
Authoring Reference Manual

Sybase Aleri Streaming Platform
3.1

DOCUMENT ID: DC01294-01-0311-01

LAST REVISED: June, 2010

Copyright © 2010 Sybase, Inc.

All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in
new editions or technical notes. Information in this document is subject to change without notice. The
software described herein is furnished under a license agreement, and it may be used or copied only in
accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800)
685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the
above fax number. All other international customers should contact their Sybase subsidiary or local dis-
tributor. Upgrades are provided only at regularly scheduled software release dates. No part of this pub-
lication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechan-
ical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at http://www.sybase.com/detail?id=1011207. Sybase and the marks
listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

DB2, IBM and Websphere are registered trademarks of International Business Machines Corporation.

Eclipse is a trademark of Eclipse Foundation, Inc.

Excel, Internet Explorer, Microsoft, ODBC, SQL Server, Visual C++, and Windows are trademarks or
registered trademarks of Microsoft Corp.

Intel is a registered trademark of Intel Corporation.

JDBC, Solaris, Sun and Sun Microsystems are trademarks or registered trademarks of Sun Microsys-
tems or its subsidiaries in the U.S. and other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Netezza is a registered trademark of Netezza Corporation in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

SPARC is a registered trademark of SPARC International, Inc. Products bearing SPARC trademarks are
based on an architecture developed by Sun Microsystems, Inc.

Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/
Open Group Ltd.

All other company and product names mentioned may be trademarks of the respective companies with
which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph
(c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian

http://www.sybase.com/detail?id=1011207

agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of Contents
About This Guide ... viii

1. Related Documents ... viii
1. Authoring Preliminaries .. 1

1.1. Data Types and Literal Constants ... 1
1.2. Names ... 1
1.3. Expressions .. 2
1.4. Notational Conventions .. 2

2. Authoring in SQL .. 3
2.1. Aleri SQL Overview .. 3
2.2. Store Definition .. 3
2.3. Source Streams ... 4
2.4. Continuous Queries ... 7

2.4.1. Examples of Materialized View Definitions ... 11
2.5. Program View Definition .. 14
2.6. Pattern View Definition .. 16
2.7. Parameter Definition .. 18
2.8. Global Function Definition .. 19
2.9. Data Location Definition .. 19
2.10. Connection Definition .. 20
2.11. Connection Group Definition ... 20
2.12. Distributed Model Definition ... 21
2.13. Access Control .. 22
2.14. Aleri SQL Expressions ... 23

2.14.1. Join Expressions ... 23
2.14.1.1. Types of Joins .. 24
2.14.1.2. Examples of Joins ... 25
2.14.1.3. Restrictions on Joins ... 25

2.14.2. Filter Expressions .. 25
2.14.3. User Defined Function Library Declaration .. 26
2.14.4. User Defined Function Declaration ... 26

2.15. Adding Comments in Aleri SQL ... 27
2.16. Current Restrictions on Aleri SQL Usage ... 27
2.17. Best Practices When Writing a Data Model in Aleri SQL 28
2.18. Example of an Aleri SQL Data Model ... 28
2.19. Running a model written in Aleri SQL ... 29

3. Authoring in AleriML ... 30
3.1. XML Preliminaries .. 30
3.2. Platform .. 30
3.3. StartUp ... 32
3.4. Global ... 33
3.5. Cluster .. 33
3.6. Module ... 34
3.7. DataLocation .. 34
3.8. Store ... 34

3.8.1. Stateless Store .. 35
3.8.2. Memory Store .. 35
3.8.3. Log Store .. 35

3.9. Stream .. 36
3.9.1. Insert-only Streams ... 36
3.9.2. Common Attributes & Elements .. 36

3.9.2.1. Column .. 37
3.9.2.2. ColumnExpression ... 38
3.9.2.3. FilterExpression ... 38

iv

3.9.2.4. InConnection and OutConnection .. 38
3.9.2.5. Local ... 39
3.9.2.6. InputWindow .. 39

3.9.3. Source Stream .. 40
3.9.4. Copy Stream .. 41
3.9.5. Union Stream ... 41
3.9.6. Filter Stream .. 42
3.9.7. Compute Stream ... 42
3.9.8. Extend Stream .. 43
3.9.9. Aggregate Stream ... 44
3.9.10. Join Stream .. 45
3.9.11. FlexStream .. 46
3.9.12. Pattern Stream .. 48

3.10. Best Practices When Writing an AleriML Data Model 49
4. SPLASH Programming Language ... 50

4.1. Preliminaries .. 50
4.2. Variable and Type Declarations ... 50
4.3. Data Structures ... 51

4.3.1. Record Events .. 51
4.3.2. XML Values .. 52
4.3.3. Vectors ... 53
4.3.4. Dictionaries ... 55
4.3.5. Streams ... 56
4.3.6. Stream Iterators .. 57
4.3.7. Event Caches ... 58

4.3.7.1. Manual insertion .. 59
4.3.7.2. Changing buckets ... 59
4.3.7.3. Managing the size of buckets .. 60
4.3.7.4. Keeping records instead of events .. 60
4.3.7.5. Ordering ... 60
4.3.7.6. Operations on Event Caches ... 61

4.4. Statements ... 61
4.4.1. Expression Statements ... 61
4.4.2. Block Statements .. 62
4.4.3. Conditional Statements .. 62
4.4.4. Output Statements ... 62
4.4.5. While Statements .. 63
4.4.6. For Loops .. 63
4.4.7. Control Statements .. 64
4.4.8. Switch Statements ... 64

4.5. Functions ... 64
4.6. Using SPLASH within FlexStreams .. 65

A. Reserved Words ... 69
B. Data Types, Operators and Functions .. 70

B.1. Data Types .. 70
B.2. Opcodes/Constants .. 70
B.3. Special Columns ... 71
B.4. Nulls and Error Handling ... 71
B.5. Arithmetic Operators ... 71
B.6. Comparison Operators ... 72
B.7. Boolean Operators .. 72
B.8. Arithmetic Functions ... 72
B.9. Aggregation Functions ... 74
B.10. String Functions ... 77
B.11. Date and Time Functions .. 79
B.12. Calendar Functions .. 80
B.13. Type Conversion Functions ... 81
B.14. Null Handling and Rank Functions ... 83

Authoring Reference Manual

v

B.15. User-Defined Functions ... 83
B.16. Print ... 84
B.17. Assignment .. 84
B.18. Sequencing .. 85
B.19. Conditional Expressions ... 85
B.20. External Data Functions ... 85
B.21. Unique Value Functions ... 85

C. Pattern Matching Language ... 87
C.1. Within clause ... 87
C.2. From clause ... 87
C.3. On clause .. 88
C.4. Computational clause .. 88
C.5. Examples .. 88

D. User-Defined Functions ... 91
D.1. User-Defined Functions in C/C++ .. 91

D.1.1. Write a User-Defined Function ... 91
D.1.2. A Second Example ... 93
D.1.3. Compile a User-Defined Function ... 94
D.1.4. Call a User-Defined Function ... 94

D.2. User-Defined Functions in Java ... 94
D.2.1. Write User-Defined Functions in Java .. 95
D.2.2. Compile User-Defined Functions in Java .. 95
D.2.3. Call User-Defined Functions in Java .. 96
D.2.4. Link User-Defined Functions in Java ... 97

E. Aleri Metadata Streams .. 98
E.1. Aleri_Config .. 98
E.2. Aleri_Streams .. 98
E.3. Aleri_Tables .. 98
E.4. Aleri_Columns ... 99
E.5. Aleri_KeyColumns ... 99
E.6. Aleri_Clients .. 100
E.7. Aleri_Subscriptions ... 100
E.8. Aleri_Subscriptions_Ext ... 100
E.9. Aleri_Connectors .. 101
E.10. Aleri_RunUpdates ... 102
E.11. Aleri_ClockUpdates .. 103
E.12. Aleri_Streams_Monitor .. 103
E.13. Aleri_Clients_Monitor ... 104

F. Data Location Descriptions, Parameters, Limits ... 107
F.1. ActivFinancial Inbound Plug-in ... 107
F.2. Aleri Streaming Platform Input .. 110
F.3. Aleri Streaming Platform Output .. 113
F.4. Bloomberg Plug-in .. 115
F.5. Configuring Coral8 Inbound and Outbound Connectors 116

F.5.1. Data Types .. 116
F.5.2. Coral8 Timestamps ... 116
F.5.3. Operations ... 116

F.6. Coral8 Inbound ... 116
F.7. Coral8 Outbound .. 118
F.8. Database Input .. 119
F.9. Database Output ... 121
F.10. File CSV Input .. 124
F.11. File CSV Output ... 126
F.12. File FIX Input ... 127
F.13. File FIX Output .. 129
F.14. File XML Input ... 130
F.15. File XML Output .. 132
F.16. FIX Plug-in .. 133

Authoring Reference Manual

vi

F.17. HTTP Plug-in ... 134
F.18. IDC Plug-in .. 134
F.19. JMS CSV Input ... 135
F.20. JMS CSV Output .. 137
F.21. JMS Custom Input ... 140
F.22. JMS Custom Output ... 142
F.23. JMS FIX Input .. 144
F.24. JMS FIX Output .. 146
F.25. JMS Object Array Input .. 149
F.26. JMS Object Array Output ... 151
F.27. JMS XML Input .. 153
F.28. JMS XML Output .. 155
F.29. kdb Input Plug-in .. 157
F.30. kdb Output Plug-in .. 160
F.31. Reuters Marketfeed Inbound Plug-in ... 163
F.32. Reuters OMM Inbound Plug-in .. 166
F.33. SMTP Output ... 169
F.34. Sample Plug-in Connector XML File Input .. 171
F.35. Sample Plug-in Connector XML File Output .. 172
F.36. Socket (As Client) CSV Input .. 173
F.37. Socket (As Client) CSV Output .. 175
F.38. Socket (As Client) XML Input ... 177
F.39. Socket (As Client) XML Output ... 178
F.40. Socket (As Server) XML Input ... 179
F.41. Socket (As Server) XML Output .. 181
F.42. Socket (As Server) CSV Input ... 182
F.43. Socket (As Server) CSV Output ... 184
F.44. Socket FIX Input ... 186
F.45. Socket FIX Output ... 187
F.46. SybaseIQ Output ... 189
F.47. Teradata Output .. 191
F.48. Tibco Rendezvous Plug-in .. 194
F.49. Wombat Plug-in .. 195

G. List of Time Zones .. 197
Index .. 201

Authoring Reference Manual

vii

About This Guide
1. Related Documents

This guide is part of a set. The following list briefly describes each document in the set.

Product Overview Introduces the Aleri Streaming Platform and related Aleri
products.

Getting Started - the Aleri Studio Provides the necessary information to start using the Aleri Studio
for defining data models.

Release Bulletin Describes the features, known issues and limitations of the latest
Aleri Streaming Platform release.

Installation Guide Provides instructions for installing and configuring the Streaming
Processor and Aleri Studio, which collectively are called the Aleri
Streaming Platform.

Authoring Guide Provides detailed information about creating a data model in the
Aleri Studio. Since this is a comprehensive guide, you should
read the Introduction to Data Modeling and the Aleri Studio. first.

Authoring Reference Provides detailed information about creating a data model for the
Aleri Streaming Platform.

Guide to Programming Interfaces Provides instructions and reference information for developers
who want to use Aleri programming interfaces to create their own
applications to work with the Aleri Streaming Platform.

These interfaces include:

• the Publish/Subscribe (Pub/Sub) Application Programming In-
terface (API) for Java

• the Pub/Sub API for C++

• the Pub/Sub API for .NET

• a proprietary Command & Control interface

• an on-demand SQL query interface

Utilities Guide Collects usage information (similar to UNIX® man pages) for all
Aleri Streaming Platform command line tools.

Administrators Guide Provides instructions for specific administrative tasks related to
the Aleri Streaming Platform.

Introduction to Data Modeling and
the Aleri Studio

Walks you through the process of building and testing an Aleri
data model using the Aleri Studio.

SPLASH Tutorial Introduces the SPLASH programming language and illustrates its
capabilities through a series of examples.

Frequently Asked Questions Answers some frequently asked questions about the Aleri Stream-
ing Platform.

viii

About This Guide

ix

Chapter 1. Authoring Preliminaries
All three authoring methods — Aleri Studio, Aleri SQL, and AleriML — share some commonalities in
names, types, and expressions.

1.1. Data Types and Literal Constants

The Sybase Aleri Streaming Platform has the following set of primitive data types:

int32 32-bit integers

int64 64-bit integers

money Fixed-point numbers, with a default precision of 4 decimal digits.

double Double precision floating-point numbers.

date Date and time values, with one second precision.

timestamp Date and time values, with one millisecond precision.

string Character strings of arbitrary length.

More information about data types can be found in Appendix B, Data Types, Operators and Functions.

Constants have the following types:

• Numbers without a decimal point (for example, -101, 8, +93734) have type int32.

• Decimal numbers (for example, -172.76245, 186.756) have type double.

• Decimal numbers with a trailing “d” or “D” (for example, -172.7624d, 186.756D) have type
money.

• Character strings in single quotes (for example, 'this is a string') are of type string. Character strings
can contain the following escape sequences:

• \b (for backspace)

• \n (for line feed)

• \r (for carriage return)

• \t (for tab)

• \ddd (for octal values of at most three digits, as in \013)

• \xhh (for hexadecimal values of at most two digits, as in \x1a)

1.2. Names

The name of any Sybase Aleri Streaming Platform object must adhere to the following rules:

• A name is either a sequence of alphabetic characters, digits, and underscore characters, or a se-
quence of any characters enclosed in double quotes.

1

• If a name is not enclosed in double quotes, it must begin with an alphabetic character or an under-
score.

• A name cannot contain spaces unless it is enclosed in double quotes.

• A name cannot be a Reserved Word unless it is enclosed in double quotes. Reserved words are case
insensitive, so for example, a name cannot be “AND” or “and” or “AnD”. See Appendix A, Re-
served Words for the list of Reserved Words.

• Columns cannot be named “rowid” or “rowtime”.

Note:

Double quotes in AleriML must be written with the XML escape sequence “"”.

1.3. Expressions

Expressions tell how to compute a value from other values. They can be as simple as the expressions 1
and 2+2, or as complex as you like.

The Sybase Aleri Streaming Platform provides a number of built-in operators and functions for perform-
ing complex calculations, as well as means of defining and calling your own functions. For a complete
list of internal functions and operators, see Appendix B, Data Types, Operators and Functions.

Parentheses can be used to group expressions and change the order of operator precedence. For instance,
(9+1)*7 is an expression that computes to 70, whereas 9+1*7 computes to 63.

References to columns in streams use the standard dot notation. For instance, to refer to column “Price”
in a stream called “Trades”, you write Trades.Price. Variables can also be used within expressions.
For instance, if there is a variable named “scale”, you could write the expression scale *
Trades.price.

There's also an expression for setting a variable, and for combining such expressions by sequencing. The
expression v := 9 sets the value of the variable v to 9, and returns that new value 9. Sequencing is
done with parentheses and semicolon. For instance, (v := 8; print(string(v)); 7) returns
the value 7, but sets v to 8 and prints the value of v before doing so.

1.4. Notational Conventions

The following conventions are used to describe Aleri SQL and AleriML:

• Square brackets [] represent optional elements.

• Curly brackets { } represent required elements where there is a choice of which element to use.

• The logical or symbol (|) separates choices within curly brackets { }.

• Asterisk (*) indicates that an element may not be present, or may repeat any number of times. Plus
(+) indicates that an element must appear and may repeat any number of times.

Authoring Preliminaries

2

Chapter 2. Authoring in SQL
Aleri SQL is one of three supported tools for creating data models that run on the Sybase Aleri Stream-
ing Platform. Aleri SQL provides a familiar environment for those with experience writing queries in
SQL since it is based on the ANSI SQL99 standard, with extensions for working with streaming data.

Aleri SQL also has the advantage of being the most concise way of expressing a data model. Setting a
data model up in the Aleri Studio can be more time consuming, due to the nature of visual development
paradigms, and AleriML is more verbose. Therefore, even someone new to SQL may find it the most ef-
ficient authoring environment.

2.1. Aleri SQL Overview

In order to conform with standard SQL, Aleri SQL maps stream processing elements to standard SQL
constructs. Streams are mapped to tables and views. Aleri SQL uses the following basic SQL constructs
to build all the necessary underlying elements of the data model:

Create Store to define a storage manager

Create Table to define a source (input) stream

Create Materialized View to define a continuous query that produces a derived stream (other
than a FlexStream or Pattern Stream)

Create Program View to define a FlexStream.

Create Pattern View to define a Pattern Stream.

Create Data Location to define a Data Location element.

Create Connection to define a Connection element

Create Connection Group to define a startup group

Create Module, Create
Cluster

to implement a distributed model

Declare to define parameters that can be used in expressions

Create Function to define native and external functions.

Grant to set access control

See the Authoring Guide for an explanation of the different elements that make up a data model.

Note

To conform with standard SQL, “Tables” represent source streams and “Views” represent de-
rived streams. In this section of the guide, tables are often referred to as “source streams” and
views (both materialized views and program views) are often referred to as “derived streams”.
Collectively, tables and views may be referred to as “streams”. The use of the word “stream”
conveys the notion that these are not static data sets but have data flowing through them at all
times.

2.2. Store Definition

A store defines the physical storage characteristics for the streams (tables, materialized views, and pro-

3

gram views) assigned to it. Every table, materialized view and program view must be assigned to a store.
There are three types of stores: Log Store, Memory Store and Stateless Store. Log Stores are persistent
— they guarantee data state recovery after failure, since all data is logged to disk. Memory Stores
provide data retention with higher performance than the log store, but they are not persistent — all data
is held in memory. Stateless Stores can be viewed as transient Stores that do not provide data retention.
See the Authoring Guide for a more complete description of the differences between the different store
types.

The syntax for defining a Store in Aleri SQL is as follows:

CREATE STORE StoreName
{ LOGSTORE ON Location
[SYNC is { true | false }] | MEMSTORE | STATELESSSTORE }
[MAXSIZE [IS] SizeInMb] , [INDEX [IS] { HASH | [(TREE)]}] [;]

where:

• StoreName is the unique name of the Store which must conform to the naming conventions.

• LOGSTORE | MEMSTORE | STATELESSSTORE (required) specifies the type of storage man-
ager to be created.

• Location is the file path where Log Stores are persisted to disk.

This is mandatory for Log Stores. It is ignored for Memory Stores and Stateless Stores.

• SYNC (optional) specifies whether the persisted data is updated synchronously with every stream
being updated, or whether it can be updated asynchronously.

Setting the sync value to true guarantees that every record acknowledged by the system is per-
sisted at the expense of performance.

Setting the value to false improves performance, but it does not guarantee a prevention of data
loss. Data could be lost in the case of a hard system shutdown if stream data has not been flushed to
the disk yet.

This property is only meaningful for log Stores. The default value is false.

• MAXSIZE (optional) specifies the maximum size of the LOGSTORE in MB. This translates to the
fullsize attribute in AleriML. If this option is not specified, it defaults to 8 MB. When it is specified
for other types of stores, the Sybase Aleri Streaming Platform ignores it. If the maximum size is
reached the server will shut down.

• INDEX (optional) specifies the kind of indexing to be used: HASH or TREE. This is optional and
only applies to Memory Stores. The default value is TREE.

2.3. Source Streams

A source stream is a stream that receives data from an external source. There can be any number of
source streams in a data model. All data flowing into a stream must have the same structure: each record
must have the same set of fields. Although all input channels are called “streams”, data does not actually
have to arrive as a stream; Source streams place no restriction on how frequently or infrequently data ar-
rives. Therefore, static reference data that is loaded from a file or a database is still loaded into the mod-
el via a stream.

The SQL CREATE TABLE statement is used to define a source stream. The Aleri SQL translator will
create an underlying SourceStream depending on the properties set in the CREATE TABLE statement.

Authoring in SQL

4

A source stream is defined using the following SQL syntax:

CREATE TABLE TableName [FOR INSERT] (
ColumnName Type [,...n]
[,PRIMARY KEY (KeyColumn [,...n])
] [STORE IS] StoreName
[[[,RETAIN] { [Duration { SEC | MIN | HRS | HOUR | DAYS } |(ALWAYS)] }]
| [,MAX RECORDS NoOfRecords [:SlackValue]]]
[,EXPIRES IN ExpiryDuration { SEC | MIN | HRS | HOUR | DAYS } [FROM ExpireFrom-
Column]
SET ExpiryColumn [NoOfTimes TIMES]]
[,AUTO GENERATE AutoGenColumn]
[WHERE FilterExpression [{ AND | OR } ...] \)] [;]

Note:

If a WHERE clause or the FOR INSERT keywords are specified, the Table is marked as insert
only.

where:

• TableName (required) is the name for the Base Stream being defined. The name must follow the
naming conventions that are specified in Section 1.2, “Names”.

• FOR INSERT (optional) directs the translator to generate an insert only table. This option is re-
commended when you know that a table will only receive inserts. This not only improves perform-
ance, but it also allows you to use this stream in INNER JOINS.

• ColumnName (required) is the name of the column that is being defined. This name must follow
the naming conventions and be unique within the stream.

• Type is one of the supported data types. Refer to Section B.1, “Data Types” for a list of supported
types.

• PRIMARY KEY (required) specifies one or more columns on which the table will be keyed.
KeyColumn is the name of a column. A primary key can contain one or more non-null columns. A
primary key must be defined for every table.

• STORE StoreName (required) specifies which storage manager is to be used. StoreName is
the name assigned to the storage manager in the CREATE TABLE statement. The persistence prop-
erties of the stream are determined by the type of assigned store.

• RETAIN Duration (optional) defines the retention period for the stream. The value ALWAYS
means that all data is retained. Duration is an integer that represents the number of seconds,
minutes, hours, or days for which the data is to be retained. Either RETAIN or MAX RECORDS
(below) may be specified. Retention periods will be ignored for tables if the INSERT ONLY,
WHERE or AUTOGEN clause is specified.

• MAX RECORDS NoOfRecords :SlackValue (optional) specifies retention based on num-
ber of records rather than time. NoOfRecords is an integer that represents the maximum number
of records to be retained. If there are excess records, the older records are deleted. SlackValue is
an optional parameter that specifies the number of records the stream can have over the defined
max NoOfRecords parameter before old records are purged. This improves efficiency by by
avoiding a purge on every incoming record. By default, this value is set to 10% of the NoOfRe-
cords parameter. MAX RECORDS or RETAIN (above) may be specified, but not both. Retention
policies can only be defined for non-insert only tables. If INSERT ONLY, WHERE, or AUTOGEN
are specified, the MAX RECORDS value will be ignored.

Authoring in SQL

5

• EXPIRES IN (optional) specifies that a flag will be set on each record after the specified Ex-
piryDuration time period has elapsed. The column to be used for the expiry flag is specified by
ExpiryColumn and the value in the column is incremented when the expiry time period has
elapsed. The expired flag may be incremented more than once by specifying a value greater than
one for the optional NoOfTimes parameter. By default, the expiry period is the time since the re-
cord was last updated (or created if it has never been updated); alternatively, the expiry period can
be the time since the timestamp contained in a column specified with ExpireFromColumn.

• ExpiryDuration specifies the time period after which the expiry flag on a record is set. The
time period is relative to the time the record was last updated unless an alternate time reference is
specified in the ExpiryFromColumn. This must be a positive integer greater than 0.

• ExpireFromColumn is an optional parameter which specifies that the Expiry Duration is relat-
ive to the value in this column rather than the last time the row was updated or deleted. The spe-
cified column must be defined as part of the current stream and must be of type date.

• ExpiryColumn specifies the name of the column in the current table that will be used to hold the
expiry flag. It will be this column whose value is incremented (updated) in order to indicate that the
record has expired. This column must be of type integer.

• NoOfTimes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it is re-
set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

• WHERE (optional) specifies a filter to be applied to the input stream. In other words, any record
that does not pass the filter is not passed down to any dependent derived streams. The inclusion of
the WHERE clause causes this stream to be eligible only for insert-only operations.

• filterExpression The filter expression to be applied. Note that when referring to a column
from the view being defined prefix the column name with a '.'. For example .column1. For informa-
tion on defining a filter expression see Section 2.4, “Continuous Queries”.

• AUTO GENERATE (optional) specifies that an automatically generated sequence number should
be added to each record. The column will be filled in with an increasing sequence of integers start-
ing with 0. The column can be used as a key, or part of a key, in the keys attribute. Therefore, the
autogen feature is particularly useful for streaming data that has no natural primary key, but where
each record is regarded as an insert. This option can only be used with Auto Streams (insert-only)
streams and ignored for regular streams.

• AutoGenColumn specifies the name of the column that will contain an automatically generated se-
quence number. The column must be of type int64. Only one column per stream can be auto gener-
ated.

The following example shows the table definition for a simple store.

// This is a simple store used in all the following examples
CREATE STORE "store1" MEMSTORE

/***
The following is an example of the most basic Table
definition with no options.
This generates a SourceStream primitive in AleriML.

***/

CREATE TABLE Table1 (
KeyColumn int32, Column1 string, Column2 date,

PRIMARY KEY (KeyColumn), STORE IS "store1");

Authoring in SQL

6

/**
The following is an example of a simple Insert Only Table
with no options.
This statement generates a SourceStream primitive in AleriML.

**/

CREATE TABLE Table2 FOR INSERT (
KeyColumn string, Column1 int32, Column2 int64,

PRIMARY KEY (KeyColumn), STORE IS "store1");

/**
The following is an example of a Table definition with
all supported options.

This generates a SourceStream primitive in AleriML
The WHERE and AUTO GENERATE clauses are only supported
for Insert Only Streams.
The MAX RECORDS clause can be used instead of the RETAIN
clause used in this example for record-based retention.

**/

CREATE TABLE Table3 (
KeyColumn1 int64, KeyColumn2 string, Column1 money,
Column2 int64, Column3 string, Column4 date, Column5 int32,

PRIMARY KEY (KeyColumn1, KeyColumn2),
STORE IS "store1",
RETAIN 10 SEC,
// The EXPIRES clause causes the value in Column5 to be set to 1
// after the first 10 Minutes of no activity on the record from
// the time specified in Column4. Thereafter the value in Column5
// is incremented by 1 after every 10 minutes of no activity
// 4 more times. If there is activity in the record then Column5
// is reset to 0 and the process begins again.
EXPIRES IN 10 MIN FROM Column4 SET Column5 5 TIMES);

/**
The following is an example of an Insert Only Table with
all possible options.

This statement generates an SourceStream primitive in XML with the
insert-only flag turned on. Insert Only Streams cannot have Expiry
and Retention Clauses because these generate updates. When the AUTO
GENERATE option is specified, a Table can have only have a single
key column and it must be of type int64. Note how the columns in
the filter clause are prefixed with a '.'. This is required when
referencing columns in the Table/View being defined.

***/

CREATE TABLE Table4 FOR INSERT (
KeyColumn int64, Column1 int32, Column2 int64,

PRIMARY KEY (KeyColumn), STORE IS "store1",
AUTO GENERATE KeyColumn
WHERE .Column2 > 10 AND .Column1 > 100);

2.4. Continuous Queries

The Continuous Query takes one or more other streams (tables, materialized views, or program views)
as input, and produces the result as a derived stream or, in SQL terminology, a materialized view. The
SQL CREATE MATERIALIZED VIEW statement defines a Continuous Query that produces a derived
stream. The Aleri SQL translator will create one or more underlying derived stream elements to generate

Authoring in SQL

7

the materialized view.

The following is the Aleri SQL syntax to define a continuous query:

CREATE [MATERIALIZED] VIEW ViewName
PRIMARY KEY (KeyColumn [,...])
STORE StoreName
[[[INTERMEDIATE STORE [IS] StoreName]
[| EXPIRES IN ExpiryDuration { SEC | MIN | HRS | HOUR | DAYS } [FROM ExpireFrom-
Column]
SET ExpiryColumn [NoOfTimes TIMES]]
| [DECLARE VariableName [eventCache(CacheDefinition) | VariableType]]
] | [CREATE FUNCTION FunctionName { FunctionDefinition } RETURN ReturnType]
[...]]
AS SELECT
Expr [[AS] ColumnName] [,Expr ...]
FROM
{ TableName | ViewName } [AliasName]
[RETAIN { [[Duration { SEC | MIN | HRS | HOUR | DAYS }]] |(ALWAYS) } |
[MAX RECORDS NoOfRecords [:SlackValue]]]
[Join Type { TableName
| ViewName }] [AliasName]
[RETAIN { [[Duration { SEC | MIN | HRS | HOUR | DAYS }]] |(ALWAYS) } |
[MAX RECORDS NoOfRecords [:SlackValue]]] ON
LeftExpression = RightExpression [AND LeftExpression ...]
[Join Type ...]
[WHERE FilterExpression [AND | OR]]
[GROUP BY GroupExpression [, ...]]
[GROUP ORDER BY OrderExpression [(ASC) | DESC] [, ...]]
[GROUP HAVING GroupHavingExpression [AND | OR ...]]
[HAVING HavingExpression [AND | OR]]
[UNION SELECT... ...] [;]

Components:

• ViewName (required) is the name for the Materialized View being defined. The name must be
unique and should follow the naming conventions specified in Section 1.2, “Names”.

• PRIMARY KEY KeyColumn (required) defines the primary key for a derived stream. A primary
key can be made up of one or more columns that are defined to be non-null. KeyColumn is set to a
column name in the view as defined in the Select statement. A primary key must be defined for
every derived stream.

• STORE StoreName (required) specifies the Store to be used. The persistence properties for the
stream are derived from the type of store specified.

• INTERMEDIATE STORE (optional) specifies the store that will be used by any intermediate
streams required to build this materialized view. If not specified, it defaults to the STORE value.
Note that there is no direct equivalent to this property in AleriML. This is only used to specify to
the translator to use a different store for intermediate streams rather than the store for the stream be-
ing defined. This option is typically used for derived streams that use Log Stores because it gives
the ability to store the intermediate streams in a Memory Store or Stateless Store to improve per-
formance.

• RETAIN (optional) specifies the minimum amount of time the Sybase Aleri Streaming Platform
retains the data in the view before archiving or purging it. The duration can be specified in minutes,
hours, or seconds. If this parameter and the MAX RECORDS parameter are not specified, the data
in the view is always retained. Note that this property can only be specified for a materialized view

Authoring in SQL

8

that is a direct copy of the input table/view (in other words, the column order and the number of
columns of the view must match that of the input specified in SELECT...FROM..., and there
can be no filter or group by clauses). See the description of this property in Section 2.3, “Source
Streams” for more information.

• MAX RECORDS (optional) specifies the maximum number of records to keep in a derived
stream. When the number of records exceeds this maximum number, the older records are eligible
for purging or archiving. Like the RETAIN property, currently, this property can only be specified
for materialized views that are direct copies of the input table or view. See the description of this
property in Section 2.3, “Source Streams” for more information.

• EXPIRES IN specifies that a flag will be set on each record after the specified ExpiryDura-
tion time period has elapsed. The column to be used for the expiry flag is specified by Expiry-
Column and the value in the column is incremented when the expiry time period has elapsed. The
expired flag may be incremented more than once by specifying a value greater than one for the op-
tional NoOfTimes parameter. By default, the expiry period is the time since the record was last
updated (or created if it has never been updated); alternatively the expiry period can be the time
since the timestamp contained in a column specified with ExpireFromColumn.

• ExpiryDuration specifies the time period after the expiry flag on a record is set. The time peri-
od is relative to the time the record was last updated unless an alternate time reference is specified
in the ExpiryFromColumn. This must be a positive integer greater than 0.

• ExpireFromColumn is an optional parameter that specifies that the Expiry Duration is relative
to the value in this column rather than the last time the row was updated or deleted. The specified
column must be defined as part of the current stream and type date.

• ExpiryColumn specifies the name of the column in the current table that will be used to hold the
expiry flag. This column's value will be incremented (updated) to indicate that the record has ex-
pired. This column must be of type integer.

• NoOfTimes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it is re-
set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

• DECLARE (optional) defines one or more variables and functions that are local to the view being
declared. The variable can be one of the basic types or an eventCache. There may be any number of
local variables and functions defined.

• VariableName is the name of the variable and must follow the standard naming conventions.
Refer to Section 1.2, “Names” for more information. The variable names must be unique with the
list of variables defined for the current view.

• VariableType is the data type of the variable being defined. The data type must be a supported
data types or an eventCache. Refer to Section B.1, “Data Types” for a list of supported types.

• CacheDefinition is the definition for the event cache. Refer to Section 4.3.7, “Event Caches”
for more information on defining and using event aches.

Note:

Although the syntax allows a user to specify more than one INTERMEDIATE STORE and
EXPIRES clause for a derived stream, only the last is honored by the translator. The translator
generates a warning when any clause is repeated.

• FunctionName is the name of the function being defined. The function name must be unique
within the scope of the view being defined and must follow the standard naming conventions spe-
cified in the section Section 1.2, “Names”.

Authoring in SQL

9

• FunctionDefinition is the body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

• ReturnType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types”.

• AS SELECT [Expr AS ColumnName] (required) defines the columns of the materialized view
(that is, the structure of the output records for this stream). Expr is an expression that evaluates to
a scalar value. An expression can be a simple reference to a value from the input table/view
(specified in the FROM clause), a formula to calculate a new value from the column in the view, or
even a constant. It could also be a complex expression consisting of one or more internal/external
function calls, if-then-else-end statements, and so on. Refer to Section 1.3, “Expressions” for more
information. If the expression is a direct copy of an input column, the ColumnName can be omit-
ted, in which case the name will match the name of the input column. Each ColumnName must be
unique within the view.

• FROM TableName | ViewName [AliasName] (required)specifies one or more streams that
will be the input(s) to the materialized view being defined. There must be at least one input stream.
An optional AliasName can be specified to use when referring to the input stream in subsequent
expressions. If the Alias is not explicitly specified, the stream name is used in expressions. The Ali-
as Name must follow the proper naming conventions (seeSection 1.2, “Names”).

• JoinType (optional) specifies multiple input streams in the FROM clause. This can be one of [IN-
NER] JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN. Each Join Type is followed by an
ON clause, which specifies the relationship between the tables. See Section 2.14.1, “Join Expres-
sions” for more information.

• WHERE optionally specifies one or more Filter Expressions that evaluate to true or false and
are concatenated to each other by either an AND or OR operator. Although both sides of the ex-
pression can be constants, typically at least one side of the filter clause refers to one or more
columns in the input stream(s). See Section 2.14.2, “Filter Expressions” for more information.

• GROUP BY GroupExpression optionally specifies values on which the data is to be grouped.
If a GROUP BY clause is used, at least one GroupExpression must be specified. The expres-
sion must be based on a column in one of the input streams. There must be one GroupExpres-
sion for each key column in the materialized view that is being defined, and each GroupEx-
pression must match the Expr for that column in the SELECT clause.

• GROUP ORDER BY OrderExpression can optionally be used in conjunction with the
GROUP BY clause to order the rows in each group. OrderExpression is any expression not
containing aggregation operations like MIN and MAX. It can also be followed by the keyword ASC
or DESC for ascending or descending order. If ASC/DESC is not specified, it defaults to ascend-
ing. One or more Order expressions may be specified, separated by commas. This ordered group is
used in functions like RANK, FIRST, and LAST. See Appendix B, Data Types, Operators and
Functions for more information.

• GROUP HAVING GroupHavingExpression (optional) is like a WHERE clause for groups
that filter out records from the group before applying aggregation operations. This clause can only
be specified in conjunction with the GROUP BY clause. The GroupHavingExpression is
identical to a filter expression, except that it is used only when there is aggregation to filter rows in
a group before the aggregation operations are applied. This expression must follow all the rules of a
filter expression as described in Section 2.14.2, “Filter Expressions”.

• HAVING HavingExpression (optional) is a clause similar to the WHERE clause. The main
difference is that the filter is executed after all the rules have been applied. It can have aggregation
clauses and it can refer to columns within the current table. Like the WHERE clause, there may be
one or more filters that are concatenated by AND/OR operators.

Authoring in SQL

10

• UNION SELECT (optional) allows you to perform a UNION on the results of multiple SELECT
statements. The structure of each SELECT statement on which the UNION is to be applied must be
the same.

2.4.1. Examples of Materialized View Definitions

We use the following tables as inputs to the examples below.

CREATE STORE "store1" MEMSTORE;
CREATE STORE store2 LOGSTORE ON 'store2' MAXSIZE 16;
CREATE STORE store3 MEMSTORE;
CREATE TABLE Table1 (

KeyColumn1 int32, KeyColumn2 string, Column1 string, Column2 date,
Column3 money,

PRIMARY KEY (KeyColumn1,KeyColumn2),
STORE IS "store1");

CREATE TABLE Table2 (
KeyColumn1 int32, Column1 string, Column2 date,

PRIMARY KEY (KeyColumn1),
STORE IS "store1");

CREATE TABLE Table3 (
KeyColumn1 int32, KeyColumn2 string, Column1 string, Column2 date,
Column3 money,

PRIMARY KEY (KeyColumn1,KeyColumn2),
STORE IS "store1");

The following is an example of the most basic Materialized View definition with no options. It generates
a Compute Stream primitive in AleriML.

CREATE MATERIALIZED VIEW View1
PRIMARY KEY (KeyColumn1)
STORE IS "store1"
AS SELECT tbl.KeyColumn1, tbl.Column1, tbl.Column2 FROM Table2 tbl ;

The following is an example of a Materialized View definition that generates a Compute Stream primit-
ive in AleriML and contains all possible options.

Notes:

• This generates a Compute Stream primitive in AleriML.

• The MAX RECORDS clause after Table1, lstore1 and lstore2 below can be replaced with
the RETAIN clause to specify retention by time instead of by records.

• When the EXPIRES clause is used, neither the STORE nor the INTERMEDIATE STORE can be
set to a log store.

CREATE MATERIALIZED VIEW View_1a
PRIMARY KEY (KeyColumn1, KeyColumn2)
STORE IS "store1"
INTERMEDIATE STORE "store1"
EXPIRES IN 10 SEC

Authoring in SQL

11

SET ExpiryColumn 3 TIMES
AS SELECT tbl.KeyColumn1, tbl.KeyColumn2, tbl.Column1,

tbl.Column2, 0 ExpiryColumn,
// Determines the maximum Column1 value in the last 5 records.
Sequence(aggregate(insert, lstore1, string, tbl.Column1),
aggregate(max, \ lstore1, string, -1)) Moving_Max_Column1,
// Determines the maximum Column2 value in the last 5 records.
Sequence(aggregate(insert, lstore2, date, tbl.Column2),
aggregate(min, \ lstore2, date, -1)) Moving_Min_Column2

FROM Table1 tbl MAX RECORDS 20 ;

This statement generates a Filter Stream primitive in AleriML. If the columns in the Materialized View
are not identical to the input, then a Filter Stream will be generated followed by a Compute Stream to
match the specified column definition.

CREATE MATERIALIZED VIEW View2
PRIMARY KEY (KeyColumn1) STORE IS "store1"
AS SELECT * FROM Table2 tbl

WHERE tbl.Column1 in ('Chicago', 'London', 'Frankfurt');

This statement generates an Aggregate Stream primitive in AleriML.

CREATE MATERIALIZED VIEW View3
PRIMARY KEY (KeyColumn1) STORE IS "store1"
AS SELECT tbl.KeyColumn1, MAX(tbl.Column1) Max_Column1,

MIN(tbl.Column2) Min_Column2 FROM Table1 tbl
GROUP BY tbl.KeyColumn1;

This statement generates a Filter Stream Primitive for the WHERE clause and an Aggregate Stream prim-
itive in AleriML followed by a Compute Stream primitive to fulfill the Having Clause.

Notes:

• When the EXPIRES clause is used, neither the STORE nor the INTERMEDIATE STORE can be
set to a log store.

• It is more efficient to use the GROUP HAVING clause instead of the WHERE clause. In this ex-
ample, it will be more efficient to combine the WHERE and GROUP HAVING clauses into a single
GROUP HAVING clause.

• The MAX RECORDS clause can be replaced with the RETAIN clause to specify time based reten-
tion.

• The LOCALSTORAGE clause cannot be specified with an aggregation.

• One can do a join by specifying more than one table in the FROM clause. If this is done, however, a
retention clause CANNOT be specified.

CREATE MATERIALIZED VIEW View_3a
PRIMARY KEY (KeyColumn1)
STORE IS "store1"
INTERMEDIATE STORE IS "store3"

Authoring in SQL

12

EXPIRES IN 10 MINUTES SET ExpiryColumn 3 TIMES
AS SELECT tbl.KeyColumn1, MAX(tbl.Column1) Max_Column1,

MIN(tbl.Column2) Min_Column2,
FIRST(tbl.Column1) First_Column1,
LAST(tbl.Column3) Last_Column3,
0 ExpiryColumn

FROM Table1 tbl MAX RECORDS 20:10
WHERE tbl.Column1 IN ('Chicago', 'London')
GROUP BY tbl.KeyColumn1
GROUP ORDER BY tbl.Column2
GROUP HAVING tbl.Column3 > 100.0
HAVING LAST(tbl.Column3) > 1000.0;

This statement generates a Join Stream primitive in AleriML:

CREATE MATERIALIZED VIEW View4
PRIMARY KEY (KeyColumn1, KeyColumn2)
STORE IS "store1"
AS SELECT tbl1.*, tbl2.Column1 Table2_Column1

FROM Table1 tbl1
LEFT JOIN Table2 tbl2 ON (tbl1.KeyColumn1 = tbl2.KeyColumn1);

The following statement generates a Join Stream primitive in AleriML.

Notes:

• The following clauses can be used with the Joins: WHERE GROUP BY, GROUP ORDER (requires
GROUP BY), and GROUP HAVING (requires GROUP BY).

• Retention cannot be specified when performing a join.

• A LOCALSTORAGE clause cannot be specified with a join.

CREATE MATERIALIZED VIEW View_4a
PRIMARY KEY (KeyColumn1, KeyColumn2)
STORE IS "store1"
EXPIRES IN 5 SEC SET ExpiryColumn
AS SELECT tbl1.*, tbl2.Column1 Table2_Column1, 0 ExpiryColumn

FROM Table1 tbl1
LEFT JOIN Table2 tbl2 ON (tbl1.KeyColumn1 = tbl2.KeyColumn1);

The following is an example of a Materialized View with a UNION operation with no options.

Notes:

• This statement generates a Union Stream primitive in AleriML.

• If an individual statement that makes up the Union Stream is not a direct copy of a source table/
view, then intermediate Streams will be generated in addition to the Union Stream.

• The options that can be included in the individual SQL statements follow the same rules as men-
tioned in the previous examples.

• The LOCALSTORAGE clause cannot be specified in a UNION statement.

Authoring in SQL

13

CREATE MATERIALIZED VIEW View5
PRIMARY KEY (KeyColumn1, KeyColumn2)
STORE IS "store1"
AS SELECT * FROM Table1 UNION SELECT * FROM Table3;

The following is an example of a Materialized View with a UNION operation and all possible options.

Notes:

• This statement generates a Union Stream primitive in AleriML.

• If a individual statement that makes up the Union is not a direct copy of a source table/view, then
intermediate Streams will be generated.

• The options that can be included in the individual SQL statements follow the same rules as men-
tioned in the previous examples.

• The LOCALSTORAGE clause cannot be specified in a UNION statement.

CREATE MATERIALIZED VIEW View_5a
PRIMARY KEY (KeyColumn1, KeyColumn2) STORE IS "store1"
EXPIRES IN 5 SEC SET ExpiryColumn
AS SELECT *, 0 ExpiryColumn FROM Table1 RETAIN 1 HOUR UNION

SELECT *, 0 ExpiryColumn FROM Table3 RETAIN 10 MINUTES ;

The following is an example of a Materialized View that copies the data from another stream directly
and optionally specifies a retention policy on the data.

Notes:

• This statement generates a Copy Stream primitive in AleriML.

• In place of the '*' one can specify all the column names from the source stream in exactly the same
order it appears in the Source. A '*' is just a convenient way representing it.

• If the source Stream is Materialized View and it is in a Log Store, this is the only way to specify re-
tention on the data.

• Specifying any other option other than Retention will not result in a Copy Stream being gener-
ated.

CREATE MATERIALIZED VIEW View6
PRIMARY KEY (KeyColumn1, KeyColumn2)
STORE IS "store1"
AS SELECT * FROM Table1 MAX RECORDS 10:5 ;

2.5. Program View Definition

A Program View is an Aleri SQL construct that is used to define a FlexStream element in the data mod-
el. As the name indicates, the PROGRAM is a set of methods written in SPLASH (see Chapter 4,
SPLASH Programming Language) that defines the contents of the view. A Program View is a form of a
Materialized View and can be used wherever a Materialized View is used. The syntax to declare a Pro-
gram View:

Authoring in SQL

14

CREATE PROGRAM VIEW ViewName
PRIMARY KEY (KeyColumn [,...])
STORE StoreName [[
[| EXPIRES IN ExpiryDuration {SEC | MIN | HRS | HOUR | DAYS} [FROM ExpireFrom-
Column]
SET ExpiryColumn [NoOfTimes TIMES]]
| [DECLARE VariableName [eventCache(CacheDefinition) | VariableType]]
] | [CREATE FUNCTION FunctionName {FunctionDefinition} RETURN ReturnType]
[...]]
AS
ColumnName Type [,...n]
FROM
{ TableName | ViewName } [,...]
PROGRAM
[VariableName VariableType ; [...]]
{ [MethodName FOR] TableName { SplashProgram } [...] }

where

• ViewName is the name of the Program View being defined. The name must be unique and must
follow the naming conventions specified in Section 1.2, “Names”.

• PRIMARY KEY KeyColumn specifies one or more columns that will form the key for this view.
A primary key must be defined for every Program View.

• STORE StoreName is the name of Store that will be used to hold retained data for this view. The
persistence properties for the view are derived from the type of Store specified.

• EXPIRES IN specifies that a flag will be set on each record after the specified ExpiryDura-
tion time period has elapsed. The column to be used for the expiry flag is specified by Expiry-
Column and the value in the column is incremented when the expiry time period has elapsed. The
expired flag may be incremented more than once by specifying a value greater than one for the op-
tional NoOfTimes parameter. By default, the expiry period is the time since the record was last
updated (or created if it has never been updated); alternatively the expiry period can be the time
since the timestamp contained in a column specified with ExpireFromColumn.

• ExpiryDuration specifies the time period after the expiry flag on a record is set. The time peri-
od is relative to the time the record was last updated unless an alternate time reference is specified
in the ExpiryFromColumn. This must be a positive integer greater than 0.

• ExpireFromColumn is an optional parameter that specifies that the Expiry Duration is relative
to the value in this column rather than the last time the row was updated or deleted. The specified
column must be defined as part of the current stream and type date.

• ExpiryColumn specifies the name of the column in the current table that will be used to hold the
expiry flag. This column's value will be incremented (updated) to indicate that the record has ex-
pired. This column must be of type integer.

• NoOfTimes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it is re-
set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

• DECLARE (optional) defines one or more variables and functions that are local to the view being
defined. The variable can be one of the basic types or an eventCache. There may be any number of
local variables and functions defined.

• VariableName is the name of the variable and must follow the standard naming conventions.

Authoring in SQL

15

Refer to Section 1.2, “Names” for more information. The variable names must be unique with the
list of variables defined for the current view.

• VariableType is the data type of the variable being defined. The data type must be a supported
data types or an eventCache. Refer to Section B.1, “Data Types” for a list of supported types.

• CacheDefinition is the definition for the event cache. Refer to Section 4.3.7, “Event Caches”
for more information on defining and using even aches.

Note:

Although the syntax allows a user to specify more than one INTERMEDIATE STORE and
EXPIRES clause for a derived stream, only the last is honored by the translator. The translator
generates a warning when any clause is repeated.

• FunctionName is the name of the function being defined. The function name must be unique
within the scope of the view being defined and must follow the standard naming conventions spe-
cified in the section Section 1.2, “Names”.

• FunctionDefinition is the body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

• ReturnType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types”.

• AS ColumnName Type defines the columns for this view and the data type for each column.
Each column name must must be unique within the view and must follow the naming conventions
specified later in this section within the stream. In other words, two columns within the same
stream cannot have the same name. Type is one of the supported data types. Refer to Section B.1,
“Data Types” for a list of supported types.

• FROM TableName | ViewName specifies specifies one or more input streams for this view.
There may be any number of input streams defined for a Program View.

• PROGRAM is a collection of variables and methods that determines the output of this view. There
may be any number of variables defined, but there has to be exactly one method defined for each
input stream. Whenever a record is received on an input stream, the appropriate method is called to
determine how the input will affect the view. Note that variables can be defined inside as well as
outside of the methods. A variable defined outside the methods is form of “global” variable which
is available to all the methods defined in this Program View.

• VariableName is the name of a variable, which must follow the naming convention standard
specified in Section 1.2, “Names”. A variable name must be unique within a program view.

• VariableType specifies the data type for the variable. The data type must be one of the types
listed in Section B.1, “Data Types”.

• MethodName is an optional name that can be specified for a method. If the MethodName is not
provided, then the name is assigned to be the same as the TableName. The MethodName must
follow the standard naming conventions specified in Section 1.2, “Names”.

• SplashProgram is the actual SPLASH program that computes the output (if any). See
Chapter 4, SPLASH Programming Language for information on how to write a SPLASH program.

2.6. Pattern View Definition

A Pattern View is an Aleri SQL construct that defines a Pattern Stream in the model. A Pattern View

Authoring in SQL

16

can be used to define complex relationships between records in one or more streams. It is a specialized
form of a Materialized View and can be used anywhere a Materialized View can be used. The syntax to
declare a Pattern View is as follows:

CREATE PATTERN VIEW ViewName
PRIMARY KEY (KeyColumn [,...])
STORE StoreName [[
[| EXPIRES IN ExpiryDuration {SEC | MIN | HRS | HOUR | DAYS} [FROM ExpireFrom-
Column]
SET ExpiryColumn [NoOfTimes TIMES]]
| [DECLARE VariableName [eventCache(CacheDefinition) | VariableType]]
] | [CREATE FUNCTION FunctionName {FunctionDefinition} RETURN ReturnType]
[...]]
AS
ColumnName Type [,...n]
PATTERN PatternDefinition [...]
where

• ViewName is the name of the Pattern View being defined. The name must be unique and must fol-
low the naming conventions specified in Section 1.2, “Names”.

• PRIMARY KEY KeyColumn specifies one or more columns that will form the key for this view.
A primary key must be defined for every Program View.

• STORE StoreName is the name of Store that will be used to hold retained data for this view. The
persistence properties for the view are derived from the type of Store specified.

• EXPIRES IN specifies that a flag will be set on each record after the specified ExpiryDura-
tion time period has elapsed. The column to be used for the expiry flag is specified by Expiry-
Column and the value in the column is incremented when the expiry time period has elapsed. The
expired flag may be incremented more than once by specifying a value greater than one for the op-
tional NoOfTimes parameter. By default, the expiry period is the time since the record was last
updated (or created if it has never been updated); alternatively the expiry period can be the time
since the timestamp contained in a column specified with ExpireFromColumn.

• ExpiryDuration specifies the time period after the expiry flag on a record is set. The time peri-
od is relative to the time the record was last updated unless an alternate time reference is specified
in the ExpiryFromColumn. This must be a positive integer greater than 0.

• ExpireFromColumn is an optional parameter that specifies that the Expiry Duration is relative
to the value in this column rather than the last time the row was updated or deleted. The specified
column must be defined as part of the current stream and type date.

• ExpiryColumn specifies the name of the column in the current table that will be used to hold the
expiry flag. This column's value will be incremented (updated) to indicate that the record has ex-
pired. This column must be of type integer.

• NoOfTimes is an optional parameter specifying the maximum number of times the expiry flag
may be incremented. When the max is reached, the flag will no longer be incremented until it is re-
set to zero upon an update or new value in the ExpiryFromColumn. The default value is 1.

• DECLARE (optional) defines one or more variables and functions that are local to the view being
defined. The variable can be one of the basic types or an eventCache. There may be any number of
local variables and functions defined.

• VariableName is the name of the variable and must follow the standard naming conventions.
Refer to Section 1.2, “Names” for more information. The variable names must be unique with the

Authoring in SQL

17

list of variables defined for the current view.

• VariableType is the data type of the variable being defined. The data type must be a supported
data type or an eventCache. Refer to Section B.1, “Data Types” for a list of supported types.

• CacheDefinition is the definition for the event cache. Refer to Section 4.3.7, “Event Caches”
for more information on defining and using even aches.

Note:

Although the syntax allows a user to specify more than one INTERMEDIATE STORE and
EXPIRES clause for a derived stream, only the last is honored by the translator. The translator
generates a warning when any clause is repeated.

• FunctionName is the name of the function being defined. The function name must be unique
within the scope of the view being defined and must follow the standard naming conventions spe-
cified in the section Section 1.2, “Names”.

• FunctionDefinition is the body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

• ReturnType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types”.

• AS ColumnName Type defines the columns for this view and the data type for each column.
Each column name must must be unique within the view and must follow the naming conventions
specified later in this section within the stream. In other words, two columns within the same
stream cannot have the same name. Type is one of the supported data types. Refer to Section B.1,
“Data Types” for a list of supported types.

• FROM TableName | ViewName specifies specifies one or more input streams for this view.
There may be any number of input streams defined for a Program View.

• PATTERN defines a pattern that needs to be detected and the action that needs to be performed
when the pattern is detected. Each Pattern View must have at least one PATTERN clause.

• PatternDefinition is the definition for the pattern. Refer to the section Appendix C, Pattern
Matching Language for information on defining Patterns.

2.7. Parameter Definition

A parameters can be used in an expression in place of a constant for a value that may need to be changed
while the Sybase Aleri Streaming Platform is running. A parameter is synonymous to Global variables
described in section Section 3.4, “Global”. The value of the parameter can be changed at runtime by is-
suing a command via the Command and Control interface or from any expression/rule from within the
model.

The syntax for the parameter definition:

DECLARE ParameterName DataType[[DefaultValue]]
where:

• ParameterName is the name of a parameter. This name must be unique across all the objects in
the SQL file.

• DataType is the data type for the parameter. It must be any of the supported data types.

Authoring in SQL

18

• DefaultValue optionally specifies the default value for the parameter. If it's not specified, then
it defaults to NULL.

The defined parameters can be accessed in expressions via the GETPARAM() function. The syntax for
this function is as follows:

GETPARAM(ParameterName)

2.8. Global Function Definition

Just like Parameters, one or more global functions can also be declared. A Global function is available to
any other functions (global or local) and rules/expressions that are defined after the function has been
defined. The syntax for declaring global functions is as follows:

CREATE FUNCTION FunctionName{FunctionDefinition} RETURN ReturnType

where:

• FunctionName is the name of the function being defined. The function name must be unique
within the scope of the model and must follow the standard naming conventions specified in the
section Section 1.2, “Names”.

• FunctionDefinition is the body of the function and is defined using the SPLASH syntax.
Refer to the section Section 4.5, “Functions” for more information on using functions and defining
the body of the function.

• ReturnType defines the type of the function return value. The type can one of the basic types de-
scribed in section Section B.1, “Data Types”.

2.9. Data Location Definition

The Data Location construct in Aleri SQL is used to define a corresponding Data Location object in
AleriML. A Data Location defines the location and default characteristics of a source or target for the
Sybase Aleri Streaming Platform. The Data Location definition goes hand in hand with Connector
Definitions described below. The syntax for defining a Data Location is as follows:

CREATE DATA LOCATION LocationName TYPE IS TypeName [SET Prop-
erty1=Value1[,Property2=Value2,...]]
where:

• LocationName is the name of the data location. This must be unique across the entire model and
must follow the naming conventions described in section Section 1.2, “Names”.

• TypeName is the location type meaning the type of data that the connector provides. For example,
xml_in, jdbc_in, or smtp_out.

• Property1 is the first property or attribute that needs to be set for a given location type. The
name of the property depends on the type of data location being specified. If the property name is a
keyword or if it contains spaces then the it must be surrounded in double quotes. There may be any
number of properties specified.

• Value1 is the value for the property. If the value is a keyword or contains spaces it must be sur-
rounded by single quotes.

Authoring in SQL

19

Note:

The validity of the values supplied for TypeName, Property1, Value1 not verified
during compile time. If there are any errors it will be flagged during run time.

2.10. Connection Definition

Connections allow data to be imported from external sources into the Sybase Aleri Streaming Platform
(inbound connectors) and export data from the Sybase Aleri Streaming Platform to external sources
(outbound connectors). One or more connections can be associated with a view/table. Tables can be as-
sociated with both inbound and outbound connectors whereas views can be associated with only out-
bound connectors. The syntax for defining a connector is as follows

CREATE {input | output} CONNECTION ConnectionName FOR TableViewName
{FROM LocationName | TYPE [IS] TypeName} [SET Prop-
erty1=Value1[,Property2=Value2,...]]
where:

• ConnectionName is the name for the connection. It must be unique within the scope of a model
and following the naming conventions described in the section Section 1.2, “Names”.

• LocationName is the name of a previously defined Data Location.

• TypeName represents the type of connector to create. This can only be provided if the Loca-
tionName parameter is not specified.

• Property1 is the first property or attribute that needs to be set for a given location type. The
name of the property depends on the type of data location being specified. If the property name is a
keyword or if it contains spaces then the it must be surrounded in double quotes. There may be any
number of properties specified.

• Value1 is the value for the property. If the value is a keyword or contains spaces it must be sur-
rounded by single quotes.

Note:

The validity of the values supplied for TypeName, Property1, Value1 is not verified
during compile time. If there are any errors it will be flagged during run time.

One or more Connections can be associated with a given Data Location.

The CREATE CONNECTION statement must follow the CREATE TABLE statement, or you
get an error saying that the TableViewName does not exist.

2.11. Connection Group Definition

When one or more connections are defined in a model the question quickly arises, how to control the or-
der in which the connectors are started up. This where the Connection Group comes in. One can assign a
set of connectors to a group and specify whether the connectors should be started up or not. Also, if the
connections in a group needs to be automatically started then the connections defined within a group are
started in parallel. When multiple connection groups are defined each connection group that needs to be
started is started in the order in which the groups are defined. For more information on Connection
Groups refer to the document Section 2.13, “Access Control”.

Authoring in SQL

20

The syntax for defining a Connection Group is as follows

CREATE CONNECTION GROUP GroupName (Connection1 [,Connection2...]) TYPE [IS]
{start | nostart}

where:

• GroupName is the name for the connection group. It must be unique within the scope of a model
and following the naming conventions described in the section Section 1.2, “Names”.

• Connection1 is the name of a previously defined Connection that should be associated with
this group. There must be at least one connection associated with every group.

• start | nostart specifies whether to automatically start the connections within the group when the
Platform starts or not. If the connections are not automatically started they can be manually started
via the command and control interface.

Note:

All connections specified within a group are started in parallel whereas the connection groups
themselves are processed in the order in which they are defined.

A connection can be specified only once in only one group. If it appear more than once in a
group or if it is specified in more than group it will be flagged as an error.

2.12. Distributed Model Definition

Aleri SQL allows a data model to be distributed across multiple servers through the definition of Mod-
ules and Clusters. Refer to the Authoring Guide for more information.

There are two parts to defining a distributed model. The first part defines a module. A module contains
all of the Stores and Streams (tables and views) that will be executed on a single instance of the Sybase
Aleri Streaming Platform.

A module is defined by enclosing a set of CREATE (store/table/view) statements within a
CREATE MODULE statement. It uses the following Aleri SQL syntax:

CREATE MODULE ModuleName
BEGIN
ObjectDefinitions
END [;]
where:

• ModuleName is the name of the module. The module name follows the standard naming conven-
tion rules and must be unique across the entire model.

• BEGIN specifies the beginning of the module. All stores and streams defined after this point be-
long to the specified module.

• ObjectDefinitions represents any number of stores, streams, and derived streams that may
be created. When created,these objects belong to the specified module.

• END signals the end of the module. This keyword must be provided before creating another mod-
ule. If this is not provided, then all objects listed at the end of the file are considered to be part of
the current module.

Authoring in SQL

21

The second part to defining a distributed module involves assigning individual modules to run on specif-
ic servers. This is done via the following syntax:

CREATE CLUSTER ClusterName
ModuleName HostName CommandPort
[, ModuleName2 HostName2 CommandPort2...] [;]
where:

• ClusterName is the name of the cluster. It follows the standard object naming conventions and
must be unique with a given model.

• ModuleName is the name of the module for which the instance information is to be specified. It
may appear only once in each Cluster specification.

• HostName is the name of the host on which the Sybase Aleri Streaming Platform will be running.

• CommandPort is the TCP/IP port on which the Sybase Aleri Streaming Platform is listening for
Command and Control information. This number must be positive and less than 65536.

More than one cluster section can be specified in a given model. The cluster to be used is decided at
runtime. Every module may be reference by one cluster. Additionally, a cluster may be defined at any
point in the model. But it's unnecessary to define all the modules before referencing one in a cluster
definition.

CREATE CLUSTER
cluster1 module1 "amazon.aleri.com" 11190,

module2 "tigris.aleri.com" 11190

CREATE MODULE module1
BEGIN
CREATE STORE store0 MEMSTORE;
CREATE TABLE Stream1 FOR INSERT(

a int64, PRIMARY KEY(a),
STORE IS store0);

END

CREATE MODULE module2
BEGIN
CREATE STORE store1 MEMSTORE;
CREATE MATERIALIZED VIEW Stream1Copy

PRIMARY KEY(a)
STORE IS store1
AS SELECT * FROM Stream1;

CREATE MATERIALIZED VIEW DerivedStream1
PRIMARY KEY (a)
STORE IS store0
AS SELECT a.a, NULL*0 nullcol FROM Stream1Copy a;

END

2.13. Access Control

Access control can be specified either at the model level or for an individual stream. The syntax for spe-
cifying access control is:

GRANT [{privilege} [, ...]] [ON StreamName] TO [{role} [,...]]

where:

Authoring in SQL

22

• privilege can have one of the following options: control, query, subscribe, publish
or all. There may be more than one privilege given to each role. The default is all, which
means that the specified role(s) has been granted all the possible privileges.

• StreamName is the name of the stream (table or view) for which the access control is being spe-
cified. If that is not provided, then this access control specification is put into effect at the model
level. control.

• role is the name of the role for which the access control is being specified. There may be more
than one role specified, in which case the specified privilege is applied to all of the specified roles.
Note that the role does not have to exist at translation time.

There may be more than one Grant statement specified for a given stream, in which case the resultant
Access Control for the stream is a union of all access controls specified. The Access Control setting for
any intermediate streams (ones generated by the translator in order to create the specified Stream) de-
faults to the Access Control of the intermediate stream's inputs. This can only be modified by manually
editing the generated AleriML file.

2.14. Aleri SQL Expressions

2.14.1. Join Expressions

A Join Expression follows the FROM keyword and is specified by including a JoinType followed by
the elements of the Join. The syntax is:

FROM
{ TableName | ViewName } [AliasName]
JoinType { Table Name | ViewName } [AliasName ON]
[LeftExpression = RightExpression]
[AND LeftExpression...]
[JoinType...]

The supported Join types are INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN.

A Join Expression allows data from two or more tables to be combined by matching records with
common values in the specified fields. The join operation is performed before applying any complex fil-
ters (filters based on columns from more than one stream), aggregations, or computations. The expres-
sion following the ON keyword specifies how two tables are related to each other. This expression may
contain more than one sub-expression concatenated by an AND clause.

Currently, each sub-expression is restricted to a simple between two columns, for example, Ali-
as1.Col1 = Alias2.

The only currently supported operator is “=”.

One of the two columns must come from the first stream being joined, and the other column must come
from the second stream being joined.

Note:

At least one side of a Join clause must be a key column.

As mentioned earlier, more than two tables can be Joined together. In this case, the Aleri SQL to Aler-
iML translator will generate the AleriML to perform the Join in a single step as long as there is only one
driving stream (that is, the many side of a one-to-many Join). If there are many driving tables in the
Join expression, the translator will generate a sub-Join for every driving stream and will combine the
results together.

Authoring in SQL

23

Notes:

• The order of the Joins can be controlled to some extent by grouping the Joins using parentheses.
See Section 2.14.1.2, “Examples of Joins” for details.

• The translator does not optimize based on the data in the tables because it does not know anything
about them. This is the nature of streams and continuous queries: the query structures are defined
before the data arrives. The translator only tries to optimize the generated AleriML to generate the
least number of sub-Joins.

2.14.1.1. Types of Joins

As mentioned earlier, four different types of Joins are supported by the Sybase Aleri Streaming Plat-
form. The type of join controls whether a record gets selected for processing. Here is an explanation of
each of the Join types:

• INNER JOIN — When the columns being Joined do not match, no rows are selected from either
of the tables being Joined.

• LEFT JOIN — When the columns being Joined do not match, all the rows belonging to the stream
on the left side of the Join type are selected, and only those rows where the Join keys match are se-
lected from the stream on the right side of the Join type. Usually the left side of the Join type in this
case is the "many" side of a one-to-many relationship.

• RIGHT JOIN — This is the reverse of the LEFT JOIN. Note that any Join Expression can be writ-
ten to be a RIGHT JOIN or a LEFT JOIN by rearranging the Join clause. The two Join types are
supported only for convenience.

• FULL JOIN — A full Join occurs when the rows from both sides of a Join are included even if the
Join keys do not match. Rules are generated to merge the columns being Joined (they contain val-
ues from both streams). If it is known that the two tables being joined do not have any overlapping
keys with compatible row definitions, it is more efficient to do a union instead of a full outer Join.

An important point to understand in Joins is how the keys of the Join Stream are determined. This is es-
pecially true if a Derived Stream is defined with no aggregation. The reason for this is that the keys of
the derived stream must match the keys of the intermediate Join Stream.

The rules for determining the keys of the Join Stream are:

• If a one-to-many relationship exists between the streams being Joined, the key of the stream on the
“many” side becomes the key for the Join Stream and ultimately the key of the derived stream be-
ing defined via SQL.

• If a one-to-one relationship exists between the streams being Joined, the following rules apply for
selecting a key for the Join table:

• If the Join type is an INNER JOIN or a FULL JOIN, the key field(s) currently consists of the
keys of the stream on the left side of the Join type.

• If the Join type is a LEFT JOIN or a RIGHT JOIN, the key field(s) is derived from the stream on
the left or right side of the Join type.

The Sybase Aleri Streaming Platform does not currently support many-to-many relationships.

Authoring in SQL

24

If the key fields of the derived stream are required to be different from the keys of the final intermediate
Join Stream, the stream must be defined as an Aggregate Stream using the GROUP BY clause.

2.14.1.2. Examples of Joins

A simple INNER JOIN — Joins stream1 to stream2:

stream1 a INNER JOIN stream2 b ON (a.column1 = b.column1)

A more complex inner join first joins stream2 and stream3, and then joins the result to stream1:

stream1 a
INNER JOIN (stream2 b INNER JOIN

stream3 c ON b.column2 = c.column1)
ON (a.column2 = b.column2)

A complex join using multiple join types — left joins stream1 to the result of the right join between
stream2 and stream3 and inner joins stream4 to stream1:

stream1 a
LEFT JOIN (stream2 b RIGHT JOIN

stream3 c ON (b.column1 = c.column3))
ON (c.column2 = a.column1)

INNER JOIN stream4 d ON (d.column4 = a.column1)

2.14.1.3. Restrictions on Joins

To be efficient and support the condition that all streams must have a primary key, the Sybase Aleri
Streaming Platform places some restrictions on Joins to ensure that there are no duplicate key values in
the output. The following rules and restrictions apply to Joins:

• All the keys of at least one side of the Join must be completely mapped on to fields on the other
side of the Join. In other words, many-to-many relationships are not allowed.

• Both sides of a Join constraint must refer to columns in the tables that are being Joined. One of
these columns must be from the table on the left side of the Join, and the other must be a column in
the table on the right side of the Join.

• When defining a stream with no aggregation, the keys of the "many" side of a one-to-many or
many-to-one relationship must be directly copied to the key fields of the stream being defined. In
the case of a one-to-one relationship without aggregation, the keys of at least one of the streams
must be directly copied to the key field of the view being defined. In a complex multi-level Join,
these rules refer to the final Join being performed.

• When the view being defined has no aggregation, and it depends on a full-outer Join between two
tables having a one-to-many relationship, the Join is effectively a left or right outer Join. This is be-
cause, for non-aggregated streams, the keys must be derived from the “many” side of a one-
to-many relationship. If there is no matching row in the “many” side of a one-to-many relationship,
not all the key columns of the “many” side will have a value, and they will not be eligible to be in-
cluded in the target stream because key columns cannot be null.

2.14.2. Filter Expressions

A Filter Expression follows a WHERE, HAVING or GROUP HAVING keyword and has the following
constraints:

Authoring in SQL

25

• The result of the expression must be an integer value, where zero is the equivalent of false and
any other value is treated as true.

• One or more expressions can be concatenated using AND/OR operators.

• The Filter Expression cannot contain aggregation functions.

• The Filter Expression in a WHERE clause cannot refer to columns in the stream being defined.

• The “*” notation cannot be used in a Filter Expression.

This example filters trades stream to get all the GOOGLE trades where the price >$400 or quantity >
1000:

CREATE STORE googleStore MEMSTORE;
CREATE MATERIALIZED VIEW GoogleTrades
PRIMARY KEY(TradeId)
STORE IS googleStore
AS SELECT trd.TradeId, trd.Price, trd.Time, trd.Quantity

FROM Trades trd
WHERE trd.Symbol = "GOOG" AND

(trd.Price > 400 OR trd.Quantity > 1000)

2.14.3. User Defined Function Library Declaration

Use the following commands to declare an external C library that contains one or more user defined
functions.

CREATE LIBRARY LibraryName AS LibraryPath [;]
where:

• LibraryName is an alias of the library. This alias will be used within the Service Authoring Lan-
guage to refer to the actual library.

• LibraryPath is the physical location and name of the C library file. Only an absolute path can
be used.

Note:

The compiler does not check for the existence of this library file at compile time. It must exist
at run time.

2.14.4. User Defined Function Declaration

Once the external library has been declared, any function within that library can be declared using the
following syntax:

CREATE FUNCTION FunctionName (DataType [,...])
RETURN ReturnDataType
AS EXTERNAL LIBRARY LibraryName NAME ExternalFunctionName
LANGUAGE C [;]

where:

• FunctionName is an alias for the external function to be used within the Aleri SQL environment.

Authoring in SQL

26

The name must follow the standard naming conventions.

• DataType is the data type for the argument to the external function. It must be specified in terms
of one of the data types that the Aleri SQL and the Sybase Aleri Streaming Platform understands.
There can be any number of data types.

• ReturnDataType is the data type for the return value of the external function.

• LibraryName is an alias for the external library that is specified in the CREATE LIBRARY
statement.

• ExternalFunctionName is the name of the external function in the specified external library.

Note:

The compiler does not check for the existence of this function during compile time.

• LANGUAGE C states that the external function is a 'C' library function. This currently has no effect
but will be used in the future when Java and possibly other languages are supported on the User
Define Function interface.

After this declaration, the function can be used in any rule as a built-in function.

2.15. Adding Comments in Aleri SQL

According to the SQL99 standard:

• multi-line comments begin with /* and end with */

• multi-line comments may be nested within a multi-line comment

Aleri SQL supports the multi-line comment syntax; it does not support any alternate syntax for single-
line comments.

2.16. Current Restrictions on Aleri SQL Usage

The following restrictions apply to the current version of Aleri SQL but may be removed over time or as
needed by customer requirements:

• When defining Joins, only individual columns can be used to Join tables. No other expression is
currently allowed.

• When Joining tables, all keys of at least one side of the Join must be mapped to fields in the other
side of the Join. Currently, many-to-many mappings are not supported.

• At least one side of a Join condition must refer to a key column. A Join condition involving two
non-key columns is currently not supported.

• When defining Joins, "equals" is the only comparison operator currently supported.

• Self Joins are currently not supported. The equivalent can be achieved by creating view that is a
"copy" and then joining to that.

• A stream may be used only once within a Join clause.

• When performing a UNION, the Sybase Aleri Streaming Platform expects all input records from all

Authoring in SQL

27

input streams to have unique key values. Otherwise, results may be unpredictable.

2.17. Best Practices When Writing a Data Model in Aleri SQL

• Use consistent and descriptive names when naming objects within the data model.

• Although the fields within a stream can be in any order, it is suggested that the key fields be listed
first, followed by the attribute fields in alphabetical order.

• When a column in a derived stream has a complex rule and a second column in the same stream
also needs to use the same complex rule, the second column should reference the first column in-
stead of repeating the rule for the second time. Although this does not improve performance, it im-
proves legibility and ease of maintenance.

• For performance reasons, avoid using INNER JOINs. Consider using an OUTER JOIN with a filter
clause if required, that filters out rows with NULLs in the inner table's key fields. However, this
currently applies only when the filter refers to columns from more than one table. If not, the filter
will be applied before the Join, and the desired results are not achieved.

• The use of the same input stream multiple times in a Join clause is not possible in this version of
the Sybase Aleri Streaming Platform. Do this by creating a copy of the table.

• Nested aggregations cannot be performed. If this is done, a runtime memory allocation error occurs
and the Sybase Aleri Streaming Platform stops. This includes referring to another column within
the stream being defined, which has an aggregation function.

• A name must be enclosed in double quotes if the name is the same as one of Aleri SQL keywords.

• Although using a ';' (semi-colon) for statement separator is optional, it is helpful to use this after
every SQL statement. The reason is that the parser considers all the text up to a ';' (semi-colon) as a
single statement and stops scanning the statement after it encounters the first error and moves to the
next statement. As a result, if a '; '(semi-colon) is not used, any syntax errors will only be reported
one at a time.

2.18. Example of an Aleri SQL Data Model

The following simple example shows a data model definition using Aleri SQL.

// Define a store that persists data
CREATE STORE Store1 LOGSTORE on '/tmp/sp/logstore' SYNC IS TRUE

// Define a store that does not persist data
CREATE STORE Store2 MEMSTORE

// Define a Static SourceStream Called Publishers
CREATE TABLE Publishers (

publisher_id string, publisher_name string,
state string, country string,

PRIMARY KEY (publisher_id),
STORE IS Store1,
TYPE IS STATIC, RETAIN 10 MINUTES);

// Define a Static Stream Books, where data is retained by default
CREATE TABLE Books (
isbn string, book_name string, author string,
category string, publisher string, suggested_price double,
PRIMARY KEY (isbn),

Authoring in SQL

28

STORE IS Store1,
TYPE STATIC);

// Define a Dynamic Stream Called SalesData
CREATE TABLE SalesData (

sale_id string, dealer string, isbn string, publisher_id string,
sale_date date, quantity int32, unit_cost double,

PRIMARY KEY(sale_id, dealer),
STORE IS Store1,
TYPE DYNAMIC, RETAIN 30 DAYS);

// Define a Materialized View called TitleSalesByDealer
// for all Title and Dealer combinations where the dealer has sold
// more than 1000 copies of a book published by ACME Publishing.
CREATE MATERIALIZED VIEW TitleSalesByDealer
PRIMARY KEY (isbn, dealer)
STORE Store2
AS SELECT a.dealer AS dealer, b.isbn,

MIN(b.book_name) AS title_name,
MIN(c.publisher_name) AS publisher_name,
SUM(a.quantity) AS total_quantity,
SUM(a.quantity * a.unit_cost) AS total_sales,
CASE WHEN (SUM(a.quantity * b.suggested_price)-total_sales)>0

THEN SUM(a.quantity * b.suggested_price)-total_sales
ELSE 0.0

END AS total_discount
FROM SalesData a

LEFT JOIN Books b ON a.isbn = b.isbn
LEFT JOIN Publishers c ON a.publisher_id = c.publisher_id

WHERE c.publisher_name = 'ACME Publishing'
GROUP BY a.dealer, b.isbn
HAVING total_quantity > 1000

Note:

The reference to total_sales in the rule for total_discount does not refer to an Ali-
asName. This tells the Sybase Aleri Streaming Platform to substitute the rule used for the
total_sales column in place of this reference. This kind of reference has no impact on effi-
ciency but improves maintainability of the code.

2.19. Running a model written in Aleri SQL

In order to run a data model written in Aleri SQL, the model must first be "compiled" into AleriML. The
Sybase Aleri Streaming Platform can then read the AleriML file and run the model. The Sybase Aleri
Streaming Platform includes the sp_sql2xml tool (also referred as the translator) which can be used to
translate a data model written in Aleri SQL into an AleriML file that can be run on the Sybase Aleri
Streaming Platform. Refer to the Utilities Guide for more information.

Authoring in SQL

29

Chapter 3. Authoring in AleriML
Both the Aleri Studio and Aleri SQL produce a data model in AleriML. AleriML files are loaded dir-
ectly into the Sybase Aleri Streaming Platform for execution.

You can create models directly in AleriML as an alternative to using the Studio or Aleri SQL. While
there's more of a learning curve, experienced users may find it more efficient to create or edit data mod-
els. Data models created in AleriML can still be loaded into the Aleri Studio in order to visualize, check
for violations, and test the model.

AleriML is standard XML that conforms to the AleriML Schema. This chapter describes the elements
and attributes within that schema, and gives examples of AleriML.

3.1. XML Preliminaries

AleriML documents should begin with the following header that describes the version of XML and the
character set:

<?xml version="1.0" encoding="UTF-8"?>

As with all XML documents, comments in AleriML begin with "<!--" and end with "-->". They may ex-
tend over a line. Comments cannot be nested.

All “id” attributes must be globally unique within a data model

All AleriML elements have optional “name” and “documentation” attributes. These attributes, which
give you the ability to annotate the data model with comments, won't be listed below.

3.2. Platform

An AleriML file must have a single Platform element encapsulating all other elements.

<Platform
version="version string"
[moneyPrecision="number of decimal digits in money datatype"]
[restrictAccess="access restriction annotations"]>
[StartUp]
[Global]
{Cluster | Module | DataLocation | Store | Stream}*
</Platform>

Within the Sybase Aleri Streaming Platform element, there is an optional StartUp element and an op-
tional Global element. These are followed by any number of Cluster, Module, DataLocation, Store, and
Stream elements in any order. The following sections describe each of these elements.

Attributes:

version This string should be “3.0”. Data models for older versions of the Sybase Aleri
Streaming Platform might have different version attributes.

moneyPrecision This attribute specifies the number of decimal digits (digits to the right of the
decimal point) in the “money” datatype. The default is 4.

restrictAccess This attribute allows you to restrict certain types of access for specific users. It
may be specified at the Sybase Aleri Streaming Platform model level or stream
level. The model-level attribute provides control over general access and defaults

30

for all streams. If a stream has its own restrictAccess attribute, it completely de-
termines access to that stream. Otherwise the model-level attribute is used. If the
restrictAccess attribute is missing at the model level, all users would have ac-
cess.

Since the metadata streams don't have an explicit restrictAccess attribute, sub-
scription access is always determined by the model-level attribute. For more in-
formation on metadata streams see Appendix E, Aleri Metadata Streams

This attribute contains a sequence of colon-separated pairs, with each pair separ-
ated by a space. For example:

wheel:control development:control

The first element of each pair is the role, which describes a set of users. The role
is a translation of a user group in the operating system, as it gets read through the
PAM interface. See the Administrator's Guide for more details on roles.

The second element of each pair specifies the type of access granted, including
“control”, “query”, “subscribe”, “publish” or “connect”.

• control lets you execute the control commands that effect the entire model,
such as stopping or debugging. It only impacts the model level.

• query lets you execute queries and updates through the SQL interface
(including the finalizer statements).

• subscribe lets you to subscribe to the content of the stream.

• publish lets you publish data to the stream. It is only applicable to source
streams.

• connect lets you connect to the model and receive the basic schema inform-
ation, such as the names of the streams and fields. Without this permission,
you won't be allowed to log in. connect only impacts the model level. Any
role given any access at that level also implicitly receives connect access.

The previous example means that members of the role “wheel” or
“development” can issue control commands, such as stopping the model by the
sp_cli utility.

Here is an example of all access controlled at the model level:

<Platform restrictAccess="gcontrol:control gsub:subscribe gq:query
gpub:publish">
<Store file="store" id="store"/>
<SourceStream id="filterInput" store="store">

...
</SourceStream>

<FilterStream id="filter" istream="filterInput"
ofile="output/filter.out" store="store">

...
</FilterStream>
</Platform>

An example of all stream access controlled at the stream level:

Authoring in AleriML

31

<Platform restrictAccess="gcontrol:control gsub:connect
gq:connect
gpub:connect">
<Store file="store" id="store"/>
<SourceStream id="filterInput" store="store"

restrictAccess="gpub:publish"
>

...
</SourceStream>

<FilterStream id="filter" istream="filterInput"
ofile="output/filter.out" store="store"

restrictAccess="gsub:subscribe gq:query"
>

...
</FilterStream>
</Platform>

In the previous example, roles that can access the streams are also listed at the
model level with "connect" access. Otherwise, a user might not be able to log in-
to the model since their role was restricted only to publish and subscribe. Anoth-
er approach is to have a separate role for connection and grant both the connec-
tion and subscription roles to a user who needs to subscribe.

<Platform restrictAccess="gcontrol:control gconnect:connect">
<Store file="store" id="store">
<SourceStream id="filterInput" store="store"

restrictAccess="gpub:publish"
<

...

</SourceStream>

<FilterStream id="filter" istream="filterInput"
ofile="output/filter.out" store="store"

restrictAccess="gsub:subscribe gq:query"
>

...

</FilterStream>
</Platform>

3.3. StartUp

The StartUp element is an optional, and advanced, component of a data model. It describes the order in
which connections start when the data model is loaded by the Sybase Aleri Streaming Platform.

A Startup element contains any number of ConnectionGroups:

<StartUp>
[ConnectionGroup]*
</StartUp>

Each ConnectionGroup is a collection of references to specific connections:

<ConnectionGroup
[type="{start|nostart}"]
[id="name of connection group"]>
[<ConnectionRef connection="name of connection"/>]*
</ConnectionGroup>

The ConnectionGroups within a StartUp element are started either automatically or manually, depending
on the type. The automatic ones start in order: the connections in the first ConnectionGroup are started

Authoring in AleriML

32

first, the connections in the second are started second, and so forth.

Attributes:

type This attribute specifies whether to start the connections in the ConnectionGroup automatically
(the option start) or later manually (the option nostart). The default is start.

id This is the name of the ConnectionGroup. It is used when issuing a command (via the sp_cli
utility) to start the Connections in the ConnectionGroup. There is no default value.

3.4. Global

The Global element encapsulates a set of variables and functions. Streams can read or write these vari-
ables, and can use these functions. Global variables can also be altered at runtime via the Command and
Control interface.

The Global element is a simple block of text, with variable and function definitions written in the
SPLASH scripting language.

<Global>
...
</Global>

See Chapter 4, SPLASH Programming Language for more information about variable and function de-
clarations. For example, here is a block that defines a global variable depth_of_book (initially 10)
and a function change_currency:

<Global>
int32 depth_of_book := 10;
double change_currency(double val) { return val * 1.57; }
</Global>

Global variables can be modified outside of a running instance, using the Command and Control inter-
face or directly through the sp_cnc program.

Note:

Changing the value of a global variable does not cause the model to regenerate the data based
on the new value. For instance, if a Filter Stream filters rows based on the value of a global
variable, changing the value changes the filtering of the new rows but won't affect the old rows.
To regenerate data after changing the value of a variable, use the Dynamic Sybase Aleri
Streaming Platform Modifications, as described in the Administrator's Guide.

3.5. Cluster

A Cluster is a description of machines and port numbers for running the Sybase Aleri Streaming Plat-
form across a number of machines. It has the syntax

<Cluster
id="name of cluster">
(Node)*
</Cluster>

where each node has the syntax

<Node
[module="name of module"]
machine="name of machine"

Authoring in AleriML

33

commandport="port number" />

See the Administrator's Guide for more information about setting up a cluster to run a data model.

3.6. Module

A Module is a collection of other modules, data locations, stores, and streams used to encapsulate a por-
tion of the data model for use in a clustered setting. It has the syntax

<Module
id="name of module" >
{Module | DataLocation | Store | Stream}*
</Module>

See the Administrator's Guide for more information about setting up a cluster to run a data model.

3.7. DataLocation

A DataLocation is a description of an external data source, a place where the data model will automatic-
ally load data, or a sink, a place where the data model will automatically send data. It has the syntax

<DataLocation
id="name of data location"
type="type of data location">
[<LocationParam name="parameter name" value="parameter value"/>]*
</DataLocation>

Each LocationParam is simply a name-value pair for a parameter.

Attributes:

id This is the name of the data location, which is used in InConnections and OutConnections (see
below).

type This is the type of the data location. There are a number of different types, for example, jd-
bc_in, xml_out.

Here are a few example data locations:

<DataLocation id="xml_file_input" type="xml_in">
<LocationParam name="dir" value="/tmp"/>
</DataLocation>
<DataLocation id="sqlsrv_output" type="db_out">
<LocationParam name="dbtype" value="mssql"/>
<LocationParam name="server" value="vilcanota.aleri.com"/>
<LocationParam name="port" value="1433"/>
<LocationParam name="user" value="sa"/>
<LocationParam name="password" value="tiger"/>
<LocationParam name="database" value="aleri"/>
</DataLocation>

See the Authoring Guide for more information about data locations.

3.8. Store

A store is a repository for the records of one or more streams. There are three kinds of stores: Stateless
Stores, Memory Stores, and Log Stores.

Authoring in AleriML

34

3.8.1. Stateless Store

To define a Stateless Store, which keeps no records, use

<Store id="name of store" kind="stateless"/>

Attributes:

id This is the name of the store, which is used in stream definitions.

Stateless Stores are permitted only for insert-only streams and FlexStreams; see Section 3.9.1,
“Insert-only Streams” for more detail.

3.8.2. Memory Store

To define a Memory Store, which keeps its records in memory, use

<Store id="name of store" kind="memory"
[index="{tree|hash|list}"]
[indexSizeHint="initial size of hash table, in units of 1024"]/>

Attributes:

id This is the name of the store, which is used in stream definitions.

index This determines the data structure used for indexing records. The default value is
“tree”.

• Use tree for binary trees. Binary trees are predictable in use of memory and
consistent in speed.

• Use hash for hash tables. In many situations, hash tables are faster, but they of-
ten consume more memory.

• Use list for lists. This keeps the records in order of insertion, and thus can be
useful in looping through the records. You should use this option only if you are
certain there will be few deletes in the streams kept in this store. Inserts and up-
dates of records are efficient, but deletes leave space that is not reclaimed.

indexSizeHint This optional attribute determines the initial number of elements in the hash table,
when using hash. The value is in units of 1024. Setting this higher consumes
more memory, but reduces the chances of spikes in latency.

3.8.3. Log Store

To define a Log Store, which keeps records stored on disk for recovery, use

<Store id="name of store" kind="log"
file="directory name"
[sync="{true|false}"]
[fullsize="maximum size in megabytes"]
[sweepamount="sweep size in megabytes"]
[reservePct="reserve size in percent"]
[ckcount="record count"]/>

Attributes:

Authoring in AleriML

35

id This is the name of the store, which is used in stream definitions.

file The file name specifies the name of a directory into which the persisted store will be
written.

sync This attribute determines how frequently the store commits records to disk. The de-
fault is false. When sync is false, records are committed at periodically. In the
event of a failure, data received since the last commit will be lost. When sync is
true, records are committed immediately upon receipt. Setting this attribute to
true makes the Platform run more slowly.

fullsize This attribute specifies the maximum size of the Log Store, in megabytes. The default
is 8 megabytes.

sweepamount This indicates the amount of data, specified in megabytes, that is examined when try-
ing to reclaim unused space. The default value is 20% of the fullsize.

reservePct This indicates the percentage of the log store size to keep as the free space reserve.
The default value is 20 percent.

ckcount The "checkpointing count" attribute lets you establish the maximum number of re-
cords written between intermediate metadata. The default is 10,000.

3.9. Stream

A stream is a processing node in the data model. There are ten stream forms: Source, Copy, Filter, Uni-
on, Compute, Extend, Aggregate, Join, Flex, and Pattern.

3.9.1. Insert-only Streams

Some streams are considered to be “insert-only,” meaning that they process inserts but not updates or
deletes. The following streams are insert-only:

• An insert-only Source Stream.

• A Union Stream, Compute Stream or Filter Stream whose inputs are insert-only.

• A Join Stream whose “many” inputs in the many-to-one Joins are insert-only, and whose “one” in-
puts are “static” streams.

3.9.2. Common Attributes & Elements

Each stream type has a slightly different set of attributes and elements. Nevertheless, there are some
common features of all stream.

<StreamType
id="name of stream"
store="name of Store"
[ofile="output file name"]
[type="{static|dynamic}"]
[expiryTime="wait time in seconds"]
[expiryField="name of int32 column to increment after expiryTime"]
[expiryTimeField="name of date column for calculating expiry"]
[expiryMaxValue="number of times to increment expiryField"]
[restrictAccess="access restriction annotations"]
[type="{static|dynamic}"]
[oldid="old name of stream"]

Authoring in AleriML

36

[convdst="destination stream for conversion"] >
...
</StreamType>

Attributes:

id This attribute specifies the name of the stream. It must be unique within the
data model.

store This attribute specifies the store that will be used to hold the records of the
stream.

ofile This optional attribute specifies the name of an output file to which all records
will be written if the Sybase Aleri Streaming Platform shuts down cleanly. The
records are written in XML format. This attribute is used mainly in debugging.
No output file is created if the ofile attribute is missing.

type This optional attribute gives hints to the Sybase Aleri Streaming Platform for
optimization. It may be either static, denoting that data is loaded once when
the Sybase Aleri Streaming Platform starts, or dynamic, denoting that data
changes frequently. The default is dynamic.

expiryTime The expiryTime attribute specifies the age, in seconds, that must expire before
a record's expiryField is incremented.

expiryField specifies the name of an int32 column that will be set to 0 when a record is
modified, and incremented (up to expiryMaxValue when a record ages to
expiryTime seconds.

expiryTimeField specifies the optional name of a date column that will be used to calculate the
expiryTime. If this attribute is omitted, expiryTime will be computed from the
time the record was last modified.

expiryMaxValue is the number of times the expiryField column will be incremented. When the
expiryField reaches this value, the record is no longer updated until an update
comes from the outside. The default is 1.

restrictAccess is used to limit access to the stream. See Section 3.2, “Platform” for more in-
formation about restrictAccess.

oldid is used during the dynamic model modifications to rename the stream from
oldid name to the id name. See the Administrator's Guide for details. The at-
tribute has no effect otherwise.

convdst is used in conversion models that convert the contents of the Source Streams of
the main model during a dynamic model modification. See the Administrator's
Guide for details. This attribute is not allowed in the normal models.

3.9.2.1. Column

The Column element describes the name and datatype of a column. The syntax is

<Column
name="name of column"
[key="{true|false}"]
[autogen="{true|false}"]
[datatype="{int32|int64|money|double|date|timestamp|string}"]>

Authoring in AleriML

37

Attributes:

name This is the name of the column.

key This attribute should be set to true if the column is one of the primary key columns in
the stream. By default, the attribute is false.

autogen This attribute should be true if the data in the column should be generated automatically
by the stream. By default, the attribute is false. (This attribute works only for Columns
within Source Streams.)

datatype This attribute specifies the type of the data in the column. The default value is int32.

Column elements appear in Source, Flex, and Pattern Streams.

3.9.2.2. ColumnExpression

The ColumnExpression element describes the name of a column and an expression for computing it. It
has the syntax

<ColumnExpression
name="name of column"
[key="{true|false}"]>
...
</ColumnExpression>

Attributes:

name This is the name of the column.

key This attribute should be set to true if the column is one of the primary key columns in the
stream. By default, the attribute is false.

An expression must appear between <ColumnExpression...> and </ColumnExpression>.
Expressions follow the syntax described in Section 1.3, “Expressions”.

ColumnExpression elements appear in Compute, Extend, Aggregate, and Join Streams.

3.9.2.3. FilterExpression

<FilterExpression>
...
</FilterExpression>

An expression of type int32 must appear between <FilterExpression> and
</FilterExpression>. Expressions follow the syntax described in Section 1.3, “Expressions”.

FilterExpression elements appear optionally in Source Streams, and in Filter Streams.

3.9.2.4. InConnection and OutConnection

InConnection and OutConnection elements describe an external source of data. The syntax is

<InConnection

Authoring in AleriML

38

name="name of connection"
location="name of location" >
[<ConnectionParam name="parameter name" value="parameter value"]*
</InConnection>

<OutConnection
name="name of connection"
location="name of location">
[<ConnectionParam name="parameter name" value="parameter value"]*
</OutConnection>

Attributes:

name This is the name of the connection that can be used in StartUp elements. See Section 3.3,
“StartUp” for more information.

location This attribute specifies the name of a DataLocation element. See Section 3.7,
“DataLocation” for more information.

Within the InConnection and OutConnection elements are a number of ConnectionParam elements.
These override or add to the LocationParam elements in the corresponding DataLocation.

InConnection elements appear optionally in Source Streams. OutConnection elements appear optionally
in any stream.

3.9.2.5. Local

The Local element encapsulates a set of variables and functions for a particular stream. It behaves just
like the Global block (see Section 3.4, “Global”), except that only the stream that contains the Local ele-
ment can read or write the variables or use the functions. The syntax is

<Local>
...
</Local>

Local elements appear optionally within Compute, Extend, Aggregate, Join, Flex, and Pattern Streams.

3.9.2.6. InputWindow

An Input Window limits the view of an input stream, based on the age of records or the number of re-
cords. For instance, you can set an input window so that a stream sees only the last 10 records of one of
its input streams. The stream is kept consistent with that view by forcing deletes through the stream, as if
those deletes came from the input stream.

The syntax is

<InputWindow
[stream="name of stream"]
[type="{records|time}"]
[value="{number of records|seconds}"]
[slack="number of records"]/>

Attributes:

stream This attribute specifies the input stream on which the window is used.

Authoring in AleriML

39

type This attribute specifies the policy. Use time to limit the view of the input stream based on a
number of seconds, or the records to limit the view of the stream to a number of records.

value This attribute describes the amount of time or number of records to hold. It must be an in-
teger greater than 0. If type is set to time, a value of 100 means that all records older than
100 seconds are deleted from the view. If type is set to records, a value of 100 means that
all but the last 100 records are deleted from the view. The default is 1.

slack This attribute is meaningful only when type is records, and is used to control the purging
of data. For example, if value is 1000 records and slack is set to 500, the oldest 500 re-
cords will be purged when the stream grows to 1500 records. Therefore, at any point in time,
the size of the table will be between 1000 and 1500 rows. The default is 1.

InputWindow elements appear optionally in Source, Copy, Union, Filter, Compute, Extend, and Aggreg-
ate Streams.

3.9.3. Source Stream

A Source Stream is a stream whose input comes from the external world. Incoming messages can be ap-
plied to a Source Stream as inserts, updates, deletes, or upserts.

The syntax for a Source Stream is as follows:

<SourceStream ...
[insertOnly="{true|false}"]
[convsrc="name of original stream"] >
{InputWindow | OutConnection}*
(Column)+
[FilterExpression]
[InConnection]*
<SourceStream>

Attributes:

insertOnly When set to true, this attribute specifies that the Source Stream ignore all upserts,
updates, and deletes. It allows further optimizations to be made, allows the stream to
be put in a Stateless Store, and enables certain joins. The default is false.

convsrc This attribute is used during dynamic model changes to convert the contents of Source
Streams. See the Administrator's Guide for details. This attribute is not allowed in the
normal models.

Examples:

<SourceStream id="Currencies" store="store"/>
<Column key="true" name="Currency" datatype="string"/>
<Column key="false" name="Country" datatype="string"/>
</SourceStream>

This defines a Source Stream named Currencies whose records are stored in store. Each record
contains a Currency and a Country field. The Currency field is the primary key.

<SourceStream id="Currencies" store="store" >
<Column key="true" name="Currency" datatype="string"/>
<Column key="false" name="Country" datatype="string"/>
<InputWindow type="records" value="1000" slack="500"/>

Authoring in AleriML

40

</SourceStream>

This defines a Source Stream that retains between 1000 and 1500 records, and will purge the stream
down to 1000 records when it exceeds 1500 records.

3.9.4. Copy Stream

A Copy Stream is a stream whose input comes from exactly one stream. It holds records from the input
stream. A Copy Stream is usually used in conjunction with an InputWindow to hold a view of a stream.

The syntax for a Copy Stream is as follows:

<CopyStream ... istream="name of input stream" >
{InputWindow | OutConnection}*
</CopyStream>

Attributes:

istream This attribute specifies the name of the input stream.

Example:

<CopyStream id="CurrenciesSubset" store="store" istream="Currencies">
<InputWindow stream="Currencies" type="records"

value="1000" slack="500"/>
</CopyStream>

The stream CurrenciesSubset copies data from Currencies. The InputWindow will truncate the stream to
1000 records when it exceeds 1500 records.

3.9.5. Union Stream

A Union Stream is a stream whose input comes from one or more other streams, and whose output is a
set of records representing the union of the inputs.

The syntax for a Union Stream is as follows:

<UnionStream ... istream="name of input streams separated by spaces"
[mergeKeys="{true|false}"]>
{InputWindow | OutConnection}*
</UnionStream>

Attributes:

istream This attribute specifies the name of the input streams.

mergeKeys This attribute allows the Union Stream to handle inserts or deletes for the same keys
from different inputs. For instance, suppose the stream receives an insert for a key from
input stream Input1, and another insert for the same key from input stream Input2. When
the attribute is set to false (the default), the second insert will be rejected. When the
attribute is set to true, the second insert will be turned into an update. Similarly, de-
letes on the same key from different streams will not cause errors when the attribute is
set to true.

Authoring in AleriML

41

Example:

<UnionStream id="AllCurrencies" store="store"
istream="Currencies OldCurrencies"/>

This specifies a stream that is the union of “Currencies” and “OldCurrencies”.

Note:

Unpredictable runtime results may occur a row from one input stream has the same key as a
row from another input stream.

3.9.6. Filter Stream

A Filter Stream is a stream whose input comes from exactly one stream, and the output consists of a sub-
set of the records from the input stream. qna Each input record is evaluated against one or more filter ex-
pressions. If one or more of the filter expressions evaluates to 0, the record does not become part of the
Filter Stream.

The syntax for a Filter Stream is as follows:

<FilterStream ... istream="name of input stream" >
{InputWindow | OutConnection}*
FilterExpression
</FilterStream>

Attributes:

istream This attribute specifies the name of the input streams.

<FilterStream id="CurrentCurrencies" store="store"
istream="Currencies">

<FilterExpression>
Currencies.CurrentTime = undate('2005-08-10 09:58:00')
</FilterExpression>
</FilterStream>

This defines a Filter Stream called CurrentCurrencies whose records are stored in the store named
store. The filterExpression specifies that only those records whose CurrentTime value is equal to the
time 2005-08-10 09:58:00 will be passed into the Filter Stream. More information on the expres-
sion language can be found below.

3.9.7. Compute Stream

A Compute Stream is a stream whose input comes from exactly one stream. Its output consists of a new
set of records whose fields are computed from the fields in the input.

The syntax for a Compute Stream is as follows:

<ComputeStream ...
istream="name of input stream"
[permitKeyChange="{true|false}"]>
{InputWindow | OutConnection}*
[Local]
(ColumnExpression)+
</ComputeStream>

Authoring in AleriML

42

Attributes:

istream This attribute specifies the name of the input stream.

permitKeyChange This advanced attribute allows the Compute Stream to change the primary key
structure. When this attribute is false (the default), the primary key columns
of the input stream must be copied, without further computation, into the Com-
pute Stream (primary key columns can be added, however, in the Compute
Stream). When this attribute is true, the primary key columns can be
changed.

Note:

Setting the attribute permitKeyChange to true can result in errors at run time. For instance, if
there is an event to update a row, the computation might try to update a row that does not exist.

Example:

<ComputeStream id="NormalizedCurrencies" store="log"
istream="CurrentCurrencies">

<ColumnExpression key="true" name="Currency" >
CurrentCurrencies.Currency
</ColumnExpression>
<ColumnExpression name="Location" >
CurrentCurrencies.LocationRule
</ColumnExpression>
<ColumnExpression name="ExchRate" >
CurrentCurrencies.ExchRate * 100.0
</ColumnExpression>
</ComputeStream>

This defines a Compute Stream called NormalizedCurrencies whose records are stored in the
Store named "store". The key field is Currency, and the expression for computing the Currency field
— the CurrencyRule rule — just passes it along unchanged. The only non-trivial computation done
on the fields is in the ExchRate field, whose value is multiplied by 100.0.

3.9.8. Extend Stream

A Extend Stream is a stream whose input comes from exactly one stream. Its output consists of a new
set of records whose fields are computed from the fields in the input. The columns are those from the in-
put stream, plus some new columns

The syntax for an Extend Stream is as follows:

<ExtendStream ... istream="name of input stream">
{InputWindow | OutConnection}*
[Local]
(ColumnExpression)+
</ExtendStream>

Attributes:

istream This attribute specifies the name of the input stream.

Extend Streams provide a bit of reuse. If, for instance, you add a column to the input stream of an Ex-

Authoring in AleriML

43

tend Stream, the new column will be automatically carried along. You can also use an Extend Stream to
override the computation of columns. For example, if you want to change the computation of a column,
you can simply specify a new ColumnExpression for that column name.

Example:

<ExtendStream id="NewCurrencies" store="log"
istream="NormalizedCurrencies">

<ColumnExpression name="ExchRate" >
NormalizedCurrencies.ExchRate * 109.0
</ColumnExpression>
<ColumnExpression name="AnotherRate" >
NormalizedCurrencies.ExchRate * 200.0
</ColumnExpression>
</ExtendStream>

This stream extends the NewCurrencies stream. It computes the ExchRate column using a differ-
ent expression, and adds the AnotherRate column.

3.9.9. Aggregate Stream

An Aggregate Stream is a stream whose input comes from exactly one other stream, source or derived.
Its output contains a new set of records whose fields are computed from the records in the input. Re-
cords in the input stream are grouped according to common values as specified in the Group expression.
The output of the Aggregate Stream contains a single record for each Group, and this record can contain
values that are computed across all members of the group. Thus, the number of records in an Aggregate
Stream is less than or equal to the number of records in the input.

The syntax for an Aggregate Stream is as follows:

<AggregateStream ... istream="name of input stream" >
{InputWindow | OutConnection}*
[Local]
(ColumnExpression)+
[<GroupOrder [ascend="{true|false}"]>...</GroupOrder>]*
[<GroupFilter>...</GroupFilter>]*
</AggregateStream>

Components:

istream This attribute specifies the name of the input stream.

GroupOrder These optional elements specify a lexicographic order on the records of each group.
GroupOrder elements are often used in conjunction with the first, last and
rank functions; refer to Appendix B, Data Types, Operators and Functions for more
information about these functions. Each GroupOrder element contains expression,
and may include an ascend flag. If the flag is not specified its value defaults to true.

GroupFilter These optional elements specify a filter that is applied before the group is collapsed
into a single row. The rule that is referenced by a GroupFilter element must return a
value of type int32 as with FilterExpression elements. A record in the group passes
the filter if the expression evaluates to a value other than 0.

Example:

<AggregateStream id="MaxRateCurrencies" store="store"
istream="NormalizedCurrencies">

Authoring in AleriML

44

<ColumnExpression key="true" name="Location">
NormalizedCurrencies.Location
</ColumnExpression>
<ColumnExpression key="false" name="ExchRate">
max(NormalizedCurrencies.ExchRate)
</ColumnExpression>
</AggregateStream>

This defines an Aggregate Stream called MaxRateCurrencies whose records are stored in store.
The rows from the input table are grouped according to each one's value in the Location column. The
output row consists of this Location value and the maximum ExchRate value from the group.

3.9.10. Join Stream

A Join Stream matches records from two or more input streams to produce records in a single output
stream. Records are “matched” when they have matching values in one or more columns.

The syntax for a Join Stream is as follows:

<JoinStream ... istream="name of input streams separated by spaces" >
{InputWindow | OutConnection}*
(Join)+
[Local]
(ColumnExpression)+
</JoinStream>

Attributes:

istream This attribute specifies the name of the input streams.

The Join elements specify how to match the records of the input streams. Join elements have the syntax

<Join
table1="name of stream"
table2="name of stream"
[type="{leftouter|fullouter|inner}"]
constraints="equality constraints"
[secondary="{true|false}"]
[optimize="{true|false}"]/>

Attributes of the Join elements:

table1 This attribute specifies the name of the first stream in the join. This stream is the
“left” stream in the case of a leftouter join.

table2 This attribute specifies the name of the second stream in the join. This stream is the
“right” stream in the case of a leftouter join.

type This attribute specifies the type of join. In a leftouter join, if a row in the first
stream has no match in the second stream, the second stream's values are assumed to
be null. In a fullouter join, if a row in either stream has no match in the other, the
other's values are assumed to be null. In a inner join, the rows in each stream must
match. The default is leftouter.

constraints This attribute specifies how the rows match. It must be sequence of equality con-

Authoring in AleriML

45

straints among columns, with each equality is separated by a space). The left side of
each equality must be a column from the stream mentioned in table1; the right side
must be a column from table2.

secondary This attribute specifies whether to build a secondary index for the first stream. When
set to true, an auxiliary data structure is built. This speeds up computations when
the second stream changes frequently, but consumes more memory. The default is
false.

optimize This attribute is reserved for future use.

Each Join must be one-to-one or many-to-one. To enforce this condition, the ColumnExpressions for the
key columns must satisfy two constraints:

• The expressions may refer only to key columns from the input streams, and they must either be
copies of the key columns or combinations of key columns using the firstnonnull function
(see below).

• The key columns of at least one of the input streams must be used in the ColumnExpressions for
the keys of the Join Stream. For example, if there are two input streams S and T, where S has key
columns k1 and k2, and T has key columns m1 and m2, the ColumnExpressions for the keys of the
Join must include k1 and k2 or m1 and m2. It would be illegal to use only k1 and m1.

Note:

The type may be inner only when all the input streams to the Join are “insert-only”; the
definition is given above in Section 3.9.1, “Insert-only Streams”. These restrictions maintain
the correctness of joins under updates and deletes while maintaining efficiency. The restrictions
may be removed in a future release.

Example:

<JoinStream id="CountryCurrencies" store="store"
istream="Currencies Locations">
<Join type="leftouter" table1="Currency" table2="Locations"
constraints="Location=Location"/>
<ColumnExpression key="true" name="Currency">
Currencies.Currency
</ColumnExpression>
<ColumnExpression name="Location">
Currencies.Location
</ColumnExpression>
<ColumnExpression name="Country">
Location.Country
</ColumnExpression>
</JoinStream>

This stream matches the records in the Currencies stream with records in the Locations stream,
where the records have the same value Location column. Because it is a leftouter join, if there is
no matching row in Location, the value of Location.Country is null.

In other words, this stream shows how to get the country for a currency.

3.9.11. FlexStream

A FlexStream is a programmable stream whose input comes from one or more other streams, and whose

Authoring in AleriML

46

output is generated by one or more small programs written in a special programming language called
SPLASH (Streaming Platform LAnguage SHell). Refer to Chapter 4, SPLASH Programming Language
for information about the programming language.

The FlexStream allows you to build logic that goes beyond the usual relational operations. It has, for in-
stance, a concept of state apart from the records that are stored within the stream. It also allows you to
write loops to output more than one event per input event, and conditionals that allow you to decide
whether to output an event at all.

The syntax for a FlexStream is as follows:

<FlexStream ... istream="name of input streams separated by spaces" >
{InputWindow | OutConnection}*
(Column)+
[Local]
[Method]+
[Timer]
</FlexStream>

Attributes:

istream This attribute specifies the name of the input streams.

The Method elements specify how to compute events from other input events. There must be one Meth-
od for each input stream. Method elements have the syntax

<Method
[name="optional text"]
stream="name of input stream">
...
</Method>

Attributes of the Method elements:

name This attribute specifies the name of the Method. It's meant purely for documentation pur-
poses.

stream This attribute specifies the name of the input stream. When an event arrives on that particular
input stream, the block of SPLASH code within the Method is executed.

FlexStreams may also have a Timer element. This is a block of SPLASH code that executes periodic-
ally. Timer elements have the syntax

<Timer
interval="number of seconds">
...
</Timer>

Attributes of the Timer element:

interval This attribute specifies the number of seconds between executions of the block. The de-
fault is 1 (second).

Example:

Authoring in AleriML

47

<FlexStream id="SomeCurrencies" store="store" istream="Currencies">
<Method name="inputMethod" stream="input">
if (getOpcode(Currencies) = update and

Currencies.Currency = 'EUR')
output Currencies;

</Method>
</FlexStream>

This is a FlexStream that forwards only those events whose Currency field is 'EUR' and is an update.

A FlexStream can be assigned to a Stateless Store. In this case, if a Method or Timer element attempts to
output an event that is not an insert, the event will be rejected.

3.9.12. Pattern Stream

A Pattern Stream is a stream whose input comes from one or more streams, and whose output is gener-
ated by pattern-matching rules. The rules are written in a special pattern language that extends the
SPLASH language. Patterns can, for instance, check whether events occur or do not occur in some time
interval, and then send new events to downstream streams.

The syntax for a Pattern Stream is as follows:

<PatternStream ...
istream="name of input streams separated by spaces" >
{InputWindow | OutConnection}*
(Column)+
[Local]
[Pattern]*
</PatternStream>

Each Pattern element has the form

<Pattern [name="optional text"]>
...
</Pattern>

The text between <Pattern> and </Pattern> is a pattern written in the language described in Ap-
pendix C, Pattern Matching Language below. A Pattern Stream can have as many patterns as you want.

Attributes of the Pattern elements:

name This attribute specifies a name for the pattern. It is used for documentation only.

Example:

<PatternStream id="PairTrades" store="store" istream="Trades">
<Column key="true" name="id" datatype="int32"/>
<Column key="false" name="Symbol1" datatype="string"/>
<Column key="false" name="Symbol2" datatype="string"/>
<Local>
int32 idloc := 0;
</Local>
<Pattern>
within 1 seconds
from Trades[Symbol='IBM'; Price=p] as trade1,
Trades[Symbol='MSFT'; Price=q] as trade2
on trade1 fby trade2
{

Authoring in AleriML

48

idloc := idloc + 1;
output [id = idloc; | Symbol1='IBM'; Symbol2='MSFT'];
}
</Pattern>
<Pattern>
within 5 seconds
from Trades[Symbol='CSCO'; Price=p] as trade1,
Trades[Symbol='LU'; Price=q] as trade2
on trade1 and trade2
{
idloc := idloc + 1;
output [id = idloc; | Symbol1='CSCO'; Symbol2='LU'];
}
</Pattern>
</PatternStream>

This Pattern Stream watches for possible pairs trading. It watches for two possible pairs trades, IBM and
Microsoft, and Cisco and Lucent, in slightly different ways. The first detects whether an IBM trade is
followed by a Microsoft trade within a one second interval. The second detects whether a Cisco and a
Lucent trade happen in the same five second interval, in either order.

3.10. Best Practices When Writing an AleriML Data Model

Some suggestions:

• Use consistent and descriptive names when naming objects within the data model file.

• Coding the data model in incremental steps makes it easier to debug.

• Although Columns and ColumnExpressions can appear in any order, it improves readability to list
the key fields first in alphabetical order followed by non-key fields in alphabetical order.

• Use the valueInserted or any function instead of the max or min function in aggregations.
It's more efficient.

• Self-joins can be done by creating a Copy Stream and then joining it to the original.

Authoring in AleriML

49

Chapter 4. SPLASH Programming Language
This chapter describes the Streaming Platform LAnguage SHell (SPLASH) programming language used
within FlexStreams and Pattern Streams.

The syntax of SPLASH is a combination of the expression language, including all of the functions de-
scribed in Appendix B, Data Types, Operators and Functions, and a C-like syntax for blocks of state-
ments. Just as in C, there are variable declarations within blocks, and statements for making assignments
to variables, conditionals and looping. Other data types, beyond the scalar types described in Ap-
pendix B, Data Types, Operators and Functions, are also available within SPLASH, including types for
records, collections of records and iterators over those records.

4.1. Preliminaries

Names and constants in SPLASH follow the conventions described in Chapter 1, Authoring Preliminar-
ies. Comments can appear as blocks of text inside /*-*/ pairs, or as line comments with //.

4.2. Variable and Type Declarations

SPLASH variable declarations resemble those in C: the type precedes the variable name(s), and the de-
claration ends in a semicolon. The variable can be assigned an initial value as well. Here are some ex-
amples of SPLASH declarations:

int32 a, r;
double b := 9.9;
string c, d := 'dd';
[int32 key1; string key2; | string data;] record;

The first three declarations are for scalar variables of types int32, double, and string. The first has two
variables. In the second, the variable “b” is initialized to 9.9. In the third, the variable “c” is not initial-
ized but “d” is. The fourth declaration is for a record with three columns. The key columns “key1” and
“key2” are listed first before the | character; the remaining column “data” is a non-key column. The
syntax for constructing new records is parallel to this syntax type.

The typeof operator provides a convenient way to declare variables. For instance, if rec1 is an ex-
pression with type [int32 key1; string key2; | string data;] then the declaration

typeof(rec1) rec2;

is the same as the declaration

[int32 key1; string key2; | string data;] rec2;

SPLASH type declarations also resemble those in C. The typedef operator provides a way to define a
synonym for a type expression. For instance, the declarations

typedef double newDoubleType;
typedef [int32 key1; string key2; | string dataField;] rec_t;

create new synonyms newDoubleType and rec_t for the double type and the given record type, re-
spectively. Those names can then be used in subsequent variable declarations like

newDoubleType var1;
rec_t var2;

which improves the readability and the size of the declarations.

50

4.3. Data Structures

SPLASH has a rich set of data structures. This section describes those data structures.

4.3.1. Record Events

Record events — records with an associated operation like “insert” — can be created directly in
SPLASH. We will use the word “record” interchangeably for “record event.”

The syntax of record types specifies the names and types of fields, and the key structure. For instance,
the type

[int32 key1; string key2; | string dataField;]

describes records with key fields key1 and key2, of types int32 and string respectively, and the non-key
field dataField of type string. The key fields appear before the “|” symbol.

The syntax of record values mirrors that of record types. Here, for example, is a record with the previous
type:

[key1 = 9; key2 = 'USD'; | string data = 'US Currency';]

The syntax of record values is fairly flexible. You can write the same record as

[key1 = 9; key2 = 'USD' | string data = 'US Currency']
[key1 = 9; key2 = 'USD' | string data = 'US Currency';]

eliding any semi-colon but those between field = value.

The operation of a new record value is insert. To change it, you use the setOpcode function, as in

setOpcode([key1 = 9 | string data = 'US Currency'], update)

Records with more fields can be used in a context expecting fewer fields; the extra fields get coerced
away. Conversely, records with fewer fields can be used in a context expecting more fields; the missing
fields are assumed to be null. For instance, if var is a variable of type

[int32 key1; | string dataField; double otherData]

you can set

var := [key1 = 1; dataField = 'newdata'];

The record value will be implicitly cast to the right type, making key1 the key field and setting the other-
Data field to null.

Operations on records:

SPLASH Programming Language

51

Get a field Get a field

Syntax: record.field

Type: The value returned has the type of the field.

Example: rec.data1

Assign a field Assign a field in a record.

Syntax: record.field := value

Type: The value must be a value matching the type of the field of the record. The
expression returns a record.

Example: rec.data1 := 10

copyRecord Copies a record (deprecated; this function does nothing).

Syntax: copyRecord(record)

Type: The argument must be a record. The function returns a record.

Example: copyRecord(input)

getOpcode Gets the operation associated with a record. The operations are of type int32, and
have the following meaning:

• 1 means “insert”

• 3 means “update”

• 5 means “delete”

• 7 means “upsert”(insert if not present, update otherwise)

• 13 means “safe delete”(delete if present, ignore otherwise)

Syntax: getOpcode(record)

Type: The argument must be an event. The function returns an int32.

Example: getOpcode(input)

setOpcode Sets the operation associated with a record; the legal operations are listed above.

Syntax: setOpcode(record, number)

Type: The first argument must be a record, and the second an int32. The function
returns the modified record.

Example: setOpcode(input,insert)

4.3.2. XML Values

An XML value is a value composed of XML elements and attributes, where elements can contain other
XML elements or text. XML values can be created directly or built by parsing string values. XML val-
ues cannot be stored in records, but can be converted to string representation and stored in that form.

SPLASH Programming Language

52

You can also declare a variable of xml type, for example,

xml xmlVar;

and assign it to XML values.

Operations on XML values:

xmlagg Aggregate a number of XML values into a single value. This can be used only in
Aggregate Streams or with event caches (see below).

Syntax: xmlagg(xml value)

Type: The argument must be an XML value. The function returns an XML value.

Example: xmlagg(xmlparse(stringCol))

xmlconcat Concatenate a number of XML values into a single value.

Syntax: xmlconcat(xml value, ..., xml value)

Type: The arguments must be XML values. The function returns an XML value.

Example: xmlconcat(xmlparse(stringCol), xmlparse('<t/>'))

xmlelement Create a new XML data element, with attributes and XML expressions within it.

Syntax: xmlelement(name, [xmlattributes(string AS name
..., string AS name) ,] [xml value,...,xml value])

Type: The names must adhere to the conventions in Section 1.2, “Names”. The
function returns an XML value.

Example: xmlelement(top, xmlattributes('data' as attr1),
xmlparse('<t/>'))

xmlparse Convert a string to an XML value.

Syntax: xmlparse(string value)

Type: The argument must be a string value. The function returns an XML value.

Example: xmlparse('<tag/>')

xmlserialize Convert an XML value to a string.

Syntax: xmlserialize(xml value)

Type: The argument must be an XML value. The function returns a string

Example: xmlserialize(xmlparse('<t/>'))

4.3.3. Vectors

A vector is a sequence of values, all of which must have the same type, with an ability to access ele-
ments of the sequence by an integer index. A vector has a size, from a minimum of 0 to a maximum of 2
billion entries. Vectors use semantics inherited from C: when accessing elements by index, index 0 is the
first position in the vector, index 1 is the second, and so forth.

SPLASH Programming Language

53

You can declare vectors in Global or Local blocks via the syntax

vector(valueType) variable;

For instance, you can declare a vector holding 32-bit integers like

vector(int32) pos;

Operations on vectors:

Create Create a new empty vector.

Syntax: new vector(type)

Type: A vector of the declared type is returned.

Example: pos := new vector(int32);

Get value by index Get a value from the vector. If the index is less than 0 or greater than or
equal to the size of the vector, return null.

Syntax: vector[index]

Type: The index must have type int32. The value returned has the type of
the values held in the vector.

Example: pos[10]

Assign a value Assign a cell in the vector.

Syntax: vector[index] := value

Type: The index must have type int32, and the value must match the value
type of the vector. The value returned is the updated vector.

Example: pos[5] := 3

size Returns the number of elements in the vector.

Syntax: size(vector)

Type: The argument must be a vector. The value returned has type int32.

Example: size(pos)

push_back Inserts an element at the end of the vector and returns the modified vector.

Syntax: push_back(vector, value)

Type: The second argument must be a value with the value type of the vec-
tor. The return value has the type of the vector.

Example: push_back(pos, 3)

resize Resize a vector, either removing elements if the vector shrinks, or adding
null elements if the vector expands.

Syntax: resize(vector, newsize)

SPLASH Programming Language

54

Type: The second argument must have type int32. The return value has the
type of the vector.

Example: resize(vec1, 2)

You can also iterate through all the elements in the vector (up to the first null element) using a “for”
loop. See Section 4.4.6, “For Loops” for more information.

4.3.4. Dictionaries

A dictionary is a data structure that associates keys to values. They are called maps in C++ and Java, ar-
rays in AWK, and association lists in LISP, so it's an old and very familiar data structure.

You can declare a dictionary in a Global or Local block via the syntax

dictionary(keyType, valueType) variable;

For instance, if you have an input stream called "input", you could store an int32 for distinct records as

dictionary(typeof(input), int32) counter;

Only one value is stored per key. That means that it's important to understand what equality on keys
means. For the simple data types, equality means the usual equality, for example, equality on int32 or on
string values. For record types, equality means that the keys match (the data fields and operation are ig-
nored).

Operations on dictionaries:

Create Create a new empty dictionary.

Syntax: new dictionary(type, type)

Type: A vector of the declared type is returned.

Example: d := new dictionary(int32, string);

Get value by key Get a value from the dictionary by key. If there is no such key in
the dictionary, return null.

Syntax: dictionary[key]

Type: The key must have the type of the keys of the dictionary. The
function returns a value of the type of the values held in the diction-
ary.

Example: counter[input]

Assign a value by key Associate a value to a key in the dictionary.

Syntax: dictionary[key] := value

Type: The key and value must match the key type and value type of
the dictionary. The function returns the updated dictionary.

Example: counter[input] := 3

SPLASH Programming Language

55

Remove a key/value pair Remove a key, and its associated value, from the dictionary.

Syntax: remove(dictionary, key)

Type: The key must match the key type of the dictionary. The func-
tion returns an int32: 0 if the key was not present, and 1 otherwise.

Example: remove(counter, input)

Clear a dictionary Remove all key/value pairs from the dictionary.

Syntax: clear(dictionary)

The function returns the cleared dictionary.

Example: clear(counter)

Test for emptiness Test a dictionary for emptiness.

Syntax: empty(dictionary)

The function returns an int32: 1 if the dictionary is empty, 0 if not
empty.

Example: empty(counter)

You can also iterate through all the key/value pairs in the dictionary using a “for” loop. See Sec-
tion 4.4.6, “For Loops” for more information.

4.3.5. Streams

There are ways to access the records in input streams, using means similar to dictionaries, although one
cannot change the records in an input stream.

Operations on streams:

Get value by key Get a value from the stream by key. If there is no such key in the stream,
return null.

Syntax: streamValue[recordValue]

Type: The key must have the record type of the stream. The operation re-
turns a value of the record type of the stream.

Example: input_stream[[k = 3; |]]

Note that the non-key fields of the argument do not matter; the operation
will return a record with the current values of the non-key fields, if a re-
cord with the key fields exist.

If a key field is missing from the argument, or the key field is null, then
this operation will always return null. It doesn't make sense to compare key
fields in the stream to null, since null is never equivalent to any value
(including null).

Get value by match Get a record from the stream that matches the given record. Unlike getting
a value by key, there might be more than one matching record. If there is
more than one matching record, one of the matching records is returned. If

SPLASH Programming Language

56

there is no such match in the stream, null is returned.

Syntax: streamValue{ recordValue }

Type: The record must be consistent with the record type of the stream.
The operation returns a value of the record type of the stream.

Example: input_stream{ [| d = 5] }

You can use key and non-key fields in the record.

You can also iterate through all the records in a stream using a “for” loop. See Section 4.4.6, “For
Loops” for more information.

4.3.6. Stream Iterators

Stream iterators are a means of explicitly iterating over all of the records stored in either one of the input
streams, or in the stream itself. It's usually more convenient, and safer, to use the for loop mechanism
described in Section 4.4.6, “For Loops”, but sometimes the extra flexibility of stream iterators is needed.

In FlexStreams, each block of code has implicit variables for streams and stream iterators. If an input
stream, or the FlexStream itself, is named Stream1, there are variables Stream1_stream and
Stream1_iterator.

Those variables can be used in conjunction with the following functions.

deleteIterator Releases the resources associated with an iterator.

Syntax: deleteIterator(iterator)

Type: The argument must be an iterator expression. The function returns a null
value.

Example: deleteIterator(input_iterator)

Note:

Stream iterators are not implicitly deleted. If you don't delete them explicitly, all further up-
dates to the stream may be blocked.

getIterator Get an iterator for a stream.

Syntax: getIterator(stream)

Type: The argument must be a stream expression. The function returns an iterat-
or.

Example: getIterator(input_stream)

getNext Returns the next record in the iterator, or null if there are no more records.

Syntax: getNext(iterator)

Type: The first argument must be an iterator expression. The function returns a
record, or “null” if there is no more data in the iterator.

Example: getNext(input_iterator)

SPLASH Programming Language

57

resetIterator Resets the iterator to the beginning.

Syntax: resetIterator(iterator)

Type: The argument must be an iterator expression. The function returns an iter-
ator.

Example: resetIterator(input_iterator)

setRange Sets a range of columns to search for. Subsequent getNext calls will return only
those records whose columns match the given values.

Syntax: setRange(iterator, fieldName, ... expr...)

Type: The first argument must be an iterator expression; the next arguments
must be the names of fields within the record; the final arguments must be ex-
pressions. The function returns an iterator.

Example:
setRange(input_iterator,Currency,Rate,'EUR',9.888)

setSearch Sets values of columns to search for. Subsequent getNext calls will return only
those records whose columns match the given values.

Syntax: setSearch(iterator, number, ... expr...)

Type: The first argument must be an iterator expression; the next arguments
must be column numbers (starting from 0) in the record; the final arguments
must be expressions. The function returns an iterator.

Example: setSearch(input_iterator,0,2,'EUR',9.888)

Note:

The setSearch function has been deprecated because it requires a specific layout of fields. It
has been retained for backwards compatibility with existing models. When developing new
models, use the setRange function instead.

4.3.7. Event Caches

An event cache holds a number of previous events for the input stream or streams to a derived stream. It
is organized into buckets, based on values of the fields in the records. It's often used when vectors or
dictionaries are not quite the right data structure.

You can define an event cache in a Local block. A simple event cache declaration is

eventCache(instream) e0;

This event cache holds all the events for an input stream “instream”. The default key structure of the in-
put stream defines the bucket policy. That is, the buckets in this stream correspond to the keys of the in-
put stream.

Suppose the input stream in this case has two fields, a key field k and a data field d. Suppose the events
have been

<instream ALERI_OPS="i" k="1" d="10"/>
<instream ALERI_OPS="u" k="1" d="11"/>

SPLASH Programming Language

58

<instream ALERI_OPS="i" k="2" d="21"/>

After these events have flowed in, there will be two buckets. The first bucket will contain the first two
events, because these have the same key; the second bucket will contain the last event.

Event caches allow for aggregation over events. That is, the ordinary aggregation operations that can be
used in Aggregate Streams can be used in the same way over event caches. The “group” that is selected
for aggregation is the one associated with the current event. For instance, if a new event

<instream ALERI_OPS="u" k="1" d="12"/>

appears in this stream, then the expression sum(e0.d) will return 10+11+12=33. You can use any of
the aggregation functions in Section B.9, “Aggregation Functions”, including avg, count, max, and
min.

The next subsections describe the following options to the event cache type and the operations on event
caches.

• manual and auto insertion

• Different keys to determine the buckets

• Size of buckets (by maximum time, number of events, or both) and policy (jump or nojump)

• Records instead of events (coalesce)

• Ordering the events in the buckets

4.3.7.1. Manual insertion

By default, every event that comes into a stream with an event cache gets put into the event cache. You
can explicitly indicate this default behavior with the auto option, for example,

eventCache(instream, auto) e0;

You can also put events into an event cache if they are marked manual, for example,

eventCache(instream, manual) e0;

Use the function insertCache described below to do this.

4.3.7.2. Changing buckets

An event cache organizes events into buckets. By default, the buckets are determined from the keys of
the input stream. You can change that default behavior to alternative keys, specifying other fields in
square brackets after the name of the stream.

For example, specifying

eventCache(instream[d0,d1]) e0;

SPLASH Programming Language

59

keeps buckets organized by distinct values of the d0 and d1 fields. To keep one large bucket of all
events, write the following:

eventCache(instream[]) e0;

4.3.7.3. Managing the size of buckets

You can also manage the size of buckets in an event cache. That can often be important in controlling
the use of memory.

You can limit the size of a bucket to the most recent events, by number of seconds, or by time:

eventCache(instream, 3 events) e0;
eventCache(instream, 3 seconds) e1;

You can also specify whether to completely clear the bucket when the size or time expires by specifying
the jump option:

eventCache(instream, 3 seconds, jump);

The default is nojump.

All of these options can be used together. For example, this example clears out a bucket when it reaches
10 events (when the 11th event comes in) or when 3 seconds elapse.

eventCache(instream, 10 events, 3 seconds, jump);

4.3.7.4. Keeping records instead of events

You can keep records in an event cache, instead of distinct events for insert, update, and delete, by spe-
cifying the coalesce option:

eventCache(instream, coalesce) e0;

This option is most often used in conjunction with the next option, ordering.

4.3.7.5. Ordering

Normally, the events in a bucket are kept by order of arrival. You can specify a different ordering by the
fields of the events. For instance, to keep the events in the bucket ordered by field d in descending order,
write

eventCache(instream, d desc) e0;

You can order by more than one field. The following example orders the buckets by field d0 in descend-
ing order, then by field d1 in ascending order in case the d0 fields are equal.

SPLASH Programming Language

60

eventCache(instream, d0 desc, d1 asc) e0;

4.3.7.6. Operations on Event Caches

expireCache Remove events from the current bucket that are older than a certain number of
seconds.

Syntax: expireCache(events, seconds)

Type: The first argument must name an event cache variable. The second argument
must be an int32. The function returns the event cache.

Example: expireCache(events, 50)

insertCache Insert a record value into an event cache.

Syntax: insertCache(events, record)

Type: The first argument must name an event cache variable. The argument must be
a record type. The function returns the record inserted.

Example: insertCache(events, inputStream)

keyCache Select the current bucket in an event cache. Normally, the current input record selects
the active bucket. You might want to change the current active bucket in some cases.
For example, during the evaluation of the debugging expressions, there is no current
input record and thus no bucket is set by default. The only way to set the bucket then
is to do it manually using this function.

Syntax: keyCache(events, event)

Type: The first argument must name an event cache variable. The second argument
must be a record type. The function returns the same record.

Example: keyCache(ec1, rec)

You can see more examples on the sp_cli man page in the Guide to Programming In-
terfaces.

4.4. Statements

SPLASH has statement forms for expressions, blocks, conditionals, output, “break” and “continue”,
“while” and “for” loops, as well as blocks of statements.

4.4.1. Expression Statements

For instance, any expression can be turned into a statement by terminating the expression with a semi-
colon, as in

setOpcode(input, 3);

Since assignments are expressions, assignments can be turned into statements in the same way. For in-
stance, the following statement assigns a string to a variable “address”:

address := '550 Broad Street';

SPLASH Programming Language

61

4.4.2. Block Statements

Statements can be a sequence of statements, wrapped in braces, with optional variable declarations, as in

{
double d := 9.99;
record.b := d;

}

Variable declarations can be interspersed with statements, as in

{
double pi := 3.14;
print (string(pi));
double e := 2.71;
print (string(e));

}

4.4.3. Conditional Statements

Another form of statement is the conditional, which has the same syntax as C. For instance, you can
write

if (record.a = 9)
record.b := 9.99;

Conditionals may have optional “else” statements, as in

if (record.a = 9)
record.b := 9.99;

else {
double d := 10.9;
record.b := d;

}

4.4.4. Output Statements

The output statement schedules an event to be sent to downstream streams, and also to be entered into
the store of the stream:

output [k = 10; | d = 20;];

It is valid only in Flex and Pattern Streams.

Note:

Multiple output's can be done in processing an event; the outputs are collected as a transaction
block. Similarly, if a Flex or Pattern Stream receives a transaction block, the entire transaction
block is processed and all output is collected into another transaction block. This means that

SPLASH Programming Language

62

downstream streams, and the record data stored within the stream, are not changed until the en-
tire event (single event or transaction block) is processed.

If a FlexStream is assigned to a Stateless Store, all attempts to output a non-insert are rejected.

4.4.5. While Statements

Another form of statement is “while” loops. Again, this has the same syntax as C. For instance, you can
write

while (not(isnull(record))) {
record.b := record.a + record.b;
record := getNext(record_iterator);

}

4.4.6. For Loops

Loops are more often coded with “for” loops, which provide a convenient means of looping over some
or all of the records in an input stream, or all of the data in a vector or dictionary.

To loop over every record in an input stream called “input”, write

for (record in input_stream) {
...

}

The variable record is a new variable; you can use any name here. The scope is the statement or block
of statements in the loop; it has no meaning outside the loop. You can also set equality criteria in search-
ing for records with certain values of fields, for example,

for (record in input_stream where c=10, d=11) {
...

}

which has the same looping behavior, except limited to the records whose c field is 10 and d field is 11.
If you search on the key fields, the loop will run at most one time, but it will run extremely fast because
it will use the underlying index of the stream.

To loop over the values in a vector “vec1”, write

for (val in vec1) {
...
}

where again, val is any new variable. The loop stops when the end of the vector is reached, or the value
of the vector is null.

To loop over the values in a dictionary “dict1”, write

for (key in dict1) {
...

SPLASH Programming Language

63

}

where again, key is any new variable. It's common, inside the loop, to use the expression
dict1[key] to get the value held in the dictionary for that particular key.

4.4.7. Control Statements

Both while loops and for loops can be restarted or terminated, as in C. A break statement termin-
ates the innermost loop; a continue statement starts the innermost loop over.

The return statement stops the processing and returns a value. This is most useful in SPLASH func-
tions, described in the next section.

The exit statement stops the processing. This is most useful in processing an event in a FlexStream
method, described in Section 4.6, “Using SPLASH within FlexStreams”.

4.4.8. Switch Statements

The switch statement is a specialized form of conditional. For instance, you can write

switch(intvar*2) {
case 0: print('case0'); break;
case 1+1: print('case2'); break;
default: print('default'); break;

}

This statement prints “case0” if the value of intvar*2 is 0, “case2” if the value of intvar*2 is 2,
and “default” otherwise. The default is optional. The expression inside the parentheses
switch(...) must be of base type, and the expressions following the case keyword must have the
same base type.

As in C and Java, the break is needed to skip to the end. For instance, if you leave out the break after
the first case,

switch(intvar*2) {
case 0: print('case0');
case 1+1: print('case2'); break;
default: print('default'); break;

}

then the statement will print both “case0” and “case2” when intvar*2 is 0.

4.5. Functions

You can write your own functions in SPLASH. They can be declared in Global blocks, for use by any
stream, or Local blocks. A function can internally call other functions, or call themselves recursively.

The syntax of SPLASH functions resembles C. In general, a function looks like

type functionName(type1 arg1, ..., typen argn) { ... }

where each “type” is a SPLASH type, and each arg is the name of an argument. Within the {...} can
appear any SPLASH statements. The value returned by the function is the value returned by the re-
turn statement within.

SPLASH Programming Language

64

Here are some examples:

int32 factorial(int32 x) {
if (x <= 0) {
return 1;

} else {
return factorial(x-1) * x;

}
}
string odd(int32 x) {

if (x = 1) {
return 'odd';

} else {
return even(x-1);

}
}

string even(int32 x) {
if (x = 0) {
return 'even';

} else {
return odd(x-1);
}

}
int32 sum(int32 x, int32 y) { return x+y; }
string getField([int32 k; | string data;] rec) { return rec.data;}

The first function is recursive. The second and third are mutually recursive; unlike C, you do not need a
prototype of the “even” function in order to declare the “odd” function. The last two functions illustrate
multiple arguments and record input.

The real use of SPLASH functions is to define, and debug, a computation once. Suppose, for instance,
you have a way to compute the value of a bond based on its current price, its days to maturity, and for-
ward projections of inflation. You might write a function

double bondValue(double currentPrice,
int32 daysToMature,
double inflation)

{
...

}

and use it in many places within the data model.

4.6. Using SPLASH within FlexStreams

The following examples assume that there is a Source Stream with the declaration

<SourceStream id="inputStream" store="store">
<Column key="true" name="a" datatype="int32" />
<Column key="true" name="b" datatype="string" />
<Column name="floatData" datatype="double" />
<Column name="dateData" datatype="date" />

</SourceStream>

FlexStreams use SPLASH declarations in the variables attribute, and SPLASH statements in Method

SPLASH Programming Language

65

elements. There are certain variables that are predefined in every Method. For each input stream, and the
FlexStream itself, there are distinguished variables for records of that stream, the entire collection of re-
cords in that stream, and iterators over the stream. Suppose you have an input stream named “Currency”.
There are implicit variables

Currency for records in that stream

Currency_old for previous records in that stream (more on this in a moment)

Currency_stream for the collection of records

Currency_iterator for iterators over that stream

For instance, you could write

Currency_iterator := getIterator(Currency_stream);
Currency := getNext(Currency_iterator);

in a FlexStream.

You can also access the data in the FlexStream itself. If the FlexStream is named “FS”, the variables are
FS for records in that stream, FS_stream for the collection of records, and FS_iterator for iterat-
ors over that stream.

The first example illustrates the “output” statement and record expressions.

<FlexStream id="compute" store="store" istream="inputStream">
<Column name="a" datatype="int32" key="true">
<Column name="b" datatype="string">
<Column name="floatData" datatype="double">
<Column name="dateData" datatype="date">
<Method name="inputMethod" stream="inputStream">
output [a = inputStream.a + 1; |

b = concat('hh', inputStream.b);
floatData = 1.777;
dateData = inputStream.dateData;];

</Method>
</FlexStream>

This Method constructs a new record, adding 1 to the “a” column of the input record, and so on.

Notice the use of the variable inputStream within the expression. When an event arrives from one of
the input streams, the Method whose “stream” attribute matches the input stream is called. The record is
bound to the variable with the name of the input stream. In this example, when a record arrives on the
stream called “inputStream”, the Method (the only one for this FlexStream) gets called with the record
bound to the variable inputStream.

If the event is an update, the variable inputStream_old gets bound to the old record. That can be
useful in tracking changes.

The next example illustrates the usage of a loop.

<FlexStream id="compute" store="store" istream="inputStream">
<Column name="a" datatype="int32" key="true">
<Column name="b" datatype="string">

SPLASH Programming Language

66

<Column name="floatData" datatype="double">
<Column name="dateData" datatype="date">
<Method name="inputMethod" stream="input">
{
int32 var;
var := 0;
while (var < 10) {
output [a = var + 10 * input.a; |

b = input.b;
floatData = input.floatData;
dateData = input.dateData;];

var := var + 1;
}

}
</Method>

</FlexStream>

For each input record, we output 10 records, each with a different value of the key column a.

The next example illustrates two features: the usage of more than one Method for more than one input
stream and the usage of the “variables” attribute.

<FlexStream id="compute" store="store"
istream="inputStream1 inputStream2">

<Column name="a" datatype="int32" key="true">
<Column name="b" datatype="string">
<Column name="floatData" datatype="double">
<Column name="dateData" datatype="date">
<Local>
int32 num1;
int32 num2;

</Local>
<Method name="inputMethod1" stream="inputStream1">
{
if (isnull(num1)) num1 := 0;
num1 := num1 + 1;
output [a = num2; |

b = inputStream1.b;
floatData = inputStream1.floatData;
dateData = inputStream1.dateData;];

}
</Method>
<Method name="inputMethod2" stream="inputStream2">
{
if (isnull(num2)) num2 := 0;
num2 := num2 + 1;
output [a = num1; |

b = inputStream2.b;
floatData = inputStream2.floatData;
dateData = inputStream2.dateData;];

}
</Method>

</FlexStream>

The variables declared in the variables attribute can be used in any Method. Here, they are used to com-
municate between the two Methods. The variables are initially set to null, which explains the need for
the first “if” statements within each Method.

The last example shows that the FlexStream code can output a record with a completely different struc-
ture than the input stream.

SPLASH Programming Language

67

<FlexStream id="compute" store="store" istream="inputStream">
<Column name="a" datatype="int32" key="true">
<Column name="b" datatype="string">
<Column name="c" datatype="double">
<Method name="inputMethod" stream="inputStream">
{
[int32 a; | string b; double c;] rec;
if (input.a <= 3) {
rec := [a = input.a; | b = input.b;];
rec.c := 8.88;
setOpcode(rec,getOpcode(input));
output rec;

}
}

</Method>
</FlexStream>

SPLASH Programming Language

68

Appendix A. Reserved Words
The following table provides a list of Reserved Words. Reserved Words are case insensitive.

AGGREGATE AND AS
ASC AUTO BEGIN
BREAK BY CASE
CAST CLUSTER CONNECTION
CONTINUE COUNT CREATE
DATA DAY DAYS
DECLARE DEFAULT DELETE
DESC DISTINCT DYNAMIC
ELSE END EVENTCACHE
EXIT EXPIRES EXTERNAL
FALSE FBY FIRST
FOR FOREIGN FOREIGNJAVA
FROM FULL FUNCTION
GENERATE GRANT GROUP
HASH HAVING HOUR
HOURS HRS IF
IN INDEX INNER
INSERT INTERMEDIATE IS
JOIN KEY LANGUAGE
LAST LEFT LIBRARY
LIKE LOCAL LOCATION
LOGSTORE MATERIALIZED MAX
MAXSIZE MEMSTORE MIN
MINUTE MINUTES MODULE
NAME NEW NOT
NTH NULL ON
OR ORDER OUTPUT
PATTERN PRIMARY PROGRAM
RANK RECORDS RETAIN
RETURN RIGHT SAFEDELETE
SEC SECOND SECONDARY
SECONDS SELECT SET
SETRANGE STATELESSSTORE STATIC
STORAGE STORE SUM
SWITCH SYNC TABLE
THEN TIMES TO
TOP TREE TRUE
TYPE TYPEDEF TYPEOF
UNION UPDATE UPSERT
VIEW WHEN WHERE
WHILE WITHIN XMLATTRIBUTES
XMLELEMENT

69

Appendix B. Data Types, Operators and Functions
This section lists all the supported data types, operators, and functions. These apply regardless of the au-
thoring environment. Any differences between the authoring environments are noted.

B.1. Data Types

The following table lists the data types supported by the Sybase Aleri Streaming Platform.

Data Type Description

int32 32-bit integer

int64 64-bit integer

money Fixed-point number. With the default money precision of 4 decimal digits, the range
of values is -922,337,203,685,477.5808 through +922,337,203,685,477.5807.

double Floating-point number (IEEE double precision)

date Date/time (64-bit date and time field for 64-bit machines, and 32-bit field for 32-bit
machines), represented as the number of seconds since the epoch (1970-01-01
00:00:00+00, or 1 January 1970 at midnight UTC)

timestamp Date/time in milliseconds (64-bits), represented as the number of milliseconds since
the epoch (1970-01-01 00:00:00.000+00, or 1 January 1970 at midnight UTC)

string Variable length character string

Note:

The number of decimal digits in the “money” datatype can be changed with the moneyPreci-
sion attribute in the Platform object (see Section 3.2, “Platform”). For instance, if moneyPreci-
sion is set to 7, the range of values is -922,337,203,685.4775808 through
+922,337,203,685.4775807.

All types other than string are considered numeric types. Arithmetic can be done on any numeric type.
Rules, called casting in many programing languages, are also applied for changing one numeric type to
another. These rules are as follows:

• Int32 values can be promoted to int64, money, date, timestamp or double values.

• int64 values can be promoted to date, timestamp or double values.

• date values can be promoted to timestamp or double values. In the case of promotion to timestamp
values, the result is scaled. For example, the number of seconds is multiplied by 1000 to get the
number of milliseconds.

• timestamp values can be promoted to double values.

• money values can be promoted to double values.

For example, data of type int32 will automatically be promoted to a double if it is added to a double. The
additions to the usual rules for type promotion also apply to money and date values.

B.2. Opcodes/Constants

The following names, which are Opcodes and Constants, have default values for use in expressions.

70

delete Name for the delete operation. Equivalent to the int32 value 5.

Type: int32

insert Name for the insert operation. Equivalent to the int32 value 1.

Type: int32

null Name for the null value.

Type: any type

safedelete Name for the safe delete operation (delete if present, ignore otherwise). Equivalent to
the int32 value 13.

Type: int32

update Name for the update operation. Equivalent to the int32 value 3.

Type: int32

upsert Name for the upsert operation (insert if not present, update if present). Equivalent to
the int32 value 7.

Type: int32

B.3. Special Columns

All streams have two special columns. The first special column, rowid of type int64, holds an integer
that is a unique value for every row of the stream. The second special column, rowtime of type date,
stores the time (in seconds) at which the row was last modified (or created). Expressions may refer to
these columns in the same way they do to any other column.

B.4. Nulls and Error Handling

The operators and functions below, unless otherwise noted, return null if any of their arguments are null.

Some operators and functions can cause run-time errors (for example, divide-by-zero). In these cases,
since all operators and functions are involved in the computation of an event, the server stops processing
the event and logs an error.

B.5. Arithmetic Operators

Arithmetic operators can be applied to all numeric types. Arithmetic operators can be used with mixed
numeric types, with implicitly promoted values. For example, if a date value is divided by an int32, the
result gets promoted to the larger of the two types.

The following table describes the supported arithmetic operators.

Operator Meaning Example Usage

+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (remainder) 8%3

^ Exponent 4^3

Data Types, Operators and Functions

71

Operator Meaning Example Usage

- Change signs -3

Division and modulus can cause run-time errors if the divisor is 0. If the argument is a double, the server
logs a “Floating-point exception” error. If the arguments are not doubles, the server logs a
“Divide-by-zero” error.

B.6. Comparison Operators

The following table describes the supported comparison operators.

Standard Operator Meaning Example Usage

= Equal to a0 = a1

!= Not equal to a0 != a1

> Greater than a0 > a1

>= Greater than or equal to a0 >= a1

< Less than a0 < a1

<= Less than or equal to a0 <= a1

in Member of a list of values a0 in (a1, a2, a3)

B.7. Boolean Operators

The following table describes the supported Boolean operators. These operators expect to operate on
values of type int32 and return values of type int32. These functions have the same names regardless of
the authoring environment.

Operator Meaning Example Usage

and Return 1 if all values are not
equal to 0, and 0 otherwise.

(a < 10) and (b > 12)

not Return 1 if all values are equal to
0, and 0 otherwise.

not (a = 5)

or Return 1 if any of the values are
not equal to 0, and 0 otherwise.

(b = 8) or (b = 6)

B.8. Arithmetic Functions

abs Returns the absolute value of a number.

Syntax: abs(number)

Type: The argument must be a numeric type and the function returns a numeric value.

Example: abs(-88.76) returns 88.76.

acosine Returns the inverse cosine of a number between -1 and 1. If the argument is invalid
(outside the range -1 and 1), the server logs a “Floating-point exception” error.

Syntax: acosine(number)

Type: The argument must be of type double and the function also returns a double.

Data Types, Operators and Functions

72

Example: acosine(0.0) returns 1.570796.

asine Returns the inverse sine of a number between -1 and 1. If the argument is invalid (outside
the range -1 and 1), the server logs a “Floating-point exception” error.

Syntax: asine(number)

Type: The argument must be of type double and the function also returns a double.

Example: asine(1.0) returns 1.570796.

atangent Returns the inverse tangent of a number between -1 and 1. If the argument is invalid
(outside the range -1 and 1), the server logs a “Floating-point exception” error.

Syntax: atangent(number)

Type: The argument must be of type double and the function also returns a double.

Example: atangent(1.0) returns 0.785398.

cbrt Returns the cube root of a number. If the argument is invalid, the server logs a
“Floating-point exception” error.

Syntax: cbrt(number)

Type: The argument must be a numeric type and the function returns a double.

Example: cbrt(1000.00) returns 10.0.

ceil Rounds a number up.

Syntax: ceil(number)

Type: The argument must be of type double and the function returns a double.

Example: ceil(100.20) returns 101.0.

cosine Returns the cosine of a number expressed in radians. If the argument is invalid, the server
logs a “Floating-point exception” error.

Syntax: cosine(number)

Type: The argument must be of type double and the function also returns a double.

Example: cosine(0.5) returns 0.87758.

exp Returns the value of e (the base of natural logarithm, 2.78128) raised to the power of a
number. If the argument is invalid, the server logs a “Floating-point exception” error.

Syntax: exp(number)

Type: The argument must be of type double and the function also returns a double.

Example: exp(2.0) returns 7.3890.

floor Rounds a number down.

Syntax: floor(number)

Data Types, Operators and Functions

73

Type: The argument must be of type double and the function also returns a double.

Example: floor(100.20) returns 100.0.

ln Returns the natural logarithm of a number. If the argument is invalid (for example, less
than 0), the server logs a “Floating-point exception” error.

Syntax: ln(number)

Type: The argument must be of type double and the function returns a double.

Example: ln(2.718281828...) returns 1.0.

log Returns the base 10 logarithm of a number. If the argument is invalid (for example, less
than 0), the server logs a “Floating-point exception” error.

Syntax: log(number)

Type: The argument must be of type double and the function also returns a double.

Example: log(100) returns 2.0.

round Round the first value to the number of digits specified by the second value.

Syntax: round(number, digits)

Type: Both arguments must be of type double and the function also returns a double.

Example: round(66.778, 1) returns 66.8.

sine Returns the sine of a number expressed in radians. If the argument is invalid, the server
logs a “Floating-point exception” error.

Syntax: sine(number)

Type: The argument must be of type double and the function also returns a double.

Example: sine(0.5) returns 0.4794255.

sqrt Returns the square root of a number. If the argument is invalid (for example, less than 0),
the server logs a “Floating-point exception” error.

Syntax: sqrt(number)

Type: The argument must be of type double or money; the function returns a double.

Example: sqrt(100.0) returns 10.0.

tangent Returns the tangent of a number expressed in radians. If the argument is invalid, the serv-
er logs a “Floating-point exception” error.

Syntax: tangent(number)

Type: The argument must be of type double and the function also returns a double.

Example: tangent(0.5) returns 0.546302.

B.9. Aggregation Functions

Data Types, Operators and Functions

74

These functions operate on multiple records to calculate one value from a group of values. They can be
used in three places: inside Aggregate Streams, within SQL queries with a “group by” clause, and in
conjunction with the event cache type (see Section 4.3.7, “Event Caches” below).

any Returns some value in the group of values; the choice of value is dependent on
the implementation.

Syntax: any(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: any(v.Currency)

avg Computes the average of the non-null values in the group. The expression can be
of any numeric type except "date" or "timestamp".

Syntax: avg(number)

Type: The argument can be of any numeric type except "date" or "timestamp"
and the function returns the same data type as the argument.

Example: avg(v.Shares)

count Counts the number of non-null values in the group.

Syntax: count(expr)

Type: The argument can be of any type but the function always returns an int32.

Example: count(v.Price)

count_distinct Counts the number of distinct non-null values in the group.

Syntax: count_distinct(expr)

Type: The argument can be of any type but the function always returns an int32.

Example: count_distinct(v.Price)

count(*) Counts the number of records in the group.

Syntax: count(*)

Type: The function always returns an int64.

Example: count(*)

first Returns the first value from the group of values.

Syntax: first(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: first(v.Price)

last Returns the last value from the group of values.

Data Types, Operators and Functions

75

Syntax: last(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: last(v.Price)

lwm_avg Returns the linearly weighted moving average for the group of values.

Syntax: lwm_avg(number)

Type: The argument can be of any numeric type and the function returns the
same data type as the argument.

Example: lwm_avg(v.Price)

max Returns the maximum value from the group of values.

Syntax: max(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: max(v.Price)

min Returns the minimum value from the group of values.

Syntax: min(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: min(v.Price)

nth Returns the nth value from the group of values. The first argument determines
the value to be returned (0 for the newest).

Syntax: nth(number, expr)

Type: The first argument must be an int32 but the second argument can be of any
type. The function returns the same data type as the argument.

Example: nth(4,v.Price)

recent Returns the most recent non-null value in the group of values.

Syntax: recent(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: recent(v.Price)

stddev_pop Returns the population standard deviation for the group of values.

Syntax: stddev_pop(number)

Type: The argument can be of any numeric type and the function returns a
double.

Data Types, Operators and Functions

76

Example: stddev_pop(v.Price)

stddev_samp Returns the sample standard deviation for the group of values.

Syntax: stddev_samp(number)

Type: The argument can be of any numeric type except date and timestamp, and
the function returns a double.

Example: stddev_samp(v.Price)

sum Computes the sum of the non-null values in the group.

Syntax: sum(number)

Type: The argument can be of any numeric type except date and timestamp, and
the function returns the same data type as the argument.

Example: sum(v.Shares)

valueInserted Returns a value from the group based on the last row inserted into that group.

Syntax: valueInserted(expr)

Type: The argument can be of any type and the function returns the same data
type as the argument.

Example: valueInserted(v.Shares)

B.10. String Functions

These functions operate on one or more string arguments.

concat Concatenates the given string arguments into a single string and returns that value.

Syntax: concat(string1, ... stringn)

Type: The function takes one or more string arguments and returns a string. Literal text
must be enclosed in single quotation marks.

Example: concat('MSFT', '_NYSE') returns 'MSFT_NYSE'.

length Returns the length of a string passed.

Syntax: length(string)

Type: The argument must be a string and the function returns an int32

Example: length('abc') returns 3.

like Determines whether a string matches a pattern string. Returns 1 if the string matches the
pattern, and 0 otherwise. The pattern can contain wildcards: '_' matches a single arbitrary
character; '%' matches 0 or more arbitrary characters.

Syntax: like(string, pattern).

In SQL, the infix notation can also be used: sourceString like patternString.

Data Types, Operators and Functions

77

Type: Both arguments must be strings and the function returns an int32.

Example: like('MSFT', 'M%T') returns 1.

lower Returns a new string where all the characters of the input string are in lower case.

Syntax: lower(string)

Type: The argument must be a string and the function also returns a string

Example: lower('This Is A Test') returns 'this is a test'.

ltrim Trims spaces from the left of a string.

Syntax: ltrim(string)

Type: The argument must be a string and the function also returns a string

Example: ltrim(' sourcestring') returns 'sourcestring'.

patindex Determines the position of the nth occurrence of a pattern within a source string. The pat-
tern can contain wildcards: "_" matches a single arbitrary character; "%" matches 0 or
more arbitrary characters. If fewer than n instances of the pattern are found in the string,
the function returns -1.

Syntax: patindex(string, pattern, number)

Type: The first two arguments must be strings and the third must be an int32. The func-
tion returns an int32.

Example: patindex('longlonglongstring', 'long', 2) returns 4 (the first
position in the string is 0). And patindex('longstring', 'long', 2) returns -
1.

replace In the first string argument, replace all occurrences of the second string argument with the
third string.

Syntax: replace(target, substring, repstring)

Type: The function takes three string arguments and returns a string.

Example: replace('NewAmsterdam', 'New', 'Old') returns 'OldAmster-
dam'.

right Returns the rightmost characters of a string.

Syntax: right(string, number)

Type: The first argument must be a string and the second must be an int32. The function
returns a string.

Example: right('sourcestring', 6) returns 'string'.

rtrim Trims spaces from the right of a string.

Syntax: rtrim(source)

Type: The argument must be a string; the function returns a string.

Data Types, Operators and Functions

78

Example: rtrim('sourcestring ') returns 'sourcestring'.

substr Computes a substring from a string, given a start position and the number of characters to
be taken. The starting position is 0.

Syntax: substr(string, position, number)

Type: The first argument must be a string, the second and third arguments must be int32.
The function returns a string.

Example: substr('thissubstring', 4, 3) returns 'sub'.

upper Returns a new string where all the characters of the input string are in upper case.

Syntax: upper(string)

Type: The argument must be a string and the function also returns a string

Example: upper('This Is A Test') returns 'THIS IS A TEST'.

B.11. Date and Time Functions

These functions operate on one or more date arguments.

date Converts a date value to an int32 with digits "yyyymmdd".

Syntax: date(dateVal)

Type: The argument must be a date but the function returns an int32.

Example: date(v.TradeTime)

datename Converts a date value to a string of the form "yyyy-mm-dd".

Syntax: datename(dateVal)

Type: The argument must be a date but the function returns a string.

Example: datename(v.TradeTime)

datepart Returns an int32 representing a portion of the date:

Syntax: datepart(portion, dateVal)

where portion can be one of the following strings:

• The year, if the string is yy or yyyy.

• The month, if the string is mm or m.

• The day of the year, if the string is dy or y.

• The day of the month, if the string is dd or d.

• The day of the week, if the string is dw.

• The hour, if the string is hh.

Data Types, Operators and Functions

79

• The minute, if the string is mi or n.

• The second, if the string is ss or s.

Type: The first argument must be a string and the second be a date. The function re-
turns an int32.

Example: datepart('ss', v.TradeTime) returns the seconds portion of
the date value.

sysdate Returns the current system date as a date value.

Syntax: sysdate()

Type: The function has no arguments and returns a date.

Example: sysdate()

systimestamp Returns the current system date as a timestamp value.

Syntax: systimestamp()

Type: The function has no arguments and returns a date.

Example: systimestamp()

totimezone Converts a date from the time zone specified in the second argument (a string) to
the corresponding time in the time zone specified in the third argument. Time zone
values are taken from the industry-standard TZ database. See Appendix G, List of
Time Zones for a complete list of legal time zones.

Syntax: totimezone(date, fromTimeZone, toTimeZone)

Type: The first argument must be a date; the second and third must be strings. The
function returns a date.

Example: totimezone(v.TradeTime, 'GMT', 'EDT') converts the time
from Greenwich Mean Time to Eastern Daylight Time.

trunc Truncates the time portion of a date to 00:00:00 and returns the new date value.

Syntax: trunc(date)

Type: The argument must be a date and the function returns a date.

Example: trunc(v.TradeTime)

B.12. Calendar Functions

Calendar functions supply the name of a calendar file as their first argument. A calendar file is a text file
in the format:

weekendStart <integer>
weekendEnd <integer>
holiday yyyy-mm-dd
holiday yyyy-mm-dd
...

Data Types, Operators and Functions

80

In the weekendStart and weekendEnd lines, the integer represents the day of the week: with
Monday=0, Tuesday=1, ..., Saturday=5, and Sunday=6. The file can have as many "holiday" lines as
needed. Lines beginning with "#" are ignored.

The following is an example of a legal calendar file:

Sybase calendar data for US 1983
weekendStart 5
weekendEnd 6
holiday 1983-02-21
holiday 1983-04-01
holiday 1983-05-30
holiday 1983-07-04
holiday 1983-09-05
holiday 1983-11-24
holiday 1983-12-26

Calendar files are loaded and cached on demand by the Sybase Aleri Streaming Platform. If changes oc-
cur in any of the calendar files, a command must be sent to the Sybase Aleri Streaming Platform to re-
fresh the cached calendar data. See sp_cli for a description of the refresh_calendars command.

The calendar functions are:

business Determines the next business day from a date value and an offset. The offset can be
any negative or positive integer. Negative integers return previous business days. The
Sybase Aleri Streaming Platform will return null if the offset is 0 (it shouldn't be 0)
and will log a message.

Syntax: business(calendarFile, dateVal, offset)

Type: The first argument must be a string, the second argument a date, and the third
an int32. The function returns a date.

Example: business('/aleri/cals/us.cal',v.TradeTime, 1)

businessDay Determines if a date value falls on a business day (a day that is neither a weekend nor
a holiday). It returns 1 if true, and 0 otherwise.

Syntax: businessDay(calendarFile, dateVal)

Type: The first argument must be a string, and the second argument a date. The func-
tion returns an int32.

Example: businessDay('/aleri/cals/us.cal',v.TradeTime)

weekendDay Determines if a date value falls on a weekend.

Syntax: weekendDay(calendarFile, dateVal)

Type: The first argument must be a string, and the second argument a date. The func-
tion returns an int32.

Example: weekendDay('/aleri/cals/us.cal',v.TradeTime)

B.13. Type Conversion Functions

These functions are used to convert data from one data type to another. All of these functions except the

Data Types, Operators and Functions

81

“cast” function operate on a single argument.

cast Converts a value of one numeric type to other numeric type.

Syntax: cast(type, number)

Type: The type must be one of the following values: int32, int64, double, money, date, or
timestamp

The expression must be a type that can be cast to the specified type. It is legal to cast ex-
pressions of any type except a string type. Casting from larger types to smaller ones may
cause overflow. Casting from decimal types (like double or money) to non-decimal types
(like int32) truncates the decimal portion.

Example: cast(timestamp, v.TradeTime)

dateInt Converts a date value to an int32 that represents the number of seconds since 1970-01-01
00:00:00 UTC (the Epoch).

Syntax: dateInt(dateVal)

Type: The argument must be a date; the function returns an int32.

Example: dateInt(v.TradeTime)

int32 Converts a string to an int32.

Syntax: int32(string)

Type: The argument must be a string but the function returns an int32.

Example: int32('9988') returns 9988.

intDate Converts an int32 representing the number of seconds since 1970-01-01 00:00:00 UTC (the
Epoch) to a date.

Syntax: intDate(number)

Type: The argument must be an int32 and the function returns a date.

Example: intDate(1) returns a date value, for which ISO string representation is
1970-01-01 00:00:01.

real Converts a string to a double.

Syntax: real(string)

Type: The argument must be a string and the function returns a double. The string must not
contain commas.

Example: real('77.8866') returns 77.8866.

string Converts a value of any type to an equivalent string representation.

Syntax: string(value)

Type: The argument can have any type but the function returns a string.

Example: string(4512) returns '4512'.

Data Types, Operators and Functions

82

undate Convert a string in the ISO date of the form "yyyy-mm-dd hh:MM:ss" into a date value.

Syntax: undate(string)

Type: The argument must be a string; the function returns a date.

Example: undate('2003-06-14 13:15:00')

B.14. Null Handling and Rank Functions

firstnonnull Returns the first non-null value from a list of arguments. If all values are null, it re-
turns null.

Syntax: firstnonnull(expr1, ... exprn)

Type: All the arguments must have the same type; the function returns a value of
that type.

Example: firstnonnull(v.Price, 0.0) returns v.Price if the value is
non-null and 0.0 otherwise.

ifnull Returns the first non-null value from a list of arguments. If all values are null, it re-
turns null. (This function behaves exactly like firstnonnull.)

Syntax: ifnull(expr1, ... exprn)

Type: All the arguments must have the same type; the function returns a value of
that type.

Example: ifnull(v.Price, 0.0) returns v.Price if the value is non-null
and 0.0 otherwise.

isnull Returns 1 if the argument is null, and 0 otherwise.

Syntax: isnull(expr)

Type: The argument can be of any type and the function returns an int32.

Example: isnull('hello') returns 0.

rank Returns the position of the row in the current group, starting from position 0. This
function is useful in GroupFilter (Group Having clause in SQL Authoring) expres-
sions only.

Syntax: rank()

Type: This function has no arguments. It returns an int32.

Example: rank() > 3 returns 1 for the first three rows in a group and 0 for all
other rows.

B.15. User-Defined Functions

Functions, written in a language like C/C++ or Java, can be called from the Sybase Aleri Streaming Plat-
form. Refer to Appendix D, User-Defined Functions below for more information.

Data Types, Operators and Functions

83

foreign Calls a function from a shared library.

Syntax: foreign(sharedLibrary, function, type, expr, ...
expr)

Type: The first two arguments must be identifiers (wrapped in double quotes if they
contain special characters like periods); the third argument must be the name of a
type; the rest must be arguments to the function. The function returns a value of the
return type specified.

Example: foreign("distance.so", distance, double,
u.a, u.b)

foreignJava Calls a static Java function.

Syntax: foreignJava(className, function, type, expr, ...
expr)

Type: The first two arguments must be identifiers (wrapped in double quotes if they
contain special characters like periods); the third argument must a string specifying
the type of the function; the rest must be arguments to the function. The function re-
turns a value of the return type specified.

Example: foreignJava(Funs, distance, '(DD)D', u.a, u.b)

B.16. Print

This function prints values.

print Print strings on the standard output; this is especially useful in debugging.

Syntax: print(string1, ..., stringn)

Type: The arguments must be strings; the function returns null.

Example: print('here: ', string(i)).

B.17. Assignment

Variables can be assigned using “:=” (note the difference in syntax from Java and C/C++'s operator "=").
The type and value of the expression is the type and value of the expression assigned.

For instance,

var1 := v.Price

returns the value of v.Price after setting the value of the variable var1.

You can also assign directly to columns if the record is bound to a variable (see Section 4.3.1, “Record
Events” for more information). For instance, you can write

record.address := '550 Broad Street';

to assign the column “address” to the string. Note that this will change the record in place, so that the old
value of the column will not be available.

You can also use “++” and “--” as in C, with a variable. The expression ++v increments the value of v,

Data Types, Operators and Functions

84

and returns the new value (pre-increment). The expression v++ increments the value of v, and returns
the old value (post-increment). Similarly, --v is pre-decrement, and v-- is post-decrement.

B.18. Sequencing

Expressions can be combined with semicolons, wrapped in parentheses, to be evaluated in order. The
type and value of the expression is the type and value of the last expression.

For instance,

(var1 := v.Price; 0.0)

returns 0.0 after setting the value of the variable var1.

B.19. Conditional Expressions

Conditional expressions begin with the keyword case:

case
when expression then expression
...
else expression
end

For example,

case
when (v.Price < 100.0) then 1.0
when (v.Price > 200.0) then 2.0
else v.Price
end

returns 1.0 when the price is less than 100.0, 2.0 when the price is greater than 200.0, and the price oth-
erwise.

The types of the conditional expressions must be int32 and the types of the branches must match.

B.20. External Data Functions

getData Get records from an external database via an SQL statement. The records are stored in a
vector; see Section 4.3.3, “Vectors” below for a description of vectors.

Syntax: getData(vector, data location, SQL, expr1, ... exprn)

Type: The first argument must be a vector of records, the second a string representing the
DataLocation, the third an SQL string, and the last arguments strings. The last arguments
are put into holes, marked by a “?” character, in the SQL statement. The function returns
the vector. See Section 3.7, “DataLocation” for a description of DataLocations.

Example: getData(v,'ora','select ID,? from Data1','A') gets records
from a table “Data1” in a DataLocation named “ora”, and puts records with the two selec-
ted fields “ID” and “A” into the vector “v”.

B.21. Unique Value Functions

uniqueId Generate a new int64 value. This value starts at 0, and is different for every call (even
from different streams).

Data Types, Operators and Functions

85

Syntax: uniqueId()

Type: The function returns an int64.

Example: uniqueId()

Data Types, Operators and Functions

86

Appendix C. Pattern Matching Language
Patterns are the building blocks of Pattern Streams. They have the following syntax:

within ...
from ...
on ...
(computational clause)

The following sections describe each of the clauses.

C.1. Within clause

The text following within must be a specification of the interval in which the events occur. It can be
specified in seconds, minutes, or hours. For example, you can write

within 5 seconds ...

You can also use minutes or hours instead of seconds (with the obvious meaning) for conveni-
ence.

C.2. From clause

The from clause specifies the content of events to be matched. Each event is separated from the next by
a comma, and each event has the form

streamName[fieldName={name|literal}; ...;
fieldName={name|literal}] as eventName

The streamName component must be the name of one of the input streams of the Pattern Stream. The
eventName gives a name for this particular event, for use in the on clause. Each fieldName should
be the name of a column in that stream. You don't have to name all of the columns of the input stream
within the [...], only the ones you care about.

The power of patterns comes from the use of literals and names within the [...]. Specifying a literal
means the field must have a particular value. Specifying a name allows you to use the value of the field
in other patterns. For instance, if the from clause looks like

from Trades[Symbol='CSCO'; Price=p] as trade1,
Trades[Symbol='LU'; Price=q] as trade2

it means that the Symbol field in the first event must be 'CSCO', and the Symbol field in the second
event must be 'LU'. The variable p takes on the value of the Price field in the first event. Similarly, the
variable q takes on the value of the Price field in the second event.

When the same name is used in different event patterns, the values must match. For instance, if the pat-
terns are changed to

from Trades[Symbol='CSCO'; Price=p] as trade1,
Trades[Symbol='LU'; Price=p] as trade2

87

the two events must have the same value in their Price field. If the names are not the same, the values
may be the same or different. In other words, nothing is implied by different variable names.

There are some restrictions. You cannot use the same name in the same event, for example,

from Trades[Symbol='CSCO'; Price=p; LastPrice=p] as trade1

is not allowed. Also, there is no way to check for anything but equality between events. Other checks,
like less-than or not-equal, can be encoded in the computational clause in SPLASH.

You can also check the event to see what kind of operation it is, by using the special field ALERI_OPS.
You can check this only for equality to a literal or constant, and not assign it to a name. For example,

from Trades[ALERI_OPS=insert;Symbol='CSCO'; Price=p] as trade1

is legal, but

from Trades[ALERI_OPS=opc;Symbol='CSCO'; Price=p] as trade1

is not.

C.3. On clause

The on clause specifies the temporal relationships between events. You can use and, or, and not in
the on clause, and the special operation fby (the “followed-by” operation), in combination with the
event names from the from clause.

For instance, writing

event1 fby event2

means that the pattern match succeeds if event1 is followed by an event2 (that match the case in the
from clause). Other non-matching events may happen in between.

The other boolean operations on events have the standard meaning. For instance, writing

event1 and event2

means that the pattern match succeeds if event1 and event2 happen (in either order).

C.4. Computational clause

The final clause is a computational clause. It must be a SPLASH statement or block, and should prob-
ably use the output statement form. See Chapter 4, SPLASH Programming Language for a description
of the full language.

C.5. Examples

It's often easiest to see how to use a language with examples. Here are four examples of patterns in the

Pattern Matching Language

88

pattern matching language.

The first example checks to see whether a broker sends a buy order on the same stock as one of his or
her customers, then inserts a buy order for the customer, and then sells that stock. It creates a “buy
ahead” event when those actions have occurred in that sequence.

within 5 minutes
from
BuyStock[Symbol=sym; Shares=n1; Broker=b; Customer=c0] as Buy1,
BuyStock[Symbol=sym; Shares=n2; Broker=b; Customer=c1] as Buy2,
SellStock[Symbol=sym; Shares=n1; Broker=b; Customer=c0] as Sell

on Buy1 fby Buy2 fby Sell
{
if ((b = c0) and (b != c1)) {
output [Symbol=sym; Shares=n1; Broker=b];
}

}

This example checks for three events, one following the other, using the fby relationship. Because the
same variable sym is used in three patterns, the values in the three events must be the same. Different
variables might have the same value, though (for example, n1 and n2.) It outputs an event if the Broker
and Customer from the Buy1 and Sell events are the same, and the Customer from the Buy2 event is dif-
ferent.

The next example shows Boolean operations on events. The rule describes a possible theft condition,
when there has been a product reading on a shelf (possibly through RFID), followed by a non-oc-
currence of a checkout on that product, followed by a reading of the product at a scanner near the door.

within 12 hours
from
ShelfReading[TagId=tag; ProductName=pname] as onShelf,
CounterReading[TagId=tag] as checkout,
ExitReading[TagId=tag; AreaId=area] as exit

on onShelf fby not(checkout) fby exit
output [TagId=t; ProductName=pname; AreaId=area];

The next example shows how to raise an alert if a user tries to log in to an account unsuccessfully three
times.

within 5 minutes
from
LoginAttempt[IpAddress=ip; Account=acct; Result=0] as login1,
LoginAttempt[IpAddress=ip; Account=acct; Result=0] as login2,
LoginAttempt[IpAddress=ip; Account=acct; Result=0] as login3,
LoginAttempt[IpAddress=ip; Account=acct; Result=1] as login4

on (login1 fby login2 fby login3) and not(login4)
output [Account=acct];

People wishing to break into computer systems often scan a number of TCP/IP ports for an open one,
and attempt to exploit vulnerabilities in the programs listening on those ports. Here’s a rule that checks
whether a single IP address has attempted connections on three ports, and whether those have been fol-
lowed by the use of the “sendmail” program.

Pattern Matching Language

89

within 30 minutes
from
Connect[Source=ip; Port=22] as c1,
Connect[Source=ip; Port=23] as c2,
Connect[Source=ip; Port=25] as c3
SendMail[Source=ip] as send

on (c1 and c2 and c3) fby send
output [Source=ip];

Pattern Matching Language

90

Appendix D. User-Defined Functions
Application developers can develop their own functions in C++, Java or off-the-shelf functions and con-
nect them to the Sybase Aleri Streaming Platform via the User-Defined Function Interface. These ex-
ternal functions can be invoked within an expression in a Sybase data model.

The following section describes the process of developing and applying user-defined functions.

D.1. User-Defined Functions in C/C++

To create a usable user-defined functions in C/C++:

1. Write the function.

2. Build a shared library.

3. Write the call to the function within the model.

During the execution of the model, the Sybase Aleri Streaming Platform links to this library at run-time
and calls the function as desired.

To make the process clear, this section develops a C++ function for computing Euclidean distance in
three-dimensional space. The example comprises three simple steps:

• Write the function. Refer to Section D.1.1, “Write a User-Defined Function” for more information.

• Compile the function into a shared library. Refer to Section D.1.3, “Compile a User-Defined Func-
tion” for more information.

• Write the appropriate expression with the model to call the function. Refer to Section D.1.4, “Call a
User-Defined Function” for more information.

D.1.1. Write a User-Defined Function

In C++, the function to compute distance is:

#include math.h
double distance(int numvals, double * vals)
{
double sum = 0.0;
for (int i=0; i<numvals; i++)
sum += vals[i] * vals[i];
return sqrt(sum);

}

To adapt this function for use in the Sybase Aleri Streaming Platform, the following requirements must
be taken into consideration:

• All external functions must conform to the same interface. This means that the arguments passed to
a user-defined function cannot be of type double, or any other specific C/C++ type. Instead, argu-
ments are drawn from a structured type that includes all possible types understood by the Sybase
Aleri Streaming Platform internally. This type, called "DataValue", is found in the Data-

91

Types.hpp header file and currently has the following definition:

struct DataValue {
union
{
int16_t int16v;
int32_t int32v;
int64_t int64v;
money_t moneyv;
double doublev;
time_t datev;
timestampval_t timestampv;
const char * stringv;
void * objectv;

} val;
bool null;

};

Note:

The boolean flag is "null" within this structure. Functions must be aware of the fact that values
may not be actual values but might be "null".

• The internal processing engine within the Sybase Aleri Streaming Platform is a bytecode stack ma-
chine that keeps the top of the stack in a special location. Therefore, a function must split the array
of arguments into two:

• A pointer to the top of the stack. In C, this is a value of type (DataValue *).

• An array of the rest of the arguments. In C, this is a value of type (DataValue *).

The Sybase Aleri Streaming Platform writes the return value of the function into the top of the
stack.

• If the function allocates memory (by calling malloc or calloc), it must record the allocated
memory so that it can be released later. A final argument to the function, a vector of (void *), is
used to record the allocated memory.

• Error codes: The function might need to return an error code. User-defined functions must return a
value of type int32_t; usually this will be "NO_ERROR", which is a predefined value of 0.

Thus, the interface to a user-defined function is:

int32_t ForeignFunction(int numargs,
DataTypes::DataValue * top,
DataTypes::DataValue * nextArgs,
std::vector<void *> & arena)

The code for the distance function example is:

#include math.h
#include <vector>
#include “Row.hpp”
#include “DataTypes.hpp”
extern “C” int32_t distance(int numargs,

User-Defined Functions

92

DataTypes::DataValue * top,
DataTypes::DataValue * nextArgs,
std::vector<void *> & arena)

{
double sum = 0.0;
if (numargs <= 0) {
top->null = false;
top->val.double = 0.0;
return 0;

}
if (top->null) return 0;
double dist = top->val.doublev * top->val.doublev;
for (int i=numargs-2; i>=0; i--) {
if ((nextArgs + i)->null) {
top->null = true;
break;

}
dist +=(nextArgs + i)->val.doublev *(nextArgs + i)->val.doublev;

}
top->val.double = sqrt(dist);
return 0;

}

The “extern” declaration is necessary within C++ to ensure that the function has the same name
within the shared library and not the "mangled" C++ name.

D.1.2. A Second Example

This option pricing calculation example, based on the Binomial Model, illustrates how your code can ac-
cess the arguments:

#include <math.h>
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
#include "Row.hpp"
#include "DataTypes.hpp"
double opval_ambin(double S, double X,

double r, double sigma,
double hcost, double t,
int isPut, int steps)

/* Dictionary
S = spot price; X = exercise price;
r = interest rate; sigma = volatility;
hcost = holding cost (risk-free rate for stocks)
t = time to maturity;
isPut = is the option a put? (0=call,

1=put);
steps = no steps in binomial tree

*/
{
// code omitted
...

}
extern “C” int32_t coambin(int numargs,

DataTypes::DataValue * top,
DataTypes::DataValue * nextArgs,
std::vector<void *> & arena)

User-Defined Functions

93

{
double S,X,r,sigma,hcost,t;
int isPut,steps;

// error and null checking
if (numargs <= 7) {
top->null = false;
top->val.doublev = 0.0;
return 0;

}
if (top->null) return 0;

// get arguments
S = (nextArgs+0)->val.doublev;
X = (nextArgs+1)->val.doublev;
r = (nextArgs+2)->val.doublev;
sigma = (nextArgs+3)->val.doublev;
hcost = (nextArgs+4)->val.doublev;
t = (nextArgs+5)->val.doublev;
isPut = (nextArgs+6)->val.int32v;
steps = (top)->val.int32v; //Last argument is the TOP of the stack

// call the function
top->val.doublev = opval_ambin(S,X,r,sigma,hcost,t,isPut,steps);
return 0;

}

Note that the first argument to the function is in (nextArgs+0), the second is in (nextArgs+1),
and so forth. The top of the stack contains the last argument to the function, reflecting the order of eval-
uation of the arguments.

D.1.3. Compile a User-Defined Function

After writing the function, you must compile it into a shared library. Here is an example using the gcc
compiler:

gcc -fPIC -shared -m64 -I.. -c -o distance.o distance.cpp
gcc -fPIC -shared -m64 distance.o -o distance.so

This creates a shared library named distance.so.

D.1.4. Call a User-Defined Function

After your code has been compiled, the function can be used in expressions with the foreign function:

foreign("distance.so", distance, double,u.a,u.b,u.c)

You may need to give a more complete path to the shared library.

Note:

Windows uses a specific method in searching for shared libraries (.dll files). First, the path of
the application (sp/sp-opt) is checked. If the .dll file is not found in that directory, other direct-
ories are searched, culminating in the directories specified in the PATH environment variable.
More information may be found on the Microsoft web site.

D.2. User-Defined Functions in Java

User-Defined Functions

94

To build user-defined functions in Java, you must

1. Write the function.

2. Compile the function (either into a .class file or a .jar file).

3. Write the call to the function within the model.

During the execution of the model, the Sybase Aleri Streaming Platform links to this library at run-time
and calls the function as desired.

To make the process clear, this section develops some simple Java functions. The example comprises
four steps:

1. Write the function. Refer to Section D.2.1, “Write User-Defined Functions in Java” for more in-
formation.

2. Compile the function. Refer to Section D.2.2, “Compile User-Defined Functions in Java” for more
information.

3. Write the appropriate expression with the model to call the function. Refer to Section D.2.3, “Call
User-Defined Functions in Java” for more information.

4. Start the Sybase Aleri Streaming Platform with the appropriate parameters. Refer to Section D.2.4,
“Link User-Defined Functions in Java” for more information.

D.2.1. Write User-Defined Functions in Java

The Sybase Aleri Streaming Platform can call static Java functions defined in any class. Here, for in-
stance, is a class "Functions" that defines a number of callable functions:

public class Functions {
public static int intFun0() { return 172836; }
public static int intFun1(int i,int j) { return i+j; }
public static long longFun0() { return 967346; }
public static long longFun1(long i,long j) { return i+j;}
public static double doubleFun0() { return 10.7152; }
public static double doubleFun1(double i, double j) { return i+j; }
public static String stringFun0() { return "hij"; }
public static String stringFun1(String i) { return i; }

}

The Sybase Aleri Streaming Platform supports arguments and return values of the Java types:

• int (32-bit integers)

• long (64-bit integers)

• double (double-precision floating point numbers)

• String (character strings)

D.2.2. Compile User-Defined Functions in Java

User-Defined Functions

95

Next, the functions must be compiled into a Java class. For instance, you might use

javac -d /home/aleriusr/java/lib Functions.java

which compiles the Java code into a class file and writes that file in the directory /
home/aleriusr/java/lib.

You can also create Java archives (.jar) files of classes, and refer to those in the classpath below as
normal.

D.2.3. Call User-Defined Functions in Java

To use the Java function he function can be used in Sybase Aleri Streaming Platform expressions. For
example, the expression

foreignJava(Functions,intFunction1,'(II)I',1,2)

calls the function intFunction1 in the class Functions on two int32 arguments, and returns and
int32.

The third argument to foreignJava is a string, a representation of the type of the function being called.
You can obtain this string via the javap executable shipped with most versions of Java. For instance, if
the class file is located in /home/aleriusr/java/lib, then

javap -s -classpath /home/aleriusr/java/lib Functions

produces

public class Functions extends java.lang.Object{
public Functions();
Signature: ()V

public static int intFun0();
Signature: ()I

public static int intFun1(int, int);
Signature: (II)I

public static long longFun0();
Signature: ()J

public static long longFun1(long, long);
Signature: (JJ)J

public static double doubleFun0();
Signature: ()D

public static double doubleFun1(double, double);
Signature: (DD)D

public static java.lang.String stringFun0();
Signature: ()Ljava/lang/String;

public static java.lang.String stringFun1(java.lang.String);
Signature: (Ljava/lang/String;)Ljava/lang/String;

}

The lines beginning with “Signature” give the types to be used in the third argument. Here, “I” denotes a
32-bit integer, “J” a 64-bit integer, “D” a double, and “Ljava/lang/String;” a string.

Note:

User-Defined Functions

96

Unlike C/C++ external functions, the interface for Java functions does not permit null values to
be passed to the functions. You must handle null values explicitly, and not pass them to Java
functions or unexpected results will occur.

D.2.4. Link User-Defined Functions in Java

The Sybase Aleri Streaming Platform has a default Java runtime environment built into it. All you need
to do to “link” the Java code into your application is start the server with a special flag:

sp -j /home/aleriusr/java/lib ...

The -j option specifies the classpath for the Java virtual machine.

Note:

The Java runtime included with the Sybase Aleri Streaming Platform is Sun's Java 1.5. If your
code needs a more recent version of Java (for example, Java 1.6), you can set the special envir-
onment variable ALERI_SP_JAVA_HOME to the location of the appropriate Java virtual ma-
chine shared library (usually libjvm.so on Linux or Solaris and jvm.dll on Windows).
For instance,

export ALERI_SP_JAVA_HOME=/usr/bin/java/jre/lib/libjvm.so

sets the variable on a Linux or Solaris machine in the shell. You must then run the server in this
environment.

User-Defined Functions

97

Appendix E. Aleri Metadata Streams
Certain metadata streams are automatically created by the Sybase Aleri Streaming Platform. These
streams hold information about the running data model. Metadata streams can be queried and subscribed
to, but no stream in the data model may have a metadata stream as its input.

Metadata streams have the special reserved names. No other objects may use these reserved names. In
general, all the names starting with Aleri_ are reserved. Metadata streams also store their records in a
special store called AleriMetadataStore. No other streams may use this store.

E.1. Aleri_Config

Aleri_Config contains the current AleriML configuration of the Sybase Aleri Streaming Platform. It has
two string columns, key and value, and exactly one row (more rows may be added in the future). The
key column contains 'XML' and the value column contains the text of the current AleriML configura-
tion. This row gets updated if the Sybase Aleri Streaming Platform's configuration changes dynamically.

E.2. Aleri_Streams

Aleri_Streams contains information about all streams. It has the following columns:

Column Type Description

user_name string Currently hardcoded as user. In the future this will be the owner's
username.

stream_name string Name of the stream described by this row.

handle int64 The stream's handle (numeric id).

When a stream gets deleted by a Dynamic Modification, its row is removed. When a stream gets created
by a Dynamic Modification, its row is added. When a stream gets dynamically modified in an incompat-
ible way, its old row gets deleted and a new row (with new handle value) inserted. The compatible dy-
namic changes of the streams have no effects on their rows, except for renaming. The renaming still
shows as a deletion and insertion but the stream handle stays the same.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, its old row is deleted and new one inserted. These are two separate transactions. For
more information, see the Administrator's Guide.

E.3. Aleri_Tables

Aleri_Tables contains information about both source and derived streams. It has the following columns
(which are taken from names in PostgreSQL):

Column Type Description

relname string Name of the stream described by this row.

username string Currently hardcoded as “user”, in the future will be the owner user's
name.

relkind string Currently unused, empty.

remarks string The stream's handle (numeric id), formatted as a decimal number in
the ASCII string.

When a stream gets deleted by a Dynamic Modification, its row is removed. When a stream gets created
by a Dynamic Modification, its row is added. When a stream gets dynamically modified in an incompat-

98

ible way, its old row gets deleted and the new row, with new handle value, inserted. The compatible dy-
namic changes of the streams have no effects on their rows, except for renaming. The renaming still
shows as a deletion followed by an insertion, but the stream handle stays the same.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, the deletion of the old row and the insertion of the new version are separate transac-
tions. For more information, see the Administrator's Guide.

E.4. Aleri_Columns

Aleri_Columns contains information about all columns of all streams. It has the following columns
(which are taken from names in Postgres):

Column Type Description

usename string Currently hardcoded as “user”. In future releases, the value will be
the owner's username. (Note: the name of the column is “usename”,
not “username”).

relname string Name of the stream that contains the column described by this row.

attname string Name of the column described by this row.

attypid int32 The PostgreSQL value representing the type of this column. The
possible values are: int32 = 23, int64 = 20, money = 701 (same as
double), double = 701, date = 1114, timestamp = 1114 (same as
date), string = 1043.

typname string Currently empty.

attnum int32 Position of this column in the row definition, starting from zero.

attlen int32 Currently unused, set to zero.

atttypmod int32 Currently unused, set to zero.

attnotnull string Currently unused, set to zero.

relhasrules string Currently empty.

relkind string Currently empty.

When a stream gets deleted by a Dynamic Modification, the corresponding rows are removed. When a
stream gets created by a Dynamic Modification, the corresponding rows are added. When a stream gets
dynamically modified in an incompatible way, its old rows get deleted and the new rows for the new
columns inserted. The compatible dynamic changes of the streams have no effects on their rows.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, its old records are deleted and new ones inserted, as two separate transactions. For
more information see the Administrator's Guide.

E.5. Aleri_KeyColumns

Aleri_KeyColumns contains information about the key columns of all the streams. It has the following
columns:

Column Type Description

table string Name of the stream owning the column described by this row.

field string Name of the column described by this row.

type int32 The PostgreSQL value representing the type of this column. The
possible values are: int32 = 23, int64 = 20, money = 701 (same as
double), double = 701, date = 1114, timestamp = 1114 (same as

Aleri Metadata Streams

99

Column Type Description

date), string = 1043.

type_name string Currently empty.

field_length int32 Currently unused, set to 0.

When a stream gets deleted by a Dynamic Modification, the corresponding rows are removed. When a
stream gets created by a Dynamic Modification, the corresponding rows are added. When a stream gets
dynamically modified in an incompatible way, its old rows get deleted and the new rows (for the new
columns) inserted. The compatible dynamic changes of the streams have no effects on their rows.

Each insertion or deletion of a stream is sent as a separate transaction. When a stream is changed in an
incompatible way, the deletion of the old records and the insertion of the new one are two separate trans-
actions. For more information, see the Administrator's Guide.

E.6. Aleri_Clients

Aleri_Clients contains information about all the currently active gateway client connections. It has the
following columns:

Column Type Description

handle int64 An unique integer id of the connection.

user_name string The username used for login on this connection. When a connection
is first created, its username is NULL. After login, the row gets up-
dated with the username used for logging in.

ip string The address of the client machine, as a string.

host string The symbolic host name of the client machine, if available. If the
host name is not available, the value is the IP address.

port int32 The TCP port number from which the connection originates.

login_time timestamp Time when the connection was accepted (not authenticated), in
GMT.

conn_tag string The user-set symbolic connection tag name (see the option -m of
sp_subscribe and sp_upload). If not set by the user, is NULL.

E.7. Aleri_Subscriptions

Aleri_Subscriptions contains the information about all the currently active subscriptions. It has the fol-
lowing columns:

Column Type Description

stream_handle int64 The handle of the stream subscribed to (as in Aleri_Streams).

conn_handle int64 The handle of the connection subscribed to the stream (as in
Aleri_Clients).

This stream tracks the subscriptions and unsubscriptions done in every possible way. If a connection is
dropped, it's considered unsubscribed from everything to which it was subscribed.

E.8. Aleri_Subscriptions_Ext

Aleri_Subscriptions_Ext contains the information about all the currently active subscriptions, in a de-
normalized but more convenient format. It has the following columns:

Aleri Metadata Streams

100

Column Type Description

stream_handle int64 The handle of the stream subscribed to (as in Aleri_Streams).

conn_handle int64 The handle of the connection subscribed to the stream (as in
Aleri_Clients).

stream_name string Name of the stream. If a stream is dynamically renamed, this value
will change.

stream_user string The username of the owner of the stream (as in Aleri_Streams).

subscriber_user string Login name of the user account that owns this subscription.

ip string Address of the client machine, as a string.

host string Symbolic host name of the client machine, if available. If the host-
name is not available, the value is the IP address.

port int32 The TCP port number from which the connection owning this sub-
scription originates.

login_time timestamp Time when the connection owning this subscription was accepted, in
GMT.

Note:

In some situations, this metadata stream may be slightly out of sync. For example, if a stream is
deleted dynamically, all subscriptions to this stream are deleted too. You might see the row for
the subscription updated, with null stream name and owner, before the row is eventually de-
leted.

E.9. Aleri_Connectors

Aleri_Connectors contains information about all the InConnections and OutConnections defined in the
Sybase Aleri Streaming Platform. The words “connector” and “connection” are often used interchange-
ably as synonyms. The word "connection" may also be used to describe the client connections to the Sy-
base Aleri Streaming Platform. gateway (through the pub/sub API). To reduce confusion, the word "con-
nector" is used in this metadata stream's name. It has the following columns:

Column Type Description

name string An unique name of the connector, as defined in the model.

stream string Name of the stream on which this connector is defined.

type string Connector type, the same as the "type" attribute of this connector's
DataLocation.

input int32 "1" for InConnection, "0" for OutConnection.

ingroup string The StartUp group where this connector belongs.

state string The state of connector. One of:

READY Ready to be started.

INITIAL Performing start-up and initial loading.

CONTINU-
OUS

Continuously receiving real-time data.

IDLE Not currently receiving the data but attempting to
re-connect to the data source or sink.

DONE No more input or output will follow, the connector

Aleri Metadata Streams

101

Column Type Description

thread is about to exit.

DEAD The connector thread exited. The connector will
stay in this state until explicitly requested to re-
start.

total_rows int64 Total number of data records recognized in the input data stream by
an InConnection, or the number of data records received by an Out-
Connection from the platform.

good_rows int64 Number of data records successfully processed.

bad_rows int64 Number of data records that experienced errors.

The fields total_rows, good_rows, and bad_rows are updated once in a few seconds, to reduce the over-
head.

E.10. Aleri_RunUpdates

Aleri_RunUpdates delivers notifications of changes in the state of debugging. The notifications are sent
only when the Sybase Aleri Streaming Platform is in trace mode. It is not a “real stream” in the sense
that its store is always empty, and only updates are sent. It has the following columns:

Column Type Description

key string Type of the update

value int32 Some integer value associated with the update

stream string If the update notifies of an event related to some individual stream,
it contains the name of the stream. Otherwise NULL.

info string Some additional string information associated with the update. The
format of this information depends on the type of the update.

The following types of updates are currently sent:

Key Value Stream Description

TRACE 0 | 1 (none)
The trace mode has changed: enabled (1) or disabled (0).

RUN 0 | 1 (none)
The platform has paused (0) or continued running (1).

STEP <count> (none) The Sybase Aleri Streaming Platform was single-
stepped, manually or automatically. The value contains
the number of the steps made. No specifics are provided
about which streams were stepped.

BREAK <bp-id> <stream-name> A breakpoint with ID <bp-id> has been triggered on the
stream <stream-name>. These updates may come either
before or after the corresponding update "RUN 0".

NOBREAK <bp-id> <stream-name> A breakpoint with ID <bp-id> on the stream
<stream-name> had its leftToTrigger count decreased,
but it didn't trigger yet.

Aleri Metadata Streams

102

Key Value Stream Description

EXCEP-
TION

(none) <stream-name> An exception has happened on the stream
<stream-name>. These updates may come either before
or after the corresponding update "RUN 0".

REQUES-
TEXIT

(none) (none) A request to shut down the Sybase Aleri Streaming Plat-
form has been received.

EXIT (none) (none) All the user streams have exited. The Sybase Aleri
Streaming Platform is about to complete the shutdown.

E.11. Aleri_ClockUpdates

Aleri_ClockUpdates delivers notifications of changes in the logical clock of the Sybase Aleri Stream-
ing Platform. It is not a “real stream” in the sense that its store is always empty, and only updates are
sent. It has the following columns:

Column Type Description

key string Type of update, currently the only type is "CLOCK"

rate double Rate of the logical clock relative to the real time

time double The current time, in seconds since the UNIX epoch

real int32 Real time flag: 1 if the logical clock runs in real time (that is, match-
ing the system time of the machine where the Sybase Aleri Stream-
ing Platform runs), 0 if at varied rate or time.

stop_depth int32 How many times the clock has been stopped recursively, or in other
words how many times the clock resume would have to be called to
actually resume the flow of time; when the clock is running, the stop
depth is 0

max_sleep int32 The period of time, in real milliseconds, that guarantees that all the
sleepers discover the changes in the clock rate or time

E.12. Aleri_Streams_Monitor

Aleri_Streams_Monitor contains information about the performance of streams. Monitoring data is
only available if the Sybase Aleri Streaming Platform was started with monitoring option -t.
Aleri_Clients_Monitor contains basic information about the connected clients, but performance-related
fields are only populated with the monitoring option.

This stream has the following columns:

Column Type Description

stream string Name of the stream.

cpu_pct double CPU usage in percent by this stream's thread in the time period since
the last update.

trans_per_sec double The stream's performance in transactions per second, in the time
period since the last update.

rows_per_sec double The stream's performance in rows per second, in the time period
since the last update.

inc_trans int64 Number of transactions processed since the last update.

Aleri Metadata Streams

103

Column Type Description

inc_rows int64 Number of rows processed since the last update.

queue int32 Current input queue size. A high size indicates that this stream can't
process the records fast enough. This means that either this stream
or one of its output streams is a bottleneck. The bottleneck can be
located by looking for a stream with high input queue size but with
all its output streams having low input queue sizes.

store_rows int64 Current number of records in stream's store.

last_update date The time of the current update.

sequence int64 The sequence number of the current update.

post-
ing_to_client

int64 The numeric handle of the client connection, where this stream is
trying to post the data at the moment. Most of the time it will con-
tain -1, meaning “not trying to post right now”. This column may be
useful for analyzing the situations when the Sybase Aleri Streaming
Platform becomes unresponsive. If a client is not reading the data
posted to it, its gateway queue will overflow, and any stream posting
to it will become stuck. This effect will propagate throughout the
Sybase Aleri Streaming Platform and will have all the streams in-
volved show the low CPU usage and high queue size.

E.13. Aleri_Clients_Monitor

Aleri_Clients_Monitor contains information about the performance of all the currently active gateway
client connections. For convenience, it is denormalized and contains a copy of data from
Aleri_Clients_Monitor. Monitoring data is only available if the Sybase Aleri Streaming Platform was
started with monitoring option -t. Aleri_Clients_Monitor contains basic information about the connec-
ted clients, but performance-related fields are only populated with the monitoring option.
Aleri_Clients_Monitor has the following columns:

Column Type Description

handle int64 An unique integer id of the connection.

user_name string The username used for login on this connection. When a connection
is first created, its username is NULL. After login, the row gets up-
dated with the username used for logging in.

ip string The address of the client machine, as a string.

host string The symbolic host name of the client machine, if available. If the
host name is not available, the value is the IP address.

port int32 The TCP port number from which the connection originates.

login_time timestamp Time when the connection was accepted (not authenticated), in
GMT.

conn_tag string The user-set symbolic connection tag name (see the option -m of
sp_subscribe and sp_upload). If not set by the user, is NULL.

cpu_pct double CPU usage in percent by this client's gateway thread in the time
period since the last update.

last_update date The time of the current update.

subscribed int32 Flag, showing whether this client is subscribed to any streams (1) or
not (0).

sub_trans_per_s
ec

double The client's performance in transactions per second received by the
client, in the time period since the last update. For this purpose the
envelopes and any service messages are also counted as transac-

Aleri Metadata Streams

104

Column Type Description

tions.

sub_rows_per_s
ec

double The client's performance in data rows per second received by the cli-
ent, in the time period since the last update.

sub_inc_trans int64 Number of transactions/envelopes/messages received by the client
since the last update.

sub_inc_rows int64 Number of data rows received by the client since the last update.

sub_total_trans int64 Total number of transactions/envelopes/messages received by the
client.

sub_total_rows int64 Total number of data rows received by the client.

sub_dropped_ro
ws

int64 Total number of data rows dropped in the gateway because the client
did not read them fast enough (for lossy subscriptions).

sub_accum_size int32 For the pulsed subscriptions, the current number of rows collected in
the accumulator, to be sent in the next pulse.

sub_accum_ops int32 Reserved for the future. The intent is to provide for the pulsed sub-
scriptions the number of operations applied to the accumulator since
the last pulse. It may differ from the accumulator size, if multiple
operations become collapsed in the accumulator. Currently is a
placeholder with the value of -1.

sub_queue int32 Number of the rows queued for transmission to the client. This is
just the “proper queue” part. The total number of records buffered
consists of sub_accum_size, sub_queue and sub_work_queue.

sub_queue_fill_
pct

double Current sub_queue in percent relative to the queue size limit. If the
queue size reaches this limit (100%), any future attempts to post
data to this client will block, propagating the flow control back.

sub_work_queu
e

int32 Number of the rows for transmission to the client that are being
transferred from the “proper queue” to the socket buffer. At this
point the rows may get regrouped by envelopes.

pub_trans_per_
sec

double The client's performance in transactions per second sent by the cli-
ent, in the time period since the last update. For this purpose the en-
velopes and any service messages are also counted as transactions.

pub_rows_per_
sec

double The client's performance in data rows per second sent by the client,
in the time period since the last update.

pub_inc_trans int64 Number of transactions/envelopes/messages sent by the client since
the last update.

pub_inc_rows int64 Number of data rows sent by the client since the last update.

pub_total_trans int64 Total number of transactions/envelopes/messages sent by the client.

pub_total_rows int64 Total number of data rows sent by the client.

pub_stream_id int64 The numeric id of the stream to which the client is trying to publish
the data at the moment. Most of the time it will contain -1, meaning
“not trying to publish right now”. This column may be useful for
analyzing situations when the Sybase Aleri Streaming Platform be-
comes unresponsive.

The data provided by this stream may be used to analyze performance issues with the clients.

High CPU usage means that the client has subscribed to a large amount of data, and its gateway connec-
tion may have become the bottleneck. If the client has subscribed to multiple streams, then on an SMP
machine the bottleneck may be removed by splitting the subscriptions into two connections.

Aleri Metadata Streams

105

If the CPU usage is low but the subscription queue size is high then the client is not reading the data as
fast as the Sybase Aleri Streaming Platform sends it. Such a client slows down the whole Sybase Aleri
Streaming Platform. Perhaps the client has to be optimized. Another option would be to change its sub-
scription mode to lossy or pulsed.

Aleri Metadata Streams

106

Appendix F. Data Location Descriptions, Parameters,
Limits

The following list of connectors has parameter descriptions with basic, advanced and mandatory usage
requirements, defaults and known limitations. For more information on the framework to add a connect-
or not included in the set of built-in connectors that come with the Sybase Aleri Streaming Platform, see
the Guide to Programming Interfaces .

You should note for connectors that support discovery, when a source stream is created via the connect-
or discovery mechanism, the schema is defined, but key columns are not chosen.

F.1. ActivFinancial Inbound Plug-in

The ActivFinancial Inbound Plug-in connector works with the Activ Adapter which connects to the Act-
iv Content Gateway to receive real-time Level 1 and/or Level 2 market data. This connector supports
discovery. Activ connector can be configured on any source stream as an inbound data location.

This connector is listed as activInPlugin in the Aleri Studio's Data Location list. You must use this con-
nector with Aleri Activ version 1.0.2 or later. The Adapter must be installed per Adapter Guide direc-
tions. Plug-in connectors are started on the same machine as the Sybase Aleri Streaming Platform which
is controlled by the Remote Execution dialog.

See Aleri Activ documentation for more information on installing and configuring Adapters. Please con-
tact a Sybase sales representative if you are interested in obtaining an Activ Adapter.

The "discover" gesture from the Aleri Studio activates a wrapper script which passes Aleri Studio-edit-
able parameters. If the Discover Path parameter is not empty, its contents are searched for *.xml
files (FieldList files) whose contents appear as the Data Location tables.

Additional FieldList files may be manually added to the Discovery Path directory to be found
during discovery. Alternatively, a custom Discovery Path directory may be established whose con-
tents may be completely independent of the Adapter distribution.

In all cases, the result of a successful discover gesture from which the user may provision a source
stream in the model. Once the source stream is instantiated, the user must manually make the symbol a
key field.

The Map File is a configFilename, making it directly editable by the Aleri Studio.

The FieldList file may contain any combination of valid FIDs and PseudoFields. See Aleri Activ docu-
mentation for more information. PseudoFields include:

• _eventtype

• _hirestimestamp

• _image (L2 only)

• _item, _itemname or _symbol

• _orderid

• _sequencenumber

• _stale

• _trend

107

• _updatenumber

Activ connectors still require a MAP file, which may reference additional parameters but no other
streams.

The advanced runtime parameters are used for remote execution. These parameters are paths in the re-
mote machine's syntax.

For information on how to test your plug-in connector and details about these connectors, see Guide to
Programming Interfaces .

Parameters (Basic)

Installation Path Absolute path to the Adapter's installation directory. It must have the same
value as used by ALERI_ACTIV_HOME

Type: directory

Use: Required

Default: $ALERI_ACTIV_HOME

Map File path to map file

Maps the data from the vendor's format to the Sybase Aleri Streaming Plat-
form format. This parameter is necessary for connectors that do not have
Data Discovery. Mapping specifies what data is of interest and how it will
be placed in a source stream of a data model. This is referred to as a Map
file in Aleri Activ Adapter documentation.

Type: configFilename

Use: Required

Default: aleri/adapters/activ/

Discovery Path path to the Adapter discovery directory

Type: directory

Use: Optional (required for discovery)

ActivUser This parameter is a part of the necessary credentials for the ActivFinancial
Content Gateway.

Type: string

Use: Required

Default: None

ActivPassword This parameter is a part of the necessary credentials for the ActivFinancial
Content Gateway.

Type: password

Use: Required

Data Location Descriptions, Parameters, Limits

108

Default: None

User The user name for the Sybase Aleri Streaming Platform. You can set this to
match your authentication method.

Type: string

Use: Optional (may be skipped if the authentication method is set to none)

Default: None

Password The password for the Sybase Aleri Streaming Platform. You can set this to
match your authentication method.

Type: password

Use: Optional

Default: None

Parameters (Advanced)

Directory (runtime) runtime path to Adapter installation

Type: string

Use: advanced

Discovered Table name of discovered table; filled in by the Aleri Studio

Type:tables

Use:advanced

Map File (runtime) The parameter is the runtime path to map file. If this parameter is empty,
the connector uses the basic parameter, Map File .

Type: string

Use: advanced

Default: This field should be left blank.

Known Limitations:

• You must perform the following steps in order to use this connector with discovery:

1. Convert the ActivFinancialTableTemplateSpreadsheet.xls you received in
your Activ SDK to a .csv file.

2. You must then save the TableTemplateSpreadsheet.csv in
$ALERI_ACTIV_HOME/config.

If you don't perform the preceding steps and the .csv file isn't found, you may see the following
error message:

Data Location Descriptions, Parameters, Limits

109

Exception in thread "main" java.io.FileNotFoundException: ...\config\TableTemp
lateSpreadsheet.csv (The system cannot find the file specified)

• When the Sybase Aleri Streaming Platform is started by the Aleri Studio, connectors are started by
the Sybase Aleri Streaming Platform engine. If an external Adapter is being started by a connector,
it must reside on the same machine as the Sybase Aleri Streaming Platform engine. This configura-
tion is seen for example when the Aleri Studio is running on Windows, with Remote Execution of
the Aleri CEP engine on a UNIX machine.

• The configuration of Activ-facing portion of the Aleri Activ Adapter cannot be done from within
the Aleri Studio. It requires manual editing of the Adapter's .ini file.

• Inbound Plug-in connectors only deal with exactly one source stream.

• You must manually configure an external Adapter rather than a connector to use complex features
such as a Finalizer.

F.2. Aleri Streaming Platform Input

It receives data from a stream in another or the same instance of the Sybase Aleri Streaming Platform. If
the connection becomes broken, the connector tries to re-establish it. The connector can be used to cre-
ate complex composite models. It supports discovery.

Parameters

Server Server host name of the other instance.

Use: Required

Port Server control port, or -1 to read from the Ephemeral Port File.

Type: int

Use: Required

Ephemeral Port File File that will contain the server port number, if port is -1.

Use: Advanced

Use SSL Whether to use the SSL encryption wrapping.

Type: boolean

Use: Optional

Default: False

Authentication Authentication mechanism to use for remote Sybase Aleri
Streaming Platform instance.

Type: choice of None, PAM, RSA, or Kerberos V5

Use: Required

Data Location Descriptions, Parameters, Limits

110

User User ID for the platform connection

Use: Optional (may be skipped if authentication set to none)

Password Password for PAM authentication

Use: Optional

RSA Key File RSA private key file name and location, for RSA authentication.

Use: Optional

Type: filename

RSA Key File (Runtime) RSA private key file at run time, if different from discovery time.

Use: Optional

Type: string

Remote Name Tag Symbolic name under which this connection will show on the re-
mote platform.

Use: Advanced

Remote Stream Stream to subscribe to on another Platform instance.

Use: Advanced

Include Base Content Start by receiving the initial contents of the stream, not just the
updates.

Type: boolean

Use: Optional

Default: False

Lossy Subscription If the reader can not keep up, individual updates may be dropped.

Type: boolean

Use: Advanced

Default: False

Drop Connection If Can
Not Keep Up

If the reader can not keep up, the connection will be dropped and
attempt to reconnect.

Type: boolean

Use: Advanced

Default: False

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Data Location Descriptions, Parameters, Limits

111

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Pulse Period (seconds) Non-zero value enables the pulsed updates with this period.

Use: Advanced

Default: 0

Maximum Buffer Size It is the maximum number of records to queue up before dropping
a connection if a subscription cannot keep up and becomes
marked droppable.

Type: Unsigned Integer

Use: Advanced

Default: 8000

Retry Period (seconds) Period for trying to re-establish an outgoing connection, in
seconds, or 0 for a one-time attempt.

Type: uint

Use: Advanced

Default: 1

Enter Initial State When the connector enters the initial loading state.

Use: Advanced

Default: auto

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Base Drain Timeout
(milliseconds)

Maximum time (in milliseconds) to receive all base data for a
connected stream before the connected Sybase Aleri Streaming
Platform forces a disconnect.

Type: uint

Use: Advanced

Default: 8000

Data Location Descriptions, Parameters, Limits

112

Known Limitations:

• Be careful if you create loops in the data flow.

F.3. Aleri Streaming Platform Output

Send data to a source stream in another, or the same, instance of the Sybase Aleri Streaming Platform. If
the connection becomes broken, the connector tries to re-establish it. Can be used to create complex
composite models.

This connector can now be configured to send only the base state of the stream. It sends the data once
and exits, but it can be restarted later.

Parameters

Server Server host name of the other instance.

Use: Required

Port Server control port, or -1 to read from the Ephemeral Port File.

Type: int

Use: Required

Ephemeral Port File File that will contain the server port number, if port is -1.

Use: Advanced

Use SSL Whether to use the SSL encryption wrapping.

Type: boolean

Use: Optional

Default: False

Authentication Authentication mechanism to use for remote Sybase Aleri Streaming
Platform instance.

Type: choice of None, PAM, RSA, or Kerberos V5

Use: Required

User User ID for the platform connection

Use: Optional (may be skipped if authentication is set to none)

Password Password for PAM authentication

Use: Optional

RSA Key File RSA private key file name and location, for RSA authentication.

Use: Optional

Data Location Descriptions, Parameters, Limits

113

Type: filename

RSA Key File (Runtime) RSA private key file at run time, if different from discovery time.

Use: Optional

Type: string

Retry Period (seconds) Period for trying to re-establish an outgoing connection, in seconds.

Type: uint

Use: Advanced

Default: 1

Remote Stream Stream to publish to on another Platform instance.

Use: Advanced

Include Base Content Start by recording the initial contents of the stream, not just the up-
dates.

Type: boolean

Use: Optional

Default: False

Only Base Content It only sends once the initial contents of the stream.

Type: boolean

Use: Advanced

Default: False

Remote Name Tag Symbolic name under which this connection will show on the remote
platform.

Use: Advanced

Confirm Receipt Check the publishing confirmations from the remote platform for
success.

Type: boolean

Use: Advanced

Default: False

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

Data Location Descriptions, Parameters, Limits

114

• Be careful if you create loops in the data flow.

F.4. Bloomberg Plug-in

The Bloomberg Plug-in connects to the Bloomberg ServerAPI to receive Bloomberg market data. It can
be configured on any source stream as an inbound data location. The authentication method is set to that
of the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi.

The Bloomberg Plug-in connector requires Aleri Bloomberg Adapter version 2.1 or later to be installed.
You can refer to the Aleri Bloomberg Adapter documentation for details about its installation and con-
figuration. Please contact your Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connector Remote Dir-
ectory Path parameter is supplied.

Type: directory

Use: Required

Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Remote Configuration File
Path parameter is supplied.

Type: configFilename

Use: Required

Default: None

Discovery Directory Path Specify the absolute path to the Adapter's discovery directory.

Type: directory

Use: Required

Default: None

Connector Remote Direct-
ory Path

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Remote Configuration
File Path

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter is ignored.

Type: string

Data Location Descriptions, Parameters, Limits

115

Use: Advanced

Default: None

F.5. Configuring Coral8 Inbound and Outbound Connectors

Coral8 Inbound and Outbound connectors let you establish incoming or outgoing data links with streams
in a running Coral8 project. However the connectors require special processing to convert data in Coral8
to a format that can be processed in the Sybase Aleri Streaming Platform and vice versa. These connect-
ors are only available once the Coral8 connector overlay package (on the Sybase Download web site) is
installed on top of the Sybase Aleri Streaming Platform Release 3.1.4 or higher.

F.5.1. Data Types

Connectors map the following data types as described below.

C8_INT int32

C8_LONG int64

C8_FLOAT double

C8_STRING string

C8_TIMESTAMP timestamp or date. Coral8 timestamps are in microseconds. Con-
nectors perform the appropriate data conversion when reading or
writing to a C8_TIMESTAMP field.

C8_FLOAT/ C8_LONG money. The Sybase Aleri Streaming Platform has a money data
type. This can be associated with either a float or a long on the
Coral8 side. Depending on what it is mapped to, money is conver-
ted using the money factor currently in effect in the Sybase Aleri
Streaming Platform.

ALERI_OPS and C8_TIMESTAMP are special fields, and these names are reserved for use by the con-
nectors.

F.5.2. Coral8 Timestamps

Coral8 messages include an implicit timestamp. The corresponding stream in the Sybase Aleri Stream-
ing Platform may define a field name C8_TIMESTAMP in order to handle it. If defined and the connec-
tion parameter Handle C8 Timestamp is true, the connectors use the field to correspond to the Cor-
al8 message timestamp.

F.5.3. Operations

The Sybase Aleri Streaming Platform supports insert, delete, update, and upsert operations. You can
have a field named ALERI_OPS in the stream to handle these operation codes. If this is defined and the
connection parameter Handle Aleri Operation Codes is true, the connectors populate the field
when writing to and use the field when reading from Coral8.

F.6. Coral8 Inbound

Parameters

Data Location Descriptions, Parameters, Limits

116

Coral8 host the name of the machine where the Coral8 server is running

Type: string

Use: Required

Default: None (required parameter)

Coral8 server port the port number on which the Coral8 server is listening for incom-
ing connections

Type: string

Use: Required

Default: None (required parameter)

Coral8 workspace the name of the workspace containing the stream to connect to

Use: Required

Default: None (required parameter)

Coral8 project the name of the project containing the stream to connect to

Type: string

Use: Required

Default: None (required parameter)

Coral8 Stream the name of the output stream from which to read data

Type: string

Use: Required

Default: None (required parameter)

Handle C8 Timestamp If set to true, and a field named C8_TIMESTAMP is defined in
the target Sybase Aleri Streaming Platform stream, the input con-
nector fills in this field with the value of the Coral8 message
timestamp.

Type: boolean

Use: Advanced

Default: True

Handle Aleri Operation
Codes

If set to true, and a field named ALERI_OPS exists in the source
Coral8 output stream schema, the value of that field is used to de-
termine the type of message each data row generates. Recognized
opcodes are i for insert, d for delete, u for update, and U for up-
sert.

Type: boolean

Use: Advanced

Data Location Descriptions, Parameters, Limits

117

Default: True

Debug If set to true, the connector outputs debugging messages.

Type: boolean

Use: Advanced

Default: False

F.7. Coral8 Outbound

Parameters

Coral8 host the name of the machine where the Coral8 server is running

Type: string

Use: Required

Default: None (required parameter)

Coral8 server port the port number on which the Coral8 server is listening for incom-
ing connections

Type: string

Use: Required

Default: None (required parameter)

Coral8 workspace the name of the workspace containing the stream to connect to

Use: Required

Default: None (required parameter)

Coral8 project the name of the project containing the stream to connect to

Type: string

Use: Required

Default: None (required parameter)

Coral8 Stream the name of the input stream to which to write data

Type: string

Use: Required

Default: None (required parameter)

Handle C8 Timestamp If set to true, and a field named C8_TIMESTAMP is defined in
the target Sybase Aleri Streaming Platform stream, the input con-
nector fills in this field with the value of the Coral8 message

Data Location Descriptions, Parameters, Limits

118

timestamp.

Type: boolean

Use: Advanced

Default: True

Handle Aleri Operation
Codes

If set to true, and a field named ALERI_OPS exists in the source
Coral8 output stream schema, the value of that field is used to de-
termine the type of message each data row generates. Recognized
opcodes are i for insert, d for delete, u for update, and U for up-
sert.

Type: boolean

Use: Advanced

Default: True

Debug If set to true, the connector outputs debugging messages.

Type: boolean

Use: Advanced

Default: False

F.8. Database Input

Receives data from a database table. May be used to poll the table periodically and receive the updates.
The exact required parameters depend on the type of RDBMS. If the parameter "SQL Query" is spe-
cified, it allows you to override the table selection and get the data from an arbitrary query.

This connector supports discovery.

Parameters

Database Type The brand of RDBMS server. The choices are Oracle, DB2, kdb+,
PostgreSQL or Microsoft SQL Server®. Sybase ASE, Netezza
and Teradata databases are also options, but users must obtain the
driver from the vendor to install for the Sybase Aleri Streaming
Platform. Refer to the Administrator's Guide for more informa-
tion.

Use: Required

Server Name or IP address of the database server machine.

Use: Required

Port IP port of the database listener

Type: int

Use: Required

Data Location Descriptions, Parameters, Limits

119

Instance Instance

Name of database instance

Use: Optional

Database Name of database

Use: Optional

User User ID for the database connection

Use: Required

Password Password for the database connection

Use: Optional

Input table name
(runtime)

The name of the table to select data from

Use: Advanced

SQL Query (runtime) This parameter is used only when the Input is not specified. It
defines an arbitrary SQL query that is executed against the data-
base to generate a result set whose records are used as input to the
Sybase Aleri Streaming Platform. If this parameter is not defined,
the implicit query "SELECT * FROM <Input table name> is
used.

Use: Advanced

Poll Period (seconds) Period for polling for new contents, in seconds.

Unsigned Integer

Use: Advanced

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Data Location Descriptions, Parameters, Limits

120

Default: %Y-%m-%d %H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%d %H:%M:%S

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• When polling this must be the only connector.

• Any data updates received from any other source will be undone on the next poll.

• If the connector is for Sybase ASE, the connection is always made to the default database even if
you specify another database.

F.9. Database Output

Sends data to a database table. The table may be truncated when the connector starts. The exact required
parameters depend on the type of RDBMS.

Database output connectors have the following rules for Timestamp and Date columns in the Sybase
Aleri Streaming Platform:

• ISO format= %Y-%m-%d %H:%M:%S", for example, "1964-04-01 17:12:00

• Sybase Aleri Streaming Platform Timestamp columns get ISO formating and wrapped using the
JDBC timestamp escape:

{ts '<ISOso formatted timestamp>'}

when placed into a SQL insert, update or delete statement. You don't have to define the formatting
for timestamps.

• Sybase Aleri Streaming Platform Date columns get formatted to the one specified in setting the
dateFormat connector parameter, with a default of ISO format, and wrapped using simple single
quote characters, such as '<iso or user-formatted date>' when placed into a SQL insert, update or
delete statement.

A common example of specifying a different dateFormat is when inserting a Sybase Aleri Streaming
Platform Date column into an Oracle Date column. The default Oracle date format is: "04-Apr-1964
17:12:00", so you would specify that the dateFormat parameter is "d-%b-%Y %H:%M:%S."

Parameters

Data Location Descriptions, Parameters, Limits

121

Database Type The brand of RDBMS server. The choices are Oracle, DB2, kdb+,
Microsoft SQL Server® or PostgreSQL. Sybase ASE, Netezza
and Teradata databases are also options, but users must obtain the
driver from the vendor to install for the Sybase Aleri Streaming
Platform. Refer to the Administrator's Guide for more informa-
tion.

Use: Required

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

batchLimit If this parameter is 1, its behavior remains with SQL insert, up-
date and delete statements being performed one at a time. But if
you set batchLimit to a value greater than one, such as 1024,
then the JDBC batch mechanism is used, which greatly increases
the performance when writing to the database.

Type: uint

Use: Advanced

Default: 1

kdb+ schema mapping If set, the output to the kdb database is by the native kdb "q" inter-
face instead of the "SQL" JDBC interface, allowing for more
complete and efficient handling of most kdb data types.

To trigger the "q" mode for kdb+ (JDBC) output, make sure you
have the "exportMap" parameter specified, which is labeled
"kdb+ schema mapping" in the advanced tab, and set it for one
character/database column. The valid characters are:

Format kdb+ Type

h short

i int

l long

e real (single)

f float (double)

c char (1 character)

C list-of-char

s symbol

d date

z datetime

t time (single)

Type: string

Use: Optional

Server Name or IP address of the database server machine.

Data Location Descriptions, Parameters, Limits

122

Use: Required

Port IP port of the database listener

Type: int

Use: Required

Instance Instance

Name of database instance

Use: Optional

Database Name of database

Use: Optional

User User ID for the database connection

Use: Required

Password Password for the database connection

Use: Optional

Output table name
(runtime)

The name of the table which to push data.

Use: Advanced

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%d %H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%d %H:%M:%S

Include Base Content Outputs initial stream contents in addition to stream updates.

Type: boolean

Use: Advanced

Default: False

Only Base Content Send only the initial contents of the stream

Type: boolean

Use: Advanced

Data Location Descriptions, Parameters, Limits

123

Default: False

Truncate database table Start by truncating the database table, then populating with
streaming data.

Type: boolean

Use: Advanced

Default: False

Known Limitations:

• The table must already exist.

• Each row translates to an SQL statement so updates are reasonably slow.

F.10. File CSV Input

Reads a file in Aleri's delimited format. Can be used to poll for new data being appended to the file. The
file may be without the header (same as accepted by sp_convert), or with header specifying the field
names. This connector does support discovery.

Parameters

Delimiter Symbol used to separate the columns.

Use: Advanced

Default: Comma (,)

Has Header Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Directory Location of the data files.

Use: Required

Directory (runtime) Location of the data files at run time, if different from discovery
time.

Use: Advanced

File Pattern Pattern to look up files for discovery

Use: Advanced

Default: *.csv

Data Location Descriptions, Parameters, Limits

124

File (in Directory) File to read

Use: Advanced

Poll Period (seconds) Period for polling for new contents, in seconds.

Type: uint

Use: Advanced

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, and
converts DELETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string for parsing date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string for parsing timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

expectStreamNameOpcode If true, the first two fields are interpreted as stream name and Aleri
op code respectively. Messages with unmatched stream names are
discarded.

Type: boolean

Use: Optional

Default: False

Block Size Number of records to block into one pseudo-transaction

Type: int

Use: Advanced

Default: 1

Data Location Descriptions, Parameters, Limits

125

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• When polling, data may only be appended to the file, but the file may not be overwritten or re-
placed. The stream name in the file rows is ignored, all the data is sent to the same stream.

• For discovery to work correctly, make sure to set the delimiter character and header presence flag
to match the actual data.

• You should not mix the files with different delimiters or with/without headers in the same directory
or files with wrong delimiters or headers won't be correctly discovered.

F.11. File CSV Output

Write data as a file in Aleri's delimited format. The file may be without the header (same as accepted by
sp_convert), or with header specifying the field name.

Parameters

Delimiter Symbol used to separate the columns.

Use: Advanced

Default: Comma (,)

Has Header Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Directory Location of the data files.

Use: Required

Directory (runtime) Location of the data files at run time, if different from discovery
time.

Use: Advanced

File Pattern Pattern to look up files for discovery

Use: Advanced

Default: *.csv

File (in Directory) File to write

Use: Advanced

Data Location Descriptions, Parameters, Limits

126

Include Base Content Starts by recording the initial contents of the stream, not just the
updates.

Type: boolean

Use: Optional

Default: False

Only Base Content Send only the snapshot of initial contents of the stream, once.

Type: boolean

Use: Optional

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Prepend StreamNameOpcode If true, each message will start with the stream name and the Aleri
op code.

Type: boolean

Use: Optional

Default: False

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

Data discovery is not supported.

F.12. File FIX Input

Reads FIX messages from a file and writes them as stream records. Each stream hosts FIX messages of
a certain type. Messages of any other FIX type are ignored. All FIX fields except the following are being
written in the same order in stream columns:

• BeginString

Data Location Descriptions, Parameters, Limits

127

• BodyLength

• MsgType

• CheckSum

The names of the stream columns must correspond to the FIX protocol specification.

Parameters

FIX Version Version of the FIX protocol.

Type: choice

Use: Required

Default: 4.2

FIX Message Type The type of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)

File Path to the input file

Type: string

Use: Required

Default: None (required parameter)

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• This connector is not a full FIX Engine. If you require a full FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.

• Supports only FIX versions 4.2 and 4.3.

Data Location Descriptions, Parameters, Limits

128

• Repeating groups and components are not supported.

• Only supports insert Opcode.

F.13. File FIX Output

Writes stream data as FIX messages to a file. Each stream hosts FIX messages of a certain type. Mes-
sages are written to file contiguously, with no line feeds. The following FIX fields are generated by the
connector:

• BeginString

• BodyLength

• MsgType

• CheckSum

The rest of the fields must be written in appropriate order in stream columns. The names of the stream
columns must correspond to the FIX protocol specification.

Parameters

FIX Version Version of FIX Protocol

Type: choice

Use: Required

Default: 4.2

FIX Message Type The type of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)

File Path to the output file

Type: string

Use: Required

Default: None (required parameter)

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Data Location Descriptions, Parameters, Limits

129

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• This connector is not a full FIX Engine. If you require a full FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.

• Only versions 4.2 and 4.3 of FIX are supported.

• Repeating groups and components are not supported.

• Data discovery is not supported.

• Only supports insert Opcode.

F.14. File XML Input

It reads a file in AleriML format. This connector can be used to poll for new data being appended to the
file. The File XML Input connector supports discovery.

Parameters

Directory Location of the data files.

Use: Required

Directory (runtime) Location of the data files at run time, if different from discovery
time.

Use: Advanced

File Pattern Pattern to look up files for discovery

Use: Advanced

Default: *.xml

File (in Directory) File to read

Use: Advanced

Poll Period (seconds) Period for polling for new contents, in seconds.

Type: uint

Use: Advanced

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, and
converts DELETE to SAFEDELETE.

Type: boolean

Data Location Descriptions, Parameters, Limits

130

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string for parsing date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string for parsing timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

matchStreamName If true, the XML element name will be matched against the stream
name. Unmatched messages will be discarded.

Type: boolean

Use: Optional

Default: False

Block Size Number of records to block into one pseudo-transaction

Type: int

Use: Advanced

Default: 1

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• When polling, data may only be appended to the file; the file may not be overwritten or replaced.

• The stream name in the file entries is ignored.

• Don't mix the data files and model XML files in the same directory or the Sybase Aleri Streaming
Platform XML files will be discovered as invalid.

Data Location Descriptions, Parameters, Limits

131

F.15. File XML Output

It writes data as a file in the AleriML format.

Parameters

Directory Location of the data files.

Use: Required

Directory (runtime) Location of the data files at run time, if different from discovery time.

Use: Advanced

File Pattern Pattern to look up files for discovery.

Use: Advanced

Default: *.xml

File (in Directory) File to read.

Use: Advanced

Include Base Content Start by recording the initial contents of the stream, not just the updates.

Type: boolean

Use: Optional

Default: False

Only Base Content Send only the snapshot of initial contents of the stream, once.

Type: boolean

Use: Optional

Default: False

Date Format Format to parse the date values.

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format to parse the timestamp values.

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Field Mapping Mapping between the in-platform and external fields

Type: string

Data Location Descriptions, Parameters, Limits

132

Use: Advanced

F.16. FIX Plug-in

The FIX Plug-in Adapter runs a full FIX engine as a separate process. It uses any number of file, socket
and session connectors to send and receive FIX messages. It can be configured on any source stream as
an inbound data location. The authentication method is set to that of the Sybase Aleri Streaming Plat-
form: none, pam, rsa, or gssapi.

The standalone Aleri FIX connector must be installed to use this Plug-in. Please contact a Sybase sales
representative for information about the standalone Aleri FIX connector version 1.0. Refer to the Aleri
FIX connector documentation for details about its installation and configuration.

Parameters

Connector Directory Path Specify the absolute path to the standalone connector installation
directory. This parameter is ignored if the Connector Remote
Directory Path parameter is supplied.

Type: directory

Use: Required

Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Remote Configuration File
Path parameter is supplied.

Type: configFile

Use: Required

Default: None

Connector Remote Direct-
ory Path

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Remote Configuration
File Path

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Data Location Descriptions, Parameters, Limits

133

F.17. HTTP Plug-in

The HTTP Plug-in connector receives SQL queries wrapped in HTTP requests from a client application,
such as a Web browser and sends chunk-coded stream content back to the client. The plug-in can be
configured on any source stream as an inbound data location. The authentication method is set to that of
the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi.

The Aleri HTTP Adapter version 1.0 or later must be installed to use this Plug-in. Please contact your
Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connector Remote Dir-
ectory Path parameter is supplied.

Type: directory

Use: Required

Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Remote Configuration File
Path parameter is supplied.

Type: configFilename

Use: Required

Default: None

Connector Remote Direct-
ory Path

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Remote Configuration
File Path

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter is ignored.

Type: string

Use: Advanced

Default: None

F.18. IDC Plug-in

The IDC (Interactive Data Corporation) Plug-in connects to an IDC PlusFeed or PlusBook source to re-
ceive Level 1 and Level 2 market data. It can be configured on any source stream as an inbound data
location. The authentication method is set to that of the Sybase Aleri Streaming Platform: none, pam,
rsa, or gssapi. This connector supports discovery.

Data Location Descriptions, Parameters, Limits

134

The Aleri IDC Adapter version 1.0 or later must be installed to use this Plug-in. You can refer to the
Aleri IDC Adapter documentation for details about its installation and configuration. Please contact your
Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connector Remote Dir-
ectory Path parameter is supplied.

Type: directory

Use: Required

Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Remote Configuration File
Path parameter is supplied.

Type: configFile

Use: Required

Default: None

Discovery Directory Path Specify the absolute path to the Adapter's discovery directory.

Type: directory

Use: Required

Default: None

Connector Remote Direct-
ory Path

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Remote Configuration
File Path

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter is ignored.

Type: string

Use: Advanced

Default: None

F.19. JMS CSV Input

Subscribes and reads text messages formatted as a delimited list of values from JMS queue or topic, then

Data Location Descriptions, Parameters, Limits

135

writes the messages as stream records. If opted, the first two fields in every message are interpreted as
the stream name and Aleri op code respectively. An empty string is a valid value. This connector sup-
ports discovery.

Parameters

delimiter Specifies the delimiter between fields. The default is a comma.

Type: string

Use: Required

Default: Comma

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

imqConsumerFlowLimit It is specific to Glassfish OpenMQ. The upper limit of the number
of messages per consumer that will be delivered and buffered in
the MQ client.

Type: string

Data Location Descriptions, Parameters, Limits

136

Use: Advanced

Default: 10

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of the destination (queue or topic).

Type: string

Use: Required

Default: None (required parameter)

Stream Name Opcode Ex-
pected

If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Advanced

Default: False

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitation:

No reconnection attempt is made when the connection to the message broker is lost.

F.20. JMS CSV Output

Publishes stream data as text messages formatted as delimited list of values to a JMS queue or topic. If
opted, each message will be prepended with the stream name and the Aleri op code. If a column has a
null value, an empty string will be added to the list.

Parameters

Data Location Descriptions, Parameters, Limits

137

delimiter Delimiter between fields; the default delimiter is a comma.

Type: string

Use: Required

Default: Comma

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Data Location Descriptions, Parameters, Limits

138

Default: None (required parameter)

Delivery Mode The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

Column TO Property Map A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the
column value.

The following is an example:

MyColumn1=MyProperty1,MyColumn2=MyProperty2

No spaces are accepted within the value of this parameter. Setting
the JMS properties enables the message filtering on the message
broker side using the JMS selector mechanism.

Type: string

Use: Advanced

Default: None

Prepend Stream Name, Op-
code

If true, each message will start with the stream name and the Aleri
op code.

Type: boolean

Use: Advanced

Default: False

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

Data Location Descriptions, Parameters, Limits

139

• No reconnection attempt is made when the connection to the message broker is lost.

F.21. JMS Custom Input

Subscribes and reads custom-formatted Java object messages from a JMS queue or topic, then writes the
messages as stream records. The format conversion is performed by a custom-provided implementation
of the following interface:

package com.aleri.connectors;

public interface ExternalToAleriConverter {

public AleriMessage externalToAleri(Serializable externalMessage) throws Exception;
}

The objects returned by the externalToAleri method should implement the following interface:

package com.aleri.connectors;

public interface AleriMessage extends Serializable {

public String getStreamName();

public String getOpCode();

public Map<String, Serializable> getColumnValues();
}

The objects returned by the getStreamName, getOpCode, getColumnValues methods are inter-
preted, respectively, as the name of the stream to write to, the op code, and the stream record as a
column name to value map. The Java classes of column values must correspond to column types as
shown in Section F.25, “JMS Object Array Input”.

Implementations of the ExternalToAleriConverter interface must provide a constructor with a single ar-
gument of java.lang.String type or alternatively, a default constructor with no arguments.

Records with unmatched stream names are ignored. Records with null op code are interpreted as upserts.
The values of non-key columns may be absent or null.

It is the user's responsibility to provide a JAR archive containing an implementation of the Extern-
alToAleriConverter interface. The archive should be placed in the lib subfolder of the Sybase Aleri
Streaming Platform installation folder.

If an implementation is not provided, the default implementation is used, whereby it is assumed that the
external message is an instance of the DefaultAleriMessage class and no actual conversion is performed.

This connector supports discovery.

Parameters

Connection Factory The Java class of the connection factory used to connect to the message
broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory (ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

Data Location Descriptions, Parameters, Limits

140

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Websphere MQ
JDBC driver. See the section called “Configuring Non-standard Data
Locations” in the Administrator's Guide for details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

imqConsumerFlowLimit It is specific to Glassfish OpenMQ. The upper limit of the number of
messages per consumer that will be delivered and buffered in the MQ
client.

Type: string

Use: Advanced

Default: 10

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None

Converter Class Name Fully qualified name of a custom-provided implementation of the Ex-
ternalToAleriConverter

Data Location Descriptions, Parameters, Limits

141

Type: string

Use: Required

Default: ExternalToAleriConverter

Converter Parameter To be passed as the single argument to the constructor of the custom-
provided implementation of the ExternalToAleriConverter interface.

Type: string

Use: Optional

Default: None (the no-arguments constructor will be used).

Known Limitation:

No reconnection attempt is made when the connection to the message broker is lost.

F.22. JMS Custom Output

Publishes stream records as custom-formatted Java objects to a JMS queue or topic. The format conver-
sion is performed by a custom-provided implementation of the following interface:

package com.aleri.connectors;

public interface AleriToExternalConverter {

public Serializable aleriToExternal(AleriMessage aleriMessage) throws Exception;
}

See Section F.25, “JMS Object Array Input” for the definition of the AleriMessage interface.

Implementations of the AleriToExternalConverter interface must provide a constructor with a single ar-
gument of java.lang.String type or alternatively, a default constructor with no arguments.

The stream name, op code and column name to value map of the aleriMessage object are guaranteed to
be valid, even though some non-key column values may be null.

It is the user's responsibility to provide a JAR archive containing an implementation of the AleriToEx-
ternalConverter interface. The archive should be placed in the lib subfolder of the Sybase Aleri Stream-
ing Platform installation folder.

If an implementation is not provided, the default implementation is used, whereby the aleriMessage ob-
ject is returned with no actual conversion performed.

Parameters

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

Data Location Descriptions, Parameters, Limits

142

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None

Delivery Mode The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

Column to Message Prop-
erty Map

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the

Data Location Descriptions, Parameters, Limits

143

column value.

The following is an example:

MyColumn1=MyProperty1,MyColumn2=MyProperty2

No spaces are accepted within the value of this parameter. Setting
the JMS properties enables the message filtering on the message
broker side using the JMS selector mechanism.

Type: string

Use: Advanced

Default: None

Converter Class Name Fully qualified name of a custom-provided implementation of the
AleriToExternalConverter interface.

Type: string

Use: Required

Default: com.aleri.connectors.DefaultAleriToExternalConverter

Converter Parameter To be passed as the single argument to the constructor of the cus-
tom-provided implementation of the AleriToExternalConverter
interface.

Type: string

Use: Optional

Default: None (the no-arguments constructor will be used).

Known Limitations:

• No reconnection attempt is made when the connection to the message broker is lost.

F.23. JMS FIX Input

Subscribes and reads FIX messages from a JMS queue or topic, then writes the messages as stream re-
cords. Each stream hosts FIX messages of a certain type. Messages of any other FIX type are discarded.
All FIX fields except the following are stored in the same order in stream columns.

• BeginString

Subscribes and reads custom-formatted Java object messages from a JMS queue or topic, then
writes the messages as stream records. The format conversion is performed by a custom-provided
implementation of the following interface:

• BodyLength

• MsgType

Data Location Descriptions, Parameters, Limits

144

• CheckSum

The names of the stream columns must correspond to the FIX protocol specification.

Parameters

Fix Version Version of the FIX protocol

Type: choice

Use: Required

Default: 4.2

FIX Message Type The type of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)

Connection Factory The Java class of the connection factory used to connect to the message
broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory (ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Websphere MQ
JDBC driver. See the section called “Configuring Non-standard Data
Locations” in the Administrator's Guide for details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Data Location Descriptions, Parameters, Limits

145

imqConsumerFlowLimit It is specific to Glassfish OpenMQ. The upper limit of the number of
messages per consumer that will be delivered and buffered in the MQ
client.

Type: string

Use: Advanced

Default: 10

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• This connector is not a full FIX Engine. If you require a full FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.

• Only supports FIX Versions 4.2 and 4.3

• Repeating groups and components are not supported

• No reconnection attempt is made when the connection to the message broker is lost.

• Only supports insert Opcode.

F.24. JMS FIX Output

Data Location Descriptions, Parameters, Limits

146

Publishes stream data as FIX messages to a JMS queue or topic. Each stream hosts FIX messages of a
certain type. The following FIX fields are generated by the connector:

• BeginString

• BodyLength

• MsgType

• CheckSum

Parameters

FIX Version Version of the FIX protocol

Type: choice

Use: Required

Default: 4.2

FIX Message Type The type of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Data Location Descriptions, Parameters, Limits

147

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

imqConsumerFlowLimit It is specific to Glassfish OpenMQ. The upper limit of the number
of messages per consumer that will be delivered and buffered in
the MQ client.

Type: string

Use: Advanced

Default: 10

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Delivery Mode The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

Column to Message Prop-
erty Map

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the
column value.

The following is an example:

MyColumn1=MyProperty1,MyColumn2=MyProperty2

No spaces are accepted within the value of this parameter. Setting

Data Location Descriptions, Parameters, Limits

148

the JMS properties enables the message filtering on the message
broker side using the JMS selector mechanism.

Type: string

Use: Advanced

Default: None

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• This connector is not a full FIX Engine. If you require a full FIX Engine, please contact a Sybase
sales representative for information about the Aleri FIX Engine Adapter version 1.0.

• Only FIX Versions 4.2 and 4.3 are supported.

• Repeating groups and components are not supported.

• Data discovery is not supported.

• No reconnection attempt is made when the connection to the message broker is lost.

• Only supports insert Opcode.

F.25. JMS Object Array Input

Subscribes and reads messages formatted as arrays of Java objects from a JMS queue or topic, then
writes the messages as stream records. If opted, the first two objects in every message are interpreted as
stream name and Aleri op code respectively. Null elements in the array will generate null values for the
corresponding columns. Column types must correspond to Java classes as follows:

Stream Column Type Java Class

string java.lang.String

int16 java.lang.Integer

int32 java.lang.Integer

int64 java.lang.Long

money java.lang.Double

Data Location Descriptions, Parameters, Limits

149

Stream Column Type Java Class

double java.lang.Double

date java.util.Date

timestamp java.util.Date

This connector supports discovery.

Parameters

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

imqConsumerFlowLimit It is specific to Glassfish OpenMQ. The upper limit of the number
of messages per consumer that will be delivered and buffered in
the MQ client.

Type: string

Use: Advanced

Data Location Descriptions, Parameters, Limits

150

Default: 10

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Expect Stream Name, Op-
code

If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Advanced

Default: False

Known Limitation:

No reconnection attempt is made when the connection to the message broker is lost.

F.26. JMS Object Array Output

Publishes stream data as an array of Java objects to a JMS queue or topic. If opted, each message will
start with the stream name and the Aleri op code. If a column has a null value, it corresponds to a null
element in the array. Column types correspond to Java classes as follows:

Stream Column Type Java Class

string java.lang.String

int16 java.lang.Integer

int32 java.lang.Integer

int64 java.lang.Long

money java.lang.Double

double java.lang.Double

date java.util.Date

timestamp java.util.Date

Parameters

Connection Factory The Java class of the connection factory used to connect to the

Data Location Descriptions, Parameters, Limits

151

message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Delivery Mode The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Data Location Descriptions, Parameters, Limits

152

Default: PERSISTENT

Column To Message Prop-
ertyMap

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the
column value.

The following is an example:

MyColumn1=MyProperty1,MyColumn2=MyProperty2

No spaces are accepted within the value of this parameter. Setting
the JMS properties enables the message filtering on the message
broker side using the JMS selector mechanism.

Type: string

Use: Advanced

Default: None

Prepend Stream Name, Op-
code

If true, each message will start with the stream name and the Aleri
op code.

Type: boolean

Use: Advanced

Default: False

Known Limitations:

• No reconnection attempt is made when the connection to the message broker is lost.

F.27. JMS XML Input

Subscribes to and reads XML-formatted text messages from a JMS queue or topic, then writes the mes-
sages as stream records. Each message must consist of an XML element. If opted, the element name will
correspond to the stream name. The ALERI-OPS attribute is optional. If omitted, the message will be in-
terpreted as an upsert. The rest of the attributes must have the same names as the corresponding stream
columns. The columns with null values must be omitted. This connector supports discovery.

Parameters

Connection Factory The Java class of the connection factory used to connect to the message
broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory (ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

Data Location Descriptions, Parameters, Limits

153

To use this Java class, you must first obtain the IBM Websphere MQ
JDBC driver. See the section called “Configuring Non-standard Data
Locations” in the Administrator's Guide for details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

imqConsumerFlowLimit It is specific to Glassfish OpenMQ. The upper limit of the number of
messages per consumer that will be delivered and buffered in the MQ
client.

Type: string

Use: Advanced

Default: 10

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Match Stream Name If true, the XML element name will be matched against the stream
name. Unmatched messages will be discarded.

Type: boolean

Data Location Descriptions, Parameters, Limits

154

Use: Advanced

Default: False

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitation:

No reconnection attempt is made when the connection to the message broker is lost.

F.28. JMS XML Output

Publishes stream data as XML-formatted text messages to a JMS queue or topic. Each message consists
of an XML element whose name is the same as the stream name. The first attribute is the Aleri op code.
The rest of the attributes have the same names as the corresponding stream columns. The columns with
null values are omitted.

Parameters

Connection Factory The Java class of the connection factory used to connect to the
message broker. Valid values are:

• org.apache.activemq.ActiveMQConnectionFactory
(ActiveMQ)

• com.sun.messaging.ConnectionFactory (Glassfish OpenMQ)

• com.ibm.mq.jms.MQConnectionFactory (IBM MQ JMS)

To use this Java class, you must first obtain the IBM Web-
sphere MQ JDBC driver. See the section called “Configuring
Non-standard Data Locations” in the Administrator's Guide for
details.

• oracle.jms.AQjmsConnectionFactory (Oracle AQ)

Type: string

Use: Required

Default: None

Data Location Descriptions, Parameters, Limits

155

Host Name Host name or IP address of the message broker

Type: string

Use: Required

Default: None (required parameter)

port Connection port of the message broker

Type: uint

Use: Required

Default: None (required parameter)

Destination Type Destination type. Valid values are QUEUE and TOPIC.

Type: choice

Use: Required

Default: QUEUE

Destination Name Name of destination (queue or topic)

Type: string

Use: Required

Default: None (required parameter)

Delivery Mode The delivery mode has valid values of PERSISTENT and
NON_PERSISTENT.

Type: choice

Use: Optional

Default: PERSISTENT

Column To Message Prop-
erty Map

A Comma-delimited list of ColumnName=PropertyName map-
pings. For each mapped column name, the outbound message will
contain a corresponding JMS property whose value equals the
column value.

The following is an example:

MyColumn1=MyProperty1,MyColumn2=MyProperty2

No spaces are accepted within the value of this parameter. Setting
the JMS properties enables the message filtering on the message
broker side using the JMS selector mechanism.

Type: string

Use: Advanced

Data Location Descriptions, Parameters, Limits

156

Default: None

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• No reconnection attempt is made when the connection to the message broker is lost.

F.29. kdb Input Plug-in

The kdb Input Plug-in connector works with the sp_kdbin utility to read data from a kdb or a kdb+tick
installation into a stream in the Sybase Aleri Streaming Platform. The connector can read both queried
and streaming data based on a configuration parameter. This connector supports discovery.

By default, the connector matches the field names (in a case-insensitive manner) to decide the mapping
between the source kdb+tick table and the target stream. You also have the option of explicitly specify-
ing the mapping.

Parameters

Platform User Id The user name to connect to the Sybase Aleri Streaming Platform.

Type: string

Use: Optional

Default: None (required parameter)

Platform Password The password associated with the Sybase Aleri Streaming Platform
UserID. It is required if using RSA authentication.

Type: string

Use: Optional

Default: None

RSA Key File The full path to the RSA Key private key file. This option must be
provided if authentication type is set to RSA.

Data Location Descriptions, Parameters, Limits

157

Type: string

Use: Optional

Default: None

Encrypt Whether to encrypt the communication between the connector and
Sybase Aleri Streaming Platform.

Type: boolean

Use: Optional

Default: False

KDB Server The name or IP Address of the machine hosting the kdb+tick data-
base.

Type: string

Use: Required

Default: localhost

KDB Port This is the port on which the kdb+tick database is listening. It must
be a value between 1 and 65535.

Type: int

Use: Required

Default: 5001

KDB User This is the user id to use to connect to the kdb+tick database.

Type: string

Use: Optional

Default: None

KDB Password This is the password, associated with the user id, to connect to the
kdb+tick database.

Type: string

Use: Optional

Default: None

Source Table/Query This specifies either a name of a table in kdb or kdb+tick database or
a valid query string, which is used to retrieve the data. You should
note that if specifying a query, the plug-in connector retrieves the
resulting schema named as 'Query'. You may need to rename any
streams generated from the discovered schemas.

Type: string

Usage: Required

Data Location Descriptions, Parameters, Limits

158

Default: None

Platform Host Name If specified, the plug-in connector uses the specific gateway host and
ignores the hostname returned by the Sybase Aleri Streaming Plat-
form.

Type: string

Use: Optional

Default: None

Field Mapping This is an optional parameter that specifies the mapping between the
Sybase Aleri Streaming Platform stream column name and the
kdb+tick database table column names. The mapping is in the fol-
lowing format.

SPColumn1=KDBColumn1:SpColumn2=KDBColumn2

If this parameter is not provided, the connector will absorb data for
only those columns where the target stream column name matches
the source table column name in a case-insensitive manner.

Use: Optional

Default: None

Streaming Mode It determines if the connector should connect to a kdb+tick database
and read in streaming data or execute the supplied query and feed the
result to the Sybase Aleri Streaming Platform. Allowed values are
Stream and Pull.

Type: string

Use: Required

Default: Stream

Polling Interval In non-streaming mode, there is an option to have the supplied query
run regularly at a configurable interval. This parameter specifies the
polling interval in seconds. A value of 0 indicates that no polling is
to be performed - the query is executed just once.

Type: int

Use: Optional

Default: 0

Block Size The maximum number of records that will be sent as a single block
to the Sybase Aleri Streaming Platform. The default value is 64. A
higher value may increase throughput but will also increase latency.
The number of records in the block may be smaller than this value if
not enough data is available.

Type: int

Data Location Descriptions, Parameters, Limits

159

Use: Required

Default: 64

Async Mode If set to true, the connector will not wait for acknowledgment from
the Sybase Aleri Streaming Platform that it received the data. This
needs to be set to true in the hot spare configurations to ensure that
both the primary and the hot spare has received the data.

Type: boolean

Use: Optional

Default: False

Use Transaction Blocks If set to true, the data will be sent to the Sybase Aleri Streaming Plat-
form as transaction blocks instead of envelopes. It improves per-
formance but will cause all records in the block to be rejected if one
of the records in the block fails.

Type: boolean

Use: Optional

Default: False

Connection Retries It allows you to configure the Adapter to connect back to kdb or
kdb+tick if the connection breaks during operation. The connector
will try to reconnect the configured number of times, waiting for one
second before each try.

Type: int

Use: Optional

Default: 1

Debug If set to true, the connector outputs debug messages.

Type: boolean

Use: Optional

Default: False

Known Limitations:

• If the kdb+tick/databases are not running, when the connector tries to make a connection, the con-
nector will wait indefinitely until the kdb+tick database is started. This is only an issue if the
kdb+tick database and the Sybase Aleri Streaming Platform are running on different machines.

• If the connection to the database is broken, any updates that happen between the time the connec-
tion is broken and re-established are lost.

F.30. kdb Output Plug-in

Data Location Descriptions, Parameters, Limits

160

It is an external connector that streams data from the Sybase Aleri Streaming Platform to a kdb+tick
database table.

By default, the connector matches the field names (in a case-insensitive manner) to decide the mapping
between the source kdb+tick table and the target stream. You also have the option of explicitly specify-
ing the mapping.

The kdb+tick connector does not currently support data discovery. If you want to use data discovery for
tables in the kdb+tick database to create a matching stream in the Sybase Aleri Streaming Platform, use
the Database Input connector and then replace it with this connector.

Parameters

Platform User Id user Id for connecting to the Sybase Aleri Streaming Platform

Type: string

Use: Optional

Platform Password password for connecting to the Sybase Aleri Streaming Platform

Type: string

Use: Optional

Authentication You must select one of the valid options for authentication.

Choice: None, RSA, PAM and Kerberos V5

Use: Required

Default: None

RSA Key File private key file if you use RSA authentication

Type: string

Use: Optional

KDB Server host machine running the kdb server

Type: string

Use: Required

KDB Port port number which the kdb server is listening on

Type: int

Use: Required

KDB User user ID that connects to kdb+tic.

Type: string

Use: Optional

KDB Password password that connects to kdb+tic.

Data Location Descriptions, Parameters, Limits

161

Type: password

Use: Optional

Target Table name of table in kdb+tick where to write data

Type: string

Use: Required

Source Query An optional SQL query string to use to retrieve data. If empty,
sp_kdbout will stream all data from the source stream, which
defined it.

Type: string

Use: Optional

Field Mapping Explicit field mapping. The mapping is specified as follows: "sp-
fld1=kdbfld1:spfld2=kdbfld2 ..." If mapping is empty, the adapter
maps fields by matching their names.

Type: string

Use: Optional

Streaming Mode Valid options are stream and push. If mode is stream data, it is
sent to kdb+tick using ".u.upd". If mode is push, data is sent using
upsert command.

Async If true, sp_kdbout sends data to kdb+tick asynchronously.

Type: boolean

Default: False

BatchSize If specified, this option sets the maximum number of rows
sp_kdbout includes in a batch write to kdb+tick. If left empty,
sp_kdbout uses a value of 5000.

Type: integer

Default: 5000

Base Data Only If true, sp_kdbout will not stream data existing in the source
stream at the time it is started.

Type: boolean

Default: False

Lossy Subscription If set to true, sp_kdbout will use a lossy subscription to the Sy-
base Aleri Streaming Platform. This will result in the model drop-
ping data if the adapter cannot keep up.

Type: boolean

Default: False

Data Location Descriptions, Parameters, Limits

162

Pulse Interval If set to a non-zero value, sp_kdbout uses a pulsed subscription.
In this mode platform sends the data at intervals, consolidating the
data in between.

Type: int

Default: 0

Droppable Subscription If set to true, the Sybase Aleri Streaming Platform will drop sub-
scription from the adapter, if it cannot keep up with the data.

Type: boolean

Default: False

Preserve Transaction
Blocks

If set to true, the subscription from the Sybase Aleri Streaming
Platform preserves the transaction boundaries.

Type: boolean

Default: False

Debug If set to true, sp_kdbout will generate debug messages.

Type: boolean

Default: False

Ignored Fields This is a comma delimited list of kdb field names which
sp_kdbout will ignore. That means the values for these fields will
be ignored and always set to NULL. This parameter can be used
to handle kdb datatypes that sp_kdbout does not recognize such
as list of floats.

Type: string

Use: Optional

Omitted Fields This is a comma delimited list of kdb field names which
sp_kdbout will omit from the data message it sends to kdb+tick.
It should be used to avoid including fields from the source stream
in the Sybase Aleri Streaming Platform which are automatically
filled in by kdb+tick.

Type: string

Use: Optional

F.31. Reuters Marketfeed Inbound Plug-in

The Reuters Marketfeed Inbound Plug-in connector works with the Aleri Reuters Marketfeed Adapter
which connects to Reuters Market Data System (RMDS) to receive real-time Level 1 and/or Level 2
market data. A Marketfeed connector can be configured on any source stream as an inbound data loca-
tion.

This connector is listed as rmdsMFInPlugin in the Aleri Studio's Data Location list. It must be used
with Aleri Reuters Marketfeed Adapter (binary name=rmds) version 2.2.0 or later. You must use this
connector with Aleri Reuters OMM Adapter version 1.2.0 or later. The Adapter, whose executable name

Data Location Descriptions, Parameters, Limits

163

is rmds, must be installed per Adapter Guide directions. Plug-in connectors are started on the same ma-
chine as the Sybase Aleri Streaming Platform which is controlled by the Remote Execution dialog.

This connector supports discovery.

You can refer to Aleri Reuters Marketfeed Adapter documentation for installation and configuration de-
tails. Please contact a Sybase sales representative if you are interested in obtaining a Marketfeed Ad-
apter.

The "discover" gesture from the Aleri Studio activates a wrapper script which passes Aleri Studio-edit-
able parameters. If the Discover Path parameter is not empty, its contents are searched for *.xml
files (FieldList files) whose contents appear as the Data Location tables.

Additional FieldList files may be manually added to the Discovery Path directory to be found
during Discovery. Alternatively, a custom Discovery Path directory may be established whose
contents may be completely independent of the adapter distribution.

In all cases, the result of a successful discover gesture produces Data Location tables from which the
user may provision a source stream in the model. Once the source stream is instantiated, the user must
manually make the Symbol (RIC) a key field.

The Map File is a configFilename, making it directly editable by the Aleri Studio.

The FieldList file may contain any combination of valid FIDs and PseudoFields. PseudoFields are fully
documented in the Reuters Adapter Guide and include:

• _hirestimestamp

• _item, _itemname, _symbol or _ric

• _sequenceNumber

• _service, _servicename

• _stale

• _updatenumber

Marketfeed connectors still require a MAP file, which may reference a (Reuters-format) .cfg file.

The advanced runtime parameters are used for remote execution. These parameters are paths in the re-
mote machine's syntax.

For information on how to test your plug-in connector and details about these connectors, see Guide to
Programming Interfaces .

Parameters (Basic)

Installation Path Absolute path to the Adapter's installation directory. It must have the same
value as used by ALERI_REUTERS_HOME.

Type: directory

Use: Required

Default: $ALERI_REUTERS_HOME

Data Location Descriptions, Parameters, Limits

164

Map File path to map file

Maps the data from the vendor's format to the Sybase Aleri Streaming Plat-
form format. This parameter is necessary for connectors that do not have
Data Discovery. Mapping specifies what data is of interest and how it will
be placed in a source stream of a data model. This is referred to as a Map
file in Aleri Reuters Adapter documentation.

Type: configFile

Use: Required

Default: $ALERI_RMDSMF_HOME/examples/subexample.mf.map.xml

Discovery Path path to the Adapter discovery directory

Type: directory

Use: Optional

User This is the user name for the Sybase Aleri Streaming Platform. You can set
this to match your authentication method.

Type: string

Use: Optional (may be skipped if authentication set to none)

Default: None

Password This is the password for the Sybase Aleri Streaming Platform. You can set
this to match your authentication method.

Type: password

Use: Optional

Default: None

Parameters (Advanced)

Directory (runtime) runtime path to Adapter installation

Type:string

Use:advanced

Discovered Table name of discovered table; filled in by the Aleri Studio

Type: tables

Use: advanced

Map File (runtime) runtime path to map file

Type: string

Use: advanced

Data Location Descriptions, Parameters, Limits

165

Default: This field should be left blank.

Known Limitations:

• When the Sybase Aleri Streaming Platform is started by the Aleri Studio, connectors are started by
the Sybase Aleri Streaming Platform engine. If an external Adapter is being started by a connector,
it must reside on the same machine as the Sybase Aleri Streaming Platform engine. This configura-
tion is seen for example when the Aleri Studio is running on Windows, with Remote Execution of
the Aleri CEP engine on a UNIX machine.

• The configuration of Reuters-facing portion of the Aleri Reuters Marketfeed Adapter cannot be
done from within the Aleri Studio. It requires manual editing of the Adapter's .cfg file.

• Inbound Plug-in connectors only deal with exactly one source stream.

• You must manually configure an external Adapter rather than a connector to use complex features
such as a Finalizer.

F.32. Reuters OMM Inbound Plug-in

The Reuters Open Message Model (OMM) Inbound Plug-in connector works with the Aleri Reuters
OMM Adapter, which connects to Reuters Market Data System (RMDS) to receive real-time Level 1
and/or Level 2 market data. The OMM inbound connector can be configured on any source stream as an
inbound data location.

This connector is listed as rmdsOMMInPlugin in the Aleri Studio's Data Locations list. You must use
this connector with Aleri Reuters OMM Adapter version 1.2.0 or later. The Adapter, whose executable
name is rmdsomm, must be installed per Adapter Guide directions. Plug-in connectors are started on
the same machine as the Sybase Aleri Streaming Platform which is controlled by the Remote Execution
dialog.

This connector supports discovery.

You can refer to Aleri Reuters OMM Adapter documentation for installation and configuration details.
Please contact a Sybase sales representative if you are interested in obtaining an OMM Adapter.

The "discover" gesture from the Aleri Studio activates a wrapper script which passes Aleri Studio-edit-
able parameters. If the Discover Path parameter is not empty, its contents are searched for *.xml
files (FieldList files) whose contents appear as the Data Location tables.

Additional FieldList files may be manually added to the Discovery Path directory to be found
during discovery. Alternatively, a custom Discovery Path directory may be established whose con-
tents may be completely independent of the Adapter distribution.

In all cases, the result of a successful discover gesture produces Data Location tables from which the
user may provision a source stream in the model. Once the source stream is instantiated, the user must
manually make the Symbol (RIC) a key field. For L2 data, a secondary keyfield is also required. The L2
key depends on the message type.

The stream name will be used to establish the OMM message type. The name of the stream is searched
for these character patterns which can appear in upper, lower or mixed case. Certain names correlate
with specific message types.

Name Message Type

"mbo", "marketByOrder" or "market_by_order" MARKET_BY_ORDER

Data Location Descriptions, Parameters, Limits

166

Name Message Type

"mbp", "marketByPrice" or "market_by_price" MARKET_BY_PRICE

"mp", "marketPrice" or "market_price" MARKET_PRICE

"mm", "marketmaker" or "market_maker" MARKET_MAKER

The Map File is a configFilename, making it directly editable by the Aleri Studio.

The FieldList file may contain any combination of valid FIDs and PseudoFields. PseudoFields are fully
documented in the Reuters Marketfeed Adapter Guide and include:

• _hirestimestamp

• _image

• _item, _itemname, _ric or _symbol

• _marketbyorderkey

• _marketbypricekey

• _marketmakerkey

• _resptypenum

• _sequencenumber

• _stale

• _updatenumber

For Level 2 only:

• _image

• _marketMakerKey

• _marketByOrderKey

• _marketByPriceKey

OMM connectors still require a MAP file, which may reference a (Reuters-format) .cfg file.

The advanced runtime parameters are used for remote execution. These parameters are paths in the re-
mote machine's syntax.

For information on how to test your plug-in connector and details about these connectors, see Guide to
Programming Interfaces.

Parameters (Basic)

Installation Path Absolute path to the Adapter's installation directory. It must have the same
value as used by ALERI_RMDSOMM_HOME.

Data Location Descriptions, Parameters, Limits

167

Type: directory

Use: Required

Default: $ALERI_RMDSOMM_HOME

Map File path to map file

Maps the data from the vendor's format to the Sybase Aleri Streaming Plat-
form format. This parameter is necessary for connectors that do not have
Data Discovery. Mapping specifies what data is of interest and how it will
be placed in a source stream of a data model. This is referred to as a Map
file in Aleri Reuters Adapter documentation.

Type: filename

Use: Required

Default:
$ALERI_RMDSOMM_HOME/examples/subexample.omm.map.xml

Discovery Path path to the Adapter discovery directory

Type: directory

Use: Optional

User This is the user name for the Sybase Aleri Streaming Platform. You can set
this to match your authentication method.

Type: string

Use: Optional (may be skipped if authentication set to none)

Default: None

Password This is the password for the Sybase Aleri Streaming Platform. You can set
this to match your authentication method.

Type: password

Use: Optional

Default: None

Parameters (Advanced)

Directory (runtime) runtime path to Adapter installation

Type: string

Use: advanced

Discovered Table name of discovered table; filled in by the Aleri Studio

Type: tables

Data Location Descriptions, Parameters, Limits

168

Use: advanced

Map File (runtime) runtime path to map file

Type: string

Use: advanced

Default: This field should be left blank.

Known Limitations:

• When the Sybase Aleri Streaming Platform is started by the Aleri Studio, connectors are started by
the Sybase Aleri Streaming Platform engine. If an external Adapter is being started by a connector,
it must reside on the same machine as the Sybase Aleri Streaming Platform engine. This configura-
tion is seen for example when the Aleri Studio is running on Windows, with Remote Execution of
the Aleri CEP engine on a UNIX machine.

• The configuration of Reuters-facing portion of the Aleri Reuters OMM Adapter cannot be done
from within the Aleri Studio. It requires manual editing of the Adapter's .cfg file.

• Inbound Plug-in connectors only deal with exactly one source stream.

• You must manually configure an external Adapter rather than a connector to use complex features
such as a Finalizer.

F.33. SMTP Output

Sends an email containing stream records. For each record, the body of the email will contain:

• Stream name

• Column names and values

Parameters

SMTP Host Name or IP address of the email server.

Type: string

Use: Required

Default: None (required parameter)

Address Column The name of the column where a semicolon-delimited list of re-
cipient email addresses is stored.

Type: string

Use: Required

Default: None (required parameter)

Data Location Descriptions, Parameters, Limits

169

CC Column The name of the column where a semicolon-delimited list of re-
cipient Cc addresses is stored.

Type: string

Use: Advanced

Default: No Cc emails will be sent

BCC Column The name of the column where a semicolon-delimited list of re-
cipient Bcc addresses is stored.

Type: string

Use: Advanced

Default: No Bcc emails will be sent

Column Names Colon-delimited names of stream columns whose values will be
included in the email.

Type: string

Use: Advanced

Default: The email will contain values of all columns in the
stream.

Show Column Names If true, column names will be included in the email along with
their values. If false, only the values will be included.

Type: boolean

Use: Advanced

Default: True

from Email address of the sender.

Type: string

Use: Required

Default: None (required parameter)

Importance Column Name of the stream column where the email importance is stored.
Valid values are: high, normal, and low. The default value is
“normal”. The values are case-sensitive.

Type: string

Use: Required

Default: None (required parameter)

Subject Column Name of the stream column where the email subject is stored.

Type: string

Use: Required

Data Location Descriptions, Parameters, Limits

170

Default: None (required parameter)

Number of Resend At-
tempts

The number of times to retry sending an email if the initial at-
tempt to send it fails.

Type: Unsigned integer

Use: Advanced

Default: 0 (no attempt is made to resend emails)

Choose a moderate value (0 - 10) for this parameter. Requiring a
large number of attempts to resend the email may lead to excess-
ive memory consumption, particularly if aggravated by network
problems and a high volume of records waiting to be emailed.

Log Alert If true, logs an alert at debug level 1 each time the email sending
has been successful or failed.

Type: boolean

Use: Advanced

Default: True

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• Microsoft Outlook® users must disable the feature that removes extra line breaks as follows:

1. Open Outlook, go to the Tools menu and click Options.

2. On the Preferences tab, click the E-mail Options button.

3. Click to clear the Remove extra line breaks in plain text messages check box. Click OK
twice.

F.34. Sample Plug-in Connector XML File Input

An example of the plug-in connector framework that reads the data from AleriML files by calling the
command-line tools sp_convert and sp_upload.

Data Location Descriptions, Parameters, Limits

171

Parameters

File File to upload

Use: Required

User User name to connect to the platform.

Use: Optional

Password Password to connect to the platform.

Use: Optional

Date Format Format string for parsing date values.

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• For advanced users with extensive programming expertise.

• The supported parameters are simplistic.

F.35. Sample Plug-in Connector XML File Output

An example of the plug-in connector framework that writes a stream's data to AleriML files by using the
command line tool sp_subscribe.

Parameters

File File to write to

Use: Required

User User name to connect to the platform.

Use: Optional

Password Password to connect to the platform.

Use: Optional

Date Format Format string for parsing date values.

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Include Base Content Start by recording the initial contents of the stream, not just the updates.

Type: boolean

Data Location Descriptions, Parameters, Limits

172

Use: Optional

Default: False

Only Base Content Send only the snapshot of initial contents of the stream, once.

Type: boolean

Use: Optional

Default: False

Known Limitations:

• For advanced users with extensive programming expertise.

• The supported parameters are simplistic.

F.36. Socket (As Client) CSV Input

Receives data in Aleri delimited format from the outgoing network connectors. The connector initiates
the connection to another program, then another program sends the data. The data might not have the
header, (same as accepted by sp_convert), or with the header specifying the field names.

Parameters

Delimiter Symbol used to separate the columns.

Use: Advanced

Default: Comma (,)

Has Header Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Server Server host name

Use: Required

Port Server port, or -1 to read from the Ephemeral Port File (see ad-
vanced parameters).

Type: int

Use: Required

Ephemeral Port File File that will contain the server port number, if Port is -1.

Use: Advanced

Data Location Descriptions, Parameters, Limits

173

Retry Period (seconds) Period for trying to re-establish an outgoing connection, in seconds.

Type: uint

Use: Advanced

Default: 1

Enter Initial State When the connector enters the initial loading state.

Use: Advanced

Default: Never

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string for parsing date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string for parsing timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

expectStreamNameOpcode If true, the first two fields are interpreted as stream name and Aleri
op code respectively. Messages with unmatched stream names are
discarded.

Type: boolean

Use: Optional

Default: False

Block Size Number of records to block into one pseudo-transaction

Type: int

Data Location Descriptions, Parameters, Limits

174

Use: Advanced

Default: 1

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• The stream name in the file rows is ignored.

• All the data is sent to the same stream.

F.37. Socket (As Client) CSV Output

Send data in Aleri's delimited format to the outgoing network. The connector initiates the connection to
another program and then sends the data. The data might not have the header (same as accepted by
(sp_convert), or with the header specifying the field names. If the connection is broken, the connector
can retry it.

This connector can now be configured to send only the base state of the stream. It sends the data once
and exits, but it can be restarted later.

Parameters

Server Server host name

Use: Required

Port Server port, or -1 to read from the Ephemeral Port File.

Type: int

Use: Required

Ephemeral Port File File that will contain the server port number, if port is -1.

Use: Advanced

Retry Period (seconds) Period for trying to re-establish an outgoing connection, in
seconds.

Type: uint

Use: Advanced

Default: 1

Include Base Content Start by recording the initial contents of the stream, not just the
updates.

Type: boolean

Data Location Descriptions, Parameters, Limits

175

Use: Optional

Default: False

Only Base Content It sends only the initial contents of the stream, once.

Type: boolean

Use: Advanced

Default: False

Delimiter Symbol used to separate the columns.

Use: Advanced

Default: Comma (,)

Has Header Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

expectStreamNameOpcode If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Optional

Default: False

Prepend StreamNameOpcode If true, each message will start with the stream name and the Aleri
op code.

Type: boolean

Use: Optional

Data Location Descriptions, Parameters, Limits

176

Default: False

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

F.38. Socket (As Client) XML Input

Receives data in AleriML format from the outgoing network connectors. The connector initiates the
connection to another program, then another program sends the data. The data might not have the head-
er, (same as accepted by sp_convert), or with the header specifying the field names.

Parameters

Server Server host name

Use: Required

Port Server port, or -1 to read from the Ephemeral Port File.

Type: int

Use: Required

Match stream name If true, the XML element name will be matched against the stream
name. Unmatched messages will be discarded.

Type: boolean

Use: Optional

Default: False

Ephemeral Port File File that will contain the server port number, if port is -1.

Use: Advanced

Retry Period (seconds) Period for trying to re-establish an outgoing connection, in seconds.

Type: uint

Use: Advanced

Default: 1

Enter Initial State When the connector enters the initial loading state.

Use: Advanced

Default: Never

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Data Location Descriptions, Parameters, Limits

177

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Block Size Number of records to block into one pseudo-transaction

Type: int

Use: Advanced

Default: 1

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

F.39. Socket (As Client) XML Output

Sends data in AleriML format to the outgoing network connections; the connector initiates the connec-
tion to another program and then sends the data. If the connection is broken, the connector can retry it.

This connector can now be configured to send only the base state of the stream. It sends the data once
and exits, but it can be restarted later.

Parameters

Server Server host name

Use: Required

Port Server port, or -1 to read from the Ephemeral Port File.

Type: int

Data Location Descriptions, Parameters, Limits

178

Use: Required

Ephemeral Port File File that will contain the server port number, if port is -1.

Use: Advanced

Retry Period, s Period for trying to re-establish an outgoing connection, in seconds.

Type: uint

Use: Advanced

Default: 1

Include Base Content Start by recording the initial contents of the stream, not just the updates.

Type: boolean

Use: Optional

Default: False

Only Base Content It sends only the initial contents of the stream, once.

Type: boolean

Use: Advanced

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

F.40. Socket (As Server) XML Input

Receives data in the AleriML format from the incoming network connections. Another program initiates
the connection and then sends the data.

This connector can be configured to send only the the base state of the stream but may be repeatedly re-
connected.

Data Location Descriptions, Parameters, Limits

179

Parameters

Port Port number to listen on, or -1 for an 'ephemeral' port (see ad-
vanced parameters).

Type: int

Use: Required

Ephemeral Port File File where the automatically selected ephemeral port number will
be written, if Port is -1.

Use: Advanced

Initial Listen Period
(seconds)

How long to wait for the first incoming connection before switch-
ing to the continuous state.

Type: uint

Use: Advanced

Default: 0

Enter Initial State When the connector enters the initial loading state.

Use: Advanced

Default: Never

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string for parsing date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string for parsing timestamp values

Type: String

Data Location Descriptions, Parameters, Limits

180

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

matchStreamName If true, the XML element name will be matched against the
stream name. Unmatched messages will be discarded.

Type: boolean

Use: Optional

Default: False

Block Size Number of records to block into one pseudo-transaction

Type: int

Use: Advanced

Default: 1

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• The stream's name in the file entries is ignored.

• All the data is sent to the same stream.

• Supports only one network connection at a time.

F.41. Socket (As Server) XML Output

Receives data in the AleriML format from the outgoing network connections. Another program initiates
the connection and then receives the data.

This connector can be configured to send only the base state of the stream. The socket closes after send-
ing the base state of the stream but may be repeatedly reconnected.

Parameters

Port Port number to listen on, or -1 for an 'ephemeral' port.

Type: int

Use: Required

Ephemeral Port File File where the automatically selected ephemeral port number will be
written, if port is -1.

Use: Advanced

Include Base Content Start by recording the initial contents of the stream, not just the updates.

Data Location Descriptions, Parameters, Limits

181

Type: boolean

Use: Optional

Default: False

Only Base Content It sends only the initial contents of the stream, once.

Type: boolean

Use: Advanced

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• Supports only one network connection at a time.

F.42. Socket (As Server) CSV Input

Receives data in Aleri delimited format from the incoming network connections. Another program initi-
ates the connection and then sends the data. The data might not have a header (same as accepted by
(sp_convert), or with a header specifying the field names.

Parameters

Delimiter Symbol used to separate the columns.

Use: Advanced

Default: Comma (,)

Has Header Whether the first line of the file contains the description of the
fields.

Data Location Descriptions, Parameters, Limits

182

Type: boolean

Use: Advanced

Default: False

Port Port number to listen on, or -1 for an 'ephemeral' port (see ad-
vanced parameters).

Type: int

Use: Required

Ephemeral Port File File where the automatically selected ephemeral port number will
be written, if port is -1.

Use: Advanced

Initial Listen Period
(seconds)

How long to wait for the first incoming connection before switch-
ing to the continuous state.

Type: uint

Use: Advanced

Default: 0

Enter Initial State When the connector enters the initial loading state.

Use: Advanced

Default: Never

Convert to Safe Opcodes It converts the opcodes INSERT and UPDATE to UPSERT, DE-
LETE to SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Skip Deletes It skips the rows with opcodes DELETE or SAFEDELETE.

Type: boolean

Use: Advanced

Default: False

Date Format Format string for parsing date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string for parsing timestamp values

Data Location Descriptions, Parameters, Limits

183

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

expectStreamNameOpcode If true, the first two fields are interpreted as stream name and
Aleri op code respectively. Messages with unmatched stream
names are discarded.

Type: boolean

Use: Optional

Default: False

Block Size Number of records to block into one pseudo-transaction

Type: int

Use: Advanced

Default: 1

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• The stream name in the file rows is ignored.

• All the data is sent to the same stream.

• Supports only one network connection.

F.43. Socket (As Server) CSV Output

Sends data in Aleri delimited format from the incoming network connections. Another program initiates
the connection and then receives the data. The data might not have the header (same as accepted by
sp_convert), or with the header specifying the field names.

This connector can be configured to send only the base state of the stream. The socket closes after send-
ing the base state of the stream but may be repeatedly reconnected.

Parameters

Port Port number to listen on, or -1 for an 'ephemeral' port.

Type: int

Use: Required

Ephemeral Port File File where the automatically selected ephemeral port number will

Data Location Descriptions, Parameters, Limits

184

be written, if port is -1.

Use: Advanced

Include Base Content Start by recording the initial contents of the stream, not just the
updates.

Type: boolean

Use: Optional

Default: False

Only Base Content It sends only the initial contents of the stream, once.

Type: boolean

Use: Advanced

Default: False

Delimiter Symbol used to separate the columns.

Use: Advanced

Default: Comma (,)

Has Header Whether the first line of the file contains the description of the
fields.

Type: boolean

Use: Advanced

Default: False

Date Format Format string to parse date values

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Format string to parse timestamp values

Type:String

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Prepend StreamNameOpcode If true, each message will start with the stream name and the Aleri
op code.

Type: boolean

Use: Optional

Default: False

Data Location Descriptions, Parameters, Limits

185

Field Mapping Mapping between the in-platform and external fields

Use: Advanced

Known Limitations:

• Supports only one network connection at a time.

F.44. Socket FIX Input

Reads FIX messages from a TCP server socket and writes them as stream records. Each stream hosts
FIX messages of a certain type. Messages of any other FIX type are discarded. All FIX fields except the
following are stored in the same order in stream columns:

• BeginString

• BodyLength

• MsgType

• CheckSum

The names of the stream columns must correspond to the FIX protocol specification.

Parameters

FIX Version Version of the FIX protocol.

Type: choice

Use: Required

Default: 4.2

FIX Message Type The type of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)

FIX Host Name or IP address of source server

Type: string

Use: Required

Default: None (required parameter)

Destination Port Port on which the messages are available on.

Type: Unsigned integer

Use: Required

Data Location Descriptions, Parameters, Limits

186

Default: None (required parameter)

Reconnect Interval Reconnect interval in seconds. If 0, makes no attempt to recon-
nect.

Type: Unsigned integer

Use: Required

Default: 10

Maximum Reconnect At-
tempts

Maximum number of reconnect attempts.

Type: Unsigned integer

Use: Required

Default: 0

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

• This connector is not a full FIX Engine. If you require a full FIX Engine, please contact a Sybase
sales representative for information about the standalone Aleri FIX Engine connector version 1.0.

• FIX versions 4.2 and 4.3 are supported only.

• Repeating groups and components are not supported.

• Only supports insert Opcode.

F.45. Socket FIX Output

Writes stream data as FIX messages to a TCP server socket. Each stream hosts FIX messages of a cer-
tain type. Messages are sent contiguously, with no line feeds. The following FIX fields are generated by
the connector:

• BeginString

• BodyLength

Data Location Descriptions, Parameters, Limits

187

• MsgType

• CheckSum

The rest of the fields must be stored in the appropriate order in stream columns. The names of the stream
columns must correspond to the FIX protocol specification.

Parameters

FIX Version Version of the FIX protocol

Type: choice

Use: Required

Default: 4.2

FIX Message Type The type of messages hosted by the stream

Type: string

Use: Required

Default: None (required parameter)

Destination Host Name or IP address of the destination

Type: string

Use: Required

Default: None (required parameter)

Destination Port Port on which the server socket is listening to messages.

Type: Unsigned integer

Use: Required

Default: None (required parameter)

Date Format Date format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Timestamp Format Timestamp format

Type: string

Use: Advanced

Default: %Y-%m-%dT%H:%M:%S

Known Limitations:

Data Location Descriptions, Parameters, Limits

188

• This connector is not a full FIX Engine. If you require a full FIX Engine, please contact a Sybase
sales representative for information about the standalone Aleri FIX connector version 1.0.

• Only versions 4.2 and 4.3 of FIX are supported

• Repeating groups and components are not supported

• No reconnection attempt is made if the connection to the FIX server is lost

• Only supports insert Opcode.

F.46. SybaseIQ Output

An external connector that starts the sp_archive utility and loads data from the Sybase Aleri Streaming
Platform into Sybase IQ. It uses SybaseIQ's bulk load feature to efficiently load insert only data and
automatically switches to use the slower ODBC mechanism when it encounters updates and deletes.
This connector is designed to be highly robust. It caches all the data on disk and also uses the persistent
subscribe mechanism, which ensures no data is lost even if the connection to the the Sybase Aleri
Streaming Platform is lost.

Parameters

User Name The user name for connecting to the Sybase Aleri Streaming Platform.
This parameter is required when the Sybase Aleri Streaming Platform
uses an authentication type of RSA, Kerberos, or PAM (when the un-
derlying authentication mechanism for PAM requires User and Pass-
word).

Type: string

Use: Required

Default: None

Password An optional parameter required only when the Sybase Aleri Streaming
Platform uses the PAM authentication type that has an underlying au-
thentication mechanism with User and Password.

Type: string

Use: Optional

Default: None

RSA Key File The full path to the RSA Key private key file This parameter is required
if the Sybase Aleri Streaming Platform uses the RSA authentication
mechanism.

Type: string

Use: Optional

Default: none

Use Kerberos A Boolean value that needs to be set to true when the Sybase Aleri
Streaming Platform is configured to use Kerberos authentication. If this
is set to true, the User Name parameter must be provided.

Data Location Descriptions, Parameters, Limits

189

Type: boolean

Use: Optional

Default: False

Configuration File The full path to the configuration file that provides Sybase IQ connec-
tion details and load options.

Type: string

Use: Required

Default: None (required parameter)

Archive Deltas Archives deltas when set to true otherwise only a snapshot of the data is
archived.

Type: boolean

Use: Advanced

Default: True

Swap Bytes Set to true when the Platform and the archive utility are running on dif-
ferent architectures(Little/Big Endian advanced).

Type: boolean

Use: Advanced

Default: False

Recover Only Recovers any data that was read from the Sybase Aleri Streaming Plat-
form but not archived, and exits.

Type: boolean

Use: Advanced

Default: False

Datawarehousing Mode Any updates are treated as inserts and deletes are ignored when set to
true. Use this mode when you want to archive the data for historical
purposes.

Type: boolean

Use: Advanced

Default: False

Archive Interval Specifies how long to wait in seconds after each time a set of data is
archived and the next set of data is archived.

Type: uint

Use: Advanced

Data Location Descriptions, Parameters, Limits

190

Default: 1

Precision A value between 0 and 6 that specifies the precision to use for money
and float datatypes

Type: uint

Use: Advanced

Default: 6

Commit Batch Size This is the commit batch size used when using SQL to archive the data
instead of the bulk load mechanism. For bulk loads specify the batch
size in the configuration file

Type: uint

Use: Advanced

Default: 1000

ODBC Retry Attempts The number of times to retry the ODBC connection if a connection can-
not be made

Type: uint

Use: Advanced

Default: 5

ODBC Retry Interval The number of seconds to wait before retrying the ODBC connection.

Type: uint

Use: Advanced

Default: 60

Known Limitations:

• Attaching a SybaseIQOut connector to a stream does not guarantee that the data from this stream
will be archived. The connector uses the specified configuration file to get this information. If a dif-
ferent stream is specified by the configuration file then that one will be archived.

F.47. Teradata Output

An external connector that starts the Teradata TPump utility and loads data from the Sybase Aleri
Streaming Platform into Teradata. The AleriTeradata connector for the TPump access module is de-
signed to load data in a robust, efficient and a lossless manner even if the Sybase Aleri Streaming Plat-
form or Teradata connection is lost.

Each connector is designed to do inserts, updates and deletes into a single table in the Teradata database
from a single stream in the Sybase Aleri Streaming Platform. There can be more than one connector as-
sociated with a single stream.

The persistent subscribe mechanism is used to make the connector robust and lossless. That means there

Data Location Descriptions, Parameters, Limits

191

needs to be two additional streams to associate with each Teradata output connector and stream combin-
ation.

The first stream (named StreamName_log by default) contains a log of every event that affected the out-
putted stream. The second stream (usually called Stream- Name_control) purges the transactions in
StreamName_log after the information has been committed to the Teradata database.

The heart of the connector is the user-defined TPump script file, which is highly configurable and can
filter or modify data received from the Sybase Aleri Streaming Platform. Two sample script files are in-
cluded in the folder INSTALL DIRECTORY/examples/scripts/teradata. These examples archive data
produced by the VWAP example model in the same location. Teradata has additional documentation on
its website about the TPump Access Module.

Parameters

TPump Script File The full path and name of the TPump script file.

Type: string

Use: Required

Default: None (required parameter)

TPump Executable The full path and name of the TPump executable. If not provided, the tpump
executable directory must be in the PATH. The default executable name is
tpump.exe for Windows and tpumpexe for Linux/Solaris.

Type: string

Use: Optional

Default: None (required parameter)

Access Module Options

Access Module Options The AleriTeradata access module takes many arguments. These argu-
ments are specified in the Tpump script file using the following syn-
tax, IMPORT INFILE MYFILE AXSMOD
<INSTALL_DIR>/lib/AleriTeradata.so 'option1 option1Val op-
tion2 option2Val..' The options that can be specified are as follows

Parameters, Properties, Options

-B batchsize This parameter specifies the number
of records to pack in each block be-
fore sending it to Teradata and con-
trols the internal buffer size. It
should usually be set to the same
value as the PACK property in the
Tpump script file.

-c UserID:PassWd This parameter is required when the
platform uses PAM, RSA, or Ker-
beros authentication. The UserId
component is required when spe-

Data Location Descriptions, Parameters, Limits

192

cified. The Password component is
only required when using PAM au-
thentication and the underlying au-
thentication mechanism has User
and Password.

-e If this property is specified, it means
that the communication with the Sy-
base Aleri Streaming Platform is en-
crypted. The Sybase Aleri Stream-
ing Platform must be started in en-
crypted mode in order to use this
property,

-G This property specifies that Kerber-
os must be used as the authentica-
tion mechanism. If this option is
specified then the -c option must
also be specified.

-Host[hostname:]port: This option is required when the Sy-
base Aleri Streaming Platform is
configured to use hot spares and it
specifies the hostname that the Hot
Spare is running on and the com-
mand and control port. While the
port is required. the hostname com-
ponent is optional and defaults to
localhost if not provided.

-p[hostname:]port This option specifies the hostname
the Sybase Aleri Streaming Platform
is running on and the Command and
Control port. The port is required,
but the hostname component is op-
tional and defaults to 'localhost' if
not provided.

-I This is an optional parameter spe-
cifying an insert-only mode. In this
mode, all updates are treated as in-
serts and all deletes are ignored.

-k rsaKeyFile If this option is specified, RSA au-
thentication is used to connect to the
Sybase Aleri Streaming Platform.
The rsaKeyFile is the path and file
name of the RSA private key file.

-R TruncateStream This required property is used to
specify the StreamName_truncate
name described below.

-s StreamName Every stream with data that needs to
be exported to Teradata must be as-
sociated with a persistent subscribe
pattern. The persistent subscribe pat-

Data Location Descriptions, Parameters, Limits

193

tern ensures there is no loss of data
when the Sybase Aleri Streaming
Platform or the Tpump executable is
stopped and restarted. Each persist-
ent subscribe pattern adds two extra
streams to the model. The streams
are named by default, Stream-
Name_log and Stream-
Name_truncate. For example, if the
stream to export to Teradata is
“Trades,” then the persistent sub-
scribe pattern will add two streams:
“Trades_log” and
“Trades_truncate”. This required
property is used to specify the
StreamName_log stream name, such
as Trades_log in the above example.

-S If this option is specified, a snapshot
of the specified stream is sent to the
Sybase Aleri Streaming Platform
and the connector exits.

-T Interval This interval specifies how often to
generate a dummy message if there
is no data so that the Teradata data-
base can check point any data that
hasn't been check pointed. The de-
fault is every 10 seconds if it's not
specified.

Known Limitations:

• The connector does not work across different architectures. For example, if the Teradata database is
running on a Big Endian architecture such as a Sun SPARC machine and the connector is run on a
Little Endian architecture such as an Intel machine or vice versa, the connector will not work.

• Due to the lossless nature of the connector there may be some duplicate entries that need to be
handled on a restart. To ensure that this is handled properly, the IGNORE DUPLICATES option
must be specified in the TPump script file.

• Although the TPump and the configuration script file is designed to handle loading multiple tables,
the AleriTeradata access module is not designed to handle this. Therefore, each script file can be
used to process only one source stream and destination table.

F.48. Tibco Rendezvous Plug-in

The Tibco Rendezvous Plug-in connector publishes stream data to a Rendezvous subject and vice-versa.
It can be configured on any source stream as an inbound data location. The authentication method is set
to that of the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi.

Data Location Descriptions, Parameters, Limits

194

The Aleri Tibco Rendezvous Adapter version 1.0 or later must be installed to use this Plug-in. Please
contact your Sybase sales representative for more information about the Adapter.

Parameters

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connector Remote Dir-
ectory Path parameter is supplied.

Type: directory

Use: Required

Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Remote Configuration File
Path parameter is supplied.

Type: configFilename

Use: Required

Default: None

Connector Remote Direct-
ory Path

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Remote Configuration
File Path

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter is ignored.

Type: string

Use: Advanced

Default: None

F.49. Wombat Plug-in

The Wombat Plug-in connects to a Wombat data feed to receive real-time Level 1 and Level 2 market
data. It can be configured on any source stream as an inbound data location. The authentication method
is set to that of the Sybase Aleri Streaming Platform: none, pam, rsa, or gssapi. This connector supports
discovery.

The Aleri Wombat Adapter version 1 or later must be installed to use this Plug-in. You can refer to Aleri
Wombat Adapter documentation for installation and configuration details. Your Sybase sales represent-
ative can provide more details.

Parameters

Data Location Descriptions, Parameters, Limits

195

Connector Directory Path Specify the absolute path to the Adapter's installation directory.
This parameter is ignored if the Connector Remote Dir-
ectory Path parameter is supplied.

Type: directory

Use: Required

Default: None

Configuration File Path Specify the absolute path to the Adapter's configuration file. This
parameter is ignored if the Remote Configuration File
Path parameter is supplied.

Type: configFilename

Use: Required

Default: None

Discovery Directory Path Specify the absolute path to the Adapter's discovery directory.

Type: directory

Use: Required

Default: None

Connector Remote Direct-
ory Path

Specify the path to the connector remote base directory (for re-
mote execution only). If this parameter is supplied, the Con-
nector Directory Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Remote Configuration
File Path

Specify the path to the connector's remote configuration file (for
remote execution only). If this parameter is supplied, the Con-
figuration File Path parameter is ignored.

Type: string

Use: Advanced

Default: None

Data Location Descriptions, Parameters, Limits

196

Appendix G. List of Time Zones
Below is a list of time zones used in the Sybase Aleri Streaming Platform from the industry-standard
Olson timezone (also known as TZ) database. Note that there is no value for the abbreviation “PST” for
Pacific Standard Time. Use “PST8PDT” for the time zone that takes into account daylight savings time.

ACT AET AGT
ART AST Africa/Abidjan
Africa/Accra Africa/Addis_Ababa Africa/Algiers
Africa/Asmera Africa/Bamako Africa/Bangui
Africa/Banjul Africa/Bissau Africa/Blantyre
Africa/Brazzaville Africa/Bujumbura Africa/Cairo
Africa/Casablanca Africa/Ceuta Africa/Conakry
Africa/Dakar Africa/Dar_es_Salaam Africa/Djibouti
Africa/Douala Africa/El_Aaiun Africa/Freetown
Africa/Gaborone Africa/Harare Africa/Johannesburg
Africa/Kampala Africa/Khartoum Africa/Kigali
Africa/Kinshasa Africa/Lagos Africa/Libreville
Africa/Lome Africa/Luanda Africa/Lubumbashi
Africa/Lusaka Africa/Malabo Africa/Maputo
Africa/Maseru Africa/Mbabane Africa/Mogadishu
Africa/Monrovia Africa/Nairobi Africa/Ndjamena
Africa/Niamey Africa/Nouakchott Africa/Ouagadougou
Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu
Africa/Tripoli Africa/Tunis Africa/Windhoek
America/Adak America/Anchorage America/Anguilla
America/Antigua America/Araguaina America/Argentina/Buenos_Aires
America/Argentina/Catamarca America/Argen-

tina/ComodRivadavia
America/Argentina/Cordoba

America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mendoza
America/Argentina/Rio_Gallegos America/Argentina/San_Juan America/Argentina/Tucuman
America/Argentina/Ushuaia America/Aruba America/Asuncion
America/Atka America/Bahia America/Barbados
America/Belem America/Belize America/Boa_Vista
America/Bogota America/Boise America/Buenos_Aires
America/Cambridge_Bay America/Campo_Grande America/Cancun
America/Caracas America/Catamarca America/Cayenne
America/Cayman America/Chicago America/Chihuahua
America/Coral_Harbour America/Cordoba America/Costa_Rica
America/Cuiaba America/Curacao America/Danmarkshavn
America/Dawson America/Dawson_Creek America/Denver
America/Detroit America/Dominica America/Edmonton
America/Eirunepe America/El_Salvador America/Ensenada
America/Fort_Wayne America/Fortaleza America/Glace_Bay
America/Godthab America/Goose_Bay America/Grand_Turk
America/Grenada America/Guadeloupe America/Guatemala
America/Guayaquil America/Guyana America/Halifax
America/Havana America/Hermosillo America/Indiana/Indianapolis
America/Indiana/Knox America/Indiana/Marengo America/Indiana/Petersburg
America/Indiana/Vevay America/Indiana/Vincennes America/Indianapolis
America/Inuvik America/Iqaluit America/Jamaica
America/Jujuy America/Juneau America/Kentucky/Louisville
America/Kentucky/Monticello America/Knox_IN America/La_Paz
America/Lima America/Los_Angeles America/Louisville
America/Maceio America/Managua America/Manaus

197

America/Martinique America/Mazatlan America/Mendoza
America/Menominee America/Merida America/Mexico_City
America/Miquelon America/Moncton America/Monterrey
America/Montevideo America/Montreal America/Montserrat
America/Nassau America/New_York America/Nipigon
America/Nome America/Noronha America/North_Dakota/Center
America/Panama America/Pangnirtung America/Paramaribo
America/Phoenix America/Port-au-Prince America/Port_of_Spain
America/Porto_Acre America/Porto_Velho America/Puerto_Rico
America/Rainy_River America/Rankin_Inlet America/Recife
America/Regina America/Rio_Branco America/Rosario
America/Santiago America/Santo_Domingo America/Sao_Paulo
America/Scoresbysund America/Shiprock America/St_Johns
America/St_Kitts America/St_Lucia America/St_Thomas
America/St_Vincent America/Swift_Current America/Tegucigalpa
America/Thule America/Thunder_Bay America/Tijuana
America/Toronto America/Tortola America/Vancouver
America/Virgin America/Whitehorse America/Winnipeg
America/Yakutat America/Yellowknife Antarctica/Casey
Antarctica/Davis Antarctica/DumontDUrville Antarctica/Mawson
Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera
Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok
Arctic/Longyearbyen Asia/Aden Asia/Almaty
Asia/Amman Asia/Anadyr Asia/Aqtau
Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad
Asia/Baghdad Asia/Bahrain Asia/Baku
Asia/Bangkok Asia/Beirut Asia/Bishkek
Asia/Brunei Asia/Calcutta Asia/Choibalsan
Asia/Chongqing Asia/Chungking Asia/Colombo
Asia/Dacca Asia/Damascus Asia/Dhaka
Asia/Dili Asia/Dubai Asia/Dushanbe
Asia/Gaza Asia/Harbin Asia/Hong_Kong
Asia/Hovd Asia/Irkutsk Asia/Istanbul
Asia/Jakarta Asia/Jayapura Asia/Jerusalem
Asia/Kabul Asia/Kamchatka Asia/Karachi
Asia/Kashgar Asia/Katmandu Asia/Krasnoyarsk
Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait
Asia/Macao Asia/Macau Asia/Magadan
Asia/Makassar Asia/Manila Asia/Muscat
Asia/Nicosia Asia/Novosibirsk Asia/Omsk
Asia/Oral Asia/Phnom_Penh Asia/Pontianak
Asia/Pyongyang Asia/Qatar Asia/Qyzylorda
Asia/Rangoon Asia/Riyadh Asia/Riyadh87
Asia/Riyadh88 Asia/Riyadh89 Asia/Saigon
Asia/Sakhalin Asia/Samarkand Asia/Seoul
Asia/Shanghai Asia/Singapore Asia/Taipei
Asia/Tashkent Asia/Tbilisi Asia/Tehran
Asia/Tel_Aviv Asia/Thimbu Asia/Thimphu
Asia/Tokyo Asia/Ujung_Pandang Asia/Ulaanbaatar
Asia/Ulan_Bator Asia/Urumqi Asia/Vientiane
Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg
Asia/Yerevan Atlantic/Azores Atlantic/Bermuda
Atlantic/Canary Atlantic/Cape_Verde Atlantic/Faeroe
Atlantic/Jan_Mayen Atlantic/Madeira Atlantic/Reykjavik
Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley
Australia/ACT Australia/Adelaide Australia/Brisbane
Australia/Broken_Hill Australia/Canberra Australia/Currie

List of Time Zones

198

Australia/Darwin Australia/Hobart Australia/LHI
Australia/Lindeman Australia/Lord_Howe Australia/Melbourne
Australia/NSW Australia/North Australia/Perth
Australia/Queensland Australia/South Australia/Sydney
Australia/Tasmania Australia/Victoria Australia/West
Australia/Yancowinna BET BST
Brazil/Acre Brazil/DeNoronha Brazil/East
Brazil/West CAT CET
CNT CST CST6CDT
CTT Canada/Atlantic Canada/Central
Canada/East-Saskatchewan Canada/Eastern Canada/Mountain
Canada/Newfoundland Canada/Pacific Canada/Saskatchewan
Canada/Yukon Chile/Continental Chile/EasterIsland
Cuba EAT ECT
EET EST EST5EDT
Egypt Eire Etc/GMT
Etc/GMT+0 Etc/GMT+1 Etc/GMT+10
Etc/GMT+11 Etc/GMT+12 Etc/GMT+2
Etc/GMT+3 Etc/GMT+4 Etc/GMT+5
Etc/GMT+6 Etc/GMT+7 Etc/GMT+8
Etc/GMT+9 Etc/GMT-0 Etc/GMT-1
Etc/GMT-10 Etc/GMT-11 Etc/GMT-12
Etc/GMT-13 Etc/GMT-14 Etc/GMT-2
Etc/GMT-3 Etc/GMT-4 Etc/GMT-5
Etc/GMT-6 Etc/GMT-7 Etc/GMT-8
Etc/GMT-9 Etc/GMT0 Etc/Greenwich
Etc/UCT Etc/UTC Etc/Universal
Etc/Zulu Europe/Amsterdam Europe/Andorra
Europe/Athens Europe/Belfast Europe/Belgrade
Europe/Berlin Europe/Bratislava Europe/Brussels
Europe/Bucharest Europe/Budapest Europe/Chisinau
Europe/Copenhagen Europe/Dublin Europe/Gibraltar
Europe/Helsinki Europe/Istanbul Europe/Kaliningrad
Europe/Kiev Europe/Lisbon Europe/Ljubljana
Europe/London Europe/Luxembourg Europe/Madrid
Europe/Malta Europe/Mariehamn Europe/Minsk
Europe/Monaco Europe/Moscow Europe/Nicosia
Europe/Oslo Europe/Paris Europe/Prague
Europe/Riga Europe/Rome Europe/Samara
Europe/San_Marino Europe/Sarajevo Europe/Simferopol
Europe/Skopje Europe/Sofia Europe/Stockholm
Europe/Tallinn Europe/Tirane Europe/Tiraspol
Europe/Uzhgorod Europe/Vaduz Europe/Vatican
Europe/Vienna Europe/Vilnius Europe/Warsaw
Europe/Zagreb Europe/Zaporozhye Europe/Zurich
Factory GB GB-Eire
GMT GMT+0 GMT-0
GMT0 Greenwich HST
Hongkong IET IST
Iceland Indian/Antananarivo Indian/Chagos
Indian/Christmas Indian/Cocos Indian/Comoro
Indian/Kerguelen Indian/Mahe Indian/Maldives
Indian/Mauritius Indian/Mayotte Indian/Reunion
Iran Israel JST
Jamaica Japan Kwajalein
Libya MET MIT
MST MST7MDT Mexico/BajaNorte

List of Time Zones

199

Mexico/BajaSur Mexico/General Mideast/Riyadh87
Mideast/Riyadh88 Mideast/Riyadh89 NET
NST NZ NZ-CHAT
Navajo PLT PNT
PRC PRT PST
PST8PDT Pacific/Apia Pacific/Auckland
Pacific/Chatham Pacific/Easter Pacific/Efate
Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji
Pacific/Funafuti Pacific/Galapagos Pacific/Gambier
Pacific/Guadalcanal Pacific/Guam Pacific/Honolulu
Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae
Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas
Pacific/Midway Pacific/Nauru Pacific/Niue
Pacific/Norfolk Pacific/Noumea Pacific/Pago_Pago
Pacific/Palau Pacific/Pitcairn Pacific/Ponape
Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan
Pacific/Samoa Pacific/Tahiti Pacific/Tarawa
Pacific/Tongatapu Pacific/Truk Pacific/Wake
Pacific/Wallis Pacific/Yap Poland
Portugal ROC ROK
SST Singapore SystemV/AST4
SystemV/AST4ADT SystemV/CST6 SystemV/CST6CDT
SystemV/EST5 SystemV/EST5EDT SystemV/HST10
SystemV/MST7 SystemV/MST7MDT SystemV/PST8
SystemV/PST8PDT SystemV/YST9 SystemV/YST9YDT
Turkey UCT US/Alaska
US/Aleutian US/Arizona US/Central
US/East-Indiana US/Eastern US/Hawaii
US/Indiana-Starke US/Michigan US/Mountain
US/Pacific US/Pacific-New US/Samoa
UTC Universal VST
W-SU WET Zulu

List of Time Zones

200

Index

A
Access Control Definition

Aleri SQL, 22
Aggregate Stream

AleriML, 44
Aleri SQL

Access Control Definition, 22
Best Practices, 28
Comments, 27
Continuous Queries, 7
Declaration

User Defined Function, 26
Distributed Model Definition, 21
Execution, 29
Expressions, 23

Filter, 25
Join, 23

Filter Expressions, 25
Join Expressions, 23
Library Declaration

User Defined Function, 26
Overview, 3
Parameter Definition, 18
Program View

Definition, 14
Restrictions, 27
Source Streams, 4
Store Definition, 3

AleriML
Aggregate Stream, 44
Authoring, 30
Best Practices, 49
Cluster, 33
Compute Stream, 42
Copy Stream, 41
DataLocation, 34
Extend Stream, 43
Filter Stream, 42
FlexStream, 46
Global, 33
Join Stream, 45
Module, 34
Pattern Stream, 48
Platform, 30
Preliminaries, 30
Source Stream, 40
StartUp, 32
Store, 34
Stream, 36
Union Stream, 41

Authoring
in AleriML, 30
in SQL, 3

Authoring Preliminaries, 1

B
Best Practices

Aleri SQL, 28
AleriML, 49

C
Cluster

AleriML, 33
Comments

Aleri SQL, 27
Compute Stream

AleriML, 42
Continuous Queries

Aleri SQL, 7
Conventions

Notational, 2
Copy Stream

AleriML, 41

D
Data Types, 70

and Literal Constants, 1
DataLocation

AleriML, 34
Declaration

User Defined Function
Aleri SQL, 26

Definition
Access Control

Aleri SQL, 22
Distributed Model

Aleri SQL, 21
Parameter

Aleri SQL, 18
Program View

Aleri SQL, 14
Distributed Model Definition

Aleri SQL, 21

E
Execution

Aleri SQL, 29
Expressions, 2

Aleri SQL, 23
Filter

Aleri SQL, 25
Join

Aleri SQL, 23
Extend Stream

AleriML, 43

F
Filter Expressions

Aleri SQL, 25
Filter Stream

201

AleriML, 42
FlexStream

AleriML, 46
Function Declaration

User Defined
Aleri SQL, 26

Functions, 70

G
Global

AleriML, 33

I
Insert-only

Stream, 36

J
Join Expressions

Aleri SQL, 23
Join Stream

AleriML, 45

L
Language

Pattern Matching, 87
SPLASH, 50

Library Declaration
User Defined Function

Aleri SQL, 26
Literal Constants

and Data Types, 1

M
Metadata Streams, 91
Module

AleriML, 34

N
Names

Objects, 1
Notational Conventions, 2

O
Object Names, 1
Operators, 70

P
Parameter Definition

Aleri SQL, 18
Pattern Matching

Language, 87
Pattern Stream

AleriML, 48
Platform

AleriML, 30

Preliminaries
AleriML, 30

Program View
Definition

Aleri SQL, 14
Programming Language

SPLASH, 50

Q
Queries

Continuous, 7

R
Reserved Words, 69
Restrictions

Aleri SQL, 27

S
Source Stream

AleriML, 40
Source Streams

Aleri SQL, 4
SPLASH

Programming Language, 50
SQL

Access Control Definition, 22
Authoring, 3
Best Practices, 28
Comments, 27
Continuous Queries, 7
Declaration

User Defined Function, 26
Distributed Model Definition, 21
Execution, 29
Expressions, 23
Filter Expressions, 25
Join Expressions, 23
Library Declaration

User Defined Function, 26
Parameter Definition, 18
Program View Definition, 14
Restrictions, 27

StartUp
AleriML, 32

Store
AleriML, 34

Store Definition
Aleri SQL, 3

Stream
AleriML, 36
Insert-only, 36

Streams
Metadata, 91

U
Union Stream

AleriML, 41

Index

202

User Defined Function
Declaration

Aleri SQL, 26
Library Declaration

Aleri SQL, 26

W
Words

Reserved, 69

Index

203

	Authoring Reference Manual
	Table of Contents
	About This Guide
	1. Related Documents

	Chapter 1. Authoring Preliminaries
	1.1. Data Types and Literal Constants
	1.2. Names
	1.3. Expressions
	1.4. Notational Conventions

	Chapter 2. Authoring in SQL
	2.1. Aleri SQL Overview
	2.2. Store Definition
	2.3. Source Streams
	2.4. Continuous Queries
	2.4.1. Examples of Materialized View Definitions

	2.5. Program View Definition
	2.6. Pattern View Definition
	2.7. Parameter Definition
	2.8. Global Function Definition
	2.9. Data Location Definition
	2.10. Connection Definition
	2.11. Connection Group Definition
	2.12. Distributed Model Definition
	2.13. Access Control
	2.14. Aleri SQL Expressions
	2.14.1. Join Expressions
	2.14.1.1. Types of Joins
	2.14.1.2. Examples of Joins
	2.14.1.3. Restrictions on Joins

	2.14.2. Filter Expressions
	2.14.3. User Defined Function Library Declaration
	2.14.4. User Defined Function Declaration

	2.15. Adding Comments in Aleri SQL
	2.16. Current Restrictions on Aleri SQL Usage
	2.17. Best Practices When Writing a Data Model in Aleri SQL
	2.18. Example of an Aleri SQL Data Model
	2.19. Running a model written in Aleri SQL

	Chapter 3. Authoring in AleriML
	3.1. XML Preliminaries
	3.2. Platform
	3.3. StartUp
	3.4. Global
	3.5. Cluster
	3.6. Module
	3.7. DataLocation
	3.8. Store
	3.8.1. Stateless Store
	3.8.2. Memory Store
	3.8.3. Log Store

	3.9. Stream
	3.9.1. Insert-only Streams
	3.9.2. Common Attributes & Elements
	3.9.2.1. Column
	3.9.2.2. ColumnExpression
	3.9.2.3. FilterExpression
	3.9.2.4. InConnection and OutConnection
	3.9.2.5. Local
	3.9.2.6. InputWindow

	3.9.3. Source Stream
	3.9.4. Copy Stream
	3.9.5. Union Stream
	3.9.6. Filter Stream
	3.9.7. Compute Stream
	3.9.8. Extend Stream
	3.9.9. Aggregate Stream
	3.9.10. Join Stream
	3.9.11. FlexStream
	3.9.12. Pattern Stream

	3.10. Best Practices When Writing an AleriML Data Model

	Chapter 4. SPLASH Programming Language
	4.1. Preliminaries
	4.2. Variable and Type Declarations
	4.3. Data Structures
	4.3.1. Record Events
	4.3.2. XML Values
	4.3.3. Vectors
	4.3.4. Dictionaries
	4.3.5. Streams
	4.3.6. Stream Iterators
	4.3.7. Event Caches
	4.3.7.1. Manual insertion
	4.3.7.2. Changing buckets
	4.3.7.3. Managing the size of buckets
	4.3.7.4. Keeping records instead of events
	4.3.7.5. Ordering
	4.3.7.6. Operations on Event Caches

	4.4. Statements
	4.4.1. Expression Statements
	4.4.2. Block Statements
	4.4.3. Conditional Statements
	4.4.4. Output Statements
	4.4.5. While Statements
	4.4.6. For Loops
	4.4.7. Control Statements
	4.4.8. Switch Statements

	4.5. Functions
	4.6. Using SPLASH within FlexStreams

	Appendix A. Reserved Words
	Appendix B. Data Types, Operators and Functions
	B.1. Data Types
	B.2. Opcodes/Constants
	B.3. Special Columns
	B.4. Nulls and Error Handling
	B.5. Arithmetic Operators
	B.6. Comparison Operators
	B.7. Boolean Operators
	B.8. Arithmetic Functions
	B.9. Aggregation Functions
	B.10. String Functions
	B.11. Date and Time Functions
	B.12. Calendar Functions
	B.13. Type Conversion Functions
	B.14. Null Handling and Rank Functions
	B.15. User-Defined Functions
	B.16. Print
	B.17. Assignment
	B.18. Sequencing
	B.19. Conditional Expressions
	B.20. External Data Functions
	B.21. Unique Value Functions

	Appendix C. Pattern Matching Language
	C.1. Within clause
	C.2. From clause
	C.3. On clause
	C.4. Computational clause
	C.5. Examples

	Appendix D. User-Defined Functions
	D.1. User-Defined Functions in C/C++
	D.1.1. Write a User-Defined Function
	D.1.2. A Second Example
	D.1.3. Compile a User-Defined Function
	D.1.4. Call a User-Defined Function

	D.2. User-Defined Functions in Java
	D.2.1. Write User-Defined Functions in Java
	D.2.2. Compile User-Defined Functions in Java
	D.2.3. Call User-Defined Functions in Java
	D.2.4. Link User-Defined Functions in Java

	Appendix E. Aleri Metadata Streams
	E.1. Aleri_Config
	E.2. Aleri_Streams
	E.3. Aleri_Tables
	E.4. Aleri_Columns
	E.5. Aleri_KeyColumns
	E.6. Aleri_Clients
	E.7. Aleri_Subscriptions
	E.8. Aleri_Subscriptions_Ext
	E.9. Aleri_Connectors
	E.10. Aleri_RunUpdates
	E.11. Aleri_ClockUpdates
	E.12. Aleri_Streams_Monitor
	E.13. Aleri_Clients_Monitor

	Appendix F. Data Location Descriptions, Parameters, Limits
	F.1. ActivFinancial Inbound Plug-in
	F.2. Aleri Streaming Platform Input
	F.3. Aleri Streaming Platform Output
	F.4. Bloomberg Plug-in
	F.5. Configuring Coral8 Inbound and Outbound Connectors
	F.5.1. Data Types
	F.5.2. Coral8 Timestamps
	F.5.3. Operations

	F.6. Coral8 Inbound
	F.7. Coral8 Outbound
	F.8. Database Input
	F.9. Database Output
	F.10. File CSV Input
	F.11. File CSV Output
	F.12. File FIX Input
	F.13. File FIX Output
	F.14. File XML Input
	F.15. File XML Output
	F.16. FIX Plug-in
	F.17. HTTP Plug-in
	F.18. IDC Plug-in
	F.19. JMS CSV Input
	F.20. JMS CSV Output
	F.21. JMS Custom Input
	F.22. JMS Custom Output
	F.23. JMS FIX Input
	F.24. JMS FIX Output
	F.25. JMS Object Array Input
	F.26. JMS Object Array Output
	F.27. JMS XML Input
	F.28. JMS XML Output
	F.29. kdb Input Plug-in
	F.30. kdb Output Plug-in
	F.31. Reuters Marketfeed Inbound Plug-in
	F.32. Reuters OMM Inbound Plug-in
	F.33. SMTP Output
	F.34. Sample Plug-in Connector XML File Input
	F.35. Sample Plug-in Connector XML File Output
	F.36. Socket (As Client) CSV Input
	F.37. Socket (As Client) CSV Output
	F.38. Socket (As Client) XML Input
	F.39. Socket (As Client) XML Output
	F.40. Socket (As Server) XML Input
	F.41. Socket (As Server) XML Output
	F.42. Socket (As Server) CSV Input
	F.43. Socket (As Server) CSV Output
	F.44. Socket FIX Input
	F.45. Socket FIX Output
	F.46. SybaseIQ Output
	F.47. Teradata Output
	F.48. Tibco Rendezvous Plug-in
	F.49. Wombat Plug-in

	Appendix G. List of Time Zones
	Index

