-
cause, for non-aggregated streams, the keys must be derived from the “many” side of a one-
to-many relationship. If thereis no matching row in the “many” side of a one-to-many relationship,
not all the key columns of the “many” side will have avalue, and they will not be eligible to be in-
cluded in the target stream because key columns cannot be null.

2.14.2. Filter Expressions

A Filter Expression follows a WHERE, HAVI NG or GROUP HAVI NG keyword and has the following

constraints:

25

Authoring in SQL

e The result of the expression must be an integer value, where zero is the equivalent of f al se and
any other valueistreated ast r ue.

« One or more expressions can be concatenated using AND/OR operators.
« The Filter Expression cannot contain aggregation functions.
« The Filter Expression in a WHERE clause cannot refer to columns in the stream being defined.

* The*“*” notation cannot be used in a Filter Expression.

This example filters trades stream to get al the GOOGLE trades where the price >$400 or quantity >
1000:

CREATE STORE googl eSt ore MEMSTORE;
CREATE MATERI ALI ZED VI EW Googl eTr ades
PRI MARY KEY(Tr adel d)
STORE | S googl eSt ore
AS SELECT trd. Tradeld, trd.Price, trd.Tine, trd. Quantity
FROM Tr ades trd
WHERE trd. Synbol = "GOOG' AND
(trd.Price > 400 OR trd. Quantity > 1000)

2.14.3. User Defined Function Library Declaration

Use the following commands to declare an external C library that contains one or more user defined
functions.

CREATE LI BRARY Li braryNane ASLi braryPat h [;]
where:

e Li braryNane isan aias of the library. This alias will be used within the Service Authoring Lan-
guage to refer to the actud library.

e Li braryPat h isthe physical location and name of the C library file. Only an absolute path can
be used.

Note:

The compiler does not check for the existence of this library file at compile time. It must exist
at run time.

2.14.4. User Defined Function Declaration

Once the externa library has been declared, any function within that library can be declared using the
following syntax:

CREATE FUNCTI ONFunct i onName (DataType[,...])
RETURN Ret ur nDat aType
ASEXTERNAL LIBRARY Li braryNanme NAME Ext er nal Funct i onNane

LANGUAGE C [;]

where:

¢ Functi onNane isan aiasfor the external function to be used within the Aleri SQL environment.

26

Authoring in SQL

The name must follow the standard naming conventions.

« Dat aType isthe data type for the argument to the external function. It must be specified in terms
of one of the data types that the Aleri SQL and the Sybase Aleri Streaming Platform understands.
There can be any number of datatypes.

* Ret ur nDat aType isthe datatype for the return value of the external function.

e Li braryNane is an dlias for the external library that is specified in the CREATE LIBRARY
statement.

e Ext er nal Funct i onNane isthe name of the external function in the specified external library.
Note:
The compiler does not check for the existence of this function during compile time.

* LANGUACE C statesthat the external functionisa'C' library function. This currently has no effect
but will be used in the future when Java and possibly other languages are supported on the User
Define Function interface.

After this declaration, the function can be used in any rule as a built-in function.
2.15. Adding Comments in Aleri SQL

According to the SQL 99 standard:

< multi-line comments begin with /* and end with */
* multi-line comments may be nested within a multi-line comment

Aleri SQL supports the multi-line comment syntax; it does not support any aternate syntax for single-
line comments.

2.16. Current Restrictions on Aleri SQL Usage
The following restrictions apply to the current version of Aleri SQL but may be removed over time or as
needed by customer requirements:
* When defining Joins, only individual columns can be used to Join tables. No other expression is

currently allowed.

* When Joining tables, all keys of at least one side of the Join must be mapped to fields in the other
side of the Join. Currently, many-to-many mappings are not supported.

* At least one side of a Join condition must refer to a key column. A Join condition involving two
non-key columnsis currently not supported.

« When defining Joins, "equals" is the only comparison operator currently supported.

» Sdf Joins are currently not supported. The equivalent can be achieved by creating view that is a
"copy" and then joining to that.

A stream may be used only once within a Join clause.

¢ When performing a UNION, the Sybase Aleri Streaming Platform expects al input records from all

27

Authoring in SQL

input streams to have unique key values. Otherwise, results may be unpredictable.

2.17. Best Practices When Writing a Data Model in Aleri SQL

» Use consistent and descriptive names when naming objects within the data model.

 Although the fields within a stream can be in any order, it is suggested that the key fields be listed
first, followed by the attribute fields in a phabetical order.

* When a column in a derived stream has a complex rule and a second column in the same stream
also needs to use the same complex rule, the second column should reference the first column in-
stead of repeating the rule for the second time. Although this does not improve performance, it im-
proves legibility and ease of maintenance.

 For performance reasons, avoid using INNER JOINs. Consider using an OUTER JOIN with afilter
clause if required, that filters out rows with NULLS in the inner table's key fields. However, this
currently applies only when the filter refers to columns from more than one table. If not, the filter
will be applied before the Join, and the desired results are not achieved.

e The use of the same input stream multiple times in a Join clause is not possible in this version of
the Sybase Aleri Streaming Platform. Do this by creating a copy of the table.

» Nested aggregations cannot be performed. If thisis done, a runtime memory allocation error occurs
and the Sybase Aleri Streaming Platform stops. This includes referring to another column within
the stream being defined, which has an aggregation function.

* A name must be enclosed in double quotesif the name is the same as one of Aleri SQL keywords.

¢ Although using a';" (semi-colon) for statement separator is optional, it is helpful to use this after
every SQL statement. The reason is that the parser considers all thetext upto a';' (semi-colon) asa
single statement and stops scanning the statement after it encounters the first error and movesto the
next statement. As aresult, if a'; '(semi-colon) is not used, any syntax errors will only be reported
one at atime.

2.18. Example of an Aleri SQL Data Model

The following simple example shows a data model definition using Aleri SQL.

[/l Define a store that persists data
CREATE STORE Storel LOGSTORE on '/tnp/sp/logstore’ SYNC | S TRUE

/1 Define a store that does not persist data
CREATE STORE Store2 MEMSTORE

// Define a Static SourceStream Cal | ed Publishers
CREATE TABLE Publ i shers (
publ i sher _id string, publisher nanme string,
state string, country string,
PRI MARY KEY (publisher_id),
STORE IS Storel,
TYPE | S STATIC, RETAIN 10 M NUTES);

/] Define a Static Stream Books, where data is retained by default
CREATE TABLE Books (

i sbn string, book_nane string, author string,

category string, publisher string, suggested price doubl e,

PRI MARY KEY (i sbn),

28

Authoring in SQL

STORE | S Storel,
TYPE STATIC);

/1 Define a Dynanmic Stream Cal |l ed Sal esDat a
CREATE TABLE Sal esDat a (
sale id string, dealer string, isbn string, publisher _id string,
sal e _date date, quantity int32, unit_cost doubl e,
PRI MARY KEY(sal e id, dealer),
STORE IS Storel,
TYPE DYNAM C, RETAIN 30 DAYS);

/1 Define a Materialized View called Titl eSal esByDeal er
/[l for all Title and Deal er conbi nati ons where the deal er has sold
/1 nmore than 1000 copies of a book published by ACME Publ i shi ng.
CREATE MATERI ALI ZED VI EW Ti t | eSal esByDeal er
PRI MARY KEY (i sbn, deal er)
STORE St ore2
AS SELECT a. deal er AS deal er, b.isbn,
M N(b. book_nane) AS title_ nane,
M N(c. publ i sher _nane) AS publ i sher nane,
SUM a. quantity) AS total _quantity,
SUM a. quantity * a.unit_cost) AS total _sales,
CASE WHEN (SUM a. quantity * b.suggested price)-total sal es)>0
THEN SUM a. quantity * b.suggested price)-total sales
ELSE 0.0
END AS total discount
FROM Sal esDat a a
LEFT JO N Books b ON a.isbn = b.isbn
LEFT JO N Publishers ¢ ON a. publisher_id = c.publisher_id
WHERE c. publ i sher _name = ' ACME Publ i shi ng'
GROUP BY a.deal er, b.isbn
HAVI NG total _quantity > 1000

Note:

Thereferencetot ot al _sal es intherulefort ot al _di scount does not refer to an Ali-
asName. This tells the Sybase Aleri Streaming Platform to substitute the rule used for the
t ot al _sal es columnin place of thisreference. Thiskind of reference has no impact on effi-
ciency but improves maintainability of the code.

2.19. Running a model written in Aleri SQL

In order to run a data model written in Aleri SQL, the model must first be "compiled” into AleriML. The
Sybase Aleri Streaming Platform can then read the AleriML file and run the model. The Sybase Aleri
Streaming Platform includes the sp_sql2xml tool (also referred as the translator) which can be used to
trandate a data model written in Aleri SQL into an AleriML file that can be run on the Sybase Aleri
Streaming Platform. Refer to the Utilities Guide for more information.

29

Chapter 3. Authoring in AleriML

Both the Aleri Studio and Aleri SQL produce a data model in AleriML. AleriML files are loaded dir-
ectly into the Sybase Aleri Streaming Platform for execution.

You can create models directly in AleriML as an aternative to using the Studio or Aleri SQL. While
there's more of alearning curve, experienced users may find it more efficient to create or edit data mod-
els. Data models created in AleriML can still be loaded into the Aleri Studio in order to visualize, check
for violations, and test the model.

AleriML is standard XML that conforms to the AleriML Schema. This chapter describes the elements
and attributes within that schema, and gives examples of AleriML.

3.1. XML Preliminaries

AleriML documents should begin with the following header that describes the version of XML and the
character set:

<?xm version="1.0" encodi ng="UTF-8"?>

Aswith all XML documents, commentsin AleriML begin with "<!--" and end with "-->". They may ex-
tend over aline. Comments cannot be nested.

All “id" attributes must be globally unique within a data model

All AleriML elements have optional “name” and “documentation” attributes. These attributes, which
give you the ability to annotate the data model with comments, won't be listed below.

3.2. Platform
An AleriML file must have a single Platform element encapsulating all other elements.

<Pl atform

versi on="version string"

[moneyPr eci si on="nunber of decinal digits in noney datatype"]
[restrictAccess="access restriction annotations"]>

[Start Up]

[G obal]

{Custer | Module | DatalLocation | Store | Stream*

</ Pl at f or n»

Within the Sybase Aleri Streaming Platform element, there is an optional StartUp element and an op-
tional Global element. These are followed by any number of Cluster, Module, Datal ocation, Store, and
Stream elementsin any order. The following sections describe each of these elements.

Attributes:

version This string should be “3.0”. Data models for older versions of the Sybase Aleri
Streaming Platform might have different version attributes.

moneyPrecision This attribute specifies the number of decimal digits (digits to the right of the
decimal point) in the “money” datatype. The default is 4.

restrictAccess This attribute allows you to restrict certain types of access for specific users. It

may be specified at the Sybase Aleri Streaming Platform model level or stream
level. The model-level attribute provides control over general access and defaults

30

Authoring in AleriML

for all streams. If a stream has its own restrictAccess attribute, it completely de-
termines access to that stream. Otherwise the model-level attribute is used. If the
restrictAccess attribute is missing at the model level, al users would have ac-
Cess.

Since the metadata streams don't have an explicit restrictAccess attribute, sub-
scription access is aways determined by the model-level attribute. For more in-
formation on metadata streams see Appendix E, Aleri Metadata Streams

This attribute contains a sequence of colon-separated pairs, with each pair separ-
ated by a space. For example:

wheel : control devel opnent: contr ol

The first element of each pair is the role, which describes a set of users. The role
isatrandation of auser group in the operating system, as it gets read through the
PAM interface. See the Administrator's Guide for more details on roles.

The second element of each pair specifies the type of access granted, including

“control”, “query”, “subscribe’, “publish” or “connect”.

e control letsyou execute the control commands that effect the entire model,
such as stopping or debugging. It only impacts the model level.

e query lets you execute queries and updates through the SQL interface
(including the finalizer statements).

e subscri be letsyou to subscribe to the content of the stream.

e publ i sh lets you publish data to the stream. It is only applicable to source
streams.

e connect letsyou connect to the model and receive the basic schemainform-
ation, such as the names of the streams and fields. Without this permission,
you won't be allowed to log in. connect only impacts the model level. Any
role given any access at that level also implicitly receivesconnect access.

The previous example means that members of the role “wheel” or
“development” can issue control commands, such as stopping the model by the
sp_cli utility.

Here is an example of all access controlled at the model level:

<Platformrestrict Access="gcontrol :control gsub:subscri be gqg: query
gpub: publ i sh" >

<Store file="store" id="store"/>

<SourceStreamid="filterlnput" store="store">

</ Sour ceSt r ean>

<FilterStreamid="filter" istream="filterlnput"
ofile="output/filter.out" store="store">

</i:iiterStrean1>
</ Pl at f or m>

An example of all stream access controlled at the stream level:

31

Authoring in AleriML

<Pl atform restrictAccess="gcontrol : control gsub:connect
gq: connect
gpub: connect " >
<Store file="store" id="store"/>
<SourceStreamid="filterlnput" store="store"

restrict Access="gpub: publ i sh"
>

</ Sour ceSt r eanm>

<FilterStreamid="filter" istream="filterlnput"
ofile="output/filter.out" store="store"

restrict Access="gsub: subscri be gq: query"
>

</FilterStrean
</ Pl at f or n>

In the previous example, roles that can access the streams are also listed at the
model level with "connect" access. Otherwise, a user might not be able to log in-
to the model since their role was restricted only to publish and subscribe. Anoth-
er approach is to have a separate role for connection and grant both the connec-
tion and subscription roles to a user who needs to subscribe.

<Pl at f orm restrictAccess="gcontrol : control gconnect: connect">
<Store file="store" id="store">
<SourceStreamid="filterlnput" store="store"
restrict Access="gpub: publ i sh"
<

</ Sour ceSt r ean>

<FilterStreamid="filter" istream="filterlnput"
ofile="output/filter.out" store="store"

restrict Access="gsub: subscri be gq: query"
>

</FilterStreanr
</ Pl at f or m>

3.3. StartUp

The StartUp element is an optional, and advanced, component of a data model. It describes the order in
which connections start when the data model is loaded by the Sybase Aleri Streaming Platform.

A Startup element contains any number of ConnectionGroups:

<St art Up>
[Connecti onGr oup] *
</ St art Up>

Each ConnectionGroup is a collection of references to specific connections:

<Connect i onG oup

[type="{start|nostart}"]

[id="nane of connection group"]>

[<Connecti onRef connecti on="nanme of connection"/>]*
</ Connecti onG oup>

The ConnectionGroups within a StartUp element are started either automatically or manually, depending
on the type. The automatic ones start in order: the connections in the first ConnectionGroup are started

32

Authoring in AleriML

first, the connections in the second are started second, and so forth.

Attributes:

type This attribute specifies whether to start the connections in the ConnectionGroup automatically
(theoption st ar t) or later manually (the option nost ar t). Thedefaultisst art .

id This is the name of the ConnectionGroup. It is used when issuing a command (via the sp_cli
utility) to start the Connections in the ConnectionGroup. There is no default value.

3.4. Global

The Global element encapsulates a set of variables and functions. Streams can read or write these vari-
ables, and can use these functions. Global variables can also be altered at runtime via the Command and
Control interface.

The Global element is a simple block of text, with variable and function definitions written in the
SPLASH scripting language.

<d obal >
</ d obal >
See Chapter 4, SPLASH Programming Language for more information about variable and function de-

clarations. For example, here is a block that defines a global variable dept h_of _book (initialy 10)
and afunction change_currency:

<d obal >

i nt 32 dept h_of book := 10;

doubl e change_currency(double val) { return val * 1.57; }
</ d obal >

Globa variables can be modified outside of a running instance, using the Command and Control inter-
face or directly through the sp_cnc program.

Note:

Changing the value of a global variable does not cause the model to regenerate the data based
on the new value. For instance, if a Filter Stream filters rows based on the vaue of a global
variable, changing the value changes the filtering of the new rows but won't affect the old rows.
To regenerate data after changing the value of a variable, use the Dynamic Sybase Aleri
Streaming Platform Modifications, as described in the Administrator's Guide.

3.5. Cluster

A Cluster is a description of machines and port numbers for running the Sybase Aleri Streaming Plat-
form across a number of machines. It has the syntax

<Cl ust er

i d="nanme of cluster">
(Node) *

</ Cl uster>

where each node has the syntax
<Node

[rodul e="nanme of nodul e"]
machi ne="name of machi ne"

33

Authoring in AleriML

conmandport ="port nunber" />

See the Administrator's Guide for more information about setting up a cluster to run adata model.
3.6. Module

A Module is a collection of other modules, data locations, stores, and streams used to encapsulate a por-
tion of the data model for use in a clustered setting. It has the syntax

<Mbdul e

i d="nanme of nodule" >

{Modul e | Datalocation | Store | Strean}*
</ Modul e>

See the Administrator's Guide for more information about setting up a cluster to run a data model.

3.7. DatalLocation

A Datal_ocation is a description of an external data source, a place where the data model will automatic-
ally load data, or a sink, a place where the data model will automatically send data. It has the syntax

<Dat aLocat i on

i d="name of data | ocation”

type="type of data |ocation">

[<Locat i onPar am nane="par anet er nane" val ue="paraneter val ue"/>]*
</ Dat aLocat i on>

Each LocationParam is simply a name-value pair for a parameter.

Attributes:
id This is the name of the data location, which is used in InConnections and OutConnections (see
below).

type Thisis the type of the data location. There are a number of different types, for example, j d-
bc_in,xm out.

Here are afew example data locations:

<Dat aLocation id="xm file_ input" type="xm _in">
<Locati onParam nane="dir" val ue="/tnp"/>

</ Dat aLocat i on>

<Dat aLocation id="sql srv_output" type="db_out">
<Locat i onPar am nane="dbt ype" val ue="nssqgl "/ >
<Locat i onPar am nane="server" val ue="vil canota. al eri.coni/>
<Locat i onPar am nane="port" val ue="1433"/>

<Locat i onPar am nane="user" val ue="sa"/>

<Locat i onPar am nanme="password" val ue="tiger"/>
<Locat i onPar am nane="dat abase" val ue="al eri"/>
</ Dat aLocat i on>

See the Authoring Guide for more information about data locations.
3.8. Store

A storeis arepository for the records of one or more streams. There are three kinds of stores: Stateless
Stores, Memory Stores, and Log Stores.

34

Authoring in AleriML

3.8.1. Stateless Store

To define a Statel ess Store, which keeps no records, use

<Store id="nane of store" kind="stateless"/>

Attributes:

id Thisisthe name of the store, which isused in stream definitions.

Stateless Stores are permitted only for insert-only streams and FlexStreams, see Section 3.9.1,
“Insert-only Streams’ for more detail.

3.8.2. Memory Store

To define aMemory Store, which keeps its records in memory, use

<Store id="name of store" kind="menory"
[i ndex="{tree| hash|list}"]
[i ndexSi zeHi nt="initial size of hash table, in units of 1024"]/>

Attributes:

id

index

indexSizeHint

3.8.3. Log Store

Thisisthe name of the store, which is used in stream definitions.

This determines the data structure used for indexing records. The default value is
“tree”.

e Usetree for binary trees. Binary trees are predictable in use of memory and
consistent in speed.

¢ Usehash for hash tables. In many situations, hash tables are faster, but they of-
ten consume more memory.

e Usel i st for lists. This keeps the records in order of insertion, and thus can be
useful in looping through the records. Y ou should use this option only if you are
certain there will be few deletes in the streams kept in this store. Inserts and up-
dates of records are efficient, but deletes leave space that is not reclaimed.

This optional attribute determines the initial number of elements in the hash table,
when using hash. The value is in units of 1024. Setting this higher consumes
more memory, but reduces the chances of spikesin latency.

To define aLog Store, which keeps records stored on disk for recovery, use

<Store id="nane of store" kind="Iog"
file="directory nane"

[sync="{true|fal se}"]

[full size="maxi mum si ze i n nmegabytes"]
[sweepanpunt =" sweep si ze i n negabytes"]
[reservePct ="reserve size in percent"]
[ckcount="record count"]/>

Attributes:

35

Authoring in AleriML

id Thisis the name of the store, which is used in stream definitions.

file The file name specifies the name of a directory into which the persisted store will be
written.

sync This attribute determines how frequently the store commits records to disk. The de-

fault isf al se. When sync isf al se, records are committed at periodically. In the
event of a failure, data received since the last commit will be lost. When sync is
true, records are committed immediately upon receipt. Setting this attribute to
t r ue makes the Platform run more slowly.

fullsize This attribute specifies the maximum size of the Log Store, in megabytes. The default
is 8 megabytes.

sweepamount This indicates the amount of data, specified in megabytes, that is examined when try-
ing to reclaim unused space. The default value is 20% of the fullsize.

reservePct This indicates the percentage of the log store size to keep as the free space reserve.
The default value is 20 percent.

ckcount The "checkpointing count” attribute lets you establish the maximum number of re-
cords written between intermediate metadata. The default is 10,000.

3.9. Stream

A stream is a processing node in the data model. There are ten stream forms. Source, Copy, Filter, Uni-
on, Compute, Extend, Aggregate, Join, Flex, and Pattern.

3.9.1. Insert-only Streams

Some streams are considered to be “insert-only,” meaning that they process inserts but not updates or
deletes. The following streams are insert-only:

¢ Aninsert-only Source Stream.
¢ A Union Stream, Compute Stream or Filter Stream whose inputs are insert-only.

¢ A Join Stream whose “many” inputs in the many-to-one Joins are insert-only, and whose “one” in-
puts are “static” streams.

3.9.2. Common Attributes & Elements

Each stream type has a dlightly different set of attributes and elements. Nevertheless, there are some
common features of all stream.

<St r eamlype

i d="name of streant

store="nane of Store"

ofile="output file nanme"]

type="{static|dynam c}"]

expi ryTi me="wait tine in seconds"]

expi ryFi el d="nanme of int32 colum to increnent after expiryTi ne"]
expi ryTi meFi el d="nanme of date columm for cal cul ating expiry"]
expi ryMaxVal ue="nunber of tines to increnment expiryField"]
restrict Access="access restriction annotations"]
type="{static|dynam c}"]

ol di d="ol d name of streani]

36

Authoring in AleriML

[convdst ="desti nati on stream for conversion"] >

</ St r eanlype>

Attributes:

id

store

ofile

type

expiryTime

expiryField

expiryTimeField

expiryMaxValue

restrictAccess

oldid

convdst

3.9.2.1. Column

This attribute specifies the name of the stream. It must be unique within the
data model.

This attribute specifies the store that will be used to hold the records of the
stream.

This optional attribute specifies the name of an output file to which al records
will be written if the Sybase Aleri Streaming Platform shuts down cleanly. The
records are written in XML format. This attribute is used mainly in debugging.
No output fileis created if the ofile attribute is missing.

This optional attribute gives hints to the Sybase Aleri Streaming Platform for
optimization. It may be either st at i ¢, denoting that data is |oaded once when
the Sybase Aleri Streaming Platform starts, or dynami ¢, denoting that data
changes frequently. The default isdynami c.

The expiryTime attribute specifies the age, in seconds, that must expire before
arecord's expiryField isincremented.

specifies the name of an int32 column that will be set to 0 when a record is
modified, and incremented (up to expi r yMaxVal ue when a record ages to
expi ryTi me seconds.

specifies the optional name of a date column that will be used to calculate the
expiryTime. If this attribute is omitted, expiryTime will be computed from the
time the record was last modified.

is the number of times the expiryField column will be incremented. When the
expiryField reaches this value, the record is no longer updated until an update
comes from the outside. The default is 1.

is used to limit access to the stream. See Section 3.2, “Platform” for more in-
formation about restrictAccess.

is used during the dynamic model modifications to rename the stream from
oldid name to the id name. See the Administrator's Guide for details. The at-
tribute has no effect otherwise.

is used in conversion models that convert the contents of the Source Streams of
the main model during a dynamic model modification. See the Administrator's
Guide for details. This attribute is not allowed in the normal models.

The Column element describes the name and datatype of a column. The syntax is

<Col umm

name="nane of col um"

[key="{true|fal se}"]

[aut ogen="{true| fal se}"]

[dat at ype="{i nt 32| i nt 64| noney| doubl e| dat e| ti nest anp| stri ng}"] >

37

Authoring in AleriML

Attributes:
name Thisisthe name of the column.
key This attribute should be set to t r ue if the column is one of the primary key columnsin

the stream. By default, the attribute isf al se.

autogen This attribute should be't r ue if the data in the column should be generated automatically
by the stream. By default, the attribute isf al se. (This attribute works only for Columns
within Source Streams.)

datatype This attribute specifies the type of the data in the column. The default value isint32.

Column elements appear in Source, Flex, and Pattern Streams.
3.9.2.2. ColumnExpression

The ColumnExpression element describes the name of a column and an expression for computing it. It
has the syntax

<Col umExpr essi on
nane="nanme of col um"
[key="{true|fal se}"]>

</ Col ummExpr essi on>
Attributes:

name Thisisthe name of the column.
key This attribute should be set to t r ue if the column is one of the primary key columns in the
stream. By default, the attribute isf al se.
An expression must appear between <Col urmExpr essi on. .. > and </ Col ummEXxpr essi on>.
Expressions follow the syntax described in Section 1.3, “Expressions”.
ColumnExpression elements appear in Compute, Extend, Aggregate, and Join Streams.
3.9.2.3. FilterExpression
<Fi | t er Expr essi on>

</Filter Expr essi on>

An expression of type int32 must appear between <FilterExpression> and
</ Fi | t er Expr essi on>. Expressions follow the syntax described in Section 1.3, “Expressions”.

FilterExpression elements appear optionally in Source Streams, and in Filter Streams.
3.9.2.4. InConnection and OutConnection

InConnection and OutConnection elements describe an external source of data. The syntax is

<l nConnecti on

38

Authoring in AleriML

name="nane of connection"

| ocati on="nane of |ocation" >

[<Connect i onPar am nane="par anet er nane" val ue="paraneter value"]*
</ I nConnect i on>

<Qut Connecti on .
narre=j‘ nanme of connecti on"
| ocati on="nane of |ocation">

[<Connect i onPar am name="par anet er nane" val ue="paraneter val ue"]*
</ Qut Connect i on>

Attributes:

name This is the name of the connection that can be used in StartUp elements. See Section 3.3,
“StartUp” for more information.

location This attribute specifies the name of a Datalocation element. See Section 3.7,
“Datal ocation” for more information.

Within the InConnection and OutConnection elements are a number of ConnectionParam elements.
These override or add to the L ocationParam elements in the corresponding Datal ocation.

InConnection elements appear optionally in Source Streams. OutConnection elements appear optionally
in any stream.

3.9.2.5. Local

The Local element encapsulates a set of variables and functions for a particular stream. It behaves just
like the Global block (see Section 3.4, “Global”), except that only the stream that contains the Local ele-
ment can read or write the variables or use the functions. The syntax is

<Local >

'<7 Local >

Local elements appear optionally within Compute, Extend, Aggregate, Join, Flex, and Pattern Streams.
3.9.2.6. InputWindow

An Input Window limits the view of an input stream, based on the age of records or the number of re-
cords. For instance, you can set an input window so that a stream sees only the last 10 records of one of
itsinput streams. The stream is kept consistent with that view by forcing deletes through the stream, as if
those del etes came from the input stream.

The syntax is

<| nput W ndow

[strean"nane of stream']
[type="{records|tine}"]

[val ue="{nunber of records|seconds}"]
[sl ack="nunber of records"]/>

Attributes:

stream This attribute specifies the input stream on which the window is used.

39

Authoring in AleriML

type This attribute specifies the policy. Uset i ne to limit the view of the input stream based on a
number of seconds, or ther ecor ds to limit the view of the stream to a number of records.

value This attribute describes the amount of time or number of records to hold. It must be an in-
teger greater than O. If typeissettoti me, avaue of 100 means that al records older than
100 seconds are deleted from the view. If typeisset to r ecor ds, avaue of 100 means that
al but the last 100 records are deleted from the view. The default is 1.

dack This attribute is meaningful only when typeisr ecor ds, and is used to control the purging
of data. For example, if val ue is 1000 records and sl ack is set to 500, the oldest 500 re-
cords will be purged when the stream grows to 1500 records. Therefore, at any point in time,
the size of the table will be between 1000 and 1500 rows. The default is 1.

InputWindow elements appear optionally in Source, Copy, Union, Filter, Compute, Extend, and Aggreg-
ate Streams.

3.9.3. Source Stream

A Source Stream is a stream whose input comes from the external world. Incoming messages can be ap-
plied to a Source Stream as inserts, updates, deletes, or upserts.

The syntax for a Source Stream is as follows:

<SourceStream . ..

[insertOnl y="{true|fal se}"]

[convsrc="name of original streant] >
{1 nput Wndow | Qut Connecti on}*

(Col umm) +

[FilterExpression]

[I nConnecti on] *

<Sour ceSt r eanr

Attributes:

insertOnly When set to t r ue, this attribute specifies that the Source Stream ignore all upserts,
updates, and deletes. It alows further optimizations to be made, allows the stream to
be put in a Statel ess Store, and enables certain joins. The default isf al se.

convsrc This attribute is used during dynamic model changes to convert the contents of Source
Streams. See the Administrator's Guide for details. This attribute is not allowed in the
normal models.

Examples:

<SourceStream i d="Currenci es" store="store"/>

<Col um key="true" nanme="Currency" datatype="string"/>
<Col um key="fal se" nane="Country" datatype="string"/>
</ Sour ceSt r eanp

This defines a Source Stream named Cur r enci es whose records are stored in st or e. Each record
contains a Currency and a Country field. The Currency field is the primary key.

<SourceStream i d="Currenci es" store="store" >

<Col um key="true" nanme="Currency" datatype="string"/>
<Col um key="fal se" nane="Country" datatype="string"/>
<|l nput W ndow t ype="records" val ue="1000" sl ack="500"/>

40

Authoring in AleriML

</ Sour ceSt r eanp

This defines a Source Stream that retains between 1000 and 1500 records, and will purge the stream
down to 1000 records when it exceeds 1500 records.

3.9.4. Copy Stream

A Copy Stream is a stream whose input comes from exactly one stream. It holds records from the input
stream. A Copy Stream is usually used in conjunction with an InputWindow to hold aview of a stream.

The syntax for a Copy Stream is as follows:

<CopyStream ... istream="nanme of input streani >
{1 nput Wndow | Qut Connecti on}*
</ Copy St r eanp

Attributes:
istream This attribute specifies the name of the input stream.

Example:

<CopyStream i d="Currenci esSubset" store="store" istream="Currencies">
<Il nput W ndow st ream="Currenci es" type="records"

val ue="1000" sl ack="500"/>
</ Copy St r eanp

The stream CurrenciesSubset copies data from Currencies. The InputWindow will truncate the stream to
1000 records when it exceeds 1500 records.

3.9.5. Union Stream

A Union Stream is a stream whose input comes from one or more other streams, and whose output is a
set of records representing the union of the inputs.

The syntax for aUnion Stream is as follows:

<Uni onStream ... istream"nane of input streans separated by spaces"
[mer geKeys="{true| fal se}"]>

{1 nput Wndow | Qut Connecti on}*

</ Uni onSt r ean®

Attributes:

istream This attribute specifies the name of the input streams.

mergeKeys This attribute allows the Union Stream to handle inserts or deletes for the same keys
from different inputs. For instance, suppose the stream receives an insert for a key from
input stream Inputl, and another insert for the same key from input stream Input2. When
the attribute is set to f al se (the default), the second insert will be rejected. When the
attribute is set to t r ue, the second insert will be turned into an update. Similarly, de-
letes on the same key from different streams will not cause errors when the attribute is
settotrue.

41

Authoring in AleriML

Example:

<Uni onStream i d="Al | Currenci es" store="store"
i streanF" Currenci es O dCurrenci es"/ >

This specifies a stream that is the union of “Currencies’ and “OldCurrencies’.
Note:

Unpredictable runtime results may occur a row from one input stream has the same key as a
row from another input stream.

3.9.6. Filter Stream

A Filter Stream is a stream whose input comes from exactly one stream, and the output consists of a sub-
set of the records from the input stream. gna Each input record is evaluated against one or more filter ex-
pressions. If one or more of the filter expressions evaluates to 0, the record does not become part of the
Filter Stream.

The syntax for a Filter Stream isasfollows:

<FilterStream ... istream"nane of input streani >
{I nput Wndow | Qut Connection}*

Fi | t er Expr essi on

</FilterStreanp

Attributes:

istream This attribute specifies the name of the input streams.

<FilterStream i d="CurrentCurrenci es" store="store"
i streanF" Currenci es" >
<Fi | t er Expr essi on>
Currencies. Current Ti e = undat e(' 2005- 08- 10 09: 58: 00')
</ Fi | t er Expr essi on>
</FilterStreanp

This defines aFilter Stream called Cur r ent Cur r enci es whose records are stored in the store named
st or e. The filterExpression specifies that only those records whose CurrentTime value is equa to the
time 2005- 08- 10 09: 58: 00 will be passed into the Filter Stream. More information on the expres-
sion language can be found below.

3.9.7. Compute Stream

A Compute Stream is a stream whose input comes from exactly one stream. Its output consists of a new
set of records whose fields are computed from the fields in the input.

The syntax for a Compute Stream is as follows:

<Conput eStream . ..

i stream="name of input streant

[per mi t KeyChange="{true| fal se}"]>
{I nput Wndow | Qut Connection}*

[Local]

(Col uMmExpr essi on) +

</ Conput eSt r ean®

42

Authoring in AleriML

Attributes:

istream This attribute specifies the name of the input stream.

permitK eyChange This advanced attribute allows the Compute Stream to change the primary key
structure. When this attribute isf al se (the default), the primary key columns
of the input stream must be copied, without further computation, into the Com-
pute Stream (primary key columns can be added, however, in the Compute
Stream). When this attribute is true, the primary key columns can be
changed.

Note:

Setting the attribute permitKeyChange to t r ue can result in errors at run time. For instance, if
there is an event to update a row, the computation might try to update a row that does not exist.

Example:

<Conput eStream i d="Nor nal i zedCur renci es" store="1| og"
i stream=" Current Currenci es">

<Col ummExpressi on key="true" name="Currency" >

Current Currenci es. Currency

</ Col umExpr essi on>

<Col utTmExpr essi on nanme="Locati on" >

Current Currenci es. Locati onRul e

</ Col umExpr essi on>

<Col umExpr essi on nane="ExchRat e" >

Current Currenci es. ExchRate * 100.0

</ Col umExpr essi on>

</ Conput eSt r eane

This defines a Compute Stream called Nor mal i zedCur r enci es whose records are stored in the
Store named "store". The key field is Cur r ency, and the expression for computing the Currency field
— the Cur r encyRul e rule— just passes it along unchanged. The only non-trivial computation done
on the fieldsisin the ExchRate field, whose value is multiplied by 100.0.

3.9.8. Extend Stream
A Extend Stream is a stream whose input comes from exactly one stream. Its output consists of a new
set of records whose fields are computed from the fields in the input. The columns are those from the in-
put stream, plus some new columns

The syntax for an Extend Stream is asfollows:

<ExtendStream ... istream"nanme of input streani>
{1 nput Wndow | Qut Connecti on}*
[Local]

(Col uMmExpr essi on) +
</ Ext endSt r ean®

Attributes:

istream This attribute specifies the name of the input stream.

Extend Streams provide a bit of reuse. If, for instance, you add a column to the input stream of an Ex-

43

Authoring in AleriML

tend Stream, the new column will be automatically carried along. Y ou can aso use an Extend Stream to
override the computation of columns. For example, if you want to change the computation of a column,
you can simply specify anew ColumnExpression for that column name.

Example:

<Ext endStream i d=" NewCur renci es" store="|o0g"
i stream="Nor mal i zedCur r enci es" >

<Col utmmExpr essi on nanme="ExchRate" >

Nor mal i zedCurrenci es. ExchRate * 109.0

</ Col umExpr essi on>

<Col umExpr essi on nane="Anot her Rat e" >

Nor mal i zedCurrenci es. ExchRate * 200.0

</ Col umExpr essi on>

</ Ext endSt r ean®

This stream extends the NewCur r enci es stream. It computes the ExchRat e column using a differ-
ent expression, and adds the Anot her Rat e column.

3.9.9. Aggregate Stream

An Aggregate Stream is a stream whose input comes from exactly one other stream, source or derived.
Its output contains a new set of records whose fields are computed from the records in the input. Re-
cords in the input stream are grouped according to common values as specified in the Group expression.
The output of the Aggregate Stream contains a single record for each Group, and this record can contain
values that are computed across all members of the group. Thus, the number of records in an Aggregate
Stream isless than or equal to the number of records in the input.

The syntax for an Aggregate Stream is as follows:

<AggregateStream ... istrean"nane of input streant >
{1 nput Wndow | Qut Connecti on}*
[Local]

(Col uMmExpr essi on) +

[<G oupOrder [ascend="{true|false}"]>...</GoupOder>]*
[<GroupFilter>. ..</GoupFilter>]*

</ Aggr egat eSt r ean®

Components:

istream This attribute specifies the name of the input stream.

GroupOrder These optional elements specify a lexicographic order on the records of each group.
GroupOrder elements are often used in conjunction with the first, | ast and
r ank functions; refer to Appendix B, Data Types, Operators and Functions for more
information about these functions. Each GroupOrder element contains expression,
and may include an ascend flag. If the flag is not specified its value defaultstot r ue.

GroupFilter These optiona elements specify a filter that is applied before the group is collapsed
into asingle row. The rule that is referenced by a GroupFilter element must return a
value of typei nt 32 aswith FilterExpression elements. A record in the group passes
thefilter if the expression evaluatesto a value other than 0.

Example:

<Aggr egat eStream i d=" MaxRat eCurr enci es" store="store"
i stream="Nornmal i zedCurrenci es" >

a4

Authoring in AleriML

<Col umExpr essi on key="true" name="Location">
Nor mal i zedCurrenci es. Locati on

</ Col umExpr essi on>

<Col umExpr essi on key="fal se" name="ExchRate" >
max(Nor mal i zedCur r enci es. ExchRat e)

</ Col umExpr essi on>

</ Aggr egat eSt r ean®

This defines an Aggregate Stream called MaxRat eCur r enci es whose records are stored in st or e.
The rows from the input table are grouped according to each one's value in the Location column. The
output row consists of this Location value and the maximum ExchRate value from the group.

3.9.10. Join Stream

A Join Stream matches records from two or more input streams to produce records in a single output
stream. Records are “matched” when they have matching values in one or more columns.

The syntax for a Join Stream is as follows:

<JoinStream ... istrean"nane of input streans separated by spaces" >
{1 nput Wndow | Qut Connecti on}*

(Joi n) +

[Local]

(Col umExpr essi on) +
</ Joi nSt r ean®

Attributes:

istream This attribute specifies the name of the input streams.

The Join elements specify how to match the records of the input streams. Join elements have the syntax

<Joi n

t abl el="name of streant

t abl e2="nanme of streant
[type="{leftouter|fullouter]|inner}"]
constrai nts="equality constraints"

[secondary="{true| fal se}"]

[optim ze="{true|fal se}"]/>

Attributes of the Join elements:

tablel This attribute specifies the name of the first stream in the join. This stream is the
“left” streaminthe case of al ef t out er join.

table? This attribute specifies the name of the second stream in the join. This stream is the
“right” streaminthe case of al ef t out er join.

type This attribute specifies the type of join. In al ef t out er join, if arow in the first
stream has no match in the second stream, the second stream's values are assumed to
benull. Inaf ul | out er join, if arow in either stream has no match in the other, the
other's values are assumed to be null. In ai nner join, the rows in each stream must
match. The defaultisl ef t out er .

constraints This attribute specifies how the rows match. It must be sequence of equality con-

45

Authoring in AleriML

straints among columns, with each equality is separated by a space). The left side of
each equality must be a column from the stream mentioned int abl e1; theright side
must be acolumn fromt abl e2.

secondary This attribute specifies whether to build a secondary index for the first stream. When
set to t rue, an auxiliary data structure is built. This speeds up computations when
the second stream changes frequently, but consumes more memory. The default is
fal se.

optimize This attribute is reserved for future use.

Each Join must be one-to-one or many-to-one. To enforce this condition, the ColumnExpressions for the
key columns must satisfy two constraints:

« The expressions may refer only to key columns from the input streams, and they must either be
copies of the key columns or combinations of key columns using the fi r st nonnul | function
(see below).

* The key columns of at least one of the input streams must be used in the ColumnExpressions for
the keys of the Join Stream. For example, if there are two input streams S and T, where S has key
columnskl and k2, and T has key columns mlL and n2, the ColumnExpressions for the keys of the
Join must include k1 and k2 or nml and n2. It would be illegal to use only k1 and ni.

Note:

The type may be i nner only when all the input streams to the Join are “insert-only”; the
definition is given above in Section 3.9.1, “Insert-only Streams’. These restrictions maintain
the correctness of joins under updates and del etes while maintaining efficiency. The restrictions
may be removed in afuture release.

Example:

<Joi nStream i d="Count ryCur renci es" store="store"
i stream="Currenci es Locations">

<Join type="leftouter" tabl el="Currency" tabl e2="Locations"
constrai nts="Locati on=Location"/>

<Col umExpr essi on key="true" name="Currency">
Currenci es. Currency

</ Col umExpr essi on>

<Col utmmExpr essi on name="Locati on">

Currencies. Locati on

</ Col umExpr essi on>

<Col utmmExpr essi on name="Country">
Locati on. Country

</ Col umEXxpr essi on>

</ Joi nSt r eanp

This stream matches the records in the Cur r enci es stream with records in the Locat i ons stream,
where the records have the same value Locat i on column. Becauseitisal ef t out er join, if thereis
no matching row in Locat i on, thevalue of Locat i on. Count ry isnull.
In other words, this stream shows how to get the country for a currency.

3.9.11. FlexStream

A FlexStream is a programmable stream whose input comes from one or more other streams, and whose

46

Authoring in AleriML

output is generated by one or more small programs written in a special programming language called
SPLASH (Streaming Platform LAnguage SHell). Refer to Chapter 4, SPLASH Programming Language
for information about the programming language.

The FlexStream alows you to build logic that goes beyond the usual relational operations. It has, for in-
stance, a concept of state apart from the records that are stored within the stream. It also alows you to
write loops to output more than one event per input event, and conditionals that allow you to decide
whether to output an event at all.

The syntax for a FlexStream is as follows:

<Fl exStream ... istrean"nane of input streans separated by spaces" >
{1 nput Wndow | Qut Connecti on}*

(Col umm) +

[Local]

[Met hod] +

[Ti mer]

</ Fl exSt r ean®

Attributes:

istream This attribute specifies the name of the input streams.

The Method elements specify how to compute events from other input events. There must be one Meth-

od for each input stream. Method elements have the syntax

<Met hod

[name="opt i onal text"]

st reanms"nanme of input streani>

</ Met hod>

Attributes of the Method elements:

name This attribute specifies the name of the Method. It's meant purely for documentation pur-
pOses.

stream This attribute specifies the name of the input stream. When an event arrives on that particular
input stream, the block of SPLASH code within the Method is executed.

FlexStreams may also have a Timer element. Thisis a block of SPLASH code that executes periodic-

aly. Timer elements have the syntax

<Ti ner
i nt erval =" nunber of seconds">

'<);I'i ner >

Attributes of the Timer element:

interval This attribute specifies the number of seconds between executions of the block. The de-
faultis 1 (second).

Example:

47

Authoring in AleriML

<Fl exSt ream i d="SonmeCurr enci es" store="store" istream="Currencies">
<Met hod name="i nput Met hod" stream="input">
i f (getOpcode(Currencies) = update and
Currencies. Currency = 'EUR)
out put Currenci es;
</ Met hod>
</ Fl exSt r ean®

Thisis aFlexStream that forwards only those events whose Cur r ency field is'EUR' and is an update.

A FlexStream can be assigned to a Stateless Store. In this case, if aMethod or Timer element attempts to
output an event that is not an insert, the event will be rejected.

3.9.12. Pattern Stream

A Pattern Stream is a stream whose input comes from one or more streams, and whose output is gener-
ated by pattern-matching rules. The rules are written in a specia pattern language that extends the
SPLASH language. Patterns can, for instance, check whether events occur or do not occur in some time
interval, and then send new events to downstream streams.

The syntax for a Pattern Stream is as follows:

<PatternStream. ..

i stream="name of input streans separated by spaces" >
{1 nput Wndow | Qut Connecti on}*

(Col umm) +

[Local]

[Pattern]*

</ PatternStreanr

Each Pattern element has the form
<Pattern [nane="optional text"]>
.<) i:’at tern>

The text between <Pat t er n> and </ Pat t er n> is a pattern written in the language described in Ap-
pendix C, Pattern Matching Language below. A Pattern Stream can have as many patterns as you want.

Attributes of the Pattern elements:
name This attribute specifies aname for the pattern. It is used for documentation only.

Example:

<PatternStream i d="PairTrades" store="store" istrean="Trades">
<Col um key="true" name="id" datatype="int32"/>

<Col um key="fal se" nane="Synbol 1" dat atype="string"/>
<Col um key="fal se" nane="Synbol 2" dat atype="string"/>
<Local >

int32 idloc := 0;

</ Local >

<Pattern>

within 1 seconds

from Trades[Synbol =" IBM ; Price=p] as tradel

Trades[Synbol =" MSFT'; Price=q] as trade2

?n tradel fby trade2

48

Authoring in AleriML

idloc :=idloc + 1;
output [id = idloc; | Synmbol 1="1BM ; Synbol 2=" M5FT'] ;

</ Pattern>

<Pattern>

within 5 seconds

from Trades[Synbol =" CSCO ; Price=p] as tradel,
Trades[Synbol =' LU ; Price=q] as trade2

on tradel and trade2

idloc :=idloc + 1;
output [id = idloc; | Synmbol 1="' CSCO ; Synbol 2='LU |;

</ Pattern>
</ PatternStreanr

This Pattern Stream watches for possible pairs trading. It watches for two possible pairs trades, IBM and
Microsoft, and Cisco and Lucent, in dightly different ways. The first detects whether an IBM trade is
followed by a Microsoft trade within a one second interval. The second detects whether a Cisco and a
L ucent trade happen in the same five second interval, in either order.

3.10. Best Practices When Writing an AleriML Data Model

Some suggestions:

» Use consistent and descriptive names when naming objects within the data model file.
¢ Coding the data model in incremental steps makesit easier to debug.

« Although Columns and ColumnEXxpressions can appear in any order, it improves readability to list
the key fieldsfirst in alphabetical order followed by non-key fields in alphabetical order.

* Usetheval uel nsert ed or any function instead of the max or nmi n function in aggregations.
It's more efficient.

« Self-joins can be done by creating a Copy Stream and then joining it to the original.

49

Chapter 4. SPLASH Programming Language

This chapter describes the Streaming Platform LAnguage SHell (SPLASH) programming language used
within FlexStreams and Pattern Streams.

The syntax of SPLASH is a combination of the expression language, including all of the functions de-
scribed in Appendix B, Data Types, Operators and Functions, and a C-like syntax for blocks of state-
ments. Just asin C, there are variable declarations within blocks, and statements for making assignments
to variables, conditionals and looping. Other data types, beyond the scalar types described in Ap-
pendix B, Data Types, Operators and Functions, are also available within SPLASH, including types for
records, collections of records and iterators over those records.

4.1. Preliminaries

Names and constants in SPLASH follow the conventions described in Chapter 1, Authoring Preliminar-
ies. Comments can appear as blocks of text inside/ * -*/ pairs, or as line commentswith/ / .

4.2. Variable and Type Declarations
SPLASH variable declarations resemble those in C: the type precedes the variable name(s), and the de-

claration ends in a semicolon. The variable can be assigned an initial value as well. Here are some ex-
amples of SPLASH declarations:

int32 a, r;

double b := 9.9;

string ¢, d :="dd";

[int32 keyl; string key2; | string data;] record,;

The first three declarations are for scalar variables of types int32, double, and string. The first has two
variables. In the second, the variable “b" isinitialized to 9.9. In the third, the variable “c” is not initial-
ized but “d” is. The fourth declaration is for a record with three columns. The key columns “key1” and
“key2" are listed first before the | character; the remaining column “data’ is a non-key column. The
syntax for constructing new recordsis parallel to this syntax type.

The t ypeof operator provides a convenient way to declare variables. For instance, if recl is an ex-
pressionwithtype[int32 keyl; string key2; | string data;] thenthedeclaration

t ypeof (recl) rec2;

is the same as the declaration

[int32 keyl; string key2; | string data;] rec2;

SPLASH type declarations also resemble those in C. Thet ypedef operator provides away to define a
synonym for atype expression. For instance, the declarations

t ypedef doubl e newDoubl eType;
typedef [int32 keyl; string key2; | string dataField;] rec_t;

create new synonyms newDoubl eType andr ec_t for the double type and the given record type, re-
spectively. Those names can then be used in subsequent variable declarations like

newDoubl eType var1;
rec_t var2;

which improves the readability and the size of the declarations.

50

SPLASH Programming Language

4.3. Data Structures
SPLASH hasarich set of data structures. This section describes those data structures.
4.3.1. Record Events

Record events — records with an associated operation like “insert” — can be created directly in
SPLASH. We will use the word “record” interchangeably for “record event.”

The syntax of record types specifies the names and types of fields, and the key structure. For instance,
the type

[int32 keyl; string key2; | string dataField;]

describes records with key fields keyl and key?2, of types int32 and string respectively, and the non-key
field dataField of type string. The key fields appear before the “|” symbol.

The syntax of record values mirrors that of record types. Here, for example, is arecord with the previous
type:

[keyl = 9; key2 = '"USD ; | string data = 'US Currency';]
The syntax of record valuesisfairly flexible. Y ou can write the same record as

[keyl
[keyl

9; key2
9; key2

'USD | string data
'USD | string data

"US Currency' |
"US Currency'; |

eliding any semi-colon but those betweenfi el d = val ue.

The operation of anew record value isinsert. To changeit, you use the set Opcode function, asin

set Opcode([keyl = 9 | string data = 'US Currency'], update)

Records with more fields can be used in a context expecting fewer fields; the extra fields get coerced
away. Conversely, records with fewer fields can be used in a context expecting more fields; the missing
fields are assumed to be null. For instance, if var isavariable of type

[int32 keyl; | string dataField; double otherData]

you can set

var := [keyl = 1; dataField = 'newdata'];

The record value will be implicitly cast to the right type, making key1 the key field and setting the other-
Datafield to null.

Operations on records:

51

SPLASH Programming Language

Get afield

Assign afield

copyRecord

get Opcode

set Opcode

4.3.2. XML Values

Get afield

Syntax: record. field

Type: The value returned has the type of the field.
Example: r ec. dat al

Assign afield in arecord.

Syntax:record. field : = val ue

Type: The value must be a value matching the type of the field of the record. The
expression returns a record.

Example:rec. datal := 10

Copies arecord (deprecated; this function does nothing).

Syntax: copyRecor d(record)

Type: The argument must be arecord. The function returns a record.
Example: copyRecor d(i nput)

Gets the operation associated with a record. The operations are of type int32, and
have the following meaning:

* 1 means*“insert”

¢ 3 means “update”

* 5 means*”delete”

e 7 means “upsert” (insert if not present, update otherwise)

¢ 13 means “safe delete” (delete if present, ignore otherwise)

Syntax: get Opcode(r ecor d)

Type: The argument must be an event. The function returns an int32.

Example: get Opcode(i nput)

Sets the operation associated with arecord; the legal operations are listed above.
Syntax: set Opcode(record, nunber)

Type: Thefirst argument must be a record, and the second an int32. The function
returns the modified record.

Example: set Opcode(i nput,insert)

An XML vaueis avalue composed of XML elements and attributes, where elements can contain other
XML elements or text. XML values can be created directly or built by parsing string values. XML val-
ues cannot be stored in records, but can be converted to string representation and stored in that form.

52

SPLASH Programming Language

Y ou can also declare avariable of xm type, for example,
xm xm Var ;
and assign it to XML values.
Operations on XML values:
xm agg Aggregate a number of XML values into a single value. This can be used only in
Aggregate Streams or with event caches (see below).
Syntax: xm agg(xm val ue)
Type: The argument must be an XML value. The function returns an XML value.
Example: xm agg(xm par se(stringCol))
xm concat Concatenate a number of XML valuesinto asingle value.
Syntax: xm concat (xm value, ..., xm val ue)
Type: The arguments must be XML values. The function returns an XML value.
Example: xm concat (xm parse(stringCol), xmparse('<t/>"))
xm el enent Create anew XML data element, with attributes and XML expressions within it.

Syntax: xm el enent (name, [xmattributes(string AS nane
., string AS nanme) ,] [xm value,...,xm value])

Type: The names must adhere to the conventions in Section 1.2, “Names’. The
function returns an XML value.

Example: xm el enent (top, xnmlattributes('data’ as attrl),
xm parse(' <t/>"))

xm par se Convert astring to an XML value.
Syntax: xm par se(string val ue)
Type: The argument must be a string value. The function returns an XML value.
Example: xm par se(' <tag/>')
xm serialize Convertan XML vaueto astring.
Syntax: xm seri al i ze(xm val ue)
Type: The argument must be an XML value. The function returns a string

Example: xm seri al i ze(xm parse(' <t/>"))

4.3.3. Vectors

A vector is a sequence of values, all of which must have the same type, with an ability to access ele-
ments of the sequence by an integer index. A vector has a size, from a minimum of 0 to a maximum of 2
billion entries. Vectors use semantics inherited from C: when accessing elements by index, index 0 isthe
first position in the vector, index 1 is the second, and so forth.

53

SPLASH Programming Language

Y ou can declare vectorsin Global or Local blocks viathe syntax
vect or (val ueType) vari abl e;
For instance, you can declare avector holding 32-bit integers like

vect or (i nt 32) pos;

Operations on vectors:

Create Create a new empty vector.
Syntax: new vect or (type)
Type: A vector of the declared type is returned.
Example: pos : = new vector(int32);

Get value by index Get a value from the vector. If the index is less than O or greater than or
equal to the size of the vector, return null.

Syntax: vect or [i ndex]

Type: The index must have type int32. The value returned has the type of
the values held in the vector.

Example: pos|[10]
Assign avalue Assign acell in the vector.
Syntax: vect or [i ndex] := val ue

Type: The index must have type int32, and the value must match the value
type of the vector. The value returned is the updated vector.

Example: pos[5] := 3

si ze Returns the number of elementsin the vector.
Syntax: si ze(vect or)
Type: The argument must be a vector. The value returned has type int32.
Example: si ze(pos)

push_back Inserts an element at the end of the vector and returns the modified vector.
Syntax: push_back(vector, val ue)

Type: The second argument must be a value with the value type of the vec-
tor. The return value has the type of the vector.

Example: push_back(pos, 3)

resize Resize a vector, either removing elements if the vector shrinks, or adding
null elementsif the vector expands.

Syntax: r esi ze(vect or, newsize)

54

SPLASH Programming Language

Type: The second argument must have type int32. The return value has the
type of the vector.

Example: r esi ze(vecl, 2)
You can also iterate through all the elements in the vector (up to the first null element) using a “for”
loop. See Section 4.4.6, “For Loops’ for more information.
4.3.4. Dictionaries

A dictionary is a data structure that associates keys to values. They are called maps in C++ and Java, ar-
raysin AWK, and association listsin LISP, soit's an old and very familiar data structure.

Y ou can declare adictionary in a Global or Local block viathe syntax

di cti onary(keyType, val ueType) vari abl e;

For instance, if you have an input stream called "input”, you could store an int32 for distinct records as
di ctionary(typeof (i nput), int32) counter;

Only one value is stored per key. That means that it's important to understand what equality on keys
means. For the simple data types, equality means the usual equality, for example, equality on int32 or on
string values. For record types, equality means that the keys match (the data fields and operation are ig-
nored).

Operations on dictionaries:

Create Create a new empty dictionary.
Syntax: new di ctionary(type, type)
Type: A vector of the declared type is returned.
Example:d : = new dictionary(int32, string);

Get value by key Get a value from the dictionary by key. If there is no such key in
the dictionary, return null.

Syntax: di cti onary[key]
Type: The key must have the type of the keys of the dictionary. The
function returns a value of the type of the values held in the diction-
ary.
Example: count er [i nput]

Assign avalue by key Associate avalue to akey in the dictionary.

Syntax: di cti onary[key] := val ue

Type: The key and value must match the key type and value type of
the dictionary. The function returns the updated dictionary.

Example: counter[input] := 3

55

SPLASH Programming Language

Remove a key/value pair

Clear adictionary

Test for emptiness

Remove a key, and its associated value, from the dictionary.
Syntax: r emove(di ctionary, key)

Type: The key must match the key type of the dictionary. The func-
tion returns an int32: 0 if the key was not present, and 1 otherwise.

Example: r enrove(count er, input)
Remove all key/value pairs from the dictionary.
Syntax: cl ear (di cti onary)

The function returns the cleared dictionary.
Example: cl ear (count er)

Test adictionary for emptiness.

Syntax: enpt y(di cti onary)

The function returns an int32: 1 if the dictionary is empty, O if not
empty.

Example: enpt y(count er)

You can also iterate through all the key/value pairs in the dictionary using a “for” loop. See Sec-
tion 4.4.6, “For Loops’ for more information.

4.3.5. Streams

There are ways to access the records in input streams, using means similar to dictionaries, although one
cannot change the recordsin an input stream.

Operations on streams:

Get value by key

Get value by match

Get a value from the stream by key. If there is no such key in the stream,
return null.

Syntax: st r eanVal ue[recordVal ue]

Type: The key must have the record type of the stream. The operation re-
turns a value of the record type of the stream.

Example:i nput _strean] [k = 3; |] 1]

Note that the non-key fields of the argument do not matter; the operation
will return a record with the current values of the non-key fields, if are-
cord with the key fields exist.

If akey field is missing from the argument, or the key field is null, then
this operation will always return null. It doesn't make sense to compare key
fields in the stream to null, since null is never equivalent to any value
(including null).

Get arecord from the stream that matches the given record. Unlike getting
avalue by key, there might be more than one matching record. If there is
more than one matching record, one of the matching records is returned. If

56

SPLASH Programming Language

there is no such match in the stream, null is returned.
Syntax: st r eanVal ue{ recordVal ue }

Type: The record must be consistent with the record type of the stream.
The operation returns a value of the record type of the stream.

Example: i nput _strean{ [| d = 5] }

Y ou can use key and non-key fields in the record.

You can aso iterate through all the records in a stream using a “for” loop. See Section 4.4.6, “For
Loops’ for more information.

4.3.6. Stream Iterators

Stream iterators are a means of explicitly iterating over all of the records stored in either one of the input
streams, or in the stream itself. It's usually more convenient, and safer, to use the f or loop mechanism
described in Section 4.4.6, “For Loops’, but sometimes the extra flexibility of stream iterators is needed.

In FlexStreams, each block of code has implicit variables for streams and stream iterators. If an input
stream, or the FlexStream itself, is named St r eamnl, there are variables St reanil_st ream and
Streanl_iterator.

Those variables can be used in conjunction with the following functions.

del etel t erator

Note:

Rel eases the resources associated with an iterator.
Syntax: del etelterator(iterator)

Type: The argument must be an iterator expression. The function returns a null
value.

Example: del et el terat or (i nput _iterator)

Stream iterators are not implicitly deleted. If you don't delete them explicitly, all further up-
dates to the stream may be blocked.

getlterator

get Next

Get an iterator for a stream.
Syntax: get | t erat or (strean)

Type: The argument must be a stream expression. The function returns an iterat-
or.

Example: get I t erat or (i nput _stream
Returns the next record in the iterator, or null if there are no more records.
Syntax: get Next (i terator)

Type: The first argument must be an iterator expression. The function returns a
record, or “null” if thereis no more datain the iterator.

Example: get Next (i nput _iterator)

57

SPLASH Programming Language

resetlterator Resets the iterator to the beginning.
Syntax: resetlterator(iterator)

Type: The argument must be an iterator expression. The function returns an iter-
ator.

Example: reset I terator (i nput _iterator)

set Range Sets a range of columns to search for. Subsequent getNext calls will return only
those records whose columns match the given values.

Syntax: set Range(iterator, fieldNane, ... expr...)

Type: The first argument must be an iterator expression; the next arguments
must be the names of fields within the record; the final arguments must be ex-
pressions. The function returns an iterator.

Example:
set Range(i nput _iterator, Currency, Rate, ' EUR , 9. 888)

set Sear ch Sets values of columns to search for. Subsequent getNext calls will return only
those records whose columns match the given values.

Syntax: set Search(iterator, nunber, ... expr...)

Type: The first argument must be an iterator expression; the next arguments
must be column numbers (starting from 0) in the record; the final arguments
must be expressions. The function returns an iterator.

Example: set Search(i nput _iterator, 0, 2,' EUR , 9. 888)
Note:

The set Sear ch function has been deprecated because it requires a specific layout of fields. It
has been retained for backwards compatibility with existing models. When developing new
models, use the set Range function instead.

4.3.7. Event Caches

An event cache holds a number of previous events for the input stream or streams to a derived stream. It
is organized into buckets, based on values of the fields in the records. It's often used when vectors or
dictionaries are not quite the right data structure.

Y ou can define an event cachein aLocal block. A simple event cache declaration is
event Cache(i nstrean e0;

This event cache holds al the events for an input stream “instream”. The default key structure of the in-
put stream defines the bucket policy. That is, the buckets in this stream correspond to the keys of the in-

put stream.

Suppose the input stream in this case has two fields, akey field k and a data field d. Suppose the events
have been

<instream ALERI _OPS="i" k="1" d="10"/>

<i nstream ALERI _OPS="u" k="1" d="11"/>

58

SPLASH Programming Language

<instream ALERI _OPS="i" k="2" d="21"/>

After these events have flowed in, there will be two buckets. The first bucket will contain the first two
events, because these have the same key; the second bucket will contain the last event.

Event caches allow for aggregation over events. That is, the ordinary aggregation operations that can be

used in Aggregate Streams can be used in the same way over event caches. The “group” that is selected
for aggregation is the one associated with the current event. For instance, if a new event

<i nstream ALERI _OPS="u" k="1" d="12"/>

appears in this stream, then the expression sun{ €0. d) will return 10+11+12=33. Y ou can use any of
the aggregation functions in Section B.9, “Aggregation Functions’, including avg, count , max, and
mn.
The next subsections describe the following options to the event cache type and the operations on event
caches.

e manual andaut o insertion

« Different keys to determine the buckets

 Size of buckets (by maximum time, number of events, or both) and policy (j unp or noj unp)

¢ Recordsinstead of events (coal esce)

 Ordering the eventsin the buckets

4.3.7.1. Manual insertion

By default, every event that comes into a stream with an event cache gets put into the event cache. You
can explicitly indicate this default behavior with the aut o option, for example,

event Cache(i nstream auto) eO;
Y ou can aso put eventsinto an event cache if they are marked manual , for example,
event Cache(i nstream manual) eO;

Usethefunctioni nser t Cache described below to do this.

4.3.7.2. Changing buckets
An event cache organizes events into buckets. By default, the buckets are determined from the keys of
the input stream. You can change that default behavior to alternative keys, specifying other fields in
square brackets after the name of the stream.

For example, specifying

event Cache(i nstreani do, d1]) eO;

59

SPLASH Programming Language

keeps buckets organized by distinct values of the dO and d1 fields. To keep one large bucket of all
events, write the following:

event Cache(instreani]) eO;

4.3.7.3. Managing the size of buckets

You can also manage the size of buckets in an event cache. That can often be important in controlling
the use of memory.

You can limit the size of a bucket to the most recent events, by number of seconds, or by time:

event Cache(i nstream 3 events) e0;
event Cache(i nstream 3 seconds) el;

Y ou can also specify whether to completely clear the bucket when the size or time expires by specifying
thej unp option:

event Cache(instream 3 seconds, junp);

The defaultisnoj unp.

All of these options can be used together. For example, this example clears out a bucket when it reaches
10 events (when the 11th event comes in) or when 3 seconds elapse.

event Cache(instream 10 events, 3 seconds, jump);

4.3.7.4. Keeping records instead of events

You can keep records in an event cache, instead of distinct events for insert, update, and delete, by spe-
cifying the coal esce option:

event Cache(i nstream coal esce) e0;

This option is most often used in conjunction with the next option, ordering.
4.3.7.5. Ordering
Normally, the events in a bucket are kept by order of arrival. Y ou can specify a different ordering by the

fields of the events. For instance, to keep the events in the bucket ordered by field d in descending order,
write

event Cache(instream d desc) eO;

Y ou can order by more than one field. The following example orders the buckets by field dO in descend-
ing order, then by field d1 in ascending order in case the dO fields are equal.

60

SPLASH Programming Language

event Cache(i nstream dO desc, dl asc) eO;

4.3.7.6. Operations on Event Caches

expi reCache

i nsert Cache

keyCache

4.4, Statements

Remove events from the current bucket that are older than a certain number of
seconds.

Syntax: expi reCache(events, seconds)

Type: The first argument must name an event cache variable. The second argument
must be an int32. The function returns the event cache.

Example: expi r eCache(events, 50)
Insert arecord value into an event cache.
Syntax: i nsert Cache(events, record)

Type: The first argument must name an event cache variable. The argument must be
arecord type. The function returns the record inserted.

Example: i nsert Cache(events, inputStrean)

Select the current bucket in an event cache. Normally, the current input record selects
the active bucket. Y ou might want to change the current active bucket in some cases.
For example, during the evaluation of the debugging expressions, there is no current
input record and thus no bucket is set by default. The only way to set the bucket then
isto do it manually using this function.

Syntax: keyCache(events, event)

Type: The first argument must name an event cache variable. The second argument
must be arecord type. The function returns the same record.

Example: keyCache(ecl, rec)

Y ou can see more examples on the sp_cli man page in the Guide to Programming In-
terfaces.

SPLASH has statement forms for expressions, blocks, conditionals, output, “break” and “continue”,
“while” and “for” loops, as well as blocks of statements.

4.4.1. Expression Statements

For instance, any expression can be turned into a statement by terminating the expression with a semi-

colon, asin

set Opcode(i nput, 3);

Since assignments are expressions, assignments can be turned into statements in the same way. For in-
stance, the following statement assigns a string to a variable “address”:

address : =

'550 Broad Street';

61

SPLASH Programming Language

4.4.2. Block Statements

Statements can be a sequence of statements, wrapped in braces, with optional variable declarations, asin

doubl e d :
record. b :

9.99;
d;

}

Variable declarations can be interspersed with statements, asin

doubl e pi := 3.14;
)

print (string(pi
double e := 2.71;
)

print (string(e

)
i

4.4.3. Conditional Statements

Another form of statement is the conditional, which has the same syntax as C. For instance, you can
write

if (record.a = 9)
record.b := 9.99;

Conditionals may have optional “else” statements, asin

if (record.a = 9)
record.b := 9.99;

el se {
double d := 10.9;
record.b := d;

}

4.4.4. Output Statements

The out put statement schedules an event to be sent to downstream streams, and also to be entered into
the store of the stream:

output [k = 10; | d = 20;];

Itisvalid only in Flex and Pattern Streams.

Note:

Multiple output's can be done in processing an event; the outputs are collected as a transaction
block. Similarly, if a Flex or Pattern Stream receives a transaction block, the entire transaction
block is processed and all output is collected into another transaction block. This means that

62

SPLASH Programming Language

downstream streams, and the record data stored within the stream, are not changed until the en-
tire event (single event or transaction block) is processed.

If a FlexStream is assigned to a Stateless Store, all attemptsto out put anon-insert are rejected.
4.4.5. While Statements
Another form of statement is “while” loops. Again, this has the same syntax as C. For instance, you can

write

while (not(isnull(record))) {
record.b := record.a + record. b;
record : = get Next (record_iterator);

}

4.4.6. For Loops

L oops are more often coded with “for” loops, which provide a convenient means of looping over some
or al of therecordsin an input stream, or all of the datain a vector or dictionary.

To loop over every record in an input stream called “input”, write

for (record in input_stream ({

}

Thevariabler ecor d isanew variable; you can use any name here. The scope is the statement or block
of statements in the loop; it has no meaning outside the loop. Y ou can aso set equality criteriain search-
ing for records with certain values of fields, for example,

for (record in input_streamwhere c=10, d=11) {

}

which has the same looping behavior, except limited to the records whose ¢ field is 10 and d field is 11.
If you search on the key fields, the loop will run a most one time, but it will run extremely fast because
it will use the underlying index of the stream.

To loop over the valuesin avector “vecl”, write

for (val in vecl) {

o

where again, val isany new variable. The loop stops when the end of the vector is reached, or the value
of the vector isnull.

To loop over the valuesin adictionary “dictl”, write

for (key in dictl) {

63

SPLASH Programming Language

where again, key is any new variable. It's common, inside the loop, to use the expression
di ct 1] key] to get the value held in the dictionary for that particular key.

4.4.7. Control Statements

Both whi | e loops and f or loops can be restarted or terminated, asin C. A br eak statement termin-
ates the innermost loop; acont i nue statement starts the innermost loop over.

The r et ur n statement stops the processing and returns a value. This is most useful in SPLASH func-
tions, described in the next section.

The exi t statement stops the processing. This is most useful in processing an event in a FlexStream
method, described in Section 4.6, “Using SPLASH within FlexStreams”.

4.4.8. Switch Statements

Theswi t ch statement is a specialized form of conditional. For instance, you can write

swi tch(i ntvar*2)
case 0: print('case0'); break;
case 1+1: print('case2'); break;
default: print('default’); break;

This statement prints “case0” if the value of i nt var *2 is 0, “case2” if the value of i nt var *2 is 2,
and “default” otherwise. The default is optional. The expression inside the parentheses
swi tch(...) must be of base type, and the expressions following the case keyword must have the
same base type.

Asin C and Java, the br eak is needed to skip to the end. For instance, if you leave out the br eak after
thefirst case,

swi tch(i ntvar*2)
case 0: print('case0');
case 1+1: print('case2'); break;
default: print('default’); break;

}

then the statement will print both “case0” and “case2” wheni nt var *2 isO.
4.5. Functions

You can write your own functions in SPLASH. They can be declared in Global blocks, for use by any
stream, or Local blocks. A function can internally call other functions, or call themselves recursively.

The syntax of SPLASH functions resembles C. In genera, afunction looks like
type functi onNane(typel argl, ..., typen argn) { ... }

where each “type” isa SPLASH type, and each ar g isthe name of an argument. Withinthe{. ..} can
appear any SPLASH statements. The value returned by the function is the value returned by the r e-
t ur n statement within.

64

SPLASH Programming Language

Here are some examples:

int32 factorial (int32 x) {
if (x <= 0)
return 1,
} else {
return factorial (x-1) * x;
}

}
string odd(int32 x) {
if (x =1)
return 'odd' ;
} else {
} return even(x-1);

}

string even(int32 x) {
if (x =0) {
return 'even';
} else {
return odd(x-1);

int32 sum(int32 x, int32 y) { return x+y; }
string getField([int32 k; | string data;] rec) { return rec.data;}

The first function is recursive. The second and third are mutually recursive; unlike C, you do not need a
prototype of the “even” function in order to declare the “odd” function. The last two functions illustrate
multiple arguments and record input.

The real use of SPLASH functions is to define, and debug, a computation once. Suppose, for instance,
you have a way to compute the value of a bond based on its current price, its days to maturity, and for-
ward projections of inflation. Y ou might write afunction

doubl e bondVal ue(doubl e currentPrice,
i nt 32 daysTolat ur e,
doubl e infl ati on)

and use it in many places within the data model.

4.6. Using SPLASH within FlexStreams

The following examples assume that there is a Source Stream with the declaration

<SourceStream i d="i nput Streant store="store">
<Col um key="true" nane="a" datatype="int32" />
<Col um key="true" name="b" datatype="string" />
<Col um nanme="fl oat Dat a" dat at ype="doubl e" />
<Col um nanme="dat eDat a" dat atype="date" />

</ Sour ceSt r ean®

FlexStreams use SPLASH declarations in the variables attribute, and SPLASH statements in Method

65

SPLASH Programming Language

elements. There are certain variables that are predefined in every Method. For each input stream, and the
FlexStream itself, there are distinguished variables for records of that stream, the entire collection of re-
cordsin that stream, and iterators over the stream. Suppose you have an input stream named “ Currency”.
There areimplicit variables

Currency for recordsin that stream

Currency_old for previous records in that stream (more on thisin a moment)
Currency_stream for the collection of records

Currency_iterator foriteratorsover that stream

For instance, you could write

Currency_iterator := getlterator(Currency_strean;
Currency := getNext(Currency_iterator);

in aFlexStream.

Y ou can also access the datain the FlexStream itself. If the FlexStream is named “FS’, the variables are
FS for records in that stream, FS_st r eamfor the collection of records, and FS i t er at or for iterat-
orsover that stream.

Thefirst exampleillustrates the “ output” statement and record expressions.

<Fl exStream i d="conput e" store="store" istrean="i nput Streani'>
<Col umm nanme="a" datatype="int32" key="true">
<Col unmm name="b" dat atype="string">
<Col um name="fl oat Dat a" dat at ype="doubl e" >
<Col um nane="dat eDat a" dat at ype="dat e" >
<Met hod nanme="i nput Met hod" streanm="i nput St reant' >
output [a = inputStreama + 1;
b = concat (' hh', inputStreamb);
floatData = 1.777;
dat eDat a = i nput St ream dat eDat a;] ;
</ Met hod>
</ Fl exSt r eanr

This Method constructs a new record, adding 1 to the “a’ column of the input record, and so on.

Notice the use of the variable i nput St r eamwithin the expression. When an event arrives from one of
the input streams, the Method whose “stream” attribute matches the input stream is called. Therecord is
bound to the variable with the name of the input stream. In this example, when a record arrives on the
stream called “inputStream”, the Method (the only one for this FlexStream) gets called with the record
bound to the variablei nput St r eam

If the event is an update, the variable i nput St r eam ol d gets bound to the old record. That can be
useful in tracking changes.

The next example illustrates the usage of aloop.
<Fl exStream i d="conput e" store="store" istreanm="i nput Streant'>

<Col umm nanme="a" dat atype="int32" key="true">
<Col umm nanme="b" dat atype="string">

66

SPLASH Programming Language

<Col um name="fl oat Dat a" dat at ype="doubl e" >
<Col um nane="dat eDat a" dat at ype="dat e" >
<Met hod name="i nput Met hod" streanm="input">

i nt32 var;
var := 0;
while (var < 10) {
output [a = var + 10 * input.a; |
b = input.b;
float Data = i nput.fl oat Dat a;
dat eData = i nput. dateDat a;];
var := var + 1;
}
}
</ Met hod>

</ Fl exStr eanr

For each input record, we output 10 records, each with a different value of the key column a.

The next example illustrates two features: the usage of more than one Method for more than one input
stream and the usage of the “variables’ attribute.

<Fl exStream i d="conput e" store="store"
i stream="i nput Streaml i nput Streank">
<Col um nanme="a" datatype="int 32" key="true">
<Col utmm nane="b" dat at ype="string">
<Col umm name="fl oat Dat a" dat at ype="doubl e" >
<Col umm nane="dat eDat a" dat at ype="dat e" >
<Local >
i nt 32 nunt;
i nt 32 nun®;
</ Local >
<Met hod name="i nput Met hod1" strean="i nput Streanl">

if (isnull(num)) nunl := O;

nunl := numl + 1;

output [a = nun®; |
b = input Streamdl. b;
floatData = i nput Streaml. f| oat Dat a;
dat eData = i nput Streaml. dat eDat a;] ;

}
</ Met hod>
<Met hod name="i nput Met hod2" streanm="i nput Streank">

if (isnull(nun2)) nun := O;

nun2 : = nun + 1;

output [a = nuntl; |
b = input Strean®. b;
floatData = i nput Strean?. fl oat Dat a;
dat eDat a = i nput Strean®. dat eDat a;] ;

}
</ Met hod>
</ Fl exSt r ean®

The variables declared in the variables attribute can be used in any Method. Here, they are used to com-
municate between the two Methods. The variables are initialy set to nul | , which explains the need for
the first “if” statements within each Method.

The last example shows that the FlexStream code can output a record with a completely different struc-
ture than the input stream.

67

SPLASH Programming Language

<Fl exStream i d="conput e" store="store" istream="input Streani'>
<Col um nanme="a" datatype="int 32" key="true">
<Col utm nane="b" dat atype="string">
<Col unmm name="c" dat at ype="doubl e" >
<Met hod nane="i nput Met hod" stream="i nput St reant >

[int32 a; | string b; double c;] rec;
i f (input.a <= 3)
rec :=[a =input.a; | b =input.b;];

rec.c := 8.88;
set Opcode(rec, get Opcode(i nput));
out put rec;

}

}
</ Met hod>
</ Fl exStr eanr

68

Appendix A. Reserved Words

The following table provides alist of Reserved Words. Reserved Words are case insensitive.

AGGREGATE
ASC
BREAK
CAST
CONTINUE
DATA
DECLARE
DESC
ELSE
EXIT
FALSE
FOR
FROM
GENERATE
HASH
HOURS

IN

INSERT
JOIN
LAST
LIKE
LOGSTORE
MAXSIZE
MINUTE
NAME
NTH

OR
PATTERN
RANK
RETURN
SEC
SECONDS
SETRANGE
STORAGE
SWITCH
THEN
TOP

TYPE
UNION
VIEW
WHILE

XMLELEMENT

AND
AUTO
BY
CLUSTER
COUNT
DAY
DEFAULT
DISTINCT
END
EXPIRES
FBY
FOREIGN
FULL
GRANT
HAVING
HRS
INDEX
INTERMEDIATE
KEY
LEFT
LOCAL
MATERIALIZED
MEMSTORE
MINUTES
NEW
NULL
ORDER
PRIMARY
RECORDS
RIGHT
SECOND
SELECT
STATELESSSTORE
STORE
SYNC
TIMES
TREE
TYPEDEF
UPDATE
WHEN
WITHIN

AS

BEGIN

CASE
CONNECTION
CREATE
DAYS
DELETE
DYNAMIC
EVENTCACHE
EXTERNAL
FIRST
FOREIGNJAVA
FUNCTION
GROUP
HOUR

IF

INNER

IS
LANGUAGE
LIBRARY
LOCATION
MAX

MIN
MODULE
NOT

ON

OUTPUT
PROGRAM
RETAIN
SAFEDELETE
SECONDARY
SET

STATIC

SUM

TABLE

TO

TRUE
TYPEOF
UPSERT
WHERE
XMLATTRIBUTES

69

Appendix B. Data Types, Operators and Functions

This section lists al the supported data types, operators, and functions. These apply regardless of the au-
thoring environment. Any differences between the authoring environments are noted.

B.1. Data Types

The following table lists the data types supported by the Sybase Aleri Streaming Platform.

Data Type Description

int32 32-hit integer

int64 64-bit integer

money Fixed-point number. With the default money precision of 4 decimal digits, the range
of valuesis-922,337,203,685,477.5808 through +922,337,203,685,477.5807.

double Floating-point number (IEEE double precision)

date Date/time (64-bit date and time field for 64-bit machines, and 32-bit field for 32-bit

machines), represented as the number of seconds since the epoch (1970-01-01
00:00:00+00, or 1 January 1970 at midnight UTC)

timestamp Date/time in milliseconds (64-bits), represented as the number of milliseconds since
the epoch (1970-01-01 00:00:00.000+00, or 1 January 1970 at midnight UTC)
string Variable length character string
Note:

The number of decima digits in the “money” datatype can be changed with the moneyPreci-
sion attribute in the Platform object (see Section 3.2, “Platform”). For instance, if moneyPreci-
sion is set to 7, the range of vaues is -922,337,203,685.4775808 through
+922,337,203,685.4775807.

All types other than string are considered numeric types. Arithmetic can be done on any numeric type.
Rules, called casting in many programing languages, are also applied for changing one numeric type to
another. These rules are as follows:

Int32 values can be promoted to int64, money, date, timestamp or double values.

int64 values can be promoted to date, timestamp or double values.

date values can be promoted to timestamp or double values. In the case of promotion to timestamp
values, the result is scaled. For example, the number of seconds is multiplied by 1000 to get the
number of milliseconds.

timestamp values can be promoted to double values.

money values can be promoted to double values.

For example, data of type int32 will automatically be promoted to a doubleif it is added to adouble. The
additionsto the usual rules for type promotion also apply to money and date values.

B.2. Opcodes/Constants

The following names, which are Opcodes and Constants, have default values for use in expressions.

70

Data Types, Operators and Functions

del ete

i nsert

nul |

saf edel et e

updat e

upsert

B.3. Special Columns

Name for the delete operation. Equivalent to the int32 value 5.
Type: int32

Name for the insert operation. Equivalent to the int32 value 1.
Type: int32

Name for the null value.

Type: any type

Name for the safe delete operation (delete if present, ignore otherwise). Equivalent to
the int32 value 13.

Type: int32
Name for the update operation. Equivalent to the int32 value 3.
Type: int32

Name for the upsert operation (insert if not present, update if present). Equivalent to
the int32 value 7.

Type: int32

All streams have two special columns. The first specia column, rowid of typei nt 64, holds an integer
that is a unique value for every row of the stream. The second special column, rowtime of type date,
stores the time (in seconds) at which the row was last modified (or created). Expressions may refer to
these columns in the same way they do to any other column.

B.4. Nulls and Error Handling

The operators and functions below, unless otherwise noted, return null if any of their arguments are null.

Some operators and functions can cause run-time errors (for example, divide-by-zero). In these cases,
since all operators and functions are involved in the computation of an event, the server stops processing
the event and logs an error.

B.5. Arithmetic Operators

Arithmetic operators can be applied to all numeric types. Arithmetic operators can be used with mixed
numeric types, with implicitly promoted values. For example, if a date value is divided by an int32, the
result gets promoted to the larger of the two types.

The following table describes the supported arithmetic operators.

Operator Meaning Example Usage
+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (remainder) 8%3

A Exponent 1”73

71

Data Types, Operators and Functions

Operator Meaning Example Usage
- Change signs -3

Division and modulus can cause run-time errors if the divisor is 0. If the argument is a double, the server
logs a “Floating-point exception” error. If the arguments are not doubles, the server logs a
“Divide-by-zero” error.

B.6. Comparison Operators

The following table describes the supported comparison operators.

Standard Operator Meaning Example Usage
= Equal to a0=al

I= Not equal to a0l=al

> Greater than a0>al

>= Greater than or equal to a0>=al

< Lessthan al<al

<= Less than or equal to a0<=al

in Member of alist of values adin (al, a2, a3)

B.7. Boolean Operators

The following table describes the supported Boolean operators. These operators expect to operate on
values of type int32 and return values of type int32. These functions have the same names regardless of
the authoring environment.

Operator Meaning Example Usage
and Return 1 if al values are not (a<10) and (b > 12)
equal to 0, and O otherwise.
not Return 1 if all values are equal to |not (a=5)
0, and 0 otherwise.
or Return 1 if any of thevaluesare |(b=238) or (b =16)
not equal to 0, and O otherwise.

B.8. Arithmetic Functions

abs Returns the absolute value of a number.
Syntax: abs(nunmber)
Type: The argument must be a numeric type and the function returns a numeric value.
Example: abs(- 88. 76) returns 88.76.

acosi ne Returns the inverse cosine of a number between -1 and 1. If the argument is invalid
(outside the range -1 and 1), the server logs a “ Floating-point exception” error.

Syntax: acosi ne(numnber)

Type: The argument must be of type double and the function &l so returns a double.

72

Data Types, Operators and Functions

asi ne

at angent

cbrt

ceil

cosi ne

exp

fl oor

Example: acosi ne(0. 0) returns 1.570796.

Returns the inverse sine of a number between -1 and 1. If the argument isinvalid (outside
therange -1 and 1), the server logs a* Floating-point exception” error.

Syntax: asi ne(nurnber)
Type: The argument must be of type double and the function also returns a double.
Example: asi ne(1. 0) returns 1.570796.

Returns the inverse tangent of a number between -1 and 1. If the argument is invalid
(outside the range -1 and 1), the server logs a “ Floating-point exception” error.

Syntax: at angent (nunber)
Type: The argument must be of type double and the function also returns a double.
Example: at angent (1. 0) returns 0.785398.

Returns the cube root of a number. If the argument is invaid, the server logs a
“Hoating-point exception” error.

Syntax: cbr t (nunber)

Type: The argument must be a numeric type and the function returns a double.
Example: cbrt (1000. 00) returns 10.0.

Rounds a number up.

Syntax: cei | (nunber)

Type: The argument must be of type double and the function returns a double.
Example: cei | (100. 20) returns 101.0.

Returns the cosine of a number expressed in radians. If the argument is invalid, the server
logs a “ Floating-point exception” error.

Syntax: cosi ne(nunber)
Type: The argument must be of type double and the function also returns a double.
Example: cosi ne(0. 5) returns 0.87758.

Returns the value of e (the base of natural logarithm, 2.78128) raised to the power of a
number. If the argument isinvalid, the server logs a “ Floating-point exception” error.

Syntax: exp(nunber)

Type: The argument must be of type double and the function also returns a double.
Example: exp(2. 0) returns 7.3890.

Rounds a number down.

Syntax: f | oor (nunber)

73

Data Types, Operators and Functions

| og

round

si ne

sqrt

t angent

Type: The argument must be of type double and the function also returns a double.
Example: f | oor (100. 20) returns 100.0.

Returns the natural logarithm of a number. If the argument is invalid (for example, less
than 0), the server logs a“ Floating-point exception” error.

Syntax: | n(nunber)
Type: The argument must be of type double and the function returns a double.
Example: | n(2. 718281828. . .) returns 1.0.

Returns the base 10 logarithm of a number. If the argument is invalid (for example, less
than 0), the server logs a“ Floating-point exception” error.

Syntax: | og(hunmber)

Type: The argument must be of type double and the function also returns a double.
Example: | og(100) returns 2.0.

Round the first value to the number of digits specified by the second value.

Syntax: r ound(nurber, digits)

Type: Both arguments must be of type double and the function also returns a double.
Example: r ound(66. 778, 1) returns66.8.

Returns the sine of a number expressed in radians. If the argument is invalid, the server
logs a“ Floating-point exception” error.

Syntax: si ne(nunber)
Type: The argument must be of type double and the function also returns a double.
Example: si ne(0. 5) returns 0.4794255.

Returns the square root of a number. If the argument isinvalid (for example, less than 0),
the server logs a “ Floating-point exception” error.

Syntax: sqrt (nunber)
Type: The argument must be of type double or money; the function returns a double.
Example: sqrt (100. 0) returns10.0.

Returns the tangent of a number expressed in radians. If the argument isinvalid, the serv-
er logs a“Floating-point exception” error.

Syntax: t angent (nunber)
Type: The argument must be of type double and the function also returns a double.

Example: t angent (0. 5) returns 0.546302.

B.9. Aggregation Functions

74

Data Types, Operators and Functions

These functions operate on multiple records to calculate one value from a group of values. They can be
used in three places: inside Aggregate Streams, within SQL queries with a “group by” clause, and in
conjunction with the event cache type (see Section 4.3.7, “Event Caches’ below).

any Returns some value in the group of values; the choice of value is dependent on
the implementation.
Syntax: any(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: any(v. Currency)

avg Computes the average of the non-null values in the group. The expression can be
of any numeric type except "date" or "timestamp".

Syntax: avg(nunber)

Type: The argument can be of any numeric type except "date" or "timestamp"
and the function returns the same data type as the argument.

Example: avg(v. Shar es)
count Counts the number of non-null valuesin the group.
Syntax: count (expr)
Type: The argument can be of any type but the function always returns an int32.
Example: count (v. Pri ce)
count _di stinct Countsthe number of distinct non-null valuesin the group.
Syntax: count _di sti nct (expr)
Type: The argument can be of any type but the function always returns an int32.
Example: count _di stinct(v. Price)
count (*) Counts the number of records in the group.
Syntax: count (*)
Type: The function always returns an int64.
Example: count (*)
first Returns the first value from the group of values.
Syntax: first (expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example:first(v. Price)

| ast Returns the last value from the group of values.

75

Data Types, Operators and Functions

[wn_avg

nt h

recent

st ddev_pop

Syntax: | ast (expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: | ast (v. Pri ce)
Returns the linearly weighted moving average for the group of values.
Syntax: | wn_avg(nunber)

Type: The argument can be of any numeric type and the function returns the
same data type as the argument.

Example: | wn avg(v. Pri ce)
Returns the maximum value from the group of values.
Syntax: max(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: max(v. Pri ce)
Returns the minimum value from the group of values.
Syntax: m n(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: mi n(v. Pri ce)

Returns the nth value from the group of values. The first argument determines
the value to be returned (0 for the newest).

Syntax: nt h(nunber, expr)

Type: Thefirst argument must be an int32 but the second argument can be of any
type. The function returns the same data type as the argument.

Example:nt h(4, v. Pri ce)
Returns the most recent non-null value in the group of values.
Syntax: r ecent (expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: recent (v. Pri ce)
Returns the population standard deviation for the group of values.
Syntax: st ddev_pop(nunber)

Type: The argument can be of any numeric type and the function returns a
double.

76

Data Types, Operators and Functions

Example: st ddev_pop(v. Pri ce)

st ddev_sanp Returns the sample standard deviation for the group of values.

sum

Syntax: st ddev_sanp(nunber)

Type: The argument can be of any numeric type except date and timestamp, and
the function returns adouble.

Example: st ddev_sanp(v. Pri ce)
Computes the sum of the non-null values in the group.
Syntax: sum(nurrber)

Type: The argument can be of any numeric type except date and timestamp, and
the function returns the same data type as the argument.

Example: sun(v. Shar es)

val uel nserted Returnsavauefrom the group based on the last row inserted into that group.

B.10. String Functions

Syntax: val uel nsert ed(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: val uel nsert ed(v. Shar es)

These functions operate on one or more string arguments.

concat

[ength

like

Concatenates the given string arguments into a single string and returns that value.
Syntax: concat (stringl, ... stringn)

Type: The function takes one or more string arguments and returns a string. Literal text
must be enclosed in single quotation marks.

Example: concat (' MSFT', ' NYSE') returns'MSFT_NYSE'.

Returns the length of a string passed.

Syntax: | engt h(string)

Type: The argument must be a string and the function returns an int32

Example: | engt h(' abc') returns 3.

Determines whether a string matches a pattern string. Returns 1 if the string matches the
pattern, and O otherwise. The pattern can contain wildcards: '_' matches a single arbitrary
character; '%' matches O or more arbitrary characters.

Syntax: | i ke(string, pattern).

In SQL, the infix notation can also be used: sourceString like patternString.

77

Data Types, Operators and Functions

| oner

ltrim

pati ndex

repl ace

right

rtrim

Type: Both arguments must be strings and the function returns an int32.

Example: | i ke(' MBFT', ' M) returnsi.

Returns a new string where all the characters of the input string are in lower case.

Syntax: | ower (string)

Type: The argument must be a string and the function also returns a string

Example: | ower (' This I's A Test') returns'thisisatest'.

Trims spaces from the left of a string.

Syntax: I trin(string)

Type: The argument must be a string and the function also returns a string

Example: I trim(' sourcestring') returns'sourcestring'.

Determines the position of the nth occurrence of a pattern within a source string. The pat-
tern can contain wildcards: " " matches a single arbitrary character; "%" matches 0 or
more arbitrary characters. If fewer than n instances of the pattern are found in the string,
the function returns -1.

Syntax: pat i ndex(string, pattern, nunber)

Type: The first two arguments must be strings and the third must be an int32. The func-
tion returns an int32.

Example: pati ndex(' | ongl ongl ongstring', 'long , 2) returns4 (thefirst
position inthe string is 0). And pat i ndex(' |l ongstring', 'long', 2) returns-
1

In the first string argument, replace all occurrences of the second string argument with the
third string.

Syntax: r epl ace(target, substring, repstring)
Type: The function takes three string arguments and returns a string.

Example: repl ace(' NewAnsterdami, 'New , 'dd') returns 'OldAmster-
dam'.

Returns the rightmost characters of a string.
Syntax: ri ght (string, numnber)

Type: The first argument must be a string and the second must be an int32. The function
returns a string.

Example: ri ght (' sourcestring', 6) returns'string'.
Trims spaces from the right of a string.
Syntax: rtri m(sour ce)

Type: The argument must be a string; the function returns a string.

78

Data Types, Operators and Functions

substr

upper

Example:rtrim(' sourcestring ') returns'sourcestring'.

Computes a substring from a string, given a start position and the number of charactersto
be taken. The starting position is 0.

Syntax: substr (string, position, nunber)

Type: The first argument must be a string, the second and third arguments must be int32.
The function returns a string.

Example: subst r (' t hi ssubstring', 4, 3) returns'sub'.

Returns a new string where all the characters of the input string are in upper case.
Syntax: upper (string)

Type: The argument must be a string and the function also returns a string

Example: upper (' This Is A Test') returns' THISISA TEST'.

B.11. Date and Time Functions

These functions operate on one or more date arguments.

dat e

dat enane

dat epart

Converts a date value to an int32 with digits "yyyymmdd".

Syntax: dat e(dat eVal)

Type: The argument must be a date but the function returns an int32.
Example: dat e(v. Tr adeTi ne)

Converts a date value to a string of the form "yyyy-mm-dd".
Syntax: dat enane(dat eVal)

Type: The argument must be a date but the function returns a string.
Example: dat enanme(v. Tr adeTi ne)

Returns an int32 representing a portion of the date:

Syntax: dat epart (porti on, dateVal)

where portion can be one of the following strings:

e Theyear, if thestringisyy oryyyy.

e The month, if the string is mmor m

e Theday of the year, if thestringisdy ory.

e Theday of the month, if the stringisdd or d.

* Theday of the week, if the string is dw.

e Thehour, if the string is hh.

79

Data Types, Operators and Functions

e Theminute, if thestringism or n.
e Thesecond, if thestringisss ors.

Type: The first argument must be a string and the second be a date. The function re-
turns an int32.

Example: datepart('ss', v.TradeTi ne) returns the seconds portion of
the date value.

sysdat e Returns the current system date as a date value.
Syntax: sysdat e()
Type: The function has no arguments and returns a date.
Example: sysdat e()

systimestanp Returnsthe current system date as a timestamp value.
Syntax: systi mest anp()
Type: The function has no arguments and returns a date.
Example: syst i mest anp()

toti mezone Converts a date from the time zone specified in the second argument (a string) to
the corresponding time in the time zone specified in the third argument. Time zone
values are taken from the industry-standard TZ database. See Appendix G, List of
Time Zones for acomplete list of legal time zones.

Syntax: t ot i nezone(date, fronili neZone, toTi neZone)

Type: The first argument must be a date; the second and third must be strings. The
function returns a date.

Example: t ot i mnezone(v. TradeTi ne, 'GMI', 'EDT') convertsthetime
from Greenwich Mean Time to Eastern Daylight Time.

trunc Truncates the time portion of a date to 00:00:00 and returns the new date value.
Syntax: t runc(dat e)
Type: The argument must be a date and the function returns a date.

Example:trunc(v. Tr adeTi ne)

B.12. Calendar Functions

Calendar functions supply the name of a calendar file as their first argument. A calendar fileis atext file
in the format:

weekendSt art <i nt eger>
weekendEnd <i nt eger >
hol i day yyyy- nm dd

hol i day yyyy- nm dd

80

Data Types, Operators and Functions

In the weekendSt art and weekendEnd lines, the integer represents the day of the week: with
Monday=0, Tuesday=1, ..., Saturday=5, and Sunday=6. The file can have as many "holiday" lines as
needed. Lines beginning with "#" are ignored.

Thefollowing is an example of alegal calendar file:

Sybase cal endar data for US 1983

weekendStart 5

weekendEnd 6

hol i day 1983-02-21

hol i day 1983- 04-01

hol i day 1983- 05- 30

hol i day 1983-07- 04

hol i day 1983- 09- 05

hol i day 1983-11-24
hol i day 1983-12-26

Calendar files are loaded and cached on demand by the Sybase Aleri Streaming Platform. If changes oc-

cur in any of the calendar files, a command must be sent to the Sybase Aleri Streaming Platform to re-

fresh the cached calendar data. See sp_cli for adescription of the refresh_calendar s command.

The calendar functions are:

busi ness Determines the next business day from a date value and an offset. The offset can be
any negative or positive integer. Negative integers return previous business days. The
Sybase Aleri Streaming Platform will return null if the offset is O (it shouldn't be 0)
and will log a message.
Syntax: busi ness(cal endarFil e, dateVal, offset)

Type: The first argument must be a string, the second argument a date, and the third
an int32. The function returns a date.

Example: busi ness('/al eri/cal s/us.cal',v. TradeTi nme, 1)

busi nessDay Determinesif adate value falls on a business day (a day that is neither a weekend nor
aholiday). It returns 1 if true, and O otherwise.

Syntax: busi nessDay(cal endar Fi | e, dateVal)

Type: The first argument must be a string, and the second argument a date. The func-
tion returns an int32.

Example: busi nessDay('/al eri/cal s/us.cal',v. TradeTi ne)
weekendDay Determinesif adate value falls on aweekend.
Syntax: weekendDay(cal endar Fi |l e, dateVal)

Type: The first argument must be a string, and the second argument a date. The func-
tion returns an int32.

Example: weekendDay (' / al eri/cal s/ us. cal ', v. TradeTi ne)

B.13. Type Conversion Functions

These functions are used to convert data from one data type to another. All of these functions except the

81

Data Types, Operators and Functions

“cast” function operate on a single argument.

cast

dat el nt

i nt 32

i nt Dat e

real

string

Converts avalue of one numeric type to other numeric type.
Syntax: cast (type, number)

Type: The type must be one of the following values: int32, int64, double, money, date, or
timestamp

The expression must be a type that can be cast to the specified type. It is legal to cast ex-
pressions of any type except a string type. Casting from larger types to smaller ones may
cause overflow. Casting from decimal types (like double or money) to non-decimal types
(like int32) truncates the decimal portion.

Example: cast (ti nest anp, v. TradeTi ne)

Converts a date value to an int32 that represents the number of seconds since 1970-01-01
00:00:00 UTC (the Epoch).

Syntax: dat el nt (dat eVal)

Type: The argument must be a date; the function returns an int32.
Example: dat el nt (v. TradeTi ne)

Converts a string to an int32.

Syntax: i nt 32(string)

Type: The argument must be a string but the function returns an int32.
Example: i nt 32(' 9988') returns 9988.

Converts an int32 representing the number of seconds since 1970-01-01 00:00:00 UTC (the
Epoch) to a date.

Syntax: i nt Dat e(nunber)
Type: The argument must be an int32 and the function returns a date.

Example: i nt Dat e(1) returns a date value, for which ISO string representation is
1970-01-01 00:00:01.

Converts astring to adouble.
Syntax: r eal (string)

Type: The argument must be a string and the function returns a double. The string must not
contain commeas.

Example: real (' 77. 8866') returns 77.8866.

Converts avalue of any type to an equivalent string representation.
Syntax: st ri ng(val ue)

Type: The argument can have any type but the function returns a string.

Example: st ri ng(4512) returns'4512'.

82

Data Types, Operators and Functions

undate Convert astring in the 1SO date of the form "yyyy-mm-dd hh:MM:ss" into a date value.

Syntax: undat e(stri ng)

Type: The argument must be a string; the function returns a date.

Example: undat e(' 2003- 06- 14 13: 15: 00')

B.14. Null Handling and Rank Functions

firstnonnull

i fnull

i snul |

r ank

Returns the first non-null value from alist of arguments. If all values are null, it re-
turns null.

Syntax: firstnonnul | (exprl, ... exprn)

Type: All the arguments must have the same type; the function returns a value of
that type.

Example: firstnonnul | (v.Price, 0.0) returnsv. Pri ce if the value is
non-null and 0.0 otherwise.

Returns the first non-null value from alist of arguments. If all values are null, it re-
turns null. (This function behaves exactly likef i r st nonnul | \)

Syntax:i fnul | (exprl, ... exprn)

Type: All the arguments must have the same type; the function returns a value of
that type.

Example: i fnul | (v. Price, 0.0) returnsv. Pri ce if the value is non-null
and 0.0 otherwise.

Returns 1 if the argument is null, and O otherwise.

Syntax: i snul | (expr)

Type: The argument can be of any type and the function returns an int32.

Example:i snul | (' hel | o') returnsO.

Returns the position of the row in the current group, starting from position 0. This
function is useful in GroupFilter (Group Having clause in SQL Authoring) expres-
sionsonly.

Syntax: r ank()

Type: This function has no arguments. It returns an int32.

Example: rank() > 3 returns 1 for the first three rows in a group and O for al
other rows.

B.15. User-Defined Functions

Functions, written in alanguage like C/C++ or Java, can be called from the Sybase Aleri Streaming Plat-
form. Refer to Appendix D, User-Defined Functions below for more information.

83

Data Types, Operators and Functions

foreign Calls afunction from a shared library.

Syntax: forei gn(sharedLi brary, function, type, expr,

expr)

Type: The first two arguments must be identifiers (wrapped in double quotes if they
contain specia characters like periods); the third argument must be the name of a

type; the rest must be arguments to the function. The function returns a value of the
return type specified.

Example: f or ei gn(" ; di st ance. so", distance, doubl e,
u.a, u.b)

forei gnJava Cdlsastatic Javafunction.

Syntax: forei gnJava(cl assNanme, function, type, expr,

expr)

Type: The first two arguments must be identifiers (wrapped in double quotes if they
contain special characters like periods); the third argument must a string specifying
the type of the function; the rest must be arguments to the function. The function re-
turns a value of the return type specified.

Example: f or ei gnJava(Funs, distance, '(DD)D, u.a, u.b)

B.16. Print

This function prints values.

print Print strings on the standard output; thisis especialy useful in debugging.
Syntax: print (stringl, ..., stringn)
Type: The arguments must be strings; the function returns null.

Example: print (" here: ', string(i)).

B.17. Assignment

Variables can be assigned using “:=" (note the difference in syntax from Java and C/C++'s operator "=").
The type and value of the expression is the type and value of the expression assigned.

For instance,
varl := v.Price
returns the value of v. Pri ce after setting the value of the variablevar 1.

You can aso assign directly to columns if the record is bound to a variable (see Section 4.3.1, “Record
Events’ for more information). For instance, you can write

record. address := '550 Broad Street';

to assign the column “address’ to the string. Note that this will change the record in place, so that the old
value of the column will not be available.

You can also use “++” and “--" asin C, with avariable. The expression ++v increments the value of v,

84

Data Types, Operators and Functions

and returns the new value (pre-increment). The expression v ++ increments the value of v, and returns
the old value (post-increment). Similarly, - - v is pre-decrement, and v- - is post-decrement.

B.18. Sequencing

Expressions can be combined with semicolons, wrapped in parentheses, to be evaluated in order. The
type and value of the expression is the type and value of the last expression.

For instance,

(varl := v.Price; 0.0)

returns 0.0 after setting the value of the variablevar 1.
B.19. Conditional Expressions

Conditional expressions begin with the keyword case:

case . .
when expression then expression

el se expression
end

For example,

case
when (v.Price < 100.0) then 1.0
when (v.Price > 200.0) then 2.0
el se v.Price

end

returns 1.0 when the price is less than 100.0, 2.0 when the price is greater than 200.0, and the price oth-
erwise.

The types of the conditional expressions must be int32 and the types of the branches must match.
B.20. External Data Functions

get Dat a Get records from an external database via an SQL statement. The records are stored in a
vector; see Section 4.3.3, “Vectors’ below for a description of vectors.
Syntax: get Dat a(vector, data location, SQ., exprl, ... exprn)
Type: The first argument must be a vector of records, the second a string representing the
Datalocation, the third an SQL string, and the last arguments strings. The last arguments
are put into holes, marked by a“?’ character, in the SQL statement. The function returns
the vector. See Section 3.7, “Datal ocation” for a description of Datal ocations.
Example: get Data(v, 'ora','select 1D, ? from Datal',' A) gets records

from atable “Datal” in a Datal ocation named “ora’, and puts records with the two selec-
ted fields“ID” and “A” into the vector “v”.

B.21. Unique Value Functions

uni quel d Generate a new int64 value. This value starts at 0, and is different for every call (even
from different streams).

85

Data Types, Operators and Functions

Syntax: uni quel d()
Type: The function returns an int64.

Example: uni quel d()

86

Appendix C. Pattern Matching Language

Patterns are the building blocks of Pattern Streams. They have the following syntax:

within ...

from...

on ...

(conput ati onal cl ause)

The following sections describe each of the clauses.
C.1. Within clause
The text following wi t hi n must be a specification of the interval in which the events occur. It can be
specified in seconds, minutes, or hours. For example, you can write
within 5 seconds ...
You can aso use m nut es or hour s instead of seconds (with the obvious meaning) for conveni-
ence.
C.2. From clause
The f r omclause specifies the content of events to be matched. Each event is separated from the next by

acomma, and each event has the form

streamNanme[fi el dNane={nane|literal}; ..
fi el dNanme= {nanelllteral}] as event Nane

The st r eanNanme component must be the name of one of the input streams of the Pattern Stream. The
event Nane gives a name for this particular event, for usein the on clause. Each f i el dNane should
be the name of a column in that stream. Y ou don't have to name all of the columns of the input stream
withinthe[. ..], only the ones you care abouit.

The power of patterns comes from the use of literals and names within the [. . .] . Specifying a literal
means the field must have a particular value. Specifying a name alows you to use the value of the field
in other patterns. For instance, if the from clause looks like

from Trades[Synbol =" CSCO ; Price=p] as tradel,
Trades|[Synbol =' LU ; Price=q] as trade2

it means that the Symbol field in the first event must be 'CSCO', and the Symbol field in the second
event must be 'LU'". The variable p takes on the value of the Price field in the first event. Similarly, the
variable q takes on the value of the Pricefield in the second event.

When the same name is used in different event patterns, the values must match. For instance, if the pat-
terns are changed to

from Trades[Synbol =" CSCO ; Price=p] as tradel,
Trades| Synbol =' LU ; Price=p] as trade2

87

Pattern Matching Language

the two events must have the same value in their Price field. If the names are not the same, the values
may be the same or different. In other words, nothing isimplied by different variable names.

There are some restrictions. Y ou cannot use the same name in the same event, for example,

from Trades[Synbol =" CSCO ; Price=p; LastPrice=p] as tradel

is not allowed. Also, there is no way to check for anything but equality between events. Other checks,
like less-than or not-equal, can be encoded in the computational clausein SPLASH.

Y ou can also check the event to see what kind of operation it is, by using the special field ALERI _OPS.
Y ou can check this only for equality to aliteral or constant, and not assign it to a name. For example,
from Trades[ALERI _OPS=i nsert; Synbol =' CSCO ; Price=p] as tradel

islegal, but

from Trades[ALERI _OPS=opc; Synbol =' CSCO ; Price=p] as tradel

is not.

C.3. On clause
The on clause specifies the temporal relationships between events. You can use and, or, and not in
the on clause, and the special operation f by (the “followed-by” operation), in combination with the
event names from the f r omclause.

For instance, writing
eventl fby event2
means that the pattern match succeeds if eventl is followed by an event2 (that match the case in the

f r omclause). Other non-matching events may happen in between.

The other boolean operations on events have the standard meaning. For instance, writing

eventl and event 2

means that the pattern match succeeds if eventl and event2 happen (in either order).

C.4. Computational clause
The final clause is a computational clause. It must be a SPLASH statement or block, and should prob-
ably use the out put statement form. See Chapter 4, SPLASH Programming Language for a description
of the full language.

C.5. Examples

It's often easiest to see how to use a language with examples. Here are four examples of patterns in the

88

Pattern Matching Language

pattern matching language.

The first example checks to see whether a broker sends a buy order on the same stock as one of his or
her customers, then inserts a buy order for the customer, and then sells that stock. It creates a “buy
ahead” event when those actions have occurred in that sequence.

within 5 m nutes

from
Buy St ock[Synmbol =syn1 Shar es=n1; Broker=b; Custoner=c0] as Buyl,
Buy St ock[Synmbol =syny Shar es=n2; Broker=b; Custoner=cl] as Buy2,
Sel | St ock[Synbol =sym Shar es=nl; Broker=b; Custonmer=c0] as Sell

on Buyl fby Buy2 fby Sell

if ((b=c0) and (b !=cl)) {
out put [Synmbol =symy Shar es=nl; Broker=Db];
}

This example checks for three events, one following the other, using the f by relationship. Because the
same variable symis used in three patterns, the values in the three events must be the same. Different
variables might have the same value, though (for example, n1 and n2.) It outputs an event if the Broker
and Customer from the Buy1 and Sell events are the same, and the Customer from the Buy2 event is dif-
ferent.

The next example shows Boolean operations on events. The rule describes a possible theft condition,
when there has been a product reading on a shelf (possibly through RFID), followed by a non-oc-
currence of a checkout on that product, followed by areading of the product at a scanner near the door.

within 12 hours

from
Shel f Readi ng[Tagl d=t ag; Product Name=pnane] as onShel f,
Count er Readi ng[Tagl d=t ag] as checkout,
Exi t Readi ng[Tagl d=t ag; Areal d=area] as exit

on onShel f fby not(checkout) fby exit

out put [Tagl d=t; Product Nane=pnane; Areal d=area];

The next example shows how to raise an alert if a user triesto log in to an account unsuccessfully three
times.

within 5 mnutes

from
Logi nAt t enpt [| pAddr ess=i p; Account =acct; Result=0] as | oginl,
Logi nAt t enpt [| pAddr ess=i p; Account =acct; Result=0] as | ogin2,
Logi nAt t enpt [| pAddr ess=i p; Account =acct; Result=0] as | ogin3,
Logi nAttenpt [| pAddr ess=i p; Account =acct; Result=1] as | ogi n4

on (loginl fby login2 fby |ogin3) and not (| ogi n4)

out put [Account =acct];

People wishing to break into computer systems often scan a number of TCP/IP ports for an open one,
and attempt to exploit vulnerabilities in the programs listening on those ports. Here's a rule that checks
whether a single IP address has attempted connections on three ports, and whether those have been fol-
lowed by the use of the “sendmail” program.

89

Pattern Matching Language

within 30 m nutes

from
Connect [Sour ce=i p; Port=22] as cl
Connect [Sour ce=i p; Port=23] as c2,
Connect [Sour ce=i p; Port=25] as c3
SendMai | [Sour ce=I p] as send

on (cl and c2 and c3) fby send

out put [Source=ip];

90

Appendix D. User-Defined Functions

Application developers can develop their own functionsin C++, Java or off-the-shelf functions and con-
nect them to the Sybase Aleri Streaming Platform via the User-Defined Function Interface. These ex-
ternal functions can be invoked within an expression in a Sybase data model.

The following section describes the process of devel oping and applying user-defined functions.
D.1. User-Defined Functions in C/C++

To create a usable user-defined functionsin C/C++:

1. Writethe function.
2. Build ashared library.

3. Writethe call to the function within the model.

During the execution of the model, the Sybase Aleri Streaming Platform links to thislibrary at run-time
and callsthe function as desired.

To make the process clear, this section develops a C++ function for computing Euclidean distance in
three-dimensional space. The example comprises three simple steps:

* Write the function. Refer to Section D.1.1, “Write a User-Defined Function” for more information.

» Compile the function into a shared library. Refer to Section D.1.3, “Compile a User-Defined Func-
tion” for more information.

» Write the appropriate expression with the model to call the function. Refer to Section D.1.4, “Call a
User-Defined Function” for more information.

D.1.1. Write a User-Defined Function

In C++, the function to compute distance is:

#i ncl ude math. h
doubl e di stance(int numval s, double * vals)

{

doubl e sum = 0. 0;

for (int i=0; i<nunvals; i++)
sum += val s[i] * vals[i];
return sqrt(sum;

To adapt this function for use in the Sybase Aleri Streaming Platform, the following regquirements must
be taken into consideration:

« All external functions must conform to the same interface. This means that the arguments passed to
a user-defined function cannot be of type doubl e, or any other specific C/C++ type. Instead, argu-
ments are drawn from a structured type that includes all possible types understood by the Sybase
Aleri Streaming Platform internally. This type, caled "Datavalue', is found in the Dat a-

91

User-Defined Functions

Types. hpp header file and currently has the following definition:

struct DataVal ue {

uni on

{
intl6 t intl6yv;
int32 t int32y;
int64_t int64v;
noney_t noneyyv;

doubl e doubl ev;
tinme_t datev;
ti mestanpval t tinmestanpv;
const char * stringyv;
void * objectv;

} val;

bool null;

Note:

The boolean flag is "null" within this structure. Functions must be aware of the fact that values
may not be actual values but might be "null".

The internal processing engine within the Sybase Aleri Streaming Platform is a bytecode stack ma-
chine that keeps the top of the stack in a special location. Therefore, a function must split the array
of argumentsinto two:

« A pointer to the top of the stack. In C, thisisavalue of type (Dat aVal ue *).
* Anarray of the rest of the arguments. In C, thisisavalue of type (Dat aVal ue *).

The Sybase Aleri Streaming Platform writes the return value of the function into the top of the
stack.

If the function allocates memory (by calling mal | oc or cal | oc), it must record the allocated
memory so that it can be released later. A final argument to the function, avector of (voi d *),is
used to record the alocated memory.

Error codes: The function might need to return an error code. User-defined functions must return a
value of typei nt 32_t ; usualy thiswill be "NO_ERROR", which is a predefined value of 0.

Thus, the interface to a user-defined function is:

int32_t Forei gnFunction(int numargs,
Dat aTypes: : Dat aVal ue * top,
Dat aTypes: : Dat aVal ue * next Args,
std::vector<void *> & arena)

The code for the distance function exampleis:

#i ncl ude mat h. h

#i ncl ude <vector>

#i ncl ude “Row. hpp”

#i ncl ude “Dat aTypes. hpp”

extern “C’ int32_t distance(int numargs,

92

User-Defined Functions

Dat aTypes: : Dat aVal ue * top,
Dat aTypes: : Dat aVal ue * next Args,
std::vector<void *> & arena)

{
doubl e sum = 0. 0;
if (numargs <= 0) {
top->null = fal se;
t op- >val . doubl e = 0. 0;
return O;
if (top->null) return O;
doubl e di st = top->val.doubl ev * top->val.doubl ev;
for (int i=numargs-2; i>=0; i--)
if ((nextArgs + i)->null) {
top->null = true;
br eak;
di st +=(nextArgs + i)->val.doublev *(nextArgs + i)->val.doubl ev;
}
t op- >val . doubl e = sqrt (dist);
y return O;

The “extern” declaration is necessary within C++ to ensure that the function has the same name
within the shared library and not the "mangled” C++ name.

D.1.2. A Second Example

This option pricing calculation example, based on the Binomial Model, illustrates how your code can ac-
cess the arguments:

#i ncl ude <mat h. h>
#i ncl ude <fl oat. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <vector>
#i ncl ude " Row. hpp"
#i ncl ude "Dat aTypes. hpp"
doubl e opval _anbi n(doubl e S, doubl e X,
doubl e r, doubl e signa,
doubl e hcost, double t,
int isPut, int steps)
/* Dictionary
S = spot price; X = exercise price;
r = interest rate; sigma = volatility;
hcost = holding cost (risk-free rate for stocks)
t =tine to maturity;

isPut = is the option a put? (O=call,
1=put);
steps = no steps in binomal tree

=
// code omtted

}

extern “C’ int32_t coanbin(int nunmargs,
Dat aTypes: : Dat avVal ue * top,
Dat aTypes: : Dat aVal ue * next Args,
std::vector<void *> & arena)

93

User-Defined Functions

doubl e S, X r, sigmg,
i nt isPut, steps;

/1 error and nul |

if (numargs <= 7) {
t op- >nul |
t op- >val . doubl ev
return O;

i}f (top->nul l)

~
~

get argunents

o —

""j(/)")((j)
noaQ il il il

(
(
(
ma
st
(n

i sPut
st eps

1 II('D 11

(top)->val .

[/l call
t op- >val . doubl ev =
return O;

next Ar gs+0) - >val .
next Args+1) - >val .
next Args+2) - >val .

= (next Args+3)->val .
(next Args+4) - >val .
xt Ar gs+5) - >val
(next Args+6) - >val .

hcost, t;

checki ng

= fal se;
= 0.0;

return O;

doubl ev;
doubl ev;
doubl ev;
.doublev;

I nt 32v;

the function

opval _

ambi n(S, X, r, si gma, hcost , t,

doubl ev;
doubl ev;

i nt 32v;
/| Last

argunent is the TOP of the stack

i sPut, steps);

Note that the first argument to the function isin (next Ar gs+0) , the second isin (next Args+1),
and so forth. The top of the stack contains the last argument to the function, reflecting the order of eval-

uation of the arguments.

D.1.3. Compile a User-Defined Function

After writing the function, you must compile it into a shared library. Here is an example using the gcc

compiler:

gcc -fPIC -shared -nb4 -1..

-c -0 distance.o distance.cpp

gcc -fPIC -shared -nb4 di stance.o -o di stance. so

This creates a shared library named di st ance. so.

D.1.4. Call a User-Defined Function

After your code has been compiled, the function can be used in expressions with the f or ei gn function:

forei gn(" ; di st ance. so" ; ,

di stance, doubl e, u. a, u. b, u.c)

Y ou may need to give a more complete path to the shared library.

Note:

Windows uses a specific method in searching for shared libraries (.dll files). First, the path of
the application (sp/sp-opt) is checked. If the .dll file is not found in that directory, other direct-
ories are searched, culminating in the directories specified in the PATH environment variable.
More information may be found on the Microsoft web site.

D.2. User-Defined Functions in Java

94

User-Defined Functions

To build user-defined functions in Java, you must

1. Writethe function.

2. Compilethefunction (either intoa. cl ass fileor a. j ar file).

3. Write the call to the function within the model.

During the execution of the model, the Sybase Aleri Streaming Platform links to this library at run-time
and calls the function as desired.

To make the process clear, this section develops some simple Java functions. The example comprises
four steps:

1. Write the function. Refer to Section D.2.1, “Write User-Defined Functions in Java” for more in-

formation.

2. Compile the function. Refer to Section D.2.2, “Compile User-Defined Functions in Java” for more
information.

3. Write the appropriate expression with the model to call the function. Refer to Section D.2.3, “Call
User-Defined Functionsin Java’ for more information.

4. Start the Sybase Aleri Streaming Platform with the appropriate parameters. Refer to Section D.2.4,
“Link User-Defined Functionsin Java’ for more information.
D.2.1. Write User-Defined Functions in Java

The Sybase Aleri Streaming Platform can call static Java functions defined in any class. Here, for in-
stance, isaclass "Functions' that defines a number of callable functions:

public class Functions {

public static int intFunO() { return 172836; }

public static int intFunl(int i,int j) { return i+j; }

public static long | ongFunO() { return 967346; }

public static long | ongFunl(long i,long j) { return i+j;}

public static double doubl eFunO() { return 10.7152;

public static doubl e doubl eFunl(double i, double j) { return i+j; }
public static String stringFunO() { return "hij"; }

public static String stringFunl(String i) { return i; }

The Sybase Aleri Streaming Platform supports arguments and return values of the Java types:

int (32-bit integers)

* long (64-hit integers)

double (double-precision floating point numbers)

String (character strings)

D.2.2. Compile User-Defined Functions in Java

95

User-Defined Functions

Next, the functions must be compiled into a Java class. For instance, you might use
javac -d /hone/al eriusr/javal/lib Functions.java

which compiles the Java code into a class file and writes that file in the directory /
hone/ al eriusr/javal/lib.

You can also create Java archives (. j ar) files of classes, and refer to those in the classpath below as
normal.

D.2.3. Call User-Defined Functions in Java

To use the Java function he function can be used in Sybase Aleri Streaming Platform expressions. For
example, the expression

f orei gnJava(Functions, i nt Functionl,' (11)I1", 1, 2)

cals the function i nt Funct i onl in the class Funct i ons on two int32 arguments, and returns and
int32.

The third argument to foreignJava is a string, a representation of the type of the function being called.
You can obtain this string viathe j avap executable shipped with most versions of Java. For instance, if
the classfileislocated in/ horre/ al eri usr/javal/li b, then

javap -s -classpath /hone/al eriusr/java/lib Functions
produces

public class Functions extends java.l ang. Qbj ect {
publ i c Functions();
Signature: ()V
public static int intFunO();
Signature: ()I
public static int intFunl(int, int);
Signature: (I1)I
public static |Iong | ongFunO();
Signature: ()J
public static |long | ongFunl(long, |ong);
Si gnature: (JJ)J
public static doubl e doubl eFun0();
Signature: ()D
public static doubl e doubl eFunl(doubl e, double);
Si gnature: (DD)D
public static java.lang. String stringFun0O();
Signature: ()Ljaval/lang/String;
public static java.lang.String stringFunl(java.lang.String);
Signature: (Ljaval/lang/String;)Ljaval/lang/ String;

The lines beginning with “ Signature” give the types to be used in the third argument. Here, “1” denotes a
32-bit integer, “J’ a64-bit integer, “D” adouble, and “Ljava/lang/String;” a string.

Note:

96

User-Defined Functions

Unlike C/C++ external functions, the interface for Java functions does not permit null values to
be passed to the functions. You must handle null values explicitly, and not pass them to Java
functions or unexpected results will occur.

D.2.4. Link User-Defined Functions in Java

The Sybase Aleri Streaming Platform has a default Java runtime environment built into it. All you need
to do to “link” the Java code into your application is start the server with a special flag:

sp -j /hone/aleriusr/javal/lib ...

The- | option specifies the classpath for the Java virtual machine.

Note:

The Java runtime included with the Sybase Aleri Streaming Platform is Sun's Java 1.5. If your
code needs a more recent version of Java (for example, Java 1.6), you can set the special envir-
onment variable ALERI _SP_JAVA HOVE to the location of the appropriate Java virtual ma-
chine shared library (usually | i bj vm so on Linux or Solarisand j vm dl | on Windows).
For instance,

export ALERI SP_JAVA HOMVE=/usr/bin/javal/jre/lib/libjvmso

sets the variable on a Linux or Solaris machine in the shell. Y ou must then run the server in this
environment.

97

Appendix E. Aleri Metadata Streams

Certain metadata streams are automatically created by the Sybase Aleri Streaming Platform. These
streams hold information about the running data model. M etadata streams can be queried and subscribed
to, but no stream in the data model may have a metadata stream as its input.

Metadata streams have the special reserved names. No other objects may use these reserved names. In
genera, all the names starting with Al eri _ are reserved. Metadata streams also store their recordsin a
special storecaled Al eri Met adat aSt or e. No other streams may use this store.

E.1. Aleri_Config
Aleri_Config contains the current AleriML configuration of the Sybase Aleri Streaming Platform. It has
two string columns, key and value, and exactly one row (more rows may be added in the future). The

key column contains "XML" and the value column contains the text of the current AleriML configura-
tion. Thisrow gets updated if the Sybase Aleri Streaming Platform's configuration changes dynamically.

E.2. Aleri_Streams

Aleri_Streams contains information about all streams. It has the following columns:

Column Type Description

user_name string Currently hardcoded asuser . In the future this will be the owner's
username.

stream_name |string Name of the stream described by this row.

handle int64 The stream's handle (numeric id).

When a stream gets deleted by a Dynamic Modification, its row is removed. When a stream gets created
by a Dynamic Modification, its row is added. When a stream gets dynamically modified in an incompat-
ible way, its old row gets deleted and a new row (with new handle value) inserted. The compatible dy-
namic changes of the streams have no effects on their rows, except for renaming. The renaming still
shows as a deletion and insertion but the stream handle stays the same.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, its old row is deleted and new one inserted. These are two separate transactions. For
more information, see the Administrator's Guide.

E.3. Aleri_Tables

Aleri_Tables contains information about both source and derived streams. It has the following columns
(which are taken from names in PostgreSQL):

Column Type Description

relname string Name of the stream described by this row.

username string Currently hardcoded as “user”, in the future will be the owner user's
name.

relkind string Currently unused, empty.

remarks string The stream's handle (numeric id), formatted as a decimal number in
the ASCII string.

When a stream gets deleted by a Dynamic Modification, its row is removed. When a stream gets created
by a Dynamic Modification, its row is added. When a stream gets dynamically modified in an incompat-

98

Aleri Metadata Streams

ible way, its old row gets deleted and the new row, with new handle value, inserted. The compatible dy-
namic changes of the streams have no effects on their rows, except for renaming. The renaming still
shows as a deletion followed by an insertion, but the stream handle stays the same.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, the deletion of the old row and the insertion of the new version are separate transac-
tions. For more information, see the Administrator's Guide.

E.4. Aleri_Columns

Aleri_Columns contains information about all columns of all streams. It has the following columns
(which are taken from names in Postgres):

Column Type Description

usename string Currently hardcoded as “user”. In future releases, the value will be
the owner's username. (Note: the name of the column is“usename”,
not “username”).

relname string Name of the stream that contains the column described by this row.
atthame string Name of the column described by this row.
attypid int32 The PostgreSQL value representing the type of this column. The

possible values are: int32 = 23, int64 = 20, money = 701 (same as
double), double = 701, date = 1114, timestamp = 1114 (same as
date), string = 1043.

typname string Currently empty.

atthum int32 Position of this column in the row definition, starting from zero.
attlen int32 Currently unused, set to zero.

atttypmod int32 Currently unused, set to zero.

attnotnull string Currently unused, set to zero.

relhasrules string Currently empty.

relkind string Currently empty.

When a stream gets deleted by a Dynamic Modification, the corresponding rows are removed. When a
stream gets created by a Dynamic Modification, the corresponding rows are added. When a stream gets
dynamically modified in an incompatible way, its old rows get deleted and the new rows for the new
columns inserted. The compatible dynamic changes of the streams have no effects on their rows.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, its old records are deleted and new ones inserted, as two separate transactions. For
more information see the Administrator's Guide.

E.5. Aleri_KeyColumns

Aleri_KeyColumns contains information about the key columns of all the streams. It has the following

columns:

Column Type Description

table string Name of the stream owning the column described by this row.

field string Name of the column described by this row.

type int32 The PostgreSQL value representing the type of this column. The
possible values are: int32 = 23, int64 = 20, money = 701 (same as
double), double = 701, date = 1114, timestamp = 1114 (same as

99

Aleri Metadata Streams

Column Type Description

date), string = 1043.
type_name string Currently empty.
field length int32 Currently unused, set to 0.

When a stream gets deleted by a Dynamic Modification, the corresponding rows are removed. When a
stream gets created by a Dynamic Modification, the corresponding rows are added. When a stream gets
dynamically modified in an incompatible way, its old rows get deleted and the new rows (for the new
columns) inserted. The compatible dynamic changes of the streams have no effects on their rows.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, the deletion of the old records and the insertion of the new one are two separate trans-
actions. For more information, see the Administrator's Guide.

E.6. Aleri_Clients

Aleri_Clients contains information about al the currently active gateway client connections. It has the
following columns:

Column Type Description
handle int64 An unique integer id of the connection.
user_name string The username used for login on this connection. When a connection

isfirst created, its username is NULL. After login, the row gets up-
dated with the username used for logging in.

ip string The address of the client machine, as a string.

host string The symbolic host name of the client machine, if available. If the
host name is not available, the valueis the | P address.

port int32 The TCP port number from which the connection originates.

login_time timestamp Time when the connection was accepted (not authenticated), in
GMT.

conn_tag string The user-set symbolic connection tag name (see the option - mof

sp_subscribe and sp_upload). If not set by the user, isNULL.

E.7. Aleri_Subscriptions

Aleri_Subscriptions contains the information about all the currently active subscriptions. It has the fol-
lowing columns:

Column Type Description

stream_handle |int64 The handle of the stream subscribed to (asin Aleri_Streams).

conn_handle int64 The handle of the connection subscribed to the stream (asin
Aleri_Clients).

This stream tracks the subscriptions and unsubscriptions done in every possible way. If a connection is
dropped, it's considered unsubscribed from everything to which it was subscribed.

E.8. Aleri_Subscriptions_Ext

Aleri_Subscriptions Ext contains the information about all the currently active subscriptions, in a de-
normalized but more convenient format. It has the following columns:

100

Aleri Metadata Streams

Column Type Description

stream_handle |int64 The handle of the stream subscribed to (asin Aleri_Streams).

conn_handle int64 The handle of the connection subscribed to the stream (asin
Aleri_Clients).

stream_name |string Name of the stream. If a stream is dynamically renamed, this value
will change.

stream_user string The username of the owner of the stream (asin Aleri_Streams).

subscriber_user |string Login name of the user account that owns this subscription.

ip string Address of the client machine, as a string.

host string Symbolic host name of the client machine, if available. If the host-
name is not available, the value isthe IP address.

port int32 The TCP port number from which the connection owning this sub-
scription originates.

login_time timestamp Time when the connection owning this subscription was accepted, in
GMT.

Note:

In some situations, this metadata stream may be dightly out of sync. For example, if astreamis
deleted dynamically, all subscriptions to this stream are deleted too. Y ou might see the row for
the subscription updated, with null stream name and owner, before the row is eventually de-
leted.

E.9. Aleri_Connectors

Aleri_Connectors contains information about all the InConnections and OutConnections defined in the
Sybase Aleri Streaming Platform. The words “connector” and “connection” are often used interchange-
ably as synonyms. The word "connection” may also be used to describe the client connections to the Sy-
base Aleri Streaming Platform. gateway (through the pub/sub API). To reduce confusion, the word "con-
nector" is used in this metadata stream’s name. It has the following columns:

Column Type Description
name string An unique name of the connector, as defined in the model.
stream string Name of the stream on which this connector is defined.
type string Connector type, the same as the "type" attribute of this connector's
Datal_ocation.
input int32 "1" for InConnection, "0" for OutConnection.
ingroup string The StartUp group where this connector belongs.
state string The state of connector. One of:
READY Ready to be started.
INITIAL Performing start-up and initial loading.
CONTINU- Continuously receiving rea-time data.
ous
IDLE Not currently receiving the data but attempting to
re-connect to the data source or sink.
DONE No more input or output will follow, the connector

101

Aleri Metadata Streams

Column Type Description

thread is about to exit.

DEAD The connector thread exited. The connector will
stay in this state until explicitly requested to re-
start.

total_rows int64 Total number of data records recognized in the input data stream by
an InConnection, or the number of data records received by an Out-
Connection from the platform.

good rows int64 Number of data records successfully processed.
bad rows int64 Number of data records that experienced errors.

The fields total_rows, good_rows, and bad_rows are updated once in a few seconds, to reduce the over-
head.

E.10. Aleri_RunUpdates
Aleri_RunUpdates delivers notifications of changes in the state of debugging. The notifications are sent

only when the Sybase Aleri Streaming Platform is in trace mode. It is not a “real stream” in the sense
that its store is always empty, and only updates are sent. It has the following columns:

Column Type Description

key string Type of the update

value int32 Some integer value associated with the update

stream string If the update notifies of an event related to some individual stream,
it contains the name of the stream. Otherwise NULL.

info string Some additional string information associated with the update. The
format of this information depends on the type of the update.

The following types of updates are currently sent:

Key Value Stream Description
The trace mode has changed: enabled (1) or disabled (0).

TRACE |[0]1 (none)

The platform has paused (0) or continued running (1).

RUN 0|1 (none)

STEP <count> |(none) The Sybase Aleri Streaming Platform was single-
stepped, manually or automatically. The value contains
the number of the steps made. No specifics are provided
about which streams were stepped.

BREAK |<bp-id> |<stream-name> A breakpoint with ID <bp-id> has been triggered on the
stream <stream-name>. These updates may come either
before or after the corresponding update "RUN 0".

NOBREAK |<bp-id> |<stream-name> A breakpoint with ID <bp-id> on the stream
<stream-name> had its leftToTrigger count decreased,
but it didn't trigger yet.

102

Aleri Metadata Streams

Key Value Stream Description

EXCEP- |(none) <stream-name> An exception has happened on the stream

TI ON <stream-name>. These updates may come either before
or after the corresponding update "RUN 0".

REQUES- |(none) (none) A reguest to shut down the Sybase Aleri Streaming Plat-

TEXIT form has been received.

EXIT (none) (none) All the user streams have exited. The Sybase Aleri
Streaming Platform is about to complete the shutdown.

E.11. Aleri_ClockUpdates

Aleri_ClockUpdates delivers notifications of changes in the logical clock of the Sybase Aleri Stream-
ing Platform. It is not a “real stream” in the sense that its store is always empty, and only updates are

sent. It has the following columns:

Column Type Description

key string Type of update, currently the only typeis"CLOCK"

rate double Rate of the logical clock relative to the real time

time double The current time, in seconds since the UNIX epoch

real int32 Real timeflag: 1if thelogical clock runsin real time (that is, match-
ing the system time of the machine where the Sybase Aleri Stream-
ing Platform runs), O if at varied rate or time.

stop_depth int32 How many times the clock has been stopped recursively, or in other
words how many times the clock resume would have to be called to
actually resume the flow of time; when the clock is running, the stop
depthisO

max_sleep int32 The period of time, in real milliseconds, that guarantees that al the
sleepers discover the changesin the clock rate or time

E.12. Aleri_Streams_Monitor

Aleri_Streams _Monitor contains information about the performance of streams. Monitoring data is
only available if the Sybase Aleri Streaming Platform was started with monitoring option -t.
Aleri_Clients Monitor contains basic information about the connected clients, but performance-related
fields are only populated with the monitoring option.

This stream has the following columns:

Column Type Description
stream string Name of the stream.
cpu_pct double CPU usage in percent by this stream's thread in the time period since

the last update.

trans per_sec |double

The stream's performance in transactions per second, in thetime
period since the last update.

rows per_sec |double

The stream's performance in rows per second, in the time period
since the last update.

inc_trans

int64

Number of transactions processed since the last update.

103

Aleri Metadata Streams

Column

Type

Description

inc_rows

int64

Number of rows processed since the last update.

queue

int32

Current input queue size. A high size indicates that this stream can't
process the records fast enough. This means that either this stream
or one of its output streams is a bottleneck. The bottleneck can be
located by looking for a stream with high input queue size but with
all its output streams having low input queue sizes.

store_rows

int64

Current number of records in stream's store.

last_update

date

The time of the current update.

sequence

int64

The sequence number of the current update.

post-
ing_to_client

int64

The numeric handle of the client connection, where this stream is
trying to post the data at the moment. Most of the time it will con-
tain -1, meaning “not trying to post right now”. This column may be
useful for analyzing the situations when the Sybase Aleri Streaming
Platform becomes unresponsive. If aclient is not reading the data
posted to it, its gateway queue will overflow, and any stream posting
to it will become stuck. This effect will propagate throughout the
Sybase Aleri Streaming Platform and will have al the streamsin-
volved show the low CPU usage and high queue size.

E.13. Aleri_Clients_Monitor

Aleri_Clients Monitor contains information about the performance of al the currently active gateway
client connections. For convenience, it is denormalized and contains a copy of data from
Aleri_Clients Monitor. Monitoring data is only available if the Sybase Aleri Streaming Platform was
started with monitoring option -t. Aleri_Clients Monitor contains basic information about the connec-
ted clients, but performance-related fields are only populated with the monitoring option.
Aleri_Clients Monitor hasthe following columns:

Column Type Description

handle int64 An unique integer id of the connection.

user_name string The username used for login on this connection. When a connection
isfirst created, its usernameis NULL. After login, the row gets up-
dated with the username used for logging in.

ip string The address of the client machine, as a string.

host string The symbolic host name of the client machine, if available. If the
host name is not available, the valueis the I P address.

port int32 The TCP port number from which the connection originates.

login_time timestamp Time when the connection was accepted (not authenticated), in
GMT.

conn_tag string The user-set symbolic connection tag name (see the option - mof
sp_subscribe and sp_upload). If not set by the user, isNULL.

cpu_pct double CPU usage in percent by this client's gateway thread in the time
period since the last update.

last_update date The time of the current update.

subscribed int32 Flag, showing whether this client is subscribed to any streams (1) or
not (0).

sub_trans per_s|double The client's performance in transactions per second received by the

ec client, in the time period since the last update. For this purpose the
envelopes and any service messages are also counted as transac-

104

Aleri Metadata Streams

Column

Type

Description

tions.

sub_rows per_s
€c

double

The client's performance in data rows per second received by the cli-
ent, in the time period since the last update.

sub_inc trans |int64 Number of transactions/envel opes/messages received by the client
since the last update.

sub_inc_rows |int64 Number of datarows received by the client since the last update.

sub_total_trans |int64 Total number of transactions/envel opes/messages received by the
client.

sub_total_rows |int64 Total number of datarows received by the client.

sub_dropped _ro |int64 Total number of data rows dropped in the gateway because the client

ws did not read them fast enough (for lossy subscriptions).

sub_accum_size|int32 For the pulsed subscriptions, the current number of rows collected in
the accumulator, to be sent in the next pulse.

sub_accum_ops |int32 Reserved for the future. The intent is to provide for the pulsed sub-
scriptions the number of operations applied to the accumulator since
the last pulse. It may differ from the accumulator size, if multiple
operations become collapsed in the accumulator. Currently isa
placeholder with the value of -1.

sub_queue int32 Number of the rows queued for transmission to the client. Thisis
just the “proper queue” part. The total number of records buffered
consists of sub_accum_size, sub_queue and sub_work_queue.

sub_queue fill_|double Current sub_queue in percent relative to the queue size limit. If the

pct queue size reaches this limit (100%), any future attempts to post
datato this client will block, propagating the flow control back.

sub_work_queu |int32 Number of the rows for transmission to the client that are being

e transferred from the “proper queue” to the socket buffer. At this
point the rows may get regrouped by envel opes.

pub_trans per_ |double The client's performance in transactions per second sent by the cli-

sec ent, in the time period since the last update. For this purpose the en-
velopes and any service messages are also counted as transactions.

pub_rows per_ |double The client's performance in data rows per second sent by the client,

sec in the time period since the last update.

pub_inc_trans |int64 Number of transactions/envel opes/messages sent by the client since
the last update.

pub_inc_rows |int64 Number of data rows sent by the client since the last update.

pub_total_trans |int64 Total number of transactions/envel opes/messages sent by the client.

pub_total rows |int64 Total number of data rows sent by the client.

pub_stream_id |int64 The numeric id of the stream to which the client is trying to publish

the data at the moment. Most of the time it will contain -1, meaning
“not trying to publish right now”. This column may be useful for
analyzing situations when the Sybase Aleri Streaming Platform be-
Comes unresponsive.

The data provided by this stream may be used to analyze performance issues with the clients.

High CPU usage means that the client has subscribed to a large amount of data, and its gateway connec-
tion may have become the bottleneck. If the client has subscribed to multiple streams, then on an SMP
machine the bottleneck may be removed by splitting the subscriptions into two connections.

105

Aleri Metadata Streams

If the CPU usage is low but the subscription queue size is high then the client is not reading the data as
fast as the Sybase Aleri Streaming Platform sends it. Such a client slows down the whole Sybase Aleri
Streaming Platform. Perhaps the client has to be optimized. Another option would be to change its sub-

scription mode to lossy or pulsed.

106

Appendix F. Data Location Descriptions, Parameters,
Limits
The following list of connectors has parameter descriptions with basic, advanced and mandatory usage
requirements, defaults and known limitations. For more information on the framework to add a connect-

or not included in the set of built-in connectors that come with the Sybase Aleri Streaming Platform, see
the Guide to Programming Interfaces .

Y ou should note for connectors that support discovery, when a source stream is created via the connect-
or discovery mechanism, the schemais defined, but key columns are not chosen.

F.1. ActivFinancial Inbound Plug-in

The ActivFinancia Inbound Plug-in connector works with the Activ Adapter which connects to the Act-
iv Content Gateway to receive rea-time Level 1 and/or Level 2 market data. This connector supports
discovery. Activ connector can be configured on any source stream as an inbound data location.

This connector is listed as activinPlugin in the Aleri Studio's Data Location list. Y ou must use this con-
nector with Aleri Activ version 1.0.2 or later. The Adapter must be installed per Adapter Guide direc-
tions. Plug-in connectors are started on the same machine as the Sybase Aleri Streaming Platform which
is controlled by the Remote Execution dialog.

See Aleri Activ documentation for more information on installing and configuring Adapters. Please con-
tact a Sybase sales representative if you are interested in obtaining an Activ Adapter.

The "discover" gesture from the Aleri Studio activates a wrapper script which passes Aleri Studio-edit-
able parameters. If the Di scover Pat h parameter is not empty, its contents are searched for *.xml
files (FieldList files) whose contents appear as the Data L ocation tables.
Additional Fi el dLi st files may be manually added to the Di scovery Pat h directory to be found
during discovery. Alternatively, acustom Di scovery Pat h directory may be established whose con-
tents may be completely independent of the Adapter distribution.
In al cases, the result of a successful discover gesture from which the user may provision a source
stream in the model. Once the source stream is instantiated, the user must manually make the symbol a
key field.
TheMap Fil eisaconfi gFi | enanme, making it directly editable by the Aleri Studio.
The FieldList file may contain any combination of valid FIDs and PseudoFields. See Aleri Activ docu-
mentation for more information. PseudoFields include:

* _eventtype

e _hirestimestamp

e _image (L2 only)

e _item, itemname or _symbol

e _orderid

e _sequencenumber

e dale

e trend

107

Data Location Descriptions, Parameters, Limits

¢ _updatenumber
Activ connectors still require a MAP file, which may reference additional parameters but no other
streams.

The advanced runtime parameters are used for remote execution. These parameters are paths in the re-
mote maching's syntax.

For information on how to test your plug-in connector and details about these connectors, see Guide to
Programming Interfaces .

Parameter s (Basic)

Install ati on Path Absolute path to the Adapter's installation directory. It must have the same
vaue as used by ALERI _ACTI V_HOVE

Type: directory
Use: Required
Default: SALERI_ACTIV_HOME

Map File path to map file
Maps the data from the vendor's format to the Sybase Aleri Streaming Plat-
form format. This parameter is necessary for connectors that do not have
Data Discovery. Mapping specifies what data is of interest and how it will
be placed in a source stream of a data model. This is referred to as a Map
filein Aleri Activ Adapter documentation.
Type: configFilename
Use: Required
Default: aeri/adapters/activ/

Di scovery Path path to the Adapter discovery directory
Type: directory
Use: Optional (required for discovery)

Acti vUser This parameter is a part of the necessary credentials for the ActivFinancial
Content Gateway .

Type: string
Use: Required
Default: None

Act i vPasswor d This parameter is a part of the necessary credentials for the ActivFinancial
Content Gateway.

Type: password
Use: Required

108

Data Location Descriptions, Parameters, Limits

User

Passwor d

Parameter s (Advanced)

Directory (runtine)

Di scovered Tabl e

Map File (runtine)

Known Limitations:

Default: None

The user name for the Sybase Aleri Streaming Platform. Y ou can set this to
match your authentication method.

Type: string
Use: Optional (may be skipped if the authentication method is set to none)
Default: None

The password for the Sybase Aleri Streaming Platform. You can set this to
match your authentication method.

Type: password
Use: Optional

Default: None

runtime path to Adapter installation

Type: string

Use: advanced

name of discovered table; filled in by the Aleri Studio
Typetables

Use:advanced

The parameter is the runtime path to map file. If this parameter is empty,
the connector uses the basic parameter, Map Fil e .

Type: string
Use: advanced

Default: This field should be |eft blank.

* You must perform the following steps in order to use this connector with discovery:

1. Convert the Acti vFi nanci al Tabl eTenpl at eSpreadsheet . x|l s you received in
your Activ SDK to a.csv file.

2. You must

then save the Tabl eTenpl at eSpr eadsheet . csv in

$ALERI _ACTI V_HOVE/ confi g.

If you don't perform the preceding steps and the . csv fileisn't found, you may see the following

error message:

109

Data Location Descriptions, Parameters, Limits

Exception in thread "main" java.io. FileNot FoundException: ...\config\Tabl eTenp
| at eSpr eadsheet. csv (The system cannot find the file specified)

* When the Sybase Aleri Streaming Platform is started by the Aleri Studio, connectors are started by
the Sybase Aleri Streaming Platform engine. If an external Adapter is being started by a connector,
it must reside on the same machine as the Sybase Aleri Streaming Platform engine. This configura-
tion is seen for example when the Aleri Studio is running on Windows, with Remote Execution of
the Aleri CEP engine on a UNIX machine.

< The configuration of Activ-facing portion of the Aleri Activ Adapter cannot be done from within
the Aleri Studio. It requires manual editing of the Adapter's. i ni file.

¢ Inbound Plug-in connectors only deal with exactly one source stream.
« You must manually configure an external Adapter rather than a connector to use complex features
such as aFinalizer.
F.2. Aleri Streaming Platform Input
It receives data from a stream in another or the same instance of the Sybase Aleri Streaming Platform. If

the connection becomes broken, the connector tries to re-establish it. The connector can be used to cre-
ate complex composite models. It supports discovery.

Parameters
Server Server host name of the other instance.
Use: Required
Por t Server control port, or -1 to read from the Ephemeral Port File.
Type: int
Use: Required
Ephermeral Port File File that will contain the server port number, if port is-1.
Use: Advanced
Use SSL Whether to use the SSL encryption wrapping.
Type: boolean
Use: Optional
Default: False
Aut hent i cati on Authentication mechanism to use for remote Sybase Aleri

Streaming Platform instance.
Type: choice of None, PAM, RSA, or Kerberos V5

Use: Required

110

Data Location Descriptions, Parameters, Limits

User

Passwor d

RSA Key File

RSA Key File (Runtine)

Renot e Nanme Tag

Renmot e Stream

I ncl ude Base Content

Lossy Subscription

Drop Connection If Can
Not Keep Up

Convert to Safe Opcodes

User ID for the platform connection

Use: Optional (may be skipped if authentication set to none)
Password for PAM authentication

Use: Optional

RSA private key file name and location, for RSA authentication.
Use: Optional

Type: filename

RSA private key file at run time, if different from discovery time.
Use: Optional

Type: string

Symbolic name under which this connection will show on the re-
mote platform.

Use: Advanced
Stream to subscribe to on another Platform instance.
Use: Advanced

Start by receiving the initia contents of the stream, not just the
updates.

Type: boolean

Use: Optional

Default: False

If the reader can not keep up, individual updates may be dropped.
Type: boolean

Use: Advanced

Default: False

If the reader can not keep up, the connection will be dropped and
attempt to reconnect.

Type: boolean
Use: Advanced
Default: False

It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

111

Data Location Descriptions, Parameters, Limits

Ski p Del etes

Pul se Period (seconds)

Maxi mum Buf fer Size

Retry Period (seconds)

Enter Initial State

Fi el d Mappi ng

Base Drain Tineout
(ml1liseconds)

Use: Advanced

Default: False

It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean

Use: Advanced

Default: False

Non-zero value enables the pulsed updates with this period.

Use: Advanced

Default: 0

It is the maximum number of records to queue up before dropping
a connection if a subscription cannot keep up and becomes
marked droppable.

Type: Unsigned I nteger

Use: Advanced

Default: 8000

Period for trying to re-establish an outgoing connection, in
seconds, or O for a one-time attempt.

Type: uint

Use: Advanced

Default: 1

When the connector entersthe initial loading state.

Use: Advanced

Default: auto

M apping between the in-platform and external fields

Use: Advanced

Maximum time (in milliseconds) to receive &l base data for a
connected stream before the connected Sybase Aleri Streaming
Platform forces a disconnect.

Type: uint

Use: Advanced

Default: 8000

112

Data Location Descriptions, Parameters, Limits

Known Limitations;

« Becareful if you create loopsin the data flow.

F.3. Aleri Streaming Platform Output

Send data to a source stream in another, or the same, instance of the Sybase Aleri Streaming Platform. If
the connection becomes broken, the connector tries to re-establish it. Can be used to create complex

composite models.

This connector can now be configured to send only the base state of the stream. It sends the data once
and exits, but it can be restarted later.

Parameters

Server

Port

Epheneral Port File

Use SSL

Aut henti cati on

User

Passwor d

RSA Key File

Server host name of the other instance.

Use: Required

Server control port, or -1 to read from the Ephemeral Port File.
Type: int

Use: Required

File that will contain the server port number, if port is-1.
Use: Advanced

Whether to use the SSL encryption wrapping.

Type: boolean

Use: Optional

Default: False

Authentication mechanism to use for remote Sybase Aleri Streaming
Platform instance.

Type: choice of None, PAM, RSA, or Kerberos V5

Use: Required

User ID for the platform connection

Use: Optional (may be skipped if authentication is set to none)
Password for PAM authentication

Use: Optional

RSA private key file name and location, for RSA authentication.

Use: Optional

113

Data Location Descriptions, Parameters, Limits

RSA Key File (Runtine)

Retry Period (seconds)

Renmot e Stream

| ncl ude Base Content

Only Base Content

Renot e Nane Tag

Confirm Recei pt

Fi el d Mappi ng

Known Limitations:

Type: filename

RSA private key file at run time, if different from discovery time.
Use: Optional

Type: string

Period for trying to re-establish an outgoing connection, in seconds.
Type: uint

Use: Advanced

Default: 1

Stream to publish to on another Platform instance.

Use: Advanced

Start by recording the initial contents of the stream, not just the up-
dates.

Type: boolean

Use: Optional

Default: False

It only sends once the initial contents of the stream.
Type: boolean

Use: Advanced

Default: False

Symbolic name under which this connection will show on the remote
platform.

Use: Advanced

Check the publishing confirmations from the remote platform for
SUCCESS.

Type: boolean

Use: Advanced

Default: False

Mapping between the in-platform and external fields
Use: Advanced

114

Data Location Descriptions, Parameters, Limits

* Becareful if you create loops in the data flow.

F.4. Bloomberg Plug-in

The Bloomberg Plug-in connects to the Bloomberg ServerAPI to receive Bloomberg market data. It can
be configured on any source stream as an inbound data location. The authentication method is set to that
of the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi.

The Bloomberg Plug-in connector requires Aleri Bloomberg Adapter version 2.1 or later to be installed.
You can refer to the Aleri Bloomberg Adapter documentation for details about its installation and con-
figuration. Please contact your Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path

Configuration File Path

Di scovery Directory Path

Connector Renote Direct-
ory Path

Renot e Confi guration
File Path

Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connect or Renote Dir-
ectory Pat h parameter is supplied.

Type: directory

Use: Required

Default: None

Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Renot e Configuration File
Pat h parameter is supplied.

Type: configFilename

Use: Required

Default: None

Specify the absolute path to the Adapter's discovery directory.
Type: directory

Use: Required

Default: None

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter isignored.

Type: string

Use: Advanced

Default: None

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-

figuration File Path parameterisignored.

Type: string

115

Data Location Descriptions, Parameters, Limits

Use: Advanced

Default: None

F.5. Configuring Coral8 Inbound and Outbound Connectors

Coral8 Inbound and Outbound connectors let you establish incoming or outgoing data links with streams
in arunning Coral8 project. However the connectors require special processing to convert datain Coral8
to aformat that can be processed in the Sybase Aleri Streaming Platform and vice versa. These connect-
ors are only available once the Coral8 connector overlay package (on the Sybase Download web site) is
installed on top of the Sybase Aleri Streaming Platform Release 3.1.4 or higher.

F.5.1. Data Types

Connectors map the following data types as described below.

C8_INT int32

C8 LONG int64

C8 FLOAT double

C8_STRING string

C8 TIMESTAMP timestamp or date. Coral8 timestamps are in microseconds. Con-

nectors perform the appropriate data conversion when reading or
writingtoaC8_TI MESTAMP field.

C8 FLOAT/C8 _LONG money. The Sybase Aleri Streaming Platform has a money data
type. This can be associated with either a float or a long on the
Coral8 side. Depending on what it is mapped to, money is conver-
ted using the money factor currently in effect in the Sybase Aleri
Streaming Platform.

ALERI _OPS and C8_TI MESTAMP are special fields, and these names are reserved for use by the con-
nectors.

F.5.2. Coral8 Timestamps
Coral8 messages include an implicit timestamp. The corresponding stream in the Sybase Aleri Stream-
ing Platform may define afield name C8_TIMESTAMP in order to handle it. If defined and the connec-

tion parameter Handl e C8 Ti nest anp istrue, the connectors use the field to correspond to the Cor-
al8 message timestamp.

F.5.3. Operations

The Sybase Aleri Streaming Platform supports insert, delete, update, and upsert operations. You can
have afield named ALERI_OPS in the stream to handle these operation codes. If thisis defined and the
connection parameter Handl e Al eri Oper ati on Codes istrue, the connectors populate the field
when writing to and use the field when reading from Coral 8.

F.6. Coral8 Inbound

Parameters

116

Data Location Descriptions, Parameters, Limits

Cor al 8 host

Coral 8 server port

Cor al 8 wor kspace

Cor al 8 proj ect

Cor al 8 Stream

Handl e C8 Ti nestanp

Handl e Al eri Operation
Codes

the name of the machine where the Coral8 server is running
Type: string

Use: Required

Default: None (required parameter)

the port number on which the Coral8 server islistening for incom-
ing connections

Type: string

Use: Required

Default: None (required parameter)

the name of the workspace containing the stream to connect to
Use: Required

Default: None (required parameter)

the name of the project containing the stream to connect to

Type: string

Use: Required

Default: None (required parameter)

the name of the output stream from which to read data

Type: string

Use: Required

Default: None (required parameter)

If set to true, and a field named C8 TIMESTAMP is defined in
the target Sybase Aleri Streaming Platform stream, the input con-
nector fills in this field with the value of the Cora8 message
timestamp.

Type: boolean

Use: Advanced

Default: True

If set to true, and a field named ALERI_OPS exists in the source
Coral8 output stream schema, the value of that field is used to de-
termine the type of message each data row generates. Recognized
ggr(;odes arei forinsert, d for delete, u for update, and U for up-

Type: boolean

Use: Advanced

117

Data Location Descriptions, Parameters, Limits

Debug

F.7. Coral8 Outbound

Parameters

Cor al 8 host

Coral 8 server port

Cor al 8 wor kspace

Cor al 8 proj ect

Coral 8 Stream

Handl e C8 Ti nestanp

Default: True

If set to true, the connector outputs debugging messages.
Type: boolean

Use: Advanced

Default: False

the name of the machine where the Coral8 server is running
Type: string

Use: Required

Default: None (required parameter)

the port number on which the Coral8 server islistening for incom-
ing connections

Type: string

Use: Required

Default: None (required parameter)

the name of the workspace containing the stream to connect to
Use: Required

Default: None (required parameter)

the name of the project containing the stream to connect to
Type: string

Use: Required

Default: None (required parameter)

the name of the input stream to which to write data

Type: string

Use: Required

Default: None (required parameter)

If set to true, and a field named C8 TIMESTAMP is defined in

the target Sybase Aleri Streaming Platform stream, the input con-
nector fills in this field with the value of the Coral8 message

118

Data Location Descriptions, Parameters, Limits

timestamp.
Type: boolean
Use: Advanced
Default: True
Handl e Al eri Operation If set to true, and a field named ALERI_OPS exists in the source
Codes Coral8 output stream schema, the value of that field is used to de-
termine the type of message each data row generates. Recognized
opcodes arei for insert, d for delete, u for update, and U for up-
sert.
Type: boolean
Use: Advanced
Default: True
Debug If set to true, the connector outputs debugging messages.
Type: boolean

Use: Advanced

Default: False

F.8. Database Input
Receives data from a database table. May be used to poll the table periodically and receive the updates.
The exact required parameters depend on the type of RDBMS. If the parameter "SQL Query" is spe-
cified, it allows you to override the table selection and get the data from an arbitrary query.

This connector supports discovery.

Parameters

Dat abase Type The brand of RDBMS server. The choices are Oracle, DB2, kdb+,
PostgreSQL or Microsoft SQL Server®. Sybase ASE, Netezza
and Teradata databases are also options, but users must obtain the
driver from the vendor to install for the Sybase Aleri Streaming
Platform. Refer to the Administrator's Guide for more informa-
tion.
Use: Required

Server Name or | P address of the database server machine.
Use: Required

Por t IP port of the database listener
Type: int
Use: Required

119

Data Location Descriptions, Parameters, Limits

I nst ance

Dat abase

User

Passwor d

| nput table nane
(runtinme)

SQ. Query (runtinme)

Pol | Period (seconds)

Convert to Safe Opcodes

Ski p Del etes

Dat e For mat

Instance

Name of database instance

Use: Optional

Name of database

Use: Optional

User ID for the database connection

Use: Required

Password for the database connection

Use: Optional

The name of the table to select data from

Use: Advanced

This parameter is used only when the Input is not specified. It
defines an arbitrary SQL query that is executed against the data
base to generate a result set whose records are used as input to the
Sybase Aleri Streaming Platform. If this parameter is not defined,
the implicit query "SELECT * FROM <Input table name> is
used.

Use: Advanced

Period for polling for new contents, in seconds.

Unsigned Integer

Use: Advanced

It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean

Use: Advanced

Default: False

Format string to parse date values

Type: string

Use: Advanced

120

Data Location Descriptions, Parameters, Limits

Default: %Y -%m-%d %H:%M:%S

Ti mest anp For mat Format string to parse timestamp values
Type:String
Use: Advanced
Default: %Y -%m-%d %H:%M:%S

Fi el d Mappi ng Mapping between the in-platform and external fields
Use: Advanced

Known Limitations:

* When polling this must be the only connector.
* Any data updates received from any other source will be undone on the next poll.
« If the connector is for Sybase ASE, the connection is always made to the default database even if
you specify another database.
F.9. Database Output

Sends data to a database table. The table may be truncated when the connector starts. The exact required
parameters depend on the type of RDBMS.

Database output connectors have the following rules for Timestamp and Date columns in the Sybase
Aleri Streaming Platform:
* SO format= %Y -%m-%d %H:%M:%S", for example, "1964-04-01 17:12:00
e Sybase Aleri Streaming Platform Timestamp columns get 1SO formating and wrapped using the
JDBC timestamp escape:

{ts '<ISCso formatted ti mestanp>'}

when placed into a SQL insert, update or delete statement. Y ou don't have to define the formatting
for timestamps.

» Sybase Aleri Streaming Platform Date columns get formatted to the one specified in setting the
dateFormat connector parameter, with a default of 1SO format, and wrapped using simple single
guote characters, such as '<iso or user-formatted date>' when placed into a SQL insert, update or
delete statement.

A common example of specifying a different dateFormat is when inserting a Sybase Aleri Streaming
Platform Date column into an Oracle Date column. The default Oracle date format is: "04-Apr-1964
17:12:00", so you would specify that the dateFormat parameter is " d-%b-%Y %H:%M:%S."

Parameters

121

Data Location Descriptions, Parameters, Limits

Dat abase Type

Fi el d Mappi ng

bat chLi m t

kdb+ schema mappi ng

The brand of RDBMS server. The choices are Oracle, DB2, kdb+,
Microsoft SQL Server® or PostgreSQL. Sybase ASE, Netezza
and Teradata databases are also options, but users must obtain the
driver from the vendor to install for the Sybase Aleri Streaming
Platform. Refer to the Administrator's Guide for more informa-
tion.

Use: Required
Mapping between the in-platform and external fields
Use: Advanced

If this parameter is 1, its behavior remains with SQL insert, up-
date and delete statements being performed one at a time. But if
you set bat chlLi ni t to avalue greater than one, such as 1024,
then the JDBC batch mechanism is used, which greatly increases
the performance when writing to the database.

Type: uint
Use: Advanced
Default: 1

If set, the output to the kdb database is by the native kdb "q" inter-
face instead of the "SQL" JDBC interface, allowing for more
complete and efficient handling of most kdb data types.

To trigger the "g" mode for kdb+ (JDBC) output, make sure you
have the "exportMap" parameter specified, which is labeled
"kdb+ schema mapping" in the advanced tab, and set it for one
character/database column. The valid characters are;

Format

kdb+ Type

short

int

long

real (single)

float (double)

char (1 character)

list-of-char

symbol

date

datetime

~IN[alu]po]o]+]o

time (single)

Server

Type: string
Use: Optional

Name or | P address of the database server machine.

122

Data Location Descriptions, Parameters, Limits

Port

| nst ance

Dat abase

User

Passwor d

Qut put tabl e nane

(runtime)

Dat e For mat

Ti mest anp For mat

I ncl ude Base Content

Only Base Content

Use: Required

IP port of the database listener

Type: int

Use: Required

Instance

Name of database instance

Use: Optional

Name of database

Use: Optional

User ID for the database connection

Use: Required

Password for the database connection
Use: Optional

The name of the table which to push data.
Use: Advanced

Format string to parse date values

Type: string

Use: Advanced

Default: %Y -%m-%d %H:%M:%S
Format string to parse timestamp values
Type:String

Use: Advanced

Default: %Y -%m-%d %H:%M:%S
Outputs initial stream contents in addition to stream updates.
Type: boolean

Use: Advanced

Default: False

Send only the initia contents of the stream
Type: boolean

Use: Advanced

123

Data Location Descriptions, Parameters, Limits

Truncat e dat abase tabl e

Known Limitations:

e Thetable must already exist.

Default: False

Start by truncating the database table, then populating with
streaming data.

Type: boolean
Use: Advanced

Default: False

« Each row trandatesto an SQL statement so updates are reasonably slow.

F.10. File CSV Input

Reads afilein Aleri's delimited format. Can be used to poll for new data being appended to the file. The
file may be without the header (same as accepted by sp_convert), or with header specifying the field
names. This connector does support discovery.

Parameters

Delimter

Has Header

Directory

Directory (runtinmne)

File Pattern

Symbol used to separate the columns.
Use: Advanced
Default: Commac(,)

Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Location of the datafiles.
Use: Required

Location of the data files at run time, if different from discovery
time.

Use: Advanced
Pattern to look up files for discovery
Use: Advanced

Default: *.csv

124

Data Location Descriptions, Parameters, Limits

File (in Directory) Fileto read
Use: Advanced

Pol | Period (seconds) Period for polling for new contents, in seconds.
Type: uint
Use: Advanced

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, and
converts DELETE to SAFEDELETE.

Type: boolean
Use: Advanced
Default: False
Ski p Del etes It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean
Use: Advanced
Default: False
Dat e For mat Format string for parsing date values
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Ti mest anp For mat Format string for parsing timestamp values
Type:String
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
expect St reamNanmeQpcode If true, the first two fields are interpreted as stream name and Aleri
op code respectively. Messages with unmatched stream names are
discarded.
Type: boolean
Use: Optional
Default: False
Bl ock Size Number of recordsto block into one pseudo-transaction
Type: int
Use: Advanced

Default: 1

125

Data Location Descriptions, Parameters, Limits

Fi el d Mappi ng Mapping between the in-platform and external fields

Use: Advanced
Known Limitations:
* When polling, data may only be appended to the file, but the file may not be overwritten or re-

placed. The stream name in the file rowsisignored, al the datais sent to the same stream.

 For discovery to work correctly, make sure to set the delimiter character and header presence flag
to match the actual data.

¢ You should not mix the files with different delimiters or with/without headers in the same directory
or fileswith wrong delimiters or headers won't be correctly discovered.
F.11. File CSV Output

Write data as afile in Aleri's delimited format. The file may be without the header (same as accepted by
sp_convert), or with header specifying the field name.

Parameters

Delimter Symbol used to separate the columns.
Use: Advanced
Default: Commac(,)

Has Header Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False
Directory Location of the datafiles.

Use: Required

Directory (runtine) Location of the data files at run time, if different from discovery
time.

Use: Advanced

File Pattern Pattern to look up files for discovery
Use: Advanced
Default: *.csv

File (in Directory) Fileto write

Use: Advanced

126

Data Location Descriptions, Parameters, Limits

I ncl ude Base Content Starts by recording the initial contents of the stream, not just the
updates.

Type: boolean
Use: Optional
Default: False
Only Base Content Send only the snapshot of initial contents of the stream, once.
Type: boolean
Use: Optional
Default: False
Dat e For mat Format string to parse date values
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Ti mest anp For mat Format string to parse timestamp values
Type:String
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S

Prepend StreanNanmeQOpcode |If true, each message will start with the stream name and the Aleri
op code.

Type: boolean
Use: Optional
Default: False
Fi el d Mappi ng Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:
Data discovery is not supported.
F.12. File FIX Input
Reads FIX messages from afile and writes them as stream records. Each stream hosts FIX messages of

acertain type. Messages of any other FIX type are ignored. All FIX fields except the following are being
written in the same order in stream columns:

* BeginString

127

Data Location Descriptions, Parameters, Limits

e BodyLength

* MsgType
¢ CheckSum

The names of the stream columns must correspond to the FIX protocol specification.

Parameters

FI X Version Version of the FIX protocol.
Type: choice
Use: Required
Default: 4.2

FI X Message Type Thetype of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)
File Path to the input file

Type: string

Use: Required

Default: None (required parameter)
Dat e For nat Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
Ti mestanp Fornmat Timestamp format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S
Known Limitations:
» Thisconnector isnot afull FIX Engine. If you require afull FIX Engine, please contact a Sybase

sales representative for information about the Aleri FIX Engine Adapter version 1.0.

e Supportsonly FIX versions 4.2 and 4.3.

128

Data Location Descriptions, Parameters, Limits

* Repeating groups and components are not supported.

¢ Only supportsinsert Opcode.

F.13. File FIX Output
Writes stream data as FIX messages to a file. Each stream hosts FIX messages of a certain type. Mes-

sages are written to file contiguously, with no line feeds. The following FIX fields are generated by the
connector:

* BeginString

L]

BodyL ength
e MsgType
¢ CheckSum

The rest of the fields must be written in appropriate order in stream columns. The names of the stream
columns must correspond to the FIX protocol specification.

Parameters

FI X Ver si on Version of FIX Protocol
Type: choice
Use: Required
Default: 4.2

FI X Message Type Thetype of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)
File Path to the output file

Type: string

Use: Required

Default: None (required parameter)
Dat e For mat Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

Ti mest anp Format Timestamp format

129

Data Location Descriptions, Parameters, Limits

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Known Limitations:

* Thisconnector isnot afull FIX Engine. If you require afull FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.

e Only versions 4.2 and 4.3 of FIX are supported.

* Repeating groups and components are not supported.

« Datadiscovery is not supported.

¢ Only supportsinsert Opcode.

F.14. File XML Input

It reads afilein AleriML format. This connector can be used to poll for new data being appended to the
file. The File XML Input connector supports discovery.

Parameters

Directory

Directory (runtine)

File Pattern

File (in Directory)

Pol | Period (seconds)

Convert to Safe Opcodes

Location of the datafiles.
Use: Required

Location of the data files at run time, if different from discovery
time.

Use: Advanced

Pattern to look up files for discovery

Use: Advanced

Default: * .xml

Filetoread

Use: Advanced

Period for polling for new contents, in seconds.
Type: uint

Use: Advanced

It converts the opcodes INSERT and UPDATE to UPSERT, and
converts DELETE to SAFEDELETE.

Type: boolean

130

Data Location Descriptions, Parameters, Limits

Ski p Del etes

Dat e For mat

Ti mest anp For mat

mat chSt r eamNane

Bl ock Size

Fi el d Mappi ng

Known Limitations:

Use: Advanced

Default: False

It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean

Use: Advanced

Default: False

Format string for parsing date values

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S
Format string for parsing timestamp values
Type:String

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

If true, the XML element name will be matched against the stream
name. Unmatched messages will be discarded.

Type: boolean

Use: Optional

Default: False

Number of recordsto block into one pseudo-transaction
Type: int

Use: Advanced

Default: 1

Mapping between the in-platform and external fields

Use: Advanced

« When polling, data may only be appended to the file; the file may not be overwritten or replaced.

¢ Thestream namein thefile entriesisignored.

e Don't mix the data files and model XML files in the same directory or the Sybase Aleri Streaming
Platform XML fileswill be discovered asinvalid.

131

Data Location Descriptions, Parameters, Limits

F.15. File XML Output
It writes data as afilein the AleriML format.

Parameters

Directory Location of the datafiles.
Use: Required
Directory (runtine) Location of the datafilesat run time, if different from discovery time.
Use: Advanced
File Pattern Pattern to look up files for discovery.
Use: Advanced
Default: *.xml
File (in Directory) File to read.
Use: Advanced
I ncl ude Base Content Start by recording theinitial contents of the stream, not just the updates.
Type: boolean
Use: Optional
Default: False
Only Base Content Send only the snapshot of initial contents of the stream, once.
Type: boolean
Use: Optional
Default: False
Dat e For mat Format to parse the date values.
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Ti mest anp For mat Format to parse the timestamp values.
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Fi el d Mappi ng M apping between the in-platform and external fields

Type: string

132

Data Location Descriptions, Parameters, Limits

Use: Advanced

F.16. FIX Plug-in

The FIX Plug-in Adapter runs afull FIX engine as a separate process. It uses any number of file, socket
and session connectors to send and receive FIX messages. It can be configured on any source stream as
an inbound data location. The authentication method is set to that of the Sybase Aleri Streaming Plat-

form: none, pam, rsa, or gssapi.

The standalone Aleri FIX connector must be installed to use this Plug-in. Please contact a Sybase sales
representative for information about the standalone Aleri FIX connector version 1.0. Refer to the Aleri
FIX connector documentation for details about itsinstallation and configuration.

Parameters

Connector Directory Path

Configuration File Path

Connector Renote Direct-
ory Path

Renot e Configuration
File Path

Specify the absolute path to the standalone connector installation
directory. This parameter isignored if the Connect or Renot e
Di rectory Pat h parameter is supplied.

Type: directory

Use: Required

Default: None

Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Renbte Configuration File
Pat h parameter is supplied.

Type: configFile

Use: Required

Default: None

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter isignored.

Type: string

Use: Advanced

Default: None

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter isignored.

Type: string

Use: Advanced

Default: None

133

Data Location Descriptions, Parameters, Limits

F.17. HTTP Plug-in
The HTTP Plug-in connector receives SQL queries wrapped in HTTP requests from a client application,
such as a Web browser and sends chunk-coded stream content back to the client. The plug-in can be
configured on any source stream as an inbound data location. The authentication method is set to that of
the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi.

The Aleri HTTP Adapter version 1.0 or later must be installed to use this Plug-in. Please contact your
Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connect or Renote Dir-
ectory Pat h parameter is supplied.

Type: directory
Use: Required
Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Renot e Configuration File
Pat h parameter is supplied.

Type: configFilename
Use: Required
Default: None

Connector Renote Direct- Specify the path to the connector remote base directory (for re-

ory Path mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter isignored.

Type: string
Use: Advanced
Default: None

Renot e Confi guration Specify the path to the connector's remote configuration file (for

File Path remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter isignored.

Type: string
Use: Advanced

Default: None

F.18. IDC Plug-in

The IDC (Interactive Data Corporation) Plug-in connects to an IDC PlusFeed or PlusBook source to re-
ceive Level 1 and Level 2 market data. It can be configured on any source stream as an inbound data
location. The authentication method is set to that of the Sybase Aleri Streaming Platform: none, pam,
rsa, or gssapi. This connector supports discovery.

134

Data Location Descriptions, Parameters, Limits

The Aleri IDC Adapter version 1.0 or later must be installed to use this Plug-in. You can refer to the
Aleri IDC Adapter documentation for details about its installation and configuration. Please contact your
Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connect or Renote Dir-
ect ory Path parameter is supplied.

Type: directory
Use: Required
Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Renbt e Configuration File
Pat h parameter is supplied.

Type: configFile
Use: Required
Default: None

Di scovery Directory Path Specify the absolute path to the Adapter's discovery directory.
Type: directory
Use: Required
Default: None

Connector Renote Direct- Specify the path to the connector remote base directory (for re-

ory Path mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter isignored.

Type: string
Use: Advanced
Default: None

Renot e Confi guration Specify the path to the connector's remote configuration file (for

File Path remote execution only). If this parameter is supplied, the Con-
figuration File Path parameterisignored.

Type: string
Use: Advanced

Default: None

F.19. JMS CSV Input

Subscribes and reads text messages formatted as a delimited list of values from JM S queue or topic, then

135

Data Location Descriptions, Parameters, Limits

writes the messages as stream records. |f opted, the first two fields in every message are interpreted as
the stream name and Aleri op code respectively. An empty string is a valid value. This connector sup-

ports discovery.

Parameters

delimter

Connection Factory

Host Nane

port

i mgConsuner Fl owLi mi t

Specifies the delimiter between fields. The default isa comma.
Type: string

Use: Required

Default: Comma

The Java class of the connection factory used to connect to the
message broker. Valid values are:

* org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

¢ com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

¢ com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations’ in the Administrator's Guide for
details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

It is specific to Glassfish OpenM Q. The upper limit of the number

of messages per consumer that will be delivered and buffered in

the MQ client.

Type: string

136

Data Location Descriptions, Parameters, Limits

Destinati on Type

Desti nati on Nane

Stream Nane Opcode Ex-
pect ed

Dat e For mat

Ti mest anp For mat

Known Limitation:

Use: Advanced

Default: 10

Destination type. Valid values are QUEUE and TOPIC.
Type: choice

Use: Required

Default: QUEUE

Name of the destination (queue or topic).

Type: string

Use: Required

Default: None (required parameter)

If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Advanced

Default: False

Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Timestamp format

Type:String

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

No reconnection attempt is made when the connection to the message broker islost.

F.20. IMS CSV Output

Publishes stream data as text messages formatted as delimited list of values to a JIMS queue or topic. If
opted, each message will be prepended with the stream name and the Aleri op code. If a column has a
null value, an empty string will be added to thellist.

Parameters

137

Data Location Descriptions, Parameters, Limits

delimter

Connection Factory

Host Nane

por t

Destination Type

Desti nati on Nane

Delimiter between fields; the default delimiter isa comma.
Type: string

Use: Required

Default: Comma

The Java class of the connection factory used to connect to the
message broker. Valid values are:

« org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

* com.sun.messaging.ConnectionFactory (Glassfish OpenM Q)

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations’ in the Administrator's Guide for
details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

138

Data Location Descriptions, Parameters, Limits

Del i very Mode

Col um TO Property Mp

Prepend Stream Nanme, Op-
code

Dat e For mat

Ti mest anp For mat

Known Limitations:

Default: None (required parameter)

The delivery mode has vaid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the

column value.

The following is an example:

My Col utmm1=MyPr opertyl, MyCol utm2=My/Pr operty?2

No spaces are accepted within the value of this parameter. Setting
the IMS properties enables the message filtering on the message
broker side using the IM S selector mechanism.

Type: string

Use: Advanced

Default: None

If true, each message will start with the stream name and the Al eri
op code.

Type: boolean

Use: Advanced

Default: False

Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
Timestamp format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

139

Data Location Descriptions, Parameters, Limits

» No reconnection attempt is made when the connection to the message broker is lost.

F.21. JMS Custom Input

Subscribes and reads custom-formatted Java object messages from a JMS queue or topic, then writes the
messages as stream records. The format conversion is performed by a custom-provided implementation
of the following interface:

package com al eri.connectors;
public interface External ToAl eri Converter {

public Al eri Message external ToAl eri (Seri alizabl e external Message) throws Excepti on;

The objects returned by the external ToAleri method should implement the following interface:

package com al eri.connectors;

public interface Al eri Message extends Serializable {
public String getStreamNane();
public String get OpCode();
public Map<String, Serializable> getColumVal ues();

The objects returned by the get St r eanNane, get OpCode, get Col unmVal ues methods are inter-
preted, respectively, as the name of the stream to write to, the op code, and the stream record as a
column name to value map. The Java classes of column values must correspond to column types as
shown in Section F.25, “JM S Object Array Input”.

Implementations of the External ToAleriConverter interface must provide a constructor with a single ar-
gument of java.lang.String type or aternatively, a default constructor with no arguments.

Records with unmatched stream names are ignored. Records with null op code are interpreted as upserts.
The values of non-key columns may be absent or null.

It is the user's responsibility to provide a JAR archive containing an implementation of the Extern-
alToAleriConverter interface. The archive should be placed in the lib subfolder of the Sybase Aleri
Streaming Platform installation folder.

If an implementation is not provided, the default implementation is used, whereby it is assumed that the
external message is an instance of the DefaultAleriMessage class and no actual conversion is performed.

This connector supports discovery.

Parameters

Connection Factory The Java class of the connection factory used to connect to the message
broker. Valid values are;

« org.apache.activemq.ActiveM QConnectionFactory (ActiveMQ)

 com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

140

Data Location Descriptions, Parameters, Limits

Host Nane

port

i mgConsuner Fl owLi mi t

Destination Type

Desti nati on Nanme

Converter

Cl ass Nane

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Websphere MQ
JDBC driver. See the section called “Configuring Non-standard Data
Locations’ in the Administrator's Guide for details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

It is specific to Glassfish OpenMQ. The upper limit of the number of

messages per consumer that will be delivered and buffered in the MQ

client.

Type: string

Use: Advanced

Default: 10

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None

Fully qualified name of a custom-provided implementation of the Ex-
ternal ToAleriConverter

141

Data Location Descriptions, Parameters, Limits

Type: string
Use: Required
Default: External ToAleriConverter

Converter Paraneter To be passed as the single argument to the constructor of the custom-
provided implementation of the External ToAleriConverter interface.

Type: string
Use: Optional

Default: None (the no-arguments constructor will be used).

Known Limitation:
No reconnection attempt is made when the connection to the message broker islost.
F.22. JMS Custom Output

Publishes stream records as custom-formatted Java objects to a IMS queue or topic. The format conver-
sion is performed by a custom-provided implementation of the following interface:

package com al eri . connectors;
public interface Al eri ToExternal Converter {

public Serializable aleri ToExternal (Al eri Message al eri Message) throws Exception;

See Section F.25, “IMS Object Array Input” for the definition of the AleriMessage interface.

Implementations of the AleriToExternal Converter interface must provide a constructor with a single ar-
gument of javallang.String type or alternatively, a default constructor with no arguments.

The stream name, op code and column name to value map of the aleriMessage object are guaranteed to
be valid, even though some non-key column values may be null.

It is the user's responsibility to provide a JAR archive containing an implementation of the AleriToEx-
ternal Converter interface. The archive should be placed in the lib subfolder of the Sybase Aleri Stream-
ing Platform installation folder.

If an implementation is not provided, the default implementation is used, whereby the aleriMessage ob-
ject isreturned with no actual conversion performed.

Parameters

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

« org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

* com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

142

Data Location Descriptions, Parameters, Limits

Host Nane

port

Destination Type

Desti nati on Nanme

Del i very Mode

Col um to Message Prop-
erty Map

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations’ in the Administrator's Guide for
details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None

The delivery mode has vaid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

A Comma-delimited list of ColumnName=PropertyName map-

pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the

143

Data Location Descriptions, Parameters, Limits

Converter C ass Nane

Converter Parameter

Known Limitations:

column value.

Thefollowing is an example:

My Col utm1=MyPr opertyl, MyCol um2=M/Pr operty?2

No spaces are accepted within the value of this parameter. Setting
the IMS properties enables the message filtering on the message
broker side using the IM S selector mechanism.

Type: string

Use: Advanced

Default: None

Fully qualified name of a custom-provided implementation of the
AleriToExternal Converter interface.

Type: string

Use: Required

Default: com.aleri.connectors.DefaultAleri ToExternal Converter
To be passed as the single argument to the constructor of the cus-
tom-provided implementation of the AleriToExternalConverter
interface.

Type: string

Use: Optional

Default: None (the no-arguments constructor will be used).

» No reconnection attempt is made when the connection to the message broker islost.

F.23. JMS FIX Input

Subscribes and reads FIX messages from a JMS queue or topic, then writes the messages as stream re-
cords. Each stream hosts FIX messages of a certain type. Messages of any other FIX type are discarded.
All FIX fields except the following are stored in the same order in stream columns.

* BeginString

Subscribes and reads custom-formatted Java object messages from a JMS queue or topic, then
writes the messages as stream records. The format conversion is performed by a custom-provided
implementation of the following interface:

* BodyLength

* MsgType

144

Data Location Descriptions, Parameters, Limits

¢ CheckSum

The names of the stream columns must correspond to the FIX protocol specification.

Parameters

Fi x Version

FI X Message Type

Connection Factory

Host Nane

port

Version of the FIX protocol

Type: choice

Use: Required

Default: 4.2

The type of messages hosted by the stream
Type: string

Use: Required

Default: None (required parameter)

The Java class of the connection factory used to connect to the message
broker. Valid values are:

« org.apache.activemq.ActiveM QConnectionFactory (ActiveMQ)

¢ com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

¢ com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Websphere MQ
JDBC driver. See the section called “Configuring Non-standard Data
Locations” in the Administrator's Guide for details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

145

Data Location Descriptions, Parameters, Limits

i mgConsuner Fl owLi mi t

Destinati on Type

Desti nati on Nane

Dat e For mat

Ti mest anp For mat

Known Limitations:

It is specific to Glassfish OpenMQ. The upper limit of the number of
messages per consumer that will be delivered and buffered in the MQ
client.

Type: string

Use: Advanced

Default: 10

Destination type. Valid values are QUEUE and TOPIC.
Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

Timestamp format

Type:String

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

« Thisconnector isnot a full FIX Engine. If you require afull FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.

e Only supports FIX Versions 4.2 and 4.3

» Repeating groups and components are not supported

» No reconnection attempt is made when the connection to the message broker is lost.

* Only supportsinsert Opcode.

F.24. JMS FIX Output

146

Data Location Descriptions, Parameters, Limits

Publishes stream data as FIX messages to a JIMS queue or topic. Each stream hosts FIX messages of a
certain type. The following FIX fields are generated by the connector:

* BeginString

L]

BodyL ength

 MsgType
¢ CheckSum

Parameters

FI X Ver si on

FI X Message Type

Connection Factory

Host Nane

Version of the FIX protocol

Type: choice

Use: Required

Default: 4.2

The type of messages hosted by the stream
Type: string

Use: Required

Default: None (required parameter)

The Java class of the connection factory used to connect to the
message broker. Valid values are:

« org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

« com.sun.messaging.ConnectionFactory (Glassfish OpenM Q)

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations’ in the Administrator's Guide for
details.

 oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

147

Data Location Descriptions, Parameters, Limits

por t

i mgConsuner Fl owLi mi t

Destination Type

Desti nati on Nanme

Del i very Mode

Col um to Message Prop-
erty Map

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

It is specific to Glassfish OpenM Q. The upper limit of the number
of messages per consumer that will be delivered and buffered in
the MQ client.

Type: string

Use: Advanced

Default: 10

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

The delivery mode has vaid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the

column value.

The following is an example:

My Col um1=MyPropertyl, MyCol um2=M/Pr operty2

No spaces are accepted within the value of this parameter. Setting

148

Data Location Descriptions, Parameters, Limits

the IMS properties enables the message filtering on the message
broker side using the IM S selector mechanism.

Type: string
Use: Advanced
Default: None
Dat e For mat Date format
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Ti mest anp For mat Timestamp format
Type:String
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Known Limitations:
e Thisconnector isnot afull FIX Engine. If you require afull FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.
e Only FIX Versions 4.2 and 4.3 are supported.
« Repeating groups and components are not supported.
» Datadiscovery is not supported.

< No reconnection attempt is made when the connection to the message broker islost.

¢ Only supportsinsert Opcode.

F.25. JMS Object Array Input

Subscribes and reads messages formatted as arrays of Java objects from a JMS queue or topic, then
writes the messages as stream records. If opted, the first two objects in every message are interpreted as
stream name and Aleri op code respectively. Null elements in the array will generate null values for the
corresponding columns. Column types must correspond to Java classes as follows:

Stream Column Type Java Class
string javalang.String
int16 javalang.Integer
int32 javalang.Integer
int64 java.lang.Long
money java.lang.Double

149

Data Location Descriptions, Parameters, Limits

Stream Column Type Java Class
double java.lang.Double
date java.util.Date
timestamp java.util.Date

This connector supports discovery.

Parameters

Connection Factory

Host Nane

port

i rgConsuner Fl owLi mi t

The Java class of the connection factory used to connect to the
message broker. Valid values are:

* org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

« com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations’ in the Administrator's Guide for
details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

It is specific to Glassfish OpenMQ. The upper limit of the number

of messages per consumer that will be delivered and buffered in

the MQ client.

Type: string

Use: Advanced

150

Data Location Descriptions, Parameters, Limits

Destination Type

Desti nati on Nanme

Expect Stream Nanme, Op-

code

Known Limitation:

Default: 10

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Advanced

Default: False

No reconnection attempt is made when the connection to the message broker is lost.

F.26. JMS Object Array Output

Publishes stream data as an array of Java objects to a IMS queue or topic. If opted, each message will
start with the stream name and the Aleri op code. If a column has a null value, it corresponds to a null
element in the array. Column types correspond to Java classes as follows:

Stream Column Type

Java Class

string javalang.String
int16 javalang.Integer
int32 javalang.Integer
int64 javalang.Long
money javalang.Double
double javalang.Double
date java.util.Date
timestamp java.util.Date
Parameters

Connection Factory

The Java class of the connection factory used to connect to the

151

Data Location Descriptions, Parameters, Limits

Host Nane

port

Destination Type

Desti nati on Nane

Del i very Mode

message broker. Valid values are:

« org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

 com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations’ in the Administrator's Guide for
details.

* oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or | P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

152

Data Location Descriptions, Parameters, Limits

Default: PERSISTENT
Col um To Message Prop- A Comma-delimited list of ColumnName=PropertyName map-
ertyMap pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the
column value.

The following is an example:

My Col um1=MyPropertyl, MyCol um2=M/Pr operty2

No spaces are accepted within the value of this parameter. Setting
the IMS properties enables the message filtering on the message
broker side using the IM S selector mechanism.

Type: string

Use: Advanced

Default: None

Prepend Stream Name, Op- |If true, each message will start with the stream name and the Aleri
code op code.

Type: boolean
Use: Advanced

Default: False

Known Limitations:

» No reconnection attempt is made when the connection to the message broker islost.

F.27. IMS XML Input
Subscribes to and reads XM L-formatted text messages from a JMS queue or topic, then writes the mes-
sages as stream records. Each message must consist of an XML element. If opted, the element name will
correspond to the stream name. The ALERI-OPS attribute is optional. If omitted, the message will be in-
terpreted as an upsert. The rest of the attributes must have the same names as the corresponding stream
columns. The columns with null values must be omitted. This connector supports discovery.

Parameters

Connection Factory The Java class of the connection factory used to connect to the message
broker. Valid values are:

« org.apache.activemq.ActiveM QConnectionFactory (ActiveMQ)
¢ com.sun.messaging.ConnectionFactory (Glassfish OpenM Q)

¢ com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)

153

Data Location Descriptions, Parameters, Limits

Host Nane

port

i mgConsuner Fl owLi mi t

Destination Type

Desti nati on Nanme

Mat ch Stream Nane

To use this Java class, you must first obtain the IBM Websphere MQ
JDBC driver. See the section called “Configuring Non-standard Data
Locations’ in the Administrator's Guide for details.

 oraclejms. AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host name or |P address of the message broker

Type: string

Use: Required

Default: None (required parameter)

Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

It is specific to Glassfish OpenMQ. The upper limit of the number of

messages per consumer that will be delivered and buffered in the MQ

client.

Type: string

Use: Advanced

Default: 10

Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

If true, the XML element name will be matched against the stream
name. Unmatched messages will be discarded.

Type: boolean

154

Data Location Descriptions, Parameters, Limits

Use: Advanced

Default: False
Dat e For mat Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S
Ti mest anp For mat Timestamp format

Type:String

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Known Limitation:
No reconnection attempt is made when the connection to the message broker is lost.
F.28. JIMS XML Output
Publishes stream data as XM L-formatted text messages to a JMS queue or topic. Each message consists
of an XML element whose name is the same as the stream name. The first attribute is the Aleri op code.

The rest of the attributes have the same names as the corresponding stream columns. The columns with
null values are omitted.

Parameters

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are;

« org.apache.activemq.ActiveM QConnectionFactory
(ActiveMQ)

 com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

e com.ibm.mg.jms.MQConnectionFactory (IBM MQ JMS)
To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

« oraclejms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

155

Data Location Descriptions, Parameters, Limits

Host Nane

port

Destination Type

Desti nati on Nanme

Del i very Mode

Col um To Message Prop-
erty Map

Host name or | P address of the message broker
Type: string

Use: Required

Default: None (required parameter)
Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)
Destination type. Valid values are QUEUE and TOPIC.
Type: choice

Use: Required

Default: QUEUE

Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the

column value.

The following is an example:

My Col utmm1=MyPr opertyl, MyCol um2=M/Pr operty?2

No spaces are accepted within the value of this parameter. Setting
the IMS properties enables the message filtering on the message
broker side using the IM S selector mechanism.

Type: string
Use: Advanced

156

Data Location Descriptions, Parameters, Limits

Dat e For mat

Ti mest anp For mat

Known Limitations:

Default: None

Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
Timestamp format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

» No reconnection attempt is made when the connection to the message broker is lost.

F.29. kdb Input Plug-in

The kdb Input Plug-in connector works with the sp_kdbin utility to read data from a kdb or a kdb+tick
installation into a stream in the Sybase Aleri Streaming Platform. The connector can read both queried
and streaming data based on a configuration parameter. This connector supports discovery.

By default, the connector matches the field names (in a case-insensitive manner) to decide the mapping
between the source kdb+tick table and the target stream. Y ou also have the option of explicitly specify-

ing the mapping.

Parameters

Pl at f orm User |d

Pl at f or m Passwor d

RSA Key File

The user name to connect to the Sybase Aleri Streaming Platform.
Type: string

Use: Optional

Default: None (required parameter)

The password associated with the Sybase Aleri Streaming Platform
UserID. Itisrequired if using RSA authentication.

Type: string
Use: Optional
Default: None

The full path to the RSA Key private key file. This option must be
provided if authentication typeis set to RSA.

157

Data Location Descriptions, Parameters, Limits

Encrypt

KDB Ser ver

KDB Port

KDB User

KDB Password

Sour ce Tabl e/ Query

Type: string
Use: Optional
Default: None

Whether to encrypt the communication between the connector and
Sybase Aleri Streaming Platform.

Type: boolean
Use: Optional
Default: False

The name or IP Address of the machine hosting the kdb+tick data
base.

Type: string
Use: Required
Default: local host

This is the port on which the kdb+tick database is listening. It must
be a value between 1 and 65535.

Type: int

Use: Required

Default: 5001

Thisisthe user id to use to connect to the kdb+tick database.
Type: string

Use: Optional

Default: None

This is the password, associated with the user id, to connect to the
kdb+tick database.

Type: string
Use: Optional
Default: None

This specifies either a name of atable in kdb or kdb+tick database or
a valid query string, which is used to retrieve the data. Y ou should
note that if specifying a query, the plug-in connector retrieves the
resulting schema named as 'Query’. You may need to rename any
streams generated from the discovered schemas.

Type: string

Usage: Required

158

Data Location Descriptions, Parameters, Limits

Pl at f or m Host Nane

Fi el d Mappi ng

St ream ng Mode

Pol l'ing Interval

Bl ock Size

Default: None

If specified, the plug-in connector uses the specific gateway host and
ignores the hostname returned by the Sybase Aleri Streaming Plat-
form.

Type: string

Use: Optional

Default: None

Thisis an optiona parameter that specifies the mapping between the
Sybase Aleri Streaming Platform stream column name and the
kdb+tick database table column names. The mapping is in the fol-
lowing format.

SPCol utm1=KDBCol umm1: SpCol urm2=KDBCol urm2

If this parameter is not provided, the connector will absorb data for
only those columns where the target stream column name matches
the source table column name in a case-insensitive manner.

Use: Optional
Default: None

It determines if the connector should connect to a kdb+tick database
and read in streaming data or execute the supplied query and feed the
result to the Sybase Aleri Streaming Platform. Allowed values are
Stream and Pull.

Type: string

Use: Required

Default: Stream

In non-streaming mode, there is an option to have the supplied query
run regularly at a configurable interval. This parameter specifies the

polling interval in seconds. A value of 0 indicates that no polling is
to be performed - the query is executed just once.

Type: int

Use: Optional

Default: 0

The maximum number of records that will be sent as a single block
to the Sybase Aleri Streaming Platform. The default value is 64. A
higher value may increase throughput but will also increase latency.
The number of records in the block may be smaller than this value if
not enough datais available.

Type: int

159

Data Location Descriptions, Parameters, Limits

Use: Required
Default: 64

Async Mode If set to true, the connector will not wait for acknowledgment from
the Sybase Aleri Streaming Platform that it received the data. This
needs to be set to true in the hot spare configurations to ensure that
both the primary and the hot spare has received the data.
Type: boolean
Use: Optional
Default: False

Use Transacti on Bl ocks If settotrue, thedatawill be sent to the Sybase Aleri Streaming Plat-
form as transaction blocks instead of envelopes. It improves per-
formance but will cause all records in the block to be rejected if one
of the records in the block fails.
Type: boolean
Use: Optional
Default: False

Connection Retries It allows you to configure the Adapter to connect back to kdb or
kdb+tick if the connection breaks during operation. The connector

will try to reconnect the configured number of times, waiting for one
second before each try.

Type: int
Use: Optional
Default: 1
Debug If set to true, the connector outputs debug messages.
Type: boolean
Use: Optional
Default: False

Known Limitations:

« If the kdb+tick/databases are not running, when the connector tries to make a connection, the con-
nector will wait indefinitely until the kdb+tick database is started. This is only an issue if the
kdb+tick database and the Sybase Aleri Streaming Platform are running on different machines.

« If the connection to the database is broken, any updates that happen between the time the connec-
tion is broken and re-established are lost.

F.30. kdb Output Plug-in

160

Data Location Descriptions, Parameters, Limits

It is an external connector that streams data from the Sybase Aleri Streaming Platform to a kdb+tick
database table.

By default, the connector matches the field names (in a case-insensitive manner) to decide the mapping
between the source kdb+tick table and the target stream. Y ou also have the option of explicitly specify-

ing the mapping.

The kdb+tick connector does not currently support data discovery. If you want to use data discovery for
tables in the kdb+tick database to create a matching stream in the Sybase Aleri Streaming Platform, use
the Database I nput connector and then replace it with this connector.

Parameters

Pl atform User |d user Id for connecting to the Sybase Aleri Streaming Platform
Type: string
Use: Optional
Pl at f or m Password password for connecting to the Sybase Aleri Streaming Platform
Type: string
Use: Optional
Aut henti cati on Y ou must select one of the valid options for authentication.
Choice: None, RSA, PAM and Kerberos V5
Use: Required
Default: None
RSA Key File private key fileif you use RSA authentication
Type: string
Use: Optional
KDB Server host machine running the kdb server
Type: string
Use: Required
KDB Port port number which the kdb server islistening on
Type: int
Use: Required
KDB User user 1D that connectsto kdb+tic.
Type: string
Use: Optional

KDB Password password that connects to kdb+tic.

161

Data Location Descriptions, Parameters, Limits

Target Table

Source Query

Fi el d Mappi ng

St reani ng Mode

Async

Bat chSi ze

Base Data Only

Lossy Subscription

Type: password

Use: Optional

name of table in kdb+tick where to write data

Type: string

Use: Required

An optional SQL query string to use to retrieve data. If empty,
sp_kdbout will stream all data from the source stream, which
defined it.

Type: string

Use: Optional

Explicit field mapping. The mapping is specified as follows: "sp-
fld1=kdbfld1:spfld2=kdbfld2 ..." If mapping is empty, the adapter
maps fields by matching their names.

Type: string

Use: Optional

Valid options are stream and push. If mode is stream data, it is
sent to kdb+tick using ".u.upd”. If modeis push, datais sent using
upsert command.

If true, sp_kdbout sends data to kdb+tick asynchronously.

Type: boolean

Default: False

If specified, this option sets the maximum number of rows
sp_kdbout includes in a batch write to kdb+tick. If left empty,
sp_kdbout uses avalue of 5000.

Type: integer

Default: 5000

If true, sp_kdbout will not stream data existing in the source
stream at thetime it is started.

Type: boolean

Default: False

If set to true, sp_kdbout will use a lossy subscription to the Sy-
base Aleri Streaming Platform. This will result in the model drop-
ping dataif the adapter cannot keep up.

Type: boolean

Default: False

162

Data Location Descriptions, Parameters, Limits

Pul se | nterval

Dr oppabl e Subscri ption

Preserve Transaction
Bl ocks

Debug

I gnored Fields

Ornitted Fields

F.31. Reuters Marketfeed Inbound Plug-in

If set to a non-zero value, sp_kdbout uses a pulsed subscription.
In this mode platform sends the data at intervals, consolidating the
datain between.

Type: int
Default: 0

If set to true, the Sybase Aleri Streaming Platform will drop sub-
scription from the adapter, if it cannot keep up with the data.

Type: boolean
Default: False

If set to true, the subscription from the Sybase Aleri Streaming
Platform preserves the transaction boundaries.

Type: boolean
Default: False
If set to true, sp_kdbout will generate debug messages.
Type: boolean
Default: False

This is a comma delimited list of kdb field names which
sp_kdbout will ignore. That means the values for these fields will
be ignored and always set to NULL. This parameter can be used
to handle kdb datatypes that sp_kdbout does not recognize such
aslist of floats.

Type: string
Use: Optional

This is a comma delimited list of kdb field names which
sp_kdbout will omit from the data message it sends to kdb+tick.
It should be used to avoid including fields from the source stream
in the Sybase Aleri Streaming Platform which are automatically
filled in by kdb+tick.

Type: string

Use: Optional

The Reuters Marketfeed Inbound Plug-in connector works with the Aleri Reuters Marketfeed Adapter
which connects to Reuters Market Data System (RMDS) to receive real-time Level 1 and/or Level 2
market data. A Marketfeed connector can be configured on any source stream as an inbound data loca-

tion.

This connector is listed as rmdsM FInPlugin in the Aleri Studio's Data Location list. It must be used
with Aleri Reuters Marketfeed Adapter (binary name=rmds) version 2.2.0 or later. You must use this
connector with Aleri Reuters OMM Adapter version 1.2.0 or later. The Adapter, whose executable name

163

Data Location Descriptions, Parameters, Limits

is rmds, must be installed per Adapter Guide directions. Plug-in connectors are started on the same ma-
chine as the Sybase Aleri Streaming Platform which is controlled by the Remote Execution dialog.

This connector supports discovery.

You can refer to Aleri Reuters Marketfeed Adapter documentation for installation and configuration de-
tails. Please contact a Sybase sales representative if you are interested in obtaining a Marketfeed Ad-

apter.
The "discover" gesture from the Aleri Studio activates a wrapper script which passes Aleri Studio-edit-
able parameters. If the Di scover Pat h parameter is not empty, its contents are searched for *.xml
files (FieldList files) whose contents appear as the Data L ocation tables.
Additional Fi el dLi st files may be manually added to the Di scovery Pat h directory to be found
during Discovery. Alternatively, a custom Di scovery Pat h directory may be established whose
contents may be completely independent of the adapter distribution.
In all cases, the result of a successful discover gesture produces Data Location tables from which the
user may provision a source stream in the model. Once the source stream is instantiated, the user must
manually make the Symbol (RIC) akey field.
TheMap Fil eisaconfi gFi | enane, making it directly editable by the Aleri Studio.
The FieldList file may contain any combination of valid FIDs and PseudoFields. PseudoFields are fully
documented in the Reuters Adapter Guide and include;

e _hirestimestamp

e _item, _itemname, _symbol or _ric

e _sequenceNumber

e _service, _servicename

e dae

_updatenumber

Marketfeed connectors still require a MAP file, which may reference a (Reuters-format) . cf g file.

The advanced runtime parameters are used for remote execution. These parameters are paths in the re-
mote maching's syntax.

For information on how to test your plug-in connector and details about these connectors, see Guide to
Programming Interfaces .

Parameter s (Basic)

Install ati on Path Absolute path to the Adapter's installation directory. It must have the same
vaue as used by ALERI _ REUTERS_HOVE.

Type: directory
Use: Required
Default: SALERI_REUTERS HOME

164

Data

Location Descriptions, Parameters, Limits

Map File

Di scovery Path

User

Passwor d

Parameter s (Advanced)

Directory (runtine)

Di scovered Tabl e

Map File (runtine)

path to map file

Maps the data from the vendor's format to the Sybase Aleri Streaming Plat-
form format. This parameter is necessary for connectors that do not have
Data Discovery. Mapping specifies what data is of interest and how it will
be placed in a source stream of a data model. This is referred to as a Map
filein Aleri Reuters Adapter documentation.

Type: configFile

Use: Required

Default: $ALERI_RMDSMF_HOM E/examples/subexample.mf.map.xml
path to the Adapter discovery directory

Type: directory

Use: Optional

This is the user name for the Sybase Aleri Streaming Platform. Y ou can set
this to match your authentication method.

Type: string
Use: Optional (may be skipped if authentication set to none)
Default: None

This is the password for the Sybase Aleri Streaming Platform. You can set
this to match your authentication method.

Type: password
Use: Optional

Default: None

runtime path to Adapter installation

Type:string

Use:advanced

name of discovered table; filled in by the Aleri Studio
Type: tables

Use: advanced

runtime path to map file

Type: string

Use: advanced

165

Data Location Descriptions, Parameters, Limits

Default: Thisfield should be left blank.

Known Limitations:

* When the Sybase Aleri Streaming Platform is started by the Aleri Studio, connectors are started by
the Sybase Aleri Streaming Platform engine. If an external Adapter is being started by a connector,
it must reside on the same machine as the Sybase Aleri Streaming Platform engine. This configura-
tion is seen for example when the Aleri Studio is running on Windows, with Remote Execution of
the Aleri CEP engine on a UNIX machine.

» The configuration of Reuters-facing portion of the Aleri Reuters Marketfeed Adapter cannot be
done from within the Aleri Studio. It requires manual editing of the Adapter's .cfg file.

¢ Inbound Plug-in connectors only deal with exactly one source stream.

* You must manually configure an external Adapter rather than a connector to use complex features
such as aFinalizer.

F.32. Reuters OMM Inbound Plug-in

The Reuters Open Message Model (OMM) Inbound Plug-in connector works with the Aleri Reuters
OMM Adapter, which connects to Reuters Market Data System (RMDS) to receive rea-time Level 1
and/or Level 2 market data. The OMM inbound connector can be configured on any source stream as an
inbound data location.

This connector is listed as rmdsOM M InPlugin in the Aleri Studio's Data Locations list. Y ou must use
this connector with Aleri Reuters OMM Adapter version 1.2.0 or later. The Adapter, whose executable
name is rmdsomm, must be installed per Adapter Guide directions. Plug-in connectors are started on
the same machine as the Sybase Aleri Streaming Platform which is controlled by the Remote Execution
dialog.

This connector supports discovery.

You can refer to Aleri Reuters OMM Adapter documentation for installation and configuration details.
Please contact a Sybase sales representative if you are interested in obtaining an OMM Adapter.

The "discover" gesture from the Aleri Studio activates a wrapper script which passes Aleri Studio-edit-
able parameters. If the Di scover Pat h parameter is not empty, its contents are searched for *.xml
files (FieldList files) whose contents appear as the Data L ocation tables.

Additional Fi el dLi st files may be manually added to the Di scovery Pat h directory to be found
during discovery. Alternatively, acustom Di scovery Pat h directory may be established whose con-
tents may be completely independent of the Adapter distribution.

In al cases, the result of a successful discover gesture produces Data Location tables from which the
user may provision a source stream in the model. Once the source stream is instantiated, the user must
manually make the Symbol (RIC) akey field. For L2 data, a secondary keyfield is also required. The L2
key depends on the message type.

The stream name will be used to establish the OMM message type. The name of the stream is searched
for these character patterns which can appear in upper, lower or mixed case. Certain names correlate
with specific message types.

Name Message Type
"mbo", "marketByOrder" or "market_by_order" MARKET_BY_ORDER

166

Data Location Descriptions, Parameters, Limits

Name Message Type

"mbp", "marketByPrice" or "market_by price" MARKET_BY_PRICE
"mp", "marketPrice" or "market_price" MARKET_PRICE
"mm", "marketmaker" or "market_maker" MARKET_MAKER

TheMap Fil eisaconfi gFi | enane, making it directly editable by the Aleri Studio.
The FieldList file may contain any combination of valid FIDs and PseudoFields. PseudoFields are fully
documented in the Reuters Marketfeed Adapter Guide and include;

e _hirestimestamp

e _image

e _item, _itemname, ric or _symbol

e _marketbyorderkey

e _marketbypricekey

e _marketmakerkey

e _resptypenum

e _sequencenumber

e dae

_updatenumber

For Level 2 only:

e _image

¢ _marketMakerKey

_marketByOrderKey

_marketByPriceKey

OMM connectors still require aMAP file, which may reference a (Reuters-format) . cf g file.

The advanced runtime parameters are used for remote execution. These parameters are paths in the re-
mote maching's syntax.

For information on how to test your plug-in connector and details about these connectors, see Guide to
Programming Interfaces.

Parameter s (Basic)

Install ati on Path Absolute path to the Adapter's installation directory. It must have the same
value asused by ALERI _ RVDSOVM_HOVE.

167

Data Location Descriptions, Parameters, Limits

Map File

Di scovery Path

User

Passwor d

Parameter s (Advanced)

Directory (runtine)

Di scovered Tabl e

Type: directory

Use: Required

Default: $ALERI_RMDSOMM_HOME

path to map file

Maps the data from the vendor's format to the Sybase Aleri Streaming Plat-
form format. This parameter is necessary for connectors that do not have
Data Discovery. Mapping specifies what data is of interest and how it will
be placed in a source stream of a data model. This is referred to as a Map
filein Aleri Reuters Adapter documentation.

Type: filename

Use: Required

Default:
$ALERI_RMDSOMM_HOM E/examples/subexample.omm.map.xml

path to the Adapter discovery directory
Type: directory
Use: Optional

This is the user name for the Sybase Aleri Streaming Platform. Y ou can set
this to match your authentication method.

Type: string
Use: Optional (may be skipped if authentication set to none)
Default: None

This is the password for the Sybase Aleri Streaming Platform. You can set
this to match your authentication method.

Type: password
Use: Optional

Default: None

runtime path to Adapter installation

Type: string

Use: advanced

name of discovered table; filled in by the Aleri Studio

Type: tables

168

Data Location Descriptions, Parameters, Limits

Use: advanced
Map File (runtine) runtime path to map file
Type: string
Use: advanced
Default: Thisfield should be left blank.

Known Limitations:

* When the Sybase Aleri Streaming Platform is started by the Aleri Studio, connectors are started by
the Sybase Aleri Streaming Platform engine. If an external Adapter is being started by a connector,
it must reside on the same machine as the Sybase Aleri Streaming Platform engine. This configura-
tion is seen for example when the Aleri Studio is running on Windows, with Remote Execution of
the Aleri CEP engine on a UNIX machine.

» The configuration of Reuters-facing portion of the Aleri Reuters OMM Adapter cannot be done
from within the Aleri Studio. It requires manual editing of the Adapter's .cfg file.

 Inbound Plug-in connectors only deal with exactly one source stream.
* You must manually configure an external Adapter rather than a connector to use complex features
such asaFinalizer.
F.33. SMTP Output

Sends an email containing stream records. For each record, the body of the email will contain:

e Stream name

¢ Column names and values

Parameters
SMIP Host Name or | P address of the email server.
Type: string
Use: Required
Default: None (required parameter)
Address Col umm The name of the column where a semicolon-delimited list of re-

cipient email addressesis stored.
Type: string
Use: Required

Default: None (required parameter)

169

Data Location Descriptions, Parameters, Limits

CC Col um

BCC Col umm

Col utm Nanes

Show Col utm Nanes

from

| mportance Col um

Subj ect Col unm

The name of the column where a semicolon-delimited list of re-
cipient Cc addressesiis stored.

Type: string
Use: Advanced
Default: No Cc emails will be sent

The name of the column where a semicolon-delimited list of re-
cipient Bec addressesis stored.

Type: string
Use: Advanced
Default: No Becc emails will be sent

Colon-delimited names of stream columns whose values will be
included in the email.

Type: string
Use: Advanced

Default: The email will contain values of al columns in the
stream.

If true, column names will be included in the email along with
their values. If false, only the values will be included.

Type: boolean

Use: Advanced

Default: True

Email address of the sender.

Type: string

Use: Required

Default: None (required parameter)

Name of the stream column where the email importance is stored.
Valid values are: high, normal, and low. The default value is
“normal”. The values are case-sensitive.

Type: string

Use: Required

Default: None (required parameter)

Name of the stream column where the email subject is stored.
Type: string

Use: Required

170

Data Location Descriptions, Parameters, Limits

Nurmber of Resend At -

tenpts

Log Alert

Dat e For mat

Ti mest anp For mat

Known Limitations:

Default: None (required parameter)

The number of times to retry sending an email if the initial at-
tempt to send it fails.

Type: Unsigned integer

Use: Advanced

Default: 0 (no attempt is made to resend emails)

Choose a moderate value (0 - 10) for this parameter. Requiring a
large number of attempts to resend the email may lead to excess-
ive memory consumption, particularly if aggravated by network
problems and a high volume of records waiting to be emailed.

If true, logs an alert at debug level 1 each time the email sending
has been successful or failed.

Type: boolean

Use: Advanced

Default: True

Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
Timestamp format

Type:String

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

* Microsoft Outlook® users must disable the feature that removes extraline breaks as follows:

1. Open Outlook, go to the Tools menu and click Options.

2. Onthe Preferencestab, click the E-mail Options button.

3. Click to clear the Remove extra line breaks in plain text messages check box. Click OK

twice.

F.34. Sample Plug-in Connector XML File Input

An example of the plug-in connector framework that reads the data from AleriML files by calling the
command-line tools sp_convert and sp_upload.

171

Data Location Descriptions, Parameters, Limits

Parameters

File File to upload
Use: Required

User User name to connect to the platform.
Use: Optional

Passwor d Password to connect to the platform.
Use: Optional

Dat e Format Format string for parsing date values.
Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

Known Limitations:

 For advanced users with extensive programming expertise.

e The supported parameters are simplistic.

F.35. Sample Plug-in Connector XML File Output

An example of the plug-in connector framework that writes a stream's datato AleriML files by using the
command line tool sp_subscribe.

Parameters

File File to write to
Use: Required

User User name to connect to the platform.
Use: Optional

Passwor d Password to connect to the platform.
Use: Optional

Dat e For mat Format string for parsing date values.
Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
I ncl ude Base Content Start by recording theinitial contents of the stream, not just the updates.

Type: boolean

172

Data Location Descriptions, Parameters, Limits

Only Base Cont ent

Known Limitations:

Use: Optional
Default: False
Send only the snapshot of initial contents of the stream, once.
Type: boolean
Use: Optional

Default: False

 For advanced users with extensive programming expertise.

e The supported parameters are smplistic.

F.36. Socket (As Client) CSV Input

Receives data in Aleri delimited format from the outgoing network connectors. The connector initiates
the connection to another program, then another program sends the data. The data might not have the
header, (same as accepted by sp_convert), or with the header specifying the field names.

Parameters

Delimter

Has Header

Server

Port

Epheneral Port File

Symbol used to separate the columns.
Use: Advanced
Default: Commal(,)

Whether the first line of the file contains the description of the
fields.

Type: boolean
Use: Advanced
Default: False
Server host name
Use: Required

Server port, or -1 to read from the Ephemeral Port File (see ad-
vanced parameters).

Type: int
Use: Required
File that will contain the server port number, if Port is-1.

Use: Advanced

173

Data Location Descriptions, Parameters, Limits

Retry Period (seconds) Period for trying to re-establish an outgoing connection, in seconds.
Type: uint
Use: Advanced
Default: 1
Enter Initial State When the connector enters the initial loading state.
Use: Advanced
Default: Never

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean
Use: Advanced
Default: False
Ski p Del etes It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean
Use: Advanced
Default: False
Dat e For mat Format string for parsing date values
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Ti mest anp For mat Format string for parsing timestamp values
Type:String
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
expect St reamNanmeQpcode If true, the first two fields are interpreted as stream name and Aleri
op code respectively. Messages with unmatched stream names are
discarded.
Type: boolean
Use: Optional
Default: False
Bl ock Size Number of recordsto block into one pseudo-transaction

Type: int

174

Data Location Descriptions, Parameters, Limits

Fi el d Mappi ng

Known Limitations:

Use: Advanced
Default: 1
Mapping between the in-platform and external fields

Use: Advanced

¢ The stream namein the file rowsisignored.

« All the datais sent to the same stream.

F.37. Socket (As Client) CSV Output

Send data in Aleri's delimited format to the outgoing network. The connector initiates the connection to
another program and then sends the data. The data might not have the header (same as accepted by
(sp_convert), or with the header specifying the field names. If the connection is broken, the connector

can retry it.

This connector can now be configured to send only the base state of the stream. It sends the data once
and exits, but it can be restarted later.

Parameters

Server

Port

Epheneral Port File

Retry Period (seconds)

I ncl ude Base Content

Server host name

Use: Required

Server port, or -1 to read from the Ephemeral Port File.
Type: int

Use: Required

File that will contain the server port number, if portis-1.
Use: Advanced

Period for trying to re-establish an outgoing connection, in
seconds.

Type: uint
Use: Advanced
Default: 1

Start by recording the initial contents of the stream, not just the
updates.

Type: boolean

175

Data Location Descriptions, Parameters, Limits

Only Base Cont ent

Delinmter

Has Header

Dat e For mat

Ti mest anp For mat

expect St r eamNaneQpcode

Prepend StreanNaneOpcode

Use: Optional

Default: False

It sends only theinitial contents of the stream, once.
Type: boolean

Use: Advanced

Default: False

Symbol used to separate the columns.

Use: Advanced

Default: Commac(,)

Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Format string to parse date values

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Optional

Default: False

If true, each message will start with the stream name and the Al eri
op code.

Type: boolean

Use: Optional

176

Data Location Descriptions, Parameters, Limits

Fi el d Mappi ng

F.38. Socket (As Client) XML Input

Default: False
Mapping between the in-platform and external fields
Use: Advanced

Receives data in AleriML format from the outgoing network connectors. The connector initiates the
connection to another program, then another program sends the data. The data might not have the head-
er, (same as accepted by sp_convert), or with the header specifying the field names.

Parameters

Server

Por t

Mat ch stream nane

Epheneral Port File

Retry Period (seconds)

State

Enter Initial

Convert to Safe Opcodes

Server host name

Use: Required

Server port, or -1 to read from the Ephemeral Port File.
Type: int

Use: Required

If true, the XML element name will be matched against the stream
name. Unmatched messages will be discarded.

Type: boolean

Use: Optional

Default: False

File that will contain the server port number, if port is-1.
Use: Advanced

Period for trying to re-establish an outgoing connection, in seconds.
Type: uint

Use: Advanced

Default: 1

When the connector enters the initial loading state.

Use: Advanced

Default: Never

It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

177

Data Location Descriptions, Parameters, Limits

Ski p Del etes

Dat e For mat

Ti mest anp For mat

Bl ock Size

Fi el d Mappi ng

F.39. Socket (As Client) XML Output

Use: Advanced

Default: False

It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean

Use: Advanced

Default: False

Format string to parse date values

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S

Number of recordsto block into one pseudo-transaction
Type: int

Use: Advanced

Default: 1

Mapping between the in-platform and external fields

Use: Advanced

Sends data in AleriML format to the outgoing network connections; the connector initiates the connec-
tion to another program and then sends the data. If the connection is broken, the connector can retry it.

This connector can now be configured to send only the base state of the stream. It sends the data once
and exits, but it can be restarted later.

Parameters

Server

Por t

Server host name
Use: Required
Server port, or -1 to read from the Ephemeral Port File.

Type: int

178

Data Location Descriptions, Parameters, Limits

Use: Required
Ephenmeral Port File Filethat will contain the server port number, if portis-1.
Use: Advanced
Retry Period, s Period for trying to re-establish an outgoing connection, in seconds.
Type: uint
Use: Advanced
Default: 1
I ncl ude Base Content Start by recording theinitial contents of the stream, not just the updates.
Type: boolean
Use: Optional
Default: False
Only Base Content It sends only theinitial contents of the stream, once.
Type: boolean
Use: Advanced
Default: False
Dat e For mat Format string to parse date values
Type: string
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Ti mest anp For mat Format string to parse timestamp values
Type:String
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
Fi el d Mappi ng Mapping between the in-platform and external fields
Use: Advanced

F.40. Socket (As Server) XML Input

Receives datain the AleriML format from the incoming network connections. Another program initiates
the connection and then sends the data.

This connector can be configured to send only the the base state of the stream but may be repeatedly re-
connected.

179

Data Location Descriptions, Parameters, Limits

Parameters

Port

Ephermeral Port File
Initial Listen Period
(seconds)

Enter Initial State

Convert to Safe Opcodes

Ski p Del etes

Dat e For mat

Ti mest anp For mat

Port number to listen on, or -1 for an '‘ephemera’ port (see ad-
vanced parameters).

Type: int
Use: Required

File where the automatically selected ephemeral port number will
be written, if Portis-1.

Use: Advanced

How long to wait for the first incoming connection before switch-
ing to the continuous state.

Type: uint

Use: Advanced

Default: 0

When the connector enters the initial loading state.
Use: Advanced

Default: Never

It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean

Use: Advanced

Default: False

Format string for parsing date values

Type: string

Use: Advanced

Default: %Y -%m-%dT%H: %M :%S
Format string for parsing timestamp values

Type: String

180

Data Location Descriptions, Parameters, Limits

mat chSt r eamNane

Bl ock Size

Fi el d Mappi ng

Known Limitations:

Use: Advanced
Default: %Y -%m-%dT%H:%M:%S

If true, the XML element name will be matched against the
stream name. Unmatched messages will be discarded.

Type: boolean

Use: Optional

Default: False

Number of recordsto block into one pseudo-transaction
Type: int

Use: Advanced

Default: 1

Mapping between the in-platform and external fields

Use: Advanced

¢ The stream's namein the file entriesis ignored.

* All thedatais sent to the same stream.

« Supports only one network connection at atime.

F.41. Socket (As Server) XML Output

Receives datain the AleriML format from the outgoing network connections. Another program initiates
the connection and then receives the data.

This connector can be configured to send only the base state of the stream. The socket closes after send-
ing the base state of the stream but may be repeatedly reconnected.

Parameters

Port

Ephermeral Port File

I ncl ude Base Content

Port number to listen on, or -1 for an 'ephemeral’ port.
Type: int
Use: Required

File where the automatically selected ephemeral port number will be
written, if portis-1.

Use: Advanced

Start by recording the initial contents of the stream, not just the updates.

181

Data Location Descriptions, Parameters, Limits

Only Base Content

Dat e For mat

Ti mest anp For mat

Fi el d Mappi ng

Known Limitations:

Type: boolean

Use: Optional

Default: False

It sends only theinitial contents of the stream, once.
Type: boolean

Use: Advanced

Default: False

Format string to parse date values

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Format string to parse timestamp values
Type:String

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Mapping between the in-platform and external fields
Use: Advanced

¢ Supports only one network connection at atime.

F.42. Socket (As Server) CSV Input

Receives datain Aleri delimited format from the incoming network connections. Another program initi-
ates the connection and then sends the data. The data might not have a header (same as accepted by
(sp_convert), or with a header specifying the field names.

Parameters

Delimter

Has Header

Symbol used to separate the columns.
Use: Advanced
Default: Commal(,)

Whether the first line of the file contains the description of the
fields.

182

Data Location Descriptions, Parameters, Limits

Port

Ephenmeral Port File

Initial Listen Period
(seconds)

Enter Initial State

Convert to Safe Opcodes

Ski p Del etes

Dat e For mat

Ti mest anp For mat

Type: boolean
Use: Advanced
Default: False

Port number to listen on, or -1 for an '‘ephemera’ port (see ad-
vanced parameters).

Type: int
Use: Required

File where the automatically selected ephemeral port number will
be written, if portis-1.

Use: Advanced

How long to wait for the first incoming connection before switch-
ing to the continuous state.

Type: uint

Use: Advanced

Default: 0

When the connector enters the initial loading state.
Use: Advanced

Default: Never

It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

It skips the rows with opcodes DELETE or SAFEDELETE.
Type: boolean

Use: Advanced

Default: False

Format string for parsing date values
Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Format string for parsing timestamp values

183

Data Location Descriptions, Parameters, Limits

Type:String
Use: Advanced
Default: %Y -%m-%dT%H:%M:%S
expect St r eamNaneQpcode If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.
Type: boolean
Use: Optional
Default: False
Bl ock Size Number of recordsto block into one pseudo-transaction
Type: int
Use: Advanced
Default: 1
Fi el d Mappi ng M apping between the in-platform and external fields
Use: Advanced

Known Limitations:

¢ The stream namein thefile rowsisignored.
* All the datais sent to the same stream.

* Supports only one network connection.

F.43. Socket (As Server) CSV Output

Sends datain Aleri delimited format from the incoming network connections. Another program initiates
the connection and then receives the data. The data might not have the header (same as accepted by
sp_convert), or with the header specifying the field names.

This connector can be configured to send only the base state of the stream. The socket closes after send-
ing the base state of the stream but may be repeatedly reconnected.

Parameters
Por t Port number to listen on, or -1 for an ‘ephemeral’ port.
Type: int
Use: Required
Ephermeral Port File File where the automatically selected ephemeral port number will

184

Data Location Descriptions, Parameters, Limits

I ncl ude Base Content

Only Base Content

Delimter

Has Header

Dat e For mat

Ti mest anp For mat

Prepend StreanNanmeOpcode

be written, if portis-1.
Use: Advanced

Start by recording the initial contents of the stream, not just the
updates.

Type: boolean

Use: Optional

Default: False

It sends only theinitial contents of the stream, once.
Type: boolean

Use: Advanced

Default: False

Symbol used to separate the columns.

Use: Advanced

Default: Commal(,)

Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Format string to parse date values
Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
Format string to parse timestamp values
Type:String

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

If true, each message will start with the stream name and the Al eri
op code.

Type: boolean
Use: Optional
Default: False

185

Data Location Descriptions, Parameters, Limits

Fi el d Mappi ng Mapping between the in-platform and external fields
Use: Advanced

Known Limitations:

« Supports only one network connection at atime.

F.44. Socket FIX Input
Reads FIX messages from a TCP server socket and writes them as stream records. Each stream hosts

FIX messages of a certain type. Messages of any other FIX type are discarded. All FIX fields except the
following are stored in the same order in stream columns:

* BeginString

BodyL ength
e MsgType
e CheckSum
The names of the stream columns must correspond to the FIX protocol specification.

Parameters

FI X Version Version of the FIX protocol.
Type: choice
Use: Required
Default: 4.2
FI X Message Type The type of messages hosted by the stream
Type: string
Use: Required
Default: None (required parameter)
FI X Host Name or | P address of source server
Type: string
Use: Required
Default: None (required parameter)
Destination Port Port on which the messages are available on.
Type: Unsigned integer
Use: Required

186

Data Location Descriptions, Parameters, Limits

Reconnect I nterval

Maxi mum Reconnect At -

tenmpts

Dat e For mat

Ti mest anp For mat

Known Limitations:

Default: None (required parameter)

Reconnect interval in seconds. If 0, makes no attempt to recon-
nect.

Type: Unsigned integer

Use: Required

Default: 10

Maximum number of reconnect attempts.
Type: Unsigned integer

Use: Required

Default: 0

Date format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S
Timestamp format

Type: string

Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

This connector isnot a full FIX Engine. If you require afull FIX Engine, please contact a Sybase

sales representative for information about the standalone Aleri FIX Engine connector version 1.0.

e FIX versions 4.2 and 4.3 are supported only.

* Repeating groups and components are not supported.

¢ Only supportsinsert Opcode.

F.45. Socket FIX Output

Writes stream data as FIX messages to a TCP server socket. Each stream hosts FIX messages of a cer-
tain type. Messages are sent contiguoudly, with no line feeds. The following FIX fields are generated by

the connector:

* BeginString
< BodyLength

187

Data Location Descriptions, Parameters, Limits

 MsgType
¢ CheckSum

Therest of the fields must be stored in the appropriate order in stream columns. The names of the stream
columns must correspond to the FIX protocol specification.

Parameters

FI X Version Version of the FIX protocol
Type: choice
Use: Required
Default: 4.2

FI X Message Type Thetype of messages hosted by the stream
Type: string
Use: Required
Default: None (required parameter)
Destination Host Nameor IP addressof the destination
Type: string
Use: Required
Default: None (required parameter)
Destinati on Port Port onwhich the server socket islistening to messages.
Type: Unsigned integer
Use: Required
Default: None (required parameter)
Dat e For mat Date format
Type: string
Use: Advanced
Default: %Y -%m-%dT%H: %M :%S
Ti mest anp Format Timestamp format
Type: string
Use: Advanced

Default: %Y -%m-%dT%H:%M:%S

Known Limitations:

188

Data Location Descriptions, Parameters, Limits

» Thisconnector isnot afull FIX Engine. If you require afull FIX Engine, please contact a Sybase
sales representative for information about the standalone Aleri FIX connector version 1.0.

e Only versions 4.2 and 4.3 of FIX are supported
* Repeating groups and components are not supported
« No reconnection attempt is made if the connection to the FIX server islost

¢ Only supportsinsert Opcode.

F.46. SybaselQ Output

An external connector that starts the sp_archive utility and loads data from the Sybase Aleri Streaming
Platform into Sybase 1Q. It uses SybaselQ's bulk load feature to efficiently load insert only data and
automatically switches to use the slower ODBC mechanism when it encounters updates and deletes.
This connector is designed to be highly robust. It caches all the data on disk and also uses the persistent
subscribe mechanism, which ensures no data is lost even if the connection to the the Sybase Aleri
Streaming Platform islost.

Parameters

User Nane The user name for connecting to the Sybase Aleri Streaming Platform.
This parameter is required when the Sybase Aleri Streaming Platform
uses an authentication type of RSA, Kerberos, or PAM (when the un-
derlying authentication mechanism for PAM requires User and Pass-
word).
Type: string
Use: Required
Default: None

Passwor d An optional parameter required only when the Sybase Aleri Streaming
Platform uses the PAM authentication type that has an underlying au-
thentication mechanism with User and Password.
Type: string
Use: Optional
Default: None

RSA Key File The full path to the RSA Key private key file This parameter is required
if the Sybase Aleri Streaming Platform uses the RSA authentication
mechanism.
Type: string
Use: Optional
Default: none

Use Kerberos A Boolean value that needs to be set to true when the Sybase Aleri

Streaming Platform is configured to use Kerberos authentication. If this
is set to true, the User Name parameter must be provided.

189

Data Location Descriptions, Parameters, Limits

Configuration File

Archi ve Deltas

Swap Byt es

Recover Only

Dat awar ehousi ng Mode

Archi ve | nterval

Type: boolean
Use: Optional
Default: False

The full path to the configuration file that provides Sybase |Q connec-
tion details and load options.

Type: string
Use: Required
Default: None (required parameter)

Archives deltas when set to true otherwise only a snapshot of the datais
archived.

Type: boolean
Use: Advanced
Default: True

Set to true when the Platform and the archive utility are running on dif-
ferent architectures(Little/Big Endian advanced).

Type: boolean
Use: Advanced
Default: False

Recovers any data that was read from the Sybase Aleri Streaming Plat-
form but not archived, and exits.

Type: boolean

Use: Advanced

Default: False

Any updates are treated as inserts and deletes are ignored when set to
true. Use this mode when you want to archive the data for historical
purposes.

Type: boolean

Use: Advanced

Default: False

Specifies how long to wait in seconds after each time a set of data is
archived and the next set of datais archived.

Type: uint

Use: Advanced

190

Data Location Descriptions, Parameters, Limits

Pr eci si on

Commit Batch Size

CDBC Retry Attenpts

ODBC Retry Interval

Known Limitations:

Default: 1

A value between 0 and 6 that specifies the precision to use for money
and float datatypes

Type: uint

Use: Advanced

Default: 6

This is the commit batch size used when using SQL to archive the data
instead of the bulk load mechanism. For bulk loads specify the batch
sizein the configuration file

Type: uint

Use: Advanced

Default: 1000

The number of times to retry the ODBC connection if a connection can-
not be made

Type: uint

Use: Advanced

Default: 5

The number of secondsto wait before retrying the ODBC connection.
Type: uint

Use: Advanced

Default: 60

 Attaching a Sybasel QOut connector to a stream does not guarantee that the data from this stream
will be archived. The connector uses the specified configuration file to get thisinformation. If adif-
ferent stream is specified by the configuration file then that one will be archived.

F.47. Teradata Output

An external connector that starts the Teradata TPump utility and loads data from the Sybase Aleri
Streaming Platform into Teradata. The AleriTeradata connector for the TPump access module is de-
signed to load data in arobust, efficient and a lossless manner even if the Sybase Aleri Streaming Plat-
form or Teradata connection islost.

Each connector is designed to do inserts, updates and deletes into a single table in the Teradata database
from a single stream in the Sybase Aleri Streaming Platform. There can be more than one connector as-

sociated with asingle stream.

The persistent subscribe mechanism is used to make the connector robust and lossless. That means there

191

Data Location Descriptions, Parameters, Limits

needs to be two additional streams to associate with each Teradata output connector and stream combin-

ation.

The first stream (named StreamName _log by default) contains alog of every event that affected the out-
putted stream. The second stream (usualy called Stream- Name control) purges the transactions in
StreamName_log after the information has been committed to the Teradata database.

The heart of the connector is the user-defined TPump script file, which is highly configurable and can
filter or modify data received from the Sybase Aleri Streaming Platform. Two sample script files are in-
cluded in the folder INSTALL DIRECTORY /examples/scripts/teradata. These examples archive data
produced by the VWAP example model in the same location. Teradata has additional documentation on
its website about the TPump Access Module.

Parameters

TPunp Script File

TPunp Execut abl e

Access Module Options

Access Module Options

The full path and name of the TPump script file.

Type: string
Use: Required

Default: None (required parameter)

The full path and name of the TPump executable. If not provided, the tpump
executable directory must be in the PATH. The default executable name is

Type: string
Use: Optional

Default: None (required parameter)

t punp. exe for Windows and t punrpexe for Linux/Solaris.

The AleriTeradata access module takes many arguments. These argu-
ments are specified in the Tpump script file using the following syn-

tax, IMPORT

INFILE

MYFILE AXSMOD

<INSTALL_DIR>/lib/AleriTeradata.so 'optionl optionlVal op-
tion2 option2Val..' The options that can be specified are as follows

Parameters, Properties, Options

-B bat chsi ze

-c User!| D: PassWi

This parameter specifies the number
of records to pack in each block be-
fore sending it to Teradata and con-
trols the interna buffer size. It
should usually be set to the same
value as the PACK property in the
Tpump script file.

This parameter is required when the
platform uses PAM, RSA, or Ker-
beros authentication. The Userld
component is required when spe-

192

Data Location Descriptions, Parameters, Limits

- Host [host nane:] port:

- p[host nane:] port

-k rsaKeyFile

-R Truncat eStream

-s StreanNane

cified. The Password component is
only required when using PAM au-
thentication and the underlying au-
thentication mechanism has User
and Password.

If this property is specified, it means
that the communication with the Sy-
base Aleri Streaming Platform is en-
crypted. The Sybase Aleri Stream-
ing Platform must be started in en-
crypted mode in order to use this

property,

This property specifies that Kerber-
0s must be used as the authentica-
tion mechanism. If this option is
specified then the -c option must
also be specified.

This option is required when the Sy-
base Aleri Streaming Platform is
configured to use hot spares and it
specifies the hostname that the Hot
Spare is running on and the com-
mand and control port. While the
port is required. the hostname com-
ponent is optional and defaults to
localhost if not provided.

This option specifies the hostname
the Sybase Aleri Streaming Platform
is running on and the Command and
Control port. The port is required,
but the hostname component is op-
tional and defaults to ‘localhost' if
not provided.

This is an optional parameter spe-
cifying an insert-only mode. In this
mode, all updates are treated as in-
sertsand all deletes are ignored.

If this option is specified, RSA au-
thentication is used to connect to the
Sybase Aleri Streaming Platform.
The rsaKeyFile is the path and file
name of the RSA private key file.

This required property is used to
specify the StreamName truncate
name described below.

Every stream with data that needs to
be exported to Teradata must be as-
sociated with a persistent subscribe
pattern. The persistent subscribe pat-

193

Data Location Descriptions, Parameters, Limits

-T Interval

Known Limitations:

tern ensures there is no loss of data
when the Sybase Aleri Streaming
Platform or the Tpump executable is
stopped and restarted. Each persist-
ent subscribe pattern adds two extra
streams to the model. The streams
are named by default, Stream-
Name_log and Stream-
Name_truncate. For example, if the
stream to export to Teradata is
“Trades,” then the persistent sub-
scribe pattern will add two streams:
“Trades log” and
“Trades truncate’. This required
property is used to specify the
StreamName_|log stream name, such
as Trades |og in the above example.

If this option is specified, a snapshot
of the specified stream is sent to the
Sybase Aleri Streaming Platform
and the connector exits.

This interval specifies how often to
generate a dummy message if there
is no data so that the Teradata data-
base can check point any data that
hasn't been check pointed. The de-
fault is every 10 seconds if it's not
specified.

« The connector does not work across different architectures. For example, if the Teradata database is
running on a Big Endian architecture such as a Sun SPARC machine and the connector is run on a
Little Endian architecture such as an Intel machine or vice versa, the connector will not work.

« Due to the lossless nature of the connector there may be some duplicate entries that need to be
handled on a restart. To ensure that this is handled properly, the IGNORE DUPLICATES option

must be specified in the TPump script file.

* Although the TPump and the configuration script file is designed to handle loading multiple tables,
the AleriTeradata access module is not designed to handle this. Therefore, each script file can be

used to process only one source stream and destination table.

F.48. Tibco Rendezvous Plug-in

The Tibco Rendezvous Plug-in connector publishes stream data to a Rendezvous subject and vice-versa.
It can be configured on any source stream as an inbound data location. The authentication method is set
to that of the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi.

194

Data Location Descriptions, Parameters, Limits

The Aleri Tibco Rendezvous Adapter version 1.0 or later must be installed to use this Plug-in. Please
contact your Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connect or Renote Dir-
ectory Pat h parameter is supplied.

Type: directory
Use: Required
Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Renbt e Configuration File
Pat h parameter is supplied.

Type: configFilename

Use: Required

Default: None
Connector Renote Direct- Specify the path to the connector remote base directory (for re-
ory Path mote execution only). If this parameter is supplied, the Con-

nector Directory Path parameter isignored.

Type: string

Use: Advanced

Default: None

Renot e Confi guration Specify the path to the connector's remote configuration file (for
File Path remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter isignored.

Type: string
Use: Advanced

Default: None

F.49. Wombat Plug-in

The Wombat Plug-in connects to a Wombat data feed to receive real-time Level 1 and Level 2 market
data. It can be configured on any source stream as an inbound data location. The authentication method
is set to that of the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi. This connector supports
discovery.

The Aleri Wombat Adapter version 1 or later must be installed to use this Plug-in. Y ou can refer to Aleri
Wombat Adapter documentation for installation and configuration details. Y our Sybase sales represent-
ative can provide more details.

Parameters

195

Data Location Descriptions, Parameters, Limits

Connector Directory Path

Configuration File Path

Di scovery Directory Path

Connector Renpte Direct-
ory Path

Renot e Configuration
File Path

Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connect or Renote Dir-
ect ory Pat h parameter is supplied.

Type: directory

Use: Required

Default: None

Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Renot e Configuration File
Pat h parameter is supplied.

Type: configFilename

Use: Required

Default: None

Specify the absolute path to the Adapter's discovery directory.
Type: directory

Use: Required

Default: None

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter isignored.

Type: string

Use: Advanced

Default: None

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter isignored.

Type: string

Use: Advanced

Default: None

196

Appendix G. List of Time Zones

Below is a list of time zones used in the Sybase Aleri Streaming Platform from the industry-standard
Olson timezone (also known as TZ) database. Note that there is no value for the abbreviation “PST” for

Pacific Standard Time. Use “PST8PDT” for the time zone that takes into account daylight savings time.

ACT

ART
AfricalAccra
AfricalAsmera
Africa/Banjul
Africa/lBrazzaville
Africa/lCasablanca
AfricalDakar
AfricalDouda
Africa/Gaborone
AfricalKampala
AfricalKinshasa
AfricalLome
Africa/lLusaka
AfricalMaseru
Africa’lMonrovia
Africa/Niamey
Africa/lPorto-Novo
AfricalTripoli
AmericalAdak
America/Antigua
America/Argentina/Catamarca

AmericalArgentina/Jujuy

AET

AST

AfricalAddis Ababa
AfricalBamako
Africa/Bissau
Africa/Bujumbura
Africa/Ceuta
Africa/Dar_es Salaam
AfricalEl_Aaiun
Africa/lHarare
AfricalKhartoum
AfricalLagos
Africa/lLuanda
AfricalMalabo
AfricalMbabane
Africa/Nairobi
Africa/lNouakchott
AfricalSao_Tome
AfricalTunis
Americal/Anchorage
America/Araguaina
America/Argen-
tina/ComodRivadavia
America/Argentina/La_Rioja

America/Argentina/Rio_Gallegos AmericalArgentinag/San_Juan

America/Argentina/lUshuaia
AmericalAtka
America/Belem
America/Bogota
America/lCambridge Bay
AmericalCaracas
America/Cayman
America/lCora_Harbour
America/Cuiaba
America/Dawson
America/Detroit
America/Eirunepe
America/Fort_Wayne
America/lGodthab
America/Grenada
America/Guayaquil
America/lHavana
AmericallndianalK nox
America/lndiana/Vevay
Americallnuvik
AmericalJujuy
America/lKentucky/Monticello
America/Lima
AmericalMaceio

America/Aruba
America/Bahia
America/Belize
America/Boise
AmericalCampo_Grande
America/Catamarca
America/Chicago
America/Cordoba
America/Curacao
AmericalDawson_Creek
AmericalDominica
America/El_Salvador
America/Fortaleza
America/lGoose Bay
America/Guadel oupe
America/lGuyana
America/lHermosillo
America/lndiana/Marengo
America/l ndiana/Vincennes
America/lgaluit
America/Juneau
AmericalKnox_IN
AmericalLos Angeles
America/Managua

AGT

AfricalAbidjan
AfricalAlgiers
AfricalBangui
Africa/Blantyre
AfricalCairo
Africa/Conakry
Africa/Djibouti
AfricalFreetown
AfricalJohannesburg
AfricalKigali
AfricalLibreville
Africa/L ubumbashi
AfricalMaputo
AfricalMogadishu
AfricalNdjamena
Africa/lOuagadougou
AfricalTimbuktu
Africa’lWindhoek
America/Anguilla
America/Argentina/Buenos_Aires
America/Argentina/Cordoba

America/Argentina/Mendoza
America/Argentina/Tucuman
America/Asuncion
America/Barbados
America/Boa Vista
America/Buenos Aires
America/Cancun
America/Cayenne
America/Chihuahua
America/lCosta Rica
America/Danmarkshavn
America/Denver
America/lEdmonton
America/lEnsenada
America/lGlace Bay
America/lGrand_Turk
America/Guatemala
America/Halifax
America/lndiana/lndianapolis
America/lndiana/Petersburg
America/lndianapolis
America/Jamaica
America/Kentucky/Louisville
AmericalLa Paz
AmericalLouisville
AmericalManaus

197

List of Time Zones

America/lMartinique
America/Menominee
America/Miquelon
America/lMontevideo
America/Nassau
America/Nome
America/Panama
America/Phoenix
America/Porto_Acre
America/lRainy_River
America/Regina
America/Santiago
America/Scoresbysund
AmericalSt_Kitts
AmericalSt_Vincent
AmericalThule
AmericalToronto
AmericalVirgin
AmericalY akutat
AntarcticalDavis
AntarcticalMcMurdo
Antarctica/South_Pole
Arctic/Longyearbyen
Asia/Amman
AsialAqtobe
Asia/Baghdad
Asia/Bangkok
Asia/Brunei
Asia/Chongging
AsialDacca

AsalDili

Asia/lGaza
AsialHovd
AsialJakarta
Asia/Kabul
AsialKashgar
AsialKuala_Lumpur
AsialMacao
Asia/lMakassar
Asia/Nicosia
AsialOra
Asia/Pyongyang
Asia/lRangoon
Asia/Riyadh88
Asia/Sakhalin
Asia/Shanghai
Asia/Tashkent
AsiaTd_Aviv
AsialTokyo
Asia/lUlan_Bator
Asia/Vladivostok
AsialY erevan
Atlantic/Canary
Atlantic/Jan_Mayen
Atlantic/South_Georgia
Australia/ACT
Australia/Broken_Hill

America/lMazatlan
AmericalMerida
America/lMoncton
America/Montreal
America/New_Y ork
America/lNoronha
America/Pangnirtung
Americal/Port-au-Prince
America/Porto_Velho
America/Rankin_Inlet
America/Rio_Branco

America/Santo_Domingo

America/Shiprock
AmericalSt_Lucia
America/Swift_Current
AmericalThunder_Bay
America/Tortola
America/Whitehorse
AmericalY ellowknife

AntarcticalDumontDUrville

Antarctica/Palmer
Antarctica/Syowa
AsialAden
Asia/Anadyr
Asia/Ashgabat
Asia/lBahrain
Asia/Beirut
Asia/Calcutta
Asia/Chungking
Asia/lDamascus
Asia/Dubai
AsialHarbin
Asiallrkutsk
AsialJayapura
AsialKamchatka
AsialKatmandu
Asia/lKuching
AsialMacau
AsialManila
Asia/Novosibirsk
Asia/lPhnom_Penh
AsialQatar
Asia/Riyadh
Asia/Riyadh89
Asia/lSamarkand
Asia/Singapore
AsialThilis
Asia/Thimbu
Asia/lUjung_Pandang
AsialUrumqi
AsialY akutsk
Atlantic/Azores
Atlantic/Cape_Verde
Atlantic/Madeira
Atlantic/St_Helena
Australia/Adelaide
Australia/Canberra

America/lMendoza
America/lMexico_City
America/Monterrey
America/lMontserrat
America/Nipigon

America/North_Dakota/Center

America/Paramaribo
America/Port_of Spain
America/Puerto_Rico
America/Recife
America/Rosario
America/lSao_Paulo
America/St_Johns
America/St_Thomas
AmericalTegucigalpa
AmericalTijuana
AmericalVancouver
America/Winnipeg
Antarctica/Casey
Antarctica/Mawson
Antarctica/Rothera
Antarctica/V ostok
Asia/Almaty
Asia’/Aqgtau
Asia/Ashkhabad
Asia/lBaku
Asia/Bishkek
Asia/Choibalsan
Asia/Colombo
Asia/lDhaka
Asia/Dushanbe
Asia/lHong_Kong
Asial/lstanbul
AsialJerusalem
Asia/lKarachi
Asia/lKrasnoyarsk
Asia/lKuwait
Asia/lMagadan
Asia/Muscat
AsialOmsk
Asia/Pontianak
AsialQyzylorda
Asia/lRiyadh87
Asia/Saigon
Asial/Seoul
AsialTaipe
Asia/Tehran
Asial'Thimphu
Asia/Ulaanbaatar
AsialVientiane
AsialY ekaterinburg
Atlantic/Bermuda
Atlantic/Faeroe
Atlantic/Reykjavik
Atlantic/Stanley
Australia/Brisbane
Australia/Currie

198

List of Time Zones

Australia/Darwin
Australia/Lindeman
AustraliadNSW
Australia/Queensand
Australig/Tasmania
Australia/Y ancowinna
Brazil/Acre
Brazil/West

CNT

CTT
Canada/East-Saskatchewan
Canada/Newfoundland
Canada/Y ukon
Cuba

EET

Egypt

Etc/GMT+0
Etc/GMT+11
Etc/GMT+3
Etc/GMT+6
Etc/GMT+9
Etc/GMT-10
Etc/GMT-13
Etc/GMT-3
Etc/GMT-6
Etc/GMT-9
Etc/UCT

Etc/Zulu
Europe/Athens
Europe/Berlin
Europe/Bucharest
Europe/Copenhagen
Europe/Helsinki
Europe/Kiev
Europe/London
Europe/Malta
Europe/Monaco
Europe/Oslo
Europe/Riga
Europe/San_Marino
Europe/Skopje
Europe/Tallinn
Europe/Uzhgorod
Europe/Vienna
Europe/Zagreb
Factory

GMT

GMTO

Hongkong

Iceland
Indian/Christmas
Indian/Kerguelen
Indian/Mauritius
Iran

Jamaica

Libya

MST

AustralialHobart
Australia/Lord Howe
Australia/North
Australia/South
Australia/Victoria
BET
Brazil/DeNoronha
CAT

CsT
Canada/Atlantic
Canada/Eastern
Canada/Pacific
Chile/Continental
EAT

EST

Eire

Etc/GMT+1
Etc/GMT+12
Etc/GMT+4
Etc/GMT+7
Etc/GMT-0
Etc/GMT-11
Etc/GMT-14
Etc/GMT-4
Etc/GMT-7
Etc/GMTO
Etc/UTC
Europe/Amsterdam
Europe/Belfast
Europe/Bratislava
Europe/Budapest
Europe/Dublin
Europe/Istanbul
Europe/Lisbon
Europe/L uxembourg
Europe/Mariehamn
Europe/Moscow
Europe/Paris
Europe/Rome
Europe/Saragjevo
Europe/Sofia
Europe/Tirane
Europe/Vaduz
Europe/Vilnius
Europe/Zaporozhye
GB

GMT+0
Greenwich

IET
Indian/Antananarivo
Indian/Cocos
Indian/Mahe
Indian/Mayotte
Israel

Japan

MET

MST7MDT

Australia/lLHI
Australia/Melbourne
AustralialPerth
Australia/Sydney
Australia/West
BST

Brazil/East

CET

CST6CDT
Canada/Central
Canada/Mountain
CanadalSaskatchewan
Chile/Easterlsland
ECT

ESTS5EDT
Etc/GMT
Etc/GMT+10
Etc/GMT+2
Etc/GMT+5
Etc/GMT+8
Etc/GMT-1
Etc/GMT-12
Etc/GMT-2
Etc/GMT-5
Etc/GMT-8
Etc/Greenwich
Etc/Universal
Europe/Andorra
Europe/Belgrade
Europe/Brussels
Europe/Chisinau
Europe/Gibraltar
Europe/Kaliningrad
Europe/Ljubljana
Europe/Madrid
Europe/Minsk
Europe/Nicosia
Europe/Prague
Europe/Samara
Europe/Simferopol
Europe/Stockholm
Europe/Tiraspol
Europe/Vatican
Europe/Warsaw
Europe/Zurich
GB-Eire

GMT-0

HST

IST

Indian/Chagos
Indian/Comoro
Indian/Maldives
Indian/Reunion
JST

Kwajaen

MIT
Mexico/BajaNorte

199

List of Time Zones

Mexico/BajaSur
Mideast/Riyadh88
NST

Navgo

PRC

PST8PDT
Pacific/Chatham
Pacific/Enderbury
Pacific/Funafuti
Pacific/Guadal canal
Pacific/Johnston
Pacific/Kwajaein
Pacific/Midway
Pacific/Norfolk
Pacific/Palau
Pacific/Port_Moresby
Pacific/Samoa
Pacific/Tongatapu
Pacific/Wallis
Portugal

SST
SystemV/AST4ADT
SystemV/EST5
SystemV/MST7
SystemV/PST8PDT
Turkey
US/Aleutian
US/East-Indiana
US/Indiana-Starke
US/Pacific

uTC

W-SU

Mexico/General
Mideast/Riyadh89
NZ

PLT

PRT

Pacific/Apia
Pacific/Easter
Pacific/Fakaofo
Pacific/Galapagos
Pacific/Guam
Pacific/Kiritimati
Pacific/Majuro
Pacific/Nauru
Pacific/Noumea
Pacific/Pitcairn
Pacific/Rarotonga
Pacific/Tahiti
Pacific/Truk
Pacific/Y ap

ROC

Singapore
SystemV/CST6
SystemV/ESTS5EDT
SystemV/MST7MDT
SystemV/Y ST9
UCT

US/Arizona
US/Eastern
US/Michigan
US/Pacific-New
Universal

WET

Mideast/Riyadh87
NET

NZ-CHAT

PNT

PST
Pacific/Auckland
Pacific/Efate
Pacific/Fiji
Pacific/Gambier
Pacific/Honolulu
Pacific/K osrae
Pacific/Marquesas
Pacific/Niue
Pacific/Pago_Pago
Pacific/Ponape
Pacific/Saipan
Pacific/Tarawa
Pacific/Wake
Poland

ROK
SystemV/AST4
SystemV/CST6CDT
SystemV/HST10
SystemV/PST8
SystemV/YST9YDT
US/Alaska
US/Central
US/Hawaii
US/Mountain
US/Samoa

VST

Zulu

200

Index
A

Access Control Definition
Aleri SQL, 22
Aggregate Stream
AleriML, 44
Aleri SQL
Access Control Definition, 22
Best Practices, 28
Comments, 27
Continuous Queries, 7
Declaration
User Defined Function, 26
Distributed Model Definition, 21
Execution, 29
Expressions, 23
Filter, 25
Join, 23
Filter Expressions, 25
Join Expressions, 23
Library Declaration
User Defined Function, 26
Overview, 3
Parameter Definition, 18
Program View
Definition, 14
Restrictions, 27
Source Streams, 4
Store Definition, 3
AleriML
Aqggregate Stream, 44
Authoring, 30
Best Practices, 49
Cluster, 33
Compute Stream, 42
Copy Stream, 41
Datal_ocation, 34
Extend Stream, 43
Filter Stream, 42
FlexStream, 46
Global, 33
Join Stream, 45
Module, 34
Pattern Stream, 48
Platform, 30
Preliminaries, 30
Source Stream, 40
StartUp, 32
Store, 34
Stream, 36
Union Stream, 41
Authoring
inAleriML, 30
inSQL, 3

Authoring Preliminaries, 1

B

Best Practices
Aleri SQL, 28
AleriML, 49

C

Cluster

AleriML, 33
Comments

Aleri SQL, 27
Compute Stream

AleriML, 42
Continuous Queries

Aleri SQL, 7
Conventions

Notational, 2
Copy Stream

AleriML, 41

D

DataTypes, 70
and Literal Constants, 1
Datal_ocation
AleriML, 34
Declaration
User Defined Function
Aleri SQL, 26
Definition
Access Control
Aleri SQL, 22
Distributed Model
Aleri SQL, 21
Parameter
Aleri SQL, 18
Program View
Aleri SQL, 14

Distributed Model Definition

Aleri SQL, 21

E
Execution
Aleri SQL, 29
Expressions, 2
Aleri SQL, 23
Filter
Aleri SQL, 25
Join
Aleri SQL, 23
Extend Stream
AleriML, 43

F

Filter Expressions
Aleri SQL, 25

Filter Stream

201

Index

AleriML, 42
FlexStream
AleriML, 46
Function Declaration
User Defined
Aleri SQL, 26
Functions, 70

G
Global
AleriML, 33

Insert-only
Stream, 36

J

Join Expressions
Aleri SQL, 23

Join Stream
AleriML, 45

L
Language
Pattern Matching, 87
SPLASH, 50
Library Declaration
User Defined Function
Aleri SQL, 26
Literal Constants
and Data Types, 1

M
Metadata Streams, 91
Module

AleriML, 34

N

Names
Objects, 1
Notational Conventions, 2

O

Object Names, 1
Operators, 70

P

Parameter Definition
Aleri SQL, 18
Pattern Matching
Language, 87
Pattern Stream
AleriML, 48
Platform
AleriML, 30

Preliminaries
AleriML, 30
Program View
Definition
Aleri SQL, 14
Programming Language
SPLASH, 50

Q

Queries
Continuous, 7

R

Reserved Words, 69
Restrictions
Aleri SQL, 27

S

Source Stream
AleriML, 40
Source Streams
Aleri SQL, 4
SPLASH
Programming Language, 50
SQL
Access Control Definition, 22
Authoring, 3
Best Practices, 28
Comments, 27
Continuous Queries, 7
Declaration
User Defined Function, 26
Distributed Model Definition, 21
Execution, 29
Expressions, 23
Filter Expressions, 25
Join Expressions, 23
Library Declaration
User Defined Function, 26
Parameter Definition, 18
Program View Definition, 14
Restrictions, 27
StartUp
AleriML, 32
Store
AleriML, 34
Store Definition
Aleri SQL, 3
Stream
AleriML, 36
Insert-only, 36
Streams
Metadata, 91

U

Union Stream
AleriML, 41

202

Index

User Defined Function
Declaration
Aleri SQL, 26
Library Declaration
Aleri SQL, 26

W

Words
Reserved, 69

203

	Authoring Reference Manual
	Table of Contents
	About This Guide
	1. Related Documents

	Chapter 1. Authoring Preliminaries
	1.1. Data Types and Literal Constants
	1.2. Names
	1.3. Expressions
	1.4. Notational Conventions

	Chapter 2. Authoring in SQL
	2.1. Aleri SQL Overview
	2.2. Store Definition
	2.3. Source Streams
	2.4. Continuous Queries
	2.4.1. Examples of Materialized View Definitions

	2.5. Program View Definition
	2.6. Pattern View Definition
	2.7. Parameter Definition
	2.8. Global Function Definition
	2.9. Data Location Definition
	2.10. Connection Definition
	2.11. Connection Group Definition
	2.12. Distributed Model Definition
	2.13. Access Control
	2.14. Aleri SQL Expressions
	2.14.1. Join Expressions
	2.14.1.1. Types of Joins
	2.14.1.2. Examples of Joins
	2.14.1.3. Restrictions on Joins

	2.14.2. Filter Expressions
	2.14.3. User Defined Function Library Declaration
	2.14.4. User Defined Function Declaration

	2.15. Adding Comments in Aleri SQL
	2.16. Current Restrictions on Aleri SQL Usage
	2.17. Best Practices When Writing a Data Model in Aleri SQL
	2.18. Example of an Aleri SQL Data Model
	2.19. Running a model written in Aleri SQL

	Chapter 3. Authoring in AleriML
	3.1. XML Preliminaries
	3.2. Platform
	3.3. StartUp
	3.4. Global
	3.5. Cluster
	3.6. Module
	3.7. DataLocation
	3.8. Store
	3.8.1. Stateless Store
	3.8.2. Memory Store
	3.8.3. Log Store

	3.9. Stream
	3.9.1. Insert-only Streams
	3.9.2. Common Attributes & Elements
	3.9.2.1. Column
	3.9.2.2. ColumnExpression
	3.9.2.3. FilterExpression
	3.9.2.4. InConnection and OutConnection
	3.9.2.5. Local
	3.9.2.6. InputWindow

	3.9.3. Source Stream
	3.9.4. Copy Stream
	3.9.5. Union Stream
	3.9.6. Filter Stream
	3.9.7. Compute Stream
	3.9.8. Extend Stream
	3.9.9. Aggregate Stream
	3.9.10. Join Stream
	3.9.11. FlexStream
	3.9.12. Pattern Stream

	3.10. Best Practices When Writing an AleriML Data Model

	Chapter 4. SPLASH Programming Language
	4.1. Preliminaries
	4.2. Variable and Type Declarations
	4.3. Data Structures
	4.3.1. Record Events
	4.3.2. XML Values
	4.3.3. Vectors
	4.3.4. Dictionaries
	4.3.5. Streams
	4.3.6. Stream Iterators
	4.3.7. Event Caches
	4.3.7.1. Manual insertion
	4.3.7.2. Changing buckets
	4.3.7.3. Managing the size of buckets
	4.3.7.4. Keeping records instead of events
	4.3.7.5. Ordering
	4.3.7.6. Operations on Event Caches

	4.4. Statements
	4.4.1. Expression Statements
	4.4.2. Block Statements
	4.4.3. Conditional Statements
	4.4.4. Output Statements
	4.4.5. While Statements
	4.4.6. For Loops
	4.4.7. Control Statements
	4.4.8. Switch Statements

	4.5. Functions
	4.6. Using SPLASH within FlexStreams

	Appendix A. Reserved Words
	Appendix B. Data Types, Operators and Functions
	B.1. Data Types
	B.2. Opcodes/Constants
	B.3. Special Columns
	B.4. Nulls and Error Handling
	B.5. Arithmetic Operators
	B.6. Comparison Operators
	B.7. Boolean Operators
	B.8. Arithmetic Functions
	B.9. Aggregation Functions
	B.10. String Functions
	B.11. Date and Time Functions
	B.12. Calendar Functions
	B.13. Type Conversion Functions
	B.14. Null Handling and Rank Functions
	B.15. User-Defined Functions
	B.16. Print
	B.17. Assignment
	B.18. Sequencing
	B.19. Conditional Expressions
	B.20. External Data Functions
	B.21. Unique Value Functions

	Appendix C. Pattern Matching Language
	C.1. Within clause
	C.2. From clause
	C.3. On clause
	C.4. Computational clause
	C.5. Examples

	Appendix D. User-Defined Functions
	D.1. User-Defined Functions in C/C++
	D.1.1. Write a User-Defined Function
	D.1.2. A Second Example
	D.1.3. Compile a User-Defined Function
	D.1.4. Call a User-Defined Function

	D.2. User-Defined Functions in Java
	D.2.1. Write User-Defined Functions in Java
	D.2.2. Compile User-Defined Functions in Java
	D.2.3. Call User-Defined Functions in Java
	D.2.4. Link User-Defined Functions in Java

	Appendix E. Aleri Metadata Streams
	E.1. Aleri_Config
	E.2. Aleri_Streams
	E.3. Aleri_Tables
	E.4. Aleri_Columns
	E.5. Aleri_KeyColumns
	E.6. Aleri_Clients
	E.7. Aleri_Subscriptions
	E.8. Aleri_Subscriptions_Ext
	E.9. Aleri_Connectors
	E.10. Aleri_RunUpdates
	E.11. Aleri_ClockUpdates
	E.12. Aleri_Streams_Monitor
	E.13. Aleri_Clients_Monitor

	Appendix F. Data Location Descriptions, Parameters, Limits
	F.1. ActivFinancial Inbound Plug-in
	F.2. Aleri Streaming Platform Input
	F.3. Aleri Streaming Platform Output
	F.4. Bloomberg Plug-in
	F.5. Configuring Coral8 Inbound and Outbound Connectors
	F.5.1. Data Types
	F.5.2. Coral8 Timestamps
	F.5.3. Operations

	F.6. Coral8 Inbound
	F.7. Coral8 Outbound
	F.8. Database Input
	F.9. Database Output
	F.10. File CSV Input
	F.11. File CSV Output
	F.12. File FIX Input
	F.13. File FIX Output
	F.14. File XML Input
	F.15. File XML Output
	F.16. FIX Plug-in
	F.17. HTTP Plug-in
	F.18. IDC Plug-in
	F.19. JMS CSV Input
	F.20. JMS CSV Output
	F.21. JMS Custom Input
	F.22. JMS Custom Output
	F.23. JMS FIX Input
	F.24. JMS FIX Output
	F.25. JMS Object Array Input
	F.26. JMS Object Array Output
	F.27. JMS XML Input
	F.28. JMS XML Output
	F.29. kdb Input Plug-in
	F.30. kdb Output Plug-in
	F.31. Reuters Marketfeed Inbound Plug-in
	F.32. Reuters OMM Inbound Plug-in
	F.33. SMTP Output
	F.34. Sample Plug-in Connector XML File Input
	F.35. Sample Plug-in Connector XML File Output
	F.36. Socket (As Client) CSV Input
	F.37. Socket (As Client) CSV Output
	F.38. Socket (As Client) XML Input
	F.39. Socket (As Client) XML Output
	F.40. Socket (As Server) XML Input
	F.41. Socket (As Server) XML Output
	F.42. Socket (As Server) CSV Input
	F.43. Socket (As Server) CSV Output
	F.44. Socket FIX Input
	F.45. Socket FIX Output
	F.46. SybaseIQ Output
	F.47. Teradata Output
	F.48. Tibco Rendezvous Plug-in
	F.49. Wombat Plug-in

	Appendix G. List of Time Zones
	Index

