
Guide to Programming Interfaces

Sybase Aleri Streaming Platform
3.2

DOCUMENT ID: DC01291-01-0320-02

LAST REVISED: December, 2010

Copyright © 2010 Sybase, Inc.

All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in
new editions or technical notes. Information in this document is subject to change without notice. The
software described herein is furnished under a license agreement, and it may be used or copied only in
accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800)
685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the
above fax number. All other international customers should contact their Sybase subsidiary or local dis-
tributor. Upgrades are provided only at regularly scheduled software release dates. No part of this pub-
lication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechan-
ical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at http://www.sybase.com/detail?id=1011207. Sybase and the marks
listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trade-
marks or registered trademarks of SAP AG in Germany and in several other countries all over the world.

Bloomberg is a trademark of Bloomberg Finance L.P., a Delaware limited partnership, or its subsidiar-
ies.

DB2, IBM and Websphere are registered trademarks of International Business Machines Corporation.

Eclipse is a trademark of Eclipse Foundation, Inc.

Excel, Internet Explorer, Microsoft, ODBC, SQL Server, Visual C++, and Windows are trademarks or
registered trademarks of Microsoft Corp.

Intel is a registered trademark of Intel Corporation.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Mozilla and Firefox are registered trademarks of the Mozilla Foundation.

Netezza is a registered trademark of Netezza Corporation in the United States and/or other countries.

Novell and SUSE are registered trademarks of Novell, Inc. in the U.S. and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Reuters is a registered trademark and trademark of the Thomson Reuters group of companies around the
world.

SPARC is a registered trademark of SPARC International, Inc. Products bearing SPARC trademarks are
based on an architecture developed by Sun Microsystems, Inc.

Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and other

http://www.sybase.com/detail?id=1011207

countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/
Open Group Ltd.

All other company and product names mentioned may be trademarks of the respective companies with
which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph
(c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian
agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of Contents
About This Guide ... viii

1. Purpose ... viii
2. Organization .. viii
3. Related Documents ... ix

1. Publication/Subscription Interfaces ... 1
1.1. The Publication/Subscription Mechanism .. 1

1.1.1. Publication/Subscription Terminology .. 1
1.1.2. Initializing Pub/Sub Objects .. 2
1.1.3. Subscribing to the Sybase Aleri Streaming Platform 2
1.1.4. Publishing to the Sybase Aleri Streaming Platform 2

1.2. Record/Playback Mechanism ... 3
2. Publish/Subscribe API for Java ... 4

2.1. Overview of SP Java utilities ... 4
2.1.1. SP .jar files .. 4
2.1.2. Non-sp Utilities .. 4
2.1.3. Example Files .. 4

2.2. Design Decisions .. 5
2.3. Subscribing to the Sybase Aleri Streaming Platform Using Java 5

2.3.1. Set Up the Environment for Subscription Using Java 6
2.3.1.1. Configure the API Classpath .. 6
2.3.1.2. Set up Basic SP Objects ... 6

2.3.2. Set Up Java Objects for Subscription .. 7
2.3.2.1. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSub-
scription Using Java .. 8
2.3.2.2. SpSubscription Example .. 8
2.3.2.3. SpSubscriptionProjection Example .. 9

2.3.3. Receive/Process Subscription Updates in Java .. 10
2.3.3.1. Parse Sybase Aleri Streaming Platform Data 10
2.3.3.2. Inspect Parsing Errors ... 10
2.3.3.3. Detect Nulls/Stales ... 11
2.3.3.4. SHINE Flag Supports New Subscription Mode For Partial-Record Up-
dates Using Java ... 11
2.3.3.5. SpSubscription/SpSubscriptionProjection Objects and Null Sybase Aleri
Streaming Platform Field Data Values ... 11

2.3.4. Change/Stop Subscription in Java .. 12
2.3.4.1. Stop Subscription ... 12

2.4. Publishing to the Sybase Aleri Streaming Platform Using Java 13
2.4.1. Create Publication Objects Using Java .. 13

2.4.1.1. Create the SpPublication Object .. 13
2.4.1.2. Example: Setting Up Objects for Publication in Java 13

2.4.2. Start the Publication Connection Using Java .. 14
2.4.3. Publish a Collection Using Java ... 15
2.4.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublica-
tion Using Java ... 16
2.4.5. Handling Stale Data .. 16
2.4.6. Publication/Subscription in a High Availability (Hot Spare) Configuration .. 17

2.4.6.1. Subscription Mechanisms in a High Availability Configuration 17
2.4.6.2. Publication Mechanisms in a High Availability Configuration 18

2.5. Record/Playback using Java .. 18
3. Publish/Subscribe API for C++ ... 20

3.1. Overview/General Information .. 20
3.1.1. Overview of SP C++ Utilities .. 20
3.1.2. Design Decisions for Publication/Subscription Using C++ 21

iv

3.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription
... 21
3.1.4. C++ Usage Restrictions ... 22

3.2. Subscribing to the Sybase Aleri Streaming Platform Using C++ 22
3.2.1. Set Up Objects for SP Subscription in C++ .. 22

3.2.1.1. Create an SpPlatform Object .. 22
3.2.2. Setup and Start a Subscription in C++ ... 23

3.2.2.1. Initiate a Subscription Using SpSubscriptionProjection 24
3.2.2.2. Implement the SpObserver Interface .. 24
3.2.2.3. Start the Subscription Using SpSubscripion 25
3.2.2.4. Start the Subscription Using SpSubscriptionProjection 26

3.2.3. Receive/Process Subscription Updates Using C++ 27
3.2.3.1. Delivery to an SpObserver Notify(...) Method Implementation 28
3.2.3.2. Inspect the Subscription Parsing Errors within the SpObserver 28
3.2.3.3. SHINE Flag Supports Subscription Mode For Partial-Record Updates
... 28

3.2.4. Change/Stop Subscription Using C++ ... 28
3.2.4.1. Stop Subscription ... 28

3.3. Publishing to the Sybase Aleri Streaming Platform Using C++ 29
3.3.1. Create Objects for Publication Using C++ ... 29

3.3.1.1. Create an SpPublication Object ... 29
3.3.1.2. Create SpStreamDataRecord Objects ... 30

3.3.2. Publish Data to the Sybase Aleri Streaming Platform Using C++ 32
3.3.3. Handling Stale Data .. 33
3.3.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublica-
tion Using C++ ... 34

3.4. Record/Playback using C++ .. 34
3.5. Special Topics for SP Publication/Subscription Using C++ 36

3.5.1. Publication/Subscription In a High Availability (Hot Spare) Configuration .. 36
3.5.1.1. Subscription Mechanisms in a High Availability Configuration 36
3.5.1.2. Publication Mechanisms in a High Availability Configuration 37

4. Publish/Subscribe API for .NET 2.0 .. 38
4.1. Overview/General Information .. 38

4.1.1. Overview of .NET Utilities for SP Publication/Subscription 38
4.1.1.1. API Library ... 38
4.1.1.2. Example Files .. 38

4.1.2. Design Decisions for SP Publication/Subscription Using .NET 2.0 39
4.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription
Using .NET .. 40

4.2. Subscribing to the Sybase Aleri Streaming Platform Using .NET 2.0 40
4.2.1. Set Up the Environment for Subscription Using .NET 2.0 40

4.2.1.1. Configure the Pub/Sub API .NET 2.0 Pub/Subnet.dll 40
4.2.1.2. Initialize the SpFactory Object .. 41
4.2.1.3. Create the SpPlatform Object ... 41

4.2.2. Set Up/Start Subscription Using .NET 2.0 ... 42
4.2.2.1. Initiate a Subscription Using SpSubscription in .NET 2.0 45
4.2.2.2. Initiate a Subscription Using SpSubscriptionProjection 47
4.2.2.3. The SpObserver Interface .. 49
4.2.2.4. Adding or Removing Streams from an Active Subscription 51
4.2.2.5. SHINE Flag Supports New Subscription Mode For Partial-Record Up-
dates Using .NET .. 51

4.2.3. Receive/Process Subscription Updates Using .NET 2.0 51
4.2.3.1. Parse Sybase Aleri Streaming Platform Data 51

4.3. Publishing to the Sybase Aleri Streaming Platform Using .NET 2.0 52
4.3.1. Create Objects for SP Publication Using .NET 2.0 52

4.3.1.1. Create the SpPublication Object .. 52
4.3.1.2. Create a Data Object for Publication .. 52
4.3.1.3. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to Sp-

Guide to Programming Interfaces

v

Publication Using .NET .. 54
4.3.2. Handling Stale Data .. 54

4.4. Record/Playback using .NET 2.0 .. 55
4.5. Special Topics for SP Publication/Subscription Using .NET 2.0 56

4.5.1. Publication/Subscription in a High Availability (Hot Spare) Configuration .. 56
4.5.1.1. Subscription Mechanisms in a High Availability Configuration 57
4.5.1.2. Publication Mechanisms in a High Availability Configuration 57

5. The On-Demand SQL Interface .. 59
5.1. Aleri SQL Queries and Statements .. 59
5.2. ODBC Connectivity ... 59
5.3. JDBC Connectivity .. 60

6. The Command and Control Interface ... 61
6.1. Security for the On-Demand SQL Interface .. 61

6.1.1. Authentication Using the SQL On-Demand Interface 61
6.1.2. Encryption Using the SQL On-Demand Interface 61

7. Embeddable Sybase Aleri Streaming Platform ... 62
8. Plug-in Connector Framework .. 65

8.1. Introduction ... 65
8.2. Plug-in Connector Profile ... 65
8.3. System Parameters and Commands ... 68
8.4. Read Only System Parameters ... 69
8.5. Commands ... 69
8.6. User-Defined Parameters and Parameter Substitution ... 70
8.7. Notes on Auto Generated Parameter Files .. 72
8.8. A Parameter of Type configFilename .. 73
8.9. Other Parameter Types ... 73

A. Reference Guide to the Java Object Model ... 75
A.1. Objects for Subscription ... 75

A.1.1. SpFactory Object ... 75
A.1.2. SpPlatformParms Object ... 77
A.1.3. SpPlatformStatus Object .. 78
A.1.4. SpPlatform Object .. 79
A.1.5. SpStream Object .. 82
A.1.6. SpStreamDefinition Object .. 83
A.1.7. SpStreamProjection Object .. 84
A.1.8. Creating an SpSubscription or SpSubscriptionProjection Object 84
A.1.9. SpSubscriptionCommon Method Set .. 86
A.1.10. SpSubscription Method Set .. 88
A.1.11. SpSubscriptionProjection Method Set ... 89
A.1.12. SpSubscriptionEvent ... 90
A.1.13. SpParserReturnInfo .. 94
A.1.14. SpNullConstants .. 95
A.1.15. SpUtils ... 95

A.2. Objects for Publication .. 96
A.2.1. Stream Operation Codes .. 98
A.2.2. Stream Flag Values .. 98
A.2.3. SpStreamDataRecord Object .. 99
A.2.4. Create SpStreamDataRecord Objects ... 100

A.3. Objects for recording and playback .. 102
A.3.1. SpRecorder Object ... 102
A.3.2. SpPlayback Object ... 103

B. Reference Guide to the C++ Object Model ... 105
B.1. C++ Objects for Subscription .. 105

B.1.1. SpFactory Object ... 105
B.1.2. SpPlatformParms Object .. 107
B.1.3. SpPlatformStatus Object .. 108
B.1.4. SpPlatform Object .. 109
B.1.5. SpStream Object .. 112

Guide to Programming Interfaces

vi

B.1.6. SpStreamDefinition Object .. 113
B.1.7. SpStreamProjection Object .. 114
B.1.8. Creating an SpSubscription or SpSubscriptionProjection Object 114
B.1.9. SpSubscriptionCommon Method Set .. 116
B.1.10. SpSubscription Method Set .. 118
B.1.11. SpSubscriptionProjection Method Set ... 120
B.1.12. SpSubscriptionEvent ... 120
B.1.13. SpParserReturnInfo object .. 124
B.1.14. SpDataValue Object .. 125
B.1.15. SpBinaryData Object ... 126

B.2. C++ Objects for Publication .. 127
B.2.1. SpPublication Method Set .. 127
B.2.2. Stream Operation Codes .. 130
B.2.3. Stream Flag Values .. 130
B.2.4. SpStreamDataRecord Object .. 131

B.3. C++ Objects for Record and Playback .. 132
B.3.1. SpRecorder object .. 132
B.3.2. SpPlayback object .. 133

B.4. Other C++ API Classes/Methods ... 133
C. Reference Guide to the .NET Object Model .. 135

C.1. Common Service Objects for .NET .. 135
C.1.1. SpFactory Object ... 135
C.1.2. The SpPlatformParms Object .. 137
C.1.3. SpPlatformStatus Object .. 138
C.1.4. SpPlatform Object .. 138
C.1.5. SpStream Object .. 142
C.1.6. SpStreamDefinition Object .. 143
C.1.7. SpStreamProjection Object .. 143

C.2. Subscription Objects for .NET ... 144
C.2.1. SpSubscriptionCommon Method Set .. 144
C.2.2. SpSubscriptionEvent ... 146

C.3. Methods for Publication in .NET 2.0 .. 150
C.3.1. SpPublication Method Set .. 150
C.3.2. Stream Operation Codes .. 153
C.3.3. Stream Flag Values .. 153
C.3.4. SpStreamDataRecord Object .. 154
C.3.5. Creating SpStreamDataRecord Objects ... 155
C.3.6. Other Pub/Sub API Classes .. 155
C.3.7. The aleri_PubSubconst namespace .. 156

C.4. Record and Playback objects for .NET .. 158
C.4.1. SpNetRecorder Object ... 158
C.4.2. SpNetPlayback object ... 159

D. Reference Guide to SQL Query Interface ... 161
D.1. Aleri SQL Connectivity C++ Library ... 161

E. Reference Guide to the Command and Control Interface ... 166
E.1. Command and Control Messages ... 166

F. Using Encryption with Java Client Applications .. 182
F.1. Ready To Run in Encrypted Mode .. 185

Guide to Programming Interfaces

vii

About This Guide
1. Purpose

This guide describes the three major functional interfaces used to develop applications for the Sybase®
Aleri Streaming Platform : Publish/Subscribe, Command & Control, and On-line SQL Queries.

In this context, "Subscribing" means creating a steady connection so that an outside application can re-
ceive data from the Sybase Aleri Streaming Platform. "Publishing" means creating the same type of con-
nection to send data into the Sybase Aleri Streaming Platform. The Publish/Subscribe (“Pub/Sub”) inter-
face gives application programmers a set of reliable and versatile modules (in Java®, C++ and .NET)
that manage all the low-level maintenance tasks for a publication or subscription.

The Command & Control Interface can be used to control and monitor the Streaming Processor. Finally,
the Sybase On-line SQL Query Interface enables applications or users to issue SQL queries to the
streams.

This guide helps you write and integrate application or system components with the Sybase Aleri
Streaming Platform. Higher-level utilities, which are described in the Utilities Guide are also available
for each of these interfaces to be used without additional coding. The source code for Sybase Aleri
Streaming Platform utilities such as sp_convert, sp_upload, and sp_subscribe is available in the re-
lease distributions; this code can also be used by developers writing components that publish or sub-
scribe to the Sybase Aleri Streaming Platform.

2. Organization

Chapter 1, Publication/Subscription Interfaces Starts with an overview of the three major functional in-
terfaces.

These interfaces are detailed in Chapter 2, Publish/Subscribe API for Java, Chapter 3, Publish/Subscribe
API for C++, and Chapter 4, Publish/Subscribe API for .NET 2.0 of this Guide.

These chapters cover the interface programming options relative to Publish and Subscribe, which is the
most widely used interface to the Sybase Aleri Streaming Platform.

Chapter 5, The On-Demand SQL Interface details the interface options for on-demand queries of stream
data. Currently, on-demand queries are restricted to single stream select statements, but this restriction
will soon be removed. All on-demand queries are SQL-based (Section 5.1, “Aleri SQL Queries and
Statements”), but the connection layer for SQL can be either ODBC® (Section 5.2, “ODBC Connectiv-
ity”), JDBC® (Section 5.3, “JDBC Connectivity”), or Sybase's proprietary C++ Library (Section D.1,
“Aleri SQL Connectivity C++ Library”). Sybase's SQL Connectivity C++ Library is lighter and more
efficient for C++ application component development than ODBC, but for third party software integra-
tion either ODBC or JDBC (depending on the client platform) may be required.

Chapter 6, The Command and Control Interface, details the Command & Control Interface for monitor-
ing and controlling the Streaming Processor. This interface is implemented over a collection of XM-
LRPC calls in the Sybase Aleri Streaming Platform. These calls may be made from a client application,
or directly via the Command and Control tools (sp_cli, sp_cnc, sp_monitor) described in the Utilities
Guide

The appendices provide in-depth reference information about these interfaces:

Java Appendix A, Reference Guide to the Java Object Model

C++ Appendix B, Reference Guide to the C++ Object Model

.NET Appendix C, Reference Guide to the .NET Object Model

viii

SQL Query Appendix D, Reference Guide to SQL Query Interface

C&C Appendix E, Reference Guide to the Command and Control Interface

Encryption Appendix F, Using Encryption with Java Client Applications, describes how to set up
and use encryption for Java-based clients using any of the Sybase Aleri Streaming
Platform interfaces.

3. Related Documents

This guide is part of a set. The following list briefly describes each document in the set.

Product Overview Introduces the Aleri Streaming Platform and related Aleri
products.

Getting Started - the Aleri Studio Provides the necessary information to start using the Aleri Studio
for defining data models.

Release Bulletin Describes the features, known issues and limitations of the latest
Aleri Streaming Platform release.

Installation Guide Provides instructions for installing and configuring the Streaming
Processor and Aleri Studio, which collectively are called the Aleri
Streaming Platform.

Authoring Guide Provides detailed information about creating a data model in the
Aleri Studio. Since this is a comprehensive guide, you should
read the Introduction to Data Modeling and the Aleri Studio. first.

Authoring Reference Provides detailed information about creating a data model for the
Aleri Streaming Platform.

Guide to Programming Interfaces Provides instructions and reference information for developers
who want to use Aleri programming interfaces to create their own
applications to work with the Aleri Streaming Platform.

These interfaces include:

• the Publish/Subscribe (Pub/Sub) Application Programming In-
terface (API) for Java

• the Pub/Sub API for C++

• the Pub/Sub API for .NET

• a proprietary Command & Control interface

• an on-demand SQL query interface

Utilities Guide Collects usage information (similar to UNIX® man pages) for all
Aleri Streaming Platform command line tools.

Administrators Guide Provides instructions for specific administrative tasks related to
the Aleri Streaming Platform.

Introduction to Data Modeling and
the Aleri Studio

Walks you through the process of building and testing an Aleri
data model using the Aleri Studio.

About This Guide

ix

SPLASH Tutorial Introduces the SPLASH programming language and illustrates its
capabilities through a series of examples.

Frequently Asked Questions Answers some frequently asked questions about the Aleri Stream-
ing Platform.

About This Guide

x

Chapter 1. Publication/Subscription Interfaces
This chapter introduces concepts about Java, C++, and .NET 2.0.

1.1. The Publication/Subscription Mechanism

This section provides general information about the Sybase Aleri Streaming Platform's Pub/Sub mech-
anism.

In the Sybase Aleri Streaming Platform, you publish or subscribe to data from a stream. A stream is
comparable to a collection of keyed records in a database table. The publish interface allows a client ap-
plication to augment or modify a stream by sending records tagged with insert, update or delete opera-
tions. The subscribe interface allows a client application to connect to a stream in the Sybase Aleri
Streaming Platform and receive records tagged with insert, update or delete operations. The set of re-
cords that streams out of the Sybase Aleri Streaming Platform, forms a logical "log" for the stream. It
provides a sequence of record operations when applied to the data for the stream and will keep it up with
the content of the Sybase Aleri Streaming Platform.

1.1.1. Publication/Subscription Terminology

Here are key terms that will be used in this guide:

Source Stream A basic input stream to which applications publish.

Derived Stream A non-input stream which is computational in nature. Input to derived
streams can come from other derived streams or source streams. A derived
stream can be one of the following: Compute Stream, Filter Stream, Aggreg-
ate Stream, Join Stream, Pattern Stream, Union Stream, Extend Stream,
Copy Stream or FlexStream.

Record A keyed sequence of fields accompanied by an operation specification
(insert, update, delete or safedelete). It can be considered similar to a row in
a database table plus an operation.

Record Operations INSERT, UPDATE, DELETE, SAFEDELETE - the basic operation on re-
cords within a stream. These are explained in detail in the appendices to the
specific language API. For example, see Section B.1, “C++ Objects for Sub-
scription” for information about the C++ objects for Publication.

Record Flags NOACK, SHINE, - modifiers to the basic record operations. These are ex-
plained in detail in the appendices to the specific language API. For ex-
ample, see Section B.1, “C++ Objects for Subscription” for information
about these record flags.

Subscribe Flags LOSSY, NOBASE, DROPPABLE, PRESERVE_BLOCKS - modifiers to
stream subscriptions. These are explained in detail in the appendices to the
specific language API. For example, see Section B.1.8, “Creating an SpSub-
scription or SpSubscriptionProjection Object”

Envelope A collection of records packaged together to decrease network transmission
overhead and increase efficiency.

Transaction Block A collection of records grouped together to become an atomic unit when ap-
plied to a stream in the Sybase Aleri Streaming Platform. A transaction
block has transactional semantics: if any record in the block cannot be ap-
plied successfully to the Sybase stream (perhaps because of an update issued
against a non-existing record), no record in the transaction block will be ap-

1

plied.

Commit A publish API operation that upon successful return ensures all data queued
in each source stream has been absorbed and written to disk if persistence
via log stores is being used.

Note:

Both derived streams and source streams may be subscribed to, but applications may only pub-
lish to source streams.

1.1.2. Initializing Pub/Sub Objects

The following Universal Modeling Language (UML) sequence diagram shows how objects defined in
the API chapters of this guide interact to create the environment for a subscription or publication to the
Sybase Aleri Streaming Platform.

1.1.3. Subscribing to the Sybase Aleri Streaming Platform

The following diagram shows how objects defined in the API chapters of this guide interact to initialize
and start up a subscription to a stream in the Sybase Aleri Streaming Platform. Returned SpStatus ob-
jects have been omitted in this diagram for clarity.

1.1.4. Publishing to the Sybase Aleri Streaming Platform

Publication/Subscription Interfaces

2

The following diagram shows how objects defined in the API chapters of this guide interact to initialize
and start up a publication to a stream in the Sybase Aleri Streaming Platform. Returned SpStatus objects
have been omitted in this diagram for clarity.

1.2. Record/Playback Mechanism

The Pub/Sub interfaces also include a mechanism for recording and playing back data from one or more
streams. This makes it possible for an application to monitor the events occurring on one or more
streams and record that information in a file. This log file includes timing information for the various
events as well as the data. When played back, this recording can reproduce the exact sequence and times
of events that occurred during recording. In addition, the Pub/Sub API allows client programs to control
the rate of playback.

Similar to publish or subscribe, in order to record data or playback recorded data, client programs need
to create the appropriate objects using the factory methods supplied by SpPlatform.

Publication/Subscription Interfaces

3

Chapter 2. Publish/Subscribe API for Java
This chapter describes how to create objects that use the Pub/Sub API to build Java applications that
publish to and subscribe from the Sybase Aleri Streaming Platform.

Building client applications with Sybase's Java Pub/Sub API requires third party tools.

• Certified for use with Java version 1.5.0_06 or later.

• To build the included examples, you also need ant 1.6.3 or later.

• The scripts that start the Java Pub/Sub API examples use the Sybase-supplied Java version.

2.1. Overview of SP Java utilities

2.1.1. SP .jar files

pubsub.jar This jar file contains the Pub/Sub API implementation.

pubsub.properties This file is used as a Java “resource bundle”. It contains a list of internal er-
ror message strings, subscription event names, and so forth.

2.1.2. Non-sp Utilities

xmlrpc-2.0.jar This jar file contains the Apache xmlrpc functionality.

commons-codec-1.1.jar This jar file is used by the xmlrpc functionality.

2.1.3. Example Files

Inside the distribution directory, there is a directory called $ALERI_PLATFORM_HOME/
examples/clients/pubsub/java. This directory contains the java examples which illustrate the
various features of the Pub/Sub API. The example source code is in the package
com.aleri.pubsub.examples. It contains the following source files:

PubExample.java This file demonstrates publication to the Sybase Aleri Streaming
Platform.

SubExample.java This file demonstrates subscription to the Sybase Aleri Streaming
Platform.

SubExampleProjec-
tion.java

This file demonstrates SQL subscription to the Sybase Aleri
Streaming Platform.

SubExampleSpObserv-
er.java

This file is part of the example that demonstrates subscription to
the Sybase Aleri Streaming Platform.

SubExampleSpObserverPro-
jection.java

This file is part of the example that demonstrates SQL subscrip-
tion to the Sybase Aleri Streaming Platform.

DebuggerExample.java This file demonstrates debugging support provided by the Pub/
Sub API.

4

Compiled versions of these programs are in the example.jar file. There is also an ant build script
that can be used to build the source files. In addition, the pubexample.sh shell script illustrates the
required classpath and JVM command line arguments to run an example class file.

2.2. Design Decisions

The Pub/Sub API has a set of interfaces or object “types” that exposes all of the Sybase Aleri Streaming
Platform publication and subscription functionality but hides the implementation details. You are
strongly discouraged from using inheritance to extend the implementation classes found in the Pub/Sub
API code base. This lets Sybase change underlying implementation in the future without breaking client
code.

To achieve this encapsulation, most of the implementation classes found in the Pub/Sub API code base
have private constructors. You are provided with the “Factory” methods for object instantiation. For ex-
ample, the code for creating a new SpPlatform object should not be new SpPlatform(...), but
SpFactory.createPlatform(....), and so forth.

In addition, most of the objects in the Pub/Sub API support only “get” methods, providing immutability.
Complete immutability would require all “get” methods to return "copies" of internal vectors/arrays be-
cause vectors and arrays are mutable. However, this method is inefficient. Sybase chose a design that
does not generate or return “copies” to the caller.

The client application programmer must maintain order and integrity for the state of these “read-only”
data structures. For example, when requesting the list of column types for a stream definition, You must
not modify elements within the list. If you choose to modify the list, the application encounters diffi-
culties when it makes subsequent calls to retrieve the column types, which are now out of sync with
those on the Sybase Aleri Streaming Platform.

The design of the Pub/Sub API also limits the use of exceptions generated by API routines. A method of
the API usually returns a non-zero error code if the method fails. Otherwise, a method returns zero. This
limitation keeps the API consistent across the set of different languages in which it is implemented.

2.3. Subscribing to the Sybase Aleri Streaming Platform Using Java

To use a Subscription to the Sybase Aleri Streaming Platform, the client application has to do the fol-
lowing:

1. Set up Sp objects using SpFactory.init.

2. Connect to the Sybase Aleri Streaming Platform.

status = SpFactory.createPlatformStatus()

sp = SpFactory.createPlatform(params, status)

3. Create subscriptions.

sub = sp.createSubscription()

observer = new ClientSpObserver()

4. Associate a stream by name with the observer.

handle = sub.addStreamObserver("stream1", observer);

5. Begin handling events.

sub.start()

Publish/Subscribe API for Java

5

After this, call Yourclass.notify() for each event on the associated stream, where Your-
Class is the class that implements the SpObservermethod of your Observer object.

6. If necessary, stop event handling and clean up.

sub.stop()

delete sub

delete observer

SpFactory.destroy()

2.3.1. Set Up the Environment for Subscription Using Java

2.3.1.1. Configure the API Classpath

To enable your application to use the Pub/Sub API, list the .jar files mentioned above in the classpath.
You should place the pubsub.properties file somewhere along the classpath so that Java can loc-
ate it when the Pub/Sub API attempts to load it from disk.

For example, if all the files mentioned above are present in the ./lib directory, your Windows® star-
tup script may look like the following example.

Java -cp “./lib/xmlrpc-2.0.jar;./lib/commons-codec-1.1.jar;
./lib/PubSub.jar”

In this example, the pubsub.properties file is also located in the "./lib" directory.

2.3.1.2. Set up Basic SP Objects

Use the spFactory class to instantiate objects that provide the Sybase Aleri Streaming Platform func-
tionality.

The first object that you will “ask” the factory to instantiate is the SpPlatform object.

1. Using the SpFactory, create an SpPlatformParms object which contains all of the Sybase
Aleri Streaming Platform connection information: host name, port number, username, password,
and a boolean “Encrypted” flag indicating whether or not all connections will use encryption. See
the set of overloaded SpFactory.createPlatformParms(...) methods for the set of
available connection/authentication options. They include RSA authentication, as well as the High
Availability configuration option.

SpPlatformParms parms = SpFactory.createPlatformParms(host,
port, user, password, isEncrypted);

2. Use SpFactory to make an SpPlatformStatus object to be used by subsequent SpFactory
method calls to return error information.

SpPlatformStatus status = SpFactory.createPlatformStatus();

Publish/Subscribe API for Java

6

3. Using the SpFactory, create the SpPlatform object. Pass in the SpPlatformParms and
SpPlatformStatus objects previously created.

If the call is successful, the createPlatform() method returns a fully initialized SpPlatform
object. Otherwise, the factory method returns null, and the error code is stored in the SpPlat-
formStatus object that was passed into the createPlatform(...) method. The SpPlat-
formStatus object can be used to retrieve the error code and the corresponding error message
(see the “else” condition in the following code fragment).

SpPlatform sp = SpFactory.createPlatform(parms, status);
if (sp != null)
{

/* Use the new sp object to perform Sybase Aleri Streaming Platform related work
*/
/* See "The SpPlatform object" */

} else {
System.err.println(“Could not create SpPlatform, error = ”

+status.getErrorCode() + “, error msg=”
+status.getErrorMessage());

}

2.3.2. Set Up Java Objects for Subscription

To get stream updates from the Sybase Aleri Streaming Platform, your client application must “ask” the
Sybase Aleri Streaming Platform to deliver them. This process is called "subscribing" or creating a sub-
scription. The Pub/Sub API offers two forms of subscription mechanisms (SpSubscription and
SpSubscriptionProjection) that hide most of the low-level details associated with making a
subscription request to the Gateway I/O process. If the Pub/Sub API is being used in a High Availability
(Hot Spare) configuration, the switchover to the High Availability (Hot Spare) server is also transpar-
ently handled within the API.

The interface is simple:

/**
* This interface must be implemented by all SpObserver
* objects that are to be “notified” of events delivered by
* their corresponding subscription objects.
*/
public interface SpObserver
{
public String getName();

/**
* In the client's implementation of this interface, they would
* simply “case” on the event types (and event ids) that they are
* notified with and handle them appropriately.
*/
public void notify(Collection theEvents);

}

There are two methods that must be implemented within the class.

Publish/Subscribe API for Java

7

1. The getName() method, which returns a string identifier for the SpObserver.

2. The notify(Collection theEvents) method is the link between the underlying Sybase
Aleri Streaming Platform subscription, which the subscription object manages, and the client applic-
ation object, which receives the subscription updates as coming in from the Sybase Aleri Streaming
Platform.

As stream updates flow from the Sybase Aleri Streaming Platform to the subscription object, the sub-
scription object forwards them to the appropriate SpObserver objects, where it is picked up through their
notify(Collection theEvents) implementations.

The subscription's underlying mechanism for stream update acquisition and delivery runs in a separate
thread used to manage the “read-only” Gateway I/O subscription socket. The notify(Collection
theEvents) methods actually execute from within the context of this thread. The client application
programmer must be conscious of this fact and program accordingly.

2.3.2.1. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using Java

Set methods should be called before SpSubscription start() method. You should check SpPlatformStatus
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR_SETTING_EXIT. If you fail to send a maximum buffer size, the status is set to
SP_ERROR_SUB_SETTING_BUFFERSIZE. You should note that getQueueSize() does NOT re-
turn the current queue size until after you've set it with setQueueSize().

Here is an example for Java.

public void setQueueSize(int queue, SpPlatformStatus status);

public int getQueueSize();

public void setExitOnClose(SpPlatformStatus status);

public boolean getExitOnClose();

2.3.2.2. SpSubscription Example

the sp object represents an SpPlatform object instantiated through the SpFact-
ory.createPlatform(...) method in the following example:

>
SpSubscription sub = sp.createSubscription(“MySubscription_1”,

SpSubscriptionCommon.BASE, SpSubscriptionCommon.DELIVER_PARSED,
status); // “status” is an SpPlatformStatus object.

if (sub != null)
{

You must create a concrete class implementing the SpObserver interface. This concrete SpObserv-
er class will be registered with the new SpSubscription object, and “notified” with SpSub-
scriptionEvent objects when the SpSubscription is started.

SpObserver spObserver = new ClientSpObserver(“myObserver”);
String streamName = “input”;

Publish/Subscribe API for Java

8

You must associate the concrete SpObserver object(s) with a stream (or set of streams), and register
the SpObserver with the SpSubscription object. This can be done using either the SpSub-
scription.addStreamObserver(...) or the SpSubscrip-
tion.addStreamsObserver(...) method. It should be done for each SpObserver that is to
be notified with the SpSubscriptions events.

int cookie;
cookie = sub.addStreamObserver(streamName, spObserver);

if (cookie <= 0)
{
// SpObserver registration failed.
return cookie;

}

2.3.2.3. SpSubscriptionProjection Example

The following code sample shows how to create, configure, start and stop an SpSubscriptionProjection
object. The sp object represents an SpPlatform object instantiated previously through the SpFact-
ory.createPlatform(...) method.

String sqlQuery = "select intData, charData from inputstream where \
intData > 100";

SpSubscriptionProjection subProj = sp.createSubscriptionProjection(
“MySubscriptionProj_1”,SpSubscriptionCommon.BASE,
SpSubscriptionCommon.DELIVER_PARSED, sqlQuery,
status); // “status” is an SpPlatformStatus object.

if (subProj != null)
{

/*
* Get the stream projection produced when the Sybase Aleri Streaming Platform
* parsed the sql query, during the createSubscriptionProjection()
* method call.
*/
SpStreamProjection spStreamProj = subProj.getStreamProjection();

/*
* The client programmer must create a concrete
* class implementing the SpObserver interface.
* This concrete SpObserver class will be
* registered with the new SpSubscriptionProjection object,
* and “notified” with SpSubscriptionEvent objects when
* the SpSubscriptionProjection is started.
*
* The SpStreamProjection is passed into the SpObserver
* constructor.
*/
SpObserver spObserver = new ClientSpObserver(“myObserver”, spStreamProj);

/*
* Client programmer must register the SpObserver
* with the SpSubscriptionProjection object. This is done
* using the SpSubscriptionProjection.addObserver(...) method.
* This should be done for each SpObserver the client
* wishes to be notified with the subscription events.
*/
int cookie = subProj.addObserver(spObserver);

if (cookie <= 0)
{
// SpObserver registration failed.
return cookie;

}

/*
* Once the SpObserver(s) are registered with the
* SpSubscriptionProjection, the SpSubscriptionProjection.start()

Publish/Subscribe API for Java

9

* method is called, which starts the subscription process.
* If start up is successful, the SpObservers will be
* notified with updates sent from the Sybase Aleri Streaming Platform.
*/
System.out.println(“Starting the subscription.”);

rc = subProj.start();

if (rc != 0)
{
// The subscription could not be started.
System.out.println(“Subscription could not be started, rc=”+rc);
System.out.println(“Error message =” +

SpUtils.getErrorMessage(rc));

return rc;
}

A subscription created using SpSubscription receives updates for all columns in the stream with
each event. If the subscription was created using SpSubscriptionProjection, an update consists
of only the subset of columns defined by the SQL query. These types of updates are issued only when
there is a change in one of the columns specified in the SQL query.

See Section 5.1, “Aleri SQL Queries and Statements” for some limitations related to the Sybase Aleri
Streaming Platform's handling of On-Demand SQL queries, which also apply in this situation.

2.3.3. Receive/Process Subscription Updates in Java

A collection (vector) of SpSubscriptionEvent objects is delivered to the SpObserver. Each
SpSubscriptionEvent object represents “something” that has happened that the subscription ob-
ject “thought” appropriate to “notify” its registered SpObserver objects. A few examples would in-
clude, an SpSubscriptionEvent sent to the SpObserver if a stream update has arrived, or if the
Sybase Aleri Streaming Platform shuts down.

The notify(...) method that you implement on your SpObserver objects must iterate over the
array of SpSubscriptionEvents. It should check through each SpSubscriptionEvent,
uniquely identified by an EventId, to determine what action should be taken.

2.3.3.1. Parse Sybase Aleri Streaming Platform Data

See the methods described in Section A.1.12, “SpSubscriptionEvent”.

2.3.3.2. Inspect Parsing Errors

There is a “special” event id defined within the SpSubscriptionEvent interface as SpSubscrip-
tionEvent.EVID_PARSING_ERROR. This event is generated when the subscription object's message
parser encounters an error while parsing the message delivered from the Sybase Aleri Streaming Plat-
form.

In case of error, the partial results that are successfully parsed up to the point of error are stored for pos-
sible inspection by the SpObserver. The SpObserver is not obligated to look at them. However, you may
want to use this information for debugging purposes. In the case where this event ID is encountered, and
“partial” results that were parsed before the error was encountered, the getData() method of the
SpSubscriptionEvent passed to the SpObserver notify() method returns a collection
(vector) of two elements.

• The first element of the vector is an object of type SpParserReturnInfo, which has parsing error in-
formation stored in it.

• The second element of the vector is another SpSubscriptionEvent that has an event ID of
SpSubscriptionEvent.PARSED_PARTIAL_FIELD_DATA. The "getData()" method of this
event object returns a collection (vector) of the stream update information that was successfully

Publish/Subscribe API for Java

10

parsed up to the point of error.

A data row is passed as an SpSubscriptionEvent with the ID of SpSubscrip-
tionEvent::EVTYPE_PARSED_DATA or SpSubscrip-
tionEvent::EVTYPE_BINARY_DATA. The choice is based on the subscription type requested. If
it's parsed data, client programs can retrieve data as a vector of SpDataValue objects whereas the
type field in an SpDataValue object specifies the data type which the object contains.

2.3.3.3. Detect Nulls/Stales

There is a class called SpNullConstants that contains a set of special static objects used to represent
null values that are either returned from the Sybase Aleri Streaming Platform (via
SpSubscription/SpSubscriptionProjection objects or sent to the Sybase Aleri Streaming
Platform (via SpPublication objects). There is a null object for each of the different data types supported
by the Sybase Aleri Streaming Platform.

The Sybase Aleri Streaming Platform creates an SpDataValue object for fields that are null. In order
to determine if a value is null, client programs need to examine the type field in the SpDataValue object
which will be set to the constant DataTypes::NULLVALUE. You also need to check the 'null' flag in
the contained dataValue object. For example:

SpDataValue * dv = data->at(i);

if (dv->type == DataTypes::NULLVALUE || dv->dataValue.null) {

}

2.3.3.4. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using Java

The SHINE flag can support a new subscription mode for partial-record updates in Java with SpSub-
scriptionCommon.SHINE.

The following is an example of how to use this mode:

int flags = SpSubscriptionCommon.BASE | SpSubscriptionCommon.SHINE;

SpSubscription sub = sp.createSubscription(name, flags, deliveryType, status);

2.3.3.5. SpSubscription/SpSubscriptionProjection Objects and Null Sybase Aleri Streaming Plat-
form Field Data Values

When a subscription object parses an update message sent from the Sybase Aleri Streaming Platform,
each null field data value returned from the Sybase Aleri Streaming Platform is mapped onto the appro-
priate SpNullConstants object mentioned above. This design decision creates client code that
doesn't care about null field data values or does not explicitly check everywhere for the Java null
keyword. Each null field value is represented by a reference to an SpNullConstant object of the ap-
propriate type. Numeric values default to zero, dateTime values to the epoch, string values to “NULL”.
The client code can simply let the null field values returned from the Sybase Aleri Streaming Platform
fall through the client code without requiring special null logic.

But, a client application that requires special null handling logic can test for the appropriate
SpNullConstant object reference.

SpPublication Objects and Null Platform Field Data Values

The client application program uses an SpPublication object to publish data to the Sybase Aleri Stream-

Publish/Subscribe API for Java

11

ing Platform. The field data sent to the Sybase Aleri Streaming Platform is contained within a collec-
tion/vector of field data objects. To indicate a null field data value for a particular field, the publishing
program can simply set the reference to the field data object to the Java keyword as null —. Alternat-
ively, set the field data reference to the appropriate null value representation within the SpNullCon-
stants object.

Do not use SpNullConstants values when publishing data to the Sybase Aleri Streaming Platform.
Instead, set the object values to java null and use the == operator rather than the .equals function when
comparing to null during subscription.

2.3.4. Change/Stop Subscription in Java

2.3.4.1. Stop Subscription

The stop() method shuts down the subscription mechanism. The stop() method closes the socket
connection and stops the thread that was used to read, parse, and deliver the Sybase Aleri Streaming
Platform updates to the SpObserver objects.

Example:

/*
* Pause waiting for input from the keyboard before
* making the call to stop the subscription.
*/
System.out.println(
“Hit any key on the keyboard to stop the subscription...”);

try
{
BufferedReader in =

new BufferedReader(new InputStreamReader(System.in));
in.readline();

} catch (IOException ex) {
System.out.println(“ERROR reading from standard input, ex = ” + ex);

}

The client programmer can invoke the stop() method in order to terminate the running SpSubscrip-
tion.

System.out.println(“Stopping the subscription.”);

rc = sub.stop();

if (rc != 0)
{
// Problems stopping the subscription.
System.out.println(“Problems stopping the
subscription, rc=”+rc);
System.out.println(“Error message =” +
SpUtils.getErrorMessage(rc));

return rc;
}

}
else
{
// Could not create the subscription object.
rc = status.getErrorCode();
System.out.println(“Could not create subscription object,
error=”+rc);
System.out.println(“Error message =” +
status.getErrorMessage());

Publish/Subscribe API for Java

12

}

2.4. Publishing to the Sybase Aleri Streaming Platform Using Java

The Pub/Sub API gives you the ability to "publish" stream information to the Sybase Aleri Streaming
Platform, using an object of type SpPublication.

Whether your program is publishing static data, such as a reference table, or dynamic data, such as stock
market data, to the Sybase Aleri Streaming Platform, the same mechanism is used.

2.4.1. Create Publication Objects Using Java

2.4.1.1. Create the SpPublication Object

The first step in using the Pub/Sub API to submit “publications” (stream data) to the Sybase Aleri
Streaming Platform is to create an SpPublication object. This is done by using a factory method
provided by the SpPlatform object that must have been instantiated previously, as with the Pub/Sub
API subscription mechanism. The signature of the SpPlatform factory method used to create Sp-
Publication objects is as follows:

SpPublication createPublication(String name, SpPlatformStatus status);

Where:

name is an identifier assigned by the client application to the SpPublication object.

status is an object that returns error code information back from the createPublication(...) factory
method if the SpPublication object creation has failed.

The following example shows how to use the SpPlatform object called sp to create an SpPublic-
ation object:

SpPublication pub = sp.createPublication(“MyPublication_1”, status);

In the above example, status is an SpPlatformStatus object that was created previously with the Sp-
Factory.createPlatformStatus() factory method.

2.4.1.2. Example: Setting Up Objects for Publication in Java

The following is a small example of how the client application programmer can use the cre-
ateStreamDataRecord(...) factory method to create an SpStreamDataRecord object that can be
published to the Sybase Aleri Streaming Platform:

1. The source stream is called “input”, and has the following record layout:

/*
*
*
* int, string, double, date, int, string, double, date
*
*/

Publish/Subscribe API for Java

13

Collection fieldData = new Vector(8);

fieldData.add(new Integer(104));
fieldData.add("do_mystring");
fieldData.add(new Double(5.7));
fieldData.add(new Date(0l));
fieldData.add(new Integer(200));
fieldData.add("do_mystring2");
fieldData.add(new Double(8.9));
fieldData.add(new Date(0l));

SpStream stream = sp.getStream(“input”);

2. Use the createStreamDataRecord(...) factory method to bundle up the stream, fieldData
vector, stream op code, and stream flags into an SpStreamDataRecord object.

SpStreamDataRecord objects are the basic elements of publication. You can publish them one
at a time, or as a group, with or without transaction blocks.

All the SpStreamDataRecords within a group must reference the same stream to publish a
single transaction.

SpStreamDataRecord sdr = SpFactory.createStreamDataRecord(
stream,
fieldData,
SpGatewayConstants.SO_UPSERT,
SpGatewayConstants.SF_NULLFLAG,
status);

if (sdr == null)
{
System.out.println(“Could not createStreamDataRecord, status=” +
status.getErrorCode());

System.out.println(“Error Message:” +
status.getErrorMessage());

return status.getErrorCode();
}

The client application programmer can create a large number of these SpStreamDataRecord ob-
jects, and place them within a common vector. Next, the application programmer can use one of the Sp-
Publication's publishing methods to send all rows of stream data that are stored in the vector to the
Sybase Aleri Streaming Platform, either individually or by using transactions.

2.4.2. Start the Publication Connection Using Java

When an SpPublication object is started, the following events take place:

1. The SpPublication object creates a socket connection to the Sybase Aleri Streaming Platform
Gateway I/O process.

2. The SpPublication object authenticates with the Sybase Aleri Streaming Platform.

3. The start() method returns a zero back to the caller indicating that the SpPublication object was
successfully started. If there is an error, the start() method will return a non-zero error code.

Publish/Subscribe API for Java

14

The SpUtils.getErrorMessage(errorCode) method can be used to get the specific error
message.

Unlike the SpSubscription mechanism, the SpPublication mechanism does not use a separate thread to
manage the publication. Behind the scenes, a socket connection to the Sybase Aleri Streaming Platform
Gateway I/O process is used to transmit and read stream data to the Sybase Aleri Streaming Platform re-
sponse associated with each individual request. Unless otherwise specified in the flag values used when
publishing data, a publication request is synchronous. You can call one of the publish methods and
wait for the Sybase Aleri Streaming Platform to respond with an “ack” or “nak”.

However, there is a special stream flag, SpGatewayConstants.SF_NOACK, that can be used to
make an asynchronous publication request. When this flag is specified, the publish method sends the
request out to the Gateway I/O process and returns control immediately back to the caller, without wait-
ing for a response from the Sybase Aleri Streaming Platform.

2.4.3. Publish a Collection Using Java

The following example shows how to publish a collection/vector of SpStreamDataRecord objects
as a single transaction, where sp is an SpPlatform object that was previously instantiated and
streamInputData is a vector that contains a number of SpStreamDataRecord objects.

/*
* Create the publication object associated with the
* platform.
*/
String name = “testPub_1”;
SpPublication pub = sp.createPublication(name, status);
if (pub == null)
{
System.out.println(“Couldn't create a publication object, status=” +
status);

System.out.println(“Error message = ” + status.getErrorMessage());
return status.getErrorCode();

}

/*
* Start the publication object (this opens up a GW I/O
* socket connection). Don't forget to eventually close
* down the SpSubscription object (via the “stop()” method,
* later on when you are finished using it,
*/

rc = pub.start();

if (rc != 0)
{
System.out.println(“Couldn't start the publication object.”);
System.out.println(“Error message = ” +
SpUtils.getErrorMessage(rc));

return rc;
}

/*
* Publish the collection/vector of SpStreamDataRecord
* objects as one big transaction.
*/

rc = pub.publishTransaction(streamInputData,
SpGatewayConstants.SO_INSERT,
SpGatewayConstants.SF_NULLFLAG,
0);

Publish/Subscribe API for Java

15

if (rc != 0)
{
System.out.println(“Couldn't publish the transaction.”);
System.out.println(“Error message = ” +
SpUtils.getErrorMessage(rc));

return rc;
}

2.4.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using Java

Set methods should be called before SpPublication start() method. SpPlatformStatus should be checked
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR_SETTING_EXIT. If you fail to send exit-on-timeout, the status is set to
SP_ERROR_PUB_ERROR_SETTING_EXIT.

If setFinalizer and setExitOnTimeout are called, the second call returns
SP_ERROR_PUB_EXIT_ALREADYSET (setFinalizer) or SP_ERROR_PUB_ACTION_ALREADYSET
(setExitOnTimeout).

The following is an example using Java:

public void setExitOnTimeout(int timeout, SpPlatformStatus status);

public int getExitOnTimeout();

public void setExitOnClose(SpPlatformStatus status);

public boolean getExitOnClose();

2.4.5. Handling Stale Data

When a publishing source stops sending data to the Sybase Aleri Streaming Platform, the previously
published data is retained. Depending on how long it has been since the last update, you may not want
this data to be used as if it were current. The publish/subscribe APIs include two functions to to enable
publishers to handle this data.

The setFinalizer() function sets a timeout value (in milliseconds) and an SQL statement action. If
the Sybase Aleri Streaming Platform receives no data on this connection within the specified time, the
SQL statement is run. This SQL statement can perform any of the following actions:

• Delete previously published data.

• Mark previously published data as stale (via a field for that purpose in the data).

• Perform some other determined action on the source streams (and, consequently, the derived streams
from these source streams).

In the following example, if the data is not updated within 1000 milliseconds, it is deleted.

setFinalizer(1000, "delete from Positions", status)

Publish/Subscribe API for Java

16

The sendHeartbeat() function sends a keep-alive message to the Sybase Aleri Streaming Platform.
This function can be used to keep the connection alive and prevent the SQL statement from running, if
setFinalizer() has previously been called. As the following example shows, the sendHeart-
beat() function takes no arguments.

sendHeartbeat()

2.4.6. Publication/Subscription in a High Availability (Hot Spare) Configuration

The Sybase Aleri Streaming Platform can be started with a dual server configuration, in which one serv-
er is the primary server and the other is considered the “Hot Spare” or secondary server. See the Admin-
istrators Guide for more information on how to start a High Availability/Hot Spare server configuration.
If the Pub/Sub API is made aware of the High Availability Streaming Processor configuration, it will
switch over to the secondary server if the primary server goes down. If this happens, any active SpSub-
scription, SpSubscriptionProjection, and SpPublication objects have to be re-
established on the secondary server.

The Pub/Sub API is made aware of the High Availability configuration through the configuration con-
tents of the SpPlatformParms object that was passed into SpFactory.createPlatform().
Refer to the set of overloaded SpFactory.createPlatformParms(...) methods, and the Sp-
PlatformParms object for High Availability configuration detail.

2.4.6.1. Subscription Mechanisms in a High Availability Configuration

When the primary server goes down, the underlying subscription thread receives an exception on the
Gateway I/O socket connection used to receive the stream updates being delivered from the primary
server. When this occurs, the Pub/Sub API recognizes that there is a High Availability (Hot Spare) con-
figuration and attempts to connect to the secondary server and re-establish the subscription. After con-
necting to the secondary server, the Pub/Sub API waits for the secondary server to internally change its
state to that of a primary server. Afterward, the subscriptions are re-established. During the switch over
to the secondary server, the subscription object delivers a succession of events to the SpObserver ob-
jects listening for SpSubscriptionEvents. Typically, these events are:

• SpSubscriptionEvent.EVID_COMMUNICATOR_HALTED

This event will be delivered to the SpObserver when the exception is received on the socket re-
ceiving the subscription messages from the primary Sybase Aleri Streaming Platform server.

• SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_INITIATED

This event will be delivered to the SpObserver when the Pub/Sub API recognizes that a connection
attempt should be made to the High Availability server.

• SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

This event is delivered to the SpObserver when the connection to the Hot Spare server succeeds.

• SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_FAILED

This event is delivered to the SpObserver when the connection to the Hot Spare server fails.

If the switch over to the High Availability (Hot Spare) server succeeds, the subscription(s) will be re-
established using the same delivery flag values that were originally used when the subscription(s) were
established against the primary server. This means that if the subscription originally requested the BASE

Publish/Subscribe API for Java

17

snapshot of the stream, the new subscription now going against the Hot Spare server, will request the
BASE snapshot of the stream as well. It is up to you to determine what needs to be done with the con-
tents of the snapshot received from the High Availability (Hot Spare) server.

When there is a successful switch over to the High Availability (Hot Spare) machine, the SpPlatform
object performs some internal bookkeeping to ensure that the SpPlatform.getHost() and Sp-
Platform.getPort() methods will return the host name and port number of the new primary serv-
er.

2.4.6.2. Publication Mechanisms in a High Availability Configuration

When the primary server goes down during an attempt by the client application to send a publication re-
quest, the SpPublication object will detect this and attempt to perform a switch over to the Hot
Spare machine. If the switchover is successful, the publication object will then attempt to re-send the
data to the new primary server. If the publication can not take place, a non-zero error code will be re-
turned to the caller indicating the problem.

You should treat the secondary server (Hot Spare) within a High Availability Sybase Aleri Streaming
Platform configuration as a passive server. The program should never logon and send data to a second-
ary server while the primary server is alive and well. It is the responsibility of the running High Availab-
ility Sybase Aleri Streaming Platform configuration to manage both the primary and secondary servers
appropriately. If the primary server goes down in a High Availability configuration, the secondary server
will take over and become the new primary server. Once the secondary server becomes the primary
server, data can then be published to the new primary server. Remember, the Pub/Sub API will not pub-
lish any data until the Hot Spare server switches its state to primary.

2.5. Record/Playback using Java

In order to record data from the Sybase Aleri Streaming Platform, a client program needs to create and
configure an SpPlatform object in the same way you would for subscribing or publishing. Once an Sp-
Platform object has been created, you create an SpRecorder object using the factory method createR-
ecorder(...). If SpRecorder is successfully created, the program calls the start method. This spawns a
background thread which subscribes to the configured streams and records all events for those streams.
Recording will stop and the spawned thread terminate once the configured number of records have been
processed or if the calling program calls stop(). Recording can be monitored by calling the getRecord-
Count() function which returns the number of records processed so far.

// Initialize SpFactory ...
// Create SpStatus and SpParms objects ...
// Create platform object ...

// Create recorder. It needs the following parameters to run
// recorder name (String) : a name to identify the instance of the recording object
// recorder file (String) : name of the file to store the recorded information
// streams : a java.util.Collection, containing names of streams to record events for
// flags (int) : recording options (encrypted/RSA/get base data)
// max records : maximum number of data records to record
// status : returns error messages if any

// init recorder parameters - recorder name, filename, streams, etc

SpRecorder recorder = spPlatform.createRecorder(recName, recFile, streams, flags, maxRecords, status);

if (null == recorder) {
System.out.println("Error starting recorder - " + status->getErrorMessage());
// cleanup ... and exit

} else
recorder.start();

// Wait, monitor, etc ...

// To stop recording
recorder.stop();

Publish/Subscribe API for Java

18

To playback recorded data, a client program creates an SpPlayback object using the factory method
in SpPlatform. Among particular interest is the 'scale' parameter. This is a double that can be used to
scale the rate of playback as a factor of the original recorded rate (for example, twice as fast or half as
slow). Values -1 to 1 have no effect; data is played back at the rate it was recorded. A value greater than
1 speeds up playback by that factor (for example, a value of 2 doubles the playback speed). A value less
than -1 slows down playback by that factor (for example, a value of -3 will slow down playback by a
factor of 3). The scale can be changed dynamically while playback is in progress.

// Initialize SpFactory ...
// Create SpStatus and SpParms objects ...
// Create platform object ...

// Create playback. It needs the following parameters to run
// playback name (String) : a name to identify the instance of the playback object
// playback file (String) : name of the file containing previously recorded data
// scale (double) : allows to scale the playback rate
// max records : maximum number of data records to playback
// status : returns error messages if any

// init playback parameters - recorder name, filename, streams, etc

SpPlayback playback = spPlatform.createPlayback(playName, playFile, scale, maxRecords, status);

if (null == playback) {
System.out.println("Error starting recorder - " + status->getErrorMessage());
// cleanup ... and exit

} else {
playback.setSendUpsert(true); // optionally enable converting opcodes to UPSERT
playback.start();

}

// Wait, monitor, etc ...

// To stop recording
playback.stop();

Publish/Subscribe API for Java

19

Chapter 3. Publish/Subscribe API for C++
3.1. Overview/General Information

This chapter explains how to use the Publish and Subscribe (Pub/Sub) C++ API to create client applica-
tions that communicate with the Sybase Aleri Streaming Platform.

Building client applications with Sybase's C++ Pub/Sub API requires third party tools.

• Certified with GNU g++ compiler version 4.2.1 on Linux® and Solaris®.

• Certified with Microsoft® Visual C++® compiler 2005 on Windows.

• The example makefiles for Linux and Solaris require GNU gmake version 3.80 in addition to the spe-
cified compiler.

3.1.1. Overview of SP C++ Utilities

Sybase provides files that support the Pub/Sub API for C++ in the following directories:

• ./include/PubSub/ - This directory (located in the distribution package) contains the set of C++
header interface files to be used by a client application developer for writing programs to either pub-
lish or subscribe from the Sybase Aleri Streaming Platform.

• ./include/PubSub/impl/ - This directory contains the implementation header files for the Sy-
base Aleri Streaming Platform C++ Pub/Sub API.

You should not modify these files.

The following support files are also provided:

• ./lib/libPubSub.a - This is the library that you should link to when developing programs
against the Sybase Aleri Streaming Platform. It contains the implementations of the Pub/Sub inter-
faces. The library is located within the "lib" directory provided in the distribution.

• ./examples/clients/pubsub/cpp - This directory contains three examples:

• pubexample.cpp demonstrates how to publish data to a specified stream to the Sybase Aleri
Streaming Platform.

• subexample.cpp shows how to subscribe for a specified stream to the Sybase Aleri Streaming
Platform.

• subprojexample.cpp explains how to subscribe for a specified stream with projection (using
an SQL statement) to the Sybase Aleri Streaming Platform.

This directory also contains a Makefile that builds the three examples and demonstrates how to
compile and link C++ programs that use the Pub/Sub C++ API.

The Pub/Sub library includes code for the various authentication mechanisms supported by Sybase
Aleri Streaming Platform, including Kerberos®. It requires that the SASL dynamic libraries
shipped with the Sybase Aleri Streaming Platform be present at runtime. These libraries are located
in the $PLATFORM_HOME/lib folder.

20

The pubexample.cpp file, which demonstrates how to publish source stream data to the Sybase
Aleri Streaming Platform using transaction blocks. The files subexample.cpp and
SubExampleSpObserver.cpp demonstrate how to subscribe to a stream running on the Sy-
base Aleri Streaming Platform. It is highly recommended that you look at these examples. Al-
though small, it can be used as “boiler plate” code to create your own Pub/Sub client applications.

Visual Studio® 8.0 project and solution files have been included as part of the Windows package.
You can build these examples using the Aleri Studio or typing nmake on the command line in the
folder containing these examples. The nmake and devenv.com executables must be in the path as
well.

3.1.2. Design Decisions for Publication/Subscription Using C++

The design of the Pub/Sub API provides a set of interfaces (or object "types") that shows all of the Sy-
base Aleri Streaming Platform functionality while hiding implementation details. It is strongly recom-
mended that you do not use inheritance to extend the implementation classes found in the Pub/Sub API
code base. Sybase software has the ability to change the API's underlying implementation in the future
without breaking client code.

To achieve certain encapsulation goals, most of the implementation classes found in the Pub/Sub API
code base have private constructors; you are provided with “Factory” methods for object instantiation.
For example, the code for creating a new SpPlatform object would not be new SpPlat-
form(...), but SpFactory::createPlatform(...).

Most objects in the Pub/Sub API support only get methods, providing a degree of immutability. Com-
plete immutability would require all get methods to return “copies” of internal vectors/arrays because
vectors and arrays are mutable. However, this method is quite inefficient, so Sybase software is designed
not to generate or return “copies” to the caller.

You must maintain order and integrity for the state of these “read-only” data structures. For example,
when requesting the list of column types for a stream definition, the program must treat it as a
“read-only” list and must not modify elements within the list. If the program does modify the list, the ap-
plication encounters difficulties when it makes subsequent calls to retrieve the column types, because its
out of sync with those on the Sybase Aleri Streaming Platform.

The design of the Pub/Sub API reflects the decision to avoid using exceptions generated by API
routines. Each method of the API usually returns a non-zero error code if it fails. Otherwise, a method
returns a zero to indicate success. This design choice keeps the API consistent across different lan-
guages.

When a Pub/Sub API method returns a non-zero return code, you can call the
SpUtils.getErrorMessage() method (passing it the non-zero return code) to get the specific er-
ror message text. Those API methods which take an SpStatus parameter may use Sp-
Status::getErrorCode() and/or SpStatus::getErrorMessage() to retrieve respect-
ively, the error code and error message.

Most classes within the Pub/Sub API have the prefix "Sp", which stands for “Streaming Processor.” For
example, SpFactory, SpPlatform, SpSubscription, SpPublication and SpStatus. The
Pub/Sub API also makes use of a C++ namespace (aleri_pubsub) to further protect the class names
from collision with application names.

3.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription

Set methods should be called before the SpSubscription->start() method. You should check SpPlatform-
Status after the start() for any possible problem. If you fail to send exit-on-close, the status is is set to
SP_ERROR_SETTING_EXIT. If you fail to send a maximum buffer size, the status is set to

Publish/Subscribe API for C++

21

SP_ERROR_SUB_SETTING_BUFFERSIZE. You should note that getQueueSize() does NOT re-
turn the current queue size until after you've set it with setQueueSize().

Here is an example for C++.

void setQueueSize(const uint32_t queue, SpPlatformStatus * status);

int getQueueSize();

void setExitOnClose(SpPlatformStatus * status);

bool getExitOnClose();

3.1.4. C++ Usage Restrictions

Some of the third party libraries used by the Pub/Sub API impose restrictions.

• The ptypes library is initialized to ignore the SIGPIPE signal.

• The xmlrpc library establishes its own signal handler for SIGCHLD.

Pub/Sub C++ clients should not attempt use these signals. Attempting to use these signals may interfere
with the assumptions made by these libraries, resulting in incorrect behavior.

3.2. Subscribing to the Sybase Aleri Streaming Platform Using C++

3.2.1. Set Up Objects for SP Subscription in C++

The first thing the client application must do is initialize the SpFactory class and instantiate the Sp-
Platform object.

3.2.1.1. Create an SpPlatform Object

After the SpFactory class is initialized, the client application calls on this object to instantiate other
objects that provide the Sybase Aleri Streaming Platform functionality.

The next object to instantiate is the SpPlatform object.

The following code example shows how to use the SpFactory class to initialize the factory and envir-
onment and then to create the SpPlatform object.

1. The SpFactory class must be initialized before the client application starts any threads. The static
function init() does this as follows:

int rc = SpFactory::init();

The SpFactory::init() method sets up the XMLRPC environment. The XMLRPC imple-
mentation used by the Pub/Sub C++ API requires that the environment be initialized prior to starting
up any threads. Therefore, make sure the SpFactory::init() method is called immediately
when the client application first starts up. Later, usually upon exiting the program, a matching Sp-
Factory::dispose() method should be called to “tear-down” the XMLRPC environment.

If the return from this call is a non-zero error code, the initialization has failed. If this happens, the

Publish/Subscribe API for C++

22

client application can call SpUtils::getErrorMessage(int errorCode) to get the text
describing the error.

2. Once the SpFactory has been initialized, the SpFactory::createPlatformParms meth-
od should be called. This factory method creates an object that encapsulates all of the Sybase Aleri
Streaming Platform connection information, including the Sybase Aleri Streaming Platform host
name, port number, username, password, and encryption usage.

See the set of overloaded SpFactory::createPlatformParms(...) methods for the set of
available connection/authentication options. They include RSA authentication, as well as the High
Availability configuration option.

Example:

SpPlatformParms *parms = SpFactory::createPlatformParms(
host, port, user, password, isEncrypted);

3. Use SpFactory::createSpPlatformStatus() to create an object for subsequent Sp-
Factory method calls. The purpose of this object is communication of error status from the Sp-
Factory class.

SpPlatformStatus *status = SpFactory::createPlatformStatus();

4. Call the SpFactory to create the SpPlatform object, passing in the SpPlatformParms and
SpPlatformStatus objects previously created.

If the SpFactory::createPlatform(parms, status) call is successful, a fully initial-
ized SpPlatform object is returned to the client programmer. Otherwise, the factory method will
return NULL, and an error code will be stored in the SpPlatformStatus object that was passed
into the createPlatform(...) method. The SpPlatformStatus object can be used to re-
trieve the error code, using status->getErrorCode() or the error text usingstatus-
>getErrorMessage(). Observe the "else" condition in the following code fragment:

SpPlatform *sp = SpFactory::createPlatform(parms, status);
if (0 != sp) {

/* Use the new sp object for Platform related work */
/* See "The SpPlatform object" */

} else {
printf("Could not create SpPlatform, eNum = %d,eMsg= %s\n",
status->getErrorCode(),
(char *)status->getErrorMessage().c_str());

}

3.2.2. Setup and Start a Subscription in C++

To get stream updates delivered from the Sybase Aleri Streaming Platform to your client application, the
program must “ask” the Sybase Aleri Streaming Platform to deliver them. This process is called
“subscribing” or creating a subscription. The Pub/Sub API offers two forms of subscription mechanisms
(SpSubscription and SpSubscriptionProjection) that hide most of the low-level details
associated with making a subscription request to the Sybase Aleri Streaming Platform's Gateway Server
module. If the Pub/Sub API is used in a High Availability (Hot Spare) configuration, the switch over to
the Hot Spare server is handled transparently by the API.

Publish/Subscribe API for C++

23

The Pub/Sub API subscription mechanism is based on the “Observer” Design Pattern. When using the
Pub/Sub API subscription mechanism, the client application program is responsible for creating a class
that implements the SpObserver interface. This is a simple interface with a noti-
fy(std::vector<SpSubscriptionEvent *> *events) method in it. The subscription
mechanism calls the notify method to deliver stream update and system event information to the cli-
ent application program's SpObserver object.

3.2.2.1. Initiate a Subscription Using SpSubscriptionProjection

The client application program must create its own SpObserver objects, which are notified by the
SpSubscriptionProjection with the updates arriving from the Sybase Aleri Streaming Plat-
form. The client application program creates SpObserver objects by implementing the SpObserver
interface. Refer to Section 3.2.2.2, “Implement the SpObserver Interface” for more information. The
addObserver(SpObserver theObserver) method is used to register the SpObserver with
the SpSubscriptionProjection object. As mentioned previously, you would construct the
SpObserver using the SpStreamProjection that was returned by the SpSubscriptionPro-
jection.getStreamProjection() method.

The addObserver(...) call returns an integer value that represents a “handle” to the registered
SpObserver object. Later on, the client application programmer can use the handle to remove the
SpObserver.

The removeObserver(int theHandle) method is used to remove the SpObserver from the
SpSubscriptionProjection's delivery mechanism.

See Section 5.1, “Aleri SQL Queries and Statements” for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries.

3.2.2.2. Implement the SpObserver Interface

The SpObserver interface must be implemented in the client application if it receive stream updates
from the Sybase Aleri Streaming Platform through the Pub/Sub API subscription mechanism. The inter-
face is simple:

std::string getName();

void notify(std::vector<SpSubscriptionEvent *> *theEvents);

There are two methods that must be implemented within the class:

• The getName() method is placed in the interface to retrieve the name of the SpObserver, which
is similar to the case of the SpSubscription objects getName() method.

• The notify(std::vector <SpSubscriptionEvent *> *theEvents) method is the
link between the underlying Sybase Aleri Streaming Platform subscription, which the SpSub-
scription/SpSubscriptionProjection object manages, and the client applications object,
which receives the subscription updates as they are delivered from the Sybase Aleri Streaming Plat-
form.

When an update is delivered from the Sybase Aleri Streaming Platform to the
SpSubscription/SpSubscriptionProjection object, that object determines which of the
pre-registered SpObserver objects are interested in the data and forwards it to them. This data is then
picked up by the SpObserver through the notify(std::vector<SpSubscriptionEvent
*> *theEvents) implementation.

Publish/Subscribe API for C++

24

The subscription's stream update acquisition and delivery mechanism run in a separate thread which
manages the “read-only” Gateway I/O subscription socket. The noti-
fy(std::vector<SpSubscriptionEvent *> *theEvents) methods actually execute from
within the context of this thread. The client application programmer must be conscious of this fact and
program accordingly.

3.2.2.3. Start the Subscription Using SpSubscripion

The following is a portion of code that shows how to create, configure and start an SpSubscription
object. In the following example, the sp object represents an SpPlatform object instantiated previ-
ously through the SpFactory::createPlatform(...) method.

SpSubscription *sub = sp->createSubscription("MySubscription_1",
SpSubConst::BASE,
SpSubConst::DELIVER_PARSED,
status); // “status” is a pointer to an SpPlatformStatus object.

You must create a concrete class implementing the SpObserver interface. This concrete SpObserv-
er class will be registered with the new SpSubscription object, and notified with SpSubscrip-
tionEvent objects when the SpSubscription is started.

if (sub != NULL)
{

SpObserver *spObserver=new ClientSpObserver(“myObserver”);
constant char * streamName = “input”;
int handle;

You must associate the concrete SpObserver object(s) with a stream (or set of streams), and register
the SpObserver with the SpSubscription object. This can be done using either of the following
methods:

• SpSubscription->addStreamObserver(...)

• SpSubscription->addStreamsObserver(...)

This should be done for each SpObserver the client wishes to be notified with SpSubscriptions
events.

handle = sub->addStreamObserver(streamName, spObserver);

if (handle <= 0)
{
// SpObserver registration failed.
return handle;

}

Once the SpObserver(s) are registered with the SpSubscription, the SpSubscription-
>start() method is called to start the subscription process. If it's successful, the appropriate SpOb-
servers will be notified with updates sent from the Sybase Aleri Streaming Platform.

Publish/Subscribe API for C++

25

>
printf(“Starting the subscription.\n”);

rc = sub->start();

if (rc != 0)
{
// The subscription could not be started.
printf(“Subscription could not be started, rc=%d\n”,rc);

printf(“Error message =%s\n”, SpUtils::getErrorMessage(rc));
return rc;

}

At this point, if there is data for the specified stream located on the Sybase Aleri Streaming Platform, the
registered SpObserver objects will start receiving updates within the running context of the subscrip-
tion thread.

A subscription created using SpSubscription receives updates for all columns in the stream with
each event. If the subscription was created using SpSubscriptionProjection, an update consists
of only the subset of columns defined by the SQL query. These types of updates are issued only when
there is a change in one of the columns specified in the SQL query.

3.2.2.4. Start the Subscription Using SpSubscriptionProjection

The following code example shows how to create, configure, start and stop an SpSubscription-
Projection object. In this example, the “sp” object represents an SpPlatform object instantiated
previously through the SpFactory::createPlatform(...) method.

status is a pointer to an SpPlatformStatus object.

const char * sqlQuery
"select intData, charData from inputstream where intData > 100";

SpSubscriptionProjection *subProj = sp->createSubscriptionProjection(
“MySubscriptionProjection_1”,
SpSubConst::BASE,
SpSubConst::DELIVER_PARSED,
sqlQuery,
status);

if (subProj != 0)
{

SpStreamProjection *streamProj = subProj->getStreamProjection();

SpObserver *spObserver = new ClientSpObserver(“myObserver”, streamProj);

int handle = subProj->addObserver(spObserver);

if (cookie <= 0)
{

// SpObserver registration failed.
return handle;

}

printf(“Starting the subscription.\n”);

rc = subProj->start();

if (rc != 0)
{

// The subscription could not be started.

Publish/Subscribe API for C++

26

printf(“Subscription could not be started, rc=%d\n”,rc);

println(“Error message =%s\n”,
SpUtils::getErrorMessage(rc));

return rc;
}

}
else
{

// Could not create the subscription object.
rc = status->getErrorCode();

printf(“Could not create subscription object, error=%d\n”,rc);

printf(“Error message =%s\n”,
status->getErrorMessage());

}

printf(“Stopping the subscription.\n”);

rc = sub->stop();

if (rc != 0)
{

// Problems stopping the subscription.
printf (“Problems stopping the subscription, rc=%d\n”,rc);

printf(“Error message =%s\n”,
SpUtils::getErrorMessage(rc));

return rc;
}

After a successful createSubscriptionProjection() call, the program gets back the schema
information as a result of the projection.

The Client program must create a concrete class implementing the SpObserver interface. This con-
crete SpObserver class will be registered with the new SpSubscriptionProjection object,
and “notified” with SpSubscriptionEvent objects when the SpSubscriptionProjection is
started.

The stream projection schema information is passed into the observer so it will know how to process the
update events.

See Section 5.1, “Aleri SQL Queries and Statements” for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries.

The client application must register the concrete SpObserver object(s) with the SpSubscrip-
tionProjection object, using the addObserver(...) method. This should be done for each
SpObserver the client wants to receive subscription events.

Once the SpObserver(s) are registered with the SpSubscriptionProjection, the SpSub-
scriptionProjection->start() method is called, which starts the subscription process. If it's
successful, the appropriate SpObservers will be notified with updates sent from the Sybase Aleri
Streaming Platform.

At this point, if there is data for the specified stream located on the Sybase Aleri Streaming Platform, the
registered SpObserver objects will start receiving updates within the running context of the subscrip-
tion thread.

The client program can invoke the stop() method in order to terminate the running SpSubscrip-
tion.

3.2.3. Receive/Process Subscription Updates Using C++

Publish/Subscribe API for C++

27

3.2.3.1. Delivery to an SpObserver Notify(...) Method Implementation

In a running subscription, a vector of SpSubscriptionEvent objects is delivered to the SpOb-
server. Each SpSubscriptionEvent object represents a state change to the
SpSubscription/SpSubscriptionProjection object; the Subscription object distrib-
utes these SubscriptionEvents to the appropriate SpObserver objects.

For example, an SpSubscriptionEvent is sent to the SpObserver if a stream update has arrived,
or if the Sybase Aleri Streaming Platform is shut down.

The notify(...) method that you implement in the SpObserver object must iterate over the vec-
tor of SpSubscriptionEvents (each one uniquely identified by an EventId) to determine the ac-
tion to be taken.

3.2.3.2. Inspect the Subscription Parsing Errors within the SpObserver

There is a “special” event id defined within the SpSubscriptionEvent interface as SpSub-
scriptionEvent::EVID_PARSING_ERROR. This event is generated when the SpSubscrip-
tion object's message parser encounters an error in the middle of parsing the message delivered from
the Sybase Aleri Streaming Platform.

In this case, the partial results that are successfully parsed up to the point of error are stored for possible
inspection by the SpObserver. The SpObserver is not obligated to look at them. However, if you
want to use this information for debugging purposes, it is still stored in the event.

When this event ID is encountered, and there are partial results that were parsed before the error was en-
countered, the getData() method of the SpSubscriptionEvent passed to the SpObserver
notify() method will return a vector of two elements:

• An object of type SpParserReturnInfo, which has parsing error information stored in it.

• Another SpSubscriptionEvent object whose event ID is SpSubscrip-
tionEvent.PARSED_PARTIAL_FIELD_DATA. The getData() method of this event object
returns a vector of the stream update information that was successfully parsed up to the point of error.

3.2.3.3. SHINE Flag Supports Subscription Mode For Partial-Record Updates

The SHINE flag can support a new subscription mode for partial-record updates in C++ with SpSub-
Const::SHINE

The following is an example of how to use this mode:

SpSubscription *sub = sp->createSubscription(subscriptionName,
SpSubConst::BASE|SpSubConst::SHINE, SpSubConst::DELIVER_PARSED, spStatus);

3.2.4. Change/Stop Subscription Using C++

3.2.4.1. Stop Subscription

The client programmer may invoke the stop() method to terminate the running SpSubscription. Once
the start() method has been invoked, the asynchronous arrival of events initiates a notify()
method which runs on a separate thread. Be careful not to invoke the stop() method from the noti-
fy() callback.

printf(“Stopping the subscription.\n”);

Publish/Subscribe API for C++

28

rc = sub->stop();

if (rc != 0)
{
// Problems stopping the subscription.
printf (“Problems stopping the subscription, rc=%d\n”,rc);

printf(“Error message =%s\n”,
SpUtils::getErrorMessage(rc));

return rc;
}

Before stopping entirely, the client application should destroy all the Subscription objects it created, to
avoid memory leaks.

3.3. Publishing to the Sybase Aleri Streaming Platform Using C++

The Pub/Sub API gives you the ability to publish stream information to the Sybase Aleri Streaming Plat-
form. This is accomplished by using an object of type SpPublication.

Note:

Whether the client application is publishing static data (such as a reference table) or dynamic
data (such as market feed data) to the Sybase Aleri Streaming Platform, the same mechanism is
used.

3.3.1. Create Objects for Publication Using C++

3.3.1.1. Create an SpPublication Object

The first step in setting up a client application that publishes to the Sybase Aleri Streaming Platform us-
ing the Pub/Sub API is creating an SpPublication object. This is done by a factory method
provided by the SpPlatform object that must have been instantiated previously as with the Pub/Sub
API subscription mechanism. The signature of the SpPlatform factory method creates SpPublica-
tion objects as follows:

SpPublication *createPublication(const char * name,
SpPlatformStatus *status);

Details:

• const char *name is an identifier that you intend to assign to the SpPublication object being cre-
ated.

• SpPlatformStatus *status is an object that returns error information back from the cre-
atePublication(...) factory method if an error condition is detected during the creation of an
SpPublication object.

The following example shows how to use an instance of SpPlatform named sp to create an SpPub-
lication object:

Publish/Subscribe API for C++

29

SpPublication *pub =
sp->createPublication(“MyPublication_1”, status);

In the above example, status is a pointer to a SpPlatformStatus object that was created previ-
ously with the SpFactory::createPlatformStatus() factory method.

The SpPublication object is not re-entrant. If multiple threads are going to publish to the Streaming
Processor, each thread should use a different SpPublication object. Each of these SpPublica-
tion objects should have its own socket connection to the Streaming Processor.

3.3.1.2. Create SpStreamDataRecord Objects

For consistency within the Pub/Sub API, an SpStreamDataRecord object is created using an Sp-
Factory method with the following method signature:

SpStreamDataRecord *SpFactory::createStreamDataRecord
(
SpStream *stream,
std::vector<spDataValue *> *fieldData,
opCode,
flags,
SpPlatformStatus *status

);

Details:

• SpStream *stream refers to the SpStream object with which this new SpStreamDataRe-
cord object will be associated. You can get this value through one of the SpPlatform methods,
such as getStream(const char *streamName) or getStream(int streamId).

• std::vector<SpDataValue> *fieldData is a pointer to a vector of pointers to SpData-
Value objects. Each object entry in the vector matches the field data type indicated in the stream
definition (specified in the SpStream parameter).

All of the SpStreamDataRecord's key fields must be specified with non-null values within the
fieldData vector. In addition, the types of the objects that are located in the fieldData vector
must match those in the SpStream definition.

Your program can identify the key fields using the getKeyColumns() or getKeyColumn-
Vector() functions, or by inspecting each column using isKeyColumn().

• int opCode is the stream operation code that is associated with this SpStreamDataRecord.

The opcode tells the Sybase Aleri Streaming Platform how to apply this record to the source stream.

• int flags is the flag settings value that is associated with this SpStreamDataRecord. Refer to
Section B.2.3, “Stream Flag Values” for more information about stream flag values.

Several of the publishing methods allow the client application program to override the stream opcode
and/or stream flag settings.

• SpPlatformStatus *status is a pointer to an object that returns error information from the
createStreamDataRecord(...) factory method if the SpStreamDataRecord object can-
not be created.

Publish/Subscribe API for C++

30

The following code example shows how the client application program can use the createStream-
DataRecord(...) factory method to create an SpStreamDataRecord object that can be pub-
lished to the Sybase Aleri Streaming Platform. Refer to the pubexample.cpp file to see how to build
a record set that can be published to the Sybase Aleri Streaming Platform as a transaction.

/*
* Build up a row, for a source stream called “input”, that
* has the following record layout:
*
* int, long, string, double, date, money, timestamp
*
*/

// Build the field data list for the stream row.
std::vector<SpDataValue *> *fieldData =

new std::vector<SpDataValue *>;

/* build an int32 field */
SpDataValue *ptrDataValue = new SpDataValue();
ptrDataValue->dataValue.val.int32v = 100;
ptrDataValue->type = DataTypes::INT32;
ptrDataValue->dataValue.null = false;
fieldData->push_back(ptrDataValue);

/* build an int64 field */
ptrDataValue = new SpDataValue();
ptrDataValue->dataValue.val.int64v = 1001;
ptrDataValue->type = DataTypes::INT64;
ptrDataValue->dataValue.null = false;
fieldData->push_back(ptrDataValue);

/* build a string field */
ptrDataValue = new SpDataValue();
char *theString = new char [20];
strcpy(theString, “hello”);
ptrDataValue->dataValue.val.stringv = theString;
ptrDataValue->type = DataTypes::STRING;
ptrDataValue->dataValue.null = false;
fieldData->push_back(ptrDataValue);

/* build a double field */
ptrDataValue = new SpDataValue();
ptrDataValue->dataValue.val.doublev = 3.14;
ptrDataValue->type = DataTypes::DOUBLE;
ptrDataValue->dataValue.null = false;
fieldData->push_back(ptrDataValue);

/* build a date field */
time_t timeData = time(0);
ptrDataValue = new SpDataValue();
ptrDataValue->dataValue.val.datev = timeData;
ptrDataValue->type = DataTypes::DATE;
ptrDataValue->dataValue.null = false;
fieldData->push_back(ptrDataValue);

/* build a money field
* NOTE: Money has a scale value of
* n = platform->getMoneyPrecision() decimal places
* where 'platform' is a pointer to an SpPlatform object
* Below, you "know" the scale factor is the default (10,000)
* so you represent 1000 with the value 1000 * 10,000 = 10,000,000.
*/
DataType::money_t moneyData = 10000000;
ptrDataValue = new SpDataValue();
ptrDataValue->dataValue.val.moneyv = moneyData;
ptrDataValue->type = DataTypes::MONEY;
ptrDataValue->dataValue.null = false;
fieldData->push_back(ptrDataValue);

Publish/Subscribe API for C++

31

/* build a timestamp field
* NOTE: The Timestamp datatype
* is basically the same as a Date datatype except that it is capable of
* holding milliseconds.
*/
DataTypes::timestampval_t timeStampData =

(DataTypes::timestampval_t) time(0)* 1000;
ptrDataValue = new SpDataValue();
ptrDataValue->dataValue.val.timestampv = timeStampData;
ptrDataValue->type = DataTypes::TIMESTAMP;
dataValue.null = false;
fieldData->push_back(ptrDataValue);

// You need to have a pointer to the stream for the
// row that is building up.
SpStream *stream = sp->getStream(“input”);

/*
* Use the createStreamDataRecord(...) factory method to
* bundle up the stream, fieldData vector, stream opcode,
* and stream flags into an SpStreamDataRecord object.
*
* The SpStreamDataRecord object is the basic
* unit of publication. You can publish these one at a
* time, or you can publish them as a group (with or
* without transaction blocks).
*
* If you want to publish a group of SpStreamData-
* Record objects as a transaction, then all of the
* SpStreamDataRecords within the group must belong
* to the same stream.
*/
SpStreamDataRecord *sdr = SpFactory::createStreamDataRecord(

stream,
fieldData,
StreamInterface::UPSERT,
StreamInterface::NULLFLAG,
status
);

if (0 == sdr)
{

printf(“Could not createStreamDataRecord, error code=%d\n”,
status->getErrorCode());

printf(“Error Message = %s\n”,
status->getErrorMessage());

}

The client application program can create a large number of SpStreamDataRecord objects, placing
each of them within a common vector. Next, the application programmer can use one of the SpPub-
lication's publishing methods to send all the vector's stream data objects to the Sybase Aleri Stream-
ing Platform, either individually or by using transactions.

3.3.2. Publish Data to the Sybase Aleri Streaming Platform Using C++

The following example shows how to publish a vector of SpStreamDataRecord objects as a single
transaction. In this example, sp is an SpPlatform object that was previously instantiated and
streamInputData is a vector that contains a large number of SpStreamDataRecord objects.

>
/*
* Create the publication object associated with the
* platform.
*/
const char *name = “testPub_1”;

Publish/Subscribe API for C++

32

SpPublication *pub = sp->createPublication(name, status);

if (0 == pub)
{
printf(“Couldn't create a publication object, error code =%d\n”,
status->getErrorCode());

printf(“Error message = %s\n”, status->getErrorMessage());
return status->getErrorCode();

}

/*
* Start the publication object (this opens up a GW I/O
* socket connection). Don't forget to eventually close
* down the SpSubscription object (via the stop() method,
* later on when you are finished using it,
*/
rc = pub->start();

if (0 != rc)
{
printf(“Couldn't start the publication object.\n”);
printf(“Error message = %s\n”,
SpUtils::getErrorMessage(rc));

return rc;
}

/*
* Publish the collection/vector of SpStreamDataRecord
* objects as one big transaction.
*/

rc = pub->publishTransaction(streamInputData,
StreamInterface::INSERT,
StreamInterface::NULLFLAG,
0);

if (0 != rc)
{
printf(“Couldn't publish the transaction.\n”);
printf(“Error message = %s\n”,
SpUtils::getErrorMessage(rc));

return rc;
}

3.3.3. Handling Stale Data

When a publishing source stops sending data to the Sybase Aleri Streaming Platform, the previously
published data is retained. Depending on how long it has been since the last update, you may not want
this data to be used as if it were current. The publish/subscribe APIs include two functions to to enable
publishers to handle this data.

The “setFinalizer” function sets a timeout value (in milliseconds) and an SQL statement action. If the
Sybase Aleri Streaming Platform receives no data on this connection within the specified time, the SQL
statement is run. This SQL statement can perform any of the following actions:

• Delete previously published data.

• Mark previously published data as stale (via a field for that purpose in the data).

Publish/Subscribe API for C++

33

• Perform some other determined action on the source streams (and, consequently, the derived streams
from these source streams).

Note:
When using setFinalizer(), you must ensure that the SpStatus object created by Sp-
Factory::createStatus() is still in scope when the SpPublication->start()
function is executed, since any errors are returned via the SpStatus object. Failure to do so can
result in memory corruption and/or other undefined behavior.

In the following example, if the data is not updated within 1000 milliseconds, it is deleted.

setFinalizer(1000, “delete from positions where SharesHeld > 1”, spStatus)

The “sendHeartbeat” function sends a keep-alive message to the Sybase Aleri Streaming Platform. This
function can be used to keep the connection alive and prevent the SQL statement from running, if
“setFinalizer” has previously been called. The “sendHeartbeat” function takes no arguments; its syntax
is:

sendHeartbeat()

3.3.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using C++

Set methods should be called before SpPublication start() method. SpPlatformStatus should be checked
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR_SETTING_EXIT. If you fail to send exit-on-timeout, the status is set to
SP_ERROR_PUB_ERROR_SETTING_EXIT.

If setFinalizer and setExitOnTimeout are called, the second call returns
SP_ERROR_PUB_EXIT_ALREADYSET (setFinalizer) or SP_ERROR_PUB_ACTION_ALREADYSET
(setExitOnTimeout).

The following is an example using C++.

void setExitOnTimeout(const long timeout, SpPlatformStatus * status);

int getExitOnTimeout();

void setExitOnClose(SpPlatformStatus * status);

bool getExitOnClose();

3.4. Record/Playback using C++

In order to record data from the Sybase Aleri Streaming Platform, a client program needs to create and
configure an SpPlatform object in the same way you would for subscribing or publishing. Once an Sp-
Platform object has been created, the programmer should create an SpRecorder object using the fact-
ory method createRecorder(...). If an SpRecorder is successfully created the program calls the start
method. This spawns a background thread which subscribes to the configured streams and records all
events for those streams. Recording will stop and the spawned thread terminate once the configured
number of records have been processed or if the calling program calls stop(). Recording can be mon-

Publish/Subscribe API for C++

34

itored by calling the getRecordCount() function which returns the number of records processed so far.

// Initialize SpFactory ...
// Create SpStatus and SpParms objects ...
// Create platform object ...

// Create recorder. It needs the following parameters to run
// recorder name (string) : a name to identify the instance of the recording object
// recorder file (string) : name of the file to store the recorded information
// streams : vector of strings, containing names of streams to record events for
// flags (int) : recording options (encrypted/RSA/get base data)
// max records (int64_t) : maximum number of data records to record
// status : returns error messages if any

// init recorder parameters - recorder name, filename, streams, etc

SpRecorder * recorder = spPlatform->createRecorder(recName, recFile, streams, flags, maxRecords, status);

if (NULL == recorder) {
std::cout << "Error starting recorder - " << status->getErrorMessage() << std::endl;
// cleanup ... and exit

} else
recorder->start();

// Wait, monitor, etc ...

// To stop recording
recorder->stop();

delete recorder;

// Cleanup

A client program creates an SpPlayback object using the factory method in SpPlatform to play back re-
corded data. The 'scale' parameter is of particular interest. This is a double that can be used to scale the
rate of playback as a factor of the original recorded rate (for example, twice as fast or half as slow). Val-
ues -1 to 1 have no effect - data is played back at the rate it was recorded. A value greater than 1 speeds
up playback by that factor (for example, a value of 2 doubles the playback speed). A value less than -1
slows down playback by that factor (for example, a value of -3 will slow down playback by a factor of
3). The scale can be changed dynamically while playback is in progress.

>
// Initialize SpFactory ...
// Create SpStatus and SpParms objects ...
// Create platform object ...

// Create playback. It needs the following parameters to run
// playback name (string) : a name to identify the instance of the playback object
// playback file (string) : name of the file containing previously recorded data
// scale (double) : allows to scale the playback rate
// max records (int64_t) : maximum number of data records to playback
// status : returns error messages if any

// init playback parameters - recorder name, filename, streams, etc.

SpPlayback * playback = spPlatform->createPlayback(playName, playFile, scale, maxRecords, status);

if (NULL == playback) {
std::cout << "Error starting recorder - " << status->getErrorMessage();
// cleanup ... and exit

} else {
playback->setSendUpsert(TRUE); // optionally enable converting opcodes to UPSERT
playback->start();

}

// Wait, monitor, etc ...

// To stop recording
playback->stop();

delete playback;

Publish/Subscribe API for C++

35

3.5. Special Topics for SP Publication/Subscription Using C++

3.5.1. Publication/Subscription In a High Availability (Hot Spare) Configuration

The Sybase Aleri Streaming Platform can be started in a High Availability configuration, with one serv-
er as the primary server and the other considered the Hot Spare (secondary server). If the Pub/Sub API is
made aware of the High Availability configuration, it will perform an automatic switchover to the sec-
ondary server if the primary server becomes unreachable. See Section 2.4.6, “Publication/Subscription
in a High Availability (Hot Spare) Configuration” for more information about High Availability mode.

The Pub/Sub API is made aware of the High Availability configuration through the SpPlatform-
Parms object that was passed into SpFactory::createPlatform(). Refer to the set of over-
loaded SpFactory::createPlatformParms(...) methods, and the SpPlatformParms ob-
ject for details about the High Availability configuration.

3.5.1.1. Subscription Mechanisms in a High Availability Configuration

When the Sybase Aleri Streaming Platform is brought up in High Availability mode, and the Pub/Sub
API makes use of this configuration, the following occurs when the primary server goes down:

First, the underlying subscription thread receives an exception on the Gateway I/O socket connection
used to receive the stream updates delivered from the primary server. When this event occurs, the Pub/
Sub API recognizes that there is a High Availability configuration and attempts to connect to the sec-
ondary server and re-establish the subscription. Before it does this, the Pub/Sub API has to wait for the
secondary server to internally change its state to that of the primary server.

Once a successful connection is made to the secondary server and it has been promoted to the primary
server, the subscriptions are re-established. During the switchover to the secondary server, the Sub-
scription object delivers several events to the SpObserver objects listening for SpSubscrip-
tionEvents. The following events are typically delivered between the time the socket is dropped and
the time the connection is made to the secondary server:

• SpSubscriptionEvent::EVID_COMMUNICATOR_HALTED

It is delivered to the SpObserver when the exception is received on the socket, receiving the sub-
scription messages from the primary Streaming Processor.

• SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It is delivered to the SpObserver when the Pub/Sub API recognizes that a connection attempt
should be made to the Hot Spare server. Note that the High Availability connection parameters were
specified in the SpPlatfromParms object passed to the SpFactory::createPlatform()
method when the underlying SpPlatform was first created.

• SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

It is delivered to the SpObserver when the connection to the Hot Spare server is made.

• SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_FAILED

It is delivered to the SpObserver when the attempted connection to the Hot Spare server fails.

If the switchover to the Hot Spare server is successful, the subscription(s) are re-established using the
same delivery flag values that were originally used when the subscription(s) against the primary server.
It means that if the subscription originally requested the BASE snapshot of the stream, the new subscrip-
tion (now going against the Hot Spare server) requests the BASE snapshot of the stream. You need to
determine what should be done with the contents of the snapshot received from the Hot Spare server.

Publish/Subscribe API for C++

36

When there is a successful switchover to the Hot Spare server, the SpPlatform object takes note and
performs some internal book keeping to ensure that the SpPlatform::getHost() and SpPlat-
form::getPort() methods will return the host name and port number of the new primary server.

3.5.1.2. Publication Mechanisms in a High Availability Configuration

When the primary server goes down during an attempt to send a publication request to the server, the
SpPublication object detects it and attempts to perform a switch over to the Hot Spare server. If the
switchover is successful, the publication object then attempts to re-send the data to the new primary
server. If the publication cannot take place, a non-zero error code is returned to the caller indicating the
problem.

The Pub/Sub API programmer should treat the secondary server within a High Availability configura-
tion as a passive server. The client application should never log on and send data to a secondary server
while the primary server is alive and well. It is the responsibility of the running High Availability con-
figuration to manage both the primary and secondary servers appropriately. If the primary server goes
down, the secondary server will take over and become the new primary server. Once the secondary serv-
er becomes the primary server, data can be published to the new primary server. The Pub/Sub API waits
for the secondary server state to switch over to primary before publishing data.

The sync point between data sent to source streams of the primary server and this data being propagated
to the Hot Spare server is manual. The client application can accomplish this synchronization by calling
the commit() method of the SpPublication class.

Publish/Subscribe API for C++

37

Chapter 4. Publish/Subscribe API for .NET 2.0
4.1. Overview/General Information

This chapter describes how to use .NET 2.0 client applications that communicate with the Sybase Aleri
Streaming Platform. The Pub/Sub API is delivered in the pubsubnet.dll file.

Building client applications with Sybase's .NET Pub/Sub API requires a third party tool: Microsoft
Visual C++ compiler 2005.

4.1.1. Overview of .NET Utilities for SP Publication/Subscription

The .NET API provides a set of high-level interfaces for developers to write Microsoft .NET applica-
tions that interact directly with the Sybase Aleri Streaming Platform. The interfaces hide most of the un-
derlying implementation details and provide a set of intuitive classes (SpFactory, SpPlatform,
SpSubscription, SpPublication, and so on). Most of the classes within the Pub/Sub API start
off with the prefix “Sp”, which stands for “Streaming Processor”. All the “Sp” classes reside in the
namespace called aleri_PubSubnet. There are also some “constant” definitions that are used by
various API method calls that are located in the aleri.pubsubconst namespace.

4.1.1.1. API Library

The pubsubnet.dll shared library contains the .NET 2.0 Pub/Sub API used to publish and subscribe
against the Sybase Aleri Streaming Platform. It is located in the distribution directory under .\lib .

The Pub/Sub library includes code for the various authentication mechanisms supported by Sybase Aleri
Streaming Platform, including Kerberos. It requires that the SASL dynamic libraries shipped with the
Sybase Aleri Streaming Platform be present at runtime. These libraries are located in the
$PLATFORM_HOME/lib folder.

4.1.1.2. Example Files

Here are three C# examples, with one each for publish, subscribe, and subscribe with projection.

• Publication Example

The publish example is located in the install directory under
.\examples\clients\pubsub\net\PubExample . This folder contains the following files:

• PubExample.cs (which demonstrates publication to the Sybase Aleri Streaming Platform)

• PubExample.csproj (Visual Studio 2005 C# Project file)

• PubExample.sln (Visual Studio 2005 Solution File)

• PubExample.exe (A precompiled version of the code included for convenience.)

• Subscribe Examples

The Subscribe example is located in the install directory under
.\examples\clients\pubsub\net\SubExample. This folder contains:

• SubExample.cs (demonstrates subscription to the Sybase Aleri Streaming Platform)

• SubExampleSpObserver.cs (demonstrates subscription to the Sybase Aleri Streaming Plat-
form)

38

• SubExample.csproj (Visual Studio 2005 Project file)

• SubExample.sln (Visual Studio 2005 Solution File)

• SubExample.exe (A precompiled version of the code included for convenience.)

The Subscribe with projection example is located in the install directory under
.\examples\clients\pubsub\net\SubProjExample. This folder contains:

• SubProjExample.cs (demonstrates subscription to the Sybase Aleri Streaming Platform)

• SubProjExampleSpObserver.cs (demonstrates subscription to the Sybase Aleri Streaming
Platform)

• SubProjExample.csproj (Visual Studio 2005 Project file)

• SubProjExample.sln (Visual Studio 2005 Solution File)

• SubProjExample.exe (A precompiled version of the code included for convenience.)

Note:

In order to compile these examples, Visual Studio 8.0 has to be installed. To compile an ex-
ample using the IDE open, the appropriate project file (.csproj file) in the IDE and build the
example from there.

In addition there is Makefile provided in the .\examples\clients\pubsub\net folder
of the install directory. This file can be used to build the three examples provided from the
command line using the nmake command. Visual Studio 8.0 needs to to be installed with the
nmake and devenv.com executables in the path. To compile the examples, simply type the
command nmake in the folder containing this Makefile.

4.1.2. Design Decisions for SP Publication/Subscription Using .NET 2.0

The Pub/Sub API provides a set of interfaces or object “types” that exposes all of the Sybase Aleri
Streaming Platform functionality while hiding the implementation details. You are strongly encouraged
to use the Pub/Sub API's implementation classes without using inheritance to extend it. This preserves
Sybase's ability to change underlying implementation in the future without breaking client code.

To achieve these encapsulation goals, the “Factory” Design Pattern is used. Most of the implementation
classes found in the Pub/Sub API have private constructors, and you are provided with “Factory” meth-
ods for object instantiation. For example, the code that instantiates a new SpPlatform object should
be SpFactory::createPlatform(...), not new SpPlatform(...), and so forth.

In addition, most objects in the Pub/Sub API provide only “get” methods, to preserve some degree of
immutability. Complete immutability would require all “get” methods to return “copies” of internal vec-
tors/arrays because vectors and arrays are mutable. However, this method would be inefficient. Sybase
chose a design that does not make and return “copies” to the caller.

You must maintain order and integrity for the state of these “read-only” data structures. For example,
when requesting the list of column types for a stream definition, the program must not modify elements
within the list. If it does, the application will encounter difficulties when it makes subsequent calls to re-
trieve the column types, which are now out of sync with those on the Sybase Aleri Streaming Platform.

The design of the Pub/Sub API also reflects the decision to avoid the use of exceptions generated by API
routines. Each API method usually returns a non-zero error code if the method fails. Otherwise, the

Publish/Subscribe API for .NET 2.0

39

method returns a zero to indicate that it did not detect an error. This limitation keeps the API consistent
across the set of different languages in which it is implemented.

When a Pub/Sub API method returns a non-zero return code, the program can call the
theSpUtils.getErrorMessage(errorCode) utility method to get the specific error message
text.

Those API methods which take an SpStatus parameter may use SpStatus::getErrorCode() and/
or SpStatus::getErrorMessage() to the same effect.

When one of the Pub/Sub API methods returns a non-zero error return code, the client application can
call the SpUtils.getErrorMessage(errorCode) utility method to get the specific error mes-
sage.

The SpFactory call that creates an object must pass in an SpPlatformStatus object. If the “create”
method can not create the object that you requested, the method returns “null”, and sends the SpPlat-
formStatus object an error code identifying the problem. The SpPlatformStatus has a ge-
tErrorMessage method that will return the error text associated with the error message. All non-
SpFactory method calls simply return a non-zero error code if an error occurs; as mentioned above, the
SpUtils.getErrorMessage(errorCode) method can be called to get the associated error mes-
sage text.

4.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using .NET

Set methods should be called before SpSubscription start() method. You should check SpPlatformStatus
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR_SETTING_EXIT. If you fail to send a maximum buffer size, the status is set to
SP_ERROR_SUB_SETTING_BUFFERSIZE. You should also note that getQueueSize() does
NOT return the current queue size until after you've set it with setQueueSize().

Here is an example for .NET 2.0.

void SetQueueSize(int queue, SpPlatformStatus ^status);

void setExitOnClose(SpPlatformStatus ^status);

int getQueueSize();

bool getExitOnClose();

4.2. Subscribing to the Sybase Aleri Streaming Platform Using .NET 2.0

4.2.1. Set Up the Environment for Subscription Using .NET 2.0

The first step in this process is to create objects that handle the low-level details of the subscription.

4.2.1.1. Configure the Pub/Sub API .NET 2.0 Pub/Subnet.dll

To use the Pub/Sub API, the .NET 2.0 application must be able to reference the pubsubnet.dll.
Once this is done, all of the “Sp” related interface/class definitions can be seen within the IDE.

The installation does not add the Pub/Sub library to the GAC automatically. It must be added to the
GAC using the gacutil.exe utility provided as part of the .NET framework.

All exposed classes are sealed and cannot be extended through inheritance. Always use the SpFact-
ory to create the “Sp” Sybase Aleri Streaming Platform related objects.

Publish/Subscribe API for .NET 2.0

40

4.2.1.2. Initialize the SpFactory Object

The first object to use in setting up a subscription is the static SpFactory object. Because it is “static”,
it needs no instantiation. The SpFactory is used to instantiate the other objects that offer the Sybase
Aleri Streaming Platform functionality. The first call made to the SpFactory is an initialization meth-
od:

int SpFactory.init();

This call initializes the underlying xmlrpc mechanism that is required to communicate with the Sybase
Aleri Streaming Platform.

The xmlrpc documentation indicates that the xmlrpc mechanism must be initialized while the client ap-
plication is still “single” threaded. Therefore, make sure the

int SpFactory.init();

call is made from within the application's main thread before starting subsequent threads.

When the application is finished and is about to exit, call the

SpFactory.dispose();

method. This cleans up the underlying xmlrpc mechanism.

The

int SpFactory.init();

method returns a non-zero error code if it encounters a problem, otherwise it returns zero.

4.2.1.3. Create the SpPlatform Object

Once the static SpFactory object is initialized successfully, the client application must instantiate the
SpPlatform object.

The following example shows you how to use the SpFactory to create the SpPlatform object.

/*
* First, using the SpFactory, create an SpPlatformParms
* object that contains all of the Sybase Aleri Streaming Platform connection
* information. This information consists of the Sybase Aleri Streaming Platform
* host name, port number, username, password, and a boolean
* flag indicating whether or not all connections to the
* Sybase Aleri Streaming Platform will use encryption.
* NOTE: See the set of overloaded SpFactory.createPlatformParms(...)
* methods for the set of available connection/authentication options.
* They include RSA authentication, as well as the Sybase Aleri Streaming Platform's High
* Availability configuration option.
*/

SpPlatformParms parms = SpFactory.createPlatformParms(host,
port, user, password, isEncrypted);

/*
* Second, using the SpFactory, create an SpPlatformStatus
* object. This object is used by the SpFactory to

Publish/Subscribe API for .NET 2.0

41

* return error information if the SpFactory cannot create
* the SpPlatform object.
*/

SpPlatformStatus status=SpFactory.createPlatformStatus();

/*
* Third, using the SpFactory, create the SpPlatform object,
* passing in the SpPlatformParms and SpPlatformStatus
* objects created previously.
* NOTE: If the call is successful, the client programmer
* will be returned as a fully initialized SpPlatform object.
*
* Otherwise, the factory method returns null, and the
* error code will be stored in the SpPlatformStatus object
* that was passed into the createPlatform(...) method. You
* can use the SpPlatformStatus object to retrieve the error
* code, and the corresponding error message (see the “else”
* condition in the following code fragment).
*/

SpPlatform sp = SpFactory.createPlatform(parms, status);

if (sp != null)
{

/*Use the new sp object to perform Sybase Aleri Streaming Platform related work*/
/* See “The SpPlatform object” */

} else {
Console.WriteLine(“Could not create SpPlatform, error =” +
status.getErrorCode() + “, error msg = ” +
status.getErrorMessage());

}

It is very important to ensure that the three objects created above -- SpPlatform, SpPlatform-
Status and SpPlatformParms -- are always in scope. The following three statements must be ad-
ded to the end of the code (before the return statement), which is always in scope during the lifetime of
the publication process:

GC.KeepAlive(parms);
GC.KeepAlive(status);
GC.KeepAlive(sp);

Without these three statements, there is a risk that the garbage collector will clean up these objects be-
fore the publication is complete, resulting in unpredictable results and program crashes.

4.2.2. Set Up/Start Subscription Using .NET 2.0

To get stream updates delivered from the Sybase Aleri Streaming Platform, the client application must
“ask” the Sybase Aleri Streaming Platform to deliver them. This process is called "subscribing" or creat-
ing a subscription. The Pub/Sub API offers two forms of subscription mechanisms, (SpSubscrip-
tion and SpSubscriptionProjection), that hide most of the low-level details associated with
making a subscription request to the Gateway I/O process. If the Pub/Sub API is used within the context
of an Sybase Aleri Streaming Platform High Availability (Hot Spare) configuration, the switchover to
the Hot Spare server is transparently handled within the API.

The Pub/Sub API subscription mechanism is based on the “Observer” Design Pattern. To use the Pub/
Sub API subscription mechanism, you must create a class that implements the
aleri_PubSubnet::SpObserver interface. This interface requires a noti-
fy(SpSubscriptionEvent[] events) method, which the subscription mechanism calls to de-
liver stream update information and system event information to the client application's SpObserver
object.

The client application must also create a SpSubscription or SpSubscriptionProjection
object using the appropriate factory method provided by the SpPlatform object instantiated previ-

Publish/Subscribe API for .NET 2.0

42

ously. The SpPlatform factory methods used to create SpSubscription and SpSubscrip-
tionProjection objects have the following signatures:

aleri_PubSubnet::SpSubscription ^createSubscription(
System::String ^name, int flags, int deliveryType,
aleri_PubSubnet::SpPlatformStatus ^status);

aleri_PubSubnet::SpSubscriptionProjection ^createSubscriptionProjection(
System::String ^name,
int flags, int deliveryType,
System::String ^sqlQuery,
aleri_PubSubnet::SpPlatformStatus ^status);

Details:

String name: This is the name that the client application program intends to assign to the SpSub-
scription or SpSubscriptionProjection object being created.

int flags: This integer encapsulates the “flag bits” sent to the Sybase Aleri Streaming Platform
Gateway I/O process when the low-level subscription request is made. The flag settings control delivery
from the Sybase Aleri Streaming Platform to the client application, on the Gateway I/O socket connec-
tion where the subscription request was made. The “flag bits” are defined as constants in the
aleri_PubSubconst::SpSubFlags enumeration as follows:

• aleri_PubSubconst.SpSubFlags.BASE = 0x0;

The BASE flag bit tells the Sybase Aleri Streaming Platform to send a complete “snapshot” of each
stream of the subscription request before sending deltas. The complete “snapshot” or “state” of the
stream is a set of “insert” records sent from the Sybase Aleri Streaming Platform between the
EVID_GATEWAY_SYNC_START and EVID_GATEWAY_SYNC_END subscription events.

• aleri_PubSubconst.SpSubFlags.LOSSY = 0x1;

The LOSSY flag bit puts the Sybase Aleri Streaming Platform in “data shedding mode”, in which the
Sybase Aleri Streaming Platform drops the oldest data if the client cannot keep pace with the data it is
receiving.

• aleri_PubSubconst.SpSubFlags.NO_BASE = 0x2;

The NOBASE flag bit tells the Sybase Aleri Streaming Platform that it should NOT send a complete
“snapshot” of the streams in the subscription request. The Sybase Aleri Streaming Platform that re-
ceives this flag will only send the deltas for each of the streams being subscribed to.

• aleri_PubSubconst.SpSubFlags.DROPPABLE = 0x8;

The NOBASE flag tells the Sybase Aleri Streaming Platform that it should NOT send a complete
“snapshot” of the streams in the subscription request. The Sybase Aleri Streaming Platform that re-
ceives this flag will only send the deltas for each of the subscribed to streams.

• aleri_PubSubconst.SpSubFlags.PRESERVE_BLOCKS= 0x20;

The PRESERVE_BLOCKS flag bit tells the Sybase Aleri Streaming Platform that it should preserve
blocks while sending data to the client application.

These flag bits can be ORed together using the “|” operator. For example:

flags = aleri_PubSubconst.SpSubFlags.NO_BASE | aleri_PubSubconst.SpSubFlags.LOSSY.

Publish/Subscribe API for .NET 2.0

43

int deliveryType: This integer value specifies how the client application program's SpObserv-
er object receives the stream update events. The delivery types are defined in the
aleri_pubsubconst.DeliveryType as follows:

• aleri_PubSubconst.DeliveryType.DELIVER_PARSED = 1;

This delivery type setting tells the SpSubscription object to deliver "parsed" field data objects
representing the stream update to your SpObserver object.

• aleri_PubSubconst.DeliveryType.DELIVER_BINARY = 3;

This delivery type setting tells the SpSubscription object to deliver the "binary" representation
of the stream update record to your SpObserver object.

• aleri_PubSubconst.DeliveryType.DELIVER_STREAM_OPCODES = 5;

This delivery type setting tells the SpSubscription object not to use field level data, but to
simply deliver the stream update operation code (INSERT, UPDATE, DELETE, or UPSERT).

System::String ^sqlQuery: specifies the SQL query projection on which the SpSubscription-
Projection will be based. The sqlQuery parameter can only be used to create an SpSubscrip-
tionProjection object.

SpPlatformStatus status: can only be used to return error code information back from the
createSubscription(...) and createSubscriptionProjection(...) factory meth-
ods, in the case where the SpSubscription or SpSubscriptionProjection object could not
be created.

The following example shows how to use the SpPlatform object called sp to create both an SpSub-
scription and an SpSubscriptionProjection object:

SpSubscription sub = sp.createSubscription(
“MySubscription_1”,
SpSubFlags.BASE,
SpDeliveryType.DELIVER_PARSED,
status);

SpSubscriptionProjection subProj = sp.createSubscription(
“MySubscriptionProjection_2”,
SpSubFlags.BASE,
SpDeliveryType.DELIVER_PARSED,
"select intData, charData from inputstream where intData > 100",
status);

In the above example, status is an SpPlatformStatus object that was created previously with the
SpFactory.createPlatformStatus() factory method.

It is important that the SpSubscription or SpSubscriptionProjection object created above
is always in scope. To ensure this, add the following line of code to the end of the code (before the re-
turn statement), that is always in scope during the lifetime of the subscription process:

GC.KeepAlive(sub);

>

Publish/Subscribe API for .NET 2.0

44

Without this statement, you run the risk that the garbage collector will prematurely clean up the sub-
scription object before the subscription is complete, leading to unpredictable results and program
crashes.

4.2.2.1. Initiate a Subscription Using SpSubscription in .NET 2.0

If the sp.createSubscription(...) call is successful, the client application program gets back
a SpSubscription object. The SpSubscription object can be used to subscribe to one or more
streams, while an SpSubscriptionProjection object can only be used to subscribe to the projec-
tion defined by the sqlQuery passed into the createSubscriptionProjection(...) factory
method. For each stream that is being observed, the SpSubscription object will deliver to the
SpObserver stream events that contain all the stream's fields. SpSubscription extends the meth-
od set defined in the SpSubscriptionCommon interface as follows:

int /*Cookie*/ addStreamObserver(System::String ^streamName,
aleri_PubSubnet::SpObserver ^theObserver);

int /*Cookie*/ addStreamsObserver(
cli::array<System::String ^> ^theStreamNames,
aleri_PubSubnet::SpObserver ^theObserver);

int subscribe(System::String ^streamName);

int unsubscribe(System::String ^streamName);

The following code example shows how to create, configure, start, and stop an SpSubscription ob-
ject. In the following example, the Sp object represents a SpPlatform object instantiated previously
through the SpFactory.createPlatform(...) method.

SpSubscription sub =
sp.createSubscription(“MySubscription_1”,

SpSubFlags.BASE,
SpDeliveryType.DELIVER_PARSED,
status); // “status” is an SpPlatformStatus object.

if (sub != null)
{

/*
* Client programmer must create a concrete class implementing
* the aleri_PubSubnet::SpObserver interface. This concrete
* SpObserver class will be
* registered with the new SpSubscription object, and “notified” with
* SpSubscriptionEvent objects when the SpSubscription is started.
*/
SpObserver spObserver = new ClientSpObserver(“myObserver”);
String streamName = “input”;
int cookie;

/*
* Client programmer must associate the concrete SpObserver
* object(s) with a stream (or set of streams), and
* register the SpObserver with the SpSubscription object.
* This can be done using either the
* SpSubscription.addStreamObserver *(...),
* or SpSubscription.addStreamsObserver(...) methods.
* This should be done for each SpObserver the client wishes
* to be notified with the SpSubscriptions events.
*/
cookie = sub.addStreamObserver(streamName, spObserver);

if (cookie <= 0)
{
// SpObserver registration failed.
return cookie;

}

/*
* Once the SpObserver(s) are registered with the SpSubscription,

Publish/Subscribe API for .NET 2.0

45

* the SpSubscription.start() method is called,
* which starts the * subscription process. If the startup
* is successful, the appropriate SpObservers will be
* notified with updates sent from the Sybase Aleri Streaming Platform.
*/
Console.WriteLine(“Starting the subscription.”);

rc = sub.start();

if (rc != 0)
{
// The subscription could not be started.
Console.WriteLine(“Subscription could not be started, rc=”+rc);
Console.WriteLine("Error message ="

SpUtils.getErrorMessage(rc));

return rc;
}

/*
* Block the main thread on input from the keyboard
* while the subscription thread runs in the background.
*/
Console.Readline();

/*
* The client programmer can invoke the "stop()"
* method in order to terminate the running
* SpSubscription.
*/
Console.WriteLine("Stopping the subscription.");

rc = sub.stop();

if (rc != 0)
{
// Problems stopping the subscription.
Console.WriteLine ("Problems stopping the
subscription, rc="+rc);
Console.WriteLine ("Error message =" +
SpUtils.getErrorMessage(rc));

return rc;
}

}
else
{

// Could not create the subscription object.
rc = status.getErrorCode();
Console.WriteLine ("Could not create subscription object, error="+rc);
Console.WriteLine ("Error message =" +
status.getErrorMessage());

}

It is very important that the SpObserver or SpSubscriptionProjection object created above
is always in scope. To ensure this, add the following line to the end of the code before the return state-
ment, that is always in scope during the lifetime of the subscription process:

GC.KeepAlive(spObserver);

Without this statement, you run the risk that the garbage collector will prematurely clean up the SpOb-
server object before the subscription is complete, leading to unpredictable results and program crashes.

A subscription created using SpSubscription receives updates for all columns in the stream with
each event. If the subscription was created using SpSubscriptionProjection, however, an up-
date consists of only the subset of columns defined by the SQL query. An update of this type is issued
only when there is a change in one of the columns specified in the SQL query.

Publish/Subscribe API for .NET 2.0

46

4.2.2.2. Initiate a Subscription Using SpSubscriptionProjection

If the sp.createSubscriptionProjection(...) call is successful, the client application pro-
gram gets back an SpSubscriptionProjection object, which is used to instantiate the subscrip-
tion. If the call fails for any reason (such as an invalid SQL Query), a null is returned, and the corres-
ponding error information is set in the SpPlatformStatus object that was passed to the create-
SubscriptionProjection(…) method call.

The contents of the data returned from the Sybase Aleri Streaming Platform to the SpSubscrip-
tionProjection object is determined by the SQL query passed into the createSubscription-
Projection(...) factory method. An SpSubscriptionProjection can only receive updates
for the underlying stream specified in the SQL query, while the SpSubscription can get updates for
more than one stream. The SpSubscriptionProjection interface extends the method set defined
in the SpSubscriptionCommon interface, as follows:

SpStreamProjection ^getStreamProjection();
int /*Cookie*/ addObserver(aleri_PubSubnet::SpObserver ^theObserver);

The getStreamProjection() method returns the SpStreamProjection object produced
when the SQL query was sent to the Sybase Aleri Streaming Platform for parsing.

The SpStreamProjection should not be modified by the client application in any way. Typically,
the SpStreamProjection object is specified into the SpObserver's constructor, giving the
SpObserver the list of fields and their corresponding data types. This information can be used by the
SpObserver to process the updates that come back from the server.

See Section 5.1, “Aleri SQL Queries and Statements” for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries.

You must create an SpObserver object to receive from the SpSubscriptionProjection the updates that
arrive from the Sybase Aleri Streaming Platform. This object must implement the SpObserver inter-
face. Refer to Section 4.2.2.3, “The SpObserver Interface” for more information.

Call the addObserver(SpObserver theObserver) method to register the SpObserver with the
SpSubscriptionProjection object.

The addObserver(...) call returns an integer value that represents a “handle” to the registered
SpObserver object. Later on, the client application programmer can use the cookie to remove the
SpObserver.

The following code example shows how to create, configure, start, and stop an SpSubscription-
Projection object. In the following example, the “sp” object represents an SpPlatform object in-
stantiated previously (through the SpFactory::createPlatform(...) method).

string sqlQuery =
"select intData, charData from inputstream where intData > 100";

SpSubscriptionProjection subProj = sp.createSubscriptionProjection(
“MySubscriptionProjection_1”,
SpSubFlags.BASE,
SpDeliveryType.DELIVER_PARSED,
sqlQuery,
status); // “status” is an SpPlatformStatus object.

if (subProj != null)
{

Publish/Subscribe API for .NET 2.0

47

/*
* Upon creation of an SpSubscriptionProjection object,
* you can get the schema information that the
* parsed sql query produced on the server as follows:
*/
SpStreamProjection streamProj = subProj.getStreamProjection();

/*
* Client programmer must create a concrete class implementing
* the aleri_PubSubnet::SpObserver interface. This concrete
* SpObserver class will be registered with the new
* SpSubscriptionProjection object, and “notified” with
* SpSubscriptionEvent objects when the SpSubscriptionProjection is started.
* NOTE: The SpStreamProjection object passes into the SpObserver
* constructor. This gives the SpObserver the projections schema
* information that is typically used for processing the update
* events sent to the observer.
*/
SpObserver spObserver = new ClientSpObserver(“myObserver”, streamProj);
int cookie;

/*
* Client programmer must associate the concrete SpObserver
* object(s) with a stream (or set of streams), and
* register the SpObserver with the SpSubscriptionProjection object.
* This can be done using the
* SpSubscriptionProjection.addObserver(...) method.
* This should be done for each SpObserver the client
* wishes to be notified with the SpSubscriptions events.
*/
cookie = subProj.addObserver(spObserver);

if (cookie <= 0)
{
// SpObserver registration failed.
return cookie;

}

/*
* Once the SpObserver(s) are registered with the
* SpSubscriptionProjection,
* the SpSubscriptionProjection.start() method is called,
* which starts the subscription process. If the startup
* is successful, the appropriate SpObservers will be
* notified with updates sent from the Platform.
*/
Console.WriteLine(“Starting the subscription.”);

rc = subProj.start();

if (rc != 0)
{
// The subscription could not be started.
Console.WriteLine(“Subscription could not be started, rc=”+rc);
Console.WriteLine("Error message =" +
SpUtils.getErrorMessage(rc));

return rc;
}

/*
* Block the main thread on input from the keyboard
* while the subscription thread runs in the background.
*/

Publish/Subscribe API for .NET 2.0

48

Console.Readline();

/*
* The client programmer can invoke the "stop()"
* method in order to terminate the running
* SpSubscription.
*/
Console.WriteLine("Stopping the subscription.");

rc = subProj.stop();

if (rc != 0)
{
// Problems stopping the subscription.
Console.WriteLine ("Problems stopping the subscription, rc="+rc);
Console.WriteLine ("Error message =" +
SpUtils.getErrorMessage(rc));

return rc;
}

}
else
{
// Could not create the subscription object.
rc = status.getErrorCode();
Console.WriteLine ("Could not create subscription object, error="+rc);
Console.WriteLine ("Error message =" +
status.getErrorMessage());

}

It is important that the SpObserver and SpSubscriptionProjection objects created above are
always in scope. To ensure this, add the following line to the end of the code (before the return state-
ment), that is always in scope during the lifetime of the subscription process:

GC.KeepAlive(spObserver);

Without this statement, you run the risk that the garbage collector will prematurely clean up the SpOb-
server object before the subscription is complete, leading to unpredictable results and program
crashes.

4.2.2.3. The SpObserver Interface

To receive stream updates from the Sybase Aleri Streaming Platform, the client application must imple-
ment the SpObserver interface. The interface is simple:

public interface SpObserver
{

public System::String ^getName();

/**
* In the client's implementation of this interface, they
* would simply "case" on the event types (and event ids)
* that they are
* notified with and handle them appropriately.
*/

Publish/Subscribe API for .NET 2.0

49

public void notify(
cli::array<SpSubscriptionEvent ^>^theEvents);
}

There are the two methods must be implemented within the class:

• The getName() method retrieves the “name” of the SpObserver. It is similar to the subscription ob-
ject's getName() method.

• The notify(cli::array<SpSubscriptionEvent ^> ^theEvents) method is the
"link" between the underlying Sybase Aleri Streaming Platform subscription, which the subscrip-
tion object manages, and the client application object. The SpSubscription calls this method to send
updates to the SpObserver as they come in from the Sybase Aleri Streaming Platform.

As updates flow from the Sybase Aleri Streaming Platformto the subscription object, the sub-
scription object forwards them to the appropriate SpObserver objects (that is, those that have re-
gistered with the SpSubscription object), by calling each one's notify(
cli::array<SpSubscriptionEvent ^> ^theEvents) implementation.

The subscription's underlying stream update acquisition and delivery mechanism runs in a separate
thread used to manage the “read-only” Gateway I/O subscription socket, the noti-
fy(cli::array<SpSubscriptionEvent ^> ^theEvents) methods actually execute from
within the context of this thread. The client application programmer must be conscious of this fact and
program accordingly.

After the SpObserver class has been implemented, one or more instances of this class must be re-
gistered with the SpSubscription or SpSubscriptionProjection object created previously.
To register the observer, call the addStreamObserver or addStreamsObserver method of the
SpSubscription object, or the addObserver method of the SpSubscriptionProjection
object. depending on the kind of Subscription.

Brief descriptions of these methods follow.

• The addStreamObserver(System::String ^streamName,
aleri_PubSubnet::SpObserver ^theObserver) method instructs the SpSubscrip-
tion object to send all updates for the streamName to the SpObserver object specified by the
theObserver parameter. The client application can register as many observers as necessary.

• The addStreamsObserver(cli::array<System::String ^>
^theStreamNames,aleri_PubSubnet::SpObserver ^theObserver) method can be
used to associate two or more streams with a particular SpObserver. The same thing can be accom-
plished by making multiple calls to the addStreamObserver(...) method described previ-
ously. Again, multiple addStreamsObserver(...) calls can be made to set up the streams and
their corresponding observers.

• The addObserver(pubsubnet::SpObserver ^theObserver) method is defined in the
SpSubscriptionProjection interface. It registers the specified observer with the SpSub-
scriptionProjection object. Although more than one observer can be be added to the
SpSubscriptionProjection object by calling this method multiple times, it is recommended
that only one observer be added.

Note that this version of addObserver does not take a stream name. Any observer added to a
SpSubscriptionProjection object will only get data specified in the SQL statement provided
when the SpSubspcriptionProjection object was created.

Publish/Subscribe API for .NET 2.0

50

All three varieties of the addObserver method return an integer value that represents a “handle” to
the registered SpObserver object. Later on, the client application programmer can use the cookie in a
call to the removeObserver(int theCookie) method. The signature for this method is defined
in the SpSubscriptionCommon interface.

4.2.2.4. Adding or Removing Streams from an Active Subscription

The SpSubscription object provides two methods that can modify an SpSubscription object's
stream set after its start() method has been called: subscribe(const char *streamName)
and unsubscribe(const char *streamName).

Each of these methods takes a single streamName parameter. Before calling sub-
scribe(System::String ^streamName), the client application program must first ensure that
there is an SpObserver associated with the about to be subscribed stream. The client application pro-
gram can accomplish this by first calling addStreamObserver(System::String
^streamName, aleri_PubSubnet::SpObserver ^theObserver) to register the observer
for the stream, then subscribe(System::String ^streamName).

If successful, the subscribe(String streamName) and unsubscribe(String stream-
Name) methods return zeroes. Otherwise, non-zero error codes are sent back to the caller. The
SpUtils.getErrorMessage(rc) method can be called to see the error text associated with the
error code.

Note that the SpSubscriptionProjection object does not have these two methods. There is no
notion of streams for this object, only a notion of SQL Statements.

4.2.2.5. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using .NET

The SHINE flag can support a new subscription mode for partial-record updates in .NET with SpSub-
Flags.SHINE

The following is an example of how to use this mode:

sub = spPlatform.createSubscription("test_subname",

SpSubFlags.BASE|SpSubFlags.SHINE,

SpDeliveryType.DELIVER_PARSED,

spStatus);

4.2.3. Receive/Process Subscription Updates Using .NET 2.0

When the subscription is active, an array of SpSubscriptionEvent objects is delivered to the
SpObserver. Each SpSubscriptionEvent object represents “something” that has happened to
the subscription object, whereby the subscription object “thought” that it was appropriate to
“notify” its registered SpObserver objects.

For example, an SpSubscriptionEvent is sent to the SpObserver if a stream update has arrived, or if
the Sybase Aleri Streaming Platform is shut down, and so forth.

The notify(...) method that the programmer implements in the SpObserver object must iterate
over the vector of SpSubscriptionEvents (each one uniquely identified by an EventId) to de-
termine the action to be taken.

4.2.3.1. Parse Sybase Aleri Streaming Platform Data

The facility for inspecting parsing errors within the SpObserver is not supported by this release of the
.NET version of the API.

Publish/Subscribe API for .NET 2.0

51

4.3. Publishing to the Sybase Aleri Streaming Platform Using .NET 2.0

The Pub/Sub API defines an object of type SpPublication, which can enable a client application to
publish information to the Sybase Aleri Streaming Platform.

Whether your program is publishing static data (such as a reference table) or dynamic data (such as
stock market data) to the Sybase Aleri Streaming Platform, the same mechanism is used.

4.3.1. Create Objects for SP Publication Using .NET 2.0

As with the Subscription mechanism, the Pub/Sub API for .NET 2.0 defines objects that must be instan-
tiated to make the publish process work.

4.3.1.1. Create the SpPublication Object

An SpPublication object is used by the Pub/Sub API to submit “publications” (stream data) to the
Sybase Aleri Streaming Platform. This object is instantiated in a call to a factory method provided by the
SpPlatform object which has been instantiated previously (as with the Pub/Sub API subscription
mechanism). The signature of this factory method is:

SpPublication ^createPublication(System::String ^name,
aleri_PubSubnet::SpPlatformStatus ^status);

Details:

• String name is the name that the client application program intends to assign to the SpPublic-
ation object being created. It is not necessary for this name to be unique although it is a good idea
for error reporting purposes.

• SpPlatformStatus status is an object that returns error code information from the createPub-
lication(...) factory method if the SpPublication object cannot be created.

The following example shows how to use the SpPlatform object called “sp” to create an SpPub-
lication object:

SpPublication pub = sp.createPublication(“MyPublication_1” ,status);

In the above example, status is an SpPlatformStatus object that was created previously with the
SpFactory.createPlatformStatus() factory method.

The SpPublication object is not re-entrant. If multiple threads are going to publish to the Sybase
Aleri Streaming Platform, each thread should use a different SpPublication object. Each of these
SpPublication objects should have its own socket connection to the Streaming Processor.

4.3.1.2. Create a Data Object for Publication

The following code example shows how to use the createStreamDataRecord(...) factory
method to create an SpStreamDataRecord object that can be published to the Sybase Aleri Stream-
ing Platform:

/*
* Source Stream is called “input”, and has the following
* record layout:

Publish/Subscribe API for .NET 2.0

52

*
* int, string, double, date, int, string, double, date
*
*/

Object[] fieldData = new Object[8];

fieldData[0] = intCounter++;
fieldData[1] = "do_mystring_" + intCounter;
fieldData[2] = doubleData++;
fieldData[3] = DateTime.Now;
fieldData[4] = intCounter;
fieldData[5] = "do_mystring2_" + intCounter;
fieldData[6] = doubleData++;
fieldData[7] = DateTime.Now;

SpStream stream = sp.getStream(“input”);

/*
* Use the createStreamDataRecord(...) factory method to
* bundle up the stream, fieldData vector, stream op code,
* and stream flags into an SpStreamDataRecord object.
*
* At the moment, the SpStreamDataRecord object is the
* basic unit of publication. You can publish these one at
* a time, or you can publish them as a group (with or
* without transaction blocks).
*
* NOTE: If you wish to publish a group of
* SpStreamDataRecord objects
* as a transaction, then all of the SpStreamDataRecords
* within the group must belong to the same stream.
*/
SpStreamDataRecord sdr = SpFactory.createStreamDataRecord(
stream,fieldData,SpOpCodes. UPSERT,SpStreamFlags. NULLFLAG,
status);

if (sdr == null)
{

System.Console.WriteLine("Could not createStreamDataRecord, status=" +
status.getErrorCode());

System.Console.WriteLine("Error Message:" +
status.getErrorMessage());

return status.getErrorCode();
}

The client application program can create a large number of these SpStreamDataRecord objects,
placing each of them in a common array. Next, you can use one of the SpPublication's publishing
methods to send all rows of the stream data that are stored in the vector, to the Sybase Aleri Streaming
Platform, either individually, using transactions, or envelopes.

The following code example shows how to publish an array of SpStreamDataRecord objects as a
single transaction. In this example, sp is an SpPlatform object that was previously instantiated and
streamInputData is an array that contains a large number of SpStreamDataRecord objects.

/*
* Create the publication object associated with the platform.
*/
String name = "testPub_1";

SpPublication pub = sp.createPublication(name, status);

if (pub == null)
{

System.Console.Writeline("Couldn't create a publication object, status=" +

Publish/Subscribe API for .NET 2.0

53

status);
System.Console.Writeline (“Error message = ” +

status.getErrorMessage());
return status.getErrorCode();

}

/*
* Start the publication object (this opens up a GW I/O
* socket connection). Don't forget to eventually close
* down the SpPublication object(via the “stop()” method,
* later on when you have finished using it,
*/
rc = pub.start();

if (rc != 0)
{

System.Console.Writeline("Couldn't start the publication object.");
System.Console.Writeline (“Error message = ” +

SpUtils.getErrorMessage(rc));
return rc;

}

/*
* Publish the array of SpStreamDataRecord objects as one
* big transaction.
*/

rc = pub.publishTransaction(streamInputData,
SpOpCodes.INSERT,
SpStreamFlags. NULLFLAG,
0);

if (rc != 0)
{

System.Console.Writeline ("Couldn't publish the transaction.");
System.Console.Writeline (“Error message = ” +

SpUtils.getErrorMessage(rc));
return rc;

}

4.3.1.3. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using .NET

Set methods should be called before SpPublication start() method. SpPlatformStatus should be checked
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR_SETTING_EXIT. If you fail to send exit-on-timeout, the status is set to
SP_ERROR_PUB_ERROR_SETTING_EXIT.

If setFinalizer and setExitOnTimeout are called, the second call returns
SP_ERROR_PUB_EXIT_ALREADYSET (setFinalizer) or SP_ERROR_PUB_ACTION_ALREADYSET
(setExitOnTimeout).

The following is an example using .NET 2.0.

void setExitOnTimeout(int timeout, SpPlatformStatus ^status);

void setExitOnClose(SpPlatformStatus ^status);

int getExitOnTimeout();

bool getExitOnClose();

4.3.2. Handling Stale Data

Publish/Subscribe API for .NET 2.0

54

When a publishing source stops sending data to the Sybase Aleri Streaming Platform, the previously
published data is retained. Depending on how long it has been since the last update, you may not want
this data to be used as if it were current. The publish/subscribe APIs include two functions to to enable
publishers to handle this data.

The “setFinalizer” function sets a timeout value (in milliseconds) and an SQL statement action. If the
Sybase Aleri Streaming Platform receives no data on this connection within the specified time, the SQL
statement is run. This SQL statement can perform any of the following actions:

• Delete previously published data.

• Mark previously published data as stale (via a field for that purpose in the data).

• Perform some other determined action on the source streams (and, consequently, the derived streams
from these source streams).

In the following example, if the data is not updated within 2000 milliseconds, it is deleted.

setFinalizer(2000, “delete from Positions where SharesHeld > 1”, spStatus)

The “sendHeartbeat” function sends a keep-alive message to the Sybase Aleri Streaming Platform. This
function can be used to keep the connection alive and prevent the SQL statement from running, if
“setFinalizer” has previously been called. As the following example shows, the “sendHeartbeat” func-
tion takes no arguments.

sendHeartbeat()

4.4. Record/Playback using .NET 2.0

In order to record data from the Sybase Aleri Streaming Platform, a client program needs to create and
configure an SpNetPlatform object in the same way you would for subscribing or publishing. Once an
SpNetPlatform object has been created, you should create an SpNetRecorder object using the factory
method createRecorder(...). If an SpNetRecorder is created successfully, the program calls the start
method. This spawns a background thread which subscribes to the configured streams and records all
events for those streams. Recording will stop and the spawned thread terminate once the configured
number of records have been processed or if the calling program calls stop(). Recording can be mon-
itored by calling the getRecordCount() function which returns the number of records processed so far.

// Initialize SpFactory ...
// Create SpStatus and SpPlatformParms objects ...
// Create SpPlatform object ...

// Create recorder. It needs the following parameters to run
// recorder name (String) : a name to identify the instance of the recording object
// recorder file (String) : name of the file to store the recorded information
// streams : array of strings, containing names of streams to record events for
// flags (int) : recording options (encrypted/RSA/get base data)
// max records (int) : maximum number of data records to record
// status : returns error messages if any

// init recorder parameters - recorder name, filename, streams, etc

SpRecorder recorder = spPlatform.createRecorder(recName, recFile, streams, flags, maxRecords, status);

if (null == recorder) {
Console.WriteLine("Error starting recorder - " + status.getErrorMessage());

Publish/Subscribe API for .NET 2.0

55

// cleanup ... and exit
} else

recorder.start();

// Wait, monitor, etc ...

// To stop recording
recorder.stop();

// Cleanup

To play back recorded data, a client program creates an SpPlayback object using the factory method in
SpPlatform. The 'scale' parameter is of particular interest. This is a double that can be used to scale the
rate of playback as a factor of the original recorded rate (for example, twice as fast or half as slow). Val-
ues -1 to 1 have no effect - data is played back at the rate it was recorded. A value greater than 1 speeds
up playback by that factor, for example, a value of 2 doubles the playback speed. A value less than -1
slows down playback by that factor, for example, a value of -3 will slow down playback by a factor of 3.
The scale can be changed dynamically while playback is in progress.

// Initialize SpFactory ...
// Create SpStatus and SpPlatformParms objects ...
// Create platform object ...

// Create playback. It needs the following parameters to run
// playback name (string) : a name to identify the instance of the playback object
// playback file (string) : name of the file containing previously recorded data
// scale (double) : allows to scale the playback rate
// max records (int) : maximum number of data records to playback
// status : returns error messages if any

// init playback parameters - recorder name, filename, streams, etc

SpPlayback playback = spPlatform.createPlayback(playName, playFile, scale, maxRecords, status);

if (null == playback) {
Console.WriteLine("Error starting recorder - " + status.getErrorMessage());
// cleanup ... and exit

} else {
playback.setSendUpsert(true); // optionally enable converting opcodes to UPSERT
playback.start();

}

// Wait, monitor, etc ...

// To stop recording
playback.stop();

4.5. Special Topics for SP Publication/Subscription Using .NET 2.0

4.5.1. Publication/Subscription in a High Availability (Hot Spare) Configuration

The Sybase Aleri Streaming Platform can be started with a dual server configuration, in which one serv-
er is the primary server and the other is considered the Hot Spare and/or secondary server The Pub/Sub
API can be made aware of the High Availability configuration, and will perform an automatic
switchover to the secondary server if the primary server goes down. See the Administrators Guide for
more details on configuring a hot spare server.

The switchover to a Hot Spare server has an impact on any active SpSubscription and SpPub-
lication objects. In that case, subscription and publication objects have to be re-established on the
secondary server.

The Pub/Sub API is made aware of the High Availability configuration through the configured contents
of the SpPlatformParms object that was passed into SpFactory.createPlatform(). Refer
to the set of overloaded SpFactory.createPlatformParms(...) methods, and the SpPlat-
formParms object for High Availability configuration detail.

Publish/Subscribe API for .NET 2.0

56

4.5.1.1. Subscription Mechanisms in a High Availability Configuration

When the primary server goes down, the underlying subscription thread receives an exception on the
Gateway I/O socket connection that receives the stream updates being delivered from the primary serv-
er. When this event occurs, the Pub/Sub API recognizes that there is a High Availability configuration
and attempts to connect to the secondary server and re-establish the subscription. Before it does this, the
Pub/Sub API has to wait for the secondary server to internally change its state to that of a primary serv-
er. Once a successful connection is made to the secondary, Hot Spare, server and it has become the
primary server, the subscriptions are re-established. During the switchover to the secondary server, the
subscription object delivers several events to the SpObserver objects listening for SpSub-
scriptionEvents.

• SpEventId.EVID_COMMUNICATOR_HALTED

It is delivered to the SpObserver when the exception is received on the socket receiving the sub-
scription messages from the primary server.

• SpEventId.EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It is delivered to the SpObserver when the Pub/Sub API recognizes that a connection attempt
should be made to the Hot Spare server. Note that the High Availability connection parameters were
specified in the SpPlatfromParms object passed to the SpFactory.createPlatform()
method when the underlying SpPlatform was first created.

• SpEventId.EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

It is delivered to the SpObserver when the connection to the Hot Spare server is made successfully.

• SpEventId.EVID_HOT_SPARE_SWITCH_OVER_FAILED

It is delivered to the SpObserver when the connection to the hot spare server fails.

If the switchover to the Hot Spare server in a High Availability Sybase Aleri Streaming Platform config-
uration is a success, the subscription(s) will be re-established using the same delivery flag values that
were originally used when the subscription(s) against the primary server were established. This means
that if the subscription originally requested the BASE snapshot of the stream, the new subscription (now
going against the Hot Spare server) will also request the BASE snapshot of the stream as well. It's up to
you to determine what needs to be done with the contents of the snapshot received from the Hot Spare
server.

When there is a successful switchover to the Hot Spare server, the SpPlatform object takes note of
this, and performs some internal bookkeeping, so that the SpPlatform.getHost() and SpPlat-
form.getPort() methods will return the host name and port number of the new primary server.

4.5.1.2. Publication Mechanisms in a High Availability Configuration

When the primary server goes down during an attempt to send a publication request to the server in a
High Availability configuration, the SpPublication object will detect this and attempt to perform a
switchover to the Hot Spare machine. If the switchover is successful, the publication object will
then attempt to re-send the data to the new primary server. If the publication can not take place, a non-
zero error code is returned to the caller indicating the problem.

You should treat the secondary server within a High Availability configuration as a passive server. The
program should never log on to the secondary server, or attempt to send it data while the primary server
is alive and well. It is the responsibility of the running High Availability configuration to manage both
the primary and secondary servers appropriately. If the primary server in a High Availability configura-
tion goes down, the secondary server will take over and become the new primary server. Once the sec-

Publish/Subscribe API for .NET 2.0

57

ondary server becomes the primary server, data can then be published to the new primary server. Re-
member, the Pub/Sub API waits for the secondary server state to switch over to primary, before publish-
ing data.

Publish/Subscribe API for .NET 2.0

58

Chapter 5. The On-Demand SQL Interface
The client application can query streams, and modify source streams, in the Sybase Aleri Streaming
Platform through the JDBC interface, ODBC interface, or in C/C++ programs through a native interface.

5.1. Aleri SQL Queries and Statements

The Sybase Aleri Streaming Platform accepts a subset of SQL92 for select, insert, update, and
delete statements. A select statement has the form

select [distinct] [top <num>]
<expr> [[as] <name>] [, <expr> [[as] <name>]]*

from <stream>
[where <expr>]
[group by <expr> [,<expr>]*]
[order by <expr>[asc|desc] [,<expr> [asc|desc]]*]

where each expression expr is an expression. See Authoring Reference Guide for a list of functions and
operations that can be used in such expressions. The form of select statements thus allows queries
over one stream only (implying no joins). It does not allow subqueries either, nor advanced features like
“between”. It is sufficient, though, for many queries.

The other SQL statements can be used to insert, update, or delete records from source streams. An in-
sert statement has the form

insert into <stream> (<name> [,<name>]*)
values (<expr> [,<expr>]*)

The column names appear in the second part of the statement, and the corresponding values for those
columns appear in the third part (omitted columns are set to null automatically). An update statement
has the form

update <stream> set <name>=<expr> [,<name>=<expr>]*
[where <expr>]

The optional where clause can be used to limit the updates to those records that pass the expression. A
delete statement has the similar form

delete from <stream> [where <expr>]

The insert, update, and delete statements can be grouped into a single statement by separating
them with semicolons. Thus,

delete from Dept where dn='SWP'; update Emp set dn='' where dn='SWP'

is a legal SQL statement too.

5.2. ODBC Connectivity

The Sybase Aleri Streaming Platform distribution includes a modified version of the Postgres ODBC
driver. Using this driver, C/C++ programs send SQL queries or statements to the Sybase Aleri Stream-
ing Platform. The drivers in third-party applications may also be used. For example, Microsoft Excel®
can be used to pull data from the Sybase Aleri Streaming Platform into a spreadsheet.

The Sybase Aleri Streaming Platform distribution's drivers/ODBC directory contains the source code
and pre-built binaries for:

• Microsoft Windows® 2000 and XP (in the win32 subdirectory)

59

• Linux 64-bit (in the x86_64 subdirectory)

• Solaris 32-bit (in the sun4 subdirectory)

• Solaris 64-bit (in the sun4/sparcv9 subdirectory)

Linux and Solaris require the UNIX® ODBC package, version 2.2.9 or above. See ht-
tp://www.unixodbc.org for more information on installation and configuration.

The win32 subdirectory contains the .msi file for first-time installation of the drivers, and an up-
grade.bat file to replace previously installed drivers. Double-click the .msi file, or the up-
grade.bat file, to perform the installation.

To configure Data Source Names (DSNs) on a Windows computer:

1. Open the Windows Control Panel.

2. Select Administrative Tools.

3. Select Data Sources (ODBC) and configure the DSNs.

This procedure makes these DSNs available for use by third-party tools.

5.3. JDBC Connectivity

The distribution includes a modified version of the Postgres JDBC driver. You can write Java programs
that send SQL queries or statements to the Sybase Aleri Streaming Platform using this driver.

The modified version of the Postgres JDBC driver is included with the distribution in the lib directory.
The JDBC driver JAR file must be in the classpath of the Java program. Load the driver using the fol-
lowing Java statement:

Class.forName("org.postgresql.Driver");

the form of the JDBC connection string is:

jdbc:postgresql://<sp server machine>:<sp sql port num>/<database>

In this version, the <database> portion of the connection string is ignored. The <database> con-
nection will become meaningful when Container objects are implemented. The Java program can then
connect using the DriverManager.getConnection JDBC method and send SQL statements to
the Sybase Aleri Streaming Platform for processing. Refer to the Oracle® JDBC online documentation
[http://www.oracle.com/technetwork/java/javase/tech/index-jsp136101.html] for more details on JDBC.

The On-Demand SQL Interface

60

http://www.oracle.com/technetwork/java/javase/tech/index-jsp136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp136101.html

Chapter 6. The Command and Control Interface
Each Sybase Aleri Streaming Platform instance has a single Command and Control server thread. This
module service handles requests that probe the running Sybase Aleri Streaming Platform for information
(metadata), as well as those that direct it to perform various tasks (quiesce, shutdown, and so forth). The
module is implemented as an XMLRPC server, along with a compact Abyss HTTP server to handle any
Command and Control requests. Any external library that supports XMLRPC can be used to interface to
Command and Control. The XMLRPC-C has been tested from C/C++, and libXMLRPC has been tested
from Java.

6.1. Security for the On-Demand SQL Interface

6.1.1. Authentication Using the SQL On-Demand Interface

Authentication is performed through an initial call to the login function. The login function returns an
authorization token (of type string) which must be passed in all subsequent commands.

6.1.2. Encryption Using the SQL On-Demand Interface

Currently, the lightweight Abyss server HTTP embedded in the Sybase Aleri Streaming Platform does
not implement HTTPS. To get around this issue, and allow secure communications with the Command
and Control interface, a small HTTPS-to-HTTP proxy program is included with the product. It is called
sslwrap and may be invoked as follows:

sslwrap -port CnCPort -accept SecurePort -cert CertFile -key KeyFile -nbio

All Command and Control messages may be posted in a secure way using an HTTPS: address to the Se-
curePort. The certificate and key files must be the same files that are used to start the Sybase Aleri
Streaming Platform.

The sp_server script supplied with the distribution wraps the Sybase Aleri Streaming Platform execut-
able and the sslwrap utility together, so it can be managed by a single script.

61

Chapter 7. Embeddable Sybase Aleri Streaming
Platform

Sybase Aleri Streaming Platform functionality can be embedded into a user process. You can only have
one instance of the Sybase Aleri Streaming Platform in a process, and you can write your own main()
function to instantiate it. It may use the option parsing as a normal sp-opt binary or provide options to
the model in an already parsed form.

You can store the model in an encrypted form in this executable or receive it from an outside source, de-
crypt it and pass as an argument to the Sybase Aleri Streaming Platform. The model hiding the option
can also prevent the users from seeing the model.

The Sybase Aleri Streaming Platform is instantiated and controlled using three classes:

• SpOptions - parsed option structure

• SpServer - instantiation of the Sybase Aleri Streaming Platform

• SpControl - access to control SpServer after it's started. Currently the only supported functionality is
the stopping of the server.

An example of the main() function used by sp-opt as shipped:

#include >stdio.h>
#include "SpOptions.hpp"
#include "SpServer.hpp"
#include "SpControl.hpp"

using namespace std;

int main(int ac, char* av[])
{

SpOptions spo;

if (!spo.parseOptions(ac, av)) {
SpOptions::usage(av[0]);
exit(1);

}
if (spo._stopAfterFirstPass) {

exit(0); //we just exit as the revision is the first thing
printed.

}
if (!spo.isValid())

exit(1);

SpServer::setSignalHandlers();

SpServer server(&spo);
SpControl *control = server.initialize();
if (control == 0)

exit(1);

int r = server.run();
delete control;

return r;
}

62

An example of a custom main() function with an embedded hidden model (also provided in ex-
amples/programming/embedded):

>
#include >stdio.h>
#include "SpOptions.hpp"
#include "SpServer.hpp"
#include "SpControl.hpp"

using namespace std;

int main(int ac, char* av[])
{

char model[] =
">?xml version=\"1.0\" encoding=\"UTF-8\"?"
" >!-- _MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_ -- > "
" >Platform xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" >"

""
" >Store file=\"store\" id=\"store\"/>"
""
" >SourceStream id=\"input\" store=\"store\" ofile=\"output/input.out\"

> "
" >Column datatype=\"int32\" key=\"true\" name=\"a\"/ >"
" >Column datatype=\"string\" key=\"true\" name=\"b\"/ >"
" >Column datatype=\"double\" key=\"true\" name=\"c\"/ >"
" >Column datatype=\"date\" key=\"true\" name=\"d\"/ >"
" >Column datatype=\"int32\" key=\"false\" name=\"intData\"/ >"
" >Column datatype=\"string\" key=\"false\" name=\"charData\"/ >"
" >Column datatype=\"double\" key=\"false\" name=\"floatData\"/ >"
" >Column datatype=\"date\" key=\"false\" name=\"dateData\"/>"
" >/SourceStream>"
""
" >ComputeStream id=\"compute\" istream=\"input\" ofile=
\"output/compute.out\" store=\"store\" >"
" >ColumnExpression key=\"true\" name=\"a
\"> input.a >/ColumnExpression >"
" >ColumnExpression key=\"true\" name=\"b
\">input.b>/ColumnExpression >"
" >ColumnExpression key=\"true\" name=\"c
\">input.c >/ColumnExpression >"
" >ColumnExpression key=\"true\" name=\"d
\">input.d >/ColumnExpression >"
" >ColumnExpression key=\"false\" name=\"intData\">input.intData +
1 >/ColumnExpression >"
" >ColumnExpression key=\"false\" name=\"charData
\" >input.charData>/ColumnExpression >"
" >ColumnExpression key=\"false\" name=\"floatData
\" >input.floatData>/ColumnExpression >"
" >ColumnExpression key=\"false\" name=\"dateData
\" >input.dateData >/ColumnExpression >"
" >/ComputeStream >"
""
" >/Platform >";

SpOptions spo;

spo._debug = 7;
spo._commandPort = 0;
spo._sqlPort = 0;
spo._optimize = true;
spo._hideModel = true;

if (!spo.initOptions()) {
fprintf(stderr, "Failed to validate the options???\n");
SpOptions::usage(av[0]);
exit(1);

}
if (spo._stopAfterFirstPass) {

exit(0); // we just exit as the revision is the first thing
printed.

}
if (!spo.isValid()) {

exit(1);
}

Embeddable Sybase Aleri Streaming Platform

63

SpServer::setSignalHandlers();

SpServer server(&spo);
SpControl *control = server.initialize(model);
if (control == 0)

exit(1);

// erase the model from memory
for (size_t i = strlen(model); i != 0; model[--i] = ' ') {}

int r = server.run();
delete control;

return r;
}

The meaning of the options in SpOptions matches those used on the sp-opt command line. The added
options are:

• bool _hideModel; hides the model from the user.

• string _platformHome; allows you to override the Sybase Aleri Streaming Platform home string.

• _classPath; allows you to override the Java class path string.

• _jvmPath; lets you override the JVM library path.

The values of the last three options are normally read from the environment variables.

Note:

You must use a compiler that is certified for the Sybase Aleri Streaming Platform. Those in-
clude GNU g++ compiler version 4.2.1 for Linux and Solaris and Microsoft Visual C++® com-
piler 2005 for Windows®.

Embeddable Sybase Aleri Streaming Platform

64

Chapter 8. Plug-in Connector Framework
8.1. Introduction

Connectors allow for easy integration of the Sybase server with external data sources and sinks. A Sy-
base data model can include Input Connections and Output Connections. Each connection is associated
with a specific Data Location, where it is configured with a connector and all parameters required by
that connector.

Sybase provides a number of external Adapters that are integrated with the plug-in connector frame-
work. Once the Adapter and an associated connector profile are installed, Data Locations can be defined
using the external Adapter. For more information on the use of these connectors, see the Authoring Ref-
erence .

The Plug-in Connector Framework provides a mechanism to create and add connectors that are not in-
cluded in the set that comes with the Sybase Aleri Streaming Platform. Plug-in connectors can be added
in the field and provide all necessary information to allow the Aleri Studio and server to manage and in-
teract with an external data source or sink. After a connector profile (.cnxml) file is installed, a plug-in
connector can be used in the Data Location Explorer in the same way as built-in connectors.

The plug-in connector framework can also be used by Sybase customers and third parties to extend the
range of connectors with additional custom adapters and data sources or sinks. The plug-in connector's
framework is fully documented, allowing you to develop your own connectors that are fully integrated
with the Aleri Studio.

For example, the Reuters OMM Inbound Plug-in connector may be added to your model in advance of
installing the Reuters OMM Adapter. Once the external Adapter is installed, simply fill in the appropri-
ate connector profile parameters to use it.

Similarly, you may create your own connector profiles to control custom Adapters. These custom Ad-
apters are simply data source/sink applications which themselves are built with Sybase's Pub/Sub API.
By using the Plug-in Connector Framework, a connector can start and stop the Adapter and (optionally)
provide discovery.

8.2. Plug-in Connector Profile

The profile is an XML file that contains the commands used by the Sybase components to start and stop
the external Adapter or application, to optionally run data discovery, and other information that allows
the external Adapter/application to be configured from the Aleri Studio. The framework defines the
structure of the XML (.cnxml) file that contains the connector profile.

The example below shows a connector profile that uses four of the utilities shipped with the Sybase
Aleri Streaming Platform (sp_convert, sp_upload, sp_cli, sp_discXMLfiles) to fully define a function-
al plug-in connector that supports browsing a directory of files, schema discovery, the creation of a
source stream and data loading. This example profile, simplified_xml_input_plugin.cnxml,
can be found in the $PLATFORM_HOME/lib/connections directory. The directory is included in
the standard Sybase Aleri Streaming Platform distribution package.

Some of the very long lines below have been split for readability and formatting issues. If you are using
this to create your own connector XML file, make sure that all command parameters are a single line, re-
gardless of length.

<?xml version="1.0" encoding="UTF-8"?>

<Connector type="input" external="true"
id="simplified_xml_input_plugin"
label="Simplified external XML file input plugin connector"

65

descr="Example of uploading an XML file through a simple external connector"
>

<Library file="simple_ext" type="binary"/>

<!--
the special section contains the special internal parameters
which are prefixed with "x_". Although these are parameters,
the framework requires them to be defined using the <Internal
.../> element. They are hidden from the user in the Aleri Studio.

-->
<Special>

<Internal id="x_initialOnly"
label="Does Initial Loading Only"
descr="Do initial loading, or the continuous loading"
type="boolean"
default="true"

/>
<Internal id="x_addParamFile"
label="Add Parameter File"
type="boolean"
default="false"

/>
<Internal id="x_killRetryPeriod"
label="Period to repeat the stop command until the process exits"
type="int"
default="1"

/>

<!--
Convert a file of xml record to Sybase Binary format using sp_convert,
pipe into the sp_upload program, naming the upload connection:
$platformStream.$platformConnection

-->
<Internal id="x_unixCmdExec"
label="Execute Command"
type="string"
default="$PLATFORM_HOME/bin/sp_convert

-p $platformCommandPort
<"$directory/$filename" |
$PLATFORM_HOME/bin/sp_upload
-m $platformStream.$platformConnection
-p $platformCommandPort"

/>
<Internal id="x_winCmdExec"
label="Execute Command"
type="string"
default="$+/{$PLATFORM_HOME/bin/sp_convert}

-p $platformCommandPort
<"$directory/$filename" |
$+/{$PLATFORM_HOME/bin/sp_upload}
-m $platformStream.$platformConnection
-p $platformCommandPort"

<!--
use the sp_cli command to stop an existing sp_upload connection named:
$platformStream.$platformConnection

-->
<Internal id="x_unixCmdStop"
label="Stop Command"
type="string"
default="$PLATFORM_HOME/bin/sp_cli

-p $platformCommandPort
'kill every {$platformStream.$platformConnection}'
</dev/null"

/>
<Internal id="x_winCmdStop"
label="Stop Command"
type="string"
default="$+/{$PLATFORM_HOME/bin/sp_cli}

-p $platformCommandPort "kill every

Plug-in Connector Framework

66

{$platformStream.$platformConnection}" <nul"
/>

<!--
use the sp_discXMLfiles command to do data discovery.
The command below will have '-o "<temp file>"' added to it. It
will write the discovered data in this file.

-->
<Internal id="x_unixCmdDisc"
label="Discovery Command"
type="string"
default="$PLATFORM_HOME/bin/sp_discXMLfiles -d "$directory""

/>
<Internal id="x_winCmdDisc"
label="Discovery Command"
type="string"
default="$+/{$PLATFORM_HOME/bin/sp_discXMLfiles}

-d "$+/{$directory}""
/>

</Special>

<Section>

<!--
Any parameter defined here, is visible in the Aleri Studio, and may
be configured by the user at runtime in the data location explorer.
These are defined according to the $PLATFORM_HOME/etc/Connector.xsd
schema.

-->

<Parameter id="filename"
label="File"
descr="File to upload"
type="tables"
use="required"

/>
<Parameter id="directory"
label="path to file
descr="directory to search"
type="directory"
use="required"

/>
</Section>

</Connector>

To see how this works, fire up an instance of the Aleri Studio. You can use the following steps to test
this plug-in connector:

1. Create a new data model using the visual editor or open an existing one.

2. Go to the Data Location Explorer and select the plugin section.

3. Click the Create Data Location icon on the top of the panel

4. Enter a name like "xmlInputPlug-in".

5. From the pop-up lists of connector types, choose Simplified external file input plugin connector.

6. In the right panel labeled Basic

a. Enter a dummy file name, like foo.

b. Click in the Path to File attribute and navigate the directory selection dialog to

Plug-in Connector Framework

67

$PLATFORM_HOME/examples/input/xml_tables.

7. Now the Data Location is complete. After closing the Data Location panel, you can right click and
discover and drag and drop any of the discovered tables onto the authoring palette in exactly the
same way.

This simple plug-in and Data Location uses only a few of the supported system parameters and features
of the Plug-In Connector Framework. The following sections contain the comprehensive list of all avail-
able parameters and command with definitions.

8.3. System Parameters and Commands

See examples in $PLATFORM_HOME/lib/connections/PLUGIN_TEMPLATE.cnxml for a
sample cnxml file that may be copied and customized. It has all possible internal parameters embedded
in it, and has comment blocks indicating their usage.

Parameters

x_paramFile Specifies the file name that where the connector framework writes all intern-
al and user-defined parameters. It may use other internal parameters in spe-
cifying the file name. For example:

/tmp/mymodel.$platformStream.
$platformConnector.$platformCommandPort.cfg

Type: string

x_paraFormat Set to "prop", "shell" or "xml" to choose the format for the parameter file.

Type: string

x_addParamFile It determines if the parameter file name is automatically appended to all
x_cmd* strings. For example, if you specify the command as "cmd -f", and
this is set to true, the actual command that is executed will be "cmd -f
<value of x_paramFile>.

Type: Boolean

x_initialOnly If true, does initial loading only. Set to false for continuous loading. Initial
loading is useful for connectors that start, load some static data then finish,
thus allowing another connector group to start up in a staged loading scen-
ario.

Type: Boolean

x_killRetryPeriod If this parameter is >0 the x_{unix,win}CmdStop command will be retried
every x_killRetry seconds, until the framework detects that the
x_{unix,win}CmdExec command has returned. If it is equal to zero, only
run the x_{unix,win}CmdStop once and assume that it has stopped the
x_{unix,win}CmdExec command.

Type: integer

Plug-in Connector Framework

68

8.4. Read Only System Parameters

These parameters are filled in and available only when a model is started and the Sybase Aleri Stream-
ing Platform is running. You cannot use these parameters for the discovery command.

platformHost name of the host where the platform runs

platformCommandPort number of the platform control port

platformSsl 1 if SSL is used, 0 otherwise

platformSqlPort number of the Sybase Aleri Streaming Platform, SQL port

platformAuth authentication of the Sybase Aleri Streaming Platform, with one of:
"none", "pam", "rsa", "gssapi"

platformStream stream on which this connector runs

platformConnection name of this connector

8.5. Commands

Plug-in connector commands fall into two categories: those that run on the same host as the Aleri Stu-
dio, and those that run on the same host as the Sybase Aleri Streaming Platform. The discovery com-
mands, x_unixDiscCmd and x_winDiscCmd always run on the Aleri Studio host. All other commands
run on the Sybase Aleri Streaming Platform host.

The Aleri Studio and the Sybase Aleri Streaming Platform are frequently on the same host so the devel-
opment of all command and driving scripts for the plug-in are straightforward. However, in the case of
remote execution, when the Aleri Studio and the Sybase Aleri Streaming Platform are running on differ-
ent hosts, the configuration becomes more complex.

For example, if the Aleri Studio is running on a Windows host, and the Sybase Aleri Streaming Platform
is set up through the Aleri Studio to execute on a remote Linux host, it implies that the discovery com-
mand and the discovery file name that the framework generates are running/generated in a Windows en-
vironment. The path to the discovery file is a Windows-specific path with drive letter and '\' characters
used as path separators. In this case, the developer of the connector should write the discovery command
to run in a Windows environment while coding all other commands to remotely execute on the Linux
box via a user-configured ssh or rsh command.

x_unixCmdConfig,
x_winCmdConfig

The configure command should do any required parsing and/or checking of
the parameters. It may also convert the parameters into the real format ex-
pected by the execution command by reading, parsing, and re-writing the
parameter file . If the configure command fails (non-zero return), it's repor-
ted as a reset() error, and the connector fails to start.

x_unixCmdExec,
x_winCmdExec

When the Sybase Aleri Streaming Platform starts the connector, it executes
this command with its ending indicating that the connector has finished.

x_unixCmdStop,
x_winCmdStop

The stop command runs from a separate thread, it should stop all processes
created with the x_{unix,win}CmdExec commands, thus causing the
x_{unix,win}CmdExec to return.

x_unixCmdClean,
x_winCmdClean

The clean command runs after the the Sybase Aleri Streaming Platform has
stopped the connection, that is, when x_{unix,win}CmdExec returns.

Plug-in Connector Framework

69

x_winDiscCmd This command is for discovery. It should write a discovery file into the file
name passed to it. The parameter -o "<temporary disc filename>" argument
is appended to this command before it is executed.

<discover>
<table name="table_name_1" />

<column name="col_name_1" type="col_type_1"/>
.
.
.

<column name="col_name_k" type="col_type_k"/>
</table>

.

.

.

<table name="table_name_n" />
<column name="col_name_1" type="col_type_1"/>

.

.

.
<column name="col_name_1" type="col_type_1"/>

</table>
</discover>

8.6. User-Defined Parameters and Parameter Substitution

These internal parameters and any number of user-defined parameters can be created in a connector xml
(cnxml) file. All parameters, system and user-defined, can be referenced in the command and/or script
arguments. These parameters behave it in a similar way to shell substitution variables. The simplest ex-
ample is from the previously described simplified_xml_input_plugin.cnxml file. Please
note that some of the very long lines below have been split for readability and formatting issues.

<Internal id="x_unixCmdExec"
label="Execute Command"
type="string"
default="$PLATFORM_HOME/bin/sp_convert
-p $platformCommandPort
<"$directory/$filename"
| $PLATFORM_HOME/bin/sp_upload
-m $platformStream.$platformConnection -p
$platformCommandPort" />

External environment variables, such as PLATFORM_HOME, may be expanded, as well as internal sys-
tem parameters (platformCommandPort) and user-defined parameters (filename). The full se-
mantics for parameter expansion is:

$name
${name}
${name=value?substitution[:substitution]}
${name<>value?substitution[:substitution]}
${name!=value?substitution[:substitution]}

Plug-in Connector Framework

70

${name==value?substitution[:substitution]}
${name<value?substitution[:substitution]}
${name<=value?substitution[:substitution]}
${name>value?substitution[:substitution]}
${name>=value?substitution[:substitution]}

All forms with {} may have a "+" added after "$" (for example, $+{name}). The presence of "+" means
that the result of the substitution will be parsed again and any values in it substituted.

"\" escapes the next character and prevents any special interpretation.

The conditional expression compares the value of a parameter with a constant value and uses either the
first substitution on success or second substitution on failure. The comparisons "==" and "!=" try to
compare the values as numbers. The "=" comparisons and "<>" try to compare values as strings. Any
characters like "?", ":" and "}" in the values must be shielded with "\". The characters "{" and "}" in the
substitutions must be balanced, all unbalanced braces must be shielded with "\". The quote characters
are NOT treated as special.

This form of substitution, $+{...}, may contain references to other variables. This is implemented by
passing the result of a substitution through one more round of substitution. The consequence is that extra
layers of "\" may be needed for shielding. For example, the string

$+{name=?\\\\}

would produce one "\" if the parameter "name" is empty. On the first pass each pair of backslashes is
turned into one backslash, and then on the second pass "\\" turns into a single backslash.

Special substitution syntax for Windows convenience:

$/{value}

$+/{value}

Replaces all the forward slashes in the value by backslashes, for convenience of specifying the Windows
paths that otherwise would have to have all the slashes escaped.

$%{value}

$+%{value}

Replaces all the '%' with '%%' as escaping for Windows.

If the resulting string is passed to shell or cmd.exe for execution, shell or cmd.exe would do its own sub-
stitution too.

Here is an example using some of the more powerful substitution features to define the execution com-
mand as in the simple example. However, you may make use of the conditional features to support op-
tional authentication/encryption and an optional user-defined date format.

<Internal id="x_unixCmdExec"
label="Execute Command"
type="string"
default="$PLATFORM_HOME/bin/sp_convert

${platformSsl==1?-e}
$+{dateFormat<>?-m '$dateFormat'}
-c '$+{user=?user:$user}:$password'
-p $platformCommandPort

Plug-in Connector Framework

71

<"$directory/$filename" |
$PLATFORM_HOME/bin/sp_upload
${platformSsl==1?-e} -m
$platformStream.$platformConnection
-c '$user:$password' -p $platformCommandPort"

/>

8.7. Notes on Auto Generated Parameter Files

The basic plug-in framework, when started, writes its set of parameters (system and user-defined) to a
parameter file. This file is written in either:

• Java properties

• shell assignments

• simple XML format

Commands then have full access to the parameter file.

If you would like to see how the commands are used, suppose you added the following to the previous
example, simplified_xml_input_plugin.cnxml,

<Internal id="x_paramFile"
label="Parameter File"
type="string"
default="/tmp/PARAMETER_FILE.txt"

/>
<Internal id="x_paramFormat"

label="Parameter Format"
type="string"
default="prop"

/>
<Internal id="x_addParamFile"

label="Add Parameter File"
type="boolean"
default="false"

/>

when the connector starts, it writes in /tmp/PARAMETER_FILE.txt

directory=/home/sjk/work/aleri/cimarron
/branches/3.1/examples/input/xml_tables
filename=trades.xml
platformAuth=none
platformCommandPort=31415
platformConnection=Connection1
platformHost=sjk-laptop
platformSqlPort=22200
platformSsl=0
platformStream=Trades

Or a full list of all parameters, in the Java properties format. Note the format could have been specified

Plug-in Connector Framework

72

as "shell" for shell assignments, or as "xml" for a simple XML format.

When x_addParamFile is specified as true,

<Internal id="x_addParamFile"
label="Add Parameter File"
type="boolean"
default="true"
/>

the argument /tmp/PARAMETER_FILE.txt is added to all commands prior to being executed.

8.8. A Parameter of Type configFilename

If you create a user-defined parameter of type confgFilename, such as:

<Parameter id="ConfigFile"
label="Connector configuration filename"
type="configFilename"
default=""
/>

Then clicking in the value portion of this field in the Data Location Explorer will bring up a file selector
dialog, allowing the user to choose a file on the local file system. Right-clicking on the read-only name
brings up a user interface gesture, allowing for editing of the file contents. This provides the connector
author a way to specify user editable configuration files.

8.9. Other Parameter Types

The Connector.xsd schema allows several useful types for user-defined parameters, including:

string simple text

int integer

uint unsigned integer

range fixed range integer

double double precision floating point

choice choose from fixed number of choices

filename filename (brings up file selector dialog

directory directory (brings up a directory selector dialog

tables A string that is automatically filled in when a stream is created via the discov-
ery mechanism.

password text field that is hidden when entering data into it.

configFilename filename (brings up a fileselector and file editor).

Plug-in Connector Framework

73

The other types in the Connector.xsd schema used in the internal connector framework but should
not be used when creating plug-in connectors. Those include runtimeFilename, runtimeDirectory, text,
query, and permutation.

Note

The Start/Stop commands are run by the Sybase Aleri Streaming Platform while discovery is
run by the Aleri Studio. This distinction can effect use of the aforementioned parameters.

Plug-in Connector Framework

74

Appendix A. Reference Guide to the Java Object
Model
A.1. Objects for Subscription

The following objects have been defined to use for creating applications that subscribe to the Sybase
Aleri Streaming Platform.

A.1.1. SpFactory Object

The SpFactory object is used by the client code to create the set of objects that are required to use/
control the Pub/Sub API. The SpFactory interface includes the following methods:

public static SpPlatform createPlatform(SpPlatformParms parms,
SpPlatformStatus status);

public static SpPlatformParms createPlatformParms(String host,
int port, String user, String password, boolean isEncrypted);

public static SpPlatformParms createPlatformParms(String host,
int port, String user, String password, boolean isEncrypted,
boolean useRsa);

public static SpPlatformParms createPlatformParms(String host,
int port, String user, String password, boolean isEncrypted,
String hotSpareHost, int hotSparePort);

public static SpPlatformStatus createPlatformStatus
(String host, int port, String appName, String user,
String password, boolean isEncrypted, String hotSpareHost,
int hotSparePort);

public static SpPlatformStatus createPlatformStatus();
public static SpStreamDataRecord createStreamDataRecord(SpStream stream,

Collection fieldData, int opCode, int flags, SpPlatformStatus status);

Details:

• The createPlatform (SpPlatformParms parms, SpPlatformStatus status)
method returns a reference to an SpPlatform object if the Pub/Sub API was able to connect to the Sy-
base Aleri Streaming Platform and initialize properly.

Before calling this method, you have to use one of the overloaded SpFact-
ory.createPlatformParms(...) methods, and the SpFact-
ory.createPlatformStatus() method, to create the two parameters required by the Sp-
Factory.createPlatform (SpPlatformParms parms, SpPlatformStatus
status) method. The contents of the SpPlatformParms parameter control how the connection
and authentication from the Pub/Sub API to the Sybase Aleri Streaming Platform takes place. If the
connection can not be established, the createPlatform(SpPlatformParms parms, Sp-
PlatformStatus status) method returns null, and a non-zero error code is set within the Sp-
PlatformStatus object (see Section A.1.3, “SpPlatformStatus Object” for information on how to
retrieve the error code/message).

• The createPlatformParms(String host, int port, String user, String
password, boolean isEncrypted) method returns an SpPlatformParms object that is
ultimately passed as the first parameter to the SpFact-
ory.createPlatform(SpPlatformParms parms, SpPlatformStatus status)
method. This createPlatformParms method call sets up for basic connectivity (user name/
password are used for authentication). If the isEncrypted flag is set to true, then https will be
used to connect to the Command and Control process, and SSL socket connections will be made to
the Gateway I/O process. If the isEncrypted flag is set to false, then http will be used to con-
nect to the Command and Control process and regular (non-SSL) socket connections will be made to
the Gateway I/O process.

75

• The createPlatformParms (String host, int port, String user, String
password, boolean isEncrypted, boolean useRsa) method returns an SpPlat-
formParms object that is ultimately passed as the first parameter to the SpFact-
ory.createPlatform(SpPlatformParms parms, SpPlatformStatus status)
method. This method also adds the useRsa flag. If this flag is set to true, the Pub/Sub API will at-
tempt to authenticate to the Sybase Aleri Streaming Platform using the RSA mechanism. To use this
mechanism, the Sybase Aleri Streaming Platform must be started with the -k option, whose argument
specifies the path to the directory where the user's public RSA key file is stored —. See the Adminis-
trators Guide for information about key generation and placement.

When the Sybase Aleri Streaming Platform is using RSA authentication, the password of the Sp-
PlatformParms object must specify the user's private RSA key file. For example, for a user called
foo, there would be two RSA key files: the file foo (containing the public RSA key for user foo)
and the file foo.private.der (containing the private RSA key for user foo in DER format). The
public RSA key file called foo must be placed in a directory specified by the -k option to the Sybase
Aleri Streaming Platform during startup.

The private RSA key file called foo.private.der must be placed on the client machine that is
using the Pub/Sub API to connect to the server, and is specified using the password parameter of the
createPlatformParms(...) method.

There are five variations of the createPlatformParams method; all accomplish the same creation of an
SpPlatformParams object:

• basic

• basic with UseRSA flag

• basic with HotSpare

• HotSpare with UseRSA

• Kerberos authentication with or without the Hotspare

Choose the method that suits your needs.

• The createPlatformParms(String host, int port, String user, String
password, boolean isEncrypted, String hotSpareHost, int hotSpare-
Port) method returns an SpPlatformParms object that is ultimately passed as the first parameter to
the SpFactory.createPlatform(SpPlatformParms parms, SpPlatformStatus
status) method. In addition to the basic connectivity parameters previously mentioned, this meth-
od adds two more parameters: String hotSpareHost and int hotSparePort. An Sp-
PlatformParms object created with this factory method will cause the Pub/Sub API to use a High
Availability configuration. In this configuration, the Pub/Sub API automatically attempts to switch
over and use the secondary, Hot Spare, server if the primary server goes down. See Section 2.4.6,
“Publication/Subscription in a High Availability (Hot Spare) Configuration” for more information on
the High Availability configuration.

• The createPlatformParms(String host, int port, String user, String
password, boolean isEncrypted, boolean useRsa, String hotSpareHost,
int hotSparePort) method returns an SpPlatformParms object that is ultimately passed as
the first parameter to the SpFactory.createPlatform (SpPlatformParms parms,
SpPlatformStatus status) method. This method allows you to set up the Pub/Sub API for
RSA authentication and High Availability (Hot Spare), see the previous createPlatform-
Parms(...) methods for a description of the RSA authentication and High Availability mechan-
isms.

• The createPlatformStatus() method returns an SpPlatformStatus object that is passed
as the second parameter to the SpFactory.createPlatform (SpPlatformParms

Reference Guide to the Java Object Model

76

parms, SpPlatformStatus status) method, in order to return status information to the
caller. It is also used in several other methods within the Pub/Sub API that are needed to retrieve error
code/status information. See the SpPlatformStatus object.

• The createPlatformParms (String host, int port, String appName,
String user, String password, boolean isEncrypted, String hotSpare-
Host, int hotSparePort) method returns an SpPlatformParms object initialized to au-
thenticate using the Kerberos V5 mechanism. The Sybase Aleri Streaming Platform must have been
started with the option “-V gssapi”". The parameter host should be the fully qualified domain name of
the machine running the Sybase Aleri Streaming Platform The credentials for the Kerberos account
are “user” and “password”. The string that points to an entry in the login configuration file in effect
when the java virtual machine is started is “appname”. This configuration file can be specified as a
command line define (-Djava.security.auth.login.config=) or in the security folder of the Java installa-
tion. For more information on configuring security for Java, refer to: ht-
tp://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.htm
l.

• The createStreamDataRecord(SpStream stream, Collection fieldData, int
opCode, int flags, SpPlatformStatus status) method returns an SpStream-
DataRecord object that is used in the SpPublication object in order to publish data to the Sy-
base Aleri Streaming Platform.

The SpPlatformStatus object is passed in as the last parameter. If createStreamDataRe-
cord fails, a null is returned to the caller and the SpPlatformStatus object indicates the error
condition.

A.1.2. SpPlatformParms Object

The SpPlatformParms object is used by the SPFactory.createPlatform (Sp Plat-
formParms. parms, SpPlatformStatus status). to create the SpPlatform object. You can
create it using one of the overloaded SpFactory.createPlatformParms(...) methods de-
scribed in Section A.1.1, “SpFactory Object”. The SpPlatformParms object contains all of the con-
nection information required by the SpPlatform object to make the appropriate connection(s) to the
Sybase Aleri Streaming Platform. This information includes the host and port of the Command and Con-
trol Process, username, password, and flags indicating whether to use encryption, RSA authentication,
Kerberos authentication, or the High Availability (Hot Spare) mechanism. The SpPlatformParms
interface includes the following methods:

public String getHost();
public int getPort();
public String getUser();
public String getPassword();
public boolean isEncrypted();
public String getHotSpareHost();
public int getHotSparePort();
public boolean useRsa();
public String getAuthentication();
public String getAppName();
public void setGatewayHost(String host);
public String getGatewayHost();

Details:

• The getHost() method returns a string indicating the host name of the computer on which the
Streaming Processor's Command and Control process is running.

Reference Guide to the Java Object Model

77

• The getPort() returns an integer indicating the port number of the Command and Control process.

• The getUser() method returns a string containing the username for authenticating to the Sybase
Aleri Streaming Platform.

• The getPassword() method returns a string containing the password that authenticates to the Sy-
base Aleri Streaming Platform. For RSA authentication, the password contains the file name of the
user's private RSA key file.

• The isEncrypted() method returns a Boolean indicating whether or not encrypted connections
used for the Command and Control and Gateway I/O processes. If the encryption mechanism is en-
abled, the Command and Control process connection will be made using https, while the Gateway I/O
process will make SSL socket connections.

• The getHotSpareHost() method returns a string containing the host name of the secondary High
Availability Streaming Processor. See the Administrators Guide for details on setting up a High
Availability configuration.

• The getHotSparePort() method returns an integer indicating the port number of the secondary
(Hot Spare) server in the High Availability configuration.

• The useRsa() method returns a boolean indicating if RSA authentication will be used when at-
tempting to make connections to the Command and Control and Gateway I/O processes. If the RSA
authentication mechanism is enabled, the password instance variable of the SpPlatformParms object
must be set to the filename of the user's private RSA key file. If the RSA authentication mechanism is
disabled, then the normal user name/password authentication mechanism will be used. See the Admin-
istrators Guide for RSA key file generation.

When using the Pub/Sub RSA authentication mechanism, the Streaming Processor must be started us-
ing the -k public_rsa_key_directory option See the Administrators Guide for more inform-
ation.

• The getAuthentication() method returns a string describing the authentication mechanism
currently in use. The SpPlatformParms provides predefined string constants for the authentica-
tions currently supported. These are:

public static final String AUTH_PAM = "PAM";
public static final String AUTH_RSA = "RSA";
public static final String AUTH_KERBV5 = "KERBV5";

• The getAppName() returns the string for the application name used when creating the SpPlat-
formParms object. If Kerberos authentication was not used, it returns NULL.

• The getGatewayHost() method returns the name of the gateway machine if it has been explicitly
set by the user.

• The setGatewayHost() method sets the gateway machine which connects to the API. If set, the
API ignores the value returned from the Sybase Aleri Streaming Platform. This is useful if the Sybase
Aleri Streaming Platform is running on a machine without Domain Name System (DNS) entries.

A.1.3. SpPlatformStatus Object

The SpPlatformStatus object is used by several of the Pub/Sub API methods to return status in-
formation back to the caller. The SpPlatformStatus interface includes the following methods:

Reference Guide to the Java Object Model

78

public int getErrorCode();
public String getErrorMessage();
public boolean isError();

Details:

• The getErrorCode() method returns an integer. If a problem was detected by the method Sp-
PlatformStatus object was passed into, the value is non-zero; otherwise, zero is returned to in-
dicate success.

• The getErrorMessage() method returns a string containing the error message text.

• The isError() method returns a boolean: true if an error was detected, false if no error was
detected.

A.1.4. SpPlatform Object

The notion of the Sybase Aleri Streaming Platform has been abstracted into an object of the SpPlatform
type.

An SpPlatform object is created using the SpFact-
ory.createPlatform(SpPlatformParms parms, SpPlatformStatus status)
method. Once instantiated, the SpPlatform object offers the following Sybase Aleri Streaming Plat-
form functionality:

public String getUrl();
public String getUser();
public String getPassword();
public String getHost();
public String getGatewayHost();
public String getXMLModelVersion();
public int getPort();
public int getGatewayPort();
public int getDateSize();
public int getAddressSize();
public int getQuiesced();
public int getPrimaryServerFlag();
public Vector getBaseStreams();
public Vector getDerivedStreams();
public Vector getStreams();
public SpStream getStream(String streamName);
public SpStream getStream(int streamId);
public SpStreamDefinition
getStreamDefinition(String streamName);
public SpStreamDefinition
getStreamDefinition(int streamId);
public boolean isBigEndian();
public boolean isConnected();
public boolean isEncrypted();
public boolean useRsa();
public int shutdown();

public String getConfig(SpPlatformStatus status);
public int loadServerConfigFile(String configFile, String flags);
public int loadConfigString(String configString, String flags);
public int loadConfigStringApplyingConversion(String configString, \

Reference Guide to the Java Object Model

79

String flags, String conversionConfigString);

public int addStreamToClient(int clientHandle, String streamName);

public int removeStreamFromClient(int clientHandle, String streamName);

public SpSubscription createSubscription(String name,
int flags, int deliveryType, SpPlatformStatus status);

public SpSubscriptionProjection createSubscriptionProjection(String name,
int flags, int deliveryType, String sqlQuery,
SpPlatformStatus status);

public SpPublication createPublication(String name,
SpPlatformStatus status);

Most of the SpPlatform methods communicate internally with the Command and Control process
through the XMLRPC protocol. The SpPlatform methods allow you to retrieve Sybase Aleri Streaming
Platform configuration information, source and derived stream objects, and so forth.

The getUrl() method returns a string representing the URL to connect to the Command and Control
Process through XMLRPC. This string depends on whether the SpPlatform object was created with
encryption enabled. Refer to Appendix F, Using Encryption with Java Client Applications for more in-
formation. The isEncrypted() method can be used to check if encryption was enabled when the Sp-
Platform object was instantiated.

The getUser() and getPassword() methods return strings that contain a username and password.
These values are used internally for authentication when connecting to the Command and Control and
Gateway I/O processes.

The getHost() method returns the name of the host machine on which the Command and Control
Process is running. The getGatewayHost() method returns the name of the host machine on which
the Gateway I/O Process is running. These two Sybase Aleri Streaming Platform processes reside on the
same machine.

The getPort() and getGatewayPort() methods return the Command and Control port number
and Gateway I/O port number, respectively. They are different because they refer to two different pro-
cesses.

The getXMLModelVersion() method returns the XML model version used by the Sybase Aleri
Streaming Platform.

The getDateSize() method returns the size of the datetime field type. If the Pub/Sub API is used to
communicate with the Gateway I/O process, the datetime field type size is handled transparently to the
user. If the client application uses custom Gateway I/O code, it will have to take care of this, as well as
endianness, when sending datetime fields to the Sybase Aleri Streaming Platform.

The getAddressSize() method returns a value representing how the instance of the running Sybase
Aleri Streaming Platform Server was compiled (either 32 or 64 bit).

The getQuiesced() method returns an integer that represents the “quiesced” state of the Sybase
Aleri Streaming Platform. If successful, the method will return either a zero (false) or a one (true).
If command execution fails, an error code is returned.

Note:

The error message associated with the error code can be retrieved by calling
SpUtils.getErrorMessage(rc), where “rc” is the return code sent back from the

Reference Guide to the Java Object Model

80

getQuiesced() call.

The getPrimaryServerFlag() method returns an integer indicating whether or not the targeted
server is considered to be the primary server in a High Availability (Hot Spare) configuration. It returns
1 for yes and 0 for no. If the command cannot be executed successfully, an error code (neither 0 nor 1) is
returned.

You can use the Pub/Sub API to explicitly establish a connection to the secondary server within a High
Availability (Hot Spare) configuration. If this happens, calling getPrimaryServerFlag() on the
secondary server returns a value of zero, indicating that it's not a primary server.

The next group of methods is used to return stream metadata from the Sybase Aleri Streaming Platform.
The metadata/schema for a stream is represented within the Pub/Sub API as an object of type SpStream.
Refer to Section 2.3.2.2, “SpSubscription Example” for an example. The getBaseStreams() meth-
od returns a vector of SpStream objects representing all of the source streams residing on the Sybase
Aleri Streaming Platform. Similarly, getDerivedStreams() returns a vector of SpStream objects
that represents all of the derived streams residing on the Sybase Aleri Streaming Platform. The get-
Streams() method returns a vector of SpStream objects that represents “all” streams (both source and
derived streams) residing on the Sybase Aleri Streaming Platform. For a particular stream, you can look
up the stream by its "name" or “id” using the getStream(String streamName) or get-
Stream(int streamId) method, respectively.

The getStreamDefinition (String streamName) and getStreamDefinition (int
streamId) methods return an object of type SpStreamDefinition for the specified streamName
or streamId, respectively. Refer to Section A.1.6, “SpStreamDefinition Object” for more information.

The isBigEndian() method returns true if the Streaming Processor is running on a big-endian ma-
chine, or false if the Streaming Processor is running on a little-endian machine.

The isConnected() method returns true if the SpPlatform object is currently connected to the
Sybase Aleri Streaming Platform. Otherwise, it returns false. For example, if the client application
program issues a shutdown, subsequent isConnected() calls return false.

Once an SpPlatform object is shut down, you should set its reference to null. Later on, another Sp-
Platform object can be instantiated using the SpFactory.createPlatform(...) method.

The shutdown() method alerts the Command and Control Process to shut down the Sybase Aleri
Streaming Platform. This causes all socket connections to the Sybase Aleri Streaming Platform to be
closed. If the application has subscriptions running at the time of a shutdown, the SpObserver objects
of those subscriptions are notified before the shutdown process starts.

The getConfig(SpPlatformStatus status) method returns a String containing the AleriML
configuration currently being executed by the running Sybase Aleri Streaming Platform instance. If
there is an error in retrieving the AleriML configuration information from the server, this method will
return an empty string, and the error code will be stored in the SpPlatformStatus parameter passed
into the method.

The loadServerConfigFile(String configFile, String flags) method attempts to
load an AleriML configuration file into the running Sybase Aleri Streaming Platforminstance. The
flags parameter is used to provide control information during the AleriML configuration file load at-
tempt. If additional control information is not needed, the value of the flags parameter can be an empty
string. Consult the Administrators Guide for more information on loading AleriML configurations, and
the various options that can be specified in the flags parameter. If the AleriML configuration file was
loaded successfully, the method returns zero. If the AleriML configuration file could not be loaded suc-
cessfully, the method returns a non-zero error code. In addition, when loading an AleriML configuration
file into the server, inspect the log messages located on the server for more information.

The loadConfigString(String configString, String flags) method attempts to
load the AleriML configuration stored in the configString parameter, into the running Sybase Aleri

Reference Guide to the Java Object Model

81

Streaming Platform instance. The flags parameter is used to provide control information during the
AleriML configuration string load attempt. If additional control information is not needed, the value of
the flags parameter can be an empty string. If the AleriML configuration was loaded successfully, the
method returns zero. If the AleriML configuration could not be loaded successfully, the method will re-
turn a non-zero error return code. In addition, when loading an AleriML configuration into the server,
inspect the log messages located on the server for more information.

The loadConfigStringApplyingConversion (String configString, String
flags, String conversionConfigString) method attempts to load the AleriML configura-
tion stored in the configString parameter, into the running Sybase Aleri Streaming Platform in-
stance. The flags parameter is used to provide control information used during the AleriML configur-
ation string load attempt. If additional control information is not needed, the value of the flags parameter
can be an empty string.

The conversionConfigString parameter provides an AleriML model that is used to apply specif-
ic conversion instructions during a dynamic modification of the Sybase Aleri Streaming Platform's XML
configuration. Consult the Administrators Guide for more information on loading AleriML configura-
tions, and the various options that can be specified in the flags parameter. If the XML configuration was
loaded successfully, the method returns zero. If not, the method returns a non-zero error code. You can
get more information about the dynamic load process from the server's log messages.

The SpPlatform object provides two subscription-related methods if you want to write your own
low-level Gateway I/O code for the subscription. These methods are addStreamToClient(int
clientHandle, String streamName) and removeStreamFromClient(int cli-
entHandle, String streamName). These methods are part of the SpPlatform interface because
they are XMLRPC calls that are used to manage the subscription characteristics of a Gateway I/O socket
on which a subscription is currently running.

The two method calls must be provided when the Pub/Sub subscription mechanism is not being used.

Once a subscription request is issued for an open Gateway I/O socket connection, the connection be-
comes a read-only connection. Asynchronous stream updates are delivered from the Sybase Aleri
Streaming Platform to the client. Because of the “read-only” nature of the socket, additional Gateway I/
O commands can not be issued on this socket connection. The XMLRPC mechanism must be used to do
this.

The add and remove methods are passed a clientHandle as the argument. The clientHandle
is an integer value that is returned by the Gateway I/O process when the client application sends a low-
level subscription request on the socket. The addStreamToClient(...) method allows you to add
an additional stream to the subscription list, while the removeStreamFromClient(...) method
lets you delete a stream from the subscription list.

The createSubscription (String name, int flags, int deliveryType, Sp-
PlatformStatus) method is used to create an SpSubscription object associated with the Sp-
Platform object. As the name implies, it is also a factory method used to create SpSubscription ob-
jects. An SpSubscription object has its own interface (or little API) that is used to control the sub-
scription. The SpPlatform object can be used to create a subscription.

A subscription is used to get asynchronous stream updates from the Sybase Aleri Streaming Platform in-
to the client application. Similarly, there is a factory method called createPublication(String
name, SpPlatformStatus status) that creates an SpPublication object. An SpPub-
lication object is used to “publish” stream input data (and/or issue the Gateway I/O commit() com-
mand) from the client application, to the Sybase Aleri Streaming Platform.

A.1.5. SpStream Object

The SpStream object store the metadata associated with a stream on the Sybase Aleri Streaming Plat-
form. The SpStream interface includes the following methods:

Reference Guide to the Java Object Model

82

public int getId();
public String getName();
public boolean isBase();
public SpStreamDefinition getDefinition();

Details:

• The getId() method returns an integer that represents the stream's internal identifier on the Sybase
Aleri Streaming Platform.

• The getName() method returns the name of the stream.

• The isBase() method returns true if the stream is a source stream, false otherwise.

• The getDefinition() method returns a reference to an object of type SpStreamDefinition, which
contains the stream's schema information.

A.1.6. SpStreamDefinition Object

An SpStreamDefinition object stores the schema associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpStreamDefinition interface includes the following methods and
constants:

/**
* Streams ColumnInterface col type definitions.
*/
static public final int COLTYPE_INT32 = 1;
static public final int COLTYPE_INT64 = 2;
static public final int COLTYPE_DOUBLE = 3;
static public final int COLTYPE_DATE = 4;
static public final int COLTYPE_STRING = 5;
static public final int COLTYPE_NULLVALUE = 6;
static public final int COLTYPE_MONEY = 7;
static public final int COLTYPE_TIMESTAMP = 8;
public int getNumColumns();
public Vector getColumnNames();
public Vector getColumnTypes();
public Vector getKeyColumns();
public Vector getKeyColumnVector();
public boolean isKeyColumn(int columnIndex);

Details:

• The getNumColumns() method returns the number of columns in the stream.

• The getColumnNames() method returns a vector of strings. Each string is the name of the corres-
ponding column. The vector's size equals the value returned from the getNumColumns() method.

• The getColumnTypes() method returns a vector of integers. Each integer represents the field type
of the corresponding column. The SpStreamDefinition contains a list of integer “constants”
representing the various column types.

• The getKeyColumns() method returns a vector of integers. Each integer is the column index (rel

Reference Guide to the Java Object Model

83

0) of a key column in the streams field list. For example, if the stream has five columns, and the first
three are key columns, the getKeyColumns() method returns [0, 1, 2].

• The getKeyColumnVector() method returns a vector of zeroes and ones whose size equals the
number of columns in the stream. For example, if the stream has five columns and the first three are
key columns, the getKeyColumnVector method returns [1,1,1,0,0].

• The isKeyColumn(int columnIndex) returns a Boolean value of true if the column index
specified is that of a key field; otherwise, it returns false.

The columnIndex is “rel-0” (in other words, the first column of the field list has an index value of
zero).

A.1.7. SpStreamProjection Object

The SpStreamProjection object stores the metadata associated with a stream projection based on
an SQL query that is supplied to the createSubscriptionProjection(...) factory method of
the SpPlatform object.

The SpStreamProjection interface includes the following methods:

public SpStream getStream();
public SpStreamDefinition getDefinition();

where:

• The getStream() method returns a reference to the underlying SpStream onto which the SQL
query was projected.

• The getDefinition() method returns a reference to an object of type
SpStreamDefinition, containing the schema information of the projection. This information is
returned by the Sybase Aleri Streaming Platform when the SQL query associated with an SpSub-
scriptionProjection object is created.

A.1.8. Creating an SpSubscription or SpSubscriptionProjection Object

The client application must create an SpSubscription or SpSubscriptionProjection object
in order to use the Pub/Sub API to make subscription requests. These objects can be created using the
appropriate factory method provided by the SpPlatform object that has been instantiated previously.
These factory methods have the following signatures:

SpSubscription createSubscription(String name,
int flags, int deliveryType, SpPlatformStatus status);

SpSubscriptionProjection createSubscriptionProjection(String name,
int flags, int deliveryType, string sqlQuery,
SpPlatformStatus status);

Details:

String name: an identifier assigned by the client application program to the SpSubscription or

Reference Guide to the Java Object Model

84

SpSubscriptionProjection object.

int flags: the flag bitmap that is to be sent to Gateway I/O process when the low-level subscription
request is made. The flag settings control delivery from the Sybase Aleri Streaming Platform to the cli-
ent application, on the Gateway I/O socket connection where the subscription request was made. The
“flag bits” are defined as constants in the SpSubscriptionCommon interface that abstracts the com-
monality between the SpSubscription and SpSubscriptionProjection interfaces. The con-
stants are as follows:

These flag bits can be ORed together using the “|” operator. For example:

flags = SpSubscription.NOBASE | SpSubscription.LOSSY.

• BASE = 0x0;

The BASE flag bit tells the Sybase Aleri Streaming Platform to send a complete “snapshot” of each
stream of the subscription request before sending each stream subsequent updates. The complete
“snapshot” or “state” of the stream is a group of “insert” records sent from the Sybase Aleri Stream-
ing Platform between the “EVID_GATEWAY_SYNC_START” and
“EVID_GATEWAY_SYNC_END” subscription events.

• LOSSY = 0x1;

The LOSSY flag bit puts the Sybase Aleri Streaming Platform in “data shedding mode”, in which the
Sybase Aleri Streaming Platform drops the oldest data if the client cannot keep pace with the data
coming out of the Sybase Aleri Streaming Platform.

• NOBASE = 0x2

The NOBASE flag bit tells the Sybase Aleri Streaming Platform that it should NOT send a complete
“snapshot” of each stream in the subscription request. The Sybase Aleri Streaming Platform just pro-
ceeds to send subsequent updates for each of the streams.

• DROPPABLE = 0x8;

This flag tells the Sybase Aleri Streaming Platform that if the client (the application using this flag)
can't keep up with the data it is sending, and its internal buffer is filled, the Sybase Aleri Streaming
Platform should drop the connection to the client application. This protects the Sybase Aleri Stream-
ing Platform from getting into a situation where it has to stop processing incoming data because its
clients can't keep up with the data it is producing.

• PRESERVE_BLOCKS = 0x20

This flag tells the Sybase Aleri Streaming Platform that it should preserve blocks while sending data
to the client application.

int deliveryType: the integer value that specifies how the client application program's SpOb-
server object receives the stream update events. Currently, there are several delivery type format spe-
cifiers defined in the SpSubscriptionCommon interface, as listed below:

• DELIVER_PARSED = 1;

This delivery type setting tells the subscription object to deliver “parsed” field data objects represent-
ing the stream update to the client programmer's SpObserver object.

Reference Guide to the Java Object Model

85

• DELIVER_BINARY = 3;

This delivery type setting tells the subscription object to deliver the “binary” representation of the
stream update record to the client programmer's SpObserver object.

• DELIVER_STREAM_OPCODES = 5;

This delivery type setting tells the subscription object to extract the stream op code from the record
(INSERT, UPDATE, DELETE, UPSERT and so forth), otherwise leaving the record in binary format.

sqlQuery specifies the SQL query projection that the SpSubscriptionProjection object will
be based on. The sqlQuery parameter is only used to create an SpSubscriptionProjection
object.

See Section 5.1, “Aleri SQL Queries and Statements” for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries, which also apply in this situation.

The SpPlatformStatus object retrieves error code information back from the createSub-
scription(...) and createSubscriptionProjection(...) factory methods, if the sub-
scription object could not be created.

The following example shows how to use the SpPlatform object called sp to create both an SpSub-
scription and an SpSubscriptionProjection object:

SpSubscription sub = sp.createSubscription(“MySubscription_1”,
SpSubscriptionCommon.BASE, SpSubscriptionCommon.DELIVER_PARSED,
status);

SpSubscriptionProjection subProj = sp.createSubscriptionProjection(
“MySubscriptionProjection_2”,SpSubscriptionCommon.BASE,
SpSubscriptionCommon.DELIVER_PARSED,
“select intData, charData from inputstream where intData > 100”,
status);

In the above example, status is an SpPlatformStatus object that was created previously with the
SpFactory.createPlatformStatus() factory method.

A.1.9. SpSubscriptionCommon Method Set

If the createSubscription(...) or sp.createSubscriptionProjection(...) call is
successful, the client application gets back either an SpSubscription or SpSubscriptionPro-
jection object, which is used to instantiate the subscription. The set of methods that the SpSub-
scription and SpSubscriptionProjection types have in common have been abstracted into
an interface called SpSubscriptionCommon. This interface is extended by both the SpSubscrip-
tion and SpSubscriptionProjection interfaces. The SpSubscriptionCommon interface
includes the following method set:

public String getName();
public int getFlags();
public int getDeliveryType();
public int getClientHandle();

public int removeObserver(int theCookie);

public int start();

Reference Guide to the Java Object Model

86

public int stop();

The getName() method returns the name assigned in the application to the subscription object when it
was created with the SpPlatform's createSubscription(...), or createSubscription-
Projection(...) method.

Similarly, the getFlags() and getDeliveryType() methods return the flag settings and the de-
livery type, respectively, that were specified in the createSubscription(...) or createSub-
scriptionProjection(...) method.

The getClientHandle() method returns the “handle” assigned to the underlying subscription con-
nection by the Sybase Aleri Streaming Platform. Valid handles are positive integers. The value of the
handle is acquired from the Sybase Aleri Streaming Platform when the subscription is started through
the start() method.

The removeObserver(int theCookie) method is used to remove an SpObserver from the
subscription's delivery mechanism. There are differences between how you add observers to the two dif-
ferent types of subscriptions. These differences will be discussed within the SpSubscription and
SpSubscriptionProjection interfaces.

The start() method is used to start the subscription process.

There must be at least one stream and SpObserver registered with the subscription object before the
subscription object can be started up through the start() method. See the SpSubscription and SpSub-
scriptionProjection descriptions to see how to register SpObserver objects.

When you start up a subscription object, the following sequence takes place:

1. The Subscription object establishes a socket connection to the Sybase Aleri Streaming Plat-
form Gateway I/O process, and authentication is performed.

2. A subscription request is sent to the Sybase Aleri Streaming Platform on this socket connection.

3. If the subscription request is accepted by the Sybase Aleri Streaming Platform, the Subscrip-
tion object reads the “client handle” that the Sybase Aleri Streaming Platform assigned to this
subscription request.

4. A new thread is started up. It is dedicated to reading stream update information off the read-only
Gateway I/O socket connection.

When the client application's SpObserver objects are “notified” for stream updates, through their
notify(...) methods, the SpObserver objects will actually be running within the context of
this thread (not the main thread).

5. Stream update messages flowing from the Sybase Aleri Streaming Platform to the client are read,
parsed and delivered to the client application's SpObserver objects.

6. The start() method returns a zero indicating that the subscription was started up successfully. If
there is an error, it returns a non-zero error code.

The SpUtils.getErrorMessage(errorCode) method can be used to get the specific error
message.

The stop() method is used to shut down the Subscription mechanism. The stop() method closes the

Reference Guide to the Java Object Model

87

socket connection and stops the thread that was used to read, parse and deliver the Sybase Aleri Stream-
ing Platform updates to the SpObserver objects.

Here are additional methods in the interface:

public void setPulseInterval(int pulseInterval);
public int getPulseInterval();
public void setQueueSize(int queue, SpPlatformStatus status);
public int getQueueSize();
public void setBaseDrainTimeout(int millis, SpPlatformStatus status);
public int getBaseDrainTimeout();
public void setExitOnClose(SpPlatformStatus status);
public boolean getExitOnClose();

• setPulseInterval can set the pulse interval in seconds if the subscription was created with the
pulsed flag on.

• getPulseInterval is used to retrieve the current setting of the pulse interval in seconds.

• setQueueSize is used to set the internal buffer size in the Sybase Aleri Streaming Platform for this
subscription. The Sybase Aleri Streaming Platform uses this buffer to queue up messages if the sub-
scriber is slow in retrieving them. It can prevent the subscriber from blocking and slowing down the
Sybase Aleri Streaming Platform.

• getQueueSize retrieves the current value of the queue size.

• setBaseDrainTimeout is used to set the time in milliseconds that the Sybase Aleri Streaming
Platform should wait before dropping a blocked subscription. If a subscription is started with the
DROPPABLE flag set, the Sybase Aleri Streaming Platform closes a subscription connection if the
messages block due to a slow client. This parameter specifies how long to wait before closing the con-
nection.

• getBaseDrainTimeout retrieves the current value in milliseconds of the base drain timeout.

• If setExitOnClose is set, the Sybase Aleri Streaming Platform will shut down once this subscrip-
tion connection is closed by the client.

• getExitOnClose retrieves the current setting of the exit on close flag.

A.1.10. SpSubscription Method Set

If the createSubscription(...) call is successful, the client application gets back an SpSub-
scription object, which it ultimately uses to subscribe. An SpSubscription object can be used
to subscribe to one or more streams, whereas an SpSubscriptionProjection object can only be
used to subscribe to the projection defined by the sqlQuery passed into the createSubscrip-
tionProjection(...) factory method. For each stream that is being observed, the SpSub-
scription object will deliver to the SpObserver stream events that contain all of the stream's
fields. The SpSubscription extends the method set defined in the SpSubscriptionCommon interface
as follows:

public int /*Cookie*/ addStreamObserver(String streamName,
SpObserver theObserver);

public int /*Cookie*/ addStreamsObserver(Collections theStreamNames,
SpObserver theObserver);

public int subscribe(String streamName);

Reference Guide to the Java Object Model

88

public int unsubscribe(String streamName);

The next few methods are used to set up the streams and their corresponding SpObserver objects for
the SpSubscription. The client applications must create their own SpObserver objects, which are noti-
fied by the SpSubscription with the updates that arrive from the Sybase Aleri Streaming Platform
for the registered streams. The client application programmers create SpObserver objects by imple-
menting the SpObserver interface.

The addStreamObserver(String streamName, SpObserver theObserver) method
instructs the SpSubscription object to send all updates for the streamName to the SpObserver
object specified by “theObserver” parameter. Several observers can be registered on the same stream.

The addStreamsObserver(Collection theStreamName, SpObserver theObserv-
er) method can be used to associate several streams with a particular SpObserver at once. The same
thing can be accomplished by making multiple calls to the addStreamObserver(...) method
shown previously. Again, multiple addStreamsObserver(...) calls can be made to set up the
streams and their corresponding observers.

The addStreamObserver(...) and addStreamsObserver(...) calls return an integer
value that represents a “cookie”/“handle” to the registered SpObserver object. Later on, the client applic-
ation program can use the cookie to remove the SpObserver.

Another method, removeObserver(int theCookie), is used to remove the SpObserver from
the SpSubscription's delivery mechanism. Its signature is defined in the SpSubscriptionCom-
mon interface.

The SpSubscription object provides two methods that can modify the stream set that is currently
being managed by a “running” subscription: subscribe(String streamName) and unsub-
scribe(String streamName).

These two methods take a single streamName as parameter. In the case of the subscribe(String
streamName) call, the client application program must first ensure that an SpObserver is associ-
ated with the subscribed stream. The client application program must first call the addStreamOb-
server(streamName, theObserver) method to register the observer for the stream, and then
call the subscribe(streamName) method.

If successful, the subscribe(String streamName) and unsubscribe(String stream-
Name) methods return zero. Otherwise, a non-zero error code is returned. In the latter case, the
SpUtils.getErrorMessage(rc) method can be used to retrieve the error text associated with the
error code.

A.1.11. SpSubscriptionProjection Method Set

If the createSubscriptionProjection(...) call is successful, the client application gets
back an SpSubscriptionProjection object that is ultimately used to perform the subscription
process. The contents of the data returned from the Sybase Aleri Streaming Platform back to the
SpSubscriptionProjection object is determined by the SQL query that was passed into the
createSubscriptionProjection(...) factory method. An SpSubscriptionProjec-
tion can only receive updates for the underlying stream specified in the SQL query, while the SpSub-
scription can get updates for more than one stream if so desired. The SpSubscriptionPro-
jection interface extends the method set defined in the SpSubscriptionCommon interface, as
follows:

public SpStreamProjection getStreamProjection();

Reference Guide to the Java Object Model

89

public int /*Cookie*/ addObserver(SpObserver theObserver);

The getStreamProjection() method returns the SpStreamProjection object produced
when the SQL query was sent to the Streaming Processor for parsing, which happens during the execu-
tion of the createSubscriptionProjection(...) factory method. If the SQL query could not
be parsed, createSubscriptionProjection(...) returns null, and the corresponding error in-
formation is sent to the associated SpPlatformStatus object. If the createSubscription-
Projection(...) method succeeds, the caller gets back an SpSubscriptionProjection ob-
ject, and can then make a getStreamProjection() call for the schema information produced by
the SQL query parse. The SpStreamProjection that is returned should be treated as "read-only",
and should not be modified by the client application in any way. Typically, the SpStreamProjec-
tion objects are passed into the SpObserver's constructor, giving the SpObserver the list of fields
and their corresponding data types. This information is used by the SpObserver to process the up-
dates that come back from the server.

See Section 5.1, “Aleri SQL Queries and Statements” for SQL query handling limitations of the Sybase
Aleri Streaming Platform.

You must create your own SpObserver objects, which are notified by the SpSubscriptionPro-
jection with the updates that arrive from the Sybase Aleri Streaming Platform. You can create
SpObserver objects by implementing the SpObserver interface.

The addObserver(SpObserver theObserver) method is used to register an SpObserver
with the SpSubscriptionProjection object.

The addObserver(...) call returns an integer value that represents a “cookie”/“handle” to the re-
gistered SpObserver object. Later on, the client application can use the cookie to remove the SpOb-
server.

You can use the removeObserver(int theCookie) method to remove the SpObserver from
the SpSubscriptionProjection's delivery mechanism.

A.1.12. SpSubscriptionEvent

An SpSubscriptionEvent provides the following method set:

public String getSubName();
public int getType();
public String getTypeName();
public int getId();
public String getIdName();
public int getStreamId();
public int getStreamOpCode();
public Collection getData();

The getSubName() method returns the name of the subscription object that generated and delivered
this event to the SpObserver. This name was assigned to the subscription object when it was created
through the SpPlatform createSubscription(...) method.

The getType() method returns an integer representing the “type” of this SpSubscriptionEvent.
There are four types of events defined in the SpSubscriptionEvent.java interface:

• SpSubscriptionEvent.EVTYPE_PARSED_DATA

Reference Guide to the Java Object Model

90

It is delivered from a Subscription object created with a delivery type of SpSubscription-
Common.DELIVER_PARSED.

• SpSubscriptionEvent.EVTYPE_BINARY_DATA

It is delivered from a Subscription object created with a delivery type of SpSubscription-
Common.DELIVER_BINARY.

• SpSubscriptionEvent.EVTYPE_STREAM_OPCODE_DATA

It is delivered from a Subscription object created with a delivery type of SpSubscription-
Common.DELIVER_STREAM_OPCODES.

• SpSubscriptionEvent.EVTYPE_SYSTEM

It is delivered from a Subscription object, indicating a system event has occurred. The event
could be an error, a halt in communication, the shutting down of the Sybase Aleri Streaming Platform,
and so forth.

The getTypeName() method returns the type of event as a string, as opposed to the internal integer
representation. The client application can use this for output messages.

An integer is returned by the getId() method that uniquely identifies what actually happened on the
Sybase Aleri Streaming Platform. The event IDs are unique across the entire set of event types. For ex-
ample, an SpSubscriptionEvent may have a “type” of SpSubscrip-
tionEvent.EVTYPE_SYSTEM, which means it is a system-related notification. The getId() meth-
od returns what was actually detected by the system (for example, SpSubscrip-
tionEvent.EVID_PARSING_ERROR, SpSubscrip-
tionEvent.EVID_COMMUNICATOR_HALTED, and so forth). As with the event types, all of the
event IDs are enumerated within the SpSubscriptionEvent interface.

The following describes the SpSubscriptionEvent identifiers:

• SpSubscriptionEvent.EVID_GATEWAY_SYNC_START

It is delivered to the SpObserver if the subscription is sent a START_SYNC Gateway I/O message
from the Sybase Aleri Streaming Platform. The START_SYNC message contains the ID for the
stream with its associated message.

It indicates the start of the stream's “snapshot”. Following this event are INSERT messages for each
record in the stream until the END_SYNC Gateway I/O message is received from the Sybase Aleri
Streaming Platform. A call to the START_SYNC event's getData() method returns null. For this
message to be sent from the Sybase Aleri Streaming Platform to the client application, the subscrip-
tion has to be created with the SpSubscriptionCommon.BASE flag specified. If the SpSub-
scriptionCommon.NOBASE flag is specified instead, the START_SYNC message would never
have been delivered from the Sybase Aleri Streaming Platform to the client application.

This event is also delivered after a dynamic change, if the stream's contents gets regenerated after the
WIPEOUT event. In this situation, the START_SYNC event is delivered even if the subscription was
created with the SpSubscriptionCommon.NOBASE flag.

• SpSubscriptionEvent.EVID_GATEWAY_SYNC_END

It is delivered to the SpObserver if the subscription is sent an END_SYNC Gateway I/O message
from the Sybase Aleri Streaming Platform. The END_SYNC message contains the ID for the stream
with which the message is associated.

Reference Guide to the Java Object Model

91

It indicates that the end of the stream's “snapshot” has been reached. A call to the END_SYNC event's
getData() method returns null. For this message to be sent from the Sybase Aleri Streaming Plat-
form to the client application, the subscription has to be created with the SpSubscriptionCom-
mon.BASE flag specified. If the SpSubscriptionCommon.NOBASE flag is specified instead, the
END_SYNC message would never be delivered from the Sybase Aleri Streaming Platform to the client
application.

This event is also delivered after a dynamic Sybase Aleri Streaming Platform change, if the stream's
contents gets regenerated. On the dynamic regeneration, the WIPEOUT event is followed by the
START_SYNC event, insertion of the new data, and the END_SYNC event. In this situation all the
events are delivered even if the subscription was created with the SpSubscriptionCommon.NOBASE
flag.

• SpSubscriptionEvent.EVID_GATEWAY_WIPEOUT

It is delivered to the SpObserver after dynamic Sybase Aleri Streaming Platform changes, if the
stream's contents gets regenerated. It means that the whole current contents of the stream is being dis-
carded. The WIPEOUT event is followed by the START_SYNC event, insertion of new data, and the
END_SYNC event. In this situation, all the events are delivered even if the subscription was created
with the SpSubscriptionCommon.NOBASE flag.

• SpSubscriptionEvent.EVID_BINARY_DATA

If the subscription is created with the delivery type of SpSubscriptionCom-
mon.DELIVER_BINARY, the getData() method returns a ByteBuffer object containing the bin-
ary message delivered from the Sybase Aleri Streaming Platform.

• SpSubscriptionEvent.EVID_PARSED_FIELD_DATA

When a Subscription object is created with a delivery type of SpSubscriptionCom-
mon.DELIVER_PARSED, it attempts to parse the field data of the stream messages transmitted by
the Sybase Aleri Streaming Platform and delivers this parsed field information to the SpObserver.
The getStreamOpCode() method can be used to determine whether the message was an
INSERT, UPDATE, or DELETE. The parsed field data is accessed by the SpObserver through the
event's getData() method.

• SpSubscriptionEvent.EVID_PARSED_PARTIAL_FIELD_DATA

It is similar to the SpSubscriptionEvent.EVID_PARSED_FIELD_DATA event described pre-
viously. This event is delivered when the Subscription's message parser detects an error in the
middle of parsing out the field data for the message sent from the Sybase Aleri Streaming Platform. If
an error is encountered during the parse, only those fields that were successfully parsed, up to the
place where the error was detected, will be delivered in this event. The SpObserver is not obligated
to inspect the partial results: however, the application programmer may want to use the partial results
for debugging purposes.

• SpSubscriptionEvent.EVID_COMMUNICATOR_HALTED

It is delivered when the client application attempts to issue a “shutdown” through the SpPlatform
object. A call to the getData() method returns null.

• SpSubscriptionEvent.EVID_PLATFORM_SHUTDOWN

This event is delivered when the client application attempts to issue a “shutdown” through the Sp-
Platform object. A call to the getData() method returns null.

• SpSubscriptionEvent.EVID_PARSING_ERROR

Reference Guide to the Java Object Model

92

This event is delivered when a parsing error is detected by the Subscription, and there is at least
some context to report on. A call to the getData() method returns an object of type SpParser-
ReturnInfo.

See Section 2.3.3.2, “Inspect Parsing Errors”. for more information.

• SpSubscriptionEvent.EVID_UNKNOWN_PARSING_ERROR

This error indicates that the parser encountered an unexpected error before the completion of the pro-
cess. In this case, the getData() method returns an integer object that contains the record length
for the message that is about to be parsed.

• SpSubscriptionEvent.EVID_READ_STREAM_RECORD_ERROR

It indicates that the parser could not successfully read the record that was delivered from the Sybase
Aleri Streaming Platform. The getData() method returns an integer object containing the value of
the record length that was read for the bad record.

• SpSubscriptionEvent.EVID_BAD_RECORD_LENGTH_ERROR

It shows that the record length read from the socket was erroneous. The getData() method returns
an integer object that contains the bad record length value read from the socket.

• SpSubscriptionEvent.EVID_BAD_GATEWAY_OP_CODE_ERROR

It indicates that the Gateway I/O operation code for the message sent from the Sybase Aleri Streaming
Platform is invalid. The getData() method returns an integer object that contains the bad Gateway
I/O operation code that was read.

• SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It will be delivered to the SpObserver when the Pub/Sub API recognizes that a connection attempt
should be made to the High Availability (Hot Spare) server. The High Availability connection para-
meters were specified in the SpPlatfromParms object passed to the SpFact-
ory::createPlatform() method when the underlying SpPlatform was first created.

• SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

It is delivered to the SpObserver when the attempt to connect to the Hot Spare server is successful.

• SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_FAILED

It is delivered to the SpObserver when the attempt to connect to the Hot Spare server fails.

The getIdName() method returns the string representation of the numeric event ID. The client applic-
ation program can use this for output messages.

The getStreamId() method returns the stream ID that is associated with this event. For example, an
SpObserver may receive an event of type SpSubscriptionEvent.EVTYPE_PARSED_DATA,
where the event ID is SpSubscriptionEvent.EVID_PARSED_FIELD_DATA, indicating that the
event contains parsed field data. The getStreamId() method returns the stream ID to which this
event data corresponds.

The getStreamOpCode() method returns the stream operation code that is associated with this
event. For example, an SpObserver may receive an event of type SpSubscrip-
tionEvent.EVTYPE_PARSED_DATA, where the event ID is SpSubscrip-
tionEvent.EVID_PARSED_FIELD_DATA, indicating that the event contains parsed field data. The

Reference Guide to the Java Object Model

93

getStreamOpCode() method returns a value that indicates whether the event is an INSERT, UP-
DATE, DELETE, or UPSERT.

The getData() method returns a vector of objects containing the event data. The objects stored in the
collection depend upon the delivery type (which was specified when the subscription object was cre-
ated). For example, if the delivery type of the subscription is SpSubscriptionCom-
mon.DELIVER_PARSED, the getData() method returns a vector in which each element is another
vector, each of which contains the field list of parsed objects produced by the subscription message pars-
er.

If the Sybase Aleri Streaming Platform delivers a non-transaction message (for example, an isolated
INSERT or DELETE message) to the subscription, the getData() method returns a vector that has a
size (number of elements) of 1. If the Sybase Aleri Streaming Platform delivers a transaction message to
the Subscription, the getData() method returns a vector whose size (number of elements) is
equal to the number of stream update records within the transaction message sent from the Sybase Aleri
Streaming Platform. This is why there are two “levels”/“dimensions” of collections (vectors) within the
SpSubscriptionEvent.EVID_PARSED_FIELD_DATA event.

It is also important to note that each transactional message sent from the Sybase Aleri Streaming Plat-
form contains updates for one stream. A transaction cannot contain records within it for two or more
separate streams.

When the subscription is created using a delivery type of SpSubscriptionCom-
mon.DELIVER_BINARY, the getData() method returns a ByteBuffer that has the raw binary
stream message within it. When the Sybase Aleri Streaming Platform sends a transaction block, the
ByteBuffer contains the entire transaction block.

When the SpSubscription is created using a delivery type of SpSubscrip-
tion.DELIVER_STREAM_OPCODES, the getData() method returns null. Use the get-
StreamOpCode() method to determine the stream operation code (INSERT, UPDATE, DELETE, or
UPSERT).

A.1.13. SpParserReturnInfo

The SpParserReturnInfo object referenced above has the following method set that you can use
within the SpObserver:

public int getErrorCode();
public String getErrorMessage();
public int getTransMessageIndex(); // REL 0
public int getColumnIndex(); // REL 0
public String getErrorData();
public boolean isSuccess();

Details:

• The getErrorCode() and getErrorMessage() methods return the parser error code and as-
sociated error message, respectively.

• The getTransMessageIndex() method is only relevant for transaction messages that are being
parsed at the time of error. If the message is not a transaction, -1 is returned. The transaction block's
message index is rel 0 (message one has an index value of zero) if the message is a transaction block,.

• The getColumnIndex() method returns the column index (rel 0) for the column where the pars-
ing error is detected. If the error occurred before the parser event got to the first column (having a
column index value of zero), this method will return -1.

Reference Guide to the Java Object Model

94

• The getErrorData() method returns a string that the parser may have put together at the point of
error to indicate what went wrong. Typically, if there was any extra error information that the parser
determined was important, it is stored in a string is returned by getErrorData().

• The isSuccess() method returns true if the parse was successful and false if there was an er-
ror.

A.1.14. SpNullConstants

The SpNullConstants class defines the following objects:

public static Integer nullInteger16 = new Integer(0)
public static Integer nullInteger32 = new Integer(0)
public static Long nullLong = new Long(0)
public static Double nullMoney = new Double(0)
public static Double nullDouble = new Double(0)
public static Date nullDate = new Date(0l)
public static Date nullTimestamp = new Date(0l)
public static String nullString = "NULL"

Details:

• The nullInteger16 object represents a null 16-bit Sybase Aleri Streaming Platform integer value.

• The nullInteger32 object represents a null 32-bit Sybase Aleri Streaming Platform integer value.

• The nullLong object represents a null 64-bit Sybase Aleri Streaming Platform integer value.

• The nullMoney object represents a null Sybase Aleri Streaming Platform money value.

• The nullDouble object represents a null Sybase Aleri Streaming Platform double value.

• The nullDate object represents a null Sybase Aleri Streaming Platform date value.

• The nullTimestamp object represents a null Sybase Aleri Streaming Platform timestamp value.

• The nullString object represents a null Sybase Aleri Streaming Platform string value.

A.1.15. SpUtils

There are a few miscellaneous classes that were briefly referenced in some of the earlier examples. One
class is SpUtils, which offers the following utility methods:

public static String getErrorMessage(int errorCode)
public static String getEventTypeName(int eventType)
public static String getEventIdName(int eventId)

Details:

• The getErrorMessage(int errorCode) method retrieves the String message associated with
the errorCode passed in through the parameter list. The error messages are stored in the pub-

Reference Guide to the Java Object Model

95

sub.properties file, which must be present in the Java classpath for this method to work. Typic-
ally, the errorCode is returned by a previous call to one of the Pub/Sub API methods.

• The getEventTypeName(int eventType) method is typically called by an SpObserver
object. This method returns a string representation of the eventType passed in. The event type names
are also stored in the pubsub.properties file (refer to the getErrorMessage(int er-
rorCode) method description). The eventType is usually retrieved from a SpSubscrip-
tionEvent object delivered to the SpObserver object through the SpObserver's noti-
fy(...) method.

• The getEventIdName(int eventId) method is also typically called by an SpObserver ob-
ject. It returns the string representation of the eventId passed in. The eventId names are also stored in
the pubsub.properties file (refer to the getErrorMessage(int errorCode) method
description). The eventId is usually retrieved from an SpSubscriptionEvent object delivered to
the SpObserver through the SpObserver object's notify(...) method.

Another class referenced in some of the previous examples is SpGatewayConstants. It stores a
group of constant values used in Gateway related methods/activities within the Pub/Sub API. For ex-
ample, the SpGatewayConstants class stores the stream op codes, flag values, and so forth.

A.2. Objects for Publication

If the sp.createPublication(...) call is successful, the client application program gets an Sp-
Publication object back from the Sybase Aleri Streaming Platform. An SpPublication object
can be used to publish data to one or more streams. It implements an interface that provides the follow-
ing method set:

public String getName();

public int start();

public int publish(SpStreamDataRecord streamRecord);

public int publish(Collection streamRecords,
int streamOpCodeOverride,
int streamFlagOverride);

public int publishTransaction(
Collection streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock);

public int publishEnvelope(
Collection streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock);

public int commit();

public int stop();

Details:

The getName() method returns the name assigned to this SpPublication object when it was cre-

Reference Guide to the Java Object Model

96

ated through the SpPlatform's createPublication(...) factory method.

The start() method is used to start the publication process.

The publish(SpStreamDataRecord streamRecord) method is used to publish/send a single
stream input record to a source stream on the Sybase Aleri Streaming Platform. It is more efficient to
send Input Stream records to the Sybase Aleri Streaming Platform in batches known as “transactions”.
However, in some cases, you may want to publish one record at a time — for example, when testing a
new data model. If this call is successful, a return code of zero is sent back to the caller. Otherwise, an
error code is sent back. The SpUtils.getErrorMessage(errorCode) method can be called to
get the specific error message.

Each of the publish methods of the SpPublication object takes one or more SpStream-
DataRecord objects as input. The SpStreamDataRecord object represents one row of stream data
that is to be sent to the Sybase Aleri Streaming Platform. Each SpStreamDataRow object has an “op
code” which indicates how the row is to be handled by the Sybase Aleri Streaming Platform when it is
received. For example, the “op code” may indicate that the row is to be treated as an INSERT, a DE-
LETE, an UPDATE, and so forth.

The publish(Collection streamRecords, int streamOpCodeOverride, int
streamFlagOverride) method sends a vector of SpStreamDataRecord objects to the Sybase
Aleri Streaming Platform with one call. The streamOpCodeOverride and streamFlagOver-
ride parameters can be used to override the corresponding values found in the individual SpStream-
DataRecord objects that comprise the collection.

Although the method takes in a collection of stream data records, these records are nevertheless pub-
lished to the Sybase Aleri Streaming Platform one at a time. However, this method allows you to create
a set of stream records in which each record is published to a different stream. It may be useful in de-
bugging or testing scenarios, where the ordered sequence of updates to various source streams is import-
ant.

publishTransaction(Collection streamRecords, int streamOpCodeOverride,
int streamFlagsOverride, int maxRecordsPerBlock) and publishEnvel-
ope(Collection streamRecords, int streamOpCodeOverride, int stream-
FlagsOverride, int maxRecordsPerBlock) are the most efficient publication methods, be-
cause they bundle multiple SpStreamDataRecords and send them to the Sybase Aleri Streaming Plat-
form as a single batch.

There is a restriction/constraint related to publishing transactions and/or envelopes to the Sybase Aleri
Streaming Platform. Each SpStreamDataRecord that is to be placed within the transaction/envelope
must be for the same source stream. However, each SpStreamDataRecord can have a different “op
code” (such as INSERT, UPDATE, DELETE or UPSERT).

As mentioned previously, the override op code and flag values can be used to override the correspond-
ing values found within the individual SpStreamDataRecord objects that make up the collection.
Additionally, it takes a parameter called maxRecordsPerBlock — an integer value that specifies the
maximum number of SpStreamDataRecords to be sent as a transactional/envelope unit to the Sy-
base Aleri Streaming Platform. If the value is set to zero, then the method will try to send all of the Sp-
StreamDataRecord objects in the collection within one transaction block. If maxRecordsPerB-
lock is less than the actual number of records in the collection, the record set will be broken up into
multiple transactions/envelopes during the transmission to the server.

The difference between a transaction and envelope block transmitted to the server is how the server pro-
cesses the block of records upon receiving it. As the name implies, a group of records within a transac-
tion block is treated as a single transactional unit on the server side. In the case of an envelope, the group
of records contained within the envelope are processed one record at a time by the server. Basically, the
envelope mechanism allows the client to send a batch of records for a specific stream to the server in
one shot, as opposed to sending a single record at a time and having to wait for each record's ack or
nak reply from the server.

Reference Guide to the Java Object Model

97

The commit() method issues a special Gateway I/O command to the Sybase Aleri Streaming Plat-
form, requesting that all pending input records previously sent to the Sybase Aleri Streaming Platform
be synced to disk. Making a commit call is a tremendously expensive operation relative to latency. It's
designed to be used only as part of a two-phase commit process when reading from a persistent source,
such as an ActiveMQ series, and writing to a Sybase Aleri Streaming Platform instance that uses Sy-
base's log store persistence model.

In a real time, low latency streaming scenario, the commit call should not be used after each record.

Typically the commit call should be used as follows: For a standard two-phase commit process that
guarantees against data loss, the client reads messages from the source, such as ActiveMQ, and pub-
lishes to the Sybase Aleri Streaming Platform until reaching a pre-determined number of processed mes-
sages (>1024 is recommended) or a specified amount of time has elapsed. After reaching the value set
for the maximum number messages or the elapsed time has passed, the commit() call is made and upon
return to the client, the client may inform the source, such as ActiveMQ, that the messages can be de-
leted.

The stop() method shuts down the underlying Gateway I/O socket connection.

A.2.1. Stream Operation Codes

The stream operation codes that can be set for each individual SpStreamDataRecord (or as one of the
streamOpCodeOverride parameters) can be found in the SpGatewayConstants interface, and
are as follows:

• SpGatewayConstants.SO_NOOP

When specified as the “streamOpCodeOverride” parameter, it instructs the Sybase Aleri Streaming
Platform to use the stream op code stored in each of the individual SpStreamDataRecord objects.
If the stream op code within the SpStreamDataRecord is set to SpGatewayCon-
stants.SO_NOOP, the Sybase Aleri Streaming Platform is instructed to use the default stream op-
eration, which is INSERT.

• SpGatewayConstants.SO_INSERT

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
INSERT operation.

• SpGatewayConstants.SO_UPDATE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPDATE operation.

• SpGatewayConstants.SO_DELETE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as a
DELETE operation.

• SpGatewayConstants.SO_UPSERT

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPSERT operation. An UPSERT operation either inserts the stream record into the source stream if it
is not already present, or updates the existing source stream record using the contents of the stream re-
cord.

A.2.2. Stream Flag Values

Reference Guide to the Java Object Model

98

The set of stream flag values can be for each individual SpStreamDataRecord or one of the
streamFlagOverride parameters. It can be found in the SpGatewayConstants interface and
includes:

• SpGatewayConstants.SF_NULLFLAG

When specified as the streamFlagOverride parameter, it instructs the Sybase Aleri Streaming
Platform to use the stream flag stored in each of the individual SpStreamDataRecord objects. If
the stream flag within the SpStreamDataRecord is set to SpGatewayCon-
stants.SF_NULLFLAG, the default synchronous publication sequence will take place.

• SpGatewayConstants.SF_NOACK

When specified, it tells the Sybase Aleri Streaming Platform not to send an ack or nak back to the
client application that issued the publication request. The publish method returns immediately. The
caller is not notified of potential transmission or publication failures.

• SpGatewayConstants.SF_SHINE

It is only relevant for the stream op code values of SO_UPDATE and SO_UPSERT. Typically, when
an existing record is updated by the Sybase Aleri Streaming Platform, all fields will be assigned new
values. However, there are cases when some of the fields within the stream record must be updated
while others are not. The client application can set the “other” fields of the stream record being pub-
lished to the Sybase Aleri Streaming Platform to null; if the SF_SHINE flag is set, the Sybase Aleri
Streaming Platform will ignore the nulls and leave the existing field values. The key fields must al-
ways be present, as they are required to locate the record.

In essence, the Sybase Aleri Streaming Platform lets the existing field values “shine through” for each
of the null values sent in from the client application program.

The flag values represent bits that can be ORed together. For example:

int flags = SpGatewayConstants.SF_SHINE | SpGatewayConstants.SF_NOACK;

A.2.3. SpStreamDataRecord Object

Each of the SpPublication object's publishing methods sends stream input data from the client applica-
tion to the Sybase Aleri Streaming Platform. Each stream record (or row of stream data) is encapsulated
within an SpStreamDataRecord object, which has the following method set:

public SpStream getStream();
public Collection getFieldData();
public int getOpCode();
public int setOpCode(int value);
public int getFlags();
public int setFlags(int value);

Details:

• The getStream() method returns an SpStream object associated with this SpStreamDataRe-
cord.

• The getFieldData() method returns a vector of objects containing the data for each field in the

Reference Guide to the Java Object Model

99

stream record. Currently, the supported datatypes for these objects are Integer, Long, Date, and String.
The object can also be null.

• The getOpCode() method returns the stream op code currently set for this record.

• The setOpCode(int value) method is used to set the value of the stream op code for this re-
cord.

• The getFlags() method returns the flag settings currently set for this record.

• The setFlags(int value) method is used to set the stream flag settings for this record.

A.2.4. Create SpStreamDataRecord Objects

For consistency within the Pub/Sub API, an SpStreamDataRecord object is created using yet an-
other “Factory” method that has the following method signature:

SpStreamDataRecord SpFactory.createStreamDataRecord(
SpStream stream,
Collection fieldData,
int opCode,
int flags,
SpPlatformStatus status
);

Details:

• stream is a reference to the SpStream object with which this new SpStreamDataRecord ob-
ject will be associated. The client application can get this value through the appropriate SpPlat-
form method, such as getStream(String streamName) or getStream(int stream-
Id).

• fieldData is a vector of objects in which each entry matches the corresponding field data type, as
indicated in the streams definition (specified in the SpStream parameter).

When creating an SpStreamDataRecord, all of the key fields must be assigned with non-null val-
ues within the fieldData collection/vector.

• opCode is the stream operation code associated with this SpStreamDataRecord.

The op code will inform the Sybase Aleri Streaming Platform how to apply this record to the source
stream (in other words, INSERT, UPDATE, DELETE, and so forth).

You have the option to override the stream op code within several of the publishing methods.

• flags is the stream flag settings value associated with this SpStreamDataRecord.

You have the option to override the stream flag settings within several of the publishing methods.

• status is an object that stores error code information generated by the createStreamDataRe-
cord(...) factory method if the SpStreamDataRecord object cannot be created.

The following code example shows how the client application program uses the createStream-
DataRecord(...) factory method to create an SpStreamDataRecord object that can be pub-

Reference Guide to the Java Object Model

100

lished to the Sybase Aleri Streaming Platform:

/*
* Source Stream is called “input”, and has the following
* record layout:
*
* int, string, double, date, int, string, double, date
*
*/

Collection fieldData = new Vector(8);

fieldData.add(new Integer(104));
fieldData.add("do_mystring");
fieldData.add(new Double(5.7));
fieldData.add(new Date(0l));
fieldData.add(new Integer(200));
fieldData.add("do_mystring2");
fieldData.add(new Double(8.9));
fieldData.add(new Date(0l));

SpStream stream = sp.getStream(“input”);

/*
* Use the createStreamDataRecord(...) factory method to
* bundle up the stream, fieldData vector, stream op code,
* and stream flags
* into an SpStreamDataRecord object.
*
* At the moment, the SpStreamDataRecord object is the
* basic unit of publication. You can publish these one
* at a time, or you can publish them as a group (with
* or without transaction blocks).
*
* NOTE: If you wish to publish a group of
* SpStreamDataRecord objects
* as a transaction, then all of the SpStreamDataRecords
* within the group must belong to the same stream.
*/
SpStreamDataRecord sdr = SpFactory.createStreamDataRecord(
stream,
fieldData,
SpGatewayConstants.SO_UPSERT,
SpGatewayConstants.SF_NULLFLAG,
status);

if (sdr == null)
{
System.out.println(“Could not createStreamDataRecord, status=” +
status.getErrorCode());

System.out.println(“Error Message:” +
status.getErrorMessage());

return status.getErrorCode();
}

The client application can create a large number of SpStreamDataRecord objects, placing each of
them within a common vector. Next, one of the SpPublication's publishing methods can be used to
send all rows of the stream data that are stored in the vector to the Sybase Aleri Streaming Platform,
either individually or using transactions.

Below is an example of how to publish a collection/vector of SpStreamDataRecord objects as a

Reference Guide to the Java Object Model

101

single transaction, where sp is an SpPlatform object that was previously instantiated and stream-
InputData is a vector that contains a number of SpStreamDataRecord objects.

/*
* Create the publication object associated with the
* platform.
*/
String name = “testPub_1”;
SpPublication pub = sp.createPublication(name, status);
if (pub == null)
{
System.out.println(“Couldn't create a publication object, status=” +
status);

System.out.println(“Error message = ” + status.getErrorMessage());
return status.getErrorCode();

}

/*
* Start the publication object (this opens up a GW I/O
* socket connection). Don't forget to eventually close
* down the SpSubscription object (via the “stop()” method,
* later on when you are finished using it,
*/

rc = pub.start();

if (rc != 0)
{
System.out.println(“Couldn't start the publication object.”);
System.out.println(“Error message = ” +
SpUtils.getErrorMessage(rc));

return rc;
}

/*
* Publish the collection/vector of SpStreamDataRecord
* objects as one big transaction.
*/

rc = pub.publishTransaction(streamInputData,
SpGatewayConstants.SO_INSERT,
SpGatewayConstants.SF_NULLFLAG,
0);

if (rc != 0)
{
System.out.println(“Couldn't publish the transaction.”);
System.out.println(“Error message = ” +
SpUtils.getErrorMessage(rc));

return rc;
}

A.3. Objects for recording and playback

A.3.1. SpRecorder Object

You need to call the factory method, createRecorder defined in SpPlatform, to create an SpRecorder cli-
ent programs.

Reference Guide to the Java Object Model

102

public SpRecorder createRecorder(String name, String filename, java.util.Collection streams, int flags,
long maxRecords, SpPlatformStatus status)

The method takes the following parameters:

• name String that will uniquely identify this instance of the recorder object

• filename Name of the file where recorded data will be stored

• streams a java.util.Collection instance that contains the name of the streams to record events for

• flags Flags that control the subscription. These flags are passed to the underlying subscription to
the platform. Can be a bitwise OR of the following values

• One of SpSubscriptionCommon.BASE or SpSubscriptionCommon.NOBASE - whether
to record data already in streams at time of connection

• SpSubscriptionCommon.LOSSY - whether platform should discard records if client applica-
tion cannot keep up

• maxRecords maximum number of records to process

• status an SpPlatformStatus object to return information in case of error

SpRecorder has the following public interface

public String getName();
public int start();
public long getRecordCount();
public int stop();

Details:

getName() returns the identifier assigned to this instance of the SpRecorder object
start() spawns a background thread which starts the recording process. The method returns once the
thread is started. Returns 0 on success.
getRecordCount() returns the number of data records processed.
stop() stops the recording process by terminating the recording thread and closing connections to the
platform. Returns 0 on success

A.3.2. SpPlayback Object

An SpPlayback object is created by calling the following factory method defined in SpPlatform.

public SpPlayback createPlayback(String name, String filename, double scale, long maxrecords, SpPlatformStatus status);

The method takes the following parameters:

Reference Guide to the Java Object Model

103

• name uniquely identifies this instance of SpPlayback.

• filename specifies the name of the file containing the recorded data.

• scale controls the rate of playback. Values -1 to 1 have no effect and the data is played back at the
rate it was recorded. Values greater than 1 speed up playback by that factor, for example, a value of 2
will play back twice as fast. Values less than -1 slows down playback by the factor specified.

• maxrecords specifies the maximum number of records to playback.

• status is an SpPlatformStatus object used to return information in case of error.

SpPlayback has the following public interface:

public String getName();
public void setSendUpsert(boolean upsert);
public boolean getSendUpsert();
public void setTimeScaleRate(double scale);
public double getTimeScaleRate();
public int start();
public long getNumRecordsPlayedBack();
public int getPercentPlayedBack();
public int stop();

Details:

getName() returns the identifier assigned to this instance of SpPlayback object
setSendUpsert(boolean) chooses whether to convert INSERT ops in the data to UPSERT
getSendUpsert() returns the current setting of UPSERT flag
setTimeScaleRate(double) is a double to control the rate of playback
getTimeScaleRate() returns the current value of the scale factor
start() spawns a background thread that starts the playback process. Returns 0 on success
getNumRecordsPlayedBack() returns the number of data records played back so far
getPercentPlayedBack() returns the percentage of the data played back so far
stop() terminates the background playback thread and closes connections to the Sybase Aleri Stream-
ing Platform

Reference Guide to the Java Object Model

104

Appendix B. Reference Guide to the C++ Object Model
B.1. C++ Objects for Subscription

B.1.1. SpFactory Object

The SpFactory object is used by the client code to create the set of objects required to use/control the
Pub/Sub API. The SpFactory interface includes the following methods:

static int init();
static int dispose();
static SpPlatform *createPlatform(SpPlatformParms *parms,

SpPlatformStatus *status);
static SpPlatformParms *createPlatformParms(const char * theHost,

int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFlag);

static SpPlatformParms *createPlatformParms(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFlag, bool theUseRsaFlag);

static SpPlatformParms *createPlatformParms(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFlag, const char * theHotSpareHost, int theHotSparePort);

static SpPlatformParms *createPlatformParms(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFlag, bool theUseRsaFlag, const char * theHotSpareHost,
int theHotSparePort);

static SpPlatformParms *createPlatformParms(const char * theHost, int thePort,
const char * theUser, const char * thePassword, bool theEncryptedFlag,
SpPlatformParms::auth_type theAuth, const char * theHotSpareHost,
int theHotSparePort);

static SpPlatformStatus *createPlatformStatus();
static SpStreamDataRecord *createStreamDataRecord(SpStream *stream,

std::vector<SpDataValue *> *fieldData, int opCode, int flags,
SpPlatformStatus *status);

Where:

• The init() method is used to set up the XMLRPC global environment variables. According to the
XMLRPC documentation, this method should be called while the application is single threaded.

• The dispose() method is used to tear down the XMLRPC global environment variables that were
previously setup by the init() call. According to the XMLRPC documentation, this method should
be called while the application is single threaded.

• The createPlatform(SpPlatformParms *parms, SpPlatformStatus *status)
method returns a pointer to an SpPlatform object if the Pub/Sub API was able to connect to the
Sybase Aleri Streaming Platform and initialize properly.

Before calling this method, you have to use one of the overloaded SpFact-
ory::createPlatformParms(...) methods and the SpFact-
ory::createPlatformStatus() method to create the two parameters required by the Sp-
Factory::createPlatform(SpPlatformParms *parms, SpPlatformStatus
*status) method. The contents of the SpPlatformParms parameter control how the connection
and authentication from the Pub/Sub API to the Sybase Aleri Streaming Platform takes place. See
Section A.1.2, “SpPlatformParms Object” for more information. If the connection to the Sybase Aleri
Streaming Platform can not be established, the createPlatform(SpPlatformParms
*parms, SpPlatformStatus *status) method returns null, and a non-zero error code is set
within the SpPlatformStatus object See Section A.1.3, “SpPlatformStatus Object” for informa-
tion on how to retrieve the error code/message.

105

• The createPlatformParms(const char * theHost, int thePort, const char
* theUser, const char * thePassword, bool theEncryptedFlag) method re-
turns a pointer to an SpPlatformParms object that is ultimately passed as the first parameter to the
SpFactory::createPlatform(SpPlatformParms *parms, SpPlatformStatus
*status) method. This createPlatformParms method call sets up for basic connectivity. The
user name/password are for authentication. If theEncryptedFlag is set to true, then https will
be used to connect to the Sybase Aleri Streaming Platform's Command and Control process and SSL
socket connections will be made to the Sybase Aleri Streaming Platform's Gateway I/O process. If
theEncryptedFlag is set to false, then http will be used to connect to the Sybase Aleri Stream-
ing Platform's Command and Control process regular (non-SSL) socket connections will be made to
the Sybase Aleri Streaming Platform's Gateway I/O process.

• The createtPlatformParms(const char * theHost, int thePort, const
char * theUser, const char * thePassword, bool theEncryptedFlag,
bool theUseRsaFlag) method returns a pointer to an SpPlatformParms object that is ulti-
mately passed as the first parameter to the SpFact-
ory::createPlatform(SpPlatformParms *parms, SpPlatformStatus
*status) method. In addition to the basic connectivity parameters mentioned above, this method
adds an additional bool flag called theUseRsaFlag. If this flag is set to true, the Pub/Sub API
will attempt to authenticate to the Streaming Processor using the RSA mechanism. To use this mech-
anism, the Sybase Aleri Streaming Platform must be started with the -k option, which indicates the
directory where the public RSA key file is stored. See the Utilities Guide for more details about key
generation and placement.

When using the RSA authentication mechanism, the password of the SpPlatformParms object
must specify your private RSA key file. For example, if a user was named foo, there would be two
RSA key files having the names foo containing the public RSA key for user foo) and
foo.private.der, which contains the private RSA key for user foo in DER format. The public
RSA key file called foo must be placed in a directory that is specified by the -k option to the Sybase
Aleri Streaming Platform during startup.

The private RSA key file foo.private.der must be placed on the client machine using the Pub/
Sub API to connect to the server. It is specified using the password parameter of the createPlat-
formParms(...) method.

There are five variations of the createPlatformParams method. All accomplish the creation of
an SpPlatformParams object:

• basic

• basic with UseRSA flag

• basic with HotSpare

• HotSpare with UseRSA

• Kerberos authentication with or without the hotspare

Choose the method which suits your needs.

• The createPlatformParms(const char * theHost, int thePort, const char
* theUser, const char * thePassword, bool theEncryptedFlag, const
char * thehotSpareHost, int thehotSparePort) method returns a pointer to a Sp-
PlatformParms object that is ultimately passed as the first parameter to the SpFact-
ory::createPlatform(SpPlatformParms *parms, SpPlatformStatus
*status) method. In addition to the basic connectivity parameters previously mentioned, this
method adds two more parameters called const char * theHotSpareHost and int the-
HotSparePort. Using an SpPlatformParms object created with this factory method will cause

Reference Guide to the C++ Object Model

106

the Pub/Sub API to use a High Availability configuration. In a High Availability configuration, if the
primary Sybase Aleri Streaming Platform goes down, the Pub/Sub API automatically attempts to
switch over and use the secondary Sybase Aleri Streaming Platform.

See the Administrators Guide for more information on High Availability configurations.

• The createPlatformParms(const char * theHost, int thePort, const char
* theUser, const char * thePassword, bool theEncryptedFlag, bool
theUseRsaFlag, const char * theHotSpareHost, int theHotSparePort)
method returns a pointer to an SpPlatformParms object that is ultimately passed as the first para-
meter to the SpFactory::createPlatform(SpPlatformParms *parms, SpPlat-
formStatus *status) method. This can be any one of the following values: SpPlatform-
Parms::AUTH_NONE, SpPlatformParms::AUTH_PAM, SpPlatform-
Parms::AUTH_RSA, SpPlatformParms::AUTH_KERBV5. While other versions of the fact-
ory method can be used, this is the preferred way of creating an SpPlatformParms object. If a
Hotspare configuration doesn't exist, clients should pass in a null value for the theHotSpareHost
parameter.

• The createPlatformStatus() method returns a pointer to an SpPlatformStatus object
that is passed as the second parameter to the SpFact-
ory::createPlatform(SpPlatformParms *parms, SpPlatformStatus
*status) method, in order to return status information back to the caller. It is also used in several
other methods within the Pub/Sub API that need to return error code/status information. See Sec-
tion A.1.3, “SpPlatformStatus Object” for more information.

The SpPlatformStatus object is passed in as the last parameter. If createStreamDataRe-
cord fails, a null will be returned to the caller and the SpPlatformStatus object will indicate
the error condition.

• The createStreamDataRecord(SpStream *stream, std::vector<SpDataValue
*> *fieldData, int opCode, int flags, SpPlatformStatus *status) meth-
od returns a pointer to an SpStreamDataRecord object that is used in the SpPublication object in
order to publish data to the Streaming Processor. See

B.1.2. SpPlatformParms Object

The SpPlatformParms object is used by the SpFact-
ory::createPlatform(SpPlatformParms *parms, SpPlatformStatus *status)
method to create the SpPlatform object. The SpPlatformParms object is created using one of the
overloaded SpFactory::createPlatformParms(...) methods previously described. The Sp-
PlatformParms object contains all of the connection information required by the SpPlatform ob-
ject, in order to make the appropriate connection(s) to the Sybase Aleri Streaming Platform. This in-
formation includes the host and port of the Sybase Aleri Streaming Platform's Command and Control
Process, username, password, and flags indicating whether to use encryption, or RSA authentication, or
Kerberos authentication and/or the High Availability (Hot Spare) mechanism. The SpPlatform-
Parms interface includes the following methods:

std::string getHost();
std::string getGatewayHost();
int getPort();
std::string getUser();
std::string getPassword();
bool isEncrypted();
std::string getHotSpareHost();
int getHotSparePort();
bool useRsa();
SpPlatformParms::auth_type getAuthentication();

Reference Guide to the C++ Object Model

107

void setGatewayHost(const char * host);

Details:

• The getHost() method returns a string indicating the host name of the machine that the Streaming
Processor's Command and Control process is running on.

• The getGatewayHost() method returns the name of the gateway machine if it has been explicitly
set by the user.

• The setGatewayHost() method sets the gateway machine which the API will connect to. If set,
the API will ignore the value returned from the Sybase Aleri Streaming Platform. This can be useful if
the Sybase Aleri Streaming Platform is running on a machine without Domain Name System (DNS)
entries.

• The getPort() returns an integer indicating the port number of the Sybase Aleri Streaming Plat-
form's Command and Control process.

• The getUser() method returns a string indicating the username used to authenticate to the Sybase
Aleri Streaming Platform.

• The getPassword() method returns a string indicating the password used to authenticate to the
Sybase Aleri Streaming Platform. For RSA authentication, the password parameter contains the file
name of your private RSA key file.

• The isEncrypted() method returns a boolean indicating whether encrypted connections will be
used to the Command and Control process and the Gateway I/O process. If the encryption mechanism
is enabled, the Command and Control process connection will be made using https, while the Gate-
way I/O process will make SSL socket connections.

• The getHotSpareHost() method returns a string indicating the host name of the secondary High
Availability Sybase Aleri Streaming Platform. See the Administrators Guide for setting up a High
Availability configuration.

• The getHotSparePort() method returns an integer indicating the port number of the secondary
High Availability Streaming Processor. See Section 2.4.6, “Publication/Subscription in a High Avail-
ability (Hot Spare) Configuration” for more information.

• The useRsa() method returns a boolean indicating whether RSA authentication will be used when
attempting to make connections to the Sybase Aleri Streaming Platform Command and Control pro-
cess, and the Gateway I/O process.

• The getAuthentication() method returns the authentication mechanism specified when the
SpPlatformParms was created.

B.1.3. SpPlatformStatus Object

The SpPlatformStatus object is used by several of the Pub/Sub API methods to return status in-
formation back to the caller. The SpPlatformStatus interface includes the following methods:

int getErrorCode();
std::string getErrorMessage();
bool isError();

Reference Guide to the C++ Object Model

108

where:

• The getErrorCode() method returns an integer. If a problem was detected by the method this Sp-
PlatformStatus object was passed into, a non-zero error return code value is returned, otherwise a zero
is returned to indicate success.

• The getErrorMessage() returns a string containing the error message text.

• The isError() method returns a boolean the value of which is true if an error was detected or
false if no error was detected.

B.1.4. SpPlatform Object

The notion of the “Sybase Aleri Streaming Platform” has been abstracted into an object of type Sp-
Platform. As described in Section 3.2.1, “Set Up Objects for SP Subscription in C++”, an SpPlat-
form object is created using the SpFactory::createPlatform(...) method. Once instanti-
ated, an SpPlatform object implements and offers you the following Sybase Aleri Streaming Plat-
form functionality:

std::string getUrl();
std::string getUser();
std::string getPassword();
std::string getHost();
std::string getGatewayHost();
std::string getXMLModelVersion();
int getPort();
int getGatewayPort();
int getDateSize();
int getAddressSize();
int getQuiesced();
int getPrimaryServerFlag();
std::vector<SpStream *> *getBaseStreams();
std::vector<SpStream *> *getDerivedStreams();
std::vector<SpStream *> *getStreams();
SpStream *getStream(const char *streamName);
SpStream *getStream(int streamId);

SpStreamDefinition *getStreamDefinition(const char * streamName);

SpStreamDefinition *getStreamDefinition(int streamId);
bool isBigEndian();
bool isConnected();
bool isEncrypted();
bool useRsa();
int shutdown();

std::string getConfig(SpPlatformStatus * status);
int loadServerConfigFile(const char * configFile, const char * flags);
int loadConfigString(const char * configString, const char * flags);
int loadConfigStringApplyingConversion(const char * configString, const char * flags, const char * conversionConfigString);

int addStreamToClient(int clientHandle,
const char *streamName);

int removeStreamFromClient(int clientHandle,
const char * streamName);

SpSubscription *createSubscription(const char * name,
int flags, int deliveryType,

Reference Guide to the C++ Object Model

109

SpPlatformStatus *status);

SpPublication *createPublication(const char * name,
SpPlatformStatus *status);

Most of the SpPlatform object's methods communicate internally with the Sybase Aleri Streaming
Platform Command and Control process through the XMLRPC protocol. The SpPlatform methods
allow the client application program to retrieve Sybase Aleri Streaming Platform configuration informa-
tion and retrieve all the source and/or derived streams.

Details of the method set:

The getUrl() method returns a string representing the URL which is used to connect to the Com-
mand and Control Process through XMLRPC. The context of this string depends on whether the SpPlat-
form object was created with encryption enabled. Refer to Appendix F, Using Encryption with Java Cli-
ent Applications for more information. If there is an instance of the SpPlatform, the isEncrypted()
method can be used to check whether encryption was enabled when the SpPlatform object was in-
stantiated.

The getUser() and getPassword() methods return the strings that represent a username and
password. These values are used internally for authentication when connecting to the Sybase Aleri
Streaming Platform Command and Control and Gateway I/O processes.

There is a set of methods consisting of getHost(), getGatewayHost(), getPort(), and get-
GatewayPort(). getHost() returns the name of the host machine where the Sybase Aleri Stream-
ing Platform Command and Control Process is running. getGatewayHost() returns the host ma-
chine where the Sybase Aleri Streaming Platform Gateway I/O Process is running. Currently, these two
Sybase Aleri Streaming Platform processes reside on the same machine. However, this may change in
the future.

The getPort() and getGatewayPort() methods return, respectively, the Command and Control
port number and Gateway I/O port number but refer to two different processes.

The getXMLModelVersion() method returns a string indicating the AleriML data model version
which started up the Sybase Aleri Streaming Platform.

The getDateSize() method returns the size of the datetime field type. If the Pub/Sub API is used
to communicate with the Gateway I/O process, the datetime field type size is automatically fixed. If a
different Gateway I/O code will be written, your application will have to deal with this, as well as endi-
anness, when sending datetime fields to the Sybase Aleri Streaming Platform.

The getAddressSize() method returns the size of a C/C++ pointer (in bytes) that the Sybase Aleri
Streaming Platform currently recognizes. The value represents how the instance of the running Sybase
Aleri Streaming Platform was compiled (either 32-bit or 64-bit).

The getQuiesced() method returns an integer that represents the “quiesced” state of the Sybase
Aleri Streaming Platform. If successful, the method will return either 0 to indicate false, or 1 to indic-
ate true. If the command cannot be executed successfully, an error code is returned.

The error message associated with the error code can be retrieved by calling
SpUtils::getErrorMessage(rc), where rc is the return code sent back from the getQui-
esced() call.

The getPrimaryServerFlag() method returns an integer. If a value of 1 is returned, the Sybase
Aleri Streaming Platform is considered to be the primary server in a High Availability (Hot Spare) con-
figuration. If a value of zero is returned, the Sybase Aleri Streaming Platform is not the primary server
in this configuration. If the command could not be executed successfully, an error code is returned that

Reference Guide to the C++ Object Model

110

is neither zero nor 1.

The Pub/Sub API attempts to alleviate you from having to worry about the details of a High Availability
(Hot Spare) switch over in case the primary server goes down. You can use this method to check that the
connected Sybase Aleri Streaming Platform is indeed a primary server within a High Availability (Hot
Spare) configuration. Theoretically, you could use the Pub/Sub API to establish a connection to a sec-
ondary server within this configuration. Calling getPrimaryServerFlag() on the secondary serv-
er returns a value of zero, indicating that the server is not a primary.

The next group of methods is used to return stream metadata from the Sybase Aleri Streaming Platform.
A stream's metadata/schema is represented within the Pub/Sub API as an object of type SpStream.
Refer to Section B.1.5, “SpStream Object” for more information. The getBaseStreams() method
returns a pointer; these pointers reference SpStream objects representing all of the Source Streams resid-
ing on the Sybase Aleri Streaming Platform. Similarly, getDerivedStreams() returns a pointer to
a vector of pointers. These pointers reference SpStream objects that represents all of the derived
streams residing on the Sybase Aleri Streaming Platform. The getStreams() method returns a vector
of SpStream objects that represents all streams (both source streams and derived streams) residing on
the Sybase Aleri Streaming Platform. For a particular stream, you can look up the stream by its name or
id using the getStream(const char * streamName) or getStream(int streamId)
method, respectively.

The getStream(const char * streamName) and getStreamDefinition(int
streamId) methods return an object of type SpStreamDefinition for the specified stream-
Name or streamId, respectively. Refer to Section B.1.6, “SpStreamDefinition Object” for more in-
formation.

The isBigEndian() method returns true if the Sybase Aleri Streaming Platform Server is running
on a big-endian machine, false if the Sybase Aleri Streaming Platform Server is running on a little-
endian machine.

The isConnected() method returns true if the SpPlatform object is still connected to the Sybase
Aleri Streaming Platform. Otherwise, it returns false. For example, if the client application program
issues a "shutdown", subsequent isConnected() calls return false.

Once an SpPlatform object is shut down, the application program should set its reference to null.
Later on, another SpPlatform object can be instantiated again using the SpFact-
ory::createPlatform(...) method.

The shutdown() method tells the Command and Control Process to shut down the Sybase Aleri
Streaming Platform. This causes all socket connections to the Sybase Aleri Streaming Platform to be
closed. If your subscriptions are running, the SpObserver objects of those subscriptions will be noti-
fied before the shutdown.

The getConfig(SpPlatformStatus *status) method returns a std::string containing
the AleriML configuration currently being executed by the running Sybase Aleri Streaming Platform in-
stance. If there is an error in retrieving the XML configuration information from the server, this method
will return an empty string, and the error code will be stored in the SpPlatformStatus parameter passed
into the method.

The loadServerConfigFile(const char * configFile, const char * flags)
method will attempt to load the AleriML configuration file on the server into the running Sybase Aleri
Streaming Platform instance. The flags parameter is used to provide control information used during the
AleriML configuration file load attempt. If additional control information is not needed, the value of the
flags parameter can be an empty string. Consult the Administrators Guide for more information on load-
ing AleriML configurations, and the various options that can be specified in the flags parameter. If the
AleriML configuration file was loaded successfully, the method returns zero. If it was unsuccessful, a
non-zero error code will be returned. For more information about the attempt to load the AleriML con-
figuration file into the server, inspect the log messages located on the server.

Reference Guide to the C++ Object Model

111

The loadConfigString(const char * configString, const char * flags)
method attempts to load the AleriML configuration stored in the configString parameter, into the
running Sybase Aleri Streaming Platforminstance. The flags parameter is used to provide control in-
formation used during the XML configuration string load attempt. If additional control information is
not needed, the value of the flags parameter can be an empty string.

If the AleriML configuration was loaded successfully, the method returns zero. If the loading was un-
successful, a non-zero error is returned. In addition, when loading an AleriML configuration into the
server, inspect the log messages located on the server for more information.

The loadConfigStringApplyingConversion(const char * configString,
const char * flags, const char * conversionConfigString) method will attempt
to load the AleriML configuration stored in the configString parameter into the running Sybase
Aleri Streaming Platforminstance. The flags parameter provides control information used during the
AleriML configuration string load attempt. If additional control information isn't needed, the value of
the flags parameter can be an empty string.

The conversionConfigString parameter points to an AleriML model used to apply specific con-
version instructions during the AleriML configuration load.

If the AleriML configuration was loaded successfully, the method returns zero. If it was unsuccessful, a
non-zero error code is returned. Also, you should inspect the log messages located on the server for
more information when loading an AleriML configuration into the server.

The SpPlatform object provides two subscription-related methods you can use if you write your own
low-level Gateway I/O code for the subscription instead of utilizing the Pub/Sub API. The methods are
addStreamToClient(int clientHandle, String streamName) and re-
moveStreamFromClient(int clientHandle, String streamName). Both are part of
the SpPlatform interface because the two are XMLRPC calls that manage the subscription characterist-
ics of a Gateway I/O socket on which a subscription is currently running.

Once a subscription request is issued for an open Gateway I/O socket connection, the connection be-
comes a read-only connection. Asynchronous stream updates are delivered from the Sybase Aleri
Streaming Platform to the client. Because of the "read-only" nature of the socket, additional Gateway I/
O commands can no longer be issued on this socket connection, leaving the XMLRPC mechanism to fill
in the gap.

The two methods are passed a clientHandle, which is an integer value returned by the Gateway I/O
process when you send a low-level subscription request on the socket. The addStreamToCli-
ent(...) method lets you add an additional stream to the subscription list, and the re-
moveStreamFromClient(...) method allows you to delete a stream from the subscription list.

If the Pub/Sub API subscription mechanism is used, SPplatform is an effective method. The create-
Subscription(const char *name, int flags, int deliveryType,
*SpPlatformStatus) method can create an SpSubscription object that is associated with the
SpPlatform object. As the name implies, it is also a factory method used to create SpSubscrip-
tion objects. A SpSubscription object has its own interface that is used to control the subscrip-
tion.

As mentioned earlier, a subscription is used to get asynchronous stream updates from the Sybase Aleri
Streaming Platform into your client application.

Similarly, there is a factory method called createPublication(const char *name, Sp-
PlatformStatus *status) that creates an SpPublication object. An SpPublication ob-
ject can publish stream input data and/or issue the Gateway I/O commit() command) from the client ap-
plication to the Sybase Aleri Streaming Platform. Refer to Section 3.3.1.1, “Create an SpPublication Ob-
ject” for more information.

Reference Guide to the C++ Object Model

112

B.1.5. SpStream Object

The SpStream object is used to store the metadata associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpStream interface includes the following methods:

int getId();
std::string getName();
bool isBase();
SpStreamDefinition *getDefinition();

Details:

• The getId() method returns an integer that represents the stream's internal identifier on the Sybase
Aleri Streaming Platform.

• The getName() method returns a string that represents the name of the stream.

• The isBase() method returns true if the stream is a source stream, false otherwise.

• The getDefinition() method returns a pointer to an object of type SpStreamDefinition
which contains the schema information of the stream. Refer to Section 3.3.1.2, “Create SpStream-
DataRecord Objects” for more information.

B.1.6. SpStreamDefinition Object

The SpStreamDefinition object stores the schema associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpStreamDefinition interface has the following methods and con-
stants defined within it:

int getNumColumns();
std::vector<const char *> *getColumnNames();
std::vector<int> *getColumnTypes();
std::vector<int> *getKeyColumns();
std::vector<int> *getKeyColumnVector();
int bool isKeyColumn(int columnIndex);

Details:

• The getNumColumns() method returns the number of columns in the stream.

• The getColumnNames() method returns a vector of "const char *", where each "const
char *" represents the name of the corresponding column.

• The getColumnTypes() method returns a vector of integers, each one a constant that represents
the field type of the corresponding column. The SpStreamDefinition contains a list of integer
"constants" representing the various column types.

This vector's size is equal to the value returned from the getNumColumns() method. In the distri-
bution's include/Data directory, there is a file named DataTypes.hpp. This file contains an
enumeration of the different DataTypes supported by the Pub/Sub API.

• The getKeyColumns() method returns a vector of integers, each of which is the column index (rel
0) of a key column in the streams field list. For example, if the stream has 10 columns, and the first
three are key columns, the getKeyColumns() method returns a vector that includes the following

Reference Guide to the C++ Object Model

113

entries: [0, 1, 2].

• The getKeyColumnVector() method returns a vector of integers. Each field in the entire field
list is represented by an integer, the value of which is either 1 (if the field is a key field), or zero (if
the field is not a key field).

• The isKeyColumn(int columnIndex) returns a boolean value of true if the column index
specified is that of a key field; otherwise, it returns false.

The columnIndex is “rel-0” as the first column of the field list has an index value of zero.

B.1.7. SpStreamProjection Object

The SpStreamProjection object stores the metadata associated with a stream projection based on
an SQL query supplied to the createSubscriptionProjection(...) factory method of the
SpPlatform object. The SpStreamProjection interface includes the following methods:

getStream() returns a reference to the underlying SpStream onto which the SQL query
was projected.

getDefinition() returns a pointer to an object of type SpStreamDefinition, containing the
schema information of the projection. This information is returned by the Sy-
base Aleri Streaming Platform when the SQL query associated with an
SpSubscriptionProjection object is first created.

SpStream *getStream();
SpStreamDefinition *getDefinition();

B.1.8. Creating an SpSubscription or SpSubscriptionProjection Object

To make subscription requests to the Sybase Aleri Streaming Platform, you must create an SpSub-
scription or SpSubscriptionProjection object. Use the appropriate factory method
provided by the SpPlatform object that has been previously instantiated. The SpPlatform factory
methods that are used to create SpSubscription and SpSubscriptionProjection objects
have the following signatures:

>
SpSubscription *createSubscription(const char * name,
int flags, int deliveryType, SpPlatformStatus *status);

SpSubscriptionProjection *createSubscriptionProjection(const char * name,
int flags, int deliveryType, const char * sqlQuery,
SpPlatformStatus *status);

Where:

const char * name is an identifier that the client application program intends to assign
to the SpSubscription or SpSubscriptionProjection object being cre-
ated.

int flags represents the “flag bits” that are to be sent to the Sybase Aleri
Streaming Platform Gateway I/O process when the low-level sub-

Reference Guide to the C++ Object Model

114

scription request is made. The flag settings control delivery from
the Sybase Aleri Streaming Platform to the client application, on
the Gateway I/O socket connection where the subscription request
was made. The “flag bits” are defined as constants in the SpSub-
Const.hpp interface file and are:

• BASE = 0x0;

The BASE flag bit tells the Sybase Aleri Streaming Platform that
it should send a complete “snapshot” of each stream of the sub-
scription request before sending subsequent updates to each
stream. The complete snapshot or “state” of the stream is a group
of “insert” records sent from the Sybase Aleri Streaming Plat-
form between the EVID_GATEWAY_SYNC_START and
EVID_GATEWAY_SYNC_END subscription events.

• LOSSY = 0x1;

The LOSSY flag bit puts the Sybase Aleri Streaming Platform in
“data shedding mode”, where the oldest data is dropped when a
client cannot keep up with the pace of the data coming out of the
Sybase Aleri Streaming Platform. This ensures that when the cli-
ent does read gateway data, it is always the most recent data that
the Sybase Aleri Streaming Platform has delivered to the output
gateway.

• NOBASE = 0x2

This flag tells the Sybase Aleri Streaming Platform that it should
NOT send a complete "snapshot" of each stream of the subscrip-
tion request. The Sybase Aleri Streaming Platform will send only
subsequent updates for each stream.

• DROPPABLE = 0x8

This flag tells the Sybase Aleri Streaming Platform to drop its
connection to the client application if that application (the one
using this flag) can't keep up with the data being sent and its in-
ternal buffer is filled. This protects the Sybase Aleri Streaming
Platform from getting into a situation where it has to stop pro-
cessing incoming data because the its clients can't keep up with
the data it is producing.

Because the connection is simply dropped, the client cannot ex-
pect a valid error code.

• PRESERVE_BLOCKS = 0x20

This flag tells the Sybase Aleri Streaming Platform that it should
preserve blocks while sending data to the client application.

These flag bits can be ORed together using the “|” operator. For ex-
ample, flags = NOBASE | LOSSY.

int deliveryType: This integer value specifies how the client application program's
SpObserver object receives the stream update events. Currently,
there are several delivery type format specifiers defined in the
SpSubConst.hpp interface file. The delivery type specifiers are
as follows:

Reference Guide to the C++ Object Model

115

• DeliveryType::DELIVER_PARSED = 1;

This delivery type setting tells the SpSubscription object to
deliver parsed field data objects representing the stream update
to the SpObserver object.

• DeliveryType::DELIVER_BINARY = 3;

This delivery type setting tells the SpSubscription object to de-
liver the binary representation of the stream update record to the
SpObserver object.

• DeliveryType::DELIVER_STREAM_OPCODES = 5;

This delivery type setting tells the SpSubscription object
not to use field level parsing, but to simply deliver the stream up-
date operation code (INSERT, UPDATE, DELETE, UPSERT,
and so forth).

const char *sqlQuery specifies the SQL query projection on which the SpSubscrip-
tionProjection will be based. The sqlQuery parameter is
only used to create an SpSubscriptionProjection object.
See Section 5.1, “Aleri SQL Queries and Statements” for SQL
query handling limitations of the Sybase Aleri Streaming Platform.

SpPlatformStatus status is used to return error code information from the createSub-
scription(...) and createSubscriptionProjec-
tion(...) factory methods, if the subscription object could not
be created.

The following example shows how to use the SpPlatform object called sp to create both an SpSub-
scription object and an SpSubscriptionProjection object:

SpSubscription *sub = sp->createSubscription("MySubscription_1",
SpSubConst::BASE,
SpSubConst::DELIVER_PARSED,
status);

SpSubscriptionProjection *subProj = sp->createSubscriptionProjection(
"MySubscriptionProjection_2",
SpSubConst::BASE,
SpSubConst::DELIVER_PARSED,
"select intData, charData from inputstream where intData > 100",
status);

In the above example, status is an SpPlatformStatus object that was created previously with the
SpFactory::createPlatformStatus() factory method.

B.1.9. SpSubscriptionCommon Method Set

If the sp->createSubscription(...) or the sp-
>createSubscriptionProjection(...) call is successful, the client application program gets
back either an SpSubscription or SpSubscriptionProjection object, which is then used in
order to make the subscription. The set of methods that the SpSubscription and SpSubscription-
Projection types have in common have been abstracted into a super type called SpSubscrip-

Reference Guide to the C++ Object Model

116

tionCommon. The SpSubscriptionCommon interface is inherited by both the SpSubscription and
SpSubscriptionProjection interfaces. The SpSubscriptionCommon interface defines the
following method set:

>
std::string getName();
int getFlags();
int getDeliveryType();
int getClientHandle();

int removeObserver(int theCookie);

int start();

int stop();

The getName() method returns the name assigned to the subscription object when it was created with
the SpPlatform's createSubscription(...), or createSubscriptionProjection(...) method.

Similarly, the getFlags() and getDeliveryType() methods return the flag settings and the de-
livery type, respectively, that were specified in the createSubscription(...) or createSub-
scriptionProjection(...) method.

The getClientHandle() method returns an integer representing a “handle” that is assigned to the
underlying subscription connection, by the Sybase Aleri Streaming Platform. A valid handle is one that
is greater than zero. The value of the clientHandle is acquired from the Sybase Aleri Streaming
Platform when the subscription is started through the start() method.

The removeObserver(int theCookie) method is used to remove the SpObserver from the
subscription's delivery mechanism. There are differences between how you add observers to the two dif-
ferent types of subscriptions. These differences will be discussed within the SpSubscription and
SpSubscriptionProjection interfaces.

The start() method is used to start the subscription process.

At least one stream and SpObserver must be registered with the subscription object before the sub-
scription object can be started up through the start() method. See Section C.2.2,
“SpSubscriptionEvent” for information on how to add respective SpObserver objects.

When you start up a subscription object, the following sequence of events takes place:

1. The subscription object establishes a socket connection to the Sybase Aleri Streaming Platform
Gateway I/O process, and authentication is performed.

2. A subscription request is sent to the Sybase Aleri Streaming Platform on this socket connection.

3. If the subscription request is accepted by the Sybase Aleri Streaming Platform, the subscription ob-
ject reads the clientHandle that the Sybase Aleri Streaming Platform assigned to it.

4. A new thread is started up dedicated to reading stream update information off the read-only Gate-
way I/O socket connection.

5. Stream update messages flowing from the Sybase Aleri Streaming Platform to the client are read,
parsed and delivered to the SpObserver objects.

When the SpObserver objects are “notified” for stream updates, through notify(...) methods,
the SpObserver objects will actually be running within the context of this thread instead of the main
one.

Reference Guide to the C++ Object Model

117

6. The start() method returns a zero back to the caller indicating that the subscription was started
up successfully. If there is an error, the start() method returns a non-zero error code.

Note:

The SpUtils.getErrorMessage(errorCode) method can be used to get the specific
error message.

The stop() method is used to shut down the subscription mechanism. The stop() method closes the
socket connection and stops the thread that was used to read, parse and deliver the Sybase Aleri Stream-
ing Platform updates to the SpObserver objects.

Here are additional methods in the interface:

void setPulseInterval(const uint32_t interval);
uint32_t getPulseInterval();
void setQueueSize(const uint32_t queue, SpPlatformStatus * status);
uint32_t getQueueSize();
void setBaseDrainTimeout(const uint32_t millis, SpPlatformStatus * status);
uint32_t getBaseDrainTimeout();
void setExitOnClose(SpPlatformStatus * status);
bool getExitOnClose();

• setPulseInterval can be used to set the pulse interval in seconds if the subscription was created
with the pulsed flag on.

• getPulseInterval is used to retrieve the current setting of the pulse interval in seconds.

• setQueueSize is used to set the internal buffer size in the Sybase Aleri Streaming Platform for this
subscription. The Sybase Aleri Streaming Platform uses this buffer to queue up messages if the sub-
scriber is slow in retrieving. The buffer prevents it from blocking and slowing down. The setting is
made when the subscription is started. It is necessary to keep the status parameter valid until the
time the start call is made.

• getQueueSize retrieves the current value of the queue size.

• setBaseDrainTimeout is used to set the time in milliseconds that the Sybase Aleri Streaming
Platform should wait before dropping a blocked subscription. If a subscription is started with the
DROPPABLE flag set, the Sybase Aleri Streaming Platform closes a subscription connection if the
messages block due to a slow client. This parameter specifies how long to wait before closing the con-
nection. The setting is made when the subscription is started. It is necessary to keep the status
parameter valid until the time the start call is made.

• getBaseDrainTimeout retrieves the current value in milliseconds of the base drain timeout.

• If the setExitOnClose is set, the Sybase Aleri Streaming Platform will shut down once this sub-
scription connection is closed by the client. The setting is made when the subscription is started. You
must keep the status parameter valid until the time the start call is made.

• getExitOnClose retrieves the current setting of the exit on close flag.

B.1.10. SpSubscription Method Set

If the sp->createSubscription(...) call is successful, the client application program gets an
SpSubscription object back that is ultimately used to subscribe. An SpSubscription object
can be used to subscribe to one or more streams, while an SpSubscriptionProjection object

Reference Guide to the C++ Object Model

118

can only subscribe to the projection defined by the sqlQuery passed in to the createSubscrip-
tionProjection(...) factory method. For each stream being observed, the SpSubscription
object delivers to the SpObserver, stream events that contain all of the stream's fields. The SpSub-
scription object extends the method set defined in the SpSubscriptionCommon interface as
follows:

int /*Cookie*/ addStreamObserver(const char * streamName,
SpObserver *theObserver);

int /*Cookie*/ addStreamsObserver(
std::vector<std::string> * theStreamNames, SpObserver *theObserver);

int subscribe(const char *streamName);

int unsubscribe(const char *streamName);

The next few methods are used to set up the streams and their corresponding SpObserver objects for
the SpSubscription. The client application programs must create their own SpObserver objects,
which are notified by the SpSubscription with the updates that arrive from the Sybase Aleri
Streaming Platform for the registered streams. The client application programs create SpObserver ob-
jects by implementing the SpObserver interface.

The addStreamObserver(const char * streamName, SpObserver
*theObserver) method tells the SpSubscription object to send all updates for the stream-
Name to the SpObserver object specified by theObserver parameter. You can call this method as
many times as required.

The addStreamsObserver(std::vector<std::string> *theStreamName, SpOb-
server *theObserver) method can be used to associate several streams with a particular SpOb-
server at once. The same thing can be accomplished by making multiple calls to the addStreamOb-
server(...) method previously shown. Again, multiple addStreamsObserver(...) calls can
be made to set up the streams and their corresponding observers.

The addStreamObserver(...) and addStreamsObserver(...) calls return an integer
value that represents a “cookie”/“handle” to the registered SpObserver object. Later on, you can use
the cookie to remove the SpObserver.

The removeObserver(int theCookie) method, with a signature defined in the SpSubscrip-
tionCommon interface, removes the SpObserver from the SpSubscription's delivery mechan-
ism.

Once the SpSubscription's start() method has been called, the SpSubscription object
provides two methods to modify the stream set currently being managed by the “running” subscription,
subscribe(const char *streamName) and unsubscribe(const char
*streamName).

These two methods take a single streamName parameter. In the case of the subscribe(const
char * streamName) call, the client application program must first ensure that there is an SpOb-
server associated with the subscribed stream. You can do this by first calling the addStreamObserv-
er(streamName, theObserver) method to register the observer for the stream, and then calling
the subscribe(streamName) method.

If successful, both the subscribe(const char * streamName) and unsubscribe(const
char * streamName) methods returns a zero. Otherwise, a non-zero error code is sent back to the
caller, where the SpUtils::getErrorMessage(rc) method can be used to see the error text as-
sociated with the error code.

Reference Guide to the C++ Object Model

119

B.1.11. SpSubscriptionProjection Method Set

If the sp->createSubscriptionProjection(...) call is successful, you get back an
SpSubscriptionProjection object ultimately used to instantiate the subscription. The contents
of the data returned from the Sybase Aleri Streaming Platform back to the SpSubscriptionPro-
jection object are determined by the SQL query passed into the createSubscriptionProjec-
tion(...) factory method. An SpSubscriptionProjection can only receive updates for the
underlying stream specified in the SQL query while the SpSubscription can get updates for more than
one stream. The SpSubscriptionProjection interface extends the method set defined in the
SpSubscriptionCommon interface as follows:

SpStreamProjection *getStreamProjection();

int /*Cookie*/ addObserver(SpObserver *theObserver);

The getStreamProjection() method returns the SpStreamProjection object produced
when the SQL query was sent to the Sybase Aleri Streaming Platform for parsing during the execution
of the createSubscriptionProjection(...) factory method. If the SQL query could not be
parsed, the createSubscriptionProjection(...) factory method returns null; the corres-
ponding error information is added to the SpPlatformStatus object that was passed to the cre-
ateSubscriptionProjection(...) factory method. If the createSubscriptionPro-
jection(...) method succeeds, the program gets back an SpSubscriptionProjection ob-
ject, which can then make a call to getStreamProjection() for the schema information produced
by the SQL query parse. The SpStreamProjection that is returned should be treated as
“read-only”, and not modified by the client application program. Typically, the SpStreamProjec-
tion objects are passed into the SpObserver's constructor, giving the SpObserver the list of fields
and corresponding data types. This information is typically used by the SpObserver to process the up-
dates that come back from the server.

B.1.12. SpSubscriptionEvent

An SpSubscriptionEvent provides the following method set:

std::string getSubName();
int getType();
std::string getTypeName();
int getId();
std::string getIdName();
int getStreamId();
int getStreamOpCode();
void *getData();

The getSubName() method returns a string that represents the name of the
SpSubscription/SpSubscriptionProjection object that generated and delivered this event
to the SpObserver. This “name” was assigned to the SpSubscription/SpSubscriptionPro-
jection object when it was first created through the SpPlatform createSubscrip-
tion(...) method.

The getType() method returns an integer representing the “type” of this SpSubscriptionEvent. Cur-
rently, there are four types (or categories) of events defined in the SpSubscriptionEvent class:

• SpSubscriptionEvent::EVTYPE_PARSED_DATA

Events delivered from a subscription object that was created with a delivery type of SpSub-

Reference Guide to the C++ Object Model

120

Const::DELIVER_PARSED.

• SpSubscriptionEvent::EVTYPE_BINARY_DATA

Events delivered from a subscription object that was created with a delivery type of SpSub-
Const::DELIVER_BINARY.

• SpSubscriptionEvent::EVTYPE_STREAM_OPCODE_DATA

Events delivered from a subscription object that was created with a delivery type of SpSub-
Const::DELIVER_STREAM_OPCODES.

• SpSubscriptionEvent::EVTYPE_SYSTEM

Events delivered by the subscription object to indicate that a system event such as an error, halt in
communication, or shutdown of the Sybase Aleri Streaming Platform has taken place.

The getTypeName() method returns the string literal value, representing the type of event instead of
the internal integer representation. You can use this for output messages.

The getId() method returns an integer representing a unique event ID that can be safely used within a
switch statement to “case” on. The event IDs are unique across the entire set of event types. For ex-
ample, an SpSubscriptionEvent may have a type of SpSubscrip-
tionEvent::EVTYPE_SYSTEM, which means it is a system-related notification. The getId()
method returns what was actually detected by the system, for example, SpSubscrip-
tionEvent::EVID_PARSING_ERROR, SpSubscrip-
tionEvent::EVID_COMMUNICATOR_HALTED, and so forth. As is the case with the event types,
all of the event IDs are enumerated within the SpSubscriptionEvent.hpp interface.

These are the SpSubscriptionEvent identifiers:

• SpSubscriptionEvent::EVID_GATEWAY_SYNC_START

It is delivered to the SpObserver if the SpSubscription is sent a START_SYNC Gateway I/O mes-
sage from the Sybase Aleri Streaming Platform. The START_SYNC message contains the ID for the
stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates the start of the stream's “snapshot”. Sub-
sequent events should be INSERT messages for each record in the stream until the END_SYNC Gate-
way I/O message is received from the Sybase Aleri Streaming Platform. A call to the START_SYNC
event's getData() method returns null. For this message to be sent from the Sybase Aleri Stream-
ing Platform to the client application, the SpSubscription had to be created with the SpSub-
Const::BASE flag specified. If the SpSubConst::NOBASE flag is specified instead, the
START_SYNC message would never have been delivered from the Sybase Aleri Streaming Platform
to the client application.

This event is also delivered after the dynamic Sybase Aleri Streaming Platform changes if the stream's
contents gets regenerated, after the WIPEOUT event. In this situation the START_SYNC event is de-
livered even if the subscription was created with the SpSubscriptionCommon.NOBASE flag.

• SpSubscriptionEvent::EVID_GATEWAY_SYNC_END

This event is delivered to the SpObserver if the SpSubscription is sent an END_SYNC Gateway I/O
message from the Sybase Aleri Streaming Platform. The END_SYNC message contains the ID for the
stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates that the end of the stream's “snapshot” has

Reference Guide to the C++ Object Model

121

been reached. A call to the END_SYNC event's getData() method returns null. For this message to
be sent from the Sybase Aleri Streaming Platform to the client application, the subscription has to be
created with the SpSubConst::BASE flag specified. If the SpSubConst::NOBASE flag is spe-
cified instead, the END_SYNC message would never be delivered from the Sybase Aleri Streaming
Platform to the client application.

This event is also delivered after the dynamic Sybase Aleri Streaming Platform changes if the stream's
contents are regenerated. The WIPEOUT event is followed on the dynamic regeneration by the
START_SYNC event insertion of the new data and the END_SYNC event. All the events are delivered
even if the subscription was created with the SpSubscriptionCommon.NOBASE flag.

• SpSubscriptionEvent::EVID_GATEWAY_WIPEOUT

It is delivered to the SpObserver after the dynamic Sybase Aleri Streaming Platform changes if the
stream's contents are regenerated. The event means the current contents of the stream are being dis-
carded. The WIPEOUT event is followed by the START_SYNC event, insertion of the new data, and
the END_SYNC event. All the events are delivered even if the subscription was created with the
SpSubscriptionCommon.NOBASE flag.

• SpSubscriptionEvent::EVID_BINARY_DATA

If the subscription is created with the delivery type of SpSubConst::DELIVER_BINARY, the
getData() method returns a pointer to an SpBinaryData object containing the binary message
delivered from the Sybase Aleri Streaming Platform. See SpBinaryData.hpp for the definition of
the interface.

• SpSubscriptionEvent::EVID_PARSED_FIELD_DATA

When a subscription object is created with a delivery type of SpSubConst::DELIVER_PARSED,
it attempts to parse the field data of the stream messages transmitted by the Sybase Aleri Streaming
Platform and delivers this parsed field information to the SpObserver. The getStreamOp-
Code() method can be used to determine whether the message was an INSERT, UPDATE, or DE-
LETE. The parsed field data is accessed by the SpObserver through the event's getData()
method.

• SpSubscriptionEvent::EVID_PARSED_PARTIAL_FIELD_DATA

It is similar to the SpSubscriptionEvent::EVID_PARSED_FIELD_DATA event. This event
is delivered when the SpSubscription's message parser detects an error as it parses out the field
data for the message sent from the Sybase Aleri Streaming Platform. If an error is encountered during
the parse, only those fields that were successfully parsed up to the place where the error was detected
will be delivered. The SpObserver is not obligated to inspect the partial results, but you may want
to use the partial results for debugging purposes.

• SpSubscriptionEvent::EVID_COMMUNICATOR_HALTED

It is delivered when the low-level socket on which the subscription runs is closed. In this case, a call
to the getData() method returns null.

• SpSubscriptionEvent::EVID_PLATFORM_SHUTDOWN

It is delivered when you attempt to issue a “shutdown” through the SpPlatform object. In this case,
a call to the getData() method returns null.

• SpSubscriptionEvent::EVID_PARSING_ERROR

It is delivered when a parsing error is detected by the SpSubscription, and some context to report. A
call to the getData() method returns an object of type SpParserReturnInfo.

Reference Guide to the C++ Object Model

122

For more information, see Section 3.2.3, “Receive/Process Subscription Updates Using C++”.

• SpSubscriptionEvent::EVID_UNKNOWN_PARSING_ERROR

It indicates that the parser encountered an unexpected error before the completion of the process. In
this case, the getData() method returns an integer object that contains the record length for the
message that is about to be parsed.

• SpSubscriptionEvent::EVID_READ_STREAM_RECORD_ERROR

It indicates that the parser could not successfully read the record that was delivered from the Sybase
Aleri Streaming Platform. The getData() method returns an integer object containing the value of
the record length that was read for the bad record.

• SpSubscriptionEvent::EVID_BAD_RECORD_LENGTH_ERROR

It indicates that the record length read of the socket was bad. The getData() method returns an in-
teger object that contains the bad record length value read off of the socket.

• SpSubscriptionEvent::EVID_BAD_GATEWAY_OP_CODE_ERROR

It indicates that the Gateway I/O operation code for the message sent from the Sybase Aleri Streaming
Platform is invalid. The getData() method returns an integer object that contains the bad Gateway
I/O operation code that was read.

• SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It is delivered to the SpObserver when the Pub/Sub API recognizes that a connection attempt
should be made to the High Availability (Hot Spare) server. The High Availability (Hot Spare) con-
nection parameters were specified in the SpPlatfromParms object passed to the SpFact-
ory::createPlatform() method when the underlying SpPlatform was first created.

• SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

It is delivered to the SpObserver when the connection to the High Availability (Hot Spare) server
is made successfully.

• SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_FAILED

It is delivered to the SpObserver when the connection to the High Availability (Hot Spare) server
fails.

The getIdName() method returns the string literal value that corresponds to the numeric event ID.
You can use it for output messages.

The getStreamId() method returns the stream id that is associated with this event. For example, an
SpObserver may receive an event of type SpSubscriptionEvent::EVTYPE_PARSED_DATA,
where the event id is SpSubscriptionEvent::EVID_PARSED_FIELD_DATA, indicating that
the event contains parsed field data. The getStreamId() method returns the stream id to which this
event data corresponds.

The getStreamOpCode() method returns the stream operation code that is associated with this
event. For example, an SpObserver may receive an event of type SpSubscrip-
tionEvent::EVTYPE_PARSED_DATA, where the event id is SpSubscrip-
tionEvent::EVID_PARSED_FIELD_DATA, indicating that the event contains parsed field data.
The getStreamOpCode() method returns a value that indicates whether the event is an INSERT,
UPDATE, DELETE, and so forth.

Reference Guide to the C++ Object Model

123

The getData() method returns a void pointer to the data associated with the event. Depending on the
event id, the pointer must be typecast into a pointer to an object of the correct “type” before the data can
be inspected.

For example, if a subscription object is set up to deliver parsed data, and the SpObserver receives an
SpSubscriptionEvent whose event id is SpSubscriptionEvent::EVID_PARSED_FIELD_DATA,
the getData() method returns a void pointer that must be typecast into the following:

std::vector<SpDataValue *> *fieldData =
(std::vector<SpDataValue *> *) ev->getData();

Where fieldData is a pointer to a vector of pointers to SpDataValue objects. Refer to Section B.1.14,
“SpDataValue Object” for more information. Each element of the vector represents the data associated
with the corresponding field (in the field order specified in the corresponding stream's SpStream-
Definition).

In the case where the event id is SpSubscriptionEvent::EVID_BINARY_DATA, the get-
Data() method returns a void pointer that must be typecast into a pointer to an SpBinaryData object as
follows:

SpBinaryData *binData = (SpBinaryData *) ev->getData();

If the subscription was created using a delivery type of SpSub-
Const::DELIVER_STREAM_OPCODES, the getData() method returns null. Use the ev-
>getStreamOpCode() method to determine the stream operation code (INSERT, UPDATE, DE-
LETE, UPSERT, and so forth).

If the getData() method call returns a pointer to a vector of SpDataValue objects, after processing
this subscription, the following application should be done to close potential memory leaks.

1. Iterate through the vector and delete each object

2. Delete the vector itself

B.1.13. SpParserReturnInfo object

The SpParserReturnInfo object referenced above has the following method set to use within the
SpObserver:

int getErrorCode();
std::string getErrorMessage();
int getTransMessageIndex(); // REL 0
int getColumnIndex(); // REL 0
std::string getErrorData();
bool isSuccess();

Details:

• The getErrorCode() and getErrorMessage() methods, respectively return the parser error

Reference Guide to the C++ Object Model

124

code and associated error message.

• The getTransMessageIndex() method is only relevant for transaction messages that are being
parsed at the time of error. If the message is not a transaction, -1 is returned. If the message is a
transaction block, the transaction block's message index is rel 0 (the first message has an index value
of 0).

• The getColumnIndex() method returns the column index (rel 0) for the column where the pars-
ing error is detected. Again, if the error occurred before the parser event got to the first column
(having a column index value of zero), this method returns -1.

• The getErrorData() method returns a string that the parser may have put together at the point of
error to indicate what went wrong. Typically, if there is any extra error information that the parser de-
termined was important, it is stored in a string, which is returned by the getErrorData() method.

• The isSuccess() method returns true if the parse is successful and returns false if any error
occurs.

B.1.14. SpDataValue Object

The SpDataValue structure encapsulates the Data/DataTypes.hpp file's dataValue structure. It
simply carries the data type of the field data and provides a destructor that is used to free the data-
Value.val.stringv component of the structure.

If the string is not to be freed, ensure that the stringv value of the structure is set to zero (NULL) be-
fore calling the destructor. This is required in the case where a literal character string is assigned, such as
“my test data string”, to the dataValue.val.stringv.\

The SpDataValue structure is defined as follows:

struct SpDataValue
{

struct DataTypes::DataValue dataValue;
DataTypes::DataType type;
~SpDataValue();

}

Where:

The DataTypes::DataType enumerates the Sybase Aleri Streaming Platform data types. It is
defined in the Data/DataTypes.hpp file as follows:

enum DataType
{

INT32=1,
INT64=2,
DOUBLE=3,
DATE=4,
STRING=5,
NULLVALUE=6,
MONEY=7,
TIMESTAMP=8,

};

Reference Guide to the C++ Object Model

125

The struct DataTypes::DataValue is also defined in the Data/DataTypes.hpp file as follows:

struct DataValue
{

union
{

int32_t int32v;
int64_t int64v;
money_t moneyv;
double doublev;
time_t datetv;
timestamp_t timestampv;
const char * stringv;

} val;
bool null;

};

For example, using an SpDataValue object pointer called ptrData, an int32 field value of 100 can
be set up, as follows:

ptrData->type = DataType::INT32;
ptrData->dataValue.val.int32v = 100;
ptrData->dataValue.null = false;

The same mechanism can be used to set up the other field data elements For setting up an INT64, set
ptrData->dataValue.val.int64v = 100, set the ptrData->type = Data-
Type::INT64; and so forth.

Note:

Use the dataValue.null = true statement to set a NULL field data value.

Look at the source code for pubexample.cpp and subexample.cpp (SubExampleSpObserv-
er.cpp) to see the SpDataValue structure in use. The example shows how to handle the different data
types supported by the Sybase Aleri Streaming Platform.

B.1.15. SpBinaryData Object

The SpBinaryData class provides the following methods:

int getLength();
int getServerDateSize();
char *getDataBuffer();
bool getDoByteSwapFlag();

Details:

• The getLength() method returns the length of the character buffer that is used for storing the bin-
ary data.

• The getServerDateSize() returns an integer indicating the number of bytes that are used to

Reference Guide to the C++ Object Model

126

represent the Sybase Aleri Streaming Platform date field having the enumerated type of Data-
Type::DATE.

DataType::TIMESTAMP values are always a fixed length, whether the Sybase Aleri Streaming Plat-
form was compiled as a 32-bit or a 64-bit application.

• The getDataBuffer() method returns a pointer to the buffer that stores the actual binary data
read off the low-level Gateway I/O socket connection. The length of this buffer (in addition to being
stored internally within the character buffer itself) is retrieved using the getLength() method pre-
viously referenced. This buffer may contain null characters, but must not be interpreted as a null-
terminated character string.

• The getDoByteSwapFlag() returns either true or false, indicating whether the client applic-
ation needs to do byte swapping in order to interpret the various field data, stored within the buffer.
Byte swapping is required if the client and the Sybase Aleri Streaming Platform use different endian-
ness: that is, if the client is little-endian while the Streaming Processor is big-endian, or vice versa.

B.2. C++ Objects for Publication

B.2.1. SpPublication Method Set

If the sp->createPublication(...) call is successful, the client application program will get an
SpPublication object back and can proceed to use it. An SpPublication object can be used to
publish data to one or more streams. It implements an interface that provides the following method set:

std::string getName();

int start();
int publish(SpStreamDataRecord *streamRecord);

int publish(
std::vector<SpStreamDataRecords *> *streamRecords,
int streamOpCodeOverride,
int streamFlagOverride);

int publishTransaction(
std::vector<SpStreamDataRecords *> *streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock);

int publishEnvelope(
std::vector<SpStreamDataRecords *> *streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock);

int commit();

int stop();

int publish(
std::vector<SpStreamDataRecords *>
*streamRecords,
int streamOpCodeOverride,
int streamFlagOverride,
SpPlatformStatus * status);

int publishTransaction(
std::vector<SpStreamDataRecords *>

Reference Guide to the C++ Object Model

127

*streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock,
SpPlatformStatus * status);

int publishEnvelope(
std::vector<SpStreamDataRecords *>
*streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock,
SpPlatformStatus * status);

The getName() method returns the “name” assigned to this SpPublication object when it was created
through the SpPlatform's createPublication(...) factory method.

The start() method is used to start the publication process. When an SpPublication object is
started, the following events takes place:

1. The SpPublication object creates a socket connection to the Sybase Aleri Streaming Platform
Gateway I/O process.

2. The SpPublication authenticates with the Sybase Aleri Streaming Platform.

3. The start() method returns a zero back to the caller indicating that the SpPublication object was
successfully started. If there is an error, the start() method will return a non-zero error return
code.

The SpUtils::getErrorMessage(errorCode) method can be used to get the specific error
message.

Unlike the SpSubscription mechanism, this mechanism does not create a separate thread to man-
age the publication. Behind the scenes, a socket connection to the Sybase Aleri Streaming Platform
Gateway I/O process is used to transmit stream data to the Sybase Aleri Streaming Platform, and to read
the its response associated with each individual request. Unless otherwise specified in the flag values
used when publishing data, a publication request is synchronous. The client application program calls
one of the Publish methods, and waits for the Sybase Aleri Streaming Platform to respond with an
“ack” or “nak”. However, there is a special stream flag, enumerated as StreamInterface::NOACK in /
include/Stream/StreamInterface.hpp, that can be used to make an asynchronous publica-
tion request. When this flag is specified, the Publish method sends the request out to the Gateway I/O
process and returns control immediately back to the caller, without waiting for a response from the Sy-
base Aleri Streaming Platform.

The best way for the client application to ensure data integrity is to wait for the ack. If the ack is not
received, the application can retry the publication method call.

If a nak is generated by a Sybase Aleri Streaming Platform configured for High Availability, it triggers
the failover process.

The publish(SpStreamDataRecord streamRecord) method is used to publish/send a single stream input
record to the source stream on the Sybase Aleri Streaming Platform. Although it is more efficient to
send input stream records to the Sybase Aleri Streaming Platform in batches known as “transactions”,
this method can be used initially when you want to test a new data model, perhaps by sending one
stream input record at a time. If successful, a return code of zero is sent back to the caller. Otherwise, an
error code is sent back. The SpUtils::getErrorMessage(errorCode) method can be called

Reference Guide to the C++ Object Model

128

to get the specific error message.

Each of the Publish methods of the SpPublication object takes one or more SpStreamDataRe-
cord objects as shown in the coding example above. The SpStreamDataRecord object represents
one row of stream data that is to be sent to the Sybase Aleri Streaming Platform. Each SpStream-
DataRecord object has its own “op code”, which indicates how the row is to be handled by the Sy-
base Aleri Streaming Platform when it is received. For example, the op code may indicate that the row is
to be treated as an INSERT, a DELETE, an UPDATE, and so forth.

Refer to Section B.2.4, “SpStreamDataRecord Object” for more information.

The publish(std::vector<SpStreamDataRecord*> *streamRecords, int
streamOpCodeOverride, int streamFlagOverride) sends a vector of SpStream-
DataRecord objects to the Sybase Aleri Streaming Platform with one call. The streamOp-
CodeOverride and streamFlagOverride parameters can be used to override the corresponding
values found in the individual SpStreamDataRecord objects that comprise the collection.

Although publish does work with a vector of SpStreamDataRecord objects, it actually iterates
over the vector and calls publish for each one. However, this method lets you create a set of stream
data records where each record can be applied to a different stream. It may be used for debugging or
testing, where the ordered sequence of updates to multiple Source Streams is important.

The publishTransaction(std::vector<SpStreamDataRecord *>
*streamRecords, int streamOpCodeOverride, int streamFlagsOverride, int
maxRecordsPerBlock) and the publishEnvel-
ope(std::vector<SpStreamDataRecord *> *streamRecords, int streamOp-
CodeOverride, int streamFlagsOverride, int maxRecordsPerBlock) methods
are the most efficient in terms of bundling multiple SpStreamDataRecords for a single stream,
stored in the collection and sending at once to the Sybase Aleri Streaming Platform as a single batch.

All SpStreamDataRecord(s) that are to be sent as a transaction/envelope must be for the same
source stream. Each SpStreamDataRecord can have a different op code, such as INSERT,
UPDATE, DELETE), but the records must be for the same source stream.

As previously mentioned, the override op code and flag values can be used to override the corres-
ponding values found within the individual SpStreamDataRecord objects that make up the collec-
tion. In addition, this method takes one more parameter called maxRecordsPerBlock which is an
integer value that specifies the maximum number of SpStreamDataRecords to send as a transac-
tional/envelope unit to the Sybase Aleri Streaming Platform. If the value is set to zero, the method will
try to send all of the SpStreamDataRecord objects in the vector to the Sybase Aleri Streaming Plat-
form within one transaction block. If the maxRecordsPerBlock is less than the actual number of re-
cords in the collection, then the record set will be broken up (using the maxRecordsPerBlock set-
ting) into multiple transactions/envelopes during transmission to the server.

The difference between a transaction and envelope block transmitted to the server is how the server pro-
cesses the block of records upon receiving it. As the name implies, a group of records within a transac-
tion block is treated as a single transactional unit on the server side. In the case of an envelope, the group
of records contained within the envelope is processed a single record at a time by the server. So the en-
velope mechanism allows the client to send a batch of records for a specific stream to the server in one
shot as opposed to sending a single record at a time and waiting for each record's ack/nak reply from
the server.

Each of the three publish functions described above has a version that accepts a pointer to SpPlat-
formStatus. These versions are functionally similar, but in error conditions, return extended informa-
tion if available in the SpPlatformStatus parameter.

The commit() method issues a special Gateway I/O command to the Sybase Aleri Streaming Plat-
form, requesting that all pending input records previously sent to the Sybase Aleri Streaming Platform
be synced to disk. Making a commit call is a tremendously expensive operation relative to latency. It's

Reference Guide to the C++ Object Model

129

designed to be used only as part of a two-phase commit process when reading from a persistent source,
such as an ActiveMQ series, and writing to a Sybase Aleri Streaming Platform instance that uses Sy-
base's log store persistence model.

In a real time, low latency streaming scenario, the commit call should not be used after each record.

Typically the commit call should be used as follows: For a standard two-phase commit process that
guarantees against data loss, the client reads messages from the source, such as ActiveMQ, and pub-
lishes to the Sybase Aleri Streaming Platform until reaching a pre-determined number (>1024 is recom-
mended) of processed messages or a specified amount of time has elapsed. After reaching the value set
for the maximum number messages or the elapsed time has passed, the commit() call is made and upon
return to the client, the client may inform the source, such as ActiveMQ, that the messages can be de-
leted.

The stop() method shuts down the underlying Gateway I/O socket connection.

B.2.2. Stream Operation Codes

The following is a set of stream operation codes that can be set for each individual SpStream-
DataRecord or one of the streamOpCodeOverride parameters can be found in the
./include/Stream/StreamInterface.hpp file:

• StreamInterface::NOOP

When specified as the streamOpCodeOverride parameter, it indicates that the stream op code
stored in each of the individual SpStreamDataRecord objects should be used by the Sybase Aleri
Streaming Platform. If the stream op code within the SpStreamDataRecord is set to StreamInter-
face::NOOP, then the Sybase Aleri Streaming Platform will default the stream operation to an IN-
SERT operation.

• StreamInterface::INSERT

When specified, it tell the Sybase Aleri Streaming Platform to treat the published stream record as an
INSERT operation.

• StreamInterface::UPDATE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPDATE operation.

• StreamInterface::DELETE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as a
DELETE operation.

• StreamInterface::UPSERT

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPSERT operation. An UPSERT operation either inserts the stream record into the source stream if it
is not already present or it updates the existing source stream record using the contents of the stream
record.

B.2.3. Stream Flag Values

The following set of stream flag values that can be set for each individual SpStreamDataRecord or
as one of the streamFlagOverride parameter can be found in the StreamInterface.hpp file:

Reference Guide to the C++ Object Model

130

• StreamInterface::NULLFLAG

When specified as the “streamFlagOverride” parameter, it indicates that the stream flag stored in each
of the individual SpStreamDataRecord objects should be used by the Sybase Aleri Streaming Plat-
form. If the stream flag within the SpStreamDataRecord is set to StreamInter-
face::NULLFLAG, then it means that nothing significant needs to take place. The normal synchron-
ous publication sequence where the SpPublication waits for a Sybase Aleri Streaming Platform re-
sponse can go on.

• StreamInterface::NOACK

It tells the Sybase Aleri Streaming Platform not to send an ack or nak back to the client application
that issued the publication request. The publish method that is called runs asynchronously, and it
assumes that the record is received and processed by the Sybase Aleri Streaming Platform.

• StreamInterface::SHINE

This flag is only relevant for the stream op code values of UPDATE and UPSERT. Typically, all of
the fields for a stream record being published to the Sybase Aleri Streaming Platform must be as-
signed values for each of the available stream operations (INSERT, UPDATE, UPSERT, and so forth).
In the case of UPDATE and UPSERT, you can use the SHINE flag to update just a few values of the
“other” fields within the stream record without having to specify the values of the other fields. The
client application program can set the other fields of the stream record being published to the Sybase
Aleri Streaming Platform to null, and if the SHINE flag is set, the Sybase Aleri Streaming Platform
will ignore the nulls and leave the existing field values in the record being updated. The key fields
must always be present, as they are required to locate the record.

In essence, the Sybase Aleri Streaming Platform lets the existing field values “shine through” for each
of the null values you sent.

The flag values represent bits that can be ORed together. For example:

int flags = StreamInterface::SHINE | SpGatewayConstants.SF_NOACK;

B.2.4. SpStreamDataRecord Object

Each “publishing” method of the SpPublication object sends stream input data from the client applica-
tion to the Sybase Aleri Streaming Platform. Every stream record or row of stream data is encapsulated
within a SpStreamDataRecord object, which has the following method set:

SpStream *getStream();
std::vector<SpDataValue *> *getFieldData();
int getOpCode();
int setOpCode(int value);
int getFlags();
int setFlags(int value);

Details:

• The getStream() method returns a pointer to an SpStream object with which this SpStream-
DataRecord is associated. Refer to Section B.1.5, “SpStream Object” for more information.

• The getFieldData() method returns a pointer to a vector of pointers to SpDataValue objects,

Reference Guide to the C++ Object Model

131

representing the data for each field in the stream record. Refer to the SpDataValue.cpp file for
more details. In addition, see the pubexample.cpp and SubExampleSpObserver.cpp files
for examples on how to use SpDataValue objects.

• The getOpCode() method returns the stream op code currently set for this record.

• The setOpCode(int value) method sets the value of the stream op code for this record.

• The getFlags() method returns the flag settings currently set for this record.

• The setFlags(int value) method sets the value of the stream flag settings for this record.

B.3. C++ Objects for Record and Playback

B.3.1. SpRecorder object

Client programs need to call the factory method createRecorder defined in SpPlatform in order to create
an SPRecorder.

>
public virtual SpRecorder * createRecorder(std::string name, std::string filename, std::vector<std::string> streams,

int flags, uint64_t maxRecords, SpPlatformStatus * status)

The method takes the following parameters:

• name is a string that will uniquely identify this instance of the recorder object

• filename is the name of the file where recorded data will be stored

• streams is a vector of strings containing names of the streams for which to record events

• flags control the subscription. These flags are passed to the underlying subscription on the Sybase
Aleri Streaming Platform. Can be a bitwise OR of the following values:

• One of SpSubscriptionCommon.BASE or SpSubscriptionCommon.NOBASE - whether
to record data already in streams at the time of connection

• SpSubscriptionCommon.LOSSY - whether the Sybase Aleri Streaming Platform should dis-
card records if the client application cannot keep up

• maxRecords - maximum number of records to process

• status - an SpPlatformStatus object to return information in case of error

SpRecorder has the following public interface

public std::string getName();
public int32_t start();
public int64_t getRecordCount();
public int32_t stop();

Details:

getName() returns the identifier assigned to this instance of the SpRecorder object

Reference Guide to the C++ Object Model

132

start() spawns a background thread which starts the recording process. The method returns once the
thread is started. Returns 0 on success.
getRecordCount() returns the number of data records processed.
stop() stops the recording process by terminating the recording thread and closing connections to the
Sybase Aleri Streaming Platform. Returns 0 on success.

B.3.2. SpPlayback object

An SpPlayback object is created by calling the following factory method defined in SpPlatform.

>
public virtual SpPlayback * createPlayback(std::string name, std::string filename, double scale, int64_t maxrecords,

SpPlatformStatus * status);

The method takes the following parameters:

• name is a string that will uniquely identify this instance of SpPlayback

• filename is the name of the file containing the recorded data

• scale is a factor controls the rate of playback. Values -1 to 1 have no effect and the data is played
back at the rate it was recorded at. Values greater than 1 speed up playback by that factor, for ex-
ample, a value of 2 will play back twice as fast. Values less than -1 slow down playback by the factor
specified.

• maxrecords is the maximum number of records to playback

• status is an SpPlatformStatus object used to return information in case of error

SpPlayback has the following public interface

public std::string getName();
public void setSendUpsert(bool upsert);
public bool getSendUpsert();
public void setTimeScaleRate(double scale);
public double getTimeScaleRate();
public int32_t start();
public int64_t getNumRecordsPlayedBack();
public int getPercentPlayedBack();
public int32_t stop();

Details:

getName() returns the identifier assigned to this instance of SpPlayback object
setSendUpsert(bool) whether to convert INSERT ops in the data to UPSERT
getSendUpsert() returns the current setting of UPSERT flag
setTimeScaleRate(double) is a double to control the rate of playback
getTimeScaleRate() returns the current value of the scale factor
start() spawns a background thread that starts the playback process. Returns 0 on success
getNumRecordsPlayedBack() returns the number of data records played back so far
getPercentPlayedBack() returns the percentage of the data played back so far
stop() terminates the background playback thread and closes connections to the Sybase Aleri Stream-
ing Platform

B.4. Other C++ API Classes/Methods

Here are a few miscellaneous classes that were briefly referenced in earlier examples. One such class is

Reference Guide to the C++ Object Model

133

the SpUtils class. This class stores the following static utility methods:

std::string getErrorMessage(int errorCode)
std::string getEventTypeName(int eventType)
std::string getEventIdName(int eventId)

Details:

• The getErrorMessage(int errorCode) method is used to retrieve the message
std::string, associated with the errorCode passed in through the parameter list. Typically, the er-
rorCode is returned by a previous call to one of the Pub/Sub API methods.

• The getEventTypeName(int eventType) method is typically called by an SpObserver
object. It returns an std::string representing the literal name of the eventType passed in. The event-
Type is usually retrieved from an SpSubscriptionEvent object that was delivered to the SpOb-
server through the SpObserver object's notify(...) method.

• The getEventIdName(int eventId) method is also typically called by an SpObserver ob-
ject. It returns an std::string representing the literal name of the event Id passed in. The event Id is
usually retrieved from an SpSubscriptionEvent object that was delivered to the SpObserver
through the SpObserver object's notify(...) method.

Reference Guide to the C++ Object Model

134

Appendix C. Reference Guide to the .NET Object
Model
C.1. Common Service Objects for .NET

C.1.1. SpFactory Object

The SpFactory object is used by the client code to create the set of objects that are required to use/
control the Pub/Sub API. The SpFactory interface includes the following methods:

static int init();
static int dispose();
static SpPlatform ^createPlatform(SpPlatformParms ^parms,
SpPlatformStatus ^status);

static SpPlatformParms ^createPlatformParms(System::String ^theHost,
int thePort, System::String ^theUser, System::String ^thePassword,
bool theEncryptedFlag);

static SpPlatformParms ^createPlatformParms(System::String ^theHost,
int thePort, System::String ^theUser, System::String ^thePassword,
bool theEncryptedFlag, bool theUseRsaFlag);

static SpPlatformParms ^createPlatformParms(System::String ^theHost,
int thePort, System::String ^theUser, System::String ^thePassword,
bool theEncryptedFlag, System::String ^theHotSpareHost,
int theHotSparePort);

static SpPlatformParms ^createPlatformParms
(String ^theHost, int thePort, String ^theUser, String ^thePassword,
bool theEncryptedFlag, SpAuthType theAuthType, String ^theHotSpareHost, int theHotSparePort);

static SpPlatformParms ^createPlatformParms(System::String ^theHost,
int thePort, System::String ^theUser, System::String ^thePassword,
bool theEncryptedFlag, bool theUseRsaFlag,
System::String ^theHotSpareHost, int theHotSparePort);

static SpPlatformStatus ^createPlatformStatus();
static SpStreamDataRecord ^createStreamDataRecord(SpStream ^stream,
array<Object ^> ^fieldData, int opCode, int flags,
SpPlatformStatus ^status);

Details:

• The createPlatform(SpPlatformParms ^parms, SpPlatformStatus ^status)
method returns an SpPlatform object if the Pub/Sub API was able to connect to the Sybase Aleri
Streaming Platform and properly initialize.

You have to use one of the overloaded SpFactory.createPlatformParms(...) methods,
and the SpFactory.createPlatformStatus() method to create the two parameters required
by the SpFactory.createPlatform(SpPlatformParms ^parms, SpPlatform-
Status ^status) method. The contents of the SpPlatformParms parameter controls how the
connection and authentication from the Pub/Sub API to the Sybase Aleri Streaming Platform takes
place. If the connection cannot be established, the createPlatform(SpPlatformParms
^parms, SpPlatformStatus ^status) method returns null, and a non-zero error code is set
within the SpPlatformStatus object See Section C.1.3, “SpPlatformStatus Object” for informa-
tion on how to retrieve the error code/message.

• The createPlatformParms(System::String ^theHost, int thePort, Sys-
tem::String ^theUser, System::String ^thePassword, bool theEncryp-
tedFlag) method returns a SpPlatformParms object that is ultimately passed as the first para-
meter to the SpFactory.createPlatform(SpPlatformParms ^parms, SpPlat-

135

formStatus status) method. This createPlatformParms method call set up the basic connectiv-
ity, with the username/password for authentication. If theEncryptedFlag is set to true, then ht-
tps will be used to connect to the Sybase Aleri Streaming Platform's Command and Control process
and SSL socket connections will be made to the Sybase Aleri Streaming Platform's Gateway I/O pro-
cess. If theEncryptedFlag is set to false, then http will be used to connect to the Sybase Aleri
Streaming Platform's Command and Control process and regular socket connections will be made to
the Sybase Aleri Streaming Platform's Gateway I/O process.

• The createPlatformParms(System::String ^theHost, int thePort, Sys-
tem::String ^theUser, System::String ^thePassword, bool theEncryp-
tedFlag, bool theUseRsaFlag) method returns an SpPlatformParms object that is ulti-
mately passed as the first parameter to the SpFactory.createPlatform(SpPlatformParms ^parms, Sp-
PlatformStatus ^status) method. In addition to the basic connectivity parameters mentioned above,
this method adds an addition boolean flag called theUseRsaFlag. If this flag is set to true, the Pub/
Sub API will attempt to authenticate to the Sybase Aleri Streaming Platform using the RSA mechan-
ism. To use this mechanism, the Sybase Aleri Streaming Platform must be started with the -k option
indicating the directory where your public RSA key file is stored. See the Administrators Guide for
information about key generation and placement.

When using the RSA authentication mechanism, the password of the SpPlatformParms object must
specify your private RSA key file. For example, if a user was named foo, there would be two RSA
key files having the names foo and foo.private.der, where foo is a file containing the public
RSA key for user "foo", and foo.private.der is a file containing the private RSA key for user
foo. The public RSA key file called foo must be placed in a directory that is specified by the -k op-
tion to the Sybase Aleri Streaming Platform during startup.

The private RSA key file called foo.private.der must be placed on the client machine using the
Pub/Sub API to connect to the server and specified using the password parameter of the create-
PlatformParms(...) method.

There are five variations of the createPlatformParams method that that accomplish the same creation
of an SpPlatformParams object, so choose the one that suits your needs.

• basic

• basic with UseRSA flag

• basic with HotSpare

• HotSpare with UseRSA

• Kerberos authentication with or without the Hot Spare

• The createPlatformParms(System::String ^theHost, int thePort, Sys-
tem::String ^theUser, System::String ^thePassword, bool theEncryp-
tedFlag, System::String ^theHotSpareHost, int theHotSparePort) method
returns an SpPlatformParms object that is ultimately passed as the first parameter to the Sp-
Factory.createPlatform(SpPlatformParms ^parms, SpPlatformStatus
^status) method. In addition to the basic connectivity parameters previously mentioned, this
method adds two more parameters called String ^theHotSpareHost and int theHotS-
parePort. Using an SpPlatformParms object created with this factory method will cause the Pub/
Sub API to use a High Availability configuration. In a High Availability configuration, if the primary
Sybase Aleri Streaming Platform goes down, the Pub/Sub API will automatically attempt to switch
over and use the secondary one. See the Administrators Guide for setting up a High Availability con-
figuration. See Section 2.4.6, “Publication/Subscription in a High Availability (Hot Spare) Configura-
tion” for more information.

• The createPlatformParms(System::String ^theHost, int thePort, Sys-

Reference Guide to the .NET Object Model

136

tem::String ^theUser, System::String ^thePassword, bool theEncryp-
tedFlag, bool theUseRsaFlag, System::String ^theHotSpareHost, int
^theHotSparePort) method returns an SpPlatformParms object that is ultimately passed as the
first parameter to the SpFactory.createPlatform(SpPlatformParms ^parms, Sp-
PlatformStatus ^status) method. This method lets you set up the Pub/Sub API for RSA au-
thentication and High Availability (Hot Spare).

• The createPlatformStatus() method returns an SpPlatformStatus object passed as the
second. See the SpPublication ^parms, SpPlatformStatus ^status) method in order to return status in-
formation back to the caller. It's used in several other methods within the Pub/Sub API needed to re-
turn error code/status information. See Section A.1.3, “SpPlatformStatus Object” for more informa-
tion.

• The overloaded function createPlatformParms(String ^theHost, int thePort,
String ^theUser, String ^thePassword, bool theEncryptedFlag, SpAuth-
Type theAuthType, String ^theHotSpareHost, int theHotSparePort) accepts
a parameter of type SpAuthType. This can be any one of the following values: AUTH_NONE, AU-
TH_PAM, AUTH_RSA, or AUTH_KERBV5. While other versions of the factory method can be
used, this is the preferred way of creating an SpPlatformParms object. If no hotspare configura-
tion exists, clients should pass in a null value for the theHotSpareHost parameter.

• The createStreamDataRecord(SpStream ^stream, array<Object ^>
^fieldData, int opCode, int flags, SpPlatformStatus ^status) method re-
turns a SpStreamDataRecord object that is used in the SpPublication object in order to publish data to
the Sybase Aleri Streaming Platform server.

The SpPlatformStatus object is passed in as the last parameter, if the createStream-
DataRecord fails, a null will be returned to the caller and the SpPlatformStatus object will
indicate the error condition.

C.1.2. The SpPlatformParms Object

The SpPlatformParms object is used by the SpFact-
ory.createPlatform(SpPlatformParms ^parms, SpPlatformStatus ^status)
method to create the SpPlatform object. The SpPlatformParms object is created using one of the
overloaded SpFactory.createPlatformParms(...) methods previously described. The Sp-
PlatformParms object contains all of the connection information required by the SpPlatform ob-
ject in order to make the appropriate connection(s) to the Sybase Aleri Streaming Platform. This inform-
ation includes the host and port of the Sybase Aleri Streaming Platform's Command and Control Pro-
cess, username, password, and flags indicating whether to use encryption, or RSA authentication, Ker-
beros authentication, or the High Availability (Hot Spare) mechanism. The SpPlatformParms inter-
face includes the following methods:

System::String ^getHost();
int getPort();
System::String ^getUser();
System::String ^getPassword();
bool isEncrypted();
System::String ^getHotSpareHost();
int getHotSparePort();
bool useRsa();
SpAuthType getAuthentication();

Details:

Reference Guide to the .NET Object Model

137

• The getHost() method returns a string indicating the host name of the machine running the Sybase
Aleri Streaming Platform server's Command and Control process.

• The getPort() method returns an integer indicating the port number of the Sybase Aleri Streaming
Platform server's Command and Control process.

• The getUser() method returns a string indicating the name used to authenticate to the Sybase Aleri
Streaming Platform.

• The getPassword() method returns a string containing the password used to authenticate to the
Sybase Aleri Streaming Platform. For RSA authentication, the password contains the file name of the
user's private RSA key file.

• The isEncrypted() method returns a boolean indicating whether or not encrypted connections
will be used to the Command and Control process and the Gateway I/O process. If the encryption
mechanism is enabled, the Command and Control process connection will be made using https, while
the Gateway I/O process will make SSL socket connections.

• The getHotSpareHost() method returns a string containing the host name of the secondary High
Availability Sybase Aleri Streaming Platform. See the Administrators Guide for more information
about setting up a High Availability configuration.

• The getHotSparePort() method returns an integer containing the port number of the secondary
High Availability Sybase Aleri Streaming Platform. See the Administrators Guide for more informa-
tion about setting up a High Availability configuration.

• The useRsa() method returns a boolean indicating whether or not RSA authentication is used when
attempting to make connections to the Sybase Aleri Streaming Platform Command and Control pro-
cess, and the Gateway I/O process.

• The getAuthentication method returns the authentication mechanism specified when the Sp-
PlatformParms was created.

C.1.3. SpPlatformStatus Object

The SpPlatformStatus object is used by several of the Pub/Sub API methods to return status in-
formation to the caller. The SpPlatformStatus interface includes the following methods:

int getErrorCode();
System::String ^getErrorMessage();
bool isError();

Details:

• The getErrorCode() method returns an integer. If a problem was detected by the method this
SpPlatformStatus object was passed into, a non-zero error return code value is returned, other-
wise a zero is returned to indicate success.

• The getErrorMessage() method returns a string containing the error message text.

• The isError() method returns a boolean which is true if an error was detected or false for no
error.

C.1.4. SpPlatform Object

Reference Guide to the .NET Object Model

138

The notion of the Sybase Aleri Streaming Platform has been abstracted into an object of the SpPlat-
form type.

An SpPlatform object is created using the SpFactory.createPlatform Once instantiated, an
SpPlatform object implements and offers the the following Sybase Aleri Streaming Platform func-
tionality:

System::String ^getUrl();
System::String ^getUser();
System::String ^getPassword();
System::String ^getHost();
System::String ^getGatewayHost();
System::String ^getXMLModelVersion();
int getPort();
int getGatewayPort();
int getDateSize();
int getAddressSize();
int getQuiesced();
int getPrimaryServerFlag();
cli::array<aleri_PubSubnet::SpStream ^> ^getBaseStreams();
cli::array<aleri_PubSubnet::SpStream ^> ^getDerivedStreams();
cli::array<aleri_PubSubnet::SpStream ^> ^getStreams();
aleri_PubSubnet::SpStream ^getStream(System::String streamName);
aleri_PubSubnet::SpStream ^getStream(int streamId);
aleri_PubSubnet::SpStreamDefinition ^getStreamDefinition(

System::String ^streamName);
aleri_PubSubnet::SpStreamDefinition ^getStreamDefinition(int streamId);
bool isBigEndian();
bool isConnected();
bool isEncrypted();
bool useRsa();
int shutdown();

String ^getConfig(SpPlatformStatus ^status);
int loadServerConfigFile(String ^configFile, String ^flags);
int loadConfigString(String ^configString, String ^flags);
int loadConfigStringApplyingConversion(String ^configString, String ^flags, String ^conversionConfigString);

int addStreamToClient(int clientHandle, System::String ^streamName);
int removeStreamFromClient(int clientHandle, System::String ^streamName);

aleri_PubSubnet::SpSubscription ^createSubscription(
System::String ^name, int flags, int deliveryType,
aleri_PubSubnet::SpPlatformStreatus ^status);

SpSubscriptionProjection ^createSubscriptionProjection(String ^name,
int flags, int deliveryType, String ^sqlQuery,
SpPlatformStatus ^status);

aleri_PubSubnet::SpPublication ^createPublication(System::String ^name,
aleri_PubSubnet::SpPlatformStatus ^status);

Most methods provided by the SpPlatform object communicate internally with the Sybase Aleri
Streaming Platform Command and Control process through the XMLRPC protocol. The SpPlatform
method lets you retrieve Sybase Aleri Streaming Platform configuration information, all the streams and
so forth.

Details of this method set:

The getUrl() method returns the context of a string representing the URL, which is used to connect
to the Command and Control Process through XMLRPC. This string depends on whether the SpPlat-
form object was created with encryption enabled.

The isEncrypted() method can check if encryption was enabled when the SpPlatform object

Reference Guide to the .NET Object Model

139

was instantiated.

The getUser() and getPassword() methods return the strings that represent the username and
password. These values are used internally when authentication takes place while connecting to the Sy-
base Aleri Streaming Platform Command and Control and Gateway I/O processes.

There is a set of methods consisting of getHost(), getGatewayHost(), getPort() and get-
GatewayPort(). getHost() returns the name of the host machine where the Sybase Aleri Stream-
ing Platform Command and Control Process is running. getGatewayHost() displays the host ma-
chine where the Sybase Aleri Streaming Platform Gateway I/O Process is running. These two Sybase
Aleri Streaming Platform processes reside on the same machine.

The getPort() and getGatewayPort() methods respectively return the Command and Control
and Gateway I/O port numbers. Unlike the getHost() and getGatewayHost() commands, the
values returned by these two functions will differ because they refer to two separate processes.

The getXMLModelVersion() method returns a string indicating the version of XML model with
which the Sybase Aleri Streaming Platform started up.

The getDateSize() method returns the size of the datetime field type. If the Pub/Sub API is used to
communicate with the Gateway I/O process, the datetime field type size is automatically fixed.

The getAddressSize() method returns the size of a C/C++ pointer (in bytes) that the Sybase Aleri
Streaming Platform server currently recognizes. The value represents how the instance of the running
Sybase Aleri Streaming Platform Server was compiled (either 32-bit or 64-bit).

The getQuiesced() method returns an integer that represents the "quiesced" state of the Sybase
Aleri Streaming Platform. If successful, the method will return either a zero to indicate false, or a 1 to
indicate true. If the command is not executed successfully, an error code is returned.

The error message associated with the error code can be retrieved by calling
SpUtils.getErrorMessage(rc), where rc is the return code sent back from the getQui-
esced() call.

The getPrimaryServerFlag() method returns an integer. If a value of 1 is returned, the Sybase
Aleri Streaming Platform server is considered to be the primary server in a High Availability (Hot
Spare) configuration. If a value of zero is returned, it is not the primary server. If the command could not
be executed successfully, an error code is returned that is neither a zero nor a 1.

You can use the Pub/Sub API method to check that the connected Sybase Aleri Streaming Platform is a
primary server within a High Availability (Hot Spare) configuration. Theoretically, you could use the
Pub/Sub API to establish a connection to the secondary server within this configuration. Calling the
getPrimaryServerFlag() method on the server will return a value of zero, indicating that the
server is not the primary.

The next group of methods returns stream metadata from the Sybase Aleri Streaming Platform. The
metadata/schema for a stream is represented within the Pub/Sub API as an object of type SpStream.
Refer to Section C.1.5, “SpStream Object” for more information. The getBaseStreams() method
returns an array of SpStream objects representing all of the source streams residing on the Sybase
Aleri Streaming Platform. Similarly, getDerivedStreams() returns an array of SpStream ob-
jects that represent all of the derived streams residing on the Sybase Aleri Streaming Platform. The
getStreams() method returns an array of SpStream objects that represent all streams (both source
streams and derived streams) residing on the Sybase Aleri Streaming Platform. You can look up a par-
ticular stream by its name or id using the getStream(System::String ^streamName) or
getStream(int streamId) method, respectively.

The getStreamDefinition(System::String ^streamName) and getStreamDefinition(int
streamId) methods respectively return the handle to an object of type SpStreamDefinition for
the specified streamName or streamId. Refer to Section C.1.6, “SpStreamDefinition Object” for more

Reference Guide to the .NET Object Model

140

information.

The isBigEndian() method returns true if the Sybase Aleri Streaming Platform server is running
on a big-endian machine, false if the Sybase Aleri Streaming Platform server is running on a little-
endian machine.

The isConnected() method returns true if the SpPlatform object is still connected to the Sybase
Aleri Streaming Platform, false otherwise. For example, after you issue a shutdown, subsequent
isConnected() calls return false.

Once an SpPlatform object is shut down, you should set its reference to null. Later on, another Sp-
Platform object can be instantiated again using the SpFactory. createPlatform(...) meth-
od.

The shutdown() method tells the Command and Control Process to shut down the Sybase Aleri
Streaming Platform. This causes all socket connections to the Sybase Aleri Streaming Platform to be
closed. If the application program has subscriptions running at the time of the shutdown, the SpOb-
server objects of those subscriptions will be notified before the shutdown. Refer to Section C.2,
“Subscription Objects for .NET” for more information.

The getConfig(SpPlatformStatus ^status) method returns a string containing the XML
configuration currently being executed by the running Sybase Aleri Streaming Platform instance. If
there is an error in retrieving the XML configuration information from the server, this method will re-
turn an empty string, and the error code will be stored in the SpPlatformStatus parameter passed into the
method.

The loadServerConfigFile(String ^configFile, String ^flags) method attempts
to load the XML configuration file that is located on the server into the running Sybase Aleri Streaming
Platform instance. The flags parameter is used to provide control information used during the XML
configuration file load attempt. If additional control information is not needed, the value of the flags
parameter can be an empty string. Consult the Administrators Guide for more information on loading
XML configurations, and the various options that can be specified in the flags parameter. If the XML
configuration file was loaded successfully, the method returns zero. If it was unsuccessful, the method
will return a non-zero error return code. You can get additional information from the log messages loc-
ated on the server when loading an XML configuration file into the server.

The loadConfigString(String ^configString, String ^flags) method attempts to load the XML configura-
tion stored in the configString parameter into the running Sybase Aleri Streaming Platform in-
stance. The P parameter provides control information used during the XML configuration string load at-
tempt. If additional control information is not needed, the value of the flags parameter can be an
empty string. Consult the Administrators Guide for more information on loading XML configurations
and various options that can be specified in the flags parameter. If the XML configuration was loaded
successfully, the method returns zero. If it was unsuccessful, the method will return a non-zero error
code. You can get additional information from the log messages located on the server when loading an
XML configuration file into the server.

The loadConfigStringApplyingConversion(String ^configString, String
^flags, String ^conversionConfigString) method attempts to load the XML configura-
tion stored in the configString parameter into the running Sybase Aleri Streaming Platform in-
stance. The flags parameter is used to provide control information used during the XML configuration
string load attempt. If additional control information is not needed, the value of the flags parameter
can be an empty string.

The conversionConfigString parameter is used to provide an XML model that is used to apply
specific conversion instructions during the XML configuration load. See the Administrators Guide for
more information on loading XML configurations, and the various options that can be specified in the
conversionConfigString parameter.

If the XML configuration was loaded successfully, the method returns zero. If it was unsuccessful, the

Reference Guide to the .NET Object Model

141

method returns a non-zero error code. You can get additional information from the log messages located
on the server when loading an XML configuration file into the server.

The SpPlatform object provides two subscription-related methods that you can use to disregard the
Pub/Sub API subscription mechanism and write your own low-level Gateway I/O code for the subscrip-
tion. These methods are addStreamToClient(int clientHandle, System::String
^streamName) and removeStreamFromClient(int clientHandle, Sys-
tem::String ^streamName). The two methods are part of the SpPlatform interface since
both are XMLRPC calls that are used to manage the subscription characteristics of a Gateway I/O socket
on which a subscription is currently running.

Note:

Once a subscription request is issued for an open Gateway I/O socket connection, the connec-
tion becomes a read-only connection. Asynchronous stream updates are delivered from the Sy-
base Aleri Streaming Platform to the client. Because of the "read-only" nature of the socket, ad-
ditional Gateway I/O commands can no longer be issued on this socket connection. The XM-
LRPC mechanism must be used to do this.

While using the Pub/Sub API subscription mechanism, the addStreamToClient and re-
moveStreamFromClient method calls are not required. However, these must be provided
when the Pub/Sub API subscription mechanism is not being used.

The two methods are passed a clientHandle. The clientHandle is an integer value that is re-
turned by the Gateway I/O process when you send a low-level subscription request on the socket. The
addStreamToClient(...) method lets you add an additional stream to the subscription list, while
the removeStreamFromClient(...) method lets you delete a stream from the subscription list.

If the Pub/Sub API subscription mechanism is to be used to get asynchronous stream updates from the
Sybase Aleri Streaming Platform, then SpPlatform can be used to create a subscription. There are
two forms of subscription objects that can be created using SpPlatform. The first is an SpSub-
scription object, which is created using the createSubscription(System::String
^name, int flags, int deliveryType, aleri_PubSubnet::SpPlatformStatus
^status) method. The second is created using the SpSubscriptionProjection
^createSubscriptionProjection(String ^name, int flags, int delivery-
Type,String ^sqlQuery, SpPlatformStatus ^status) factory method. Refer to Sec-
tion C.2, “Subscription Objects for .NET” for the meaning of each parameter. Similarly, the SpPlat-
form object can be used to publish data to the Sybase Aleri Streaming Platform. To accomplish this,
there is a factory method called createPublication(System::String ^name,
aleri_PubSubnet::SpPlatformStatus ^status) that creates an SpPublication object on your behalf.
An SpPublication object is used to "publish" stream input data and/or issue the Gateway I/O "com-
mit()" command) from the client application to the Sybase Aleri Streaming Platform. Refer to Sec-
tion 4.3.1, “Create Objects for SP Publication Using .NET 2.0” for more information.

C.1.5. SpStream Object

The SpStream object is used to store the metadata associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpStream interface includes the following methods:

int getId();
aleri_PubSubnet::String ^getName();
bool isBase();
aleri_PubSubnet::SpStreamDefinition ^getDefinition();

Details:

Reference Guide to the .NET Object Model

142

• The getId() method returns an integer that represents the streams internal identifier on the Sybase
Aleri Streaming Platform.

• The getName() method returns a string that represents the name of the stream.

• The isBase() method returns true if the stream is a source stream, false otherwise.

• The getDefinition() method returns a handle/reference to an object of type
aleri_PubSubnet::SpStreamDefinition. The SpStreamDefinition contains the
schema information for a given stream. See Section C.1.6, “SpStreamDefinition Object” for more in-
formation.

C.1.6. SpStreamDefinition Object

The SpStreamDefinition object stores the schema associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpStreamDefinition interface has the following methods and con-
stants defined within it:

int getNumColumns();
cli::array<System::String ^> ^getColumnNames();
cli::array<System::int ^> ^getColumnTypes();
cli::array<System::int ^> ^getKeyColumns();
cli::array<System::int ^> ^getKeyColumnVector();
bool isKeyColumn(int columnIndex);

Details:

• The getNumColumns() method returns the number of columns in the stream.

• The getColumnNames() method returns an array of System::Strings handles, where each
string represents a column. The column names appear in the same order as they do in the Sybase Aleri
Streaming Platform configuration file. This array's size equals the value returned from the getNum-
Columns() method.

• The getColumnTypes() method returns an array of integers, where each integer is a constant rep-
resenting the field type of the corresponding column. The
aleri_pubsubconst::SpDataTypes class contains a list of integer constants representing the
various column types. This array's size equals to the value returned from the getNumColumns()
method.

• The getKeyColumns() method returns an array of integers. Each integer is the column index (rel
0) of a key column in the streams field list. For example, if the stream has 10 columns, and the first
three are key columns, the getKeyColumns() method will return an array that includes the follow-
ing entries: [0, 1, 2].

• The getKeyColumnVector() method returns an array of integers. Each field in the field list is
represented by an integer, the value of which is either 1 if the field is a key field or 0 if it is not.

• The isKeyColumn(int columnIndex) returns a boolean value of true if the column index
specified is that of a key field, otherwise it returns false. The columnIndex is “rel-0” as the first
column of the field list has an index value of zero.

C.1.7. SpStreamProjection Object

Reference Guide to the .NET Object Model

143

The SpStreamProjection object stores the metadata associated with a stream projection based on
an SQL query supplied to the createSubscriptionProjection(...) factory method of the
SpPlatform object. See Section A.1.7, “SpStreamProjection Object”. The SpStreamProjection
interface includes the following methods:

aleri_PubSubnet::SpStream ^getStream();

aleri_PubSubnet::SpStreamDefinition ^getDefinition();

where:

• The getStream() method returns a reference to the underlying SpStream that the SQL query was
projected onto.

• The getDefinition() method returns a handle/reference to an object of type
aleri_PubSubnet::SpStreamDefinition, containing the schema information of the pro-
jection. This information is returned by the Sybase Aleri Streaming Platform when the SQL query as-
sociated with an SpSubscriptionProjection object is first created. See Section C.1.6,
“SpStreamDefinition Object” for more information.

C.2. Subscription Objects for .NET

C.2.1. SpSubscriptionCommon Method Set

This interface defines the common set of methods used by the SpSubscription and SpSubscrip-
tionProjection objects (henceforth referred to simply as Subscription). Typically there is no need
for an application using this API to directly use this interface.

The SpSubscriptionCommon interface defines the following method set that is used by both sub-
scription mechanisms:

System::String ^getName();
int getFlags();
int getDeliveryType();
int getClientHandle();

int removeObserver(int theCookie);

int start();

int stop();

The getName() method returns the name that you assigned to the subscription object when it
was created with either the SpPlatform's createSubscription(...) or createSubscrip-
tionProjection(...) method.

Similarly, the getFlags() and getDeliveryType() methods return the flag settings and the delivery
type specified in the createSubscription or createSubscriptionProjection object.

The getClientHandle() method returns an integer representing a handle that is assigned to the
underlying subscription connection by the Sybase Aleri Streaming Platform. A valid handle is greater
than zero. The value of the clientHandle is acquired from the Sybase Aleri Streaming Platform
when the SpSubscription or SpSubscriptionProjection is started through the start()

Reference Guide to the .NET Object Model

144

method.

The removeObserver(int theCookie) method is used to remove the SpObserver from the sub-
scription's delivery mechanism. The two types of subscriptions have different ways to add observers,
which are discussed in the SpSubscription and SpSubscriptionProjection interfaces.

The start() method is used to start the subscription mechanism.

There must be at least one stream and SpObserver registered with the Subscription object before
the Subscription object can be started up through the start() method.

When you start up an SpSubscription object, the following sequence of events takes place:

1. The SpSubscription object establishes a socket connection to the Sybase Aleri Streaming Plat-
form Gateway I/O process and authentication is performed.

2. A subscription request is sent to the Sybase Aleri Streaming Platform on this socket connection.

3. If the subscription request is accepted by the Sybase Aleri Streaming Platform, the Subscrip-
tion object reads the "clientHandle" that the Sybase Aleri Streaming Platform assigned to this sub-
scription request.

4. A new thread is started up, and it is dedicated to reading stream update information through the
read-only Gateway I/O socket connection. When your SpObserver objects are “notified” about
the stream updates, through notify(...) methods, the SpObserver objects will be running
within the context of this thread instead of the main one.

5. Stream update messages flowing from the Sybase Aleri Streaming Platform to the client are read,
parsed and delivered to your SpObserver objects.

6. The start() method returns a zero to the caller indicating that the subscription was started suc-
cessfully, and a non-zero value if an error occurs. The
SpUtils.getErrorMessage(errorCode) method can be used to get the specific error mes-
sage.

The stop() method shuts down the subscription mechanism by closing the socket connection and
stopping the thread used to read, parse, and deliver Sybase Aleri Streaming Platform updates to the
SpObserver objects.

Here are some additional interfaces:

void setPulseInterval(unsigned int pulseInterval);
unsigned int getPulseInterval();
void setQueueSize(int queue, SpPlatformStatus ^status);
int getQueueSize();
void setBaseDrainTimeout(int millis, SpPlatformStatus ^status);
int getBaseDrainTimeout();
void setExitOnClose(SpPlatformStatus ^status);
bool getExitOnClose();

• setPulseInterval can be used to set the pulse interval in seconds if the subscription was created
with the pulsed flag on.

• getPulseInterval is used to retrieve the current setting of the pulse interval in seconds.

• setQueueSize is used to set the internal buffer size in the Sybase Aleri Streaming Platform for this
subscription. The Sybase Aleri Streaming Platform uses this buffer to queue up messages if the sub-

Reference Guide to the .NET Object Model

145

scriber is slow in retrieving them. It can prevent the subscriber from blocking and slowing down the
Sybase Aleri Streaming Platform. The setting is made when the subscription is started. It is necessary
to keep the status parameter valid until the time the start call is made.

• getQueueSize retrieves the current value of the queue size.

• setBaseDrainTimeout is used to set the time in milliseconds that the Sybase Aleri Streaming
Platform should wait before dropping a blocked subscription. If a subscription is started with the
DROPPABLE flag set, the Sybase Aleri Streaming Platform closes a subscription connection if the
messages block is due to a slow client. This parameter specifies how long to wait before closing the
connection. The setting is made when the subscription is started, and you must keep the status
parameter valid until the time the start call is made.

• getBaseDrainTimeout retrieves the current value in milliseconds of the base drain timeout.

• If setExitOnClose is set, the Sybase Aleri Streaming Platform will shut down once this subscrip-
tion connection is closed by the client. The setting is made when the subscription is started, and you
must keep the status parameter valid until the time the start call is made.

• getExitOnClose retrieves the current setting of the exit on close flag.

C.2.2. SpSubscriptionEvent

An SpSubscriptionEvent object encapsulates an event received from the Sybase Aleri Streaming
Platform. It provides the following method set:

System::String ^getSubName();
int getType();
System::String ^getTypeName();
int getId();
System::String ^getIdName();
int getStreamId();
int getStreamOpCode();
cli::array<Object ^> ^getData();

The getSubName() method returns a string that represents the name of the subscription object that
generated and delivered this event to the SpObserver. This “name” was assigned to the subscription ob-
ject when it was first created through the SpPlatform createSubscription(...) or create-
SubscriptionProjection(...) method.

The getType() method returns an integer representing the “type” of this SpSubscriptionEvent.
Currently there are four “types” (or categories) of events defined in the aleri_PubSubconst
namespace as follows:

• SpEventType.PARSED_DATA

It is delivered from a Subscription object created with a delivery type of SpDelivery-
Type.DELIVER_PARSED.

• SpEventType.BINARY_DATA

It is delivered from a Subscription object created with a delivery type of SpDelivery-
Type.DELIVER_BINARY.

• SpEventType.STREAM_OPCODE_DATA

Reference Guide to the .NET Object Model

146

It is delivered from a Subscription object created with a delivery type of SpDelivery-
Type.DELIVER_STREAM_OPCODES.

• SpEventType.SYSTEM

It is delivered by the Subscription object. The event indicates a system event has occurred, such
as an error, halt in communication, or shut down of the Sybase Aleri Streaming Platform.

The getTypeName() method returns the string literal value, representing the type of event instead of
the internal integer representation. You can use this value for output messages.

The getId() method returns an integer representing a unique event ID that can be safely used within a
switch statement to “case” on. The event IDs are unique across the entire set of event types. For ex-
ample, an SpSubscriptionEvent may have a “getType()” of SpEventType.SYSTEM, which
means it is a system-related notification. The getId() method returns what was actually detected by
the system (for example, SpEventId.PARSING_ERROR,
SpEventId.COMMUNICATOR_HALTED, and so forth). As is the case with the event types, all of the
event IDs are enumerated within the aleri_PubSubconst namespace.

The subscription event identifiers are:

• SpEventId.GATEWAY_SYNC_START

This event is delivered to the SpObserver if the Subscription object is sent a START_SYNC
Gateway I/O message from the Sybase Aleri Streaming Platform. The START_SYNC message con-
tains the ID for the stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates the start of the stream's “snapshot”. Sub-
sequent events should be INSERT messages for each record in the stream until the END_SYNC Gate-
way I/O message is received from the Sybase Aleri Streaming Platform. A call to the START_SYNC
event's getData() method returns null. For this message to be sent from the Sybase Aleri Stream-
ing Platform to the client application, the Subscription has to be created with the SpSub-
Flags.BASE flag specified. If the SpSubFlags.NO_BASE flag is instead specified, the
START_SYNC message will never have been delivered from the Sybase Aleri Streaming Platform to
the client application.

This event is also delivered after the WIPEOUT event, if any dynamic Sybase Aleri Streaming Plat-
form changes result in content regeneration. In this situation, the START_SYNC event is delivered
even if the Subscription was created with the SpSubscriptionCommon.NOBASE flag.

• SpEventId.GATEWAY_SYNC_END

This event is delivered to the SpObserver if the Subscription is sent an END_SYNC Gateway
I/O message from the Sybase Aleri Streaming Platform. The END_SYNC message contains the ID for
the stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates that the end of the stream's “snapshot” has
been reached. A call to the END_SYNC event's getData() method returns null. For this message to
be sent from the Sybase Aleri Streaming Platform to the client application, the Subscription
either has to be created with the SpSubFlags.BASE flag specified, or any dynamic Sybase Aleri
Streaming Platform changes results in the data in one or more of the relevant streams to be regener-
ated. In the latter case, this event is preceded by the WIPEOUT event and is followed by the
START_SYNC event, and insertion of the generated data.

• SpEventId.GATEWAY_WIPEOUT

Reference Guide to the .NET Object Model

147

It is delivered to the SpObserver after any dynamic Sybase Aleri Streaming Platform changes that
results in a relevant stream's content being regenerated. The event means that the whole current con-
tent of the stream is being discarded. The WIPEOUT event is followed by the START_SYNC event,
insertion of the new data, and the END_SYNC event. All events are delivered even if the Subscrip-
tion was created with the SpSubscriptionCommon.NOBASE flag.

• SpEventId.BINARY_DATA

If the Subscription is created with the delivery type of SpDeliveryType.DELIVER_BINARY,
the getData() method returns an SpBinaryData object containing the binary message delivered
from the Sybase Aleri Streaming Platform.

The binary data is located in the unmanaged heap. You need to access the unmanaged heap to manip-
ulate the data. Your program should not free or delete this data since it's done automatically when the
object goes out of scope.

• SpEventId.PARSED_FIELD_DATA

When a Subscription is created with a delivery type of SpDelivery-
Type.DELIVER_PARSED, it attempts to parse the field data of the stream messages transmitted by
the Sybase Aleri Streaming Platform and delivers this parsed field information to the SpObserver. The
getStreamOpCode() method can be used to determine whether the message was an INSERT,
UPDATE, or DELETE. The parsed field data is accessed by the SpObserver through the event's
getData() method.

• SpEventId.PARSED_PARTIAL_FIELD_DATA

This event is currently not supported in the .NET version of the API.

• SpEventId.COMMUNICATOR_HALTED

It is delivered when you attempt to issue a "shutdown" through the SpPlatform object. A call to the
getData() method returns null.

• SpEventId.PLATFORM_SHUTDOWN

It is delivered when you attempt to issue a “shutdown” through the SpPlatform object. A call to the
getData() method returns null.

• SpEventId.PARSING_ERROR

It is delivered when a parsing error is detected by the subscription, and there is at least some context
to report. A call to the getData() method returns an object of type SpParserReturnInfo.
Currently the .NET API does not support this object.

• SpEventId.UNKNOWN_PARSING_ERROR

It indicates that the parser encountered an unexpected error before the completion of the process. In
this case, the getData() method returns an integer object that contains the record length for the
message that is being parsed.

• SpEventId.READ_STREAM_RECORD_ERROR

It indicates that the parser could not successfully read the record that was delivered from the Sybase
Aleri Streaming Platform. The getData() method returns an integer object containing the value of
the record length for the bad record.

• SpEventId.BAD_RECORD_LENGTH_ERROR

Reference Guide to the .NET Object Model

148

It indicates that the record-length read off the socket was bad. The getData() method returns an in-
teger object that contains the bad record length value read off the socket.

• SpEventId.BAD_GATEWAY_OP_CODE_ERROR

It indicates that the Gateway I/O operation code for the message sent from the Sybase Aleri Streaming
Platform is invalid. The getData() method returns an integer object that contains the bad Gateway
I/O operation code that was read.

• SpEventId.EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It is delivered to the SpObserver when the Pub/Sub API recognizes that a connection attempt should
be made to the High Availability (Hot Spare) server. The High Availability connection parameters
were specified in the SpPlatfromParms object passed to the SpFact-
ory.createPlatform() method when the underlying SpPlatform was first created.

See Section 4.5.1, “Publication/Subscription in a High Availability (Hot Spare) Configuration” for
more information.

• SpEventId.EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

It is delivered to the SpObserver when the connection to the High Availability (Hot Spare) server
is made successfully.

See Section 4.5.1, “Publication/Subscription in a High Availability (Hot Spare) Configuration” for
more information.

• SpEventId.EVID_HOT_SPARE_SWITCH_OVER_FAILED

It is delivered to the SpObserver when the connection to the High Availability (Hot Spare) server
fails.

See Section 4.5.1, “Publication/Subscription in a High Availability (Hot Spare) Configuration” for
more information.

The getIdName() method returns the string literal value that corresponds to the numeric event ID.
You can use this in output messages.

The getStreamId() method returns the stream id that is associated with this event. For example, an
SpObserver may receive an event type of SpEventType. PARSED_DATA, where the event id is
SpEventId. PARSED_FIELD_DATA, indicating that the event contains parsed field data. The
getStreamId() method returns the stream id to which this event data corresponds.

The getStreamOpCode() method returns the stream operation code that is associated with this
event. For example, an SpObserver may receive an event type of SpEventType.PARSED_DATA,
where the event id is SpEventId.PARSED_FIELD_DATA, indicating that the event contains parsed
field data. The getStreamOpCode() method returns a value that indicates whether the event is an
INSERT, UPDATE, DELETE, and so forth.

The getData() method returns an array of objects representing the event data that the SpObserver
should process. The selection of objects stored in the collection depend upon the delivery type that was
specified when the Subscription object was first created. For example, if the delivery type of the
Subscription is SpDeliveryType.DELIVER_PARSED, the getData() method returns a
vector; each element in the vector is yet another vector that contains the field list of parsed objects pro-
duced by the subscription message parser.

The array size (number of elements) returned by the getData()method will be 1 when the Sybase Aleri

Reference Guide to the .NET Object Model

149

Streaming Platform delivers a non-transaction message. For example, it could be an isolated INSERT,
UPDATE or DELETE). In the case a transaction message is delivered, the array size is equal to the num-
ber of messages in the transaction block.

It is also important to note that each transactional message sent from the Sybase Aleri Streaming Plat-
form contains updates for an individual stream. In other words, a single message will not contain records
for more than one stream.

If the Subscription is created using a delivery type of SpDeliveryType.DELIVER_BINARY,
the getData() method returns a ByteBuffer that has the raw binary stream message within it. If the
Sybase Aleri Streaming Platform sends a transaction block, the SpBinaryData object contains the en-
tire transaction block. The ByteBuffer is located in the unmanaged memory, but your program does not
need to free this memory explicitly; this is done automatically when the SpBinaryData object goes
out of scope.

If the Subscription is created using a delivery type of SpDelivery-
Type.DELIVER_STREAM_OPCODES, the getData() method returns null. Use the get-
StreamOpCode() method in order to determine the stream operation code (INSERT, UPDATE, DE-
LETE, UPSERT, and so forth.

C.3. Methods for Publication in .NET 2.0

C.3.1. SpPublication Method Set

An SpPublication object can be used to publish data to one or more streams. It implements the fol-
lowing interface:

System::String ^getName();

int start();

int publish(aleri_PubSubnet::SpStreamDataRecord ^streamRecord);

int publish(
cli::array<aleri_PubSubnet::SpStreamDataRecord ^> ^streamRecords,
int streamOpCodeOverride,
int streamFlagOverride);

int publishTransaction(
cli::array<aleri_PubSubnet::SpStreamDataRecord ^> ^streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock);

int publishEnvelope(
cli::array<aleri_PubSubnet::SpStreamDataRecord ^> ^streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock);

public int commit();

public int stop();

int publish(
cli::array<aleri_PubSubnet::SpStreamDataRecord ^>
^streamRecords,
int streamOpCodeOverride,
int streamFlagOverride,
SpPlatformStatus ^status);

Reference Guide to the .NET Object Model

150

int publishTransaction(
cli::array<aleri_PubSubnet::SpStreamDataRecord ^>
^streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock,
SpPlatformStatus ^status);

int publishEnvelope(
cli::array<aleri_PubSubnet::SpStreamDataRecord ^>
^streamRecords,
int streamOpCodeOverride,
int streamFlagsOverride,
int maxRecordsPerBlock,

Details:

The getName() method returns the “name” assigned to this SpPublication object when it was
created through the SpPlatform's createPublication(...) factory method.

The start() method is used to start the publication process.

When an SpPublication object is started, the following sequence of events take place:

1. The SpPublication object creates a socket connection to the Sybase Aleri Streaming Platform
Gateway I/O process.

2. The SpPublication authenticates with the Sybase Aleri Streaming Platform.

3. The start() method returns a zero to the caller when the SpPublication object was successfully
started; otherwise, a non-zero error code is returned.

The SpUtils.getErrorMessage(errorCode) method can get the specific error message when
an error occurs.

The publication mechanism does not create a separate thread to manage the publication, unlike the sub-
scription method. Behind the scenes, a socket connection to the Sybase Aleri Streaming Platform Gate-
way I/O process transmits stream data to the Sybase Aleri Streaming Platform and reads the response as-
sociated with each individual request. A publication request is synchronous unless otherwise specified in
the flag values used when publishing data. You can call one of the publish methods and wait for the
Sybase Aleri Streaming Platform to respond with an ack or nak. However, there is a special stream
flag, SpGatewayConstants.SF_NOACK, that can be used to make an asynchronous publication re-
quest. When this flag is specified, the publish method sends the request out to the Gateway I/O pro-
cess and returns control immediately back to the caller without waiting for a response from the Sybase
Aleri Streaming Platform.

The publish(aleri_PubSubnet::SpStreamDataRecord ^streamRecord) method is
used to publish/send a single stream input record to a source stream on the Sybase Aleri Streaming Plat-
form although it is more efficient to send Input Stream records to the Sybase Aleri Streaming Platform
in either transaction blocks or envelopes. This method can be used initially when the programmer wants
to test a new data model, perhaps by sending one stream input record at a time. If the send is a success, a
return code of zero is sent back to the caller, otherwise an error code is sent back. The
SpUtils.getErrorMessage(errorCode) method can be called to get the specific error mes-
sage.

Reference Guide to the .NET Object Model

151

Each of the publish methods of the SpPublication object takes one or more SpStreamDataRe-
cord objects as input. The SpStreamDataRecord object represents one row of stream data that will
be sent to the Sybase Aleri Streaming Platform. Each SpStreamDataRow object has its own op code,
which indicates how the row will be handled by the Sybase Aleri Streaming Platform when it's received.

For example, the op code may indicate that the row will be treated as an INSERT, a DELETE, an UP-
DATE and so forth. See Section B.2.4, “SpStreamDataRecord Object” for more information.

The publish(cli::array<aleri_PubSubnet::SpStreamDataRecord ^>
^streamRecords, int streamOpCodeOverride, int streamFlagOverride) sends
an array of SpStreamDataRecord objects to the Sybase Aleri Streaming Platform with one call. The
streamOpCodeOverride and streamFlagOverride parameters can be used to override the
corresponding values found in the individual SpStreamDataRecord objects that comprise the col-
lection.

Although an array of SpStreamDataRecord objects is sent/published to the Sybase Aleri Streaming
Platform, this method sends each element of the array, one record at a time. However, this method al-
lows you to create a set of stream data records where each record can be applied to a different stream.
This may be used for a debugging or testing scenario, where the ordered sequence of updates to various
source streams is important.

The publishTransaction(cli::array<aleri_PubSubnet::SpStreamDataRecord
^> ^, int streamOpCodeOverride, int streamFlagsOverride, int maxRe-
cordsPerBlock) and the publishEnvel-
ope(cli::array<aleri_PubSubnet::SpStreamDataRecord ^> ^, int streamOp-
CodeOverride, int streamFlagsOverride, int maxRecordsPerBlock) methods
are the most efficient ways to bundle multiple SpStreamDataRecords stored in the array to send at
once to the Sybase Aleri Streaming Platform as a single batch.

Each SpStreamDataRecord to be placed within the transaction/envelope must be for the same
source stream. It can have a different “op code”, such as INSERT, UPDATE, DELETE), but the records
must be for the same source stream.

As previously mentioned, the override op code and flag values can override the corresponding values
found within the individual SpStreamDataRecord objects that make up the collection. In addition, this
method takes one more parameter called maxRecordsPerBlock, an integer value that specifies the
maximum number of SpStreamDataRecords to be sent as a transactional/envelope unit to the Sy-
base Aleri Streaming Platform. If the value is set to zero, then the method will try to send all of the Sp-
StreamDataRecord objects in the collection to the Sybase Aleri Streaming Platform within one
transaction block. If the maxRecordsPerBlock is less than the actual number of records in the col-
lection, then the record set will be broken up using the maxRecordsPerBlock setting into multiple
transactions/envelopes during transmission to the server.

The difference between a transaction and envelope block transmitted to the server is how the server pro-
cesses the block of records upon receiving it. As the name implies, a group of records within a transac-
tion block is treated as a single transactional unit on the server side. In the case of an envelope, the group
of records contained within the envelope are processed a single record at a time by the server. Basically,
the envelope mechanism allows the client to send a batch of records for a specific stream to the server in
one shot as opposed to sending a single record at a time, and having to wait for each record's ack/nak
reply from the server.

Each of the three publish functions described above has a version that accepts a handle to SpPlat-
formStatus. These versions are functionally similar, but in error conditions, return extended inform-
ation if available in the SpPlatformStatus.

The commit() method issues a special Gateway I/O command to the Sybase Aleri Streaming Plat-
form, requesting that all pending input records previously sent to the Sybase Aleri Streaming Platform
be synced to disk. Making a commit call is a tremendously expensive operation relative to latency. It's

Reference Guide to the .NET Object Model

152

designed to be used only as part of a two-phase commit process when reading from a persistent source,
such as an ActiveMQ series, and writing to a Sybase Aleri Streaming Platform instance that uses Sy-
base's log store persistence model.

In a real time, low latency streaming scenario, the commit call should not be used after each record.

Typically the commit call should be used as follows: For a standard two-phase commit process that
guarantees against data loss, the client reads messages from the source, such as ActiveMQ, and pub-
lishes to the Sybase Aleri Streaming Platform until reaching a pre-determined number of processed mes-
sages (>1024 is recommended) or a specified amount of time has elapsed. After reaching the value set
for the maximum number messages or the elapsed time has passed, the commit() call is made and upon
return to the client, the client may inform the source, such as ActiveMQ, that the messages can be de-
leted.

The stop() method shuts down the underlying Gateway I/O socket connection.

C.3.2. Stream Operation Codes

The following lists the stream operation codes that can be set for each individual SpStreamDataRe-
cord or as one of the “streamOpCodeOverride” parameters can be found in the aleri_PubSubconst
namespace:

• SpOpCodes. NOOP

When specified as the "streamOpCodeOverride" parameter, this value indicates that the stream op
code stored in each of the individual SpStreamDataRecord objects should be used by the Sybase
Aleri Streaming Platform. If the stream op code within the SpStreamDataRecord is set to SpOp-
Codes.NOOP, then the Sybase Aleri Streaming Platform will default the stream operation to an IN-
SERT operation.

• SpOpCodes.INSERT

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as an INSERT operation.

• SpOpCodes.UPDATE

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as an UPDATE operation.

• SpOpCodes.DELETE

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as a DELETE operation.

• SpOpCodes.UPSERT

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as an UPSERT operation. An UPSERT operation either inserts the stream record into the source
stream if it is not already present or it updates the existing source stream record using the contents of
the stream record.

C.3.3. Stream Flag Values

The following is a set of stream flag values that can be set for each individual SpStreamDataRe-
cord or as one of the streamFlagOverride parameters found in the aleri_PubSubconst
namespace:

Reference Guide to the .NET Object Model

153

• SpStreamFlags.NULLFLAG

When specified as the streamFlagOverride parameter, it indicates that the stream flag stored in
each of the individual SpStreamDataRecord objects should be used by the Sybase Aleri Stream-
ing Platform. If the stream flag within the SpStreamDataRecord is set to SpStream-
Flags.NULLFLAG, the default synchronous publication sequence takes place where the SpPub-
lication waits for a response from the Sybase Aleri Streaming Platform.

• SpStreamFlags.NOACK

When specified, it tells the Sybase Aleri Streaming Platform not to send an ack or nak back to the
client application that issued the publication request. In other words, the Publish method that was
called runs asynchronously, and it assumes that the record was received and processed by the Sybase
Aleri Streaming Platform.

• SpStreamFlags.SHINE

It is only relevant for the stream op code values of UPDATE and UPSERT. Typically, all of the fields
for a stream record being published to the Sybase Aleri Streaming Platform must be assigned values
for each of the available stream operations (INSERT, UPDATE, UPSERT, and so forth). In the case of
an UPDATE or UPSERT, you can use the SHINE flag to ignore any NULL columns in a record and
update only the columns with actual new values. In essence, the Sybase Aleri Streaming Platform lets
the existing field values “shine through” for each of the null values you sent in.

The flag values represent bits that can be ORed together as in the example below:

int flags = SpStreamFlags.SHINE | SpStreamFlags.NOACK

The key column(s) of the record to be updated must be populated for the update/upsert operation to
succeed.

C.3.4. SpStreamDataRecord Object

Each of the SpPublication object's publishing methods sends stream input data from the client ap-
plication to the Sybase Aleri Streaming Platform. Each stream record or row of stream data is encapsu-
lated within an SpStreamDataRecord object, which has the following method set:

aleri_PubSubnet::SpStream ^getStream();
cli::array<System::Object ^> ^getFieldData();
int getOpCode();
int setOpCode(int value);
int getFlags();
int setFlags(int value);

Details:

• The getStream() method returns an SpStream object with which this SpStreamDataRe-
cord is associated. See Section C.1.5, “SpStream Object” for more information.

• The getFieldData() method returns an array of objects representing the data for each field in the
stream record. Currently, these objects can have a “type” of String, Integer, Long, Double, Date,
Money, Timestamp, and null.

Reference Guide to the .NET Object Model

154

• The getOpCode() method returns the stream op code currently set for this record.

• The setOpCode(int value) method sets the value of the stream op code for this record.

• The getFlags() method returns the current flag settings for this record.

• The setFlags(int value) method sets the value of the stream flag settings for this record.

C.3.5. Creating SpStreamDataRecord Objects

An SpStreamDataRecord object is created using a “factory” method for consistency within the
Pub/Sub API model with the following method signature:

aleri_PubSubnet::SpStreamDataRecord
^SpFactory.createStreamDataRecord(
aleri_PubSubnet::SpStream ^stream,
cli::array<System::Object ^> ^fieldData,
int opCode,
int flags,
aleri_PubSubnet::SpPlatformStatus ^status);

Details:

• SpStream stream is a handle to the SpStream object with which this new SpStreamDataRe-
cord object will be associated. You can get this value through one of the appropriate SpPlatform
methods, such as getStream(System::String ^streamName) or getStream(int
streamId).

• cli::array<System::Object ^> ^fieldData is an array of objects where each object
entry in the array matches the corresponding field data type, as indicated in the streams definition spe-
cified in the SpStream parameter.

Notes:

When creating an SpStreamDataRecord, all of the key fields must be specified with non-
null values within the fieldData array. In addition, the types of the objects that are located
in the fieldData array must match those in the SpStream definition.

• int opCode is the stream operation code associated with this SpStreamDataRecord. The op code
specifies how to apply this record to the source stream: INSERT, UPDATE, or DELETE.

• int flags is the stream flag settings value that is associated with this SpStreamDataRecord.

Note

Several of the publish methods include the option of overriding the stream op code and flag
settings.

• aleri_PubSubnet::SpPlatformStatus ^status is an object that returns error code in-
formation back from the createStreamDataRecord (...) factory method in the case where
the SpStreamDataRecord object cannot be created.

C.3.6. Other Pub/Sub API Classes

Reference Guide to the .NET Object Model

155

Here are some of the miscellaneous classes briefly referenced in earlier examples. One class is the
SpUtils class, which offers the following utility methods:

static System::String ^getErrorMessage(int errorCode)

static System::String ^getEventTypeName(int eventType)

static System::String ^getEventIdName(int eventId)

Details:

• The getErrorMessage(int errorCode) method retrieves the message string, associated
with the errorCode passed in through the parameter list. Typically, the errorCode is returned by a pre-
vious call to one of the Pub/Sub API methods.

• The getEventTypeName(int eventType) method is typically called by an SpObserver
object. This method returns a String representing the literal name of the eventType passed in. The
eventType is usually retrieved from an aleri_PubSubnet::SpSubscriptionEvent ob-
ject that was delivered to the aleri_PubSubnet::SpObserver through the
aleri_PubSubnet::SpObserver object's notify(...) method.

• The getEventIdName(int eventId) method is also typically called by an
aleri_PubSubnet::SpObserver object. It returns a string representing the literal name of the
eventId passed in. The eventId is usually retrieved from an
aleri_PubSubnet::SpSubscriptionEvent object that was delivered to the
aleri_PubSubnet::SpObserver through the aleri_PubSubnet::SpObserver object's
notify(...) method.

C.3.7. The aleri_PubSubconst namespace

The aleri_PubSubconst namespace contains all of the literal and constant values that can be used
as parameters to various Pub/Sub API method calls.

The contents of the aleri_PubSubconst namespace is broken up into the following entities:

The SpDataTypes class contains the constants defining the various field data types supported by the
Sybase Aleri Streaming Platform. The following field data types are supported:

• DATE

• DOUBLE

• INT32

• INT64

• MONEY

• NULLVALUE

• STRING

• TIMESTAMP

Reference Guide to the .NET Object Model

156

• The MONEY datatype is a 64-bit integer with an implicit decimal place. When receiving data from
the Sybase Aleri Streaming Platform, the returned value should be passed as a parameter to the
platform.moneyToDouble(int64 money) function to derive the correct double value.
When sending data to the Sybase Aleri Streaming Platform, the double value should be converted to
64-bit integer using the platform.doubleToMoney(double money) function to ensure the
data is processed correctly.

• The TIMESTAMP datatype is basically the same as a DATE datatype except that it is capable of
holding milliseconds. When subscribing from the Sybase Aleri Streaming Platform or publishing data
to the Sybase Aleri Streaming Platform a System::DateTime object can be appropriately re-
ceived or sent. The API takes care of preserving or stripping out the millisecond component of the
DateTime object depending on the datatype of the corresponding column in the Sybase Aleri Stream-
ing Platform.

• The NULLVALUE datatype is meant for internal use. When subscribing to the Sybase Aleri Stream-
ing Platform a null Object is retrieved when the value in a column is NULL. Similarly, when publish-
ing data, a null Object must be sent to the API when a column value should be set to NULL within the
Sybase Aleri Streaming Platform.

SpDeliveryType contains the different types of parsers assigned to the SpSubscription object.
Currently, an SpSubscription object can be configured with a parser that returns just Stream Op
Codes, parsed field data, binary data, and so on.

• DELIVER_BINARY

• DELIVER_PARSED

• DELIVER_STREAM_OPCODES

SpEventId: This class contains the different event identifiers that are returned from an SpSub-
scription object.

• BAD_GATEWAY_OP_CODE_ERROR

• BAD_RECORD_LENGTH_ERROR

• BINARY_DATA

• COMMUNICATOR_HALTED

• GATEWAY_SYNC_END

• GATEWAY_SYNC_START

• GATEWAY_WIPEOUT

• PARSED_FIELD_DATA

• PARSED_PARTIAL_FIELD_DATA

• PARSING_ERROR

• PLATFORM_SHUTDOWN

• READ_STREAM_RECORD_ERROR

Reference Guide to the .NET Object Model

157

• UNKNOWN_PARSING_ERROR

SpEventType contains various types and/or classifications of events that are returned from an SpSub-
scription object.

• BINARY_DATA

• PARSED_DATA

• STREAM_OPCODE_DATA

• SYSTEM

SpOpCodes contains various stream operation codes, which are used to set or determine the operation
code of the record to be published or received via subscription.

• DELETES

• INSERT

• NOOP

• UPDATE

• UPSERT

SpStreamFlags contains various stream flags that can be used for publishing data.

• NOACK

• NULLFLAG

• SHINE

SpSubFlags contains various flags that can be specified for subscribing to data from the Sybase Aleri
Streaming Platform.

• BASE

• LOSSY

• NO_BASE

• DROPPABLE

• PRESERVE_BLOCKS

C.4. Record and Playback objects for .NET

C.4.1. SpNetRecorder Object

Reference Guide to the .NET Object Model

158

To create an SpRecorder, client programs need to call the factory method - createRecorder - defined in
SpPlatform.

SpRecorder^ createRecorder(System::String^ name, System::String^ filename, cli::array<System::String^>^ streams,
int flags, int maxRecords, aleri_pubsubnet::SpPlatformStatus^ status);

The method takes the following parameters:

name This string uniquely identifies this instance of the recorder object.

filename The name of the file where recorded data will be stored.

streams This is a vector of strings containing the names of the streams for
which to record events.

flags These flags control the underlying subscription. They can be a bit-
wise OR of the following values:

• one of SpSubFlags.BASE or SpSubFlags.NOBASE - in-
dicates whether or not to record data already in streams at the
time of connection

• SpSubFlags.LOSSY indicates whether or not the Sybase
Aleri Streaming Platform should discard records if the client
application cannot keep up

maxRecords Specifies the maximum number of records to process.

status Specifies an SpPlatformStatus object to return information in case
of error.

SpRecorder has the following public interface:

public System::String^ getName();
public int start();
public long getRecordCount();
public int stop();

Where:

getName() returns the identifier assigned to this instance of the SpRecorder object.
start() spawns a background thread which starts the recording process. The method returns once the
thread is started. Returns 0 on success.
getRecordCount() returns the number of data records processed.
stop() ends the recording process. by terminating the recording thread and closing connections to the
Sybase Aleri Streaming Platform. Returns 0 on success.

C.4.2. SpNetPlayback object

An SpPlayback object is created by calling the following factory method defined in SpPlatform.

SpPlayback^ createPlayback(System::String^ name, System::String^ filename, double scale, int maxrecords,
aleri_pubsubnet::SpPlatformStatus^ status);

Reference Guide to the .NET Object Model

159

The method takes the following parameters:

• name uniquely identifies this instance of SpPlayback.

• filename specifies the name of the file containing the recorded data.

• scale controls the rate of playback. Values -1 to 1 have no effect and the data is played back at the
rate it was recorded at. Values greater than 1 speed up playback by that factor, for example, a value of
2 will play back twice as fast. Values less than -1 slows down playback by the factor specified.

• maxrecords specifies the maximum number of records to playback.

• status is an SpPlatformStatus object used to return information in case of error.

SpPlayback has the following public interface:

public System::String^ getName();
public void setSendUpsert(bool upsert);
public bool getSendUpsert();
public void setTimeScaleRate(double scale);
public double getTimeScaleRate();
public int start();
public long getNumRecordsPlayedBack();
public int getPercentPlayedBack();
public int stop();

Where:

getName() Returns the identifier assigned to this instance of SpPlayback ob-
ject.

setSendUpsert(bool) Indicates whether to convert INSERT operations in the data to
UPSERT operations.

getSendUpsert() Returns the current setting of UPSERT flag.

setTimeScaleRate(double) Controls the rate of playback.

getTimeScaleRate() Returns the current value of the scale factor.

start() Spawns a background thread that starts the playback process. Re-
turns 0 on success.

getNumRecordsPlayed-
Back()

Returns the number of data records played back so far.

getPercentPlayedBack() Returns the percentage of the data played back so far.

stop() Terminates the background playback thread and closes connec-
tions to the Sybase Aleri Streaming Platform.

Reference Guide to the .NET Object Model

160

Appendix D. Reference Guide to SQL Query Interface
D.1. Aleri SQL Connectivity C++ Library

C++ programs can connect to the Sybase Aleri Streaming Platform using a C++ SQL connectivity lib-
rary that was developed as a lightweight alternative to ODBC. This native C++ SQL interface to the Sy-
base Aleri Streaming Platform encapsulates the low-level messages into a more convenient API. The
static library is included in the distribution in the file lib/libsp_sql.a.

The interface to the classes in this library is located in the distribution in the include/Nat-
iveSql.hpp file.

This API resembles a collection of stripped-down versions of the JDBC classes, which have been modi-
fied for C++. There are four main classes: Connection, Statement, ResultSet, and Result-
SetMetaData.

The application program establishes a connection to the Sybase Aleri Streaming Platform using the
Connection class. The constructor for objects sets up the host, port, database, user, and password.
You must use the open member function after construction to connect to the Sybase Aleri Streaming
Platform and then issue createStatement calls to create SQL statement objects.

class Connection
{
public:
/// Constructor
Connection(const char * host, int port, const char * db,
const char * user, const char * pwd);

/// Destructor
virtual ~Connection();

/// Open this Connection to the database.
bool open();

/// Open this Connection to the database using an SSL
/// socket.
bool openSSL();

/// Release this Connection object's database and
/// resources immediately instead of waiting for them
/// to be automatically released.
void close();

/// Creates a Statement object for sending SQL statements
/// to the database.
Statement * createStatement();

/// Retrieves whether this Connection object has been
/// closed.
bool isClosed();

};

The Statement class is used for execution of queries in the context of a Connection.

class Statement
{
public:

161

/// Constructor
Statement(Connection * connection);

/// Destructor
virtual ~Statement();

/// Cancels this Statement object if both the DBMS and
/// driver support aborting an SQL statement.
void cancel();

/// Releases this Statement object's database and other
///resources immediately instead of waiting for this to
///happen when it is automatically closed.
void close();

/// Executes the given SQL statement, which returns a
/// single ResultSet object.
ResultSet * executeQuery(const char * sql);

/// Retrieves the Connection object that produced this
/// Statement object.
Connection * getConnection();

/// Retrieves the maximum number of rows that a ResultSet
///object produced by this Statement object can contain.
int getMaxRows();

/// Sets the limit for the maximum number of rows that any
///ResultSet object can contain to the given number.
void setMaxRows(int max);

};

The ResultSet class is used to get information from the results of executing an SQL query on the Sy-
base Aleri Streaming Platform.

class ResultSet
{
public:
/// Constructor
ResultSet(Statement * statement, ResultSetMetaData * meta,
std::vector<void *> & rows);

/// Destructor
~ResultSet();

/// Moves the cursor to the given row number in this
///ResultSet object.
bool absolute(int row);

/// Moves the cursor to the end of this ResultSet object,
/// just after the last row.
void afterLast();

/// Moves the cursor to the front of this ResultSet object,
///just before the first row.
void beforeFirst();

/// Releases this ResultSet object's database and
/// resources immediately instead of waiting for this to
/// happen when it is automatically closed.
void close();

Reference Guide to SQL Query Interface

162

// Maps the given ResultSet column name to its ResultSet
///column index.
int findColumn(const char * columnName);

// Moves the cursor to the first row in this ResultSet
// object.
bool first();

// Retrieves the value of the designated column in the
// current row of this ResultSet object as a time_t.
time_t getDate(int columnIndex);

/// Retrieves the value of the designated column in the
/// current row of this ResultSet object as a time_t.
time_t getDate(const char * columnName);
/// Retrieves the value of the designated column in the
/// current row of this ResultSet object as a double.
double getDouble(int columnIndex);

/// Retrieves the value of the designated column in the
current row of this ResultSet
/// object as a double.
double getDouble(const char * columnName);

/// Retrieves the value of the designated column in the
current row of this ResultSet object
/// as a 32-bit signed integer.
int32_t getInt32(int columnIndex);

/// Retrieves the value of the designated column in the
current row of this ResultSet
/// object as a 32-bit signed integer.
int32_t getInt32(const char * columnName);

/// Retrieves the value of the designated column in the
current row of this ResultSet object
/// as a 64-bit signed integer.
int64_t getInt64(int columnIndex);

/// Retrieves the value of the designated column in the
/// current row of this ResultSet object as a 64-bit
/// signed integer.
int64_t getInt64(const char * columnName);

/// Retrieves the number, types and properties of this
///ResultSet object's columns.
ResultSetMetaData * getMetaData();

/// Retrieves the current row number.
int getRow();

/// Retrieves the Statement object that produced this
///ResultSet object.
Statement * getStatement();

/// Retrieves the value of the designated column in the
/// current row of this ResultSet object as a character
/// string.
const char * getString(int columnIndex);

/// Retrieves the value of the designated column in the
/// current row of this ResultSet object as a character
/// string.

Reference Guide to SQL Query Interface

163

const char * getString(const char * columnName);

/// Retrieves whether the cursor is after the last row in
/// this
ResultSet object.
bool isAfterLast();

/// Retrieves whether the cursor is before the first row
///in this ResultSet object.
bool isBeforeFirst();
/// Retrieves whether the cursor is on the first row of
///this ResultSet object.
bool isFirst();

/// Retrieves whether the cursor is on the last row of
/// this ResultSet object.
bool isLast();

/// Moves the cursor to the last row in this ResultSet
/// object.
bool last();

/// Moves the cursor down one row from its
/// current position.
bool next();

/// Moves the cursor to the previous row in this ResultSet
/// object.
bool previous();

/// Moves the cursor a relative number of rows, either
/// positive or negative.
bool relative(int rows);

/// Reports whether the last column read had a value of
/// SQL NULL.
bool wasNull();

};

The ResultSetMetaData class describes the format of a result set. It can be used to retrieve inform-
ation about the column names and column types.

class ResultSetMetaData
{
public:
/// Constructor
ResultSetMetaData(std::vector<std::string> & colNames,
std::vector<int> & colTypes);

/// Destructor
~ResultSetMetaData();

/// Returns the number of columns in this ResultSet object.
int getColumnCount();

/// Get the designated column's name.
const char * getColumnName(int column);

/// Get the designated column's position.
int getColumnPos(const char * name);

Reference Guide to SQL Query Interface

164

/// Retrieves the designated column's SQL type.
int getColumnType(int column);

/// Retrieves the designated column's database-specific
/// type name.
const char * getColumnTypeName(int column);

};

Reference Guide to SQL Query Interface

165

Appendix E. Reference Guide to the Command and
Control Interface
E.1. Command and Control Messages

All Command and Control functions have a 32-bit signed integer return code that follows the “C” lan-
guage standard:

• A return code of zero indicates a successful function call.

• A non-zero return code indicates that an error has occurred.

Some of the calls return a structure in which the 32-bit signed integer return code is embedded as a
structure member (usually named Status).

The following notation is used to specify a structure return value from a command and control function
call:

s(Status) int
s(StreamNum) int
s(StreamNames) array strings
s(StreamIds) array int

This example indicates that the return value is an XMLRPC structure with data members Status,
StreamNum, StreamNames, and StreamIds, whose respective data types are int, int, array of
strings, and array of ints.

All the calls that return a structure include the field:

return: s(errMsgs): array string

If the return code is not zero, this array contains the error messages describing it. If the return code is
zero, this array might still contain warning messages.

The supported Command and Control functions:

• cimarron.getClockStopOnPause(token) returns an integer that shows whether the logical
platform clock will be stopped (value 1) or not (value 0) when the Sybase Aleri Streaming Platform
pauses in the trace mode.

input: auth_token: string
return: s(status): int
return: s(value): int
return: s(errMsgs): array string

• cimarron.setClockStopOnPause(token, value) sets the flag that determines whether the lo-
gical Sybase Aleri Streaming Platform clock will be stopped (value 1) or not (value 0) when it pauses

166

in the trace mode.

input: auth_token: string
input: value: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.getClock(token) returns the current status of the logical platform clock. The state con-
sists of:

clocktime clockTime is the current logical time in the Sybase Aleri Streaming Platform, in
seconds since UNIX epoch.

clockRate clockRate is the current rate of clock in the Sybase Aleri Streaming Platform relative
to real time; 10 means "10 times faster", 0.1 means "10 times slower".

clockReal A flag showing whether the clock is "real" (that is, matching the system time of the
machine where the Sybase Aleri Streaming Platform runs (if 1), or it has been set arti-
ficially (if 0). If the status returned is not 0, this value may be -1, and in this case the
rest of the returned values are invalid.

stopDepth How many times the clock has been stopped recursively, meaning how many times
resumeClock() would have to be called to actually resume the flow of time; when the
clock is running, this value is 0.

maxSleep maxSleep is a period of time, in real milliseconds, that guarantees all the sleepers dis-
cover the changes in the clock rate or time. The calls setClockRate(), setClockRate-
Time(), setClockReal() with argument wait=1 use this value as wait length. If these
calls are used with argument wait=0, the caller may use this value to sleep by itself.
When running in real time, it uses a larger value (currently 1000, meaning 1 second)
for more efficiency since every sleeping thread is waking up every so often; when
running in variable time it uses a smaller value (currently 100) for faster reaction to
the changes.

input: auth_token: string
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.setClockRate (token, double rate, int wait) changes the rate at which the logical
clock of the Sybase Aleri Streaming Platform ticks. The rate is relative to real time. For example, 10
means 10 times faster or 0.1 means "10 times slower.

It differs from the rate expressed in Pub/Sub, which uses a slider position so that 10 means accelerate
10 times while -10 means slow down 10 times.

The wait parameter determines how the rate change is performed. If 0, the call will perform the
change and return immediately. But parts of the Sybase Aleri Streaming Platform that are waiting for
an event (or “sleeping”) might not discover that the clock rate has changed for up to maxSleep milli-
seconds.

Reference Guide to the Command and Control Interface

167

If not 0, it will atomically stop the logical clock, change the rate, wait long enough for all the ongoing
sleeps to discover the rate change and restart the clock at the new rate.

This call returns the previous state of the Sybase Aleri Streaming Platform clock. See the description
above for getClock().

input: auth_token: string
input: rate: double
input: wait: int
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.setClockTime(token, time) changes the current logical time of the Sybase Aleri
Streaming Platform. Time is expressed in seconds since the UNIX epoch. This call returns the previ-
ous state of the platform clock. See the above description for getClock().

input: auth_token: string
input: time: double
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.setClockRateTime (token, rate, time, wait) is a combination of setting time and rate
as in the calls above. This call returns the previous state of the platform clock. See the above descrip-
tion for getClock().

input: auth_token: string
input: rate: double
input: time: double
input: wait: int
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.setClockReal(token, wait) restores the clock to use the real time. It would return an
error if the clock is currently stopped. The wait argument is the same as for setClockRate(). This call
returns the previous state of the. Sybase Aleri Streaming Platform clock. See the description above in
getClock().

Reference Guide to the Command and Control Interface

168

input: auth_token: string
input: wait: int
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.stopClock (token) stops the logical clock in the Sybase Aleri Streaming Platform.
The records will still be processed but the notion of time won't change and the timer events won't hap-
pen. While the clock is stopped, the time and rate may be changed but the clock may not be switched
to real time. Stopping may be called multiple times, then resume must be called the same number of
times to have the time flow resumed. Since the Sybase Aleri Streaming Platform may also stop and
resume the clock internally, don't resume the clock more times than you've stopped it. This call re-
turns the previous state of the clock. See the description above for getClock().

input: auth_token: string
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.resumeClock (token) resumes the flow of time in the Sybase Aleri Streaming Plat-
form. This call returns the previous state of the clock. See the description above in getClock().

input: auth_token: string
return: s(status): int
return: s(clockTime): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSleep): int
return: s(errMsgs): array string

• cimarron.login(username, password) authenticates with the server during login, and on
success returns an authentication token to be used in all other Command and Control calls.

input: username: string
input: password: string
return: s(status): int
return: s(hash): string (authentication token)
return: s(errMsgs): array string

• cimarron.sendStreamsExit(auth_token) posts an EXIT message to each source stream.

Reference Guide to the Command and Control Interface

169

This causes an exit message to propagate through the entire dependency graph of source and streams.
When all streams have processed the exit message, the Sybase Aleri Streaming Platform shuts down.

input: auth_token: string
return: void - cimarron should exit after all streams
fully process queued data

• cimarron.getSourceStreams(auth_token) requests a list of the complete set of source
streams. This includes the stream names and stream IDs.

input: auth_token: string
return: s(status): int
return: s(streamNum): int (number of source streams)
return: s(streamNames): array string (the stream names)
return: s(streamIds): array int (stream ids)
return: s(errMsgs): array string

• cimarron.getDerivedStreams(auth_token) requests a list of the complete set of derived
streams. This includes the stream names and stream IDs.

input: auth_token: string
return: s(status): int
return: s(streamNum): int (number of Derived Streams)
return: s(streamNames): array string (the stream names)
return: s(streamIds): array int (stream ids)
return: s(errMsgs): array string

• cimarron.getStreamDefinition(auth_token, stream-name) requests detailed
metadata for a particular stream. This includes the number of columns (fields), their names and types,
and a Boolean array that indicates the key columns for the stream.

input: auth_token: string
input: stream_name: string
return: s(status): int
return: s(ColNum): int (number of fields)
return: s(ColNames): array string (the field names)
return: s(ColTypes): array int (field types)
return: s(Keys): array int (0 not key, 1 key)
return: s(errMsgs): array string

• cimarron.getStreamHandleDefinition(auth_token, stream-handle) requests
detailed metadata for a particular stream. This includes the number of columns (fields), their names
and types, and a Boolean array that indicates the key columns for the stream. Same as getStream-
Definition(), only uses the stream handle to find the stream.

input: auth_token: string
input: stream_handle: int
return: s(status): int
return: s(ColNum): int (number of fields)

Reference Guide to the Command and Control Interface

170

return: s(ColNames): array string (the field names)
return: s(ColTypes): array int (field types)
return: s(Keys): array int (0 not key, 1 key)
return: s(errMsgs): array string

• cimarron.getGateway(auth_token) requests the name of the machine and the port that the
Gateway Server interface is bound to and listens on.

input: auth_token: string
return: s(status): int
return: s(host): string (hostname)
return: s(port): int (port number)
return: s(errMsgs): array string

• cimarron.isBigEndian(auth_token) requests the server to identify its endian type.

input: auth_token: string
return: s(status): int
return: s(flag): int (1: big endian, 0: little endian)
return: s(errMsgs): array string

• cimarron.isQuiesced(auth_token) checks whether the server has finished processing all
pending data and if there are any active input connections. The check for "no active input connec-
tions" is done first, and this call returns false (zero or busy) if there are any active input connec-
tions.

input: auth_token: string
return: s(status): int
return: s(flag): int (1: quiesced, 0: busy)
return: s(errMsgs): array string

• cimarron.addStreamToClient(auth_token, client_handle, stream_name),
given the handle of a Gateway client is in subscription mode, augments the list of streams that are
subscribed by a client.

input: auth_token: string
input: client_handle: int
input: stream_name: string
return: int (status)

• cimarron.addStreamHandleToClient(auth_token, client_handle,
stream_handle), given the handle of a Gateway client is in subscription mode, augments the list
of streams that are subscribed by a client. It's the same as addStreamToClient(), only it uses
the stream handle to find the stream.

input: auth_token: string

Reference Guide to the Command and Control Interface

171

input: client_handle: int
input: stream_handle: int
return: int (status)

• cimarron.removeStreamFromClient(auth_token, client_handle,
stream_name), given the handle of a Gateway client is in subscription mode, trims the list of
streams that are subscribed by the client.

input: auth_token: string
input: client_handle: int
input: stream_name: string
return: int (status)

• cimarron.removeStreamHandleFromClient(auth_token, client_handle,
stream_handle), given the handle of a Gateway client is in subscription mode, trims the list of
streams that are subscribed by the client. It's the same as removeStreamFromClient(), only it
uses the stream handle to find the stream.

input: auth_token: string
input: client_handle: int
input: stream_handle: int
return: int (status)

• cimarron.getDateSize(auth_token) returns an integer that represents the native size in
bytes of the server's datetime fields.

input: auth_token: string
return: s(status): int
return: s(flag): int (8: 64 bit server, 4: 32 bit server)
return: s(errMsgs): array string

• cimarron.getAddressSize(auth_token) returns an integer that represents the address/
pointer size of the connected Sybase Aleri Streaming Platform. In C/C++ terminology, the value re-
turned is: sizeof(void *).

input: auth_token: string
return: s(status): int
return: s(flag): int (8: 64 bit server, 4: 32 bit server)
return: s(errMsgs): array string

• cimarron.setParameter(auth_token, parameter_name, value) sets the value of
a parameter within the Sybase Aleri Streaming Platform. The flag value returned is 1 if the command
is successful, 0 if the named parameter exists but was not set. An example would be if the value could
not be converted to the type of the parameter or -1 the named parameter does not exist.

input: auth_token: string

Reference Guide to the Command and Control Interface

172

input: parameter_name: string
input: value: string
return: s(status): int
return: s(flag): int (8: 64 bit server, 4: 32 bit server)
return: s(errMsgs): array string

• cimarron.getStreamHandle(auth_token, stream_name) gets the integer stream
handle by stream name.

input: auth_token: string
input: stream_name: string
return: s(status): int
return: stream_handle: int
return: s(errMsgs): array string

• cimarron.backup(auth_token) creates a backup of all the Log Stores. The backup files are
created with suffix .bak. The the file dynamic.log is backed up into the file dynamic.bak).
The backup files are created as sparse files, with compacted contents.

input: auth_token: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.saveConfig(auth_token, file_name) saves the current running AleriML
configuration to this file on the server (the file must not exist before the function call).

input: auth_token: string
input: file_name: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.getConfig(auth_token) returns the current running XML configuration.

input: auth_token: string
return: s(status): int
return: s(config): string
return: s(errMsgs): array string

• cimarron.loadConfig(auth_token, file_name, options) loads the new configura-
tion from this file on the server. If the file contains errors, the error messages are printed in the Sybase
Aleri Streaming Platform log, the error code returned, and the Sybase Aleri Streaming Platform will
be left unchanged. The options affect the way the changes are applied. See the sp_cli man page for a
description of these options.

input: auth_token: string
input: file_name: string

Reference Guide to the Command and Control Interface

173

input: options: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.loadConfigInline(auth_token, XML_config, options) loads the new
configuration contained in the XML_config string. If the configuration contains errors, the error
messages will be printed in the Sybase Aleri Streaming Platform log, the error code returned, and the
Sybase Aleri Streaming Platform will be left unchanged. The options affect the way the changes are
applied. See the description of these options in the sp_cli man page.

input: auth_token: string
input: XML_config: string
input: options: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.loadConfigInlineConv(auth_token, XML_config, options,
XML_conv) loads the new configuration contained in the XML_config string, and uses the model
contained in XML_conv to convert the date in the base streams. If the configuration contains errors,
the error messages are printed in the Sybase Aleri Streaming Platform log, the error code returned,
and the Sybase Aleri Streaming Platform will be left unchanged. The options affect the way the
changes are applied. See the description of options' format and meaning in the sp_cli man page. The
conv option may not be used with this call.

input: auth_token: string
input: XML_config: string
input: options: string
input: XML_conv: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.logLevel(auth_token,level) sets the logging level on the Sybase Aleri
Streaming Platform.

input: auth_token: string
input: level: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.getMoneyPrecision(auth_token) returns the decimal precision of the money
data type used by the Sybase Aleri Streaming Platform.

input: auth_token: string
return: s(status): int
return: s(moneyPrecision) int
return: s(errMsgs): array string

Reference Guide to the Command and Control Interface

174

• cimarron.killClient(auth_token, handle) closes the connection of the client identi-
fied by the connection handle. The handle can be found in the conn_handle field of the Aleri_Clients
metadata stream.

input: auth_token: string
input: level: int
return: int status

• cimarron.killClientByName(auth_token, tag_name) closes the connections of all
the clients that have the tag name set to equal to the specified name. The tag name can be found in the
conn_tag field of the Aleri_Clients metadata stream.

input: auth_token: string
input: level: int
return: int status

• cimarron.setTraceMode(auth_token on) changes the trace mode, and disables it if on
equals 0 or enables if on !=0.

input: auth_token: string
input: level: int
return: int status

• cimarron.getTraceMode(auth_token) returns whether the Sybase Aleri Streaming Plat-
form is currently in the trace mode as "tracemode".

input: auth_token: string
return: s(status): int
return: s(traceMode) int
return: s(errMsgs): array string

• cimarron.runControl(auth_token, action, string_arg, int_arg) controls the
execution of the Sybase Aleri Streaming Platform while in trace mode. Action specifies a control ac-
tion to perform. Each action might take a string argument, an integer argument, both or neither, de-
pending on the particular action.

The supported actions are:

• pause - pause the platform execution

• run - resume the platform execution

• step [s:stream_name] - do a single step; if the stream argument is not empty, then step stream with
this name, otherwise step any random stream.

• wait - wait until the Sybase Aleri Streaming Platform pauses (through runControl or on a break-
point); this command cannot be canceled. Otherwise, to get the asynchronous notifications of the
pause, subscribe to the Aleri_RunControl stream.

Reference Guide to the Command and Control Interface

175

• runwait - a combination of run and wait is paused. Checks whether the Sybase Aleri Streaming
Platform is paused; returns the status code 0 if it is paused, or NOPAUSE (15) if it is not.

• setStepTimeout i:milliseconds - set the timeout for automatic stepping from the integer argument;
using the negative or zero value returns the timeout to the default (0.3s).

• stepTrans s:stream_name i:n_steps - step the stream either to the end of the transaction, or no more
than n_steps steps, or until the stream get blocked on input or output for longer than the timeout
(0.3s by default). n_steps less than 1 is processed as 1.)

• stepQuiesceStream s:stream_name i:n_steps - step the stream and its descendant streams until
either the whole stream's input queue is processed, no more than n_steps steps, or until all the in-
volved streams get blocked on input or output for longer than the timeout (0.3s by default). n_steps
less than 1 is processed as 1.

• stepQuiesceFromBase s:stream_name i:n_steps - step all the non-source streams until the whole
stream's input queue is processed, or no more than n_steps steps, or until all the involved streams
get blocked on input or output for longer than the timeout (0.3s by default). n_steps less than 1 is
processed as 1.

input: auth_token: string
input: action: string
input: string_arg: string
input: int_arg: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.dumpStream:(auth_token, prefix, stream) in trace mode writes the cur-
rent contents of the stream(s) into a file. If the stream name is empty, writes all the streams. The file
name for each stream is <prefix> dump_<streamname>.xml.

input: auth_token: string
input: prefix: string
input: stream: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.addBreakpoint (auth_token, stream, origin, expr, period) in
trace mode adds a breakpoint on the specified stream. Origin is the name of an input stream, or "*" to
break on any input, or "" to break on output. If expr is not empty, it gives a conditional expression that
must be satisfied to trigger the breakpoint. Period specifies how many times the condition needs to be
detected before actually triggering a breakpoint. Returns the unique id of the newly created break-
point.

input: auth_token: string
input: stream: string
input: origin: string
input: expr: string
input: period: int
return: s(status): int
return: s(id): int
return: s(errMsgs): array string

Reference Guide to the Command and Control Interface

176

• cimarron.delBreakpoint(auth_token, id) in trace mode deletes the breakpoint with
this id.

input: auth_token: string
input: id: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.enableBreakpoint(auth_token, id, period) in trace mode enables the
breakpoint and sets its period, if period !=0; otherwise it disables the breakpoint.

input: auth_token: string
input: id: int
input: on: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.examineDataStart (auth_token, kind, stream, object, start-
pos, expr) in trace mode starts the examination of the data, as identified by kind, stream, and ob-
ject name. Depending on the kind, stream and/or object name may be empty. The details are described
in the sp_cli(1) man page. Startpos allows to skip a number of records. If expr is not empty, it spe-
cifies the filter expression, and only the rows for which the filter evaluates to true are returned. This
call returns the format that will be returned but not the data itself.

The data may be a mix of rows from different streams or imitations of streams. The number of pos-
sible stream definitions is returned in streamCount. And the array streamDefs contains the following
information for each stream definition:

name name of the stream

colNum number of columns

colNames array of names for each column

colTypes array of types for each column, represented as an integer code

Keys array containing 1 for each key column and 0 for each non-key column

The returned information also contains the bigEndian flag for the architecture where the Sybase Aleri
Streaming Platform is running. If this flag matches the one on the machine where the client program
is running, data can be interpreted with the class Row, otherwise with RowRBO.

The cookie value is to be passed to the follow-up calls cimarron.examineDataNext that return
the actual data. Currently, only one cookie may be active. If you call cimar-
ron.examineDataStart twice, cimarron.examineDataNext will return the data only for
the last cookie.

input: auth_token: string
input: kind: string
input: stream: string
input: object: string
input: startpos: int
input: object: string
return: s(status): int

Reference Guide to the Command and Control Interface

177

return: s(bigEndian): int
return: s(cookie): int
return: s(streamCount): int
return: s(streamDefs): array struct(

s(name): string
s(colNum): int
s(colNames): array string
s(colTypes): array int
s(Keys): array int

)
return: s(errMsgs): array string

• cimarron.examineDataNext(auth_token, cookie, maxcnt) in trace mode returns
the data as initiated by cimarron.examineDataStart, identified by its cookie. Maxcnt is the
maximum number of rows to return. If there are more rows available than returned, this call may be
repeated to receive more data. Avoid using maxcnt that is too high, it may overflow the capabilities of
XMLRPC. Maxcnt of 10000 is generally safe.

The returned data consists of:

• count - count of rows returned by this call

• eof - flag, non-0 if this is the last set of rows.

• srcIdx - an array containing for each row the index of its stream definition in the array returned by
cimarron.examineDataStart.

• flags - an array containing for each row an integer with a bitmask or this row's flags. The currently
supported flags are:

• UPDATE_PAIR = 0x0001 - this is a first row of an update pair

• CONTINUE_TRANS = 0x0002 - this is NOT the last row of a transaction

• RETENTION_DEL = 0x0004 - this is a part of block of deletes generated by retention rows - an
array of base64-encoded binary data for each row. The binary data can be interpreted using the
class Row or RowRBO.

input: auth_token: string
input: cookie: int
input: maxcnt: int
return: s(status): int
return: s(count): int
return: s(eof): int
return: s(srcIdx): array int
return: s(flags): array int
return: s(rows): array base64
return: s(errMsgs): array string

• cimarron.examineCount(auth_token, cookie) in trace mode returns the information
about the number of rows already returned by examineDataNext (pos) and the total number of rows
available in this examination (count). This information can be used to get quickly last few rows from
a big volume of data: do examineDataStart(startpos=0), examineCount(), then examineData-
Start(startpos=count-N). The values are returned as double for extended precision, and large values
may overflow the integer argument startpos.

Reference Guide to the Command and Control Interface

178

input: auth_token: string
input: cookie: int
return: s(status): int
return: s(pos): double
return: s(count): double
return: s(errMsgs): array string

• cimarron.getMaxThrottle(auth_token, stream) returns the "throttle value" that limits
the input queue size of a stream, as max. The queue size may grow up to twice the size of throttle
value.

input: auth_token: string
input: stream: string
return: s(status): int
return: s(max): int
return: s(errMsgs): array string

• cimarron.setMaxThrottle(auth_token, stream, throttle) sets the "throttle
value" that limits the input queue size of a stream. The queue size may grow up to twice the size of
throttle value. If the stream name is empty, it sets the throttle value for all the streams.

input: auth_token: string
input: stream: string
input: throttle: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.isPaused(auth_token), in trace mode, returns whether the Sybase Aleri Stream-
ing Platform is currently paused. It's equivalent to the same action of cimarron.runControl,
only the pause flag is returned as a separate value instead of a status code.

input: auth_token: string
return: s(status): int
return: s(isPaused): int
return: s(errMsgs): array string

• cimarron.evaluateExpr(auth_token, stream, object, expression), in trace
mode, evaluates a debugging SPLASH expression expr in the context of a stream. The argument ob-
ject is currently reserved and must always be an empty string. The result string is currently also a
placeholder and is always returned empty.

input: auth_token: string
input: stream: string
input: object: string
input: expr: string
return: s(status): int
return: s(result): string
return: s(errMsgs): array string

Reference Guide to the Command and Control Interface

179

• cimarron.setHistorySize(auth_token, stream, size), in trace mode, sets the size
of history kept for the stream. If the stream name is empty, sets the history size for all the streams.

input: auth_token: string
input: stream: string
input: size: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.getHistorySize(auth_token, stream), in trace mode, returns the size of
history kept for the stream.

input: auth_token: string
input: stream: string
return: s(status): int
return: s(size): int
return: s(errMsgs): array string

• cimarron.immediateExit(auth_token) requests the Sybase Aleri Streaming Platform to
exit immediately, bypassing the normal shutdown procedure. It's a very abrupt way to stop the Sybase
Aleri Streaming Platform, almost equivalent to crashing it. Use it only as last resort, in situations such
as when a client stops receiving data and the Sybase Aleri Streaming Platform can't flush its output
queues during a normal stop. But killing the client's connection is a better idea even in this case.

input: auth_token: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.wipeoutBaseStream(auth_token, stream) deletes all the contents of a
source stream.

input: auth_token: string
input: stream: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.startConnector(auth_token, name) starts the connector identified by name,
or all the connectors in a group identified by name.

input: auth_token: string
input: name: string
return: s(status): int
return: s(errMsgs): array string

Reference Guide to the Command and Control Interface

180

• cimarron.stopConnector(auth_token, name, immediate) stops the connector iden-
tified by name, or all the connectors in a group identified by name. Does not wait for connectors to be
actually stopped. The immediate flag affects how the output connectors are stopped. If 0, new data
stops being queued for the connector, then the Sybase Aleri Streaming Platform waits for the connect-
or to drain its queue normally, and only then stops it. If not 0, the connector's queue gets discarded
immediately.

input: auth_token: string
input: name: string
input: immediate: int
return: s(status): int
return: s(errMsgs): array string

• cimarron.waitConnector(auth_token, name) waits to exit for the connector identified
by name, or all the connectors in a group identified by name.

input: auth_token: string
input: name: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.waitConnectorInitial(auth_token, name) waits for the connector identi-
fied by name, or all the connectors in a group identified by name, to complete the initial loading.

input: auth_token: string
input: name: string
return: s(status): int
return: s(errMsgs): array string

• cimarron.startUpConnectors(auth_token) starts the connectors as during the normal
start-up sequence. Returns after all the connectors in the sequence have completed the initial loading.

input: auth_token: string
return: s(status): int
return: s(errMsgs): array string

Reference Guide to the Command and Control Interface

181

Appendix F. Using Encryption with Java Client
Applications

In order to develop a Java client application that runs against an instance of the Sybase Aleri Streaming
Platform in encrypted mode (see the sp_server manpage for more information on the -e option). you
must ensure that the certificate/key information is generated and installed correctly in the environment.

Follow the steps in this section very carefully before attempting to set up the certificate and key inform-
ation.

1. Create a directory that will be used to store the certificate/key files.

Eventually, this directory will be populated with the certificate/key files that are generated in the
following steps. The directory must be specified as an argument to the -e option when starting up
the sp_server in encrypted mode.

2. Generate the certificate and key files using the genkeys script.

The Sybase Aleri Streaming Platform ships with a shell script, bin/genkeys, that can be used to cre-
ate the required key and certificate files. Production users must use this script to generate files
whose names have the form server.* and copy them into the desired location (the directory ref-
erenced in step 1).

One of the files that is generated by the genkeys script is a file called server.crt.der. This file
must be imported into the Java cacerts keystore file to get the Java clients to connect to the Sybase
Aleri Streaming Platform using HTTPS (for the XMLRPC Command and Control Process connec-
tions) and SSL (for secure socket connections to the Gateway I/O Process).

The genkeys application takes two command line parameters:

• The number of days before the certificate will expire. This is an integer that is set to a value that
is appropriate for a particular environment.

• The “Common Name” value that will be assigned to the CN fields within the certificate file
server.crt that is generated by the genkeys script. If this parameter is not specified, the script
uses the value returned by the hostname operating system command.

Note:

For Java based clients to work with encryption enabled, the CN(Common Name) field value of
the server.crt file must be set to the hostname of the machine running the Sybase Aleri
Streaming Platform. In addition, when attempting to connect to the Sybase Aleri Streaming
Platform, the Java client (sp_viewer, Adapter, and so forth) must use the exact text representa-
tion of the hostname as specified in the CN field of the server.crt file. If the two do not
match exactly, the Java client fails to connect to the Sybase Aleri Streaming Platform during
the certificate validation process.

For example, if the genkey script generates a server.crt file in which the CN fields are set to
the value ganges.sybase.com, the Java client must use the identical string, the hostname
ganges by itself might not work.

In the above scenario, if the Java sp_viewer client attempts to connect to the server using a host-
name value of “ganges”, while the CN field of the certificate is set to the value
ganges.sybase.com, the Java client generates the following exception:

182

Exception: java.io.IOException: HTTPS hostname wrong: should be <ganges>
java.io.IOException: HTTPS hostname wrong: should be <ganges>
at sun.net.www.protocol.https.HttpsClient.b(DashoA12275)
at sun.net.www.protocol.https.HttpsClient.afterConnect(DashoA12275)
at sun.net.www.protocol.https.
AbstractDelegateHttpsURLConnection.connect(DashoA12275)

at sun.net.www.protocol.http.
HttpURLConnection.getOutputStream(HttpURLConnection.java:569)

at sun.net.www.protocol.https.
HttpsURLConnectionImpl.getOutputStream(DashoA12275)

at org.apache.xmlrpc.
DefaultXmlRpcTransport.sendXmlRpc(DefaultXmlRpcTransport.java:83)

at org.apache.xmlrpc.
XmlRpcClientWorker.execute(XmlRpcClientWorker.java:71)

at org.apache.xmlrpc.XmlRpcClient.execute(XmlRpcClient.java:193)
at com.aleri.asap.tools.SPXmlRpc.login(Unknown Source)
at com.aleri.asap.tools.SPViewer.initialize(Unknown Source)
at com.aleri.asap.tools.SPViewer$2.construct(Unknown Source)
at com.aleri.asap.tools.SwingWorker$2.run(Unknown Source)
at java.lang.Thread.run(Thread.java:534)
Could not login to the Command and Control process
on <host:port> = <ganges:22000>, for user=cimarron

Although it is somewhat unclear, this exception indicates that a certificate was found in the Java
trusted keystore, but the CN (Common Name) field of the certificate did not exactly match the host-
name value specified by the Java client.

3. After running the genkeys script, make sure to copy the generated certificate/key files into a direct-
ory dedicated to storing the certificate/key information.

The genkeys script can be executed from within the directory created earlier to avoid having to copy
the certificate files manually.

Here are the important certificate/key files generated by the genkeys script:

• server.crt

• server.key

• server.crt.der

These must be copied into the directory that will be specified using the -e option when starting the
sp server in encrypted mode.

Technically, the server.crt.der file does not need to exist within the directory where the keys
are stored. However, its contents must be imported into the Java cacerts file. It is easier to man-
age if all the generated certificate/key files are kept together in one place.

4. Import the certificate/key information located in the server.crt.der file, which was generated
by the genkeys script, into the Java JRE environment that will be used to run the Java client applica-
tions, such as sp_viewer, the Java Adapter, and so forth.

If you want to run the Java client application (sp_viewer or Adapter, for example) on Windows,
first copy the server.crt.der file that was generated on UNIX through the genkeys applica-
tion onto your Windows machine. Next, use the keytool application of the JRE on your Windows
machine to import the server.crt.def file.

To import server.crt.def, use the Java keytool program, and keep the target of the import as

Using Encryption with Java Client Applications

183

the Java cacerts file. The syntax of the keytool import command depends on the operating system.

On UNIX, the keytool's import command line is:

YourJavaHomeBinDirectory/keytool -keystore
YourJavaHome/lib/security/cacerts -alias
AnyNameForTheCertificate -import -file server.crt.der

On Windows, the keytool's import command line is:

YourJavaHomeBinDirectory\keytool -import -alias
AnyNameForTheCertificate -file server.crt.der -keystore
YourJavaHome\lib\security\cacerts

Enter the password for the cacerts keystore (the default is changeit). Accept the trust certific-
ate.

Note

You must be sure that the server.crt.der information is imported into the cacerts file
of the JRE(s) used to run the Java client application(s). If there are several JDKs on your ma-
chine, and you plan to run the Java clients on each of them, make sure that the serv-
er.crt.der file is imported into each one. Additionally, the path to the Java keytool applic-
ation should reflect the JRE version where the server.crt.der file is being imported. You
must also make sure that you must have permission to change the cacerts file so you can run
chmod u+w on the cacerts file if necessary.

If the import of the server.crt.der file is not performed when the Java client is run, the fol-
lowing exception appears:

Exception: javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: No trusted
certificate found

javax.net.ssl.SSLHandshakeException:
sun.security.validator.ValidatorException: No trusted
certificate found

at com.sun.net.ssl.internal.ssl.BaseSSLSocketImpl.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SunJSSE_az.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SunJSSE_az.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SunJSSE_ax.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.a(DashoA12275)
at com.sun.net.ssl.internal.ssl.SSLSocketImpl.j(DashoA12275)
at com.sun.net.ssl.internal.
ssl.SSLSocketImpl.startHandshake(DashoA12275)

at sun.net.www.protocol.https.HttpsClient.
afterConnect(DashoA12275)

at sun.net.www.protocol.https.
AbstractDelegateHttpsURLConnection.connect(DashoA12275)

at sun.net.www.protocol.http.
HttpURLConnection.getOutputStream(HttpURLConnection.java:569)

at sun.net.www.protocol.https.
HttpsURLConnectionImpl.getOutputStream(DashoA12275)

at org.apache.xmlrpc.

Using Encryption with Java Client Applications

184

DefaultXmlRpcTransport.sendXmlRpc(DefaultXmlRpcTransport.java:83)
at org.apache.xmlrpc.
XmlRpcClientWorker.execute(XmlRpcClientWorker.java:71)

at org.apache.xmlrpc.
XmlRpcClient.execute(XmlRpcClient.java:193)

at com.aleri.asap.tools.SPXmlRpc.login(Unknown Source)
at com.aleri.asap.tools.SPViewer.initialize(Unknown Source)
at com.aleri.asap.tools.SPViewer$2.construct(Unknown Source)
at com.aleri.asap.tools.SwingWorker$2.run(Unknown Source)
at java.lang.Thread.run(Thread.java:534)
Caused by: sun.security.validator.
ValidatorException: No trusted certificate found
at sun.security.validator.

SimpleValidator.buildTrustedChain(SimpleValidator.java:304)
at sun.security.validator.
SimpleValidator.engineValidate(SimpleValidator.java:107)

at sun.security.validator.
Validator.validate(Validator.java:202)

at com.sun.net.ssl.internal.
ssl.X509TrustManagerImpl.checkServerTrusted(DashoA12275)

at com.sun.net.ssl.internal.
ssl.JsseX509TrustManager.checkServerTrusted(DashoA12275)

... 18 more
Could not login to the Command and Control process
on <host:port> = <ganges:22000>, for user=cimarron
Error = 0

F.1. Ready To Run in Encrypted Mode

If you have successfully performed all the steps, the following are now true:

1. The key directory is set up.

2. The server.crt, server.key, and server.crt.der files are present in this directory.

3. The contents of the server.crt.der file have been successfully imported into the appropriate
Java cacerts file.

Now you can start up the Sybase Aleri Streaming Platform using the -e option to specify the name of
the directory where the certificate/key files were stored.

Once the server has been started up in encrypted mode, the Sybase Aleri Streaming Platform Command
and Control process will be accessed from a Java client application using XMLRPC over HTTPS. Refer
to the Utilities Guide for more information. The client connections to the Sybase Aleri Streaming Plat-
form Gateway I/O process will be made using SSL socket connections.

If the sp server is to be created using Java, make sure that the Java application specifies the exact same
hostname value stored in the CN fields of the server.crt file. If this is not the case, the Java client
will not connect to the sp server, and the message java.io.IOException: HTTPS hostname
wrong: should be <hostname> exception will appear.

To use SSL in JDBC, add ?ssl to the connection URL, for example:

jdbc:postgresql://hostname:22200/database?ssl

Using Encryption with Java Client Applications

185

	Guide to Programming Interfaces
	Table of Contents
	About This Guide
	1. Purpose
	2. Organization
	3. Related Documents

	Chapter 1. Publication/Subscription Interfaces
	1.1. The Publication/Subscription Mechanism
	1.1.1. Publication/Subscription Terminology
	1.1.2. Initializing Pub/Sub Objects
	1.1.3. Subscribing to the Sybase Aleri Streaming Platform
	1.1.4. Publishing to the Sybase Aleri Streaming Platform

	1.2. Record/Playback Mechanism

	Chapter 2. Publish/Subscribe API for Java
	2.1. Overview of SP Java utilities
	2.1.1. SP .jar files
	2.1.2. Non-sp Utilities
	2.1.3. Example Files

	2.2. Design Decisions
	2.3. Subscribing to the Sybase Aleri Streaming Platform Using Java
	2.3.1. Set Up the Environment for Subscription Using Java
	2.3.1.1. Configure the API Classpath
	2.3.1.2. Set up Basic SP Objects

	2.3.2. Set Up Java Objects for Subscription
	2.3.2.1. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using Java
	2.3.2.2. SpSubscription Example
	2.3.2.3. SpSubscriptionProjection Example

	2.3.3. Receive/Process Subscription Updates in Java
	2.3.3.1. Parse Sybase Aleri Streaming Platform Data
	2.3.3.2. Inspect Parsing Errors
	2.3.3.3. Detect Nulls/Stales
	2.3.3.4. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using Java
	2.3.3.5. SpSubscription/SpSubscriptionProjection Objects and Null Sybase Aleri Streaming Platform Field Data Values

	2.3.4. Change/Stop Subscription in Java
	2.3.4.1. Stop Subscription

	2.4. Publishing to the Sybase Aleri Streaming Platform Using Java
	2.4.1. Create Publication Objects Using Java
	2.4.1.1. Create the SpPublication Object
	2.4.1.2. Example: Setting Up Objects for Publication in Java

	2.4.2. Start the Publication Connection Using Java
	2.4.3. Publish a Collection Using Java
	2.4.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using Java
	2.4.5. Handling Stale Data
	2.4.6. Publication/Subscription in a High Availability (Hot Spare) Configuration
	2.4.6.1. Subscription Mechanisms in a High Availability Configuration
	2.4.6.2. Publication Mechanisms in a High Availability Configuration

	2.5. Record/Playback using Java

	Chapter 3. Publish/Subscribe API for C++
	3.1. Overview/General Information
	3.1.1. Overview of SP C++ Utilities
	3.1.2. Design Decisions for Publication/Subscription Using C++
	3.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription
	3.1.4. C++ Usage Restrictions

	3.2. Subscribing to the Sybase Aleri Streaming Platform Using C++
	3.2.1. Set Up Objects for SP Subscription in C++
	3.2.1.1. Create an SpPlatform Object

	3.2.2. Setup and Start a Subscription in C++
	3.2.2.1. Initiate a Subscription Using SpSubscriptionProjection
	3.2.2.2. Implement the SpObserver Interface
	3.2.2.3. Start the Subscription Using SpSubscripion
	3.2.2.4. Start the Subscription Using SpSubscriptionProjection

	3.2.3. Receive/Process Subscription Updates Using C++
	3.2.3.1. Delivery to an SpObserver Notify(...) Method Implementation
	3.2.3.2. Inspect the Subscription Parsing Errors within the SpObserver
	3.2.3.3. SHINE Flag Supports Subscription Mode For Partial-Record Updates

	3.2.4. Change/Stop Subscription Using C++
	3.2.4.1. Stop Subscription

	3.3. Publishing to the Sybase Aleri Streaming Platform Using C++
	3.3.1. Create Objects for Publication Using C++
	3.3.1.1. Create an SpPublication Object
	3.3.1.2. Create SpStreamDataRecord Objects

	3.3.2. Publish Data to the Sybase Aleri Streaming Platform Using C++
	3.3.3. Handling Stale Data
	3.3.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using C++

	3.4. Record/Playback using C++
	3.5. Special Topics for SP Publication/Subscription Using C++
	3.5.1. Publication/Subscription In a High Availability (Hot Spare) Configuration
	3.5.1.1. Subscription Mechanisms in a High Availability Configuration
	3.5.1.2. Publication Mechanisms in a High Availability Configuration

	Chapter 4. Publish/Subscribe API for .NET 2.0
	4.1. Overview/General Information
	4.1.1. Overview of .NET Utilities for SP Publication/Subscription
	4.1.1.1. API Library
	4.1.1.2. Example Files

	4.1.2. Design Decisions for SP Publication/Subscription Using .NET 2.0
	4.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using .NET

	4.2. Subscribing to the Sybase Aleri Streaming Platform Using .NET 2.0
	4.2.1. Set Up the Environment for Subscription Using .NET 2.0
	4.2.1.1. Configure the Pub/Sub API .NET 2.0 Pub/Subnet.dll
	4.2.1.2. Initialize the SpFactory Object
	4.2.1.3. Create the SpPlatform Object

	4.2.2. Set Up/Start Subscription Using .NET 2.0
	4.2.2.1. Initiate a Subscription Using SpSubscription in .NET 2.0
	4.2.2.2. Initiate a Subscription Using SpSubscriptionProjection
	4.2.2.3. The SpObserver Interface
	4.2.2.4. Adding or Removing Streams from an Active Subscription
	4.2.2.5. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using .NET

	4.2.3. Receive/Process Subscription Updates Using .NET 2.0
	4.2.3.1. Parse Sybase Aleri Streaming Platform Data

	4.3. Publishing to the Sybase Aleri Streaming Platform Using .NET 2.0
	4.3.1. Create Objects for SP Publication Using .NET 2.0
	4.3.1.1. Create the SpPublication Object
	4.3.1.2. Create a Data Object for Publication
	4.3.1.3. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using .NET

	4.3.2. Handling Stale Data

	4.4. Record/Playback using .NET 2.0
	4.5. Special Topics for SP Publication/Subscription Using .NET 2.0
	4.5.1. Publication/Subscription in a High Availability (Hot Spare) Configuration
	4.5.1.1. Subscription Mechanisms in a High Availability Configuration
	4.5.1.2. Publication Mechanisms in a High Availability Configuration

	Chapter 5. The On-Demand SQL Interface
	5.1. Aleri SQL Queries and Statements
	5.2. ODBC Connectivity
	5.3. JDBC Connectivity

	Chapter 6. The Command and Control Interface
	6.1. Security for the On-Demand SQL Interface
	6.1.1. Authentication Using the SQL On-Demand Interface
	6.1.2. Encryption Using the SQL On-Demand Interface

	Chapter 7. Embeddable Sybase Aleri Streaming Platform
	Chapter 8. Plug-in Connector Framework
	8.1. Introduction
	8.2. Plug-in Connector Profile
	8.3. System Parameters and Commands
	8.4. Read Only System Parameters
	8.5. Commands
	8.6. User-Defined Parameters and Parameter Substitution
	8.7. Notes on Auto Generated Parameter Files
	8.8. A Parameter of Type configFilename
	8.9. Other Parameter Types

	Appendix A. Reference Guide to the Java Object Model
	A.1. Objects for Subscription
	A.1.1. SpFactory Object
	A.1.2. SpPlatformParms Object
	A.1.3. SpPlatformStatus Object
	A.1.4. SpPlatform Object
	A.1.5. SpStream Object
	A.1.6. SpStreamDefinition Object
	A.1.7. SpStreamProjection Object
	A.1.8. Creating an SpSubscription or SpSubscriptionProjection Object
	A.1.9. SpSubscriptionCommon Method Set
	A.1.10. SpSubscription Method Set
	A.1.11. SpSubscriptionProjection Method Set
	A.1.12. SpSubscriptionEvent
	A.1.13. SpParserReturnInfo
	A.1.14. SpNullConstants
	A.1.15. SpUtils

	A.2. Objects for Publication
	A.2.1. Stream Operation Codes
	A.2.2. Stream Flag Values
	A.2.3. SpStreamDataRecord Object
	A.2.4. Create SpStreamDataRecord Objects

	A.3. Objects for recording and playback
	A.3.1. SpRecorder Object
	A.3.2. SpPlayback Object

	Appendix B. Reference Guide to the C++ Object Model
	B.1. C++ Objects for Subscription
	B.1.1. SpFactory Object
	B.1.2. SpPlatformParms Object
	B.1.3. SpPlatformStatus Object
	B.1.4. SpPlatform Object
	B.1.5. SpStream Object
	B.1.6. SpStreamDefinition Object
	B.1.7. SpStreamProjection Object
	B.1.8. Creating an SpSubscription or SpSubscriptionProjection Object
	B.1.9. SpSubscriptionCommon Method Set
	B.1.10. SpSubscription Method Set
	B.1.11. SpSubscriptionProjection Method Set
	B.1.12. SpSubscriptionEvent
	B.1.13. SpParserReturnInfo object
	B.1.14. SpDataValue Object
	B.1.15. SpBinaryData Object

	B.2. C++ Objects for Publication
	B.2.1. SpPublication Method Set
	B.2.2. Stream Operation Codes
	B.2.3. Stream Flag Values
	B.2.4. SpStreamDataRecord Object

	B.3. C++ Objects for Record and Playback
	B.3.1. SpRecorder object
	B.3.2. SpPlayback object

	B.4. Other C++ API Classes/Methods

	Appendix C. Reference Guide to the .NET Object Model
	C.1. Common Service Objects for .NET
	C.1.1. SpFactory Object
	C.1.2. The SpPlatformParms Object
	C.1.3. SpPlatformStatus Object
	C.1.4. SpPlatform Object
	C.1.5. SpStream Object
	C.1.6. SpStreamDefinition Object
	C.1.7. SpStreamProjection Object

	C.2. Subscription Objects for .NET
	C.2.1. SpSubscriptionCommon Method Set
	C.2.2. SpSubscriptionEvent

	C.3. Methods for Publication in .NET 2.0
	C.3.1. SpPublication Method Set
	C.3.2. Stream Operation Codes
	C.3.3. Stream Flag Values
	C.3.4. SpStreamDataRecord Object
	C.3.5. Creating SpStreamDataRecord Objects
	C.3.6. Other Pub/Sub API Classes
	C.3.7. The aleri_PubSubconst namespace

	C.4. Record and Playback objects for .NET
	C.4.1. SpNetRecorder Object
	C.4.2. SpNetPlayback object

	Appendix D. Reference Guide to SQL Query Interface
	D.1. Aleri SQL Connectivity C++ Library

	Appendix E. Reference Guide to the Command and Control Interface
	E.1. Command and Control Messages

	Appendix F. Using Encryption with Java Client Applications
	F.1. Ready To Run in Encrypted Mode

