SYBASE

Com pany

Guide to Programming Interfaces

Sybase Aleri Streaming Platform
3.2

DOCUMENT ID: DC01291-01-0320-02

LAST REVISED: December, 2010

Copyright © 2010 Sybase, Inc.

All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in
new editions or technical notes. Information in this document is subject to change without notice. The
software described herein is furnished under a license agreement, and it may be used or copied only in
accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800)
685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the
above fax number. All other international customers should contact their Sybase subsidiary or local dis-
tributor. Upgrades are provided only at regularly scheduled software release dates. No part of this pub-
lication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechan-
ical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at http://www.sybase.com/detail ?1d=1011207. Sybase and the marks
listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trade-
marks or registered trademarks of SAP AG in Germany and in several other countries all over the world.

Bloomberg is a trademark of Bloomberg Finance L.P., a Delaware limited partnership, or its subsidiar-
ies.

DB2, IBM and Websphere are registered trademarks of International Business Machines Corporation.
Eclipse is atrademark of Eclipse Foundation, Inc.

Excel, Internet Explorer, Microsoft, ODBC, SQL Server, Visual C++, and Windows are trademarks or
registered trademarks of Microsoft Corp.

Intel is aregistered trademark of Intel Corporation.

Kerberosis atrademark of the Massachusetts Institute of Technology.

Linux isthe registered trademark of Linus Torvaldsin the U.S. and other countries.

Mozillaand Firefox are registered trademarks of the Mozilla Foundation.

Netezzais aregistered trademark of Netezza Corporation in the United States and/or other countries.
Novell and SUSE are registered trademarks of Novell, Inc. in the U.S. and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Reuters is a registered trademark and trademark of the Thomson Reuters group of companies around the
world.

SPARC is aregistered trademark of SPARC International, Inc. Products bearing SPARC trademarks are
based on an architecture developed by Sun Microsystems, Inc.

Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and other

http://www.sybase.com/detail?id=1011207

countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.

UNIX isaregistered trademark in the United States and other countries, licensed exclusively through X/
Open Group Ltd.

All other company and product names mentioned may be trademarks of the respective companies with
which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph
(©)(2)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian
agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of Contents

7N oo 8| I =0 viii
L PUMPOSE ..t viii
2. OFQANIZALION ...ttt et e e et e et e et e e e e et a e e eanaee viii
3. Related DOCUMENLSceeiiitie ettt e e e e e e e eans iX

1. Publication/Subscription INtErfaceSoiiviiiiiiii e 1
1.1. The Publication/Subscription MechaniSmMccceuuviviiiieiii e, 1

1.1.1. Publication/Subscription TEMMINOIOGYccuvurviieriiiieiiiiieeeei e 1
1.1.2. Initializing PUb/SUD OBJECESccvuniiiiiie e 2
1.1.3. Subscribing to the Sybase Aleri Streaming Platformcoooiiiiiininnnnn. 2
1.1.4. Publishing to the Sybase Aleri Streaming Platformccoooiiiiien. 2
1.2. Record/Playback Mechanismcccouiiiiiiiiiii e, 3

2. Publish/SUBSCribe API fOr JAVAuiiiiii e 4

2.1. Overview of SP JavaUtilitiescc.uiiiiei e 4
211 SP Jar fIlES v 4
2.1.2. NON-SP ULHTIES ..eeieeeieei et e e 4
213 EXAMPIEFIIES ..o 4

2.2. DESIGN DECISIONS ..ouuiiiiiiiiieeii e et e e e e e e e e e e e e e e e e et e e et e e ea e e et e e aneeannns 5

2.3. Subscribing to the Sybase Aleri Streaming Platform Using Javacc.occevvvvnneennnn. 5
2.3.1. Set Up the Environment for Subscription UsSing Javac..covvvviviieeiennnnnn. 6

2.3.1.1. Configurethe APl Classpathccooviiiiiiiiiiiii e, 6
2.3.1.2. St Up BasiC SP ODJECES .. .vvvvvneeiiiiieeeiii e e e e e 6
2.3.2. Set Up Java Objects for SUBSCHiptionccovvieiiiiiiiiieee e 7
2.3.2.1. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSub-
SCHPLON USING JAVA .ovviiiiiicii e e e 8
2.3.2.2. SpSubsCription EXampleooiiiiiiiiiiiii 8
2.3.2.3. SpSubscriptionProjection Exampleooceiiiiiiiiinieiieen 9
2.3.3. Receive/Process Subscription Updatesin Javac..oovevveeiiiiiiiiinneeannn. 10
2.3.3.1. Parse Sybase Aleri Streaming Platform Dataccceeeeneee. 10
2.3.3.2. INSPECt ParSiNG EITOrScvvvneiiiiiiii e e e 10
2.3.3.3. DeteCt NUIS/SEAES ...ccevviiiiiiieeeee e 11
2.3.3.4. SHINE Flag Supports New Subscription Mode For Partial-Record Up-
AES USING JAVA ..eeviieiiiiii ettt 11
2.3.3.5. SpSubscription/SpSubscriptionProjection Objects and Null Sybase Aleri
Streaming Platform Field DataValuesccocoveiiiiiiiieeieeee e, 11
2.3.4. Change/Stop SUBSCIIPtioN iNJAVAuovvvniiiiieiiie e 12
2.3.4.1. StOP SUDSCIIPLION ..ovuiiiiiieiei e e e e 12
2.4. Publishing to the Sybase Aleri Streaming Platform Using Javaccoovvevvneeennnn. 13
2.4.1. Create Publication Objects USING JAVAveveviiiiiiiiiieecei e 13
2.4.1.1. Create the SpPublication Objectcocoiiiiiiiiiiiie 13
2.4.1.2. Example: Setting Up Objectsfor PublicationinJava 13
2.4.2. Start the Publication Connection USiNg JaVacccvvvvvvnieeiieiinieriieennnn, 14
2.4.3. Publish aCollection USING JAVAccuuiviiiiiiiecieeee e e e 15
2.4.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublica-
TON USING JAVA ..ttt et 16
245, Handling StAl€ D@tavvveiiiieeiiiiiieeeii e e et e e e e 16
2.4.6. Publication/Subscription in aHigh Availability (Hot Spare) Configuration .. 17
2.4.6.1. Subscription Mechanismsin aHigh Availability Configuration 17
2.4.6.2. Publication Mechanismsin aHigh Availability Configuration 18

2.5. Record/Playback USING JAVAiiiiiiiiiiiiiii e 18

3. PUBIlish/SUBSCIIDE API fOF C .. 20
3.1. Overview/General INfOrmationoceuuiiiiiiiii e 20

3.1.1. Overview of SP CH+ ULIItIES ...cceunieiiiicc e 20
3.1.2. Design Decisions for Publication/Subscription Using C++ 21

iv

Guide to Programming Interfaces

3.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription

... 21
314, CH++ USage RESINCHIONS ... 22
3.2. Subscribing to the Sybase Aleri Streaming Platform Using C++coovvvvvineeennn. 22
3.2.1. Set Up Objectsfor SP Subscription in CH+ ... 22
3.2.1.1. Create an SpPlatform OBJECtcouiiiiiiiiiiiiie e 22
3.2.2. Setup and Start a Subscription iN C++ ..., 23
3.2.2.1. Initiate a Subscription Using SpSubscriptionProjection 24
3.2.2.2. Implement the SpObserver Interfaceccccviiiiiiiiiiiiiiiinn, 24
3.2.2.3. Start the Subscription Using SpSUDSCIiPIONccevvveveveiinneeennnn. 25
3.2.2.4. Start the Subscription Using SpSubscriptionProjection 26
3.2.3. Receive/Process Subscription Updates Using C++ .o.oeivvieiiiiiiiciieeeen, 27
3.2.3.1. Delivery to an SpObserver Notify(...) Method Implementation 28
3.2.3.2. Inspect the Subscription Parsing Errors within the SpObserver 28
3.2.3.3. SHINE Flag Supports Subscription Mode For Partial-Record Updates
... 28
3.2.4. Change/Stop Subscription USING CH+ ...oeuniiiiiiiiieeieeei e 28
3.2.4.1. StOP SUDSCIIPLION ..ceuiiiiiiiiee et 28
3.3. Publishing to the Sybase Aleri Streaming Platform Using C++c..ccoeveevnneeee. 29
3.3.1. Create Objectsfor Publication UsSing CH++ocovviviiiiii e, 29
3.3.1.1. Create an SpPublication ObJectccevivviiiiiiiiiiiiei e, 29
3.3.1.2. Create SpStreamDataRecord ObjeCtSccevvuiiviiiiiiiiiiiiineeeennn, 30
3.3.2. Publish Datato the Sybase Aleri Streaming Platform Using C++ 32
3.3.3. Handling StaAl@ Dalacceuviiiiiiiii e 33
3.3.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublica-

L0 TS T o T 34
3.4. Record/Playback USING CH ... 34
3.5. Specia Topics for SP Publication/Subscription Using C++ovvviiiiiiiiiiineeeen, 36
3.5.1. Publication/Subscription In aHigh Availability (Hot Spare) Configuration .. 36
3.5.1.1. Subscription Mechanismsin a High Availability Configuration 36
3.5.1.2. Publication Mechanismsin aHigh Availability Configuration 37
4. Publish/Subscribe AP fOr INET 2.0 ..oeuuuiiiiiiiieeei e 38
4.1. Overview/General INfOrmMationovveuiiiiiieiie e e 38
4.1.1. Overview of .NET Utilities for SP Publication/Subscription 38
A1 1L AP LIBrarny oo 38
4.21.0.2. EXaMPIEFIES ... 38
4.1.2. Design Decisions for SP Publication/Subscription Using .NET 2.0 39

4.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription
USING NET et e et e e e e aees 40
4.2. Subscribing to the Sybase Aleri Streaming Platform Using .NET 2.0 40
4.2.1. Set Up the Environment for Subscription Using .NET 2.0cccoceuneeen 40
4.2.1.1. Configure the Pub/Sub API .NET 2.0 Pub/Subnet.dll 40
4.2.1.2. Initialize the SpFactory ObJeCtccovviiiiiiiiieiii e, 41
4.2.1.3. Create the SpPlatform Objectcccvvviiiiiiii e, 41
4.2.2. Set Up/Start Subscription UsiNg .NET 2.0 ...cooevviiiiiiiiiciiiiieeeeii e 42
4.2.2.1. Initiate a Subscription Using SpSubscriptionin .NET 2.0 45
4.2.2.2. Initiate a Subscription Using SpSubscriptionProjection 47
4.2.2.3. The SpObserver INerfaceccovviiuiiiiiiiiiie e 49
4.2.2.4. Adding or Removing Streams from an Active Subscription 51

4.2.2.5. SHINE Flag Supports New Subscription Mode For Partial-Record Up-
dates USING .NET ...ooii e 51
4.2.3. Receive/Process Subscription Updates Using .NET 2.0ccoceevvieeiinnnnnn. 51
4.2.3.1. Parse Sybase Aleri Streaming Platform Dataccoccevveennnnene. 51
4.3. Publishing to the Sybase Aleri Streaming Platform Using NET 2.0 52
4.3.1. Create Objects for SP Publication Using .NET 2.0cccoeeviiiiiiiiieennnnns 52
4.3.1.1. Create the SpPublication Objectccoevvviiviiiii e, 52
4.3.1.2. Create a Data Object for Publicationocoeiiiiiiiinieiinnnnnn. 52

4.3.1.3. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to Sp-

Guide to Programming Interfaces

Publication USING .NETcoviiiiiicii e e e e e e 54

4.3.2. Handling StAl€@ Datacvevuieeiiiiiii e e e e e e e e e 54

4.4. Record/Playback using .NET 2.0coouiiiiiiiiiiii e 55

4.5. Special Topics for SP Publication/Subscription Using .NET 2.0ccccvveevinnnnnn. 56
4.5.1. Publication/Subscription in a High Availability (Hot Spare) Configuration .. 56

4.5.1.1. Subscription Mechanismsin aHigh Availability Configuration 57

4.5.1.2. Publication Mechanismsin aHigh Availability Configuration 57

5. The On-Demand SQL INtEITACEuoiviiiii e 59
5.1. Aleri SQL Queriesand StatemMeNntSovuuiviieeii e 59

5.2. ODBC CONNECLIVITY ... eeeeiie ettt ettt e e e e enens 59

5.3. IDBC CONNECLIVITY 1.vvuuieeiiiiieeeiiiseeeeti s e e et e e et e e et s e e et s e e e et s e e eaaa e eeennns 60

6. The Command and Control INEEITACEoceuuiiiiiieiiee e 61
6.1. Security for the On-Demand SQL Interfaceccoovvviveiiiiiiiii e, 61
6.1.1. Authentication Using the SQL On-Demand Interfaceccoceevevvnnennnnn. 61

6.1.2. Encryption Using the SQL On-Demand Interfaceoooveviiiiiiiiiniennnnn, 61

7. Embeddable Sybase Aleri Streaming Platformooooiviiiiiiii e 62
8. Plug-in ConNECLOr FramEWOIKiieuniii e 65
LS00 g 11 0o [0 [o) o KPP TTPPI 65

8.2. Plug-in Connector Profilecocvueiiiiiici e 65

8.3. System Parameters and COmMMaNdSvveunieiiiiiiieciie e e e e e e e e 68

8.4. Read Only SysStem Parameterscccuuuiiiiiiiieiiii et 69

Lo @] 11710 1 7= L3P 69

8.6. User-Defined Parameters and Parameter SUDSHITULIONc.ovvveiiiiiiiiiiiieinne, 70

8.7. Notes on Auto Generated Parameter FIlescoiviiiiiiiiii e, 72

8.8. A Parameter of Type configFilenamecccveviiiiiiii e 73

8.9. Other Parameter TYPES ..uveeuieeiieii et e e e e e e e e e e e et e e e e eeees 73

A. Reference Guide to the Java Object MOdEluiiiiiiiiiiii e 75
A.L ObJeCtSTOr SUDSCIIPLIONeeiertee e 75
A.LL SPFaCctory OBJECE ...ccovvniiiiiii i 75

A.1.2. SpPlatformParms ODJECTc.uiiiiiiiiii e 77

A.1.3. SpPlatformStatuS ObJECLivveeeii e e e e 78

A. L4 SpPIatform ObJECTceveeii e 79

A.LD. SPSIrEaM ODJECE ...cceeieiiiii e 82

A.1.6. SpStreamDefinition ODJECTc.uuiiiiiiiiiieiii e 83

A.17. SpStreamProjection ODJECTcoeuniiieiii e 84

A.1.8. Creating an SpSubscription or SpSubscriptionProjection Object 84

A.1.9. SpSubscriptionCommon Method Setcooviiiiiiiiii e 86

A.1.10. SpSubscription Method Setvvviiiiiii e 88

A.1.11. SpSubscriptionProjection Method Setovveiiiiiiiiiiii e, 89

A.1.12. SPSUDSCIIPHONEVENLccviviiiiiiiii e 90

A.L.13. SPParserREIUNMINTO ...uiiiiii e 94

AL 14, SPNUITCONSLANESeeeieiiiee et e e 95

ALLLS. SPULILS et 95

VAN @ o 1= ox 653 o gl = U1o] I To 1] o 96
A.2.1. Stream Operation COUEScoiiiiniiiiii e 98
A.2.2.Stream FHag ValUEScoooiiiiiiiiiii e 98

A.2.3. SpStreamDataRecord ODJECEuuieiiiiiiieiiiiie e 99

A.2.4. Create SpStreamDataRecord ODJECESuvieviiiiiiiiiiiiiiiece e 100

A.3. Objectsfor recording and playbackc.coeviiiiiiiiiiiiii e 102
A.3.1. SPRECOrAEr ODJECEvvvuieiiiiei e e e 102

A.3.2. SpPlayback ObJECEoiiiiiiii e 103

B. Reference Guideto the C++ Object MOdEluviiiiiiiiiiii e 105
B.1. C++ Objects for SUDSCIIPLIONieeiieieeii e e 105
B.1.1. SPFaCtOry ObJECE ...evvuieeiiiiieee e 105

B.1.2. SpPlatformParms ObJECEvvvviiii e 107

B.1.3. SpPlatformStatus ObJECtvvevniiiiiieie e 108

B.1.4. SpPlaform ObJECEoiiiiiieeeiii e 109

B.1.5. SPSIream OhJECEcciiiiiiiiiiiie et 112

Vi

Guide to Programming Interfaces

B.1.6. SpStreamDefinition OBJECtcccvviiiiiiiiici e 113
B.1.7. SpStreamProjection OBJECtceuviiiiiiiii i 114
B.1.8. Creating an SpSubscription or SpSubscriptionProjection Object 114
B.1.9. SpSubscriptionCommon Method Setoveiiiiiiiiiiiiie e, 116
B.1.10. SpSubscription Method Stccovviiiiiiiieieiceeiii e 118
B.1.11. SpSubscriptionProjection Method Setccoiviiiiiiiiiiee 120
B.1.12. SpSUBSCHPLIONEVENccvniiiiiiii e e 120
B.1.13. SpParserReturninfo ObjeCtoveviiiiiii e 124
B.1.14. SpDataValue ObJECEccvuneiiiiiieeeeii e 125
B.1.15. SpBinaryData OBJECooeiiiiieeiiii e 126

B.2. C++ Objects for PUDIICALIONooeeiiiiici e 127
B.2.1. SpPublication Method Setccooviiiiiiiiiiiieiei e 127
B.2.2. Stream Operation COUESvvvinieiiiieiii e e e e e e e e 130
B.2.3. Stream Flag ValUEScoouniiiiiiiii e 130
B.2.4. SpStreamDataRecord OBJECEooeiiviiiiiiii e 131

B.3. C++ Objects for Record and Playbackoveviiiiiiiiiiiiici e 132
B.3.1. SPRECOrAEr ODJECLceunieiiiiti et 132
B.3.2. SpPlayback ODJECoieeiiiiie e 133

B.4. Other C++ APl Classes/Methodscccuviiiiiiiiiiiiiiiieee e 133
C. Reference Guide to the .NET Object MOccvvuiiiiiiiiiiei e 135
C.1. Common Service Objectsfor .NETiiiiiiiiiii e 135
C.1.1. SPFACIONY ODJECEeiieiiieiiei e 135
C.1.2. The SpPlatformParms ODJECEccuuiiiiniiiiieiiieee e 137
C.1.3. SpPIatformStatuS ObJECEceuiiiiieii e 138
C.1.4. SpPIatform ObJECLuuiiiiieii e e 138
C.1.5. SPSream ObJECEvvvuiiiiieii et e e e e e e e ea e aes 142
C.1.6. SpStreamDefinition ODJECEoeeviiiiiiiiii e 143
C.1.7. SpStreamProjection ODJECTveviiriieiiiiiie e 143

C.2. Subscription ObjectS fOr INETccuiiiiieei e 144
C.2.1. SpSubscriptionCommon Method Setooeevviiiiiiiiii e, 144
C.2.2. SPSUBSCIIPLONEVENLovvieiieeie e e 146

C.3. Methods for Publication in .NET 2.0ccooiiiiiiiiiiiieeiiieee e 150
C.3.1. SpPublication Method Setoeviiiiiiiiiii e 150
C.3.2. Stream Operation COUESieiiiiiieiiiii et 153
C.3.3. Stream Flag ValUBSuuiiieiiiiiiii e 153
C.3.4. SpStreamDataRecord ODJECEcoeuniiiiiiiiei e 154
C.3.5. Creating SpStreamDataRecord ObJECLSocvvnieiiiieiiieeiiieceeeeieeee, 155
C.3.6. Other PUD/SUD API CIaSSESccvvvriiiiiieeeiiieie e 155
C.3.7. The aleri_PubSubconst NAMESPECEccevvirieiiiii e 156

C.4. Record and Playback objectsSfor .NETc.uuiiiiiiiiiieiiiiiecee e 158
C.4.1. SPNEtReCOrder ODJECLceeuiiii e 158
C.4.2. SpNetPlayback 0Djectoooviiiiiiii 159

D. Reference Guide to SQL QUENY INLEIfaCevvvunieiii i e 161
D.1. Aleri SQL Connectivity C++ Libraryccoooeiiiiiiiiiiie e, 161
E. Reference Guide to the Command and Control Interfacecoooivveiiiiiniiiiiiineeiin, 166
E.1. Command and Control MESSAgEScccuuuiiiiiiiiieeiii e 166
F. Using Encryption with Java Client AppliCatioNnSccuuiiiiiiiiiiiiiiieeeeei e 182
F.1. Ready ToORunin Encrypted MOdeoooumiiiiiiiiie e 185

Vii

About This Guide

1. Purpose

This guide describes the three major functional interfaces used to develop applications for the Sybase®
Aleri Streaming Platform : Publish/Subscribe, Command & Control, and On-line SQL Queries.

In this context, "Subscribing" means creating a steady connection so that an outside application can re-
ceive data from the Sybase Aleri Streaming Platform. "Publishing” means creating the same type of con-
nection to send data into the Sybase Aleri Streaming Platform. The Publish/Subscribe (“ Pub/Sub™) inter-
face gives application programmers a set of reliable and versatile modules (in Java®, C++ and .NET)
that manage al the low-level maintenance tasks for a publication or subscription.

The Command & Control Interface can be used to control and monitor the Streaming Processor. Finaly,
the Sybase On-line SQL Query Interface enables applications or users to issue SQL queries to the
streams.

This guide helps you write and integrate application or system components with the Sybase Aleri
Streaming Platform. Higher-level utilities, which are described in the Utilities Guide are also available
for each of these interfaces to be used without additional coding. The source code for Sybase Aleri
Streaming Platform utilities such as sp_convert, sp_upload, and sp_subscribe is available in the re-
lease distributions; this code can also be used by developers writing components that publish or sub-
scribe to the Sybase Aleri Streaming Platform.

2. Organization

Chapter 1, Publication/Subscription Interfaces Starts with an overview of the three major functional in-
terfaces.

These interfaces are detailed in Chapter 2, Publish/Subscribe API for Java, Chapter 3, Publish/Subscribe
API for C++, and Chapter 4, Publish/Subscribe API for .NET 2.0 of this Guide.

These chapters cover the interface programming options relative to Publish and Subscribe, which is the
most widely used interface to the Sybase Aleri Streaming Platform.

Chapter 5, The On-Demand SQL Interface details the interface options for on-demand queries of stream
data. Currently, on-demand queries are restricted to single stream select statements, but this restriction
will soon be removed. All on-demand queries are SQL-based (Section 5.1, “Aleri SQL Queries and
Statements”), but the connection layer for SQL can be either ODBC® (Section 5.2, “ODBC Connectiv-
ity"), JDBC® (Section 5.3, “JDBC Connectivity”), or Sybase's proprietary C++ Library (Section D.1,
“Aleri SQL Connectivity C++ Library”). Sybase's SQL Connectivity C++ Library is lighter and more
efficient for C++ application component development than ODBC, but for third party software integra-
tion either ODBC or JDBC (depending on the client platform) may be required.

Chapter 6, The Command and Control Interface, details the Command & Control Interface for monitor-
ing and controlling the Streaming Processor. This interface is implemented over a collection of XM-
LRPC callsin the Sybase Aleri Streaming Platform. These calls may be made from a client application,
or directly via the Command and Control tools (sp_cli, sp_cnc, sp_monitor) described in the Utilities
Guide

The appendices provide in-depth reference information about these interfaces:

Java Appendix A, Reference Guide to the Java Object Model
C++ Appendix B, Reference Guide to the C++ Object Model
.NET Appendix C, Reference Guide to the .NET Object Model

viii

About This Guide

SQL Query
C&C

Encryption

Appendix D, Reference Guide to SQL Query Interface
Appendix E, Reference Guide to the Command and Control Interface

Appendix F, Using Encryption with Java Client Applications, describes how to set up

and use encryption for Java-based clients using any of the Sybase Aleri Streaming

Platform interfaces.

3. Related Documents

Thisguide is part of aset. The following list briefly describes each document in the set.

Product Overview

Getting Started - the Aleri Studio

Release Bulletin

Installation Guide

Authoring Guide

Authoring Reference

Guide to Programming Interfaces

Utilities Guide

Administrators Guide

Introduction to Data Modeling and
the Aleri Sudio

Introduces the Aleri Streaming Platform and related Aleri
products.

Provides the necessary information to start using the Aleri Studio
for defining data models.

Describes the features, known issues and limitations of the latest
Aleri Streaming Platform release.

Provides instructions for installing and configuring the Streaming
Processor and Aleri Studio, which collectively are called the Aleri
Streaming Platform.

Provides detailed information about creating a data model in the
Aleri Studio. Since this is a comprehensive guide, you should
read the Introduction to Data Modeling and the Aleri Sudio. first.

Provides detailed information about creating a data model for the
Aleri Streaming Platform.

Provides instructions and reference information for developers
who want to use Aleri programming interfaces to create their own
applications to work with the Aleri Streaming Platform.

These interfaces include:

« the Publish/Subscribe (Pub/Sub) Application Programming In-
terface (API) for Java

* the Pub/Sub API for C++

 the Pub/Sub API for NET

< aproprietary Command & Control interface
¢ an on-demand SQL query interface

Collects usage information (similar to UNIX® man pages) for all
Aleri Streaming Platform command line tools.

Provides instructions for specific administrative tasks related to
the Aleri Streaming Platform.

Walks you through the process of building and testing an Aleri
data model using the Aleri Studio.

About This Guide

SPLASH Tutorial Introduces the SPLASH programming language and illustrates its
capabilities through a series of examples.

Frequently Asked Questions Answers some frequently asked questions about the Aleri Stream-
ing Platform.

Chapter 1. Publication/Subscription Interfaces

This chapter introduces concepts about Java, C++, and .NET 2.0.

1.1. The Publication/Subscription Mechanism

This section provides genera information about the Sybase Aleri Streaming Platform's Pub/Sub mech-

anism.

In the Sybase Aleri Streaming Platform, you publish or subscribe to data from a stream. A stream is
comparable to a collection of keyed records in a database table. The publish interface allows a client ap-
plication to augment or modify a stream by sending records tagged with insert, update or delete opera-
tions. The subscribe interface allows a client application to connect to a stream in the Sybase Aleri
Streaming Platform and receive records tagged with insert, update or delete operations. The set of re-
cords that streams out of the Sybase Aleri Streaming Platform, forms a logical "log" for the stream. It
provides a sequence of record operations when applied to the data for the stream and will keep it up with
the content of the Sybase Aleri Streaming Platform.

1.1.1. Publication/Subscription Terminology

Here are key terms that will be used in this guide:

Source Stream

Derived Stream

Record

Record Operations

Record Flags

Subscribe Flags

Envelope

Transaction Block

A basic input stream to which applications publish.

A non-input stream which is computational in nature. Input to derived
streams can come from other derived streams or source streams. A derived
stream can be one of the following: Compute Stream, Filter Stream, Aggreg-
ate Stream, Join Stream, Pattern Stream, Union Stream, Extend Stream,
Copy Stream or FlexStream.

A keyed sequence of fields accompanied by an operation specification
(insert, update, delete or safedelete). It can be considered similar to arow in
a database table plus an operation.

INSERT, UPDATE, DELETE, SAFEDELETE - the basic operation on re-
cords within a stream. These are explained in detail in the appendices to the
specific language API. For example, see Section B.1, “C++ Objects for Sub-
scription” for information about the C++ objects for Publication.

NOACK, SHINE, - modifiers to the basic record operations. These are ex-
plained in detail in the appendices to the specific language API. For ex-
ample, see Section B.1, “C++ Objects for Subscription” for information
about these record flags.

LOSSY, NOBASE, DROPPABLE, PRESERVE BLOCKS - modifiers to
stream subscriptions. These are explained in detail in the appendices to the
specific language API. For example, see Section B.1.8, “ Creating an SpSub-
scription or SpSubscriptionProjection Object”

A collection of records packaged together to decrease network transmission
overhead and increase efficiency.

A collection of records grouped together to become an atomic unit when ap-
plied to a stream in the Sybase Aleri Streaming Platform. A transaction
block has transactional semantics: if any record in the block cannot be ap-
plied successfully to the Sybase stream (perhaps because of an update issued
against a non-existing record), no record in the transaction block will be ap-

1

Publication/Subscription Interfaces

plied.

Commit A publish API operation that upon successful return ensures all data queued
in each source stream has been absorbed and written to disk if persistence
vialog storesis being used.

Note:

Both derived streams and source streams may be subscribed to, but applications may only pub-
lish to source streams.

1.1.2. Initializing Pub/Sub Objects
The following Universal Modeling Language (UML) sequence diagram shows how objects defined in

the API chapters of this guide interact to create the environment for a subscription or publication to the
Sybase Aleri Streaming Platform.

Client app SpFactory SpPlatformParms SpPlatformStatus SpPlatform SpSubscription
code object object object object object

anFac: >
New Spf ¥ - | |

—create SpPlalfommParans-p] iale) - |

—CcreateSpf i ate) -

|
|
i |
e, 1o SpPlatformParms obj- 4 | |
|
aref. o SpFlatformParms obj--- |

+——creataSpFationm—s finstant -

taref. o SpPatformStalus obj---4

o ipfionProjection

- e, o SpSubscripion ot

1.1.3. Subscribing to the Sybase Aleri Streaming Platform

Y

The following diagram shows how objects defined in the API chapters of this guide interact to initialize
and start up a subscription to a stream in the Sybase Aleri Streaming Platform. Returned SpStatus ob-
jects have been omitted in this diagram for clarity.

Client application SP Platform

Client app . Observer SpPlatform SpSubscription
code gmg:me"ts] object object Gateway 1/0 Streams
l I 1 1 1

creakeSubscription or

crealeSubscripionProjection h
addStreamObsarvar _
(“name’, Observer} = (register
subscription)
R Ea e I R
art() - {open|socket}—m
{authenticate)
Hrequest subscription j—m-|
(send initial
- 10Lify(} snapshot)
I
o (send data
- fiotify() updates)
T 1 T T Bl

1.1.4. Publishing to the Sybase Aleri Streaming Platform

2

Publication/Subscription Interfaces

The following diagram shows how objects defined in the API chapters of this guide interact to initialize
and start up a publication to a stream in the Sybase Aleri Streaming Platform. Returned SpStatus objects
have been omitted in this diagram for clarity.

Client application SP Platform

Client app SpStreamDataRecord SpPlatform SpPublication
code object object object

1 1

Publication——gm| {ir

Gateway /O Streams

v

T— >

——{ populate f——-]

Lari(} - {open|socket)

(authenticate)
|
publishTransaction(streamDataRecord) - 1 publish 1o Platform j—————s{

1.2. Record/Playback Mechanism

The Pub/Sub interfaces also include a mechanism for recording and playing back data from one or more
streams. This makes it possible for an application to monitor the events occurring on one or more
streams and record that information in a file. This log file includes timing information for the various
events as well as the data. When played back, this recording can reproduce the exact sequence and times
of events that occurred during recording. In addition, the Pub/Sub API alows client programs to control
the rate of playback.

Similar to publish or subscribe, in order to record data or playback recorded data, client programs need
to create the appropriate objects using the factory methods supplied by SpPI at f or m

Chapter 2. Publish/Subscribe API for Java

This chapter describes how to create objects that use the Pub/Sub API to build Java applications that
publish to and subscribe from the Sybase Aleri Streaming Platform.

Building client applications with Sybase's Java Pub/Sub API requires third party tools.

* Certified for use with Javaversion 1.5.0_06 or later.
» To build the included examples, you aso need ant 1.6.3 or later.

» The scriptsthat start the Java Pub/Sub API examples use the Sybase-supplied Java version.

2.1. Overview of SP Java utilities

2.1.1. SP .jar files

pubsub. j ar Thisjar file contains the Pub/Sub APl implementation.
pubsub. properties Thisfileisused asaJava“resource bundle’. It contains alist of internal er-
ror message strings, subscription event names, and so forth.

2.1.2. Non-sp Utilities

xm rpc-2.0.jar Thisjar file contains the Apache xmirpc functionality.

commons-codec-1. 1. jar Thisjarfileisused by the xmlrpc functionality.

2.1.3. Example Files

Inside the distribution directory, there is a directory called $ALERI _PLATFORM HOVE/
exanpl es/ cl i ent s/ pubsub/ j ava. Thisdirectory contains the java examples which illustrate the
various features of the Pub/Sub API. The example source code is in the package
com.aleri.pubsub.examples. It contains the following source files:

PubExanpl e. j ava This file demonstrates publication to the Sybase Aleri Streaming
Platform.

SubExanpl e. j ava This file demonstrates subscription to the Sybase Aleri Streaming
Platform.

SubExanpl ePr oj ec- This file demonstrates SQL subscription to the Sybase Aleri

tion.java Streaming Platform.

SubExanpl eSpQbser v- This file is part of the example that demonstrates subscription to

er.java the Sybase Aleri Streaming Platform.

SubExanpl eSpQObser ver Pro- Thisfileis part of the example that demonstrates SQL subscrip-

jection.java tion to the Sybase Aleri Streaming Platform.

Debugger Exanpl e. j ava This file demonstrates debugging support provided by the Pub/
Sub API.

4

Publish/Subscribe API for Java

Compiled versions of these programs are in the exanpl e. j ar file. There is also an ant build script
that can be used to build the source files. In addition, the pubexanpl e. sh shell script illustrates the
required classpath and VM command line arguments to run an example classfile.

2.2. Design Decisions

The Pub/Sub API has a set of interfaces or object “types’ that exposes al of the Sybase Aleri Streaming
Platform publication and subscription functionality but hides the implementation details. You are
strongly discouraged from using inheritance to extend the implementation classes found in the Pub/Sub
API code base. This lets Sybase change underlying implementation in the future without breaking client
code.

To achieve this encapsulation, most of the implementation classes found in the Pub/Sub API code base
have private constructors. Y ou are provided with the “Factory” methods for object instantiation. For ex-
ample, the code for creating anew SpPl at f or mobject should not be new SpPl atforn{...), but
SpFactory. createPlatforn{....),andsoforth.
In addition, most of the objects in the Pub/Sub API support only “get” methods, providing immutability.
Complete immutability would require all “get” methods to return "copies’ of internal vectors/arrays be-
cause vectors and arrays are mutable. However, this method is inefficient. Sybase chose a design that
does not generate or return “copies’ to the caller.
The client application programmer must maintain order and integrity for the state of these “read-only”
data structures. For example, when requesting the list of column types for a stream definition, Y ou must
not modify elements within the list. If you choose to modify the list, the application encounters diffi-
culties when it makes subsequent calls to retrieve the column types, which are now out of sync with
those on the Sybase Aleri Streaming Platform.
The design of the Pub/Sub API also limits the use of exceptions generated by API routines. A method of
the API usually returns a non-zero error code if the method fails. Otherwise, a method returns zero. This
limitation keeps the API consistent across the set of different languages in which it isimplemented.
2.3. Subscribing to the Sybase Aleri Streaming Platform Using Java

To use a Subscription to the Sybase Aleri Streaming Platform, the client application has to do the fol-
lowing:
1. Setup Spobjectsusing SpFactory.init.
2. Connect to the Sybase Aleri Streaming Platform.

status = SpFactory. createPl atfornttatus()

sp = SpFactory. createPl atform parans, status)
3. Create subscriptions.

sub = sp.createSubscription()

observer = new Cient SpObserver ()
4. Associate a stream by name with the observer.

handl e = sub. addSt r eantbserver ("streaml", observer);
5. Begin handling events.

sub. start ()

Publish/Subscribe API for Java

After this, call Yourcl ass. notify() for each event on the associated stream, where Your -
Cl ass isthe class that implements the SpGbser ver net hod of your Observer object.

6. If necessary, stop event handling and clean up.
sub. st op()
del ete sub
del et e observer

SpFact ory. destroy()

2.3.1. Set Up the Environment for Subscription Using Java

2.3.1.1. Configure the API Classpath
To enable your application to use the Pub/Sub AP, list the.. j ar files mentioned above in the classpath.
Y ou should place the pubsub. properti es file somewhere aong the classpath so that Java can loc-
ate it when the Pub/Sub API attempts to load it from disk.
For example, if all the files mentioned above are present inthe . / | i b directory, your Windows® star-
tup script may look like the following example.

Java -cp “./lib/xmrpc-2.0.jar;./lib/comobns-codec-1.1.jar;
./1'i b/ PubSub. j ar”

In this example, the pubsub. properti es fileisalso located inthe" . /| i b" directory.
2.3.1.2. Set up Basic SP Objects

UsethespFact or y classto instantiate objects that provide the Sybase Aleri Streaming Platform func-
tionality.

Thefirst object that you will “ask” the factory to instantiate isthe SpPI at f or mobject.

1. Using the SpFact ory, create an SpPl at f or mPar s object which contains all of the Sybase
Aleri Streaming Platform connection information: host name, port number, username, password,
and a boolean “Encrypted” flag indicating whether or not all connections will use encryption. See
the set of overloaded SpFactory. createPl atfornParns(...) methods for the set of
available connection/authentication options. They include RSA authentication, as well as the High
Availability configuration option.

SpPl at f ornPar s parnms = SpFactory. creat ePl at f or nPar ns(host ,
port, user, password, isEncrypted);

2. Use SpFact ory tomakean SpPI at f or 5t at us object to be used by subsequent SpFact ory
method calls to return error information.

SpPl at f or n5t at us status = SpFactory. createPl at f or nfSt at us() ;

Publish/Subscribe API for Java

3. Using the SpFact ory, create the SpPI at f or mobject. Pass in the SpPl at f or nPar ns and
SpPI at f or n5t at us objects previously created.

If the call is successful, the cr eat ePl at f or m() method returns a fully initialized SpPlatform
object. Otherwise, the factory method returns null, and the error code is stored in the SpPI at -
f or nf5t at us object that was passed into the cr eat ePl at f orn{. ..) method. The SpPlI at -
f or nBt at us object can be used to retrieve the error code and the corresponding error message
(seethe “else” condition in the following code fragment).

SpPl at form sp = SpFactory. createPl atf or m(parms, status);
if (sp!=null)
{

/* Use the new sp object to perform Sybase Aleri Stream ng Platformrel ated work

*
/
/* See "The SpPl atform object" */
} else {
Systemerr.println(“Could not create SpPlatform error ="
+status. get Error Code() + “, error nsg="

+st at us. get Err or Message()) ;

2.3.2. Set Up Java Objects for Subscription

To get stream updates from the Sybase Aleri Streaming Platform, your client application must “ask” the
Sybase Aleri Streaming Platform to deliver them. This processis called "subscribing” or creating a sub-
scription. The Pub/Sub API offers two forms of subscription mechanisms (SpSubscri pti on and
SpSubscri pti onProj ecti on) that hide most of the low-level details associated with making a
subscription request to the Gateway 1/0 process. If the Pub/Sub API is being used in aHigh Availability
(Hot Spare) configuration, the switchover to the High Availability (Hot Spare) server is also transpar-
ently handled within the API.

Theinterfaceis simple:

/**

* This interface nust be inplenented by all SpObserver

* objects that are to be “notified” of events delivered by
* their correspondi ng subscription objects.

*/

public interface SpCbserver

public String get Nane();

/**

* In the client's inplenmentation of this interface, they would

* sinply “case” on the event types (and event ids) that they are
* notified with and handl e t hem appropriately.

*/

public void notify(Collection theEvents);

There are two methods that must be implemented within the class.

Publish/Subscribe API for Java

1. Theget Nane() method, which returns a string identifier for the SpObserver.

2. Thenotify(Collection theEvents) method is the link between the underlying Sybase
Aleri Streaming Platform subscription, which the subscription object manages, and the client applic-
ation object, which receives the subscription updates as coming in from the Sybase Aleri Streaming
Platform.

As stream updates flow from the Sybase Aleri Streaming Platform to the subscription object, the sub-
scription object forwards them to the appropriate SpObserver objects, where it is picked up through their
noti fy(Collection theEvents) implementations.

The subscription's underlying mechanism for stream update acquisition and delivery runs in a separate
thread used to manage the “read-only” Gateway /O subscription socket. The noti fy(Col | ecti on
t heEvent s) methods actually execute from within the context of this thread. The client application
programmer must be conscious of this fact and program accordingly.

2.3.2.1. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using Java

Set methods should be called before SpSubscription start() method. Y ou should check SpPlatformStatus
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR SETTI NG EXIT. If you fail to send a maximum buffer size, the status is set to
SP_ERROR _SUB_SETTI NG _BUFFERSI ZE. Y ou should note that get QueueSi ze() does NOT re-
turn the current queue size until after you've set it with set QueueSi ze() .

Here is an example for Java.

public void set QueueSi ze(i nt queue, SpPl atfornttatus status);
public int getQueueSi ze();
public void set Exit OnCl ose(SpPI at f or nfSt at us st at us) ;

publ i c bool ean get Exit OnCl ose();

2.3.2.2. SpSubscription Example

the sp object represents an SpPl atform object instantiated through the SpFact -
ory.createPlatforn{...) method in thefollowing example:

>
SpSubscri ption sub = sp. creat eSubscription(“M/Subscription_1",
SpSubscri pti onCommon. BASE, SpSubscri pti onConmon. DELI VER PARSED,
status); // “status” is an SpPl atfornfstatus object.

i{f (sub '= null)

Y ou must create a concrete class implementing the SpObser ver interface. This concrete SpCbser v-
er class will be registered with the new SpSubscri pti on object, and “notified” with SpSub-
scri pti onEvent objects when the SpSubscription is started.

SpGbserver spObserver = new Cient SpGhserver (“nyCbserver”);
String streanNanme = “input”;

Publish/Subscribe API for Java

Y ou must associate the concrete SpObser ver object(s) with a stream (or set of streams), and register
the SpQbser ver with the SpSubscri pti on object. This can be done using either the SpSub-
scription.addStreanmbserver(...) or the SpSubscri p-
tion. addSt reamsCbserver (...) method. It should be done for each SpCbser ver that isto
be naotified with the SpSubscriptions events.

i nt cooki e;
cooki e = sub. addSt r eamObser ver (streamNanme, spCbserver);

if (cookie <= 0)

/1 SpCbserver registration fail ed.
return cooki e;

2.3.2.3. SpSubscriptionProjection Example

The following code sample shows how to create, configure, start and stop an SpSubscriptionProjection
object. The sp object represents an SpPlatform object instantiated previously through the SpFact -
ory.createPlatforn{...) method.

String sql Query = "select intData, charData frominputstream where \
intData > 100";

SpSubscri pti onProj ecti on subProj = sp.createSubscriptionProjection(
“MySubscri ptionProj _1", SpSubscri pti onCommon. BASE,
SpSubscri pti onCommon. DELI VER_PARSED, sql Query,
status); [// “status” is an SpPl atfornttatus object.

if (subProj != null)
{ .
* CGet the stream projection produced when the Sybase Aleri Stream ng Pl atform
* parsed the sqgl query, during the createSubscriptionProjection()
* met hod call .
*

SpStreanProj ecti on spStreanProj = subProj.get StreanProjection();

*

The client progranmmer nust create a concrete

class inplenmenting the SpCbserver interface.

This concrete SpObserver class wll be

regi stered with the new SpSubscri pti onProj ection object,
and “notified” with SpSubscripti onEvent objects when

t he SpSubscriptionProjection Is started.

EE T

The SpStreanProjection is passed into the SpGbserver

constructor.

*/

SpCbserver spObserver = new O ient SpCbserver (“nmyCoserver”, spStreanProj);

*

/
* Cient programmer nust register the SpCbserver

* with the SpSubscriptionProjection object. This is done

* using the SpSubscri ptionProjection.addCbserver(...) nethod.
* This shoul d be done for each SpObserver the client

* wishes to be notified with the subscription events.

*

i

nt cooki e = subProj.addCbserver (spQoserver);
if (cookie <= 0)

/'l SpCbserver registration fail ed.
return cooki e;

}

/*

* Once the SpCbserver(s) are registered with the

* SpSubscri pti onProj ection, the SpSubscriptionProjection.start()

9

Publish/Subscribe API for Java

* method is called, which starts the subscription process.

* |f start up is successful, the SpCbservers will be

* notified wth updates sent fromthe Sybase Al eri Stream ng Platform
*/

Systemout.println(“Starting the subscription.”);

rc = subProj.start();
if (rc !=0)

/'l The subscription could not be started.
System out . printl n(“Subscription could not be started, rc="+rc);
Systemout.println(“Error nmessage =" +

SpUtil s. get Error Message(rc));

return rc;

A subscription created using SpSubscri pt i on receives updates for al columns in the stream with
each event. If the subscription was created using SpSubscr i pti onPr oj ect i on, an update consists
of only the subset of columns defined by the SQL query. These types of updates are issued only when
there is a change in one of the columns specified in the SQL query.

See Section 5.1, “Aleri SQL Queries and Statements’ for some limitations related to the Sybase Aleri
Streaming Platform's handling of On-Demand SQL queries, which also apply in this situation.

2.3.3. Receive/Process Subscription Updates in Java

A collection (vector) of SpSubscri pti onEvent objects is delivered to the SpObserver. Each
SpSubscri pti onEvent object represents “something” that has happened that the subscription ob-
ject “thought” appropriate to “notify” its registered SpCbser ver objects. A few examples would in-
clude, an SpSubscri pti onEvent sent to the SpQbser ver if astream update has arrived, or if the
Sybase Aleri Streaming Platform shuts down.

Thenotify(...) method that you implement on your SpCbser ver objects must iterate over the
array of SpSubscri pti onEvents. It should check through each SpSubscri pti onEvent,
uniquely identified by an Eventld, to determine what action should be taken.

2.3.3.1. Parse Sybase Aleri Streaming Platform Data
See the methods described in Section A.1.12, “ SpSubscriptionEvent”.
2.3.3.2. Inspect Parsing Errors

There is a “specia” event id defined within the SpSubscriptionEvent interface as SpSubscrip-
tionEvent.EVID_PARSING_ERROR. This event is generated when the subscription object's message
parser encounters an error while parsing the message delivered from the Sybase Aleri Streaming Plat-
form.

In case of error, the partial results that are successfully parsed up to the point of error are stored for pos-
sible inspection by the SpObserver. The SpObserver is not obligated to look at them. However, you may
want to use this information for debugging purposes. In the case where this event ID is encountered, and
“partial” results that were parsed before the error was encountered, the get Dat a() method of the
SpSubscri pti onEvent passed to the SpCbserver notify() method returns a collection
(vector) of two elements.

» The first element of the vector is an object of type SpParserReturninfo, which has parsing error in-
formation stored in it.

» The second element of the vector is another SpSubscri pti onEvent that has an event ID of
SpSubscriptionEvent. PARSED_PARTIAL_FIELD_DATA. The "getData()" method of this
event object returns a collection (vector) of the stream update information that was successfully

10

Publish/Subscribe API for Java

parsed up to the point of error.

A data row is passed as an SpSubscriptionEvent with the ID of SpSubscri p-
ti onEvent: : EVTYPE_PARSED DATA or SpSubscri p-
ti onEvent: : EVTYPE_BI NARY_DATA. The choice is based on the subscription type requested. If
it's parsed data, client programs can retrieve data as a vector of SpDat aVal ue objects whereas the
typefield in an SpDataV alue object specifies the data type which the object contains.

2.3.3.3. Detect Nulls/Stales

Thereisaclass called SpNul | Const ant s that contains a set of special static objects used to represent
null values that are either returned from the Sybase Aleri Streaming Platform (via
SpSubscri ption/SpSubscri pti onProj ecti on objects or sent to the Sybase Aleri Streaming
Platform (via SpPublication objects). Thereis anull object for each of the different data types supported
by the Sybase Aleri Streaming Platform.

The Sybase Aleri Streaming Platform creates an SpDat aVal ue object for fields that are null. In order
to determine if avaueisnull, client programs need to examine the type field in the SpDataV alue object
which will be set to the constant Dat aTypes: : NULLVALUE. You aso need to check the 'null' flag in
the contained dataV alue object. For example:

SpDat aVal ue * dv = data->at(i);
if (dv->type == DataTypes:: NULLVALUE || dv->dataValue.null) {
}

2.3.3.4. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using Java

The SHINE flag can support a new subscription mode for partial-record updates in Java with SpSub-
scri pti onCommon. SHI NE.

The following is an example of how to use this mode:

int flags = SpSubscripti onCommon. BASE | SpSubscri pti onConmon. SHI NE;

SpSubscri ption sub = sp.createSubscription(nanme, flags, deliveryType, status);

2.3.3.5. SpSubscription/SpSubscriptionProjection Objects and Null Sybase Aleri Streaming Plat-
form Field Data Values

When a subscription object parses an update message sent from the Sybase Aleri Streaming Platform,
each null field data value returned from the Sybase Aleri Streaming Platform is mapped onto the appro-
priate SpNul | Const ant s object mentioned above. This design decision creates client code that
doesn't care about null field data values or does not explicitly check everywhere for the Java null
keyword. Each null field value is represented by a reference to an SpNul | Const ant object of the ap-
propriate type. Numeric values default to zero, dateTime values to the epoch, string values to “NULL”.
The client code can simply let the null field values returned from the Sybase Aleri Streaming Platform
fall through the client code without requiring special null logic.

But, a client application that requires specia null handling logic can test for the appropriate
SpNul | Const ant object reference.

SpPublication Objects and Null Platform Field Data Values

The client application program uses an SpPublication object to publish data to the Sybase Aleri Stream-

11

Publish/Subscribe API for Java

ing Platform. The field data sent to the Sybase Aleri Streaming Platform is contained within a collec-
tion/vector of field data objects. To indicate a null field data value for a particular field, the publishing
program can simply set the reference to the field data object to the Java keyword as null —. Alternat-
ively, set the field data reference to the appropriate null value representation within the SpNul | Con-
st ant s object.

Do not use SpNul | Const ant s values when publishing data to the Sybase Aleri Streaming Platform.
Instead, set the object values to java null and use the == operator rather than the .equals function when
comparing to null during subscription.

2.3.4. Change/Stop Subscription in Java
2.3.4.1. Stop Subscription

The st op() method shuts down the subscription mechanism. The st op() method closes the socket
connection and stops the thread that was used to read, parse, and deliver the Sybase Aleri Streaming
Platform updatesto the SpCbser ver abjects.

Example:

/*
* Pause waiting for input fromthe keyboard before
* making the call to stop the subscription.
*/
System out . printl n(
“Hit any key on the keyboard to stop the subscription...”);
try

Buf f eredReader in =
new Buf f er edReader (new | nput St reanReader (Systemin));
in.readline();
} catch (1 OException ex) {
Systemout. println(“ERROR readi ng fromstandard i nput, ex =" + ex);

The client programmer can invoke the st op() method in order to terminate the running SpSubscrip-
tion.

System out. println(“Stopping the subscription.”);
rc = sub.stop();

if (rc 1= 0)

{

/1 Problenms stopping the subscription.

System out . printl n(“Probl ens stopping the

subscription, rc="+rc);

Systemout.println(“Error nessage =" +
SpUtils. getErrorMessage(rc));

return rc;

el se

/1 Could not create the subscription object.
rc = status. get Error Code();
System out. println(“Could not create subscription object,
error="+rc);
Systemout.println(“Error nessage =" +
st at us. get Err or Message()) ;

12

Publish/Subscribe API for Java

2.4. Publishing to the Sybase Aleri Streaming Platform Using Java

The Pub/Sub API gives you the ability to "publish" stream information to the Sybase Aleri Streaming
Platform, using an object of type SpPubl i cat i on.

Whether your program is publishing static data, such as areference table, or dynamic data, such as stock
market data, to the Sybase Aleri Streaming Platform, the same mechanism is used.

2.4.1. Create Publication Objects Using Java

2.4.1.1. Create the SpPublication Object
The first step in using the Pub/Sub API to submit “publications’ (stream data) to the Sybase Aleri
Streaming Platform is to create an SpPubl i cat i on object. This is done by using a factory method
provided by the SpPI at f or mobject that must have been instantiated previoudly, as with the Pub/Sub

APl subscription mechanism. The signature of the SpPI at f or mfactory method used to create Sp-
Publ i cat i on objectsisasfollows:

SpPubl i cati on createPublication(String nane, SpPl atfornttatus status);

Where:

name isan identifier assigned by the client application to the SpPublication object.
status is an object that returns error code information back from the createPublication(...) factory
method if the SpPublication object creation has failed.

The following example shows how to use the SpPI at f or mobject called sp to create an SpPubl i c-
ati on object:

SpPubl i cati on pub = sp.createPublication(“M/Publication 1", status);

In the above example, st at us is an SpPlatformStatus object that was created previously with the Sp-
Factory. creat ePl at f or nSt at us() factory method.

2.4.1.2. Example: Setting Up Objects for Publication in Java
The following is a small example of how the client application programmer can use the cr e-

at eSt r eanDat aRecor d(. . .) factory method to create an SpStreamDataRecord object that can be
published to the Sybase Aleri Streaming Platform:

1. Thesourcestreamiscalled “input”, and has the following record layout:

*

int, string, double, date, int, string, double, date

* Ok X X kT~

13

Publish/Subscribe API for Java

Col | ection fieldData = new Vector(8);

—h

i el dDat a. add(new | nt eger (104));
i el dDat a. add("do_nystring");

i el dDat a. add(new Doubl e(5.7));

i el dDat a. add(new Date(0l));

i el dDat a. add(new | nt eger (200));
i el dDat a. add("do_mystring2");

i el dDat a. add(new Doubl e(8.9)) ;

i el dDat a. add(new Date(0l));

—h —h —h —h —h —h —h

SpStream stream = sp. get Stream(“i nput”);

2. Usethecreat eStreanDat aRecord(...) factory method to bundle up the stream, fieldData
vector, stream op code, and stream flagsinto an SpSt r eanDat aRecor d object.

SpSt r eanDat aRecor d objects are the basic e ements of publication. You can publish them one
at atime, or as a group, with or without transaction blocks.

All the SpSt r eanDat aRecor ds within a group must reference the same stream to publish a
single transaction.

SpSt reanDat aRecord sdr = SpFactory. creat eSt r eanDat aRecor d(
stream
fiel dDat a,
SpGat ewayConst ant s. SO _UPSERT,
SpGat ewayConst ant s. SF_NULLFLAG
st at us) ;

if (sdr == null)
{

System out. println(“Coul d not createStreanDataRecord, status=" +
st at us. get Err or Code()) ;

Systemout.println(“Error Message:” +
st at us. get Err or Message()) ;

return status. getError Code();

The client application programmer can create a large number of these SpSt r eanDat aRecor d ob-
jects, and place them within a common vector. Next, the application programmer can use one of the Sp-

Publ i cat i on's publishing methods to send all rows of stream data that are stored in the vector to the
Sybase Aleri Streaming Platform, either individually or by using transactions.

2.4.2. Start the Publication Connection Using Java
When an SpPublication object is started, the following events take place:
1. The SpPubl i cati on object creates a socket connection to the Sybase Aleri Streaming Platform
Gateway 1/0O process.
2. The SpPubl i cat i on object authenticates with the Sybase Aleri Streaming Platform.

3. Thestart () method returns a zero back to the caller indicating that the SpPublication object was
successfully started. If thereisan error, thest art () method will return anon-zero error code.

14

Publish/Subscribe API for Java

The SpUtil s. get Error Message(error Code) method can be used to get the specific error
message.

Unlike the SpSubscription mechanism, the SpPublication mechanism does not use a separate thread to
manage the publication. Behind the scenes, a socket connection to the Sybase Aleri Streaming Platform
Gateway 1/0 process is used to transmit and read stream data to the Sybase Aleri Streaming Platform re-
sponse associated with each individual request. Unless otherwise specified in the flag values used when
publishing data, a publication request is synchronous. You can call one of the publ i sh methods and
wait for the Sybase Aleri Streaming Platform to respond with an “ack” or “nak”.

However, there is a specia stream flag, SpGat ewayConst ant s. SF_NQACK, that can be used to
make an asynchronous publication request. When this flag is specified, the publ i sh method sends the
request out to the Gateway 1/0 process and returns control immediately back to the caller, without wait-
ing for aresponse from the Sybase Aleri Streaming Platform.

2.4.3. Publish a Collection Using Java
The following example shows how to publish a collection/vector of SpSt r eanDat aRecor d objects

as a single transaction, where sp is an SpPl at f or m object that was previously instantiated and
st r eam nput Dat a isavector that contains a number of SpSt r eanDat aRecor d objects.

/*

* Create the publication object associated with the

* platform

*/

String nane = “testPub_1";

SpPubl i cati on pub = sp.createPublication(nane, status);
i{f (pub == null)

Systemout.println(“Couldn't create a publication object, status=" +
st at us) ;

Systemout.println(“Error nessage =

return status. getErrorCode();

+ status. get Error Message());

*

Start the publication object (this opens up a GWI/O
socket connection). Don't forget to eventually close
down the SpSubscription object (via the “stop()” nethod,
/Iater on when you are finished using it,

* % X X T~ =

rc = pub.start();
if (rc 1= 0)
{

Systemout.println(“Couldn't start the publication object.”);
Systemout.println(“Error nmessage =" +

SpUtils. get Error Message(rc));
return rc;

}
/*
* Publish the collection/vector of SpStreanDataRecord
* objects as one big transaction.

*/

rc = pub. publishTransacti on(stream nput Dat a,
SpGat ewayConst ant s. SO _| NSERT,
SpGat ewayConst ant s. SF_NULLFLAG,
0);

15

Publish/Subscribe API for Java

if (rc 1= 0)
{
Systemout. println(“Couldn't publish the transaction.”);
Systemout.println(“Error nessage = " +
SpUtils. get Error Message(rc));
return rc;

}

2.4.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using Java

Set methods should be called before SpPublication start() method. SpPlatformStatus should be checked
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR SETTING EXIT. If you fall to send exit-on-timeout, the status is set to
SP_ERROR _PUB_ERROR_SETTI NG _EXI T.

If setFinalizer and setExitOnTimeout are caled, the second cal returns
SP_ERROR PUB_EXI T_ALREADYSET (setFinalizer) or SP_ERROR PUB_ACTI ON_ALREADYSET
(setExitOnTimeout).

Thefollowing is an example using Java:

public void setExitOnTi neout(int timeout, SpPlatfornttatus status);
public int getExitOnTi meout ();

public void set Exit OnCl ose(SpPI at f or n5t at us st at us) ;

publ i c bool ean get Exit OnC ose() ;

2.4.5. Handling Stale Data

When a publishing source stops sending data to the Sybase Aleri Streaming Platform, the previously

published data is retained. Depending on how long it has been since the last update, you may not want

this data to be used as if it were current. The publish/subscribe APIs include two functions to to enable

publishers to handle this data.

Theset Fi nal i zer () function sets atimeout value (in milliseconds) and an SQL statement action. If

the Sybase Aleri Streaming Platform receives no data on this connection within the specified time, the

SQL statement isrun. This SQL statement can perform any of the following actions:

» Delete previously published data.

» Mark previously published data as stale (viaafield for that purpose in the data).

» Perform some other determined action on the source streams (and, consequently, the derived streams
from these source streams).

In the following example, if the datais not updated within 1000 milliseconds, it is deleted.

set Fi nal i zer (1000, "delete from Positions", status)

16

Publish/Subscribe API for Java

ThesendHear t beat () function sends a keep-alive message to the Sybase Aleri Streaming Platform.
This function can be used to keep the connection alive and prevent the SQL statement from running, if
set Fi nal i zer () has previously been called. As the following example shows, the sendHeart -
beat () function takes no arguments.

sendHear t beat ()

2.4.6. Publication/Subscription in a High Availability (Hot Spare) Configuration

The Sybase Aleri Streaming Platform can be started with adual server configuration, in which one serv-
er isthe primary server and the other is considered the “Hot Spare” or secondary server. See the Admin-
istrators Guide for more information on how to start a High Availability/Hot Spare server configuration.
If the Pub/Sub API is made aware of the High Availability Streaming Processor configuration, it will
switch over to the secondary server if the primary server goes down. If this happens, any active SpSub-
scription, SpSubscriptionProjection, and SpPubl i cati on objects have to be re-
established on the secondary server.

The Pub/Sub API is made aware of the High Availability configuration through the configuration con-
tents of the SpPl at f or nPar ns object that was passed into SpFact ory. createPl atforn().
Refer to the set of overloaded SpFact ory. creat ePl at f or nPar ns(. . .) methods, and the Sp-
Pl at f or nPar ns object for High Availability configuration detail.

2.4.6.1. Subscription Mechanisms in a High Availability Configuration

When the primary server goes down, the underlying subscription thread receives an exception on the
Gateway 1/0O socket connection used to receive the stream updates being delivered from the primary
server. When this occurs, the Pub/Sub API recognizes that there is a High Availability (Hot Spare) con-
figuration and attempts to connect to the secondary server and re-establish the subscription. After con-
necting to the secondary server, the Pub/Sub API waits for the secondary server to internally change its
state to that of a primary server. Afterward, the subscriptions are re-established. During the switch over
to the secondary server, the subscription object delivers a succession of events to the SpQbser ver ob-
jectslistening for SpSubscri pti onEvent s. Typicaly, these events are:

« SpSubscriptionEvent.EVID_COMMUNICATOR_HALTED

This event will be delivered to the SpObser ver when the exception is received on the socket re-
ceiving the subscription messages from the primary Sybase Aleri Streaming Platform server.

» SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_INITIATED

This event will be delivered to the SpCbser ver when the Pub/Sub API recognizes that a connection
attempt should be made to the High Availability server.

» SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED
Thisevent is delivered to the SpObser ver when the connection to the Hot Spare server succeeds.
» SpSubscriptionEvent.EVID_HOT_SPARE_SWITCH_OVER _FAILED
Thisevent is delivered to the SpObser ver when the connection to the Hot Spare server fails.
If the switch over to the High Availability (Hot Spare) server succeeds, the subscription(s) will be re-

established using the same delivery flag values that were originally used when the subscription(s) were
established against the primary server. This means that if the subscription originally requested the BASE

17

Publish/Subscribe API for Java

snapshot of the stream, the new subscription now going against the Hot Spare server, will request the
BASE snapshot of the stream as well. It is up to you to determine what needs to be done with the con-
tents of the snapshot received from the High Availability (Hot Spare) server.

When there is a successful switch over to the High Availability (Hot Spare) machine, the SpPl at f or m
object performs some internal bookkeeping to ensure that the SpPl at f or m get Host () and Sp-
Pl at f or m get Por t () methods will return the host name and port number of the new primary serv-
er.

2.4.6.2. Publication Mechanisms in a High Availability Configuration

When the primary server goes down during an attempt by the client application to send a publication re-
quest, the SpPubl i cat i on object will detect this and attempt to perform a switch over to the Hot
Spare machine. If the switchover is successful, the publication object will then attempt to re-send the
data to the new primary server. If the publication can not take place, a non-zero error code will be re-
turned to the caller indicating the problem.

You should treat the secondary server (Hot Spare) within a High Availability Sybase Aleri Streaming
Platform configuration as a passive server. The program should never logon and send data to a second-
ary server while the primary server is alive and well. It is the responsibility of the running High Availab-
ility Sybase Aleri Streaming Platform configuration to manage both the primary and secondary servers
appropriately. If the primary server goes down in a High Availability configuration, the secondary server
will take over and become the new primary server. Once the secondary server becomes the primary
server, data can then be published to the new primary server. Remember, the Pub/Sub API will not pub-
lish any data until the Hot Spare server switchesiits state to primary.

2.5. Record/Playback using Java

In order to record data from the Sybase Aleri Streaming Platform, a client program needs to create and
configure an SpPlatform object in the same way you would for subscribing or publishing. Once an Sp-
Platform object has been created, you create an SpRecorder object using the factory method createR-
ecorder(...). If SpRecorder is successfully created, the program calls the start method. This spawns a
background thread which subscribes to the configured streams and records all events for those streams.
Recording will stop and the spawned thread terminate once the configured number of records have been
processed or if the calling program calls stop(). Recording can be monitored by calling the getRecord-
Count() function which returns the number of records processed so far.

Initialize SpFactory ...
Create SpStatus and SpParns objects ...
Create platformobject ...

~——
~——

Create recorder. It needs the follow ng paraneters to run
recorder nane (String) : a nane to identify the instance of the recording object

[l

[l

Il recorder file (String) : name of the file to store the recorded information

/] streans : ajava.util.Collection, containing nanes of streans to record events for
/1 flags (int) : recordi ng options (encrypted/ RSA/ get base dat a)

/1 max records : maxi num nunber of data records to record

/] status : returns error nessages if any

[/l init recorder paraneters - recorder nane, filenane, streans, etc
SpRecorder recorder = spPl atform creat eRecorder(recNanme, recFile, streans, flags, maxRecords, status);

if (null == recorder) {

Systemout.printin("Error starting recorder - " + status->getErrorMessage());
// cleanup ... and exit
} else

recorder.start();
/1l Wait, nonitor, etc ...

/'l To stop recording
recorder. stop();

18

Publish/Subscribe API for Java

To playback recorded data, a client program creates an SpPl ayback object using the factory method
in SpPl at f or m Among particular interest is the 'scale’ parameter. Thisis a double that can be used to
scale the rate of playback as a factor of the original recorded rate (for example, twice as fast or half as
slow). Values -1 to 1 have no effect; datais played back at the rate it was recorded. A value greater than
1 speeds up playback by that factor (for example, avalue of 2 doubles the playback speed). A value less
than -1 dows down playback by that factor (for example, a value of -3 will slow down playback by a
factor of 3). The scale can be changed dynamically while playback isin progress.

Initialize SpFactory ...
Create SpStatus and SpParns objects ...
Create pl atform obj ect

~——
~——

Create playback. It needs the followi ng paraneters to run
pl ayback nanme (String) : a nanme to identify the instance of the playback object
pl ayback file (String) : name of the file containing previously recorded data

~—————
~———

scal e (doubl e) : allows to scale the playback rate
max records : maxi num nunber of data records to pl ayback
st at us : returns error nmessages if any

Il init playback paraneters - recorder nane, filenane, streans, etc
SpPl ayback pl ayback = spPl atform creat ePl ayback(pl ayNanme, playFile, scale, maxRecords, status);

if (null == playback) {
Systemout.println("Error starting recorder - " + status->getErrorMessage());
/] cleanup ... and exit
} else {
pl ayback. set SendUpsert (true); // optionally enable converting opcodes to UPSERT
pl ayback. start () ;

/1l Wait, nonitor, etc ...

/'l To stop recording
pl ayback. st op();

19

Chapter 3. Publish/Subscribe API for C++

3.1. Overview/General Information

This chapter explains how to use the Publish and Subscribe (Pub/Sub) C++ API to create client applica
tions that communi cate with the Sybase Aleri Streaming Platform.

Building client applications with Sybase's C++ Pub/Sub API requiresthird party tools.

 Certified with GNU g++ compiler version 4.2.1 on Linux® and Solaris®.

* Certified with Microsoft® Visual C++® compiler 2005 on Windows.

» The example makefiles for Linux and Solaris require GNU gmake version 3.80 in addition to the spe-
cified compiler.

3.1.1. Overview of SP C++ Utilities

Sybase provides files that support the Pub/Sub API for C++ in the following directories:

e . /include/ PubSub/ - Thisdirectory (located in the distribution package) contains the set of C++
header interface files to be used by a client application developer for writing programs to either pub-
lish or subscribe from the Sybase Aleri Streaming Platform.

e ./include/ PubSub/inpl/ - Thisdirectory contains the implementation header files for the Sy-
base Aleri Streaming Platform C++ Pub/Sub API.

Y ou should not modify thesefiles.
The following support files are also provided:

e ./lib/libPubSub.a - This is the library that you should link to when developing programs
against the Sybase Aleri Streaming Platform. It contains the implementations of the Pub/Sub inter-
faces. Thelibrary islocated withinthe "l i b" directory provided in the distribution.

» ./ exanpl es/clients/pubsub/ cpp - Thisdirectory contains three examples:

e pubexanpl e. cpp demonstrates how to publish data to a specified stream to the Sybase Aleri
Streaming Platform.

* subexanpl e. cpp shows how to subscribe for a specified stream to the Sybase Aleri Streaming
Platform.

« subproj exanpl e. cpp explains how to subscribe for a specified stream with projection (using
an SQL statement) to the Sybase Aleri Streaming Platform.

This directory also contains a Makefile that builds the three examples and demonstrates how to
compile and link C++ programs that use the Pub/Sub C++ API.

The Pub/Sub library includes code for the various authentication mechanisms supported by Sybase
Aleri Streaming Platform, including Kerberos®. It requires that the SASL dynamic libraries
shipped with the Sybase Aleri Streaming Platform be present at runtime. These libraries are located
in the SPLATFORM_HOVE/ | i b folder.

20

Publish/Subscribe API for C++

The pubexanpl e. cpp file, which demonstrates how to publish source stream data to the Sybase
Aleri Streaming Platform using transaction blocks. The files subexanpl e. cpp and
SubExanpl eSpGbser ver . cpp demonstrate how to subscribe to a stream running on the Sy-
base Aleri Streaming Platform. It is highly recommended that you look at these examples. Al-
though small, it can be used as “boiler plate” code to create your own Pub/Sub client applications.

Visual Studio® 8.0 project and solution files have been included as part of the Windows package.
Y ou can build these examples using the Aleri Studio or typing nmake on the command line in the
folder containing these examples. The nmake and devenv.com executables must be in the path as
well.

3.1.2. Design Decisions for Publication/Subscription Using C++

The design of the Pub/Sub API provides a set of interfaces (or object "types') that shows all of the Sy-
base Aleri Streaming Platform functionality while hiding implementation details. It is strongly recom-
mended that you do not use inheritance to extend the implementation classes found in the Pub/Sub API
code base. Sybase software has the ability to change the API's underlying implementation in the future
without breaking client code.

To achieve certain encapsulation goals, most of the implementation classes found in the Pub/Sub API
code base have private constructors; you are provided with “Factory” methods for object instantiation.
For example, the code for creating a new SpPl at f or m object would not be new SpPI at -
form(...),but SpFactory::createPlatforn(...).

Most objects in the Pub/Sub API support only get methods, providing a degree of immutability. Com-
plete immutability would require all get methods to return “copies’ of internal vectorsarrays because
vectors and arrays are mutable. However, this method is quite inefficient, so Sybase software is designed
not to generate or return “copies’ to the caler.

You must maintain order and integrity for the state of these “read-only” data structures. For example,
when requesting the list of column types for a stream definition, the program must treat it as a
“read-only” list and must not modify elements within the list. If the program does modify the list, the ap-
plication encounters difficulties when it makes subsequent calls to retrieve the column types, because its
out of sync with those on the Sybase Aleri Streaming Platform.

The design of the Pub/Sub API reflects the decision to avoid using exceptions generated by AP
routines. Each method of the API usually returns a non-zero error code if it fails. Otherwise, a method
returns a zero to indicate success. This design choice keeps the API consistent across different lan-

guages.

When a Pub/Sub APl method returns a non-zero return code, you can cal the
SpUtils. get Error Message() method (passing it the non-zero return code) to get the specific er-
ror message text. Those APl methods which take an SpSt at us parameter may use Sp-
Status: : get Error Code() and/or SpStatus:: get Error Message() to retrieve respect-
ively, the error code and error message.

Most classes within the Pub/Sub API have the prefix "Sp", which stands for “ Streaming Processor.” For
example, SpFact ory, SpPl at f or m SpSubscri pti on, SpPubl i cati on and SpSt at us. The
Pub/Sub API also makes use of a C++ namespace (al eri _pubsub) to further protect the class names
from collision with application names.

3.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription
Set methods should be called before the SpSubscription->start() method. Y ou should check SpPlatform-

Status after the start() for any possible problem. If you fail to send exit-on-close, the status is is set to
SP_ERROR SETTI NG EXIT. If you fail to send a maximum buffer size, the status is set to

21

Publish/Subscribe API for C++

SP_ERROR _SUB_SETTI NG _BUFFERSI ZE. Y ou should note that get QueueSi ze() does NOT re-
turn the current queue size until after you've set it with set QueueSi ze() .

Hereisan example for C++.

voi d set QueueSi ze(const uint32 t queue, SpPlatfornttatus * status);
i nt get QueueSi ze();

voi d set Exi t OnCl ose(SpPI at f ornfSt at us * st at us);

bool get Exi t OnCl ose() ;

3.1.4. C++ Usage Restrictions

Some of the third party libraries used by the Pub/Sub APl impose restrictions.

» The ptypeslibrary isinitialized to ignore the SIGPIPE signal.
e Thexmirpc library establishesits own signal handler for SIGCHLD.
Pub/Sub C++ clients should not attempt use these signals. Attempting to use these signals may interfere
with the assumptions made by these libraries, resulting in incorrect behavior.
3.2. Subscribing to the Sybase Aleri Streaming Platform Using C++
3.2.1. Set Up Objects for SP Subscription in C++

The first thing the client application must do isinitialize the SpFact or y class and instantiate the Sp-
Pl at f or mobject.

3.2.1.1. Create an SpPlatform Object

After the SpFact ory classisinitiaized, the client application calls on this object to instantiate other
objects that provide the Sybase Aleri Streaming Platform functionality.

The next object to instantiate is the SpPI at f or mobject.
The following code example shows how to use the SpFact or y class to initialize the factory and envir-

onment and then to create the SpPI at f or mobject.

1. TheSpFact ory class must be initialized before the client application starts any threads. The static
functioni ni t () doesthisasfollows:

int rc = SpFactory::init();

The SpFactory: :init() method sets up the XMLRPC environment. The XMLRPC imple-
mentation used by the Pub/Sub C++ API requires that the environment be initialized prior to starting
up any threads. Therefore, make sure the SpFact ory: :init() method is caled immediately
when the client application first starts up. Later, usualy upon exiting the program, a matching Sp-
Fact ory: : di spose() method should be called to “tear-down” the XMLRPC environment.

If the return from this call is a non-zero error code, the initialization has failed. If this happens, the

22

Publish/Subscribe API for C++

client application can call SpUti | s:: get Error Message(int errorCode) to get the text
describing the error.

2. Once the SpFact ory has been initidized, the SpFact ory: : cr eat ePl at f or mPar ns meth-
od should be called. This factory method creates an object that encapsulates all of the Sybase Aleri
Streaming Platform connection information, including the Sybase Aleri Streaming Platform host
name, port number, username, password, and encryption usage.

See the set of overloaded SpFact ory: : creat ePl at f or mPar ns(. . .) methods for the set of
available connection/authentication options. They include RSA authentication, as well as the High
Availability configuration option.

Example:

SpPl at f or nPar ms *parns = SpFactory: :createPl at f or nPar s (
host, port, user, password, isEncrypted);

3. Use SpFactory::createSpPl atfornfStatus() to create an object for subsequent Sp-
Fact or y method calls. The purpose of this object is communication of error status from the Sp-
Fact ory class.

SpPl at f ornfSt at us *status = SpFactory::createPl atfornttatus();

4. Call the SpFact ory to create the SpPI at f or mobject, passing in the SpPI at f or nPPar ns and
SpPI at f or n5t at us objects previously created.

If the SpFactory: :createPl atform parnms, status) cal is successful, afully initial-
ized SpPI at f or mobject is returned to the client programmer. Otherwise, the factory method will
return NULL, and an error code will be stored in the SpPI at f or n5t at us object that was passed
intothecr eat ePl at forn(...) method. The SpPI at f or nf5t at us object can be used to re-
trieve the error code, using st at us- >get Err or Code() or the error text usi ngst at us-
>get Err or Message() . Observe the "else" condition in the following code fragment:

S]E)PI(atform ;s? = SpFactory::createPl atform parnms, status);
i 0!=sp
/* Use the new sp object for Platformrel ated work */
/* See "The SpPl atform object" */
} else {
printf("Could not create SpPlatform eNum = %, eMsg= %\ n",
st at us- >get Er r or Code(),
(char *)status->get Error Message().c_str());

3.2.2. Setup and Start a Subscription in C++

To get stream updates delivered from the Sybase Aleri Streaming Platform to your client application, the
program must “ask” the Sybase Aleri Streaming Platform to deliver them. This process is called
“subscribing” or creating a subscription. The Pub/Sub API offers two forms of subscription mechanisms
(SpSubscri pti on and SpSubscri pti onProj ecti on) that hide most of the low-level details
associated with making a subscription request to the Sybase Aleri Streaming Platform's Gateway Server
module. If the Pub/Sub API is used in a High Availability (Hot Spare) configuration, the switch over to
the Hot Spare server is handled transparently by the API.

23

Publish/Subscribe API for C++

The Pub/Sub API subscription mechanism is based on the “Observer” Design Pattern. When using the
Pub/Sub API subscription mechanism, the client application program is responsible for creating a class
that implements the SpObserver interface. This is a simple interfface with a noti -
fy(std::vector<SpSubscriptionEvent *> *events) method in it. The subscription
mechanism calls the not i fy method to deliver stream update and system event information to the cli-
ent application program's SpCbser ver object.

3.2.2.1. Initiate a Subscription Using SpSubscriptionProjection

The client application program must create its own SpCbser ver objects, which are notified by the
SpSubscri ptionProj ecti on with the updates arriving from the Sybase Aleri Streaming Plat-
form. The client application program creates SpObser ver objects by implementing the SpCbser ver
interface. Refer to Section 3.2.2.2, “Implement the SpObserver Interface” for more information. The
addQbser ver (SpCbserver theGbserver) method is used to register the SpCbser ver with
the SpSubscri pti onProj ecti on object. As mentioned previously, you would construct the
SpGbser ver using the SpSt r eanPr o ect i on that was returned by the SpSubscri pti onPro-
j ection. get StreanProjection() method.

The addCbserver (...) cal returns an integer value that represents a “handle” to the registered
SpGhser ver object. Later on, the client application programmer can use the handle to remove the
SpGbserver.

TherenmoveCbserver (i nt theHandl e) method is used to remove the SpCbser ver from the
SpSubscri pti onProj ecti on'sdelivery mechanism.

See Section 5.1, “Aleri SQL Queries and Statements’ for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries.

3.2.2.2. Implement the SpObserver Interface

The SpQoser ver interface must be implemented in the client application if it receive stream updates
from the Sybase Aleri Streaming Platform through the Pub/Sub API subscription mechanism. The inter-
faceissimple:

std::string get Nanme();

voi d notify(std::vector<SpSubscripti onEvent *> *t heEvents);

There are two methods that must be implemented within the class:

* Theget Nane() method is placed in the interface to retrieve the nane of the SpCbser ver, which
issimilar to the case of the SpSubscription objects get Name() method.

e Thenotify(std::vector <SpSubscriptionEvent *> *theEvents) method is the
link between the underlying Sybase Aleri Streaming Platform subscription, which the SpSub-
scription/SpSubscri ptionProj ecti on object manages, and the client applications object,
which receives the subscription updates as they are delivered from the Sybase Aleri Streaming Plat-
form.

When an update is delivered from the Sybase Aleri Streaming Patform to the
SpSubscri ption/SpSubscri pti onProjecti on object, that object determines which of the
pre-registered SpGbser ver objects are interested in the data and forwards it to them. This data is then
picked up by the SpCbser ver through the noti fy(std:: vect or<SpSubscri pti onEvent
*> *t heEvent s) implementation.

24

Publish/Subscribe API for C++

The subscription's stream update acquisition and delivery mechanism run in a separate thread which
manages the “read-only” Gateway /O subscription socket. The noti -
fy(std::vector<SpSubscriptionEvent *> *theEvents) methodsactualy execute from
within the context of this thread. The client application programmer must be conscious of this fact and
program accordingly.

3.2.2.3. Start the Subscription Using SpSubscripion

The following is a portion of code that shows how to create, configure and start an SpSubscri pti on
object. In the following example, the sp object represents an SpPl at f or mobject instantiated previ-
oudly throughthe SpFact ory: : createPlatforn(...) nethod.

SpSubscri ption *sub = sp->createSubscription("MSubscription_ 1",
SpSubConst : : BASE,
SpSubConst : : DELI VER_PARSED,
status); // “status” is a pointer to an SpPl atfornf5t at us object.

Y ou must create a concrete class implementing the SpQbser ver interface. This concrete SpChser v-
er classwill be registered with the new SpSubscri pt i on object, and notified with SpSubscri p-
ti onEvent objectswhenthe SpSubscri pti on isstarted.

i{f (sub !'= NULL)

SpObserver *spCbserver=new C i ent SpCbserver (“myQobserver”);
constant char * streamName = “input”;
i nt handl e;

Y ou must associate the concrete SpGbser ver abject(s) with a stream (or set of streams), and register
the SpCbser ver with the SpSubscri pti on object. This can be done using either of the following
methods:

e SpSubscri pti on->addSt reanbserver(...)
* SpSubscri ption->addStreansObserver(...)
This should be done for each SpCbser ver the client wishes to be notified with SpSubscri pti ons

events.

handl e = sub->addSt r eanmObser ver (streamNanme, spCbserver);
if (handle <= 0)

/1 SpCbserver registration fail ed.
return handl e;

Once the SpQbserver (s) are registered with the SpSubscription, the SpSubscri pti on-
>start () method is called to start the subscription process. If it's successful, the appropriate SpQb-
ser ver s will be notified with updates sent from the Sybase Aleri Streaming Platform.

25

Publish/Subscribe API for C++

>

printf(“Starting the subscription.\n”);
rc = sub->start();
if (rc 1= 0)
{

/1 The subscription could not be started.
printf(“Subscription could not be started, rc=%\n",rc);

printf(“Error message =%\n”, SpUtils::getErrorMessage(rc));
return rc;

At this point, if thereis datafor the specified stream located on the Sybase Aleri Streaming Platform, the
registered SpCbser ver objects will start receiving updates within the running context of the subscrip-
tion thread.

A subscription created using SpSubscri pti on receives updates for all columns in the stream with
each event. If the subscription was created using SpSubscri pti onPr oj ect i on, an update consists
of only the subset of columns defined by the SQL query. These types of updates are issued only when
there is a change in one of the columns specified in the SQL query.

3.2.2.4. Start the Subscription Using SpSubscriptionProjection

The following code example shows how to create, configure, start and stop an SpSubscri pti on-
Pr oj ecti on object. In this example, the “sp” object represents an SpPI at f or mobject instantiated
previously through the SpFact ory: : creat ePl at form(. . .) method.

st at us isapointer to an SpPI at f or n5t at us object.

const char * sql Query
"select intData, charData from inputstream where intData > 100";

SpSubscri pti onProjecti on *subProj = sp->createSubscriptionProjection(
“MySubscri ptionProjection_1",

SpSubConst : : BASE,
SpSubConst : : DELI VER _PARSED,
sql Query,

status);

i{f (subProj != 0)

SpSt reanProj ecti on *streanProj = subProj->get StreanProjection();
SpQoserver *spObserver = new Client SpObserver (“myCbserver”, streanProj);
i nt handl e = subProj - >addCbser ver (spCbserver);
if (cookie <= 0)

/1 SpQbserver registration failed.

return handl e;

}
printf(“Starting the subscription.\n");

rc = subProj->start();
if (rc 1= 0)

/1 The subscription could not be started.

26

Publish/Subscribe API for C++

printf(“Subscription could not be started, rc=%l\n",rc);

println(“Error message =%\n",
SpUtils::getErrorMessage(rc));
return rc;

el se

{

/] Could not create the subscription object.
rc = status->get ErrorCode();

printf(“Could not create subscription object, error=%\n",rc);

printf(“Error message =%\n”,
st at us- >get Err or Message()) ;

printf(“Stopping the subscription.\n");
rc = sub->stop();

if (rc !'=0)

{

/'l Probl ens stopping the subscription.
printf (“Problens stopping the subscription, rc=%@\n",rc);

printf(“Error message =%\n”,
SpUtils::getError Message(rc));
return rc;

After a successful cr eat eSubscri pti onProj ecti on() cal, the program gets back the schema
information as aresult of the projection.

The Client program must create a concrete class implementing the SpCbser ver interface. This con-
crete SpQbser ver class will be registered with the new SpSubscri pti onPr oj ecti on object,
and “notified” with SpSubscri pti onEvent objects when the SpSubscri pti onProj ectionis
started.

The stream projection schema information is passed into the observer so it will know how to process the
update events.

See Section 5.1, “Aleri SQL Queries and Statements’ for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries.

The client application must register the concrete SpObser ver object(s) with the SpSubscr i p-
ti onProj ecti on object, using the addCbser ver (. ..) method. This should be done for each
SpObser ver the client wants to receive subscription events.

Once the SpCbser ver (s) are registered with the SpSubscri pti onPr oj ecti on, the SpSub-
scriptionProjection->start () method is called, which starts the subscription process. If it's
successful, the appropriate SpObser ver s will be notified with updates sent from the Sybase Aleri
Streaming Platform.

At this point, if thereis data for the specified stream located on the Sybase Aleri Streaming Platform, the
registered SpCbser ver objectswill start receiving updates within the running context of the subscrip-
tion thread.

The client program can invoke the st op() method in order to terminate the running SpSubscr i p-
tion.

3.2.3. Receive/Process Subscription Updates Using C++

27

Publish/Subscribe API for C++

3.2.3.1. Delivery to an SpObserver Notify(...) Method Implementation

In a running subscription, a vector of SpSubscri pti onEvent objects is delivered to the SpCb-
server. Each SpSubscriptionEvent object represents a sate change to the
SpSubscri ption/SpSubscri pti onProj ecti on object; the Subscri pti on object distrib-
utesthese Subscri pti onEvent s to the appropriate SpCbser ver objects.

For example, an SpSubscri pti onEvent issent tothe SpCbser ver if astream update has arrived,
or if the Sybase Aleri Streaming Platform is shut down.

Thenotify(...) method that you implement in the SpCbser ver object must iterate over the vec-
tor of SpSubscri pti onEvent s (each one uniquely identified by an Eventld) to determine the ac-
tion to be taken.

3.2.3.2. Inspect the Subscription Parsing Errors within the SpObserver

There is a “special” event id defined within the SpSubscri pti onEvent interface as SpSub-
scriptionEvent:: EVI D_PARSI NG ERROR. This event is generated when the SpSubscr i p-
t i on object's message parser encounters an error in the middle of parsing the message delivered from
the Sybase Aleri Streaming Platform.

In this case, the partial results that are successfully parsed up to the point of error are stored for possible

inspection by the SpGbser ver . The SpCbhser ver is not obligated to look at them. However, if you

want to use this information for debugging purposes, it is still stored in the event.

When this event ID is encountered, and there are partial results that were parsed before the error was en-

countered, the get Dat a() method of the SpSubscri pti onEvent passed to the SpObser ver

not i f y() method will return avector of two elements:

» An object of type SpPar ser Ret ur nl nf o, which has parsing error information stored in it.

» Another SpSubscri pti onEvent object whose event ID is SpSubscri p-
ti onEvent. PARSED PARTI AL_FI ELD DATA. The get Dat a() method of this event object
returns a vector of the stream update information that was successfully parsed up to the point of error.

3.2.3.3. SHINE Flag Supports Subscription Mode For Partial-Record Updates

The SHINE flag can support a new subscription mode for partial-record updates in C++ with SpSub-
Const : : SHI NE

The following is an example of how to use this mode:

SpSubscri ption *sub = sp->createSubscri pti on(subscri pti onNane,
SpSubConst : : BASE| SpSubConst : : SH NE, SpSubConst: : DELI VER PARSED, spSt at us);

3.2.4. Change/Stop Subscription Using C++

3.2.4.1. Stop Subscription
The client programmer may invoke the st op() method to terminate the running SpSubscription. Once
the st art () method has been invoked, the asynchronous arrival of events initiates a noti fy()

method which runs on a separate thread. Be careful not to invoke the st op() method from the not i -
fy() calback.

printf(“Stopping the subscription.\n");

28

Publish/Subscribe API for C++

rc = sub->stop();
if (rc = 0)

/1 Problens stopping the subscription.
printf (“Problens stopping the subscription, rc=%l\n",rc);

printf(“Error nessage =%\n",
SpUtils::getErrorMessage(rc));
return rc;

Before stopping entirely, the client application should destroy all the Subscription objects it created, to
avoid memory leaks.

3.3. Publishing to the Sybase Aleri Streaming Platform Using C++

The Pub/Sub API gives you the ability to publish stream information to the Sybase Aleri Streaming Plat-
form. Thisis accomplished by using an object of type SpPubl i cati on.

Note:

Whether the client application is publishing static data (such as a reference table) or dynamic
data (such as market feed data) to the Sybase Aleri Streaming Platform, the same mechanism is
used.

3.3.1. Create Objects for Publication Using C++
3.3.1.1. Create an SpPublication Object

The first step in setting up a client application that publishes to the Sybase Aleri Streaming Platform us-
ing the Pub/Sub API is creating an SpPubl i cati on object. This is done by a factory method
provided by the SpPI at f or maobject that must have been instantiated previously as with the Pub/Sub
API subscription mechanism. The signature of the SpPI at f or mfactory method creates SpPubl i ca-
ti on objectsasfollows:

SpPubl i cati on *createPublication(const char * nane,
SpPI at f or n5t at us *st at us) ;

Details:

e const char *nane isanidentifier that you intend to assign to the SpPublication object being cre-
ated.

» SpPl at f ornft at us *st at us is an object that returns error information back from the cr e-
at ePubl i cation(...) factory method if an error condition is detected during the creation of an
SpPubl i cat i on object.

The following example shows how to use an instance of SpPl at f or mnamed sp to create an SpPub-
I'ication object:

29

Publish/Subscribe API for C++

SpPubl i cati on *pub =
sp->creat ePubl i cation(“M/Publication_ 1", status);

In the above example, st at us is a pointer to a SpPl at f or 5t at us object that was created previ-
oudly withthe SpFact ory: : creat ePl at f or nSt at us() factory method.

The SpPubl i cat i on object isnot re-entrant. If multiple threads are going to publish to the Streaming
Processor, each thread should use a different SpPubl i cat i on object. Each of these SpPubl i ca-
t i on objects should have its own socket connection to the Streaming Processor.

3.3.1.2. Create SpStreamDataRecord Objects

For consistency within the Pub/Sub API, an SpSt r eanDat aRecor d object is created using an Sp-
Fact or y method with the following method signature;

SpSt r eanDat aRecord *SpFact ory: : creat eSt r eanDat aRecord
(

SpStream *stream

st d: : vect or<spDat aVal ue *> *fi el dDat a,
opCode,

fl ags,

SpPI at f or nf5t at us *st at us

Details:

e SpStream *streamrefers to the SpSt r eamobject with which this new SpSt r eanDat aRe-
cor d object will be associated. You can get this value through one of the SpPI at f or mmethods,
suchasget Stream(const char *streanmNane) orget Strean(int streamd).

e std::vector<SpDat aval ue> *fi el dDat a is a pointer to a vector of pointers to SpDat a-
Val ue objects. Each object entry in the vector matches the field data type indicated in the stream
definition (specified in the SpSt r eamparameter).

All of the SpSt r eanDat aRecor d's key fields must be specified with non-null values within the
fi el dDat a vector. In addition, the types of the objects that are located in the f i el dDat a vector
must match those in the SpSt r eamdefinition.

Your program can identify the key fields using the get KeyCol umms() or get KeyCol um-
Vect or () functions, or by inspecting each column using i sKeyCol urm() .

» int opCode isthe stream operation code that is associated with this SpSt r eanDat aRecor d.
The opcode tells the Sybase Aleri Streaming Platform how to apply this record to the source stream.

* int flags istheflag settings value that is associated with this SpSt r eanDat aRecor d. Refer to
Section B.2.3, “ Stream Flag Values’ for more information about stream flag values.

Several of the publishing methods allow the client application program to override the stream opcode
and/or stream flag settings.

» SpPl at f or St at us *st at us is a pointer to an object that returns error information from the
creat eSt reanDat aRecor d(. . .) factory method if the SpSt r eanDat aRecor d object can-
not be created.

30

Publish/Subscribe API for C++

The following code example shows how the client application program can use the cr eat eSt r eam
Dat aRecord(...) factory method to create an SpSt r eanDat aRecor d object that can be pub-
lished to the Sybase Aleri Streaming Platform. Refer to the pubexanpl e. cpp file to see how to build
arecord set that can be published to the Sybase Aleri Streaming Platform as a transaction.

*

Build up a row, for a source streamcalled “input”, that
has the follow ng record | ayout:

int, long, string, double, date, noney, tinestanp

/

* X Kk kT~

[/l Build the field data list for the streamrow.
std::vector<SpDat aVal ue *> *fiel dbData =
new std:: vect or <SpDat aVal ue *>;

/* build an int32 field */

SpDat aVal ue *ptrDat aVal ue = new SpDat aVal ue() ;
pt r Dat aVal ue- >dat aVal ue. val . i nt 32v = 100;

pt r Dat aVal ue- >t ype = Dat aTypes: : | NT32;

pt r Dat aVal ue- >dat aVal ue. nul | = fal se;

fi el dDat a- >push_back(pt r Dat aVal ue) ;

/[* build an int64 field */

ptr Dat aVal ue = new SpDat aVal ue();

pt r Dat aVal ue- >dat aVal ue. val . i nt 64v = 1001;
pt r Dat aVal ue- >t ype = Dat aTypes: : | NT64;

pt r Dat aVal ue- >dat aVal ue. nul | = fal se;

fi el dDat a- >push_back(pt r Dat aVal ue) ;

/* build a string field */

pt r Dat aVal ue = new SpDat aVal ue() ;

char *theString = new char [20];
strcpy(theString, “hello”);

pt r Dat aVal ue- >dat aVal ue. val . stringv = theString;
pt r Dat aVal ue- >t ype = Dat aTypes: : STRI NG

pt r Dat aVal ue- >dat aVal ue. nul | = fal se;

fi el dDat a- >push_back(pt r Dat aVal ue) ;

/* build a double field */

pt r Dat aVal ue = new SpDat aVal ue() ;

pt r Dat aVal ue- >dat aVal ue. val . doubl ev = 3. 14;
pt r Dat aVal ue- >t ype = Dat aTypes: : DOUBLE;

pt r Dat aVal ue- >dat aVal ue. nul | = fal se;

fi el dDat a- >push_back(pt r Dat aVal ue) ;

/* build a date field */

time_t timeData = tinme(0);

pt r Dat aVal ue = new SpDat aVal ue();

pt r Dat aVal ue- >dat aVal ue. val . datev = ti neDat a;
pt r Dat aVal ue- >t ype = Dat aTypes: : DATE;

pt r Dat aVal ue- >dat aVal ue. nul | = fal se;

fi el dDat a- >push_back(pt r Dat aVal ue) ;

/* build a noney field

* NOTE: Money has a scal e val ue of

* n = platform >get MoneyPreci sion() deci nal pl aces

* where 'platformi is a pointer to an SpPl atform obj ect

* Bel ow, you "know' the scale factor is the default (10, 000)

*/so you represent 1000 with the val ue 1000 * 10,000 = 10, 000, 000.
*

Dat aType: : noney_t noneyData = 10000000;

ptr Dat aVal ue = new SpDat aVal ue() ;

pt r Dat aVal ue- >dat aVal ue. val . nbneyv = noneyDat a;
pt r Dat aVal ue- >t ype = Dat aTypes: : MONEY;

pt r Dat aVal ue- >dat aVal ue. nul | = fal se;

fi el dDat a- >push_back(pt r Dat aVal ue) ;

31

Publish/Subscribe API for C++

/* build a tinmestanp field
* NOTE: The Ti nmestanp dat at ype
* is basically the same as a Date datatype except that it is capabl e of
* holding mlliseconds.
*

/
Dat aTypes: : ti nestanpval _t ti neStanpData =

(Dat aTypes: : ti mestanpval _t) tinme(0)* 1000;

pt r Dat aVal ue = new SpDat aVal ue();
pt r Dat aVal ue- >dat aVal ue. val . ti mest anpv = ti neSt anpDat a;
pt r Dat aVal ue- >t ype = Dat aTypes: : TI MESTAMP,;
dat aVal ue. nul | = fal se;
fi el dDat a- >push_back(pt r Dat aVal ue) ;

/1 You need to have a pointer to the streamfor the
/1l row that is building up.
SpSt ream *stream = sp->get Strean(“i nput”);

/*
* Use the createStreanDataRecord(...) factory nethod to
* bundl e up the stream fieldData vector, stream opcode,
* and stream flags into an SpStreanDat aRecord object.
*
* The SpStreanDat aRecord object is the basic
* unit of publication. You can publish these one at a
* time, or you can publish themas a group (with or
* without transaction bl ocks).
*
* |f you want to publish a group of SpStreanDat a-
* Record objects as a transaction, then all of the
* SpStreanDat aRecords wi thin the group nust bel ong
* to the sane stream
*/
SpSt r eanDat aRecord *sdr = SpFactory:: createStreanDat aRecor d(
stream
fiel dData,
Stream nt er f ace: : UPSERT,
Stream nterface: : NULLFLAG
st at us
i
if (0 == sdr)
printf(“Coul d not createStreanDataRecord, error code=%d\n",
st at us- >get Err or Code()) ;
printf(“Error Message = %\n”,
st at us- >get Er r or Message()) ;
}

The client application program can create a large number of SpSt r eanDat aRecor d objects, placing
each of them within a common vector. Next, the application programmer can use one of the SpPub-
I i cati on'spublishing methods to send all the vector's stream data objects to the Sybase Aleri Stream-
ing Platform, either individually or by using transactions.

3.3.2. Publish Data to the Sybase Aleri Streaming Platform Using C++
The following example shows how to publish a vector of SpSt r eanDat aRecor d objects asa single

transaction. In this example, sp is an SpPl at f or m object that was previously instantiated and
st r eam nput Dat a isavector that contains alarge number of SpSt r eanDat aRecor d objects.

>

/*

* Create the publication object associated with the
* platform

*/

const char *nanme = “testPub _17;

32

Publish/Subscribe API for C++

SpPubl i cati on *pub = sp->creat ePublicati on(name, status);
if (0 == pub)

printf(“Couldn't create a publication object, error code =%l\n",
st at us- >get Error Code()) ;

printf(“Error nessage = %\n”, status->getErrorMssage());

return status->get ErrorCode();

*

Start the publication object (this opens up a GWI/O
socket connection). Don't forget to eventually close
down the SpSubscription object (via the stop() method,
| ater on when you are finished using it,

=%k X X kX TS

o~

= pub->start();
if (0!=rc)

printf(“Couldn't start the publication object.\n");

printf(“Error nmessage = %\n”,
SpUtils::getErrorMessage(rc));

return rc;

—

/*
* Publish the collection/vector of SpStreanDataRecord

* objects as one big transaction.
*/

rc = pub->publishTransacti on(strean nput Dat a,
Streanl nterface: : | NSERT,
Streanl nterface: : NULLFLAG,
0);

if (0!=rc)

printf(“Couldn't publish the transaction.\n");

printf(“Error message = %\n",
SpUtils::getErrorMssage(rc));

return rc;

3.3.3. Handling Stale Data

When a publishing source stops sending data to the Sybase Aleri Streaming Platform, the previously
published data is retained. Depending on how long it has been since the last update, you may not want
this data to be used as if it were current. The publish/subscribe APIs include two functions to to enable
publishers to handle this data.

The “setFinalizer” function sets a timeout value (in milliseconds) and an SQL statement action. If the
Sybase Aleri Streaming Platform receives no data on this connection within the specified time, the SQL
statement isrun. This SQL statement can perform any of the following actions:

 Delete previoudly published data.

» Mark previously published data as stale (viaafield for that purpose in the data).

33

Publish/Subscribe API for C++

» Perform some other determined action on the source streams (and, consequently, the derived streams
from these source streams).

Note:

When using set Fi nal i zer (), you must ensure that the SpStatus object created by Sp-
Factory::createStatus() is dill in scope when the SpPubl i cati on->start ()
function is executed, since any errors are returned via the SpStatus object. Failure to do so can
result in memory corruption and/or other undefined behavior.

In the following example, if the datais not updated within 1000 milliseconds, it is deleted.

set Fi nal i zer (1000, “del ete from positions where SharesHeld > 1", spStatus)

The “sendHeartbeat” function sends a keep-alive message to the Sybase Aleri Streaming Platform. This
function can be used to keep the connection aive and prevent the SQL statement from running, if
“setFinalizer” has previously been called. The “sendHeartbeat” function takes no arguments; its syntax
is:

sendHear t beat ()

3.3.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using C++

Set methods should be called before SpPublication start() method. SpPlatformStatus should be checked
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR SETTING EXIT. If you fall to send exit-on-timeout, the status is set to
SP_ERROR PUB_ERROR _SETTI NG EXI T.

If setFindizer and setExitOnTimeout are caled, the second cal returns
SP_ERROR PUB_EXI T_ALREADYSET (setFinalizer) or SP_ERROR _PUB_ACTI ON_ALREADYSET
(setExitOnTimeout).

Thefollowing is an example using C++.

voi d set Exi t OnTi neout (const |ong timeout, SpPlatfornttatus * status);
i nt getExitOnTi neout () ;
voi d set Exi t OnCl ose(SpPl at f ornSt at us * st at us);
bool get ExitOnd ose();

3.4. Record/Playback using C++

In order to record data from the Sybase Aleri Streaming Platform, a client program needs to create and
configure an SpPlatform object in the same way you would for subscribing or publishing. Once an Sp-
Pl at f or maobject has been created, the programmer should create an SpRecorder object using the fact-
ory method createRecorder(...). If an SpRecorder is successfully created the program calls the start
method. This spawns a background thread which subscribes to the configured streams and records all
events for those streams. Recording will stop and the spawned thread terminate once the configured
number of records have been processed or if the calling program calls stop(). Recording can be mon-

34

Publish/Subscribe API for C++

itored by calling the getRecordCount() function which returns the number of records processed so far.

[/l Initialize SpFactory ...

/Il Create SpStatus and SpParns objects ...

/] Create platform object

/Il Create recorder. It needs the followi ng paraneters to run

/] recorder nane (string) : a nane to identify the instance of the recording object

/1 recorder file (string) : nane of the file to store the recorded infornation

/] streans : vector of strings, containing nanes of streans to record events for
/1 flags (int) : recordi ng options (encrypted/ RSA/ get base data)

/'l max records (int64_t) : maxi mum nunber of data records to record

/] status : returns error nmessages if any

/1 init recorder paraneters - recorder name, filenane, streams, etc
SpRecorder * recorder = spPl atform >creat eRecorder(recNane, recFile, streans, flags, maxRecords,

if (NULL == recorder) {

std::cout << "Error starting recorder - " << status->getErrorMessage() << std::endl;
/] cleanup ... and exit
} else

recorder->start();
// Wait, nmonitor, etc ...

/'l To stop recording
recorder->stop();

del ete recorder;

/1 C eanup

A client program creates an SpPlayback object using the factory method in SpPlatform to play back re-
corded data. The 'scale’ parameter is of particular interest. This is a double that can be used to scale the
rate of playback as afactor of the original recorded rate (for example, twice as fast or half as slow). Val-
ues -1 to 1 have no effect - datais played back at the rate it was recorded. A value greater than 1 speeds
up playback by that factor (for example, a value of 2 doubles the playback speed). A value less than -1
slows down playback by that factor (for example, a value of -3 will slow down playback by a factor of
3). The scale can be changed dynamically while playback isin progress.

Initialize SpFactory ...
Create SpStatus and SpParnms objects ...
Create pl atform obj ect

~——v
—~——

Create playback. It needs the follow ng paraneters to run
pl ayback nanme (string) : a nanme to identify the instance of the playback object
pl ayback file (string) : name of the file containing previously recorded data

—~————
—~———

scal e (doubl e) : allows to scale the playback rate
max records (int64_t) : maxi num nunber of data records to pl ayback
st at us : returns error nmessages if any

/1 init playback paraneters - recorder nane, filenane, streans, etc.

st at us

SpPl ayback * pl ayback = spPl at f or m >cr eat ePl ayback(pl ayNane, playFile, scale, maxRecords, status);

if (NULL == pl ayback) {

std::cout << "Error starting recorder - " << status->getErrorMessage();
/] cleanup ... and exit
} else {

pl ayback- >set SendUpsert (TRUE); // optionally enable converting opcodes to UPSERT
pl ayback->start ();
/] Wait, nonitor, etc ...

/'l To stop recording
pl ayback- >st op();

del et e pl ayback;

35

Publish/Subscribe API for C++

3.5. Special Topics for SP Publication/Subscription Using C++
3.5.1. Publication/Subscription In a High Availability (Hot Spare) Configuration

The Sybase Aleri Streaming Platform can be started in a High Availability configuration, with one serv-
er asthe primary server and the other considered the Hot Spare (secondary server). If the Pub/Sub APl is
made aware of the High Availability configuration, it will perform an automatic switchover to the sec-
ondary server if the primary server becomes unreachable. See Section 2.4.6, “Publication/Subscription
inaHigh Availability (Hot Spare) Configuration” for more information about High Availability mode.

The Pub/Sub API is made aware of the High Availability configuration through the SpPI at f or m
Par s object that was passed into SpFact ory: : creat ePl at f or n{) . Refer to the set of over-
loaded SpFact ory: : creat ePl at f or mPar ms(. . .) methods, and the SpPI at f or mPar ns ob-
ject for details about the High Availability configuration.

3.5.1.1. Subscription Mechanisms in a High Availability Configuration

When the Sybase Aleri Streaming Platform is brought up in High Availability mode, and the Pub/Sub
API makes use of this configuration, the following occurs when the primary server goes down:

First, the underlying subscription thread receives an exception on the Gateway /0O socket connection
used to receive the stream updates delivered from the primary server. When this event occurs, the Pub/
Sub API recognizes that there is a High Availability configuration and attempts to connect to the sec-
ondary server and re-establish the subscription. Before it does this, the Pub/Sub API has to wait for the
secondary server to internally change its state to that of the primary server.

Once a successful connection is made to the secondary server and it has been promoted to the primary
server, the subscriptions are re-established. During the switchover to the secondary server, the Sub-
scri ption object delivers several events to the SpObserver objects listening for SpSubscr i p-
t i onEvent s. Thefollowing events are typically delivered between the time the socket is dropped and
the time the connection is made to the secondary server:

« SpSubscriptionEvent::EVID_COMMUNICATOR_HALTED

It is delivered to the SpCbser ver when the exception is received on the socket, receiving the sub-
scription messages from the primary Streaming Processor.

« SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It is delivered to the SpObser ver when the Pub/Sub API recognizes that a connection attempt
should be made to the Hot Spare server. Note that the High Availability connection parameters were
specified in the SpPI at f r onPar ns object passed to the SpFact ory: : creat ePl at form()
method when the underlying SpPl at f or mwasfirst created.

» SpSubscriptionEvent::EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED

It isdelivered to the SpCbser ver when the connection to the Hot Spare server is made.
» SpSubscriptionEvent::EVID_HOT_SPARE _SWITCH_OVER_FAILED

It isdelivered to the SpCbser ver when the attempted connection to the Hot Spare server fails.
If the switchover to the Hot Spare server is successful, the subscription(s) are re-established using the
same delivery flag values that were originally used when the subscription(s) against the primary server.
It means that if the subscription originally requested the BASE snapshot of the stream, the new subscrip-

tion (now going against the Hot Spare server) requests the BASE snapshot of the stream. You need to
determine what should be done with the contents of the snapshot received from the Hot Spare server.

36

Publish/Subscribe API for C++

When there is a successful switchover to the Hot Spare server, the SpPl at f or mobject takes note and
performs some internal book keeping to ensure that the SpPI at f or m : get Host () and SpPI at -
form : get Port () methodswill return the host name and port number of the new primary server.

3.5.1.2. Publication Mechanisms in a High Availability Configuration

When the primary server goes down during an attempt to send a publication request to the server, the
SpPubl i cat i on object detectsit and attempts to perform a switch over to the Hot Spare server. If the
switchover is successful, the publication object then attempts to re-send the data to the new primary
server. If the publication cannot take place, a non-zero error code is returned to the caller indicating the
problem.

The Pub/Sub API programmer should treat the secondary server within a High Availability configura-
tion as a passive server. The client application should never log on and send data to a secondary server
while the primary server is alive and well. It is the responsibility of the running High Availability con-
figuration to manage both the primary and secondary servers appropriately. If the primary server goes
down, the secondary server will take over and become the new primary server. Once the secondary serv-
er becomes the primary server, data can be published to the new primary server. The Pub/Sub APl waits
for the secondary server state to switch over to primary before publishing data.

The sync point between data sent to source streams of the primary server and this data being propagated
to the Hot Spare server is manual. The client application can accomplish this synchronization by calling
theconmi t () method of the SpPubl i cat i on class.

37

Chapter 4. Publish/Subscribe API for .NET 2.0

4.1. Overview/General Information

This chapter describes how to use .NET 2.0 client applications that communicate with the Sybase Aleri
Streaming Platform. The Pub/Sub API isdelivered inthe pubsubnet . dl | file.

Building client applications with Sybase's .NET Pub/Sub API requires a third party tool: Microsoft
Visual C++ compiler 2005.

4.1.1. Overview of .NET Utilities for SP Publication/Subscription

The .NET API provides a set of high-level interfaces for developers to write Microsoft .NET applica
tions that interact directly with the Sybase Aleri Streaming Platform. The interfaces hide most of the un-
derlying implementation details and provide a set of intuitive classes (SpFact ory, SpPl at f orm
SpSubscri ption, SpPubl i cati on, and so on). Most of the classes within the Pub/Sub API start
off with the prefix “Sp”, which stands for “Streaming Processor”. All the “Sp” classes reside in the
namespace caled al eri _PubSubnet . There are aso some “constant” definitions that are used by
various APl method calls that arelocated inthe al eri . pubsubconst namespace.

4.1.1.1. API Library

The pubsubnet . dl | shared library containsthe .NET 2.0 Pub/Sub API used to publish and subscribe
against the Sybase Aleri Streaming Platform. It islocated in the distribution directory under . \ i b .

The Pub/Sub library includes code for the various authentication mechanisms supported by Sybase Aleri
Streaming Platform, including Kerberos. It requires that the SASL dynamic libraries shipped with the
Sybase Aleri Streaming Platform be present at runtime. These libraries are located in the
$PLATFORM HOVE/ | i b folder.

4.1.1.2. Example Files

Here are three C# examples, with one each for publish, subscribe, and subscribe with projection.

* Publication Example

The publish example is located in the install directory under
.\ exanpl es\ cl i ent s\ pubsub\ net \ PubExanpl e . Thisfolder containsthe following files:

¢ PubExanpl e. c¢s (which demonstrates publication to the Sybase Aleri Streaming Platform)
e PubExanpl e. csproj (Visua Studio 2005 C# Project file)
e PubExanpl e. sl n (Visual Studio 2005 Solution File)
e PubExanpl e. exe (A precompiled version of the code included for convenience.)
* Subscribe Examples

The Subscribe example is located in the install directory under
.\ exanpl es\ cl i ent s\ pubsub\ net\ SubExanpl e. Thisfolder contains:

* SubExanpl e. cs (demonstrates subscription to the Sybase Aleri Streaming Platform)

e SubExanpl eSpQObser ver. cs (demonstrates subscription to the Sybase Aleri Streaming Plat-
form)

38

Publish/Subscribe API for .NET 2.0

e SubExanpl e. csproj (Visua Studio 2005 Project file)
e SubExanpl e. sl n (Visua Studio 2005 Solution File)
* SubExanpl e. exe (A precompiled version of the code included for convenience.)

The Subscribe with projection example is located in the install directory under
.\ exanpl es\ cl i ent s\ pubsub\ net\ SubPr oj Exanpl e. Thisfolder contains:

¢ SubPr oj Exanpl e. cs (demonstrates subscription to the Sybase Aleri Streaming Platform)

e SubPr oj Exanpl eSphser ver. cs (demonstrates subscription to the Sybase Aleri Streaming
Platform)

SubPr oj Exanpl e. csproj (Visua Studio 2005 Project file)

SubPr oj Exanpl e. sl n (Visua Studio 2005 Solution File)

SubPr oj Exanpl e. exe (A precompiled version of the code included for convenience.)

Note:

In order to compile these examples, Visua Studio 8.0 has to be installed. To compile an ex-
ample using the IDE open, the appropriate project file (. cspr oj file) inthe IDE and build the
example from there.

In addition there is Makefile provided in the . \ exanpl es\ cl i ent s\ pubsub\ net folder
of the install directory. This file can be used to build the three examples provided from the
command line using the nmake command. Visual Studio 8.0 needs to to be installed with the
nmake and devenv.com executables in the path. To compile the examples, ssimply type the
command nmake in the folder containing this Makefile.

4.1.2. Design Decisions for SP Publication/Subscription Using .NET 2.0

The Pub/Sub API provides a set of interfaces or object “types’ that exposes al of the Sybase Aleri
Streaming Platform functionality while hiding the implementation details. You are strongly encouraged
to use the Pub/Sub API's implementation classes without using inheritance to extend it. This preserves
Sybase's ability to change underlying implementation in the future without breaking client code.

To achieve these encapsulation goals, the “Factory” Design Pattern is used. Most of the implementation
classes found in the Pub/Sub API have private constructors, and you are provided with “Factory” meth-
ods for object instantiation. For example, the code that instantiates a new SpPI at f or mobject should
beSpFactory::createPlatforn(...),notnew SpPlatforn(...),andsoforth.

In addition, most objects in the Pub/Sub API provide only “get” methods, to preserve some degree of
immutability. Complete immutability would require all “get” methods to return “copies’ of internal vec-
tors/arrays because vectors and arrays are mutable. However, this method would be inefficient. Sybase
chose a design that does not make and return “copies’ to the caller.

You must maintain order and integrity for the state of these “read-only” data structures. For example,
when requesting the list of column types for a stream definition, the program must not modify elements
within the list. If it does, the application will encounter difficulties when it makes subsequent callsto re-
trieve the column types, which are now out of sync with those on the Sybase Aleri Streaming Platform.

The design of the Pub/Sub API also reflects the decision to avoid the use of exceptions generated by API
routines. Each APl method usually returns a non-zero error code if the method fails. Otherwise, the

39

Publish/Subscribe API for .NET 2.0

method returns a zero to indicate that it did not detect an error. This limitation keeps the API consistent
across the set of different languages in which it isimplemented.

When a Pub/Sub APl method returns a non-zero return code, the program can cal the
t heSpUtils. get Error Message(error Code) utility method to get the specific error message
text.

Those API methods which take an SpStatus parameter may use SpSt at us: : get Err or Code() and/
or SpSt at us: : get Error Message() to the same effect.

When one of the Pub/Sub APl methods returns a non-zero error return code, the client application can
call the SpUti | s. get Error Message(error Code) utility method to get the specific error mes-

sage.

The SpFactory call that creates an object must passin an SpPI at f or 5t at us object. If the “create”
method can not create the object that you requested, the method returns “null”, and sends the SpPI at -

f or n5t at us object an error code identifying the problem. The SpPI at f or nf5t at us has a ge-

t Err or Message method that will return the error text associated with the error message. All non-
SpFactory method calls ssmply return a non-zero error code if an error occurs; as mentioned above, the
SpUtils. get Error Message(error Code) method can be called to get the associated error mes-
sage text.

4.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using .NET
Set methods should be called before SpSubscription start() method. Y ou should check SpPlatformStatus
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR SETTI NG EXIT. If you fail to send a maximum buffer size, the status is set to

SP_ERROR _SUB_SETTI NG BUFFERSI ZE. You should also note that get QueueSi ze() does
NOT return the current queue size until after you've set it with set QueueSi ze() .

Hereisan examplefor .NET 2.0.

voi d Set QueueSi ze(i nt queue, SpPl atfornttatus ~status);
voi d set Exi t OnCl ose(SpPI at f or nfSt at us “st at us) ;
i nt get QueueSi ze();
bool get Exit Ond ose();

4.2. Subscribing to the Sybase Aleri Streaming Platform Using .NET 2.0
4.2.1. Set Up the Environment for Subscription Using .NET 2.0

Thefirst step in this process is to create objects that handle the low-level details of the subscription.
4.2.1.1. Configure the Pub/Sub API .NET 2.0 Pub/Subnet.dll

To use the Pub/Sub API, the .NET 2.0 application must be able to reference the pubsubnet . dl | .
Oncethisisdone, all of the “Sp” related interface/class definitions can be seen within the IDE.

The installation does not add the Pub/Sub library to the GAC automatically. It must be added to the
GAC usingthegacut i | . exe utility provided as part of the .NET framework.

All exposed classes are sealed and cannot be extended through inheritance. Always use the SpFact -
ory to createthe “ Sp” Sybase Aleri Streaming Platform related objects.

40

Publish/Subscribe API for .NET 2.0

4.2.1.2. Initialize the SpFactory Object
Thefirst object to use in setting up a subscription is the static SpFact or y object. Becauseit is “static”,
it needs no instantiation. The SpFact or y is used to instantiate the other objects that offer the Sybase

Aleri Streaming Platform functionality. The first call made to the SpFact or y isan initialization meth-
od:

int SpFactory.init();

This call initializes the underlying xmlrpc mechanism that is required to communicate with the Sybase
Aleri Streaming Platform.

The xmlrpc documentation indicates that the xmlrpc mechanism must be initialized while the client ap-
plication is still “single” threaded. Therefore, make sure the

int SpFactory.init();

call is made from within the application's main thread before starting subsequent threads.

When the application is finished and is about to exit, call the

SpFact ory. di spose();

method. This cleans up the underlying xmlrpc mechanism.

The

int SpFactory.init();

method returns a non-zero error code if it encounters a problem, otherwise it returns zero.
4.2.1.3. Create the SpPlatform Object

Once the static SpFact or y object isinitialized successfully, the client application must instantiate the
SpPI at f or mobject.

The following example shows you how to use the SpFact or y to create the SpPI at f or mobject.

*

First, using the SpFactory, create an SpPl atf or nPPar ns

obj ect that contains all of the Sybase Al eri Stream ng Pl atform connecti on
information. This information consists of the Sybase Al eri Streaning Platform

host nanme, port nunber, usernane, password, and a bool ean

flag indicating whether or not all connections to the

Sybase Aleri Streaming Platformw || use encryption.

NOTE: See the set of overl oaded SpFactory. createPl atfornmParns(...)

met hods for the set of avail abl e connection/authentication options.

They include RSA authentication, as well as the Sybase Aleri Streaming Platform s Hi gh
Avai |l ability configuration option.

%5k ok ok ok Ok Ok Ok X k¥~

~

SpPl at f ormPar s parns = SpFactory. creat ePl at f or mPar ns(host ,
port, user, password, isEncrypted);

/*
* Second, using the SpFactory, create an SpPl atf or nt at us
* object. This object is used by the SpFactory to

41

Publish/Subscribe API for .NET 2.0

* return error information if the SpFactory cannot create
* the SpPl atform obj ect.
*/

SpPl at f or nBt at us st at us=SpFact ory. creat ePl at f or mSt at us() ;

*

Third, using the SpFactory, create the SpPl atform object,
passing in the SpPl atfornParnms and SpPl at f or nf5t at us

obj ects created previously

NOTE: |f the call is successful, the client programer
will be returned as a fully initialized SpPl atform obj ect.

O herwise, the factory nmethod returns null, and the
error code will be stored in the SpPl atfornfst at us obj ect
that was passed into the createPlatforn{...) nethod. You
can use the SpPl atfornttatus object to retrieve the error
code, and the correspondi ng error nessage (see the “el se”
condition in the foll ow ng code fragnent).

* %k k ok ok ok Ok Ok R k¥ F %~

~

SpPl atform sp = SpFactory. createPl atforn(parns, status);
if (sp!=null)
{

/*Use the new sp object to perform Sybase Aleri Streaming Platformrel ated work*/
/* See “The SpPl atform object” */

} else {
Consol e. WitelLine(“Could not create SpPI atform error =" +
status. getErrorCode() + “, error msg =
st at us. get Error Message()) ;

}

It is very important to ensure that the three objects created above -- SpPl at f or m SpPl at f or m
St at us and SpPl at f or mPar s -- are always in scope. The following three statements must be ad-
ded to the end of the code (before the return statement), which is always in scope during the lifetime of
the publication process:

GC. KeepAl i ve(par ns) ;
GC. KeepAl i ve(st at us);
CC. KeepAl i ve(sp) ;

Without these three statements, there is arisk that the garbage collector will clean up these objects be-
fore the publication is complete, resulting in unpredictable results and program crashes.

4.2.2. Set Up/Start Subscription Using .NET 2.0

To get stream updates delivered from the Sybase Aleri Streaming Platform, the client application must
“ask” the Sybase Aleri Streaming Platform to deliver them. This processis called "subscribing" or creat-
ing a subscription. The Pub/Sub API offers two forms of subscription mechanisms, (SpSubscri p-
tion and SpSubscri pti onProj ecti on), that hide most of the low-level details associated with
making a subscription request to the Gateway 1/0 process. If the Pub/Sub API is used within the context
of an Sybase Aleri Streaming Platform High Availability (Hot Spare) configuration, the switchover to
the Hot Spare server istransparently handled within the API.

The Pub/Sub API subscription mechanism is based on the “Observer” Design Pattern. To use the Pub/
Sub APl subscription mechanism, you must create a class that implements the
al eri _PubSubnet : : SpCbser ver interfface. This interface requires a noti -
fy(SpSubscriptionEvent[] events) method, which the subscription mechanism calls to de-
liver stream update information and system event information to the client application's SpCbser ver
object.

The client application must also create a SpSubscri pti on or SpSubscri pti onProj ecti on
object using the appropriate factory method provided by the SpPl at f or mobject instantiated previ-

42

Publish/Subscribe API for .NET 2.0

ously. The SpPl at f or m factory methods used to create SpSubscri pti on and SpSubscri p-
ti onPr oj ecti on objects have the following signatures:

al eri _PubSubnet : : SpSubscri ption ~creat eSubscri ption(
System : String “nane, int flags, int deliveryType,
al eri _PubSubnet: : SpPl at f or nSt at us ~st at us) ;

al eri _PubSubnet : : SpSubscri pti onProj ecti on ~createSubscripti onProjection(
System : String “nane,
int flags, int deliveryType,
System : String "sql Query,
al eri _PubSubnet: : SpPl at f or nSt at us ~st at us) ;

Details:

String nane: Thisis the name that the client application program intends to assign to the SpSub-
scriptionorSpSubscri ptionProjecti on object being created.

int flags: This integer encapsulates the “flag bits’ sent to the Sybase Aleri Streaming Platform
Gateway 1/0 process when the low-level subscription request is made. The flag settings control delivery
from the Sybase Aleri Streaming Platform to the client application, on the Gateway /0O socket connec-
tion where the subscription request was made. The “flag bits’ are defined as constants in the
al eri _PubSubconst : : SpSubFl ags enumeration as follows:

« aeri_PubSubconst.SpSubFlags.BASE = 0x0;

The BASE flag bit tells the Sybase Aleri Streaming Platform to send a complete “snapshot” of each
stream of the subscription request before sending deltas. The complete “snapshot” or “state” of the
stream is a set of “insert” records sent from the Sybase Aleri Streaming Platform between the
EVI D_GATEWAY_SYNC_START and EVI D_GATEWAY_SYNC_END subscription events.

* aeri_PubSubconst.SpSubFlags.L OSSY = 0x1;
The LOSSY flag bit puts the Sybase Aleri Streaming Platform in “ data shedding mode”, in which the
Sybase Aleri Streaming Platform drops the oldest dataif the client cannot keep pace with the dataiit is
receiving.

« aeri_PubSubconst.SpSubFlags.NO_BASE = 0x2;
The NOBASE flag bit tells the Sybase Aleri Streaming Platform that it should NOT send a complete
“snapshot” of the streams in the subscription request. The Sybase Aleri Streaming Platform that re-
ceivesthisflag will only send the deltas for each of the streams being subscribed to.

* aderi_PubSubconst.SpSubFlags. DROPPABLE = 0x8;
The NOBASE flag tells the Sybase Aleri Streaming Platform that it should NOT send a complete
“snapshot” of the streams in the subscription request. The Sybase Aleri Streaming Platform that re-
ceivesthis flag will only send the deltas for each of the subscribed to streams.

« aderi_PubSubconst.SpSubFlags.PRESERVE_BL OCK S= 0x20;
The PRESERVE_BLOCKS flag bit tells the Sybase Aleri Streaming Platform that it should preserve
blocks while sending data to the client application.

These flag bits can be ORed together using the “|” operator. For example;

flags = al eri _PubSubconst. SpSubFl ags. NO BASE | al eri _PubSubconst. SpSubFl ags. LOSSY.

43

Publish/Subscribe API for .NET 2.0

i nt deliveryType: Thisinteger value specifies how the client application program's SpGbser v-
er object recelves the stream update events. The delivery types are defined in the
al eri _pubsubconst. Del i ver yType asfollows:

 deri_PubSubconst.DeliveryType.DELIVER_PARSED = 1;

This delivery type setting tells the SpSubscri pti on object to deliver "parsed” field data objects
representing the stream update to your SpGbser ver object.

« aleri_PubSubconst.DeliveryType. DELIVER_BINARY = 3;

This delivery type setting tells the SpSubscri pt i on object to deliver the "binary" representation
of the stream update record to your SpChser ver object.

« deri_PubSubconst.DeliveryType. DELIVER_STREAM_OPCODES = 5;

This delivery type setting tells the SpSubscri pti on object not to use field level data, but to
simply deliver the stream update operation code (I NSERT, UPDATE, DELETE, or UPSERT).

System : String "sqgl Query: specifiesthe SQL query projection on which the SpSubscription-
Projection will be based. The sgl Query parameter can only be used to create an SpSubscri p-
ti onProj ecti on object.

SpPl at f or n5t at us st at us: can only be used to return error code information back from the
createSubscription(...) and createSubscriptionProjection(...) factory meth-
ods, in the case where the SpSubscri pti on or SpSubscri pti onProj ecti on object could not
be created.

The following example shows how to use the SpPI at f or mobject called sp to create both an SpSub-
scriptionandanSpSubscri ptionProjecti on object:

SpSubscri ption sub = sp. creat eSubscri pti on(
“MySubscription_1",
SpSubFl ags. BASE,
SpDel i ver yType. DELI VER_PARSED,
st at us);

SpSubscri pti onProj ecti on subProj = sp.createSubscription(
“MySubscri pti onProj ection_2",
SpSubFl ags. BASE,
SpDel i ver yType. DELI VER_PARSED,
"sel ecg i nt Data, charData frominputstream where intData > 100",
st at us);

In the above example, st at us isan SpPl at f or St at us object that was created previously with the
SpFactory. creat ePl at f or nS5t at us() factory method.

It isimportant that the SpSubscri pti on or SpSubscri pti onPr oj ecti on object created above

is always in scope. To ensure this, add the following line of code to the end of the code (before the re-
turn statement), that is always in scope during the lifetime of the subscription process:

GC. KeepAl i ve(sub);

Publish/Subscribe API for .NET 2.0

Without this statement, you run the risk that the garbage collector will prematurely clean up the sub-
scri pti on object before the subscription is complete, leading to unpredictable results and program
crashes.

4.2.2.1. Initiate a Subscription Using SpSubscription in .NET 2.0

If thesp. creat eSubscription(...) calissuccessful, the client application program gets back
aSpSubscri pti on object. The SpSubscri pti on object can be used to subscribe to one or more
streams, while an SpSubscri pti onPr oj ecti on object can only be used to subscribe to the projec-
tion defined by the sql Quer y passed into thecr eat eSubscri pti onProjection(...) factory
method. For each stream that is being observed, the SpSubscri pti on object will deliver to the
SpObser ver stream events that contain al the stream's fields. SpSubscri pt i on extends the meth-
od set defined in the SpSubscr i pt i onCommon interface as follows:

int /*Cookie*/ addStreanObserver(System:String "streanmNane,
al eri _PubSubnet:: SpCbserver “theQbserver);

int /*Cookie*/ addStreanmsObserver (
cli::array<System:String ~> ~theStreanNanes,
al eri _PubSubnet:: SpCbserver “theQbserver);

int subscribe(System: String ~streanmNane);

int unsubscribe(System:String "streamNane);

The following code example shows how to create, configure, start, and stop an SpSubscri pti on ob-
ject. In the following example, the Sp object represents a SpPl at f or maobject instantiated previously
through the SpFact ory. creat ePl at f orn(. ..) method.

SpSubscri ption sub =
sp. cr eat eSubscri pti on(“M/Subscri ption_1",
SpSubFl ags. BASE,
SpDel i ver yType. DELI VER_PARSED,
status); // “status” is an SpPl atfornftatus object.

if (sub !'= null)
{

/*

* Cient programmer nust create a concrete class inplenenting

* the al eri _PubSubnet:: SpCoserver interface. This concrete

* SpObserver class will be

* registered with the new SpSubscripti on object, and “notified” with
*/ SpSubscri pti onEvent obj ects when the SpSubscription is started.
*

SpChserver spChserver = new C i ent SpCbserver (“nmyChserver”);
String streamNanme = “i nput”;

int cookie;

/*

* Cient progranmmer nust associate the concrete SpObserver

* object(s) with a stream (or set of streams), and

* register the SpCoserver with the SpSubscription object.

* This can be done using either the

* SpSubscri pti on. addStreantCbserver *(.

* or SpSubscription.addSt reansCbser ver() met hods.

*

Thi s shoul d be done for each SpOoserver the client w shes
to be notified with the SpSubscriptions events.

*

“ff
cooki e = sub. addStreantbser ver (streanmNanme, spCbserver);

if (cookie <= 0)
/] SpCbserver registration fail ed.
return cooki e;

/*
* Once the SpCbserver(s) are registered with the SpSubscri pti on,

45

Publish/Subscribe API for .NET 2.0

* the SpSubscription.start() nmethod is called,

* which starts the * subscription process. |f the startup

* is successful, the appropriate SpCbservers wll be

*/notified with updates sent fromthe Sybase Aleri Streaming Platform
*

Consol e. WiteLine(“Starting the subscription.”);
rc = sub.start();
if (rc !=0)
! /1 The subscription could not be started.
Consol e. Wi telLi ne(“Subscription could not be started, rc="+rc);

Consol e. WitelLine("Error nessage ="
SpUtils. get Error Message(rc));

return rc;
}
/*
* Block the main thread on input fromthe keyboard
* while the subscription thread runs in the background.

/
Consol e. Readl i ne();

*

The client programmer can invoke the "stop()"
method in order to term nate the running
SpSubscri pti on.

* % %k~
~

Consol e. WitelLine("Stopping the subscription.");
rc = sub.stop();

if (rc !'=0)

{

/'l Problenms stopping the subscription.
Consol e. WitelLine ("Problens stopping the
subscription, rc="+rc);

Consol e. WiteLine ("Error nmessage =" +
SpUtils. get Error Message(rc));

return rc;

el se

/] Could not create the subscription object.
rc = status. get Error Code();
Consol e. WiteLine ("Could not create subscription object, error="+rc);
Consol e. WiteLine ("Error message =" +
st at us. get Error Message()) ;

It is very important that the SpObser ver or SpSubscri pti onPr oj ecti on object created above
is always in scope. To ensure this, add the following line to the end of the code before the return state-
ment, that is always in scope during the lifetime of the subscription process:

GC. KeepAl i ve(spGhserver);

Without this statement, you run the risk that the garbage collector will prematurely clean up the SpOb-
server object before the subscription is complete, leading to unpredictable results and program crashes.

A subscription created using SpSubscri pti on receives updates for all columns in the stream with
each event. If the subscription was created using SpSubscri pti onPr oj ecti on, however, an up-
date consists of only the subset of columns defined by the SQL query. An update of this type is issued
only when there is a change in one of the columns specified in the SQL query.

46

Publish/Subscribe API for .NET 2.0

4.2.2.2. Initiate a Subscription Using SpSubscriptionProjection

If thesp. creat eSubscri pti onProjection(...) calissuccessful, the client application pro-
gram gets back an SpSubscri pti onPr oj ecti on object, which is used to instantiate the subscrip-
tion. If the call fails for any reason (such as an invalid SQL Query), a null is returned, and the corres-
ponding error information is set in the SpPI at f or N5t at us object that was passed to the cr eat e-
Subscri ptionProj ection(..) method call.

The contents of the data returned from the Sybase Aleri Streaming Platform to the SpSubscri p-
ti onProj ecti on object isdetermined by the SQL query passed into thecr eat eSubscri pti on-
Proj ection(...) factory method. An SpSubscri pti onProj ecti on canonly receive updates
for the underlying stream specified in the SQL query, while the SpSubscr i pt i on can get updates for
more than one stream. The SpSubscri pti onPr oj ect i on interface extends the method set defined
inthe SpSubscri pti onCommon interface, as follows:

SpSt r eanPr oj ecti on “get St reanProj ecti on();
i nt /*Cookie*/ addObserver(al eri _PubSubnet:: SpCbserver “theCbserver);

The get St reanPr oj ecti on() method returns the SpSt r eanPr oj ecti on object produced
when the SQL query was sent to the Sybase Aleri Streaming Platform for parsing.

The SpSt r eanPr oj ect i on should not be modified by the client application in any way. Typicaly,
the SpSt reanPr oj ecti on object is specified into the SpQhser ver's constructor, giving the
SpObser ver thelist of fields and their corresponding data types. This information can be used by the
SpObser ver to process the updates that come back from the server.

See Section 5.1, “Aleri SQL Queries and Statements’ for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries.

You must create an SpCbser ver object to receive from the SpSubscriptionProjection the updates that
arrive from the Sybase Aleri Streaming Platform. This object must implement the SpCbser ver inter-
face. Refer to Section 4.2.2.3, “ The SpObserver Interface” for more information.

Call theaddObser ver (SpObser ver theCbserver) method to register the SpObserver with the
SpSubscri ptionProj ecti on object.

The addCbserver (...) cdl returns an integer value that represents a “handle” to the registered
SpObser ver object. Later on, the client application programmer can use the cookie to remove the
SpGbser ver .

The following code example shows how to create, configure, start, and stop an SpSubscri pti on-
Pr oj ecti on object. In the following example, the “sp” object represents an SpPI at f or maobject in-
stantiated previously (through the SpFact ory: : creat ePl at f orn(. . .) method).

string sql Query =
"select intData, charData from i nputstream where intData > 100";

SpSubscri ptionProj ecti on subProj = sp.createSubscriptionProjection(
“MySubscri pti onProjection_1",
SpSubFl ags. BASE,
SpDel i ver yType. DELI VER_PARSED,
sqgl Query,
status); // “status” is an SpPl atfornttatus object.

if (subProj != null)
{

47

Publish/Subscribe API for .NET 2.0

/-k

* Upon creation of an SpSubscri pti onProjection object,
* you can get the schenma information that the

* parsed sqgl query produced on the server as foll ows:
*

SpStreanProj ecti on streanProj = subProj.getStreanProjection();

*

Client progranmmer must create a concrete class inplenmenting

t he al eri _PubSubnet:: SpCbserver interface. This concrete

SpObserver class will be registered with the new
SpSubscri pti onProj ecti on object, and “notified” with

SpSubscri pti onEvent obj ects when the SpSubscripti onProjection is started.
NOTE: The SpStreanProjecti on object passes into the SpCObserver
constructor. This gives the SpObserver the projections schema
information that is typically used for processing the update

events sent to the observer.

* Ok X X X Xk X T~

*

*/
SpGbserver spObserver = new Cient SpGbhserver (“nyCbserver”, streanProj);
i nt cooki e;

*

Client programer must associate the concrete SpCbserver
object(s) with a stream (or set of streans), and

regi ster the SpCbserver with the SpSubscriptionProjection object.
Thi s can be done using the

SpSubscri ptionProj ecti on. addObserver(...) method.

Thi s shoul d be done for each SpCbserver the client

*/mﬁshes to be notified with the SpSubscriptions events.

cooki e = subProj.addCbserver (spQbserver);

* %k X X X X T~

if (cookie <= 0)

/1 SpCbserver registration failed
return cooki e;

Once the SpCbserver(s) are registered with the
SpSubscri pti onProj ecti on,

t he SpSubscri pti onProjection.start() nmethod is called,
whi ch starts the subscription process. |If the startup
is successful, the appropriate SpCbservers wll be

* notified with updates sent fromthe Pl atform

*/

Consol e. WitelLine(“Starting the subscription.”);

* % X F X T~ =~

rc = subProj.start();
if (rc I=0)
{

/1 The subscription could not be started.

Consol e. WiteLl ne(“Subscription could not be started, rc="+rc);
Consol e. WitelLine("Error nessage =" +

SpUtils. getErrorMessage(rc));

return rc;
}
/-k
* Block the main thread on input fromthe keyboard
: whil e the subscription thread runs in the background.

48

Publish/Subscribe API for .NET 2.0

Consol e. Readl i ne();

/*

* The client programrer can invoke the "stop()"
* method in order to term nate the running

* SpSubscri ption.

*/

Consol e. Wi teLi ne("Stopping the subscription.");

rc = subProj.stop();
if (rc 1= 0)
{

/1 Problenms stopping the subscription.
Consol e. WitelLine ("Problens stopping the subscription, rc="+rc);
Consol e. WiteLine ("Error nessage =" +

SpUtils. get ErrorMessage(rc));

return rc;

el se

/] Could not create the subscription object.
rc = status. get Error Code();
Consol e. WitelLine ("Could not create subscription object, error="+rc);
Consol e. WitelLine ("Error nessage =" +
st at us. get Err or Message()) ;

It isimportant that the SpCbser ver and SpSubscri pti onProj ecti on objects created above are
always in scope. To ensure this, add the following line to the end of the code (before the return state-
ment), that is always in scope during the lifetime of the subscription process:

GC. KeepAl i ve(spObserver);

Without this statement, you run the risk that the garbage collector will prematurely clean up the SpCb-
server object before the subscription is complete, leading to unpredictable results and program
crashes.

4.2.2.3. The SpObserver Interface

To receive stream updates from the Sybase Aleri Streaming Platform, the client application must imple-
ment the SpCbser ver interface. The interfaceis simple:

public interface SpCbserver

{

public System:String ~get Nane();

/**

* In the client's inplenmentation of this interface, they

* would sinply "case" on the event types (and event ids)
that they are

* notified with and handl e t hem appropriately.
*/

49

Publish/Subscribe API for .NET 2.0

public void notify(
cli::array<SpSubscri pti onEvent ~>"t heEvents);

There are the two methods must be implemented within the class:

» Theget Nane() method retrieves the “name” of the SpObserver. It is similar to the subscription ob-
ject'sget Nane() method.

e« The notify(cli::array<SpSubscriptionEvent "> ~theEvents) method is the
"link" between the underlying Sybase Aleri Streaming Platform subscription, which the subscri p-
ti on object manages, and the client application object. The SpSubscription calls this method to send
updates to the SpObserver as they come in from the Sybase Aleri Streaming Platform.

As updates flow from the Sybase Aleri Streaming Platformto the subscri pti on object, the sub-
scri pti on object forwards them to the appropriate SpObser ver aobjects (that is, those that have re-
gistered with the SpSubscription object), by «caling each ones notify(
cli::array<SpSubscriptionEvent ~> ~theEvents) implementation.

The subscription's underlying stream update acquisition and delivery mechanism runs in a separate
thread used to manage the “read-only” Gateway [/O subscription socket, the noti -
fy(cli::array<SpSubscripti onEvent "> ~theEvents) methods actually execute from
within the context of this thread. The client application programmer must be conscious of this fact and
program accordingly.

After the SpCbser ver class has been implemented, one or more instances of this class must be re-
gistered with the SpSubscri pti on or SpSubscri pti onProj ecti on object created previoudly.
To register the observer, call the addSt r eantbser ver or addSt r eansCbser ver method of the
SpSubscri pti on object, or the addObser ver method of the SpSubscri pti onProj ecti on
object. depending on the kind of Subscription.

Brief descriptions of these methods follow.

* The addSt r eamObser ver (System : String st reanNane,
al eri _PubSubnet :: SpCbserver "theCbserver) method instructs the SpSubscri p-
ti on object to send all updates for the st r eanNane to the SpQbser ver object specified by the
t heCbser ver parameter. The client application can register as many observers as necessary.

* The addStreansCbserver(cli::array<System:String >
"t heSt r eamNanes, al eri _PubSubnet: : SpQbserver 7t heGbserver) method can be
used to associate two or more streams with a particular SpObserver. The same thing can be accom-
plished by making multiple cals to the addSt r eanmObser ver (...) method described previ-
ously. Again, multiple addSt r eansCbser ver (.. .) calscan be made to set up the streams and
their corresponding observers.

e The addObser ver (pubsubnet :: SpQbserver ~theCbserver) method is defined in the
SpSubscri ptionProj ecti on interface. It registers the specified observer with the SpSub-
scriptionProjection object. Although more than one observer can be be added to the
SpSubscri pti onProj ecti on object by calling this method multiple times, it is recommended
that only one observer be added.

Note that this version of addCbser ver does not take a stream name. Any observer added to a
SpSubscri pti onProj ecti on object will only get data specified in the SQL statement provided
when the SpSubspcri pti onProj ecti on object was created.

50

Publish/Subscribe API for .NET 2.0

All three varieties of the addObser ver method return an integer value that represents a “handle” to
the registered SpObser ver object. Later on, the client application programmer can use the cookie in a
cal tother emoveCbser ver (i nt t heCooki e) method. The signature for this method is defined
inthe SpSubscri pti onConmon interface.

4.2.2.4. Adding or Removing Streams from an Active Subscription

The SpSubscri ption object provides two methods that can modify an SpSubscription object's
stream set after itsst art () method has been called: subscri be(const char *streanNane)
andunsubscri be(const char *streamNane).

Each of these methods takes a single streanNane parameter. Before calling sub-
scribe(System: String ~streanNane), the client application program must first ensure that
thereisan SpObser ver associated with the about to be subscribed stream. The client application pro-
gram can accomplish this by first caling addStreantbserver(System: String
AstreanNane, al eri _PubSubnet:: SpGbserver "theQbserver) toregister the observer
for the stream, then subscri be(System : Stri ng ~streanNane).

If successful, the subscri be(String streanNane) and unsubscri be(String stream
Nane) methods return zeroes. Otherwise, non-zero error codes are sent back to the caller. The
SpUtils. get ErrorMessage(rc) method can be called to see the error text associated with the
error code.

Note that the SpSubscri pti onProj ecti on object does not have these two methods. There is no
notion of streams for this object, only anotion of SQL Statements.

4.2.2.5. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using .NET

The SHINE flag can support a new subscription mode for partial-record updates in .NET with SpSub-
Fl ags. SHI NE

Thefollowing is an example of how to use this mode:

sub = spPl atform creat eSubscri pti on("test_subnanme",
SpSubFI ags. BASE| SpSubFl ags. SHI NE,
SpDel i ver yType. DELI VER_PARSED,
spSt at us) ;

4.2.3. Receive/Process Subscription Updates Using .NET 2.0

When the subscription is active, an array of SpSubscri pti onEvent objects is delivered to the
SpObser ver. Each SpSubscri pti onEvent object represents “something” that has happened to
thesubscri pti on object, whereby the subscri pti on object “thought” that it was appropriate to
“notify” itsregistered SpQbser ver objects.

For example, an SpSubscriptionEvent is sent to the SpCbser ver if a stream update has arrived, or if
the Sybase Aleri Streaming Platform is shut down, and so forth.

Thenotify(...) method that the programmer implements in the SpCbser ver object must iterate
over the vector of SpSubscri pti onEvent s (each one uniquely identified by an Event | d) to de-
termine the action to be taken.

4.2.3.1. Parse Sybase Aleri Streaming Platform Data

The facility for inspecting parsing errors within the SpCbser ver isnot supported by this release of the
.NET version of the API.

51

Publish/Subscribe API for .NET 2.0

4.3. Publishing to the Sybase Aleri Streaming Platform Using .NET 2.0

The Pub/Sub API defines an object of type SpPubl i cat i on, which can enable a client application to
publish information to the Sybase Aleri Streaming Platform.

Whether your program is publishing static data (such as a reference table) or dynamic data (such as
stock market data) to the Sybase Aleri Streaming Platform, the same mechanism is used.

4.3.1. Create Objects for SP Publication Using .NET 2.0

As with the Subscription mechanism, the Pub/Sub API for .NET 2.0 defines objects that must be instan-
tiated to make the publish process work.

4.3.1.1. Create the SpPublication Object

An SpPubl i cat i on object is used by the Pub/Sub API to submit “publications’ (stream data) to the
Sybase Aleri Streaming Platform. This object isinstantiated in a call to afactory method provided by the
SpPI at f or m object which has been instantiated previously (as with the Pub/Sub APl subscription
mechanism). The signature of this factory method is:

SpPubl i cati on ~createPublication(System:String “nane,
al eri _PubSubnet :: SpPl at f or nSt at us ~st at us) ;

Detalls:

* String namne isthe name that the client application program intends to assign to the SpPubl i c-
at i on object being created. It is not necessary for this name to be unique although it is a good idea
for error reporting purposes.

» SpPl at f or nBt at us statusis an object that returns error code information from the cr eat ePub-
l'ication(...) factory method if the SpPubl i cati on object cannot be created.

The following example shows how to use the SpPI at f or mobject called “sp” to create an SpPub-
[ication object:

SpPubl i cati on pub = sp.createPublication(“M/Publication 1" ,status);

In the above example, st at us isan SpPl at f or St at us object that was created previously with the
SpFact ory. creat ePl at f or nSt at us() factory method.

The SpPubl i cati on object is not re-entrant. If multiple threads are going to publish to the Sybase
Aleri Streaming Platform, each thread should use a different SpPubl i cat i on object. Each of these
SpPubl i cat i on objects should have its own socket connection to the Streaming Processor.

4.3.1.2. Create a Data Object for Publication

The following code example shows how to use the cr eat eSt r eanDat aRecord(...) factory
method to create an SpSt r eanDat aRecor d object that can be published to the Sybase Aleri Stream-
ing Platform:

/*
* Source Streamis called “input”, and has the foll ow ng
* record | ayout:

52

Publish/Subscribe API for .NET 2.0

int, string, double, date, int, string, double, date
*

=]

Object[] fieldData = new Cbject[8];

fieldData[0] = intCounter++;

fieldData[1] = "do_nmystring " + intCounter;
fiel dData[2] = doubl eDat a++;

fieldData] 3] = DateTi ne. Now,

fieldData[4] = intCounter;

fieldData[5] = "do_nystring2_ " + intCounter;
fiel dDat a[6] = doubl eDat a++;

fieldData[7] = DateTi ne. Now,

SpSt ream st ream = sp. get Strean(“i nput”);

*

Use the createStreanDataRecord(...) factory nethod to
bundl e up the stream fieldData vector, stream op code,
and stream flags into an SpStreanDat aRecord obj ect.

At the nonment, the SpStreanDat aRecord object is the
basic unit of publication. You can publish these one at
a tine, or you can publish themas a group (with or

wi t hout transaction bl ocks).

NOTE: |f you wish to publish a group of

SpSt r eanDat aRecord obj ects

as a transaction, then all of the SpStreanDataRecords
within the group nmust belong to the sanme stream

EE I R I R T T T .)

*/
SpSt r eanDat aRecord sdr = SpFact ory. cr eat eSt r eanDat aRecor d(

stream fi el dDat a, SpOpCodes. UPSERT, SpSt r eanl ags. NULLFLAG
status);

if (sdr == null)

Syst em Consol e. Wi teLi ne("Coul d not createStreanDataRecord, status=" +
st at us. get Error Code()) ;

Syst em Consol e. WiteLine("Error Message:" +
st at us. get Error Message());
return status. getErrorCode();

The client application program can create a large number of these SpSt r eanDat aRecor d objects,
placing each of them in a common array. Next, you can use one of the SpPubl i cat i on's publishing
methods to send all rows of the stream data that are stored in the vector, to the Sybase Aleri Streaming
Platform, either individually, using transactions, or envelopes.

The following code example shows how to publish an array of SpSt r eanDat aRecor d objectsas a
single transaction. In this example, sp is an SpPlatform object that was previously instantiated and
st ream nput Dat a isan array that contains alarge number of SpSt r eanDat aRecor d objects.

/:*Create the publication object associated with the platform
S{ri ng nane = "testPub_1";

SpPubl i cati on pub = sp.createPublication(name, status);

if (pub == null)

System Consol e. Witeline("Couldn't create a publication object, status=" +

53

Publish/Subscribe API for .NET 2.0

status);
Syst em Consol e. Witeline (
st at us. get Err or Message()
return status. get Error Code

“Error nessage = " +

i
()
}
/*

* Start the publication object (this opens up a GWI/O
* socket connection). Don't forget to eventually close

* down the SpPublication object(via the “stop()” nethod,
* |ater on when you have finished using it,

*/
rc = pub.start();
if (rc !'=0)
System Consol e. Witeline("Couldn't start the publication object.");
System Consol e. Witeline (“Error nessage = " +
SpUtils. get Error Message(rc));
return rc;
}
/*
* Publish the array of SpStreanDataRecord objects as one
* big transaction.
*

/

rc = pub. publishTransacti on(strean nput Dat a,
SpOpCodes. | NSERT,
SpSt reantl ags. NULLFLAG,

1

if (rc 1= 0)
System Consol e. Witeline ("Couldn't publish the transaction.");
System Consol e. Witeline (“Error message = " +
SpUtils. get Error Message(rc));
return rc;

}

4.3.1.3. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using .NET

Set methods should be called before SpPublication start() method. SpPlatformStatus should be checked
after the start() for any possible problem. If you fail to send exit-on-close, the status is set to
SP_ERROR SETTING EXIT. If you fall to send exit-on-timeout, the status is set to
SP_ERROR PUB_ERRCR SETTI NG EXI T.

If setFinalizer and setExitOnTimeout are called, the second cal returns
SP_ERROR PUB EXI T_ALREADYSET (setFinalizer) or SP_ ERROR PUB_ACTI ON_ALREADYSET
(setExitOnTimeout).

Thefollowing is an example using .NET 2.0.

voi d set Exi t OnTi neout (i nt timeout, SpPl atfornttatus ~status);
voi d set Exi t OnCl ose(SpPI at f or nf5t at us “st at us) ;
i nt getExitOnTi neout () ;
bool get ExitOnd ose();

4.3.2. Handling Stale Data

Publish/Subscribe API for .NET 2.0

When a publishing source stops sending data to the Sybase Aleri Streaming Platform, the previously
published data is retained. Depending on how long it has been since the last update, you may not want
this data to be used as if it were current. The publish/subscribe APIs include two functions to to enable
publishers to handle this data.

The “setFinaizer” function sets a timeout value (in milliseconds) and an SQL statement action. If the
Sybase Aleri Streaming Platform receives no data on this connection within the specified time, the SQL
statement is run. This SQL statement can perform any of the following actions:

» Delete previously published data.
» Mark previously published data as stale (viaafield for that purpose in the data).

» Perform some other determined action on the source streams (and, consequently, the derived streams
from these source streams).

In the following example, if the datais not updated within 2000 milliseconds, it is deleted.

set Fi nal i zer (2000, “del ete from Positions where SharesHeld > 1", spStatus)

The “sendHeartbeat” function sends a keep-alive message to the Sybase Aleri Streaming Platform. This
function can be used to keep the connection alive and prevent the SQL statement from running, if
“setFinalizer” has previously been called. As the following example shows, the “sendHeartbeat” func-
tion takes no arguments.

sendHear t beat ()

4.4. Record/Playback using .NET 2.0

In order to record data from the Sybase Aleri Streaming Platform, a client program needs to create and
configure an SpNetPlatform object in the same way you would for subscribing or publishing. Once an
SpNetPlatform object has been created, you should create an SpNetRecorder object using the factory
method createRecorder(...). If an SpNetRecorder is created successfully, the program calls the start
method. This spawns a background thread which subscribes to the configured streams and records all
events for those streams. Recording will stop and the spawned thread terminate once the configured
number of records have been processed or if the calling program calls stop(). Recording can be mon-
itored by calling the getRecordCount() function which returns the number of records processed so far.

Initialize SpFactory ...
Create SpStatus and SpPl at f or mPar ms obj ects ...
Create SpPl atform object ...

~——
~——

Create recorder. It needs the follow ng paraneters to run
recorder nane (String) : a nane to identify the instance of the recording object
recorder file (String) : name of the file to store the recorded infornation

~——————
—~————

streans : array of strings, containing nanes of streans to record events for
flags (int) : recordi ng options (encrypted/ RSA/ get base dat a)

max records (int) : mexi mum nunber of data records to record

st at us . returns error nmessages if any

// init recorder paraneters - recorder nanme, filenane, streans, etc
SpRecorder recorder = spPl atform creat eRecorder(recNanme, recFile, streanms, flags, nmaxRecords, status)

if (null == recorder) {
Consol e. WitelLine("Error starting recorder - " + status.getErrorMessage())

55

Publish/Subscribe API for .NET 2.0

/1 cleanup ... and exit
} else
recorder.start();

// Wait, nonitor, etc ...

/'l To stop recording
recorder. stop();

/1 C eanup

To play back recorded data, a client program creates an SpPlayback object using the factory method in
SpPlatform. The 'scale’ parameter is of particular interest. This is a double that can be used to scale the
rate of playback as afactor of the original recorded rate (for example, twice as fast or half as slow). Val-
ues -1 to 1 have no effect - datais played back at the rate it was recorded. A value greater than 1 speeds
up playback by that factor, for example, a value of 2 doubles the playback speed. A value less than -1
slows down playback by that factor, for example, avalue of -3 will slow down playback by afactor of 3.
The scale can be changed dynamically while playback isin progress.

/1 Initialize SpFactory ...

/Il Create SpStatus and SpPl atfornParnms objects ...

/Il Create platform object ...

/I Create playback. It needs the followi ng paraneters to run

/'l playback nane (string) : a nane to identify the instance of the playback object
Il playback file (string) : name of the file containing previously recorded data
/] scal e (doubl e) . allows to scale the playback rate

/1 max records (int) : maxi num nunber of data records to pl ayback

/] status : returns error nessages if any

[/ init playback paraneters - recorder nane, filenane, streans, etc
SpPl ayback pl ayback = spPl atform creat ePl ayback(pl ayNane, playFile, scale, maxRecords, status);

if (null == playback) {
Consol e. WiteLine("Error starting recorder - " + status.getErrorMssage());
/] cleanup ... and exit
} else {
pl ayback. set SendUpsert (true); // optionally enable converting opcodes to UPSERT
pl ayback. start () ;

// Wait, nonitor, etc ...

/'l To stop recording
pl ayback. st op();

4.5. Special Topics for SP Publication/Subscription Using .NET 2.0
4.5.1. Publication/Subscription in a High Availability (Hot Spare) Configuration

The Sybase Aleri Streaming Platform can be started with adual server configuration, in which one serv-
er is the primary server and the other is considered the Hot Spare and/or secondary server The Pub/Sub
APl can be made aware of the High Availability configuration, and will perform an automatic
switchover to the secondary server if the primary server goes down. See the Administrators Guide for
more details on configuring a hot spare server.

The switchover to a Hot Spare server has an impact on any active SpSubscri pti on and SpPub-
I i cati on objects. In that case, subscription and publication objects have to be re-established on the
secondary server.

The Pub/Sub API is made aware of the High Availability configuration through the configured contents
of the SpPI at f or nPar s object that was passed into SpFact ory. creat ePl at f or n{) . Refer
to the set of overloaded SpFact ory. creat ePl at f or mPar ns(. . .) methods, and the SpPlI at -

f or mPar s object for High Availability configuration detail.

56

Publish/Subscribe API for .NET 2.0

4.5.1.1. Subscription Mechanisms in a High Availability Configuration

When the primary server goes down, the underlying subscription thread receives an exception on the
Gateway 1/0 socket connection that receives the stream updates being delivered from the primary serv-
er. When this event occurs, the Pub/Sub API recognizes that there is a High Availability configuration
and attempts to connect to the secondary server and re-establish the subscription. Before it does this, the
Pub/Sub API has to wait for the secondary server to internally change its state to that of a primary serv-
er. Once a successful connection is made to the secondary, Hot Spare, server and it has become the
primary server, the subscriptions are re-established. During the switchover to the secondary server, the
subscri pti on object delivers several events to the SpCbser ver objects listening for SpSub-

scriptionEvents.

* SpEventld.EVID_COMMUNICATOR_HALTED

It is delivered to the SpCbser ver when the exception is received on the socket receiving the sub-
scription messages from the primary server.

« SpEventld.EVID_HOT_SPARE_SWITCH_OVER_INITIATED

It is delivered to the SpObser ver when the Pub/Sub API recognizes that a connection attempt
should be made to the Hot Spare server. Note that the High Availability connection parameters were
specified in the SpPl at f r onPar ns object passed to the SpFact ory. creat ePl at f or m()

method when the underlying SpPI at f or mwasfirst created.

e SpEventld.EVID_HOT_SPARE_SWITCH_OVER_SUCCEEDED
It is delivered to the SpObserver when the connection to the Hot Spare server is made successfully.
e SpEventld.EVID_HOT_SPARE_SWITCH_OVER FAILED

It is delivered to the SpCbser ver when the connection to the hot spare server fails.

If the switchover to the Hot Spare server in aHigh Availability Sybase Aleri Streaming Platform config-
uration is a success, the subscription(s) will be re-established using the same ddlivery flag values that
were originally used when the subscription(s) against the primary server were established. This means
that if the subscription originally requested the BASE snapshot of the stream, the new subscription (now
going against the Hot Spare server) will also request the BASE snapshot of the stream as well. It's up to
you to determine what needs to be done with the contents of the snapshot received from the Hot Spare
server.

When there is a successful switchover to the Hot Spare server, the SpPl at f or maobject takes note of
this, and performs some internal bookkeeping, so that the SpPI at f or m get Host () and SpPlI at -
form get Port () methodswill return the host name and port number of the new primary server.

4.5.1.2. Publication Mechanisms in a High Availability Configuration

When the primary server goes down during an attempt to send a publication request to the server in a
High Availability configuration, the SpPubl i cat i on object will detect this and attempt to perform a
switchover to the Hot Spare machine. If the switchover is successful, the publ i cat i on object will
then attempt to re-send the data to the new primary server. If the publication can not take place, a hon-
zero error codeis returned to the caller indicating the problem.

Y ou should treat the secondary server within a High Availability configuration as a passive server. The
program should never log on to the secondary server, or attempt to send it data while the primary server
is aive and well. It is the responsibility of the running High Availability configuration to manage both
the primary and secondary servers appropriately. If the primary server in a High Availability configura-
tion goes down, the secondary server will take over and become the new primary server. Once the sec-

57

Publish/Subscribe API for .NET 2.0

ondary server becomes the primary server, data can then be published to the new primary server. Re-
member, the Pub/Sub API waits for the secondary server state to switch over to primary, before publish-
ing data.

58

Chapter 5. The On-Demand SQL Interface

The client application can query streams, and modify source streams, in the Sybase Aleri Streaming
Platform through the JDBC interface, ODBC interface, or in C/C++ programs through a native interface.

5.1. Aleri SQL Queries and Statements

The Sybase Aleri Streaming Platform accepts a subset of SQL92 for sel ect, i nsert, updat e, and
del et e statements. A sel ect statement has the form

select [distinct] [top <nunP]
<expr> [[as] <name>] [, <expr> [[as] <name>]]*
from <streanp
[where <expr>]
[group by <expr> [, <expr>]*]
[order by <expr>[asc|desc] [, <expr> [asc|desc]]*]

where each expression expr is an expression. See Authoring Reference Guide for alist of functions and
operations that can be used in such expressions. The form of sel ect statements thus allows queries
over one stream only (implying no joins). It does not allow subqueries either, nor advanced features like
“between”. It is sufficient, though, for many queries.

The other SQL statements can be used to insert, update, or delete records from source streams. Ani n-
sert statement hasthe form

insert into <streant (<name> [, <nane>]*)
val ues (<expr> [, <expr>]*)

The column names appear in the second part of the statement, and the corresponding values for those
columns appear in the third part (omitted columns are set to null automatically). An updat e statement
has the form

updat e <streanr set <nane>=<expr> [, <nane>=<expr >]*
[where <expr>]

The optional wher e clause can be used to limit the updates to those records that pass the expression. A
del et e statement has the similar form

del ete from <strean> [where <expr>]
Thei nsert, updat e, and del et e statements can be grouped into a single statement by separating
them with semicolons. Thus,
del ete from Dept where dn=' SWP'; update Enp set dn='' where dn=' SW
isalegal SQL statement too.

5.2. ODBC Connectivity

The Sybase Aleri Streaming Platform distribution includes a modified version of the Postgres ODBC
driver. Using this driver, C/C++ programs send SQL queries or statements to the Sybase Aleri Stream-
ing Platform. The drivers in third-party applications may aso be used. For example, Microsoft Excel®
can be used to pull data from the Sybase Aleri Streaming Platform into a spreadsheet.

The Sybase Aleri Streaming Platform distribution'sdr i ver s/ ODBC directory contains the source code
and pre-built binaries for:

» Microsoft Windows® 2000 and XP (in thewi n32 subdirectory)

59

The On-Demand SQL Interface

» Linux 64-bit (inthex86_64 subdirectory)

» Solaris 32-hit (in the sun4 subdirectory)

 Solaris 64-hit (inthe sun4/ spar cv9 subdirectory)

Linux and Solaris require the UNIX® ODBC package, version 229 or above. See ht-
tp://www.unixodbc.org for more information on installation and configuration.

The win32 subdirectory contains the . nsi file for first-time installation of the drivers, and an up-
gr ade. bat file to replace previously installed drivers. Double-click the . nsi file, or the up-

gr ade. bat file, to perform the installation.

To configure Data Source Names (DSNs) on a Windows computer:

1. Open the Windows Control Panel.
2. Select Administrative Tools.

3. Select Data Sources (ODBC) and configure the DSNSs.

This procedure makes these DSNs available for use by third-party tools.
5.3. JDBC Connectivity

The distribution includes a modified version of the Postgres JDBC driver. You can write Java programs
that send SQL queries or statements to the Sybase Aleri Streaming Platform using this driver.

The modified version of the Postgres JDBC driver is included with the distribution in the | i b directory.
The JDBC driver JAR file must be in the classpath of the Java program. Load the driver using the fol-
lowing Java statement:

Cl ass. for Name("org. postgresql.Driver");

the form of the JIDBC connection string is:

j dbc: post gresql : // <sp server machi ne>: <sp sql port nunp/ <dat abase>

In this version, the <dat abase> portion of the connection string is ignored. The <dat abase> con-
nection will become meaningful when Container objects are implemented. The Java program can then
connect using the Dri ver Manager . get Connect i on JDBC method and send SQL statements to
the Sybase Aleri Streaming Platform for processing. Refer to the Oracle® JDBC online documentation
[http://www.oracle.com/technetwork/javaljavase/tech/index-jsp136101.html] for more details on JDBC.

60

http://www.oracle.com/technetwork/java/javase/tech/index-jsp136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp136101.html

Chapter 6. The Command and Control Interface

Each Sybase Aleri Streaming Platform instance has a single Command and Control server thread. This
module service handles requests that probe the running Sybase Aleri Streaming Platform for information
(metadata), as well as those that direct it to perform various tasks (quiesce, shutdown, and so forth). The
module is implemented as an XMLRPC server, along with a compact Abyss HTTP server to handle any
Command and Control requests. Any external library that supports XMLRPC can be used to interface to
Command and Control. The XMLRPC-C has been tested from C/C++, and libXMLRPC has been tested
from Java.

6.1. Security for the On-Demand SQL Interface
6.1.1. Authentication Using the SQL On-Demand Interface

Authentication is performed through an initia call to the login function. The login function returns an
authorization token (of type string) which must be passed in all subsegquent commands.

6.1.2. Encryption Using the SQL On-Demand Interface

Currently, the lightweight Abyss server HTTP embedded in the Sybase Aleri Streaming Platform does
not implement HTTPS. To get around this issue, and alow secure communications with the Command
and Control interface, a small HTTPS-to-HTTP proxy program is included with the product. It is called
sslwrap and may be invoked as follows:

sslwap -port CnCPort -accept SecurePort -cert CertFile -key KeyFile -nbio

All Command and Control messages may be posted in a secure way using an HTTPS:; address to the Se-
curePort. The certificate and key files must be the same files that are used to start the Sybase Aleri
Streaming Platform.

The sp_server script supplied with the distribution wraps the Sybase Aleri Streaming Platform execut-
able and the sslwrap utility together, so it can be managed by a single script.

61

Chapter 7. Embeddable Sybase Aleri Streaming
Platform

Sybase Aleri Streaming Platform functionality can be embedded into a user process. Y ou can only have
one instance of the Sybase Aleri Streaming Platform in a process, and you can write your own main()
function to instantiate it. It may use the option parsing as a normal sp-opt binary or provide options to
the model in an aready parsed form.

Y ou can store the model in an encrypted form in this executable or receive it from an outside source, de-
crypt it and pass as an argument to the Sybase Aleri Streaming Platform. The model hiding the option
can also prevent the users from seeing the model.

The Sybase Aleri Streaming Platform is instantiated and controlled using three classes:

» SpOptions - parsed option structure
e SpServer - instantiation of the Sybase Aleri Streaming Platform

» SpControl - access to control SpServer after it's started. Currently the only supported functionality is
the stopping of the server.

An example of the main() function used by sp-opt as shipped:

#i nclude >stdio. h>
#i ncl ude " SpOpti ons. hpp"
#i ncl ude " SpServer. hpp"
#i ncl ude " SpControl . hpp"
usi ng nanmespace std;
int main(int ac, char* av[])
SpOpt i ons spo;
if (!spo.parseQptions(ac, av)) {
SpOpt i ons: : usage(av[0]);
exit(1);
}
if (spo._stopAfterFirstPass) {
exit(0); //we just exit as the revision is the first thing
printed.

%f (!'spo.isValid())
exit(1);

SpServer: : set Si gnal Handl ers();
SpServer server (&spo);

SpControl *control = server.initialize();
if (control == 0)
exit(1);

int r = server.run();
del ete control ;

return r;

62

Embeddable Sybase Aleri Streaming Platform

An example of a custom main() function with an embedded hidden model (also provided in ex-
anpl es/ pr ogr anm ng/ enbedded):

>

#i ncl ude >stdio. h>

#i ncl ude "SpOpti ons. hpp"
#i ncl ude " SpServer. hpp"
#i ncl ude "SpControl . hpp"

usi ng nanespace st d;
int main(int ac, char* av[])

char nodel [] =

">?xm version=\"1.0\" encodi ng=\"UTF-8\"?"

" >l-- MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_MODEL_ -- > "
>Pl at form xm ns: xsi =\ "htt p: // wwv. w3. or g/ 2001/ XM_LSchema- i nst ance\ " >"

" >Store file=\"store\" id=\"store\"/>"

>SourceStream i d=\"i nput\" store=\"store\" ofile=\"output/input.out\"
>

>Col um dat atype=\"int32\" key=\"true\" name=\"a\"/ >"
>Col umm dat atype=\"string\" key=\"true\" nane=\"b\"/ >"
>Col unm dat at ype=\ "doubl e\ " key=\"true\" nane=\"c\"/ >"
" >Col umm dat at ype=\"date\" key=\"true\" nane=\"d\"/ >"
" >Col umm dat atype=\"int32\" key=\"false\" nane=\"intData\"/ >"

" >Col um dat atype=\"string\" key=\"fal se\" nane=\"charData\"/ >"
" >Col umm dat at ype=\"doubl e\" key=\"fal se\" nane=\"floatData\"/ >"
>Col umm dat at ype=\"date\" key=\"fal se\" nane=\"dateData\"/>"

>/ Sour ceSt r eanm>"

" >Conput eSt ream i d=\"conpute\" istreams\"input\" ofile=
\“out put/conpute.out\" store=\"store\" >"
>Col umExpr essi on key=\"true\" name=\"a
\“> i nput.a >/ Col umExpr essi on >"
>Col ummExpr essi on key=\"true\" name=\"b
\ ">i nput . b>/ Col utmExpr essi on >"
" >Col ummExpr essi on key=\"true\" name=\"c
\ >i nput. ¢ >/ Col utmExpr essi on >"
>Col ummExpr essi on key=\"true\" name=\"d
\“ >i nput. d >/ Col umExpr essi on >"
>Col umExpr essi on key=\"fal se\" nanme=\"intData\">i nput.intData +
1 >/ Col utmExpr essi on >"
>Col umExpr essi on key=\"fal se\" nanme=\"char Dat a
\'" >i nput . char Dat a>/ Col urmExpr ession >"
" >Col umExpr essi on key=\"fal se\" name=\"fl| oat Dat a
\'" >input. fl oat Dat a>/ Col ummExpr essi on >"
" >Col umExpr essi on key=\"fal se\" nane=\"dat eDat a
\'" >input.dateData >/ Col umExpr essi on >"
" >/ Conput eSt r eam >"

>/ Pl at form >";
SpOpt i ons spo;

spo. debug = 7;

spo. _commandPort = 0;
spo. _sqgl Port = 0;

Spo. _optim ze = true;
spo. _hi deMbdel = true;

if (!spo.initOptions()) {
fprintf(stderr, "Failed to validate the opti ons???\n");
SpOpti ons: : usage(av[O0]);
exit(1);

}

i f (spo._stopAfterFirstPass) {
exit(0); // we just exit as the revision is the first thing
print ed.

if (lspo isvalid()) {
exit(1);

63

Embeddable Sybase Aleri Streaming Platform

SpSer ver: : set Si gnal Handl ers() ;
SpServer server (&spo);

SpControl *control = server.initialize(nodel);
if (control == 0)
exit(1);

/'l erase the nodel from nmenor
for (size_t i = strlen(nodel); i !=0; nodel[--i] ="' ') {}

int r = server.run();
del ete control;

return r;

The meaning of the options in SpOptions matches those used on the sp-opt command line. The added
options are;

bool _hideM odél; hidesthe model from the user.

string _platformHome; allows you to override the Sybase Aleri Streaming Platform home string.

_classPath; allows you to override the Java class path string.

_jvmPath; letsyou override the VM library path.

The values of the last three options are normally read from the environment variables.

Note:

You must use a compiler that is certified for the Sybase Aleri Streaming Platform. Those in-
clude GNU g++ compiler version 4.2.1 for Linux and Solaris and Microsoft Visual C++® com-
piler 2005 for Windows®.

Chapter 8. Plug-in Connector Framework

8.1. Introduction

Connectors allow for easy integration of the Sybase server with external data sources and sinks. A Sy-
base data model can include Input Connections and Output Connections. Each connection is associated
with a specific Data Location, where it is configured with a connector and all parameters required by
that connector.

Sybase provides a number of external Adapters that are integrated with the plug-in connector frame-
work. Once the Adapter and an associated connector profile are installed, Data L ocations can be defined
using the external Adapter. For more information on the use of these connectors, see the Authoring Ref-
erence.

The Plug-in Connector Framework provides a mechanism to create and add connectors that are not in-
cluded in the set that comes with the Sybase Aleri Streaming Platform. Plug-in connectors can be added
in the field and provide all necessary information to allow the Aleri Studio and server to manage and in-
teract with an external data source or sink. After a connector profile (. cnxml) fileisinstalled, a plug-in
connector can be used in the Data L ocation Explorer in the same way as built-in connectors.

The plug-in connector framework can also be used by Sybase customers and third parties to extend the
range of connectors with additional custom adapters and data sources or sinks. The plug-in connector's
framework is fully documented, allowing you to develop your own connectors that are fully integrated
with the Aleri Studio.

For example, the Reuters OMM Inbound Plug-in connector may be added to your moddl in advance of
installing the Reuters OMM Adapter. Once the external Adapter isinstalled, simply fill in the appropri-
ate connector profile parameters to useiit.

Similarly, you may create your own connector profiles to control custom Adapters. These custom Ad-
apters are simply data source/sink applications which themselves are built with Sybase's Pub/Sub API.
By using the Plug-in Connector Framework, a connector can start and stop the Adapter and (optionally)
provide discovery.

8.2. Plug-in Connector Profile

The profileisan XML file that contains the commands used by the Sybase components to start and stop
the external Adapter or application, to optionaly run data discovery, and other information that allows
the external Adapter/application to be configured from the Aleri Studio. The framework defines the
structure of the XML (. cnxnl) file that contains the connector profile.

The example below shows a connector profile that uses four of the utilities shipped with the Sybase
Aleri Streaming Platform (sp_convert, sp_upload, sp_cli, sp_discXM Lfiles) to fully define a function-
al plug-in connector that supports browsing a directory of files, schema discovery, the creation of a
source stream and data loading. This example profile, si npl i fi ed_xm _i nput _pl ugi n. cnxm ,
can be found in the $PLATFORM _HOVE/ | i b/ connect i ons directory. The directory isincluded in
the standard Sybase Aleri Streaming Platform distribution package.

Some of the very long lines below have been split for readability and formatting issues. If you are using
this to create your own connector XML file, make sure that all command parameters are asingleline, re-
gardless of length.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<Connector type="input" external ="true"
i d="sinplified_xm _input_pl ugin"
| abel ="Sinplified external XM. file input plugin connector”

65

Plug-in Connector Framework

descr="Exanpl e of uploading an XM_ file through a sinple external connector"
<Library file="sinple_ext" type="binary"/>

<l--
t he special section contains the special internal paraneters
which are prefixed with "x_". Although these are paraneters,
the framework requires themto be defined using the <Interna
.../> elenent. They are hidden fromthe user in the A eri Studio.
-->
<Speci al >
<Internal id="x_initialOnly"
| abel ="Does Initial Loading Only"
descr="Do initial |oading, or the continuous I|oading"
t ype="bool ean"
defaul t="true"
/>
<Internal id="x_addParantile"
| abel =" Add Paraneter File"
t ype="bool ean"
defaul t ="f al se"
/>
<Internal id="x_killRetryPeriod"
| abel ="Period to repeat the stop command until the process exits"
type="int"
def aul t ="1"
/>

<l--
Convert a file of xml record to Sybase Binary format using sp_convert,
pipe into the sp_upl oad program nam ng the upl oad connecti on
$pl at f or St r eam $pl at f or mConnect i on
-->
<I nternal id="x_uni xChmdExec"
| abel =" Execut e Conmand"
type="string"
def aul t =" $PLATFORM HOVE/ bi n/ sp_convert
-p $pl at f or MConmandPor t
&l t; " ; $direct ory/ $f i | enane" ; |
$PLATFORM HOVE/ bi n/ sp_upl oad
-m $pl at f or Bt r eam $pl at f or mConnect i on
-p $pl at f or mMCormandPort "
/>
<Internal id="x_w nCnuExec"
| abel =" Execut e Command"
type="string"
def aul t =" $+/ { $PLATFORM HOVE/ bi n/ sp_convert}
-p $pl at f or mMConmandPor t
&l t; " ; $direct ory/ $fi | enane" ; |
$+/ { SPLATFORM_HOVE/ bi n/ sp_upl oad}
-m $pl at f or n5t r eam $pl at f or nConnect i on
-p $pl at f or mCommandPort *

<I--
use the sp_cli conmand to stop an existing sp_upl oad connection naned:
$pl at f or nSt r eam $pl at f or mConnect i on
-->
<l nternal id="x_unixCndSt op"
| abel =" St op Conmand"
type="string"
def aul t =" $PLATFORM _HOVE/ bi n/ sp_cl
-p $pl at f or "ConmandPor t
"kill every {$platfornStream $pl at f or nmConnect i on}
& t;/dev/null"
/>
<Internal id="x_w nCndStop"
| abel =" St op Conmand"
type="string"
def aul t =" $+/ { SPLATFORM _HOVE/ bi n/ sp_cl i}
-p $pl at f or mCommandPort " kill every

66

Plug-in Connector Framework

{$pl at f or St r eam $pl at f or MConnecti on} &juot; & t; nul "
/>

<l--
use the sp_di scXM.files command to do data di scovery.
The command bel ow will have '-o0 “"<tenp file>"' added to it. It
will wite the discovered data in this file.
-->
<Internal id="x_uni xCdDi sc"
| abel =" Di scovery Command"
type="string"
def aul t =" $PLATFORM HOVE/ bi n/ sp_di scXM.fil es -d " ; $di r ect or y" ; "
/>
<Internal id="x_w nCndDi sc"
| abel =" Di scovery Command"
type="string"
def aul t =" $+/ { SPLATFORM HOVE/ bi n/ sp_di scXM.fi | es}
-d " ; $+/ {$di r ect or y} " ; "
/>
</ Speci al >

<Secti on>

<I--
Any paraneter defined here, is visible in the Aleri Studio, and may
be configured by the user at runtine in the data | ocati on explorer.
These are defined according to the $PLATFORM HOWE/ et ¢/ Connect or . xsd
schena.

== >

<Paraneter id="filenane"
| abel ="Fi | e"
descr="Fil e to upl oad"
type="t abl es"
use="r equi red"
/>
<Par aneter id="directory"
| abel ="path to file
descr="directory to search"
type="directory"
use="r equi red"
/>
</ Sect i on>
</ Connect or >

To see how this works, fire up an instance of the Aleri Studio. You can use the following steps to test
this plug-in connector:

1. Create anew datamodel using the visual editor or open an existing one.

2. Gotothe Data Location Explorer and select the plugin section.

3. Click the Create Data L ocation icon on the top of the panel =

4. Enter aname like "xmlInputPlug-in".
5. From the pop-up lists of connector types, choose Simplified external fileinput plugin connector.
6. Intheright panel labeled Basic

a. Enter adummy file name, likef 0o0.

b. Click in the Path to File attribute and navigate the directory selection diaog to

67

Plug-in Connector Framework

$PLATFORM HOVE/ exanpl es/ i nput/ xm _t abl es.

7. Now the Data Location is complete. After closing the Data Location panel, you can right click and
discover and drag and drop any of the discovered tables onto the authoring palette in exactly the

same way.

This simple plug-in and Data L ocation uses only a few of the supported system parameters and features
of the Plug-In Connector Framework. The following sections contain the comprehensive list of al avail-
able parameters and command with definitions.

8.3. System Parameters and Commands

See examples in $PLATFORM HOVE/ | i b/ connecti ons/ PLUG N_TEMPLATE. cnxm for a
sample cnxml file that may be copied and customized. It has all possible internal parameters embedded
init, and has comment blocksindicating their usage.

Parameters

X_parantile

X_par aFor mat

Xx_addPar anfi | e

x_initial Only

Xx_kil'l RetryPeri od

Specifies the file name that where the connector framework writes all intern-
al and user-defined parameters. It may use other internal parametersin spe-
cifying the file name. For example:

/ t np/ mynodel . $pl at f or NSt r eam
$pl at f or mConnect or . $pl at f or MComrandPort . cf g

Type: string
Set to "prop"”, "shell” or "xml" to choose the format for the parameter file.
Type: string

It determines if the parameter file name is automatically appended to all
x_cmd* strings. For example, if you specify the command as "cmd -f*, and
this is set to true, the actual command that is executed will be "cmd -f
<value of x_paramFile>.

Type: Boolean

If true, does initia loading only. Set to false for continuous loading. Initial
loading is useful for connectors that start, load some static data then finish,
thus allowing another connector group to start up in a staged loading scen-
ario.

Type: Boolean

If this parameter is >0 the x_{unix,win} CmdStop command will be retried
every x killRetry seconds, until the framework detects that the
X_{unix,win} CmdExec command has returned. If it is equal to zero, only
run the x_{unix,win} CmdStop once and assume that it has stopped the
X_{ unix,win} CmdExec command.

Type: integer

68

Plug-in Connector Framework

8.4. Read Only System Parameters
These parameters are filled in and available only when a model is started and the Sybase Aleri Stream-
ing Platform is running. Y ou cannot use these parameters for the discovery command.
pl at f or mHost name of the host where the platform runs

pl at f or nConmandPort number of the platform control port

pl at f or nBsl 1if SSL isused, O otherwise

pl at f or n5ql Por t number of the Sybase Aleri Streaming Platform, SQL port

pl at f or mAut h authentication of the Sybase Aleri Streaming Platform, with one of:
"none", "pam", "rsa", "gssapi”

pl at f or n5t r eam stream on which this connector runs

pl at f or nConnecti on name of this connector

8.5. Commands

Plug-in connector commands fall into two categories: those that run on the same host as the Aleri Stu-
dio, and those that run on the same host as the Sybase Aleri Streaming Platform. The discovery com-
mands, Xx_unixDiscCmd and x_winDiscCmd aways run on the Aleri Studio host. All other commands
run on the Sybase Aleri Streaming Platform host.

The Aleri Studio and the Sybase Aleri Streaming Platform are frequently on the same host so the devel-
opment of all command and driving scripts for the plug-in are straightforward. However, in the case of
remote execution, when the Aleri Studio and the Sybase Aleri Streaming Platform are running on differ-
ent hosts, the configuration becomes more complex.

For example, if the Aleri Studio is running on a Windows host, and the Sybase Aleri Streaming Platform
is set up through the Aleri Studio to execute on a remote Linux host, it implies that the discovery com-
mand and the discovery file name that the framework generates are running/generated in a Windows en-
vironment. The path to the discovery file is a Windows-specific path with drive letter and \' characters
used as path separators. In this case, the devel oper of the connector should write the discovery command
to run in a Windows environment while coding all other commands to remotely execute on the Linux
box via a user-configured ssh or rsh command.

X_unixCmdConfig, The configur e command should do any required parsing and/or checking of

x_winCmdConfig the parameters. It may also convert the parameters into the real format ex-
pected by the execution command by reading, parsing, and re-writing the
parameter file . If the configure command fails (non-zero return), it's repor-
ted as areset() error, and the connector fails to start.

X_unixCmdExec, When the Sybase Aleri Streaming Platform starts the connector, it executes

X_winCmdExec this command with its ending indicating that the connector has finished.

X_unixCmdsStop, The stop command runs from a separate thread, it should stop all processes

x_winCmdStop created with the x_{unix,win}CmdExec commands, thus causing the
X_{unix,win}CmdEXxec to return.

X_unixCmdcClean, The clean command runs after the the Sybase Aleri Streaming Platform has

x_winCmdClean stopped the connection, that is, when x_{unix,win}CmdExec returns.

69

Plug-in Connector Framework

x_winDiscCmd This command is for discovery. It should write a discovery file into the file
name passed to it. The parameter -0 "<temporary disc filename>" argument
is appended to this command before it is executed.

<di scover >
<t abl e nane="tabl e nane_1" />
<col um nanme="col nane_1" type="col type 1"/>

<col umm name="col _nanme_k" type="col type k"/>
</tabl e>

<t abl e nane="tabl e name_n" />
<col um nanme="col _nane_1" type="col type 1"/>

<col umm name="col _nanme_1" type="col type 1"/>

</t abl e>
</ di scover >

8.6. User-Defined Parameters and Parameter Substitution

These internal parameters and any number of user-defined parameters can be created in a connector xml
(cnxml) file. All parameters, system and user-defined, can be referenced in the command and/or script
arguments. These parameters behave it in a similar way to shell substitution variables. The simplest ex-
ample is from the previously described si nplifi ed xm _i nput pl ugi n. cnxm file. Please
note that some of the very long lines below have been split for readability and formatting issues.

<Internal id="x_uni xCrdExec"
| abel =" Execut e Command"
type="string"
def aul t =" $PLATFORM HOVE/ bi n/ sp_convert
-p $pl at f or mMConmandPor t
<"$directory/ $fil ename"
| $PLATFORM HOVE/ bi n/ sp_upl oad
-m $pl at f or St r eam $pl at f or mMConnecti on -p
$pl at f or nConmandPor t " />

External environment variables, such as PLATFORM_HOVE, may be expanded, as well as internal sys-
tem parameters (pl at f or mMCommandPort) and user-defined parameters (filename). The full se-
mantics for parameter expansion is:

$nanme

${ nane}

${ nane=val ue?substitution[:substitution]}
${ nanme<>val ue?substitution[:substitution]}
${ nane! =val ue?substitution[:substitution]}

70

Plug-in Connector Framework

${ nane==val ue?substitution[:substitution]}
${ nane<val ue?substitution[:substitution]}
${ nanme<=val ue?substitution[:substitution]}
${ nane>val ue?substitution[:substitution]}
${ nanme>=val ue?substitution[:substitution]}

All forms with {} may have a"+" added after "$" (for example, $+{name}). The presence of "+" means
that the result of the substitution will be parsed again and any valuesin it substituted.

"\" escapes the next character and prevents any special interpretation.

The conditional expression compares the value of a parameter with a constant value and uses either the
first substitution on success or second substitution on failure. The comparisons "==" and "!=" try to
compare the values as numbers. The "=" comparisons and "<>" try to compare values as strings. Any
characterslike"?', ":" and "}" in the values must be shielded with "\". The characters"{" and "}" in the
substitutions must be balanced, all unbalanced braces must be shielded with "\". The quote characters
are NOT treated as special.

This form of substitution, $+{...}, may contain references to other variables. This is implemented by
passing the result of a substitution through one more round of substitution. The consequence is that extra
layers of "\" may be needed for shielding. For example, the string

$+{ name=A\\}

would produce one "\" if the parameter "name" is empty. On the first pass each pair of backslashes is
turned into one backslash, and then on the second pass "\\" turnsinto a single backslash.

Specia substitution syntax for Windows convenience:
$/{value}
$+/{vaue}

Replaces all the forward slashes in the value by backslashes, for convenience of specifying the Windows
paths that otherwise would have to have all the slashes escaped.

$%f{ value}
$+%{ value}
Replaces all the '%' with '%%' as escaping for Windows.

If the resulting string is passed to shell or cmd.exe for execution, shell or cmd.exe would do its own sub-
stitution too.

Here is an example using some of the more powerful substitution features to define the execution com-
mand as in the simple example. However, you may make use of the conditional features to support op-
tional authentication/encryption and an optional user-defined date format.

<I nternal id="x_unixCrdExec"

| abel =" Execut e Commrand"

type="string"

def aul t =" $PLATFORM _HOVE/ bi n/ sp_convert
${pl at f or nBsl| ==17?- e}
$+{ dat eFor mat <>?- m ' $dat eFor mat ' }
-c ' $+{user=2user: $user}: $password’
-p $pl at f or mMConmandPor t

71

Plug-in Connector Framework

<"$directory/ $fil enane" |
$PLATFORM HOVE/ bi n/ sp_upl oad
${pl at f or nSsl ==1?-e} -m
$pl at f or nSt r eam $pl at f or nConnect i on
/ -c '$user: $password' -p $pl at f or nComrandPort "
>

8.7. Notes on Auto Generated Parameter Files

The basic plug-in framework, when started, writes its set of parameters (system and user-defined) to a
parameter file. Thisfileiswritten in either;

 Javaproperties
* shell assignments

e simple XML format

Commands then have full access to the parameter file.

If you would like to see how the commands are used, suppose you added the following to the previous
example, si mpl i fi ed_xm _i nput _pl ugi n. cnxm ,

<Internal id="x_parantile"
| abel =" Paraneter File"
type="string"
def aul t ="/t np/ PARAMETER_FI LE. t xt "
/>
<Internal id="x_parantormt"
| abel =" Par anet er For mat"
type="string"
def aul t =" pr op"
/>
<Internal id="x_addParantile"
| abel =" Add Paraneter File"
t ype="bool ean"
/ def aul t ="f al se"
>

when the connector starts, it writesin/ t np/ PARAMETER_FI LE. t xt

di rect ory=/ home/ sj k/ wor k/ al eri/ci marron
[branches/ 3. 1/ exanpl es/ i nput / xm _t abl es
filenanme=trades. xm

pl at f or mMAut h=none

pl at f or mMCommandPor t =31415

pl at f or nConnect i on=Connecti onl

pl at f or nHost =sj k- | apt op

pl at f or n5ql Port =22200

pl at f or nSsl =0

pl at f or n5t r eam=Tr ades

Or afull list of al parameters, in the Java properties format. Note the format could have been specified

72

Plug-in Connector Framework

as "shell" for shell assignments, or as "xml" for asimple XML format.

When x_addPar anfi | e is specified astrue,

<Internal id="x_addParantile"
| abel =" Add Par aneter File"
t ype="bool ean"
defaul t="true"
/>

the argument / t np/ PARAMETER _FI LE. t xt isadded to all commands prior to being executed.
8.8. A Parameter of Type configFilename

If you create a user-defined parameter of type conf gFi | enane, such as:

<Paranet er id="ConfigFile"
| abel =" Connect or configuration fil enane"
t ype="confi gFi | enane"
defaul t=""
/>

Then clicking in the value portion of thisfield in the Data Location Explorer will bring up afile selector
diaog, alowing the user to choose a file on the local file system. Right-clicking on the read-only name
brings up a user interface gesture, alowing for editing of the file contents. This provides the connector
author away to specify user editable configuration files.

8.9. Other Parameter Types

The Connect or . xsd schemaallows several useful types for user-defined parameters, including:

string simple text

int integer

uint unsigned integer

range fixed range integer

double double precision floating point

choice choose from fixed number of choices

filename filename (brings up file selector dialog

directory directory (brings up a directory selector dialog

tables A string that is automatically filled in when a stream is created via the discov-
ery mechanism.

password text field that is hidden when entering datainto it.

configFilename

filename (brings up afileselector and file editor).

73

Plug-in Connector Framework

The other types in the Connect or . xsd schema used in the internal connector framework but should
not be used when creating plug-in connectors. Those include runtimeFilename, runtimeDirectory, text,
guery, and permutation.

Note

The Start/Stop commands are run by the Sybase Aleri Streaming Platform while discovery is
run by the Aleri Studio. This distinction can effect use of the aforementioned parameters.

74

Appendix A. Reference Guide to the Java Object
Model

A.l. Objects for Subscription

The following objects have been defined to use for creating applications that subscribe to the Sybase
Aleri Streaming Platform.

A.1.1. SpFactory Object

The SpFactory object is used by the client code to create the set of objects that are required to use/
control the Pub/Sub API. The SpFactory interface includes the following methods:

public static SpPlatform createPl atforn(SpPl atf or nPar ns par ns,
SpPI at f or nSt at us st at us);
public static SpPlatfornParns createPl atfornParns(String host,
int port, String user, String password, bool ean i sEncrypted);
public static SpPlatfornParns createPlatfornParnms(String host,
int port, String user, String password, bool ean i sEncrypted,
bool ean useRsa);
public static SpPl atfornParns createPl atfornParnms(String host,
int port, String user, String password, bool ean i sEncrypted,
String hot SpareHost, int hot SparePort);
public static SpPl atfornftatus createPl atfornftatus
(String host, int port, String appNane, String user,
String password, bool ean i sEncrypted, String hot SpareHost,
i nt hot Spar ePort);
public static SpPl atfornfstatus createPl atfornStatus();
public static SpStreanDataRecord createStreanDat aRecor d(SpSt ream st ream
Col l ection fieldData, int opCode, int flags, SpPlatfornStatus status);

Details:

« The createPl atform (SpPl atfornParns parnms, SpPlatfornStatus status)
method returns a reference to an SpPlatform object if the Pub/Sub API was able to connect to the Sy-
base Aleri Streaming Platform and initialize properly.

Before calling this method, you have to use one of the overloaded SpFact -

ory.createPlatformParns(...) methods, and the SpFact -
ory.createPl at f or nSt at us() method, to create the two parameters required by the Sp-
Factory.createPlatform (SpPlatfornParns parns, SpPI at f or 5t at us

st at us) method. The contents of the SpPI at f or nPar ms parameter control how the connection
and authentication from the Pub/Sub API to the Sybase Aleri Streaming Platform takes place. If the
connection can not be established, the cr eat ePl at f or m(SpPI at f or mPar s par ns, Sp-
Pl at f or n5t at us st at us) method returns null, and a non-zero error code is set within the Sp-
Pl at f or n5t at us object (see Section A.1.3, “ SpPlatformStatus Object” for information on how to
retrieve the error code/message).

 The createPl atfornmParnms(String host, int port, String user, String
password, bool ean isEncrypt ed) method returns an SpPl at f or mPar s object that is
ultimately passed as the first parameter to the SpFact -
ory.createPl atforn(SpPl atfornParns parns, SpPlatfornStatus status)
method. This cr eat ePl at f or mPar ns method call sets up for basic connectivity (user name/
password are used for authentication). If thei sEncr ypt ed flag is set to t r ue, then https will be
used to connect to the Command and Control process, and SSL socket connections will be made to
the Gateway 1/0 process. If thei sEncr ypt ed flagisset to f al se, then http will be used to con-
nect to the Command and Control process and regular (non-SSL) socket connections will be made to
the Gateway 1/O process.

75

Reference Guide to the Java Object Model

e ThecreatePlatfornParms (String host, int port, String user, String
password, bool ean isEncrypted, bool ean useRsa) method returns an SpPl at -
fornParnms object that is ultimately passed as the first parameter to the SpFact -
ory.createPl atforn(SpPl atfornmParns parns, SpPlatfornStatus status)
method. This method also adds the useRsa flag. If thisflagissettot r ue, the Pub/Sub API will at-
tempt to authenticate to the Sybase Aleri Streaming Platform using the RSA mechanism. To use this
mechanism, the Sybase Aleri Streaming Platform must be started with the - k option, whose argument
specifies the path to the directory where the user's public RSA key file is stored —. See the Adminis-
trators Guide for information about key generation and placement.

When the Sybase Aleri Streaming Platform is using RSA authentication, the password of the Sp-

Pl at f or mPar ms object must specify the user's private RSA key file. For example, for auser called
f 00, there would be two RSA key files: the file f 0o (containing the public RSA key for user f 00)
and thefilef oo. pri vat e. der (containing the private RSA key for user f oo in DER format). The
public RSA key file called f oo must be placed in adirectory specified by the - k option to the Sybase
Aleri Streaming Platform during startup.

The private RSA key file called f 00. pri vat e. der must be placed on the client machine that is
using the Pub/Sub API to connect to the server, and is specified using the password parameter of the
createPlatformParms(...) method.

There are five variations of the createPlatformParams method; all accomplish the same creation of an
SpPlatformParams object:

* basic

* basic with UseRSA flag

basic with HotSpare

¢ HotSpare with UseRSA

« Kerberos authentication with or without the Hotspare
Choose the method that suits your needs.

The createPl atfornParns(String host, int port, String user, String
password, boolean isEncrypted, String hotSpareHost, int hotSpare-
Port) method returns an SpPlatformParms object that is ultimately passed as the first parameter to
the SpFactory. createPl atform SpPl atformParns parns, SpPl atfornttatus
st at us) method. In addition to the basic connectivity parameters previously mentioned, this meth-
od adds two more parameters: Stri ng hot Spar eHost and i nt hot SparePort. An Sp-
Pl at f or mPar ns object created with this factory method will cause the Pub/Sub API to use a High
Availability configuration. In this configuration, the Pub/Sub API automatically attempts to switch
over and use the secondary, Hot Spare, server if the primary server goes down. See Section 2.4.6,
“Publication/Subscription in a High Availability (Hot Spare) Configuration” for more information on
the High Availability configuration.

The createPl atfornParns(String host, int port, String user, String
password, bool ean isEncrypted, boolean useRsa, String hot SpareHost,
i nt hot Spar ePort) method returns an SpPI at f or nPar ns object that is ultimately passed as
the first parameter to the SpFactory. createPl atform (SpPl at f or mParns par s,
SpPI at f or n5t at us st at us) method. This method allows you to set up the Pub/Sub API for
RSA authentication and High Availability (Hot Spare), see the previous creat ePl at f or m
Par ms(...) methods for a description of the RSA authentication and High Availability mechan-
isms.

Thecreat ePl at f or nSt at us() method returns an SpP| at f or NSt at us object that is passed
as the second parameter to the SpFactory.createPlatform (SpPl atfornParns

76

Reference Guide to the Java Object Model

parns, SpPl atfornStatus status) method, in order to return status information to the
caller. It isalso used in several other methods within the Pub/Sub API that are needed to retrieve error
code/status information. Seethe SpPI at f or nSt at us object.

e The createPlatfornParns (String host, int port, String appNane,
String user, String password, bool ean isEncrypted, String hot Spare-
Host, int hot SparePort) method returns an SpPI at f or nPPar s object initialized to au-
thenticate using the Kerberos V5 mechanism. The Sybase Aleri Streaming Platform must have been
started with the option “-V gssapi”". The parameter host should be the fully qualified domain name of
the machine running the Sybase Aleri Streaming Platform The credentials for the Kerberos account
are “user” and “password”. The string that points to an entry in the login configuration file in effect
when the java virtual machine is started is “appname’. This configuration file can be specified as a
command line define (-Djava.security.auth.login.config=) or in the security folder of the Javainstalla-
tion. For more information on configuring security for Java, refer to: ht-
tp://java.sun.com/j2se/1.5.0/docs/guide/security/jaas/spec/com/sun/security/auth/login/ConfigFile.htm
I

» Thecreat eStreanDat aRecor d(SpStream stream Collection fieldData, int
opCode, int flags, SpPlatfornftatus status) method returns an SpStreanm
Dat aRecor d object that is used in the SpPubl i cat i on object in order to publish data to the Sy-
base Aleri Streaming Platform.

The SpPl at f or St at us object is passed in as the last parameter. If cr eat eSt r eanDat aRe-
cor d fails, anull is returned to the caller and the SpPl at f or n5t at us object indicates the error
condition.

A.1.2. SpPlatformParms Object

The SpPI at f or nPPar ns object is used by the SPFactory. createPlatform (Sp Pl at-
fornmParns. parns, SpPl atfornStatus status).tocreatethe SpPlatform object. You can
create it using one of the overloaded SpFact ory. creat ePl at f or nPar s (. ..) methods de-
scribed in Section A.1.1, “SpFactory Object”. The SpPI at f or mPar ns object contains all of the con-
nection information required by the SpPl at f or mabject to make the appropriate connection(s) to the
Sybase Aleri Streaming Platform. This information includes the host and port of the Command and Con-
trol Process, username, password, and flags indicating whether to use encryption, RSA authentication,
Kerberos authentication, or the High Availability (Hot Spare) mechanism. The SpPI at f or nPar ns
interface includes the following methods:

public String getHost();

public int getPort();

public String getUser();

public String getPassword();

publ i c bool ean i sEncrypted();
public String getHot Spar eHost () ;
public int getHot SparePort();

publ i c bool ean useRsa();

public String getAuthentication();
public String get AppNane();

public void setGat ewayHost (String host);
public String get Gat ewayHost () ;
Details:

* The get Host () method returns a string indicating the host hame of the computer on which the
Streaming Processor's Command and Control process is running.

77

Reference Guide to the Java Object Model

» Theget Port () returnsan integer indicating the port number of the Command and Control process.

» The get User () method returns a string containing the username for authenticating to the Sybase
Aleri Streaming Platform.

» Theget Passwor d() method returns a string containing the password that authenticates to the Sy-
base Aleri Streaming Platform. For RSA authentication, the password contains the file name of the
user's private RSA key file.

* Thei sEncrypted() method returns a Boolean indicating whether or not encrypted connections
used for the Command and Control and Gateway 1/0 processes. If the encryption mechanism is en-
abled, the Command and Control process connection will be made using https, while the Gateway 1/0
process will make SSL socket connections.

» Theget Hot Spar eHost () method returns a string containing the host name of the secondary High
Availability Streaming Processor. See the Administrators Guide for details on setting up a High
Availability configuration.

» The get Hot Spar ePor t () method returns an integer indicating the port number of the secondary
(Hot Spare) server in the High Availability configuration.

» The useRsa() method returns a boolean indicating if RSA authentication will be used when at-
tempting to make connections to the Command and Control and Gateway /O processes. If the RSA
authentication mechanism is enabled, the password instance variable of the SpPlatformParms object
must be set to the filename of the user's private RSA key file. If the RSA authentication mechanismis
disabled, then the normal user name/password authentication mechanism will be used. See the Admin-
istrators Guide for RSA key file generation.

When using the Pub/Sub RSA authentication mechanism, the Streaming Processor must be started us-
ingthe- k public_rsa_key_directory option See the Administrators Guide for more inform-
ation.

e The get Aut henti cati on() method returns a string describing the authentication mechanism
currently in use. The SpPl at f or nPar ns provides predefined string constants for the authentica-
tions currently supported. These are:

public static final String AUTH PAM = " PAM';
public static final String AUTH RSA = "RSA";
public static final String AUTH KERBV5 = " KERBV5";

e The get AppNanme() returns the string for the application name used when creating the SpPI at -
f or nPar s object. If Kerberos authentication was not used, it returns NULL.

* Theget Gat ewayHost () method returns the name of the gateway machine if it has been explicitly
set by the user.

* The set Gat ewayHost () method sets the gateway machine which connects to the API. If set, the
API ignores the value returned from the Sybase Aleri Streaming Platform. Thisis useful if the Sybase
Aleri Streaming Platform is running on a machine without Domain Name System (DNS) entries.

A.1.3. SpPlatformStatus Object

The SpPI at f or St at us object is used by several of the Pub/Sub APl methods to return status in-
formation back to the caller. The SpPI at f or nf5t at us interface includes the following methods:

78

Reference Guide to the Java Object Model

public int getErrorCode();
public String getErrorMssage();
publ i c bool ean isError();

Detalls:

» The get Err or Code() method returns an integer. If a problem was detected by the method Sp-
Pl at f or n5t at us object was passed into, the value is non-zero; otherwise, zero is returned to in-
dicate success.

e Theget Err or Message() method returns a string containing the error message text.

* Thei sError () method returns a boolean: t r ue if an error was detected, f al se if no error was
detected.

A.1.4. SpPlatform Object

The notion of the Sybase Aleri Streaming Platform has been abstracted into an object of the SpPlatform
type.

An SpPl at form object is created using the SpFact -
ory.createPlatforn(SpPlatfornParnms parns, SpPlatfornStatus status)
method. Once instantiated, the SpPI at f or mobject offers the following Sybase Aleri Streaming Plat-
form functionality:

public String getUrl ();

public String getUser();

public String getPassword();

public String getHost();

public String get Gat ewayHost () ;

public String get XM_Mbdel Versi on() ;
public int get Port ();

public int get Gat ewayPort () ;

public int get Dat eSi ze() ;

public int get Addr essSi ze() ;

public int get Qui esced() ;

public int get Pri maryServer Fl ag() ;
public Vector getBaseStreans();

public Vector getDerivedStreans();
public Vector getStreans();

public SpStream get Stream(String streanNane);
public SpStream get Stream(i nt streamd);
public SpStreanmDefinition

get StreanDefinition(String streanmNane);
public SpStreanmDefinition
get StreamDefinition(int streamd);

publ i ¢ bool ean i sBi gEndi an();

publ i ¢ bool ean i sConnect ed();

publ i c bool ean i sEncrypted();

publ i c bool ean useRsa();

public int shutdown();

public String get Config(SpPl atfornf5t at us st at us) ;

public int | oadServerConfigFile(String configFile, String flags);
public int | oadConfigString(String configString, String flags);
public int |oadConfigStringApplyingConversion(String configString, \

79

Reference Guide to the Java Object Model

String flags, String conversionConfigString);
public int addStreanmlfoC ient(int clientHandl e, String streanNane);
public int renoveStreanfFronClient(int clientHandl e, String streamNane);

publ i c SpSubscription createSubscription(String nane,
int flags, int deliveryType, SpPl atfornftatus status);

publ i c SpSubscri pti onProjection createSubscriptionProjection(String nane,
int flags, int deliveryType, String sqgl Query,
SpPI at f or n5t at us st at us) ;

public SpPublication createPublication(String namne,
SpPI at f or n5t at us st at us) ;

Most of the SpPlatform methods communicate internally with the Command and Control process
through the XMLRPC protocol. The SpPlatform methods allow you to retrieve Sybase Aleri Streaming
Platform configuration information, source and derived stream objects, and so forth.

The get Ur | () method returns a string representing the URL to connect to the Command and Control
Process through XMLRPC. This string depends on whether the SpPl at f or mobject was created with
encryption enabled. Refer to Appendix F, Using Encryption with Java Client Applications for more in-
formation. Thei sEncr ypt ed() method can be used to check if encryption was enabled when the Sp-
Platform object was instantiated.

Theget User () and get Passwor d() methods return strings that contain a username and password.
These values are used internally for authentication when connecting to the Command and Control and
Gateway 1/O processes.

The get Host () method returns the name of the host machine on which the Command and Control
Processisrunning. The get Gat ewayHost () method returns the name of the host machine on which
the Gateway 1/0 Process is running. These two Sybase Aleri Streaming Platform processes reside on the
same machine.

The get Port () and get Gat ewayPor t () methods return the Command and Control port number
and Gateway 1/0O port number, respectively. They are different because they refer to two different pro-
Cesses.

The get XM_Mbdel Ver si on() method returns the XML model version used by the Sybase Aleri
Streaming Platform.

Theget Dat eSi ze() method returns the size of the datetime field type. If the Pub/Sub API is used to
communicate with the Gateway 1/0 process, the datetime field type size is handled transparently to the
user. If the client application uses custom Gateway 1/0 code, it will have to take care of this, as well as
endianness, when sending datetime fiel ds to the Sybase Aleri Streaming Platform.

Theget Addr essSi ze() method returns a value representing how the instance of the running Sybase
Aleri Streaming Platform Server was compiled (either 32 or 64 bit).

The get Qui esced() method returns an integer that represents the “quiesced” state of the Sybase
Aleri Streaming Platform. If successful, the method will return either a zero (f al se) or aone (t r ue).
If command execution fails, an error code is returned.

Note:

The error message associated with the error code can be retrieved by caling
SpUtils. get ErrorMessage(rc), where “rc” is the return code sent back from the

80

Reference Guide to the Java Object Model

get Qui esced() cal.

The get Pri mar ySer ver Fl ag() method returns an integer indicating whether or not the targeted
server is considered to be the primary server in a High Availability (Hot Spare) configuration. It returns
1 for yesand O for no. If the command cannot be executed successfully, an error code (neither O nor 1) is
returned.

Y ou can use the Pub/Sub API to explicitly establish a connection to the secondary server within a High
Availability (Hot Spare) configuration. If this happens, calling get Pri mar ySer ver Fl ag() on the
secondary server returns avalue of zero, indicating that it's not a primary server.

The next group of methods is used to return stream metadata from the Sybase Aleri Streaming Platform.
The metadata/schema for a stream is represented within the Pub/Sub API as an object of type SpStream.
Refer to Section 2.3.2.2, “SpSubscription Example” for an example. The get BaseSt r eans() meth-
od returns a vector of SpStream objects representing all of the source streams residing on the Sybase
Aleri Streaming Platform. Similarly, get Deri vedSt r eans() returns a vector of SpStream objects
that represents all of the derived streams residing on the Sybase Aleri Streaming Platform. The get -
St reans() method returns a vector of SpStream objects that represents “al” streams (both source and
derived streams) residing on the Sybase Aleri Streaming Platform. For a particular stream, you can ook
up the stream by its "name" or “id” using the get Stream(Stri ng streanmNane) or get -
Stream(int stream d) method, respectively.

Theget StreanDefinition (String streanNane) and get St reanDefinition (int
stream d) methods return an object of type SpSt r eanDef i ni ti on for the specified streamName
or streamld, respectively. Refer to Section A.1.6, “ SpStreamDefinition Object” for more information.

Thei sBi gEndi an() method returnst r ue if the Streaming Processor is running on a big-endian ma-
chine, or f al se if the Streaming Processor is running on alittle-endian machine.

Thei sConnect ed() method returnst r ue if the SpPl at f or mobject is currently connected to the
Sybase Aleri Streaming Platform. Otherwise, it returns f al se. For example, if the client application
program issues ashut down, subsequent i sConnect ed() calsreturnf al se.

Once an SpPI at f or maobject is shut down, you should set its reference to nul | . Later on, another Sp-
Platform object can be instantiated using the SpFact ory. creat ePl at f or (. . .) method.

The shut down() method aerts the Command and Control Process to shut down the Sybase Aleri
Streaming Platform. This causes all socket connections to the Sybase Aleri Streaming Platform to be
closed. If the application has subscriptions running at the time of a shutdown, the SpGbser ver objects
of those subscriptions are notified before the shutdown process starts.

The get Confi g(SpPI at f or 5t at us st at us) method returns a String containing the AleriML
configuration currently being executed by the running Sybase Aleri Streaming Platform instance. If
there is an error in retrieving the AleriML configuration information from the server, this method will
return an empty string, and the error code will be stored in the SpPI at f or N5t at us parameter passed
into the method.

Thel oadServer ConfigFile(String configFile, String flags) method attempts to
load an AleriML configuration file into the running Sybase Aleri Streaming Platforminstance. The
f | ags parameter is used to provide control information during the AleriML configuration file load at-
tempt. If additional control information is not needed, the value of the flags parameter can be an empty
string. Consult the Administrators Guide for more information on loading AleriML configurations, and
the various options that can be specified in the f | ags parameter. If the AleriML configuration file was
loaded successfully, the method returns zero. If the AleriML configuration file could not be loaded suc-
cessfully, the method returns a non-zero error code. In addition, when loading an AleriML configuration
file into the server, inspect the log messages located on the server for more information.

The | oadConfigString(String configString, String flags) method atempts to
load the AleriML configuration stored in the configString parameter, into the running Sybase Aleri

81

Reference Guide to the Java Object Model

Streaming Platform instance. The f | ags parameter is used to provide control information during the
AleriML configuration string load attempt. If additional control information is not needed, the value of
thef | ags parameter can be an empty string. If the AleriML configuration was loaded successfully, the
method returns zero. If the AleriML configuration could not be loaded successfully, the method will re-
turn a non-zero error return code. In addition, when loading an AleriML configuration into the server,
inspect the log messages located on the server for more information.

The | oadConfi gStri ngApplyi ngConversion (String configString, String
flags, String conversionConfigString) method attempts to load the AleriML configura-
tion stored in the confi gSt ri ng parameter, into the running Sybase Aleri Streaming Platform in-
stance. Thef | ags parameter is used to provide control information used during the AleriML configur-
ation string load attempt. If additional control information is not needed, the value of the flags parameter
can be an empty string.

Theconver si onConf i gSt ri ng parameter provides an AleriML model that is used to apply specif-
ic conversion instructions during a dynamic modification of the Sybase Aleri Streaming Platform’'s XML
configuration. Consult the Administrators Guide for more information on loading AleriML configura-
tions, and the various options that can be specified in the flags parameter. If the XML configuration was
loaded successfully, the method returns zero. If not, the method returns a non-zero error code. Y ou can
get more information about the dynamic load process from the server's log messages.

The SpPI at f or m object provides two subscription-related methods if you want to write your own
low-level Gateway 1/0O code for the subscription. These methods are addSt r eanifoCl i ent (i nt
clientHandl e, String streanNane) and renoveStreanfFronClient(int cli-
ent Handl e, String streanmNane) . These methods are part of the SpPlatform interface because
they are XMLRPC calls that are used to manage the subscription characteristics of a Gateway 1/0 socket
on which a subscription is currently running.

The two method calls must be provided when the Pub/Sub subscription mechanism is not being used.

Once a subscription request is issued for an open Gateway /O socket connection, the connection be-
comes a read-only connection. Asynchronous stream updates are delivered from the Sybase Aleri
Streaming Platform to the client. Because of the “read-only” nature of the socket, additional Gateway |/
O commands can not be issued on this socket connection. The XMLRPC mechanism must be used to do
this.

The add and r enbve methods are passed acl i ent Handl e asthe argument. Thecl i ent Handl e
is an integer value that is returned by the Gateway 1/0 process when the client application sends a low-
level subscription request on the socket. TheaddSt r eanifoC i ent (. . .) method alows you to add
an additional stream to the subscription list, while the r enoveSt r eantrontCl i ent (.. .) method
lets you delete a stream from the subscription list.

The creat eSubscription (String nane, int flags, int deliveryType, Sp-
Pl at f or n5t at us) method is used to create an SpSubscri pti on object associated with the Sp-
Platform object. As the name implies, it is also a factory method used to create SpSubscri pti on ob-
jects. An SpSubscr i pt i on object has its own interface (or little API) that is used to control the sub-
scription. The SpPI at f or mobject can be used to create a subscription.

A subscription is used to get asynchronous stream updates from the Sybase Aleri Streaming Platform in-
to the client application. Similarly, there is a factory method called cr eat ePubl i cati on(Stri ng
nane, SpPl atfornftatus status) that creates an SpPubl i cati on object. An SpPub-
i cation object isused to “publish” stream input data (and/or issue the Gateway 1/0O commit() com-
mand) from the client application, to the Sybase Aleri Streaming Platform.

A.1.5. SpStream Object

The SpSt r eamobject store the metadata associated with a stream on the Sybase Aleri Streaming Plat-
form. The SpSt r eaminterface includes the following methods:

82

Reference Guide to the Java Object Model

public int getld();

public String get Name();

publ i c bool ean i sBase();

public SpStreanDefinition getDefinition();

Details:

* Theget | d() method returns an integer that represents the stream's internal identifier on the Sybase
Aleri Streaming Platform.

e Theget Nane() method returns the name of the stream.

* Thei sBase() method returnst r ue if the stream is a source stream, f al se otherwise.

e Theget Definition() method returns areference to an object of type SpStreamDefinition, which
contains the stream's schema information.

A.1.6. SpStreamDefinition Object

An SpSt reanDef i ni ti on object stores the schema associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpSt r eanDef i ni t i on interface includes the following methods and

constants:

/**

*/St reans Col ummlnterface col type definitions.
*

static public final int COLTYPE INT32 = 1;
static public final int COLTYPE INT64 = 2;
static public final int COLTYPE DOUBLE = 3;
static public final int COTYPE DATE = 4;
static public final int COLTYPE STRI NG = 5;
static public final int COTYPE NULLVALUE = 6;
static public final int COLTYPE MONEY = 7;
static public final int CO.TYPE Tl MESTAMP = 8;
public int get NumCol umms() ;

public Vector get Col unmNames();

public Vector getColummTypes();

public Vector getKeyColumms();

public Vector getKeyCol umVect or () ;

publ i ¢ bool ean i skeyCol um(i nt col umml ndex) ;
Details:

* Theget NunCol umms() method returns the number of columnsin the stream.

» Theget Col umNanmes() method returns a vector of strings. Each string is the name of the corres-
ponding column. The vector's size equals the value returned from the get NuntCol urms() method.

* Theget Col umTypes() method returns a vector of integers. Each integer represents the field type
of the corresponding column. The SpSt r eanDef i ni ti on contains a list of integer “constants’
representing the various column types.

» The get KeyCol unms() method returns a vector of integers. Each integer is the column index (rel

83

Reference Guide to the Java Object Model

0) of akey column in the streams field list. For example, if the stream has five columns, and the first
three are key columns, the get KeyCol umms() method returns[0, 1, 2].

e The get KeyCol umVect or () method returns a vector of zeroes and ones whose size equals the
number of columns in the stream. For example, if the stream has five columns and the first three are
key columns, the getK eyColumnV ector method returns[1,1,1,0,0].

e Thei sKeyCol um(i nt col unml ndex) returns a Boolean value of t r ue if the column index
specified isthat of akey field; otherwise, it returnsf al se.

The col utml ndex is“rel-0" (in other words, the first column of the field list has an index value of
Zero).

A.1.7. SpStreamProjection Object

The SpSt r eanPr oj ect i on object stores the metadata associated with a stream projection based on
an SQL query that is supplied to thecr eat eSubscri pti onProj ection(...) factory method of
the SpPI at f or mobject.

The SpSt r eanPr oj ect i on interface includes the following methods:

public SpStream get Stream();
public SpStreanDefinition getDefinition();

where:

* The get St ream() method returns a reference to the underlying SpStream onto which the SQL
query was projected.

e The getDefinition() method retuns a reference to an object of type
SpSt reanDef i ni ti on, containing the schema information of the projection. This information is
returned by the Sybase Aleri Streaming Platform when the SQL query associated with an SpSub-
scriptionProjection objectiscreated.

A.1.8. Creating an SpSubscription or SpSubscriptionProjection Object

The client application must create an SpSubscri pti on or SpSubscri pti onProj ecti on object
in order to use the Pub/Sub API to make subscription requests. These objects can be created using the
appropriate factory method provided by the SpPI at f or mobject that has been instantiated previoudly.
These factory methods have the following signatures:

SpSubscri ption createSubscription(String nane,
int flags, int deliveryType, SpPl atfornftatus status);
SpSubscri ptionProj ecti on createSubscriptionProjection(String nane,

int flags, int deliveryType, string sqgl Query,
SpPI at f or n5t at us st at us) ;

Details:

String name: anidentifier assigned by the client application program to the SpSubscri pti on or

84

Reference Guide to the Java Object Model

SpSubscri ptionProj ecti on object.

i nt flags: theflag bitmap that is to be sent to Gateway 1/0 process when the low-level subscription
request is made. The flag settings control delivery from the Sybase Aleri Streaming Platform to the cli-
ent application, on the Gateway 1/0O socket connection where the subscription request was made. The
“flag bits” are defined as constantsin the SpSubscr i pt i onConmon interface that abstracts the com-
monality between the SpSubscri pti on and SpSubscri pti onPr oj ecti on interfaces. The con-
stants are as follows:

These flag bits can be ORed together using the “|” operator. For example:

flags = SpSubscri ption. NOBASE | SpSubscri pti on. LOSSY.

 BASE = 0x0;

The BASE flag hit tells the Sybase Aleri Streaming Platform to send a complete “snapshot” of each
stream of the subscription request before sending each stream subsequent updates. The complete
“snapshot” or “state” of the stream is a group of “insert” records sent from the Sybase Aleri Stream-
ing Platform between the “EVID_GATEWAY_SYNC START” and
“EVID_GATEWAY_SYNC END” subscription events.

* LOSSY =0x1;

The LOSSY flag hit puts the Sybase Aleri Streaming Platform in “ data shedding mode”, in which the
Sybase Aleri Streaming Platform drops the oldest data if the client cannot keep pace with the data
coming out of the Sybase Aleri Streaming Platform.

* NOBASE =0x2

The NOBASE flag bit tells the Sybase Aleri Streaming Platform that it should NOT send a complete
“snapshot” of each stream in the subscription request. The Sybase Aleri Streaming Platform just pro-
ceeds to send subsequent updates for each of the streams.

* DROPPABLE = 0x8;

This flag tells the Sybase Aleri Streaming Platform that if the client (the application using this flag)
can't keep up with the data it is sending, and its internal buffer is filled, the Sybase Aleri Streaming
Platform should drop the connection to the client application. This protects the Sybase Aleri Stream-
ing Platform from getting into a situation where it has to stop processing incoming data because its
clients can't keep up with the data it is producing.

* PRESERVE_BLOCKS = 0x20
This flag tells the Sybase Aleri Streaming Platform that it should preserve blocks while sending data
to the client application.

i nt deliveryType: the integer value that specifies how the client application program's SpCb-
server object receives the stream update events. Currently, there are several delivery type format spe-
cifiers defined in the SpSubscriptionCommon interface, as listed below:

* DELIVER_PARSED =1,

This delivery type setting tells the subscription object to deliver “parsed” field data objects represent-
ing the stream update to the client programmer's SpObser ver object.

85

Reference Guide to the Java Object Model

* DELIVER_BINARY =3;

This delivery type setting tells the subscription object to deliver the “binary” representation of the
stream update record to the client programmer's SpChser ver object.

* DELIVER_STREAM_OPCODES = 5;

This delivery type setting tells the subscription object to extract the stream op code from the record
(I NSERT, UPDATE, DELETE, UPSERT and so forth), otherwise leaving the record in binary format.

sql Query specifies the SQL query projection that the SpSubscri pti onProj ecti on object will
be based on. The sql Query parameter is only used to create an SpSubscri pti onProj ecti on
object.

See Section 5.1, “Aleri SQL Queries and Statements” for some limitations related to the Sybase Aleri
Streaming Platform's handling of SQL queries, which also apply in this situation.

The SpPl at f or nSt at us object retrieves error code information back from the cr eat eSub-
scription(...) andcreateSubscriptionProjection(...) factory methods, if the sub-
scription object could not be created.

The following example shows how to use the SpPI at f or mobject called sp to create both an SpSub-
scriptionandanSpSubscri ptionProjecti on object:

SpSubscri ption sub = sp.createSubscription(*MSubscription_1",
SpSubscri pti onCommon. BASE, SpSubscri pti onCommon. DELI VER PARSED
st at us) ;

SpSubscri ptionProj ecti on subProj = sp.createSubscriptionProjection(
“MySubscri ptionProjection_2", SpSubscri pti onConmon. BASE,
SpSubscrl pt i onConmon. DELI VER PARSED,
“select intData, charData frominputstreamwhere intData > 100",
st at us) ;

In the above example, st at us isan SpPl at f or St at us object that was created previously with the
SpFact ory. creat ePl at f or nSt at us() factory method.

A.1.9. SpSubscriptionCommon Method Set

If thecr eat eSubscription(...) orsp.createSubscriptionProjection(...) calis
successful, the client application gets back either an SpSubscri pti on or SpSubscri pti onPr o-
j ecti on object, which is used to instantiate the subscription. The set of methods that the SpSub-
scri ption and SpSubscri ptionProjecti on types have in common have been abstracted into
an interface called SpSubscr i pt i onConmon. Thisinterface is extended by both the SpSubscri p-
tion and SpSubscri pti onProj ecti on interfaces. The SpSubscri pti onConmon interface
includes the following method set:

ic String get Nane();
public int getFlags();

ic int getDeliveryType();

ic int getdientHandl e();

public int renoveCbserver(int theCookie);

public int start();

86

Reference Guide to the Java Object Model

public int stop();

The get Nane() method returns the name assigned in the application to the subscription object when it
was created with the SpPlatform's cr eat eSubscri ption(...), or creat eSubscri pti on-
Proj ection(...) method.

Similarly, the get Fl ags() and get Del i ver yType() methods return the flag settings and the de-
livery type, respectively, that were specified in the cr eat eSubscri ption(...) orcreat eSub-
scriptionProjection(...) method.

Theget d i ent Handl e() method returns the “handle” assigned to the underlying subscription con-
nection by the Sybase Aleri Streaming Platform. Valid handles are positive integers. The value of the
handl e is acquired from the Sybase Aleri Streaming Platform when the subscription is started through
thest art () method.

TheremoveQbserver (i nt theCooki e) method is used to remove an SpGbser ver from the
subscription's delivery mechanism. There are differences between how you add observers to the two dif-
ferent types of subscriptions. These differences will be discussed within the SpSubscri pti on and
SpSubscri ptionProj ecti on interfaces.

Thest art () method is used to start the subscription process.

There must be at least one stream and SpQbser ver registered with the subscription object before the

subscription object can be started up through the st ar t () method. See the SpSubscription and SpSub-

scriptionProj ection descriptions to see how to register SpCbser ver objects.

When you start up a subscription object, the following sequence takes place:

1. The Subscri pti on object establishes a socket connection to the Sybase Aleri Streaming Plat-
form Gateway 1/O process, and authentication is performed.

2. A subscription request is sent to the Sybase Aleri Streaming Platform on this socket connection.

3. If the subscription request is accepted by the Sybase Aleri Streaming Platform, the Subscri p-
ti on object reads the “client handle” that the Sybase Aleri Streaming Platform assigned to this
subscription request.

4. A new thread is started up. It is dedicated to reading stream update information off the read-only
Gateway 1/0 socket connection.

When the client application's SpCbser ver objects are “notified” for stream updates, through their
notify(...) methods, the SpCbser ver objects will actually be running within the context of
this thread (not the main thread).

5. Stream update messages flowing from the Sybase Aleri Streaming Platform to the client are read,
parsed and delivered to the client application's SpGbser ver objects.

6. Thestart () method returns azero indicating that the subscription was started up successfully. If
thereisan error, it returns a non-zero error code.

The SpUtil s. get Error Message(err or Code) method can be used to get the specific error
message.

Thest op() method is used to shut down the Subscription mechanism. The st op() method closes the

87

Reference Guide to the Java Object Model

socket connection and stops the thread that was used to read, parse and deliver the Sybase Aleri Stream-
ing Platform updates to the SpCbser ver objects.

Here are additional methods in the interface:

public void setPul selnterval (int pul selnterval);

public int getPulselnterval ();

public void set QueueSi ze(i nt queue, SpPl atfornStatus status);

public int getQueueSi ze();

public void setBaseDrainTi meout(int mllis, SpPlatfornStatus status);
public int getBaseDrainTi meout();

public void setExitOnC ose(SpPl atfornfst at us st atus);

publ i ¢ bool ean get Exi t OnCl ose() ;

» set Pul sel nterval can set the pulse interval in seconds if the subscription was created with the
pulsed flag on.

» get Pul sel nt erval isused to retrieve the current setting of the pulseinterval in seconds.

* set QueueSi ze isused to set theinternal buffer sizein the Sybase Aleri Streaming Platform for this
subscription. The Sybase Aleri Streaming Platform uses this buffer to queue up messages if the sub-
scriber is slow in retrieving them. It can prevent the subscriber from blocking and slowing down the
Sybase Aleri Streaming Platform.

» get QueueSi ze retrievesthe current value of the queue size.

» set BaseDr ai nTi meout is used to set the time in milliseconds that the Sybase Aleri Streaming
Platform should wait before dropping a blocked subscription. If a subscription is started with the
DROPPABLE flag set, the Sybase Aleri Streaming Platform closes a subscription connection if the
messages block due to a slow client. This parameter specifies how long to wait before closing the con-
nection.

e get BaseDr ai nTi neout retrieves the current value in milliseconds of the base drain timeout.

» If set Exi t OnCl ose is set, the Sybase Aleri Streaming Platform will shut down once this subscrip-
tion connection is closed by the client.

» get Exi t OnC ose retrieves the current setting of the exit on close flag.

A.1.10. SpSubscription Method Set

If the cr eat eSubscription(...) cal is successful, the client application gets back an SpSub-
scri pti on object, which it ultimately uses to subscribe. An SpSubscri pti on object can be used
to subscribe to one or more streams, whereas an SpSubscr i pt i onPr oj ecti on object can only be
used to subscribe to the projection defined by the sql Quer y passed into the cr eat eSubscri p-
tionProjection(...) factory method. For each stream that is being observed, the SpSub-
scri ption object will deliver to the SpCbser ver stream events that contain all of the stream's
fields. The SpSubscri pt i on extends the method set defined in the SpSubscriptionCommon interface
asfollows:

public int /*Cookie*/ addStreamObserver(String streanNane,
SpGbserver theCbserver);

public int /*Cookie*/ addStreanmsCbserver (Coll ections theStreanmNanes,
SpGhserver theCbserver);

public int subscribe(String streanNane);

88

Reference Guide to the Java Object Model

public int unsubscribe(String streamNane);

The next few methods are used to set up the streams and their corresponding SpCbser ver objects for
the SpSubscription. The client applications must create their own SpCbser ver objects, which are noti-
fied by the SpSubscri pti on with the updates that arrive from the Sybase Aleri Streaming Platform
for the registered streams. The client application programmers create SpObser ver objects by imple-
menting the SpObserver interface.

The addSt reantbserver (String streanNanme, SpObserver theCbserver) method
instructs the SpSubscri pti on object to send all updates for the streamName to the SpCbser ver
object specified by “theObserver” parameter. Severa observers can be registered on the same stream.

The addSt r eansObserver (Col | ection theStreamNanme, SpCbserver theCbserv-
er) method can be used to associate several streams with a particular SpCbser ver at once. The same
thing can be accomplished by making multiple calls to the addSt r eamObser ver (. ..) method
shown previously. Again, multiple addSt r eamsCbser ver (...) cals can be made to set up the
streams and their corresponding observers.

The addStreanCbserver(...) and addStreansCoserver(...) cals return an integer
value that represents a“cookie’/“handle” to the registered SpObserver object. Later on, the client applic-
ation program can use the cookie to remove the SpQbser ver .

Another method, r emoveQbser ver (i nt t heCooki), isused to remove the SpQbser ver from
the SpSubscri pt i on'sdelivery mechanism. Its signature is defined in the SpSubscri pti onCom
non interface.

The SpSubscri pti on object provides two methods that can modify the stream set that is currently
being managed by a “running” subscription: subscri be(String streanmNanme) and unsub-
scribe(String streanmNane).

These two methods take asingle st r eanNane as parameter. In the case of thesubscri be(Stri ng
st reanmNane) call, the client application program must first ensure that an SpObser ver is associ-
ated with the subscribed stream. The client application program must first call the addSt r eamOb-
server (streamNane, theChserver) method to register the observer for the stream, and then
cal thesubscri be(st reamNane) method.

If successful, the subscri be(String streanmNane) and unsubscri be(String stream
Nane) methods return zero. Otherwise, a non-zero error code is returned. In the latter case, the
SpUtils. get ErrorMessage(rc) method can be used to retrieve the error text associated with the
error code.

A.1.11. SpSubscriptionProjection Method Set

If the creat eSubscriptionProjection(...) cal is successful, the client application gets
back an SpSubscri pti onProj ecti on object that is ultimately used to perform the subscription
process. The contents of the data returned from the Sybase Aleri Streaming Platform back to the
SpSubscri ptionProj ecti on object is determined by the SQL query that was passed into the
creat eSubscri ptionProjection(...) factory method. An SpSubscri pti onProj ec-
t i on can only receive updates for the underlying stream specified in the SQL query, while the SpSub-
scri ption can get updates for more than one stream if so desired. The SpSubscri pti onPr o-
j ecti on interface extends the method set defined in the SpSubscri pti onConmon interface, as
follows:

publ i c SpStreanProjection getStreanProjection();

89

Reference Guide to the Java Object Model

public int /*Cookie*/ addCbserver(SpCObserver theQbserver);

The get St reanPr oj ecti on() method returns the SpSt r eanPr oj ecti on object produced
when the SQL query was sent to the Streaming Processor for parsing, which happens during the execu-
tion of the cr eat eSubscri pti onProj ecti on(...) factory method. If the SQL query could not
be parsed, cr eat eSubscri pti onProj ection(...) returnsnull, and the corresponding error in-
formation is sent to the associated SpPl at f or St at us object. If the cr eat eSubscri pti on-
Proj ection(...) method succeeds, the caller gets back an SpSubscri pti onPr oj ecti on ob-
ject, and can then make a get St r eanPr oj ecti on() call for the schema information produced by
the SQL query parse. The SpSt r eanPr oj ect i on that is returned should be treated as "read-only",
and should not be modified by the client application in any way. Typicaly, the SpSt r eanPr oj ec-
t i on objects are passed into the SpCbser ver 's constructor, giving the SpObserver the list of fields
and their corresponding data types. This information is used by the SpCbser ver to process the up-
dates that come back from the server.

See Section 5.1, “Aleri SQL Queries and Statements”’ for SQL query handling limitations of the Sybase
Aleri Streaming Platform.

Y ou must create your own SpGbser ver objects, which are notified by the SpSubscri pti onPr o-
j ecti on with the updates that arrive from the Sybase Aleri Streaming Platform. You can create
SpObser ver objects by implementing the SpQoser ver interface.

The addCbser ver (SpCbserver theCbserver) method is used to register an SpCbser ver
with the SpSubscri pti onProj ect i on object.

The addCbserver (.. .) cdl returns an integer value that represents a “cookie”/“handle” to the re-
gistered SpCbser ver object. Later on, the client application can use the cookie to remove the SpQb-
server.

You can use ther enroveCbser ver (i nt t heCooki e) method to remove the SpCbser ver from
the SpSubscri pti onProj ect i on'sdelivery mechanism.

A.1.12. SpSubscriptionEvent

An SpSubscri pti onEvent providesthe following method set:

public String get SubNane();
public int getType();

public String get TypeNane();
public int getld();

public String getldName();
public int getStream d();
public int getStreampCode();
public Collection getData();

The get SubName() method returns the name of the subscription object that generated and delivered
this event to the SpCbser ver . This name was assigned to the subscription object when it was created
through the SpPIl at f or mcr eat eSubscri pti on(...) method.

Theget Type() method returns an integer representing the “type” of this SpSubscri pti onEvent.
There are four types of events defined inthe SpSubscri pti onEvent . j ava interface:

» SpSubscriptionEvent. EVTY PE_PARSED_DATA

90

Reference Guide to the Java Object Model

It is delivered from a Subscri pt i on object created with a delivery type of SpSubscri pti on-
Comon. DELI VER_PARSED.

» SpSubscriptionEvent.EVTY PE_BINARY_DATA

It is delivered from a Subscri pt i on object created with a delivery type of SpSubscri pti on-
Comon. DELI VER_BI NARY.

« SpSubscriptionEvent.EVTYPE_STREAM_OPCODE_DATA

It is delivered from a Subscri pt i on object created with a delivery type of SpSubscri pti on-
Common. DELI VER_STREAM OPCODES.

» SpSubscriptionEvent.EVTY PE_SYSTEM

It is delivered from a Subscri pti on object, indicating a system event has occurred. The event
could be an error, a halt in communication, the shutting down of the Sybase Aleri Streaming Platform,
and so forth.

The get TypeNane() method returns the type of event as a string, as opposed to the internal integer
representation. The client application can use this for output messages.

An integer is returned by the get | d() method that uniquely identifies what actually happened on the
Sybase Aleri Streaming Platform. The event IDs are unique across the entire set of event types. For ex-
ample, an SpSubscri pti onEvent may have a “type” of SpSubscrip-
ti onEvent . EVTYPE_SYSTEM which meansit is a system-related notification. Theget | d() meth-
od returns what was actualy detected by the system (for example, SpSubscri p-
ti onEvent . EVI D_PARSI NG_ERRCR, SpSubscri p-
ti onEvent . EVI D_COVWUNI CATOR HALTED, and so forth). As with the event types, al of the
event |Ds are enumerated within the SpSubscri pti onEvent interface.

The following describesthe SpSubscri pti onEvent identifiers:

« SpSubscri ptionEvent . EVI D_GATEWAY_SYNC_START

It is delivered to the SpChser ver if the subscription is sent a START _SYNC Gateway 1/0 message
from the Sybase Aleri Streaming Platform. The START_SYNC message contains the ID for the
stream with its associated message.

It indicates the start of the stream'’s “ snapshot”. Following this event are | NSERT messages for each
record in the stream until the END_SYNC Gateway 1/0O message is received from the Sybase Aleri
Streaming Platform. A call to the START_SYNC event's get Dat a() method returns null. For this
message to be sent from the Sybase Aleri Streaming Platform to the client application, the subscrip-
tion has to be created with the SpSubscri pt i onConmon. BASE flag specified. If the SpSub-
scri pti onComon. NOBASE flag is specified instead, the START_SYNC message would never
have been delivered from the Sybase Aleri Streaming Platform to the client application.

This event is aso delivered after a dynamic change, if the stream's contents gets regenerated after the
W PEQUT event. In this situation, the START_SYNC event is delivered even if the subscription was
created with the SpSubscriptionCommon.NOBA SE flag.

* SpSubscri pti onEvent. EVI D_GATEWAY_SYNC END
It is delivered to the SpCbser ver if the subscription is sent an END_SYNC Gateway 1/0 message

from the Sybase Aleri Streaming Platform. The END_SYNC message contains the ID for the stream
with which the message is associated.

91

Reference Guide to the Java Object Model

It indicates that the end of the stream'’s “snapshot” has been reached. A call to the END_SYNC event's
get Dat a() method returns null. For this message to be sent from the Sybase Aleri Streaming Plat-
form to the client application, the subscription has to be created with the SpSubscriptionCom-
mon.BASE flag specified. If the SpSubscriptionCommon.NOBASE flag is specified instead, the
END_SYNC message would never be delivered from the Sybase Aleri Streaming Platform to the client
application.

This event is also delivered after a dynamic Sybase Aleri Streaming Platform change, if the stream's
contents gets regenerated. On the dynamic regeneration, the W PEQUT event is followed by the
START_SYNC event, insertion of the new data, and the END_SYNC event. In this situation all the
events are delivered even if the subscription was created with the SpSubscriptionCommon.NOBASE

flag.
SpSubscriptionEvent.EVID_GATEWAY _WIPEOUT

It is delivered to the SpObserver after dynamic Sybase Aleri Streaming Platform changes, if the
stream'’s contents gets regenerated. It means that the whole current contents of the stream is being dis-
carded. The W PEQUT event is followed by the START _SYNC event, insertion of new data, and the
END_SYNC event. In this situation, all the events are delivered even if the subscription was created
with the SpSubscri pt i onConmmon. NOBASE flag.

SpSubscri pti onEvent . EVI D_BI NARY_DATA

If the subscription is created with the ddivery type of SpSubscripti onCom
nmon. DELI VER_BI NARY, the get Dat a() method returns a ByteBuffer object containing the bin-
ary message delivered from the Sybase Aleri Streaming Platform.

SpSubscri pti onEvent . EVI D_PARSED FI ELD DATA

When a Subscri pti on object is created with a delivery type of SpSubscri pti onCom
nmon. DELI VER_PARSED, it attempts to parse the field data of the stream messages transmitted by
the Sybase Aleri Streaming Platform and delivers this parsed field information to the SpGbser ver .
The get StreanpCode() method can be used to determine whether the message was an
| NSERT, UPDATE, or DELETE. The parsed field data is accessed by the SpCbser ver through the
event'sget Dat a() method.

SpSubscri pti onEvent . EVI D_PARSED_PARTI AL_FI ELD_DATA

Itissimilar to the SpSubscri pti onEvent . EVI D_PARSED FI ELD DATA event described pre-
viously. This event is delivered when the Subscri pt i on's message parser detects an error in the
middle of parsing out the field data for the message sent from the Sybase Aleri Streaming Platform. If
an error is encountered during the parse, only those fields that were successfully parsed, up to the
place where the error was detected, will be delivered in this event. The SpCbser ver isnot obligated
to inspect the partial results: however, the application programmer may want to use the partia results
for debugging purposes.

SpSubscri pti onEvent . EVI D_COVMUNI CATOR HALTED

It is delivered when the client application attempts to issue a “shutdown” through the SpPI at f or m
object. A call to the get Dat a() method returns null.

SpSubscri pti onEvent . EVI D_PLATFORM SHUTDOMN

This event is delivered when the client application attempts to issue a “ shutdown” through the Sp-
Pl at f or mobject. A call totheget Dat a() method returns null.

SpSubscri pti onEvent. EVI D_PARSI NG_ERROR

92

Reference Guide to the Java Object Model

This event is delivered when a parsing error is detected by the Subscri pti on, and thereis at least
some context to report on. A call to the get Dat a() method returns an object of type SpPar ser -
Ret ur nl nf o.

See Section 2.3.3.2, “Inspect Parsing Errors’. for more information.
e SpSubscri pti onEvent. EVI D_UNKNOWN_PARSI NG_ERROR

This error indicates that the parser encountered an unexpected error before the completion of the pro-
cess. In this case, the get Dat a() method returns an integer object that contains the record length
for the message that is about to be parsed.

- SpSubscri ptionEvent . EVI D_ READ STREAM RECORD ERROR

It indicates that the parser could not successfully read the record that was delivered from the Sybase
Aleri Streaming Platform. The get Dat a() method returns an integer object containing the value of
the record length that was read for the bad record.

« SpSubscri ptionEvent. EVI D_BAD RECORD LENGTH_ERROR

It shows that the record length read from the socket was erroneous. The get Dat a() method returns
an integer object that contains the bad record length value read from the socket.

* SpSubscri pti onEvent . EVI D_BAD GATEWAY_OP_CODE_ERROR

It indicates that the Gateway 1/0 operation code for the message sent from the Sybase Aleri Streaming
Platform isinvalid. The get Dat a() method returns an integer object that contains the bad Gateway
1/O operation code that was read.

* SpSubscri pti onEvent. EVI D HOT _SPARE SW TCH OVER | NI TI ATED

It will be delivered to the SpCbser ver when the Pub/Sub API recognizes that a connection attempt
should be made to the High Availability (Hot Spare) server. The High Availability connection para-
meters were specified in the SpPl atfronParns object passed to the SpFact-
ory: :createPl atforn() method when the underlying SpPIl at f or mwasfirst created.

e SpSubscri pti onEvent. EVI D HOT_SPARE SW TCH OVER SUCCEEDED
It isdelivered to the SpCbser ver when the attempt to connect to the Hot Spare server is successful.
e SpSubscri pti onEvent. EVI D HOT_SPARE SW TCH OVER FAI LED

It is delivered to the SpCbser ver when the attempt to connect to the Hot Spare server fails.

Theget | dNane() method returns the string representation of the numeric event ID. The client applic-
ation program can use this for output messages.

Theget St ream d() method returns the stream ID that is associated with this event. For example, an
SpObser ver may receive an event of type SpSubscri pti onEvent . EVTYPE_PARSED DATA,
where the event ID is SpSubscri pti onEvent . EVI D PARSED FI ELD DATA, indicating that the
event contains parsed field data. The get St ream d() method returns the stream ID to which this
event data corresponds.

The get St r eantOpCode() method returns the stream operation code that is associated with this
event. For example, an SpCbserver may receive an event of type SpSubscri p-
ti onEvent. EVTYPE PARSED DATA, where the event ID is SpSubscri p-
ti onEvent. EVI D_PARSED_FI ELD DATA, indicating that the event contains parsed field data. The

93

Reference Guide to the Java Object Model

get St r eanOpCode() method returns a value that indicates whether the event is an | NSERT, UP-
DATE, DELETE, or UPSERT.

The get Dat a() method returns a vector of objects containing the event data. The objects stored in the
collection depend upon the delivery type (which was specified when the subscription object was cre-
ated). For example, if the ddivery type of the subscription is SpSubscri pti onCom

non. DELI VER PARSED, the get Dat a() method returns a vector in which each element is another
vector, each of which contains the field list of parsed objects produced by the subscription message pars-
er.

If the Sybase Aleri Streaming Platform delivers a non-transaction message (for example, an isolated
| NSERT or DELETE message) to the subscription, the get Dat a() method returns a vector that has a
size (number of elements) of 1. If the Sybase Aleri Streaming Platform delivers a transaction message to
the Subscri pti on, the get Dat a() method returns a vector whose size (number of elements) is
equal to the number of stream update records within the transaction message sent from the Sybase Aleri
Streaming Platform. Thisis why there are two “levels’/“dimensions’ of collections (vectors) within the
SpSubscri pti onEvent . EVI D_ PARSED FI ELD DATA event.

It is also important to note that each transactional message sent from the Sybase Aleri Streaming Plat-
form contains updates for one stream. A transaction cannot contain records within it for two or more
Separate streams.

When the subscription is created using a delivery type of SpSubscriptionCom
non. DELI VER_BI NARY, the get Dat a() method returns a ByteBuffer that has the raw binary
stream message within it. When the Sybase Aleri Streaming Platform sends a transaction block, the
ByteBuffer contains the entire transaction block.

When the SpSubscription is created using a ddivery type of SpSubscrip-
tion. DELI VER STREAM OPCCODES, the get Data() method returns null. Use the get -
St r eamOpCode() method to determine the stream operation code (I NSERT, UPDATE, DELETE, or
UPSERT).

A.1.13. SpParserReturninfo

The SpPar ser Ret ur nl nf o object referenced above has the following method set that you can use
within the SpGbser ver :

public int getErrorCode();

public String getErrorMessage();

public int getTransMessagel ndex(); // REL 0
public int getColumlndex(); // REL O
public String getErrorData();

publ i c bool ean i sSuccess();

Details

e Theget Error Code() and get Err or Message() methods return the parser error code and as-
sociated error message, respectively.

» Theget TransMessagel ndex() method is only relevant for transaction messages that are being
parsed at the time of error. If the message is not a transaction, - 1 is returned. The transaction block's
message index isrel 0 (message one has an index value of zero) if the message is atransaction block,.

* The get Col unml ndex() method returns the column index (rel 0) for the column where the pars-
ing error is detected. If the error occurred before the parser event got to the first column (having a
column index value of zero), this method will return - 1.

94

Reference Guide to the Java Object Model

» Theget Err or Dat a() method returns a string that the parser may have put together at the point of
error to indicate what went wrong. Typicaly, if there was any extra error information that the parser
determined was important, it is stored in astring isreturned by get Er r or Dat a() .

» Thei sSuccess() method returnst r ue if the parse was successful and f al se if there was an er-
ror.

A.1.14. SpNullConstants

The SpNul | Const ant s class defines the following objects:

public static Integer nulllntegerl6 = new I nteger(0)
public static Integer nulllnteger32 = new Integer(0)
public static Long nullLong = new Long(0)

public static Double null Money = new Doubl e(0)
public static Double null Doubl e = new Doubl e(0)
public static Date null Date = new Dat e(0l)

public static Date null Ti mestanp = new Dat e(0l)
public static String null String = "NULL"

Details:

* Thenul | I nt eger 16 object represents anull 16-bit Sybase Aleri Streaming Platform integer value.
* Thenul I | nt eger 32 object represents a null 32-bit Sybase Aleri Streaming Platform integer value.
* Thenul | Long object represents a null 64-bit Sybase Aleri Streaming Platform integer value.

* Thenul | Money object represents a null Sybase Aleri Streaming Platform money value.

* Thenul | Doubl e object represents a null Sybase Aleri Streaming Platform double value.

* Thenul | Dat e object represents anull Sybase Aleri Streaming Platform date value.

e Thenul | Ti mest anp object represents a null Sybase Aleri Streaming Platform timestamp value.

* Thenul | Stri ng object represents anull Sybase Aleri Streaming Platform string value.

A.1.15. SpUtils

There are a few miscellaneous classes that were briefly referenced in some of the earlier examples. One
classisSpUti | s, which offers the following utility methods:

public static String get Error Message(i nt error Code)
public static String get Event TypeNanme(i nt event Type)
public static String get Eventl dNanme(int eventld)

Detalls:

* Theget Error Message(i nt error Code) method retrieves the String message associated with
the errorCode passed in through the parameter list. The error messages are stored in the pub-

95

Reference Guide to the Java Object Model

sub. properti es file, which must be present in the Java classpath for this method to work. Typic-
aly, the errorCode is returned by a previous call to one of the Pub/Sub APl methods.

e The get Event TypeNanme(i nt event Type) method is typically called by an SpGbser ver
object. This method returns a string representation of the eventType passed in. The event type names
are also stored in the pubsub. properti es file (refer to the get Err or Message(int er-
ror Code) method description). The eventType is usually retrieved from a SpSubscri p-
ti onEvent object delivered to the SpObser ver object through the SpChserver's noti -
fy(...) method.

» Theget Event | dNane(i nt event| d) methodisaso typically caled by an SpObser ver ob-
ject. It returns the string representation of the eventld passed in. The eventld names are also stored in
the pubsub. properti es file (refer to the get Err or Message(i nt error Code) method
description). The eventld is usually retrieved from an SpSubscri pti onEvent object delivered to
the SpQbser ver through the SpChser ver object'snoti fy(...) method.

Another class referenced in some of the previous examples is SpGat eway Const ant s. It stores a
group of constant values used in Gateway related methods/activities within the Pub/Sub API. For ex-
ample, the SpGat eway Const ant s class stores the stream op codes, flag values, and so forth.

A.2. Objects for Publication

If thesp. creat ePubl i cation(...) cal issuccessful, the client application program gets an Sp-
Publ i cat i on object back from the Sybase Aleri Streaming Platform. An SpPubl i cat i on object
can be used to publish data to one or more streams. It implements an interface that provides the follow-
ing method set:

public String get Nanme();
public int start();
public int publish(SpStreanDataRecord streanRecord);

public int publish(Collection streanRecords,
i nt streamOpCodeOverri de,
i nt streanfl agOverri de);

public int publishTransaction(
Col | ection streanRecords,
i nt streamOpCodeOverri de,
i nt streanfFl agsOverri de,
i nt maxRecor dsPer Bl ock) ;

public int publishEnvel ope(
Col | ection streanRecords,
i nt streamOpCodeOverri de,
i nt streanfl agsOverri de,
i nt maxRecor dsPer Bl ock) ;
public int conmit();

public int stop();

Details:

The get Name() method returns the name assigned to this SpPubl i cat i on object when it was cre-

96

Reference Guide to the Java Object Model

ated through the SpPlatform'scr eat ePubl i cati on(. . .) factory method.
Thestart () method isused to start the publication process.

The publ i sh(SpSt reanDat aRecord st reanRecord) method is used to publish/send a single
stream input record to a source stream on the Sybase Aleri Streaming Platform. It is more efficient to
send Input Stream records to the Sybase Aleri Streaming Platform in batches known as “transactions’.
However, in some cases, you may want to publish one record at a time — for example, when testing a
new data model. If this call is successful, a return code of zero is sent back to the caller. Otherwise, an
error code is sent back. The SpUti | s. get Err or Message(er r or Code) method can be called to
get the specific error message.

Each of the publ i sh methods of the SpPubl i cati on object takes one or more SpSt r eam
Dat aRecor d objectsasinput. The SpSt r eanDat aRecor d object represents one row of stream data
that is to be sent to the Sybase Aleri Streaming Platform. Each SpSt r eanDat aRow object has an “op
code” which indicates how the row is to be handled by the Sybase Aleri Streaming Platform when it is
received. For example, the “op code” may indicate that the row is to be treated as an | NSERT, a DE-
LETE, an UPDATE, and so forth.

The publish(Collection streamRecords, int streampCodeOverride, int
st reanfFl agOverri de) method sends a vector of SpSt r eanDat aRecor d objects to the Sybase
Aleri Streaming Platform with one call. The st r eantpCodeCQverri de and streantl agOver -
ri de parameters can be used to override the corresponding values found in the individual SpSt r eam
Dat aRecor d objects that comprise the collection.

Although the method takes in a collection of stream data records, these records are nevertheless pub-
lished to the Sybase Aleri Streaming Platform one at a time. However, this method allows you to create
a set of stream records in which each record is published to a different stream. It may be useful in de-
bugging or testing scenarios, where the ordered sequence of updates to various source streams is import-
ant.

publ i shTransacti on(Col | ecti on streanRecords, int streamOpCodeQverri de,
int streanflagsOverride, int maxRecordsPerBl ock) and publishEnvel -
ope(Col l ection streanRecords, int streanOpCodeCQverride, int stream
Fl agsOverride, int maxRecordsPer Bl ock) arethe most efficient publication methods, be-
cause they bundle multiple SpStreamDataRecords and send them to the Sybase Aleri Streaming Plat-
form as asingle batch.

There is a restriction/constraint related to publishing transactions and/or envelopes to the Sybase Aleri
Streaming Platform. Each SpSt r eanDat aRecor d that is to be placed within the transaction/envel ope
must be for the same source stream. However, each SpSt r eanDat aRecor d can have a different “op
code” (such as| NSERT, UPDATE, DELETE or UPSERT).

As mentioned previoudly, the override op code and flag values can be used to override the correspond-
ing values found within the individual SpSt r eanDat aRecor d objects that make up the collection.
Additionally, it takes a parameter called maxRecor dsPer Bl ock — an integer value that specifies the
maximum number of SpSt r eanDat aRecor ds to be sent as a transactional/envel ope unit to the Sy-
base Aleri Streaming Platform. If the value is set to zero, then the method will try to send all of the Sp-

St r eanDat aRecor d objects in the collection within one transaction block. If maxRecor dsPer B-

| ock isless than the actual number of records in the collection, the record set will be broken up into
multiple transactions/envel opes during the transmission to the server.

The difference between a transaction and envel ope block transmitted to the server is how the server pro-
cesses the block of records upon receiving it. As the name implies, a group of records within a transac-
tion block istreated as a single transactional unit on the server side. In the case of an envelope, the group
of records contained within the envelope are processed one record at atime by the server. Basically, the
envelope mechanism allows the client to send a batch of records for a specific stream to the server in
one shot, as opposed to sending a single record at a time and having to wait for each record's ack or
nak reply from the server.

97

Reference Guide to the Java Object Model

The conmi t () method issues a special Gateway 1/O command to the Sybase Aleri Streaming Plat-
form, requesting that all pending input records previously sent to the Sybase Aleri Streaming Platform
be synced to disk. Making a commit call is a tremendously expensive operation relative to latency. It's
designed to be used only as part of a two-phase commit process when reading from a persistent source,
such as an ActiveMQ series, and writing to a Sybase Aleri Streaming Platform instance that uses Sy-
base's |og store persistence model.

Inarea time, low latency streaming scenario, the commit call should not be used after each record.

Typically the commit call should be used as follows. For a standard two-phase commit process that
guarantees against data loss, the client reads messages from the source, such as ActiveMQ, and pub-
lishes to the Sybase Aleri Streaming Platform until reaching a pre-determined number of processed mes-
sages (>1024 is recommended) or a specified amount of time has elapsed. After reaching the value set
for the maximum number messages or the elapsed time has passed, the commit() call is made and upon
return to the client, the client may inform the source, such as ActiveMQ, that the messages can be de-
leted.

Thest op() method shuts down the underlying Gateway 1/O socket connection.
A.2.1. Stream Operation Codes

The stream operation codes that can be set for each individual SpStreamDataRecord (or as one of the

st reamOpCodeOver ri de parameters) can be found in the SpGat eway Const ant s interface, and

are asfollows:

* SpGat ewayConst ant s. SO_NOOP
When specified as the “streamOpCodeOverride’ parameter, it instructs the Sybase Aleri Streaming
Platform to use the stream op code stored in each of the individual SpSt r eanDat aRecor d objects.
If the stream op code within the SpStreanDat aRecord is set to SpGat ewayCon-
st ant s. SO_NOOP, the Sybase Aleri Streaming Platform is instructed to use the default stream op-
eration, which is INSERT.

* SpGat ewayConst ant s. SO_| NSERT

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
INSERT operation.

* SpGat ewayConst ant s. SO_UPDATE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPDATE operation.

» SpGat ewayConst ant s. SO DELETE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as a
DELETE operation.

e SpGat ewayConst ant s. SO_UPSERT
When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPSERT operation. An UPSERT operation either inserts the stream record into the source stream if it

is not already present, or updates the existing source stream record using the contents of the stream re-
cord.

A.2.2. Stream Flag Values

98

Reference Guide to the Java Object Model

The set of stream flag values can be for each individual SpSt r eanDat aRecor d or one of the
streanfl agOverri de parameters. It can be found in the SpGat ewayConst ant s interface and
includes:

* SpGat ewayConst ants. SF_NULLFLAG

When specified as the st r eant| agOverri de parameter, it instructs the Sybase Aleri Streaming
Platform to use the stream flag stored in each of the individual SpSt r eanDat aRecor d objects. If
the stream flag within the SpStreanDataRecord is st to SpGat ewayCon-
stants. SF_NULLFLAG, the default synchronous publication sequence will take place.

* SpGat ewayConst ant s. SF_NOACK

When specified, it tells the Sybase Aleri Streaming Platform not to send an ack or nak back to the
client application that issued the publication request. The publ i sh method returns immediately. The
caller is not notified of potential transmission or publication failures.

* SpGat ewayConst ant s. SF_SHI NE

It is only relevant for the stream op code values of SO _UPDATE and SO_UPSERT. Typically, when
an existing record is updated by the Sybase Aleri Streaming Platform, al fields will be assigned new
values. However, there are cases when some of the fields within the stream record must be updated
while others are not. The client application can set the “other” fields of the stream record being pub-
lished to the Sybase Aleri Streaming Platform to null; if the SF_SHI NE flag is set, the Sybase Aleri
Streaming Platform will ignore the nulls and leave the existing field values. The key fields must al-
ways be present, as they are required to locate the record.

In essence, the Sybase Aleri Streaming Platform lets the existing field values “ shine through” for each
of the null values sent in from the client application program.

The flag values represent bits that can be ORed together. For example:

int flags = SpGat ewayConstants. SF_SHI NE | SpGat ewayConst ant s. SF_NQOACK;

A.2.3. SpStreamDataRecord Object

Each of the SpPublication object's publishing methods sends stream input data from the client applica-
tion to the Sybase Aleri Streaming Platform. Each stream record (or row of stream data) is encapsulated
within an SpSt r eanDat aRecor d object, which has the following method set:

public SpStream get Stream();
public Collection getFieldData();
public int get QpCode();

public int set OpCode(int val ue);
public int getFlags();

public int setFlags(int value);
Details

» Theget St ream) method returns an SpSt r eamobject associated with this SpSt r eanDat aRe-
cord.

* The get Fi el dDat a() method returns a vector of objects containing the data for each field in the

99

Reference Guide to the Java Object Model

stream record. Currently, the supported datatypes for these objects are Integer, Long, Date, and String.
The object canasobenul | .

e Theget OQpCode() method returns the stream op code currently set for this record.

* Theset OpCode(i nt val ue) method is used to set the value of the stream op code for this re-
cord.

e Theget Fl ags() method returns the flag settings currently set for this record.

» Theset Fl ags(i nt val ue) method is used to set the stream flag settings for this record.

A.2.4. Create SpStreamDataRecord Objects

For consistency within the Pub/Sub API, an SpSt r eanDat aRecor d object is created using yet an-
other “Factory” method that has the following method signature:

SpSt r eanDat aRecord SpFact ory. creat eSt r eanDat aRecor d(
SpStream stream
Col l ection fiel dDat a,
i nt opCode,
int flags,
)SpPI at f or nt at us st at us

Details:

» streamisareference to the SpSt r eamobject with which this new SpSt r eanDat aRecor d ob-
ject will be associated. The client application can get this value through the appropriate SpPI at -
f or mmethod, such as get Strean{String streanmNane) or get Strean(int stream
I d).

» fiel dDat a isavector of objects in which each entry matches the corresponding field data type, as
indicated in the streams definition (specified in the SpSt r eamparameter).

When creating an SpSt r eanDat aRecor d, all of the key fields must be assigned with non-null val-
ueswithinthef i el dDat a collection/vector.

» opCode isthe stream operation code associated with this SpSt r eanDat aRecor d.

The op code will inform the Sybase Aleri Streaming Platform how to apply this record to the source
stream (in other words, | NSERT, UPDATE, DELETE, and so forth).

Y ou have the option to override the stream op code within several of the publishing methods.
o fl ags isthe stream flag settings value associated with this SpSt r eanDat aRecor d.
Y ou have the option to override the stream flag settings within several of the publishing methods.
» st at us isan object that stores error code information generated by the cr eat eSt r eanDat aRe-

cord(...) factory method if the SpSt r eanrDat aRecor d object cannot be created.

The following code example shows how the client application program uses the cr eat eSt r eam
Dat aRecord(...) factory method to create an SpSt r eanDat aRecor d object that can be pub-

100

Reference Guide to the Java Object Model

lished to the Sybase Aleri Streaming Platform:

*

Source Streamis called “input”, and has the foll ow ng
record | ayout :

int, string, double, date, int, string, double, date

* % X F X X T~

~

Col l ection fieldData = new Vector(8);

—h

i el dDat a. add(new | nt eger (104));
i el dDat a. add("do_nystring");

i el dDat a. add(new Doubl e(5.7));

i el dDat a. add(new Date(0l));

i el dDat a. add(new | nt eger (200));
i el dDat a. add("do_mystring2");

i el dDat a. add(new Doubl e(8.9));

i el dDat a. add(new Date(0l));

—h —h —h —h —h —h —h

SpStream stream = sp. get Stream(“i nput”);

*

Use the createStreanDat aRecord(...) factory nethod to
bundl e up the stream fieldData vector, stream op code,
and stream fl ags

into an SpStreanDat aRecord obj ect.

At the nmonment, the SpStreanDat aRecord object is the
basic unit of publication. You can publish these one
at a tine, or you can publish themas a group (with
or wi thout transaction bl ocks).

NOTE: |If you wish to publish a group of

SpSt r eanDat aRecord obj ects

as a transaction, then all of the SpStreanDat aRecords
within the group nmust belong to the same stream

* Ok X F 3k X X X X X X X T~

*

*/
SpSt reanDat aRecord sdr = SpFactory. creat eSt r eanDat aRecor d(
stream
fiel dDat a,
SpGat ewayConst ant s. SO_UPSERT,
SpGat ewayConst ant s. SF_NULLFLAG
st at us) ;

i{f (sdr == null)
System out. println(“Could not createStreanDataRecord, status=" +
st at us. get Err or Code()) ;
Systemout.println(“Error Message:” +
st at us. get Err or Message()) ;
return status. get ErrorCode();

The client application can create a large number of SpSt r eanDat aRecor d objects, placing each of
them within a common vector. Next, one of the SpPubl i cat i on's publishing methods can be used to
send al rows of the stream data that are stored in the vector to the Sybase Aleri Streaming Platform,
either individually or using transactions.

Below is an example of how to publish a collection/vector of SpSt r eanDat aRecor d objects as a

101

Reference Guide to the Java Object Model

single transaction, where sp is an SpPI at f or mobject that was previously instantiated and st r eam
| nput Dat a isavector that contains a number of SpSt r eanDat aRecor d objects.

/*

* Create the publication object associated with the

* platform

*/

String nane = “testPub_1";

SpPubl i cati on pub = sp.createPublication(nane, status);
if (pub == null)

Systemout.println(“Couldn't create a publication object, status=" +
st at us) ;

Systemout.println(“Error nessage =

return status. getError Code();

+ status. get Error Message());

}
/-k
* Start the publication object (this opens up a GWI/O

* socket connection). Don't forget to eventually close

* down the SpSubscription object (via the “stop()” nethod,
* |ater on when you are finished using it,

*/

rc = pub.start();
if (rc 1= 0)
{

Systemout.println(“Couldn't start the publication object.”);
System out.println(“Error nessage = " +

SpUtils. get Error Message(rc));
return rc;

}
/*
* Publish the collection/vector of SpStreanDataRecord
* objects as one big transaction.

*/

rc = pub. publishTransacti on(stream nput Dat a,
SpGat ewayConst ant s. SO _| NSERT,
SpGat ewayConst ant s. SF_NULLFLAG

0);
if (rc = 0)
Systemout. println(“Coul dn't publish the transaction.”);
Systemout.println(“Error nessage = " +
SpUtils. getErrorMessage(rc));
return rc;

A.3. Objects for recording and playback
A.3.1. SpRecorder Object

Y ou need to call the factory method, createRecorder defined in SpPlatform, to create an SpRecorder cli-
ent programs.

102

Reference Guide to the Java Object Model

publ i c SpRecorder createRecorder(String nanme, String filenane, java.util.Collection streans
| ong maxRecords, SpPl atfornfStatus st at us)

The method takes the following parameters:

* name String that will uniquely identify thisinstance of the recorder object
» fil ename Name of thefile where recorded data will be stored
» streans ajavautil.Collection instance that contains the name of the streams to record events for

» flags Fagsthat control the subscription. These flags are passed to the underlying subscription to
the platform. Can be a bitwise OR of the following values

¢ One of SpSubscri pti onCommon. BASE or SpSubscri pti onConmon. NOBASE - whether
to record data already in streams at time of connection

e SpSubscri pti onConmon. LOSSY - whether platform should discard records if client applica
tion cannot keep up

* maxRecor ds maximum number of records to process

» st at us an SpPlatformStatus object to return information in case of error

SpRecorder has the following public interface

public String get Nanme();

public int start();

public | ong get Recor dCount () ;
public int stop();

Details:

get Name() returnstheidentifier assigned to thisinstance of the SpRecorder object

start () spawnsabackground thread which starts the recording process. The method returns once the
thread is started. Returns O on success.

get Recor dCount () returnsthe number of data records processed.

st op() stopsthe recording process by terminating the recording thread and closing connections to the
platform. Returns O on success

A.3.2. SpPlayback Object
An SpPlayback object is created by calling the following factory method defined in SpPlatform.

publ i c SpPl ayback createPl ayback(String name, String fil ename, double scale, |ong

The method takes the following parameters:

103

Reference Guide to the Java Object Model

* name uniquely identifies this instance of SpPlayback.

» fil ename specifiesthe name of the file containing the recorded data.

» scal e controls the rate of playback. Values -1 to 1 have no effect and the data is played back at the
rate it was recorded. Values greater than 1 speed up playback by that factor, for example, avalue of 2
will play back twice as fast. Values less than -1 slows down playback by the factor specified.

e nmaxr ecor ds specifies the maximum number of records to playback.

» st at us isan SpPlatformStatus object used to return information in case of error.

SpPlayback has the following public interface:

public String get Nane() ;

public void set SendUpsert (bool ean upsert);
publ i c bool ean get SendUpsert () ;

public void set Ti meScal eRat e(doubl e scal e) ;
publ i c doubl e get Ti meScal eRat e() ;

public int start();

public | ong get NunRecor dsPl ayedBack() ;
public int get Per cent Pl ayedBack() ;

public int stop();

Details:

get Name() returnstheidentifier assigned to this instance of SpPlayback object

set SendUpsert (bool ean) chooseswhether to convert INSERT opsin the datato UPSERT

get SendUpsert () returnsthe current setting of UPSERT flag

set Ti neScal eRat e(doubl e) isadoubleto control the rate of playback

get Ti meScal eRat e() returnsthe current value of the scale factor

start () spawnsabackground thread that starts the playback process. Returns O on success

get NunmRecor dsPl ayedBack() returnsthe number of data records played back so far

get Per cent Pl ayedBack() returnsthe percentage of the data played back so far

st op() terminates the background playback thread and closes connections to the Sybase Aleri Stream-
ing Platform

104

Appendix B. Reference Guide to the C++ Object Model

B.1. C++ Objects for Subscription
B.1.1. SpFactory Object

The SpFact or y object is used by the client code to create the set of objects required to use/control the
Pub/Sub API. The SpFact or y interface includes the following methods:

static int init();
static int dispose();
static SpPl atform *createPl at f or n{ SpPI at f or nPar ns * par ns,
SpPl at f or n5t at us *st at us) ;
static SpPl atfornParnms *createPl at f ornPar ns(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFl ag);
static SpPl atfornParnms *createPl at f or nPar ns(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFl ag, bool theUseRsaFl ag);
static SpPl atfornParnms *createPl at f or nPar ns(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFl ag, const char * theHot SpareHost, int theHot SparePort);
static SpPl atfornParnms *createPl at f or nPar ns(const char * theHost,
int thePort, const char * theUser, const char * thePassword,
bool theEncryptedFl ag, bool theUseRsaFl ag, const char * theHot SpareHost,
int theHot SparePort);
static SpPl atfornParnms *createPl at f ornParns(const char * theHost, int thePort,
const char * theUser, const char * thePassword, bool theEncryptedFl ag,
SpPl at f or nPar ns: : aut h_t ype theAuth, const char * theHot Spar eHost,
int theHot SparePort);
static SpPlatfornftatus *createPl atfornStatus();
static SpStreanDat aRecord *creat eStreanDat aRecor d(SpStream *stream
std::vect or<SpDat aVal ue *> *fieldData, int opCode, int flags,
SpPl at f or nSt at us *st at us) ;

Where:

e Theinit () method is used to set up the XMLRPC global environment variables. According to the
XMLRPC documentation, this method should be called while the application is single threaded.

» Thedi spose() method is used to tear down the XMLRPC global environment variables that were
previously setup by thei ni t () call. According to the XMLRPC documentation, this method should
be called while the application is single threaded.

» The createPl at form(SpPl atfornmParns *parns, SpPlatfornftatus *status)
method returns a pointer to an SpPl at f or mobject if the Pub/Sub APl was able to connect to the
Sybase Aleri Streaming Platform and initialize properly.

Before calling this method, you have to use one of the overloaded SpFact-

ory::createPlatfornmParns(...) methods and the SpFact -
ory::createPl atfornfttatus() method to create the two parameters required by the Sp-
Factory: :createPl atforn(SpPl at f or mPar ns *par ns, SpPI at f or n5t at us

*st at us) method. The contents of the SpPI at f or nPar s parameter control how the connection
and authentication from the Pub/Sub API to the Sybase Aleri Streaming Platform takes place. See
Section A.1.2, “ SpPlatformParms Object” for more information. If the connection to the Sybase Aleri
Streaming Platform can not be established, the creat ePl at f or n{ SpPl at f or nPar s
*parmns, SpPl atfornttatus *status) method returns null, and a non-zero error code is set
within the SpPI at f or nf5t at us object See Section A.1.3, “SpPlatformStatus Object” for informa-
tion on how to retrieve the error code/message.

105

Reference Guide to the C++ Object Model

» ThecreatePl atfornParns(const char * theHost, int thePort, const char
* theUser, const char * thePassword, bool theEncryptedFlag) method re-
turns apointer to an SpPI at f or nPar s object that is ultimately passed as the first parameter to the
SpFactory: :createPl atform SpPl atfornmParns *parmnms, SpPl atf or nfSt at us
*st at us) method. Thiscr eat ePl at f or nPar ns method call sets up for basic connectivity. The
user name/password are for authentication. If t heEncr ypt edFl ag isset to t r ue, then https will
be used to connect to the Sybase Aleri Streaming Platform's Command and Control process and SSL
socket connections will be made to the Sybase Aleri Streaming Platform's Gateway 1/0O process. If
t heEncrypt edFl ag issettof al se, then http will be used to connect to the Sybase Aleri Stream-
ing Platform’'s Command and Control process regular (non-SSL) socket connections will be made to
the Sybase Aleri Streaming Platform's Gateway 1/0O process.

The createt Pl atfornParnms(const char * theHost, int thePort, const
char * theUser, const char * thePassword, bool theEncryptedFl ag,
bool theUseRsaFl ag) method returns a pointer to an SpPI at f or nPar s object that is ulti-
mately passed as the first parameter to the SpFact -
ory::createPl atforn(SpPl at f or mPar ns *par ns, SpPI at f or n5t at us
*st at us) method. In addition to the basic connectivity parameters mentioned above, this method
adds an additional bool flag called t heUseRsaFI ag. If thisflag is set to t r ue, the Pub/Sub API
will attempt to authenticate to the Streaming Processor using the RSA mechanism. To use this mech-
anism, the Sybase Aleri Streaming Platform must be started with the - k option, which indicates the
directory where the public RSA key file is stored. See the Utilities Guide for more details about key
generation and placement.

When using the RSA authentication mechanism, the password of the SpPl at f or mPar ns object
must specify your private RSA key file. For example, if a user was named foo, there would be two
RSA key files having the names f oo containing the public RSA key for user foo) and
f oo. privat e. der, which contains the private RSA key for user f 0o in DER format. The public
RSA key file called f oo must be placed in a directory that is specified by the - k option to the Sybase
Aleri Streaming Platform during startup.

The private RSA key filef 0o. pri vat e. der must be placed on the client machine using the Pub/
Sub API to connect to the server. It is specified using the password parameter of the cr eat ePl at -
fornParns(...) method.

There are five variations of the cr eat ePl at f or mPar ans method. All accomplish the creation of
an SpPlatformParams object:

e basic

 basic with UseRSA flag

basic with HotSpare

« HotSpare with UseRSA

» Kerberos authentication with or without the hotspare
Choose the method which suits your needs.

Thecr eat ePl at f or nPar ns(const char * theHost, int thePort, const char
* theUser, const char * thePassword, bool theEncryptedFl ag, const
char * thehot SpareHost, int thehot SparePort) method returns a pointer to a Sp-
Pl at f or nPar ns object that is ultimately passed as the first parameter to the SpFact -
ory::createPl atforn(SpPl at f or mPar ns *par ns, SpPI at f or n5t at us
*st at us) method. In addition to the basic connectivity parameters previousy mentioned, this
method adds two more parameters called const char * t heHot Spar eHost andi nt t he-
Hot Spar ePor t . Using an SpPI at f or nPar s object created with this factory method will cause

106

Reference Guide to the C++ Object Model

the Pub/Sub API to use a High Availability configuration. In a High Availability configuration, if the
primary Sybase Aleri Streaming Platform goes down, the Pub/Sub APl automatically attempts to
switch over and use the secondary Sybase Aleri Streaming Platform.

See the Administrators Guide for more information on High Availability configurations.

» ThecreatePl atf ormParns(const char * theHost, int thePort, const char
* theUser, const char * thePassword, bool theEncryptedFl ag, bool
t heUseRsaFl ag, const char * theHotSpareHost, int theHotSparePort)
method returns a pointer to an SpPl at f or nPar ms object that is ultimately passed as the first para
meter to the SpFactory::createPl atform SpPl atfornmParns *parns, SpPlat-
fornttatus *status) method. This can be any one of the following values: SpPl at f or m
Par ms: : AUTH_NONE, SpPI at f or mPar ms: : AUTH_PAM SpPl at form
Par ms: : AUTH_RSA, SpPIl at f or nPPar ms: : AUTH_KERBV5. While other versions of the fact-
ory method can be used, this is the preferred way of creating an SpPl at f or nPar ns object. If a
Hotspare configuration doesn't exist, clients should pass in a null value for the theHotSpareHost

parameter.

* The creat ePl at f or nf5t at us() method returns a pointer to an SpPl at f or St at us object
that is passed as the second parameter to the SpFact -
ory::createPl atforn(SpPl at f or mPar ns *par ns, SpPI at f or n5t at us

*st at us) method, in order to return status information back to the caler. It is aso used in severa
other methods within the Pub/Sub API that need to return error code/status information. See Sec-
tion A.1.3, “ SpPlatformStatus Object” for more information.

The SpPI at f or nfSt at us object is passed in as the last parameter. If cr eat eSt r eanDat aRe-
cor d fails, a null will be returned to the caller and the SpPI at f or n5t at us object will indicate
the error condition.

e The creat eStreanDat aRecord(SpStream *stream std::vector<SpDat avVal ue
*> *fjeldData, int opCode, int flags, SpPlatfornttatus *status) meth-
od returns a pointer to an SpStreamDataRecord object that is used in the SpPubl i cat i on object in
order to publish data to the Streaming Processor. See

B.1.2. SpPlatformParms Object

The SpPI at f or nPPar s object is used by the SpFact -
ory::createPl atform SpPl atfornParns *parns, SpPlatfornttatus *status)
method to create the SpPlatform object. The SpPl at f or nPar ns object is created using one of the
overloaded SpFact ory: : creat ePl at f or mPar ns(. ..) methods previously described. The Sp-
Pl at f or nPPar s object contains al of the connection information required by the SpPI at f or mob-
ject, in order to make the appropriate connection(s) to the Sybase Aleri Streaming Platform. This in-
formation includes the host and port of the Sybase Aleri Streaming Platform's Command and Control
Process, username, password, and flags indicating whether to use encryption, or RSA authentication, or
Kerberos authentication and/or the High Availability (Hot Spare) mechanism. The SpPl at f or m
Par s interface includes the following methods:

std::string getHost();

std::string get Gat ewayHost () ;

int getPort();

std::string getUser();

std::string getPassword();

bool isEncrypted();

std::string getHot SpareHost () ;

i nt get Hot Spar ePort () ;

bool useRsa();

SpPI at f or nPar ns: : aut h_t ype get Aut henti cati on();

107

Reference Guide to the C++ Object Model

voi d set Gat ewayHost (const char * host);

Detalls:

» Theget Host () method returns a string indicating the host name of the machine that the Streaming
Processor's Command and Control processis running on.

* Theget Gat ewayHost () method returns the name of the gateway machine if it has been explicitly
set by the user.

e Theset Gat ewayHost () method sets the gateway machine which the API will connect to. If set,
the API will ignore the value returned from the Sybase Aleri Streaming Platform. This can be useful if
the Sybase Aleri Streaming Platform is running on a machine without Domain Name System (DNS)
entries.

e Theget Port () returns an integer indicating the port number of the Sybase Aleri Streaming Plat-
form's Command and Control process.

» Theget User () method returns a string indicating the username used to authenticate to the Sybase
Aleri Streaming Platform.

* The get Passwor d() method returns a string indicating the password used to authenticate to the
Sybase Aleri Streaming Platform. For RSA authentication, the passwor d parameter contains the file
name of your private RSA key file.

e Thei sEncrypt ed() method returns a boolean indicating whether encrypted connections will be
used to the Command and Control process and the Gateway 1/0 process. If the encryption mechanism
is enabled, the Command and Control process connection will be made using https, while the Gate-
way 1/0 process will make SSL socket connections.

» Theget Hot Spar eHost () method returns a string indicating the host name of the secondary High
Availahility Sybase Aleri Streaming Platform. See the Administrators Guide for setting up a High
Availability configuration.

e The get Hot Spar ePor t () method returns an integer indicating the port number of the secondary
High Availability Streaming Processor. See Section 2.4.6, “Publication/Subscription in a High Avail-
ability (Hot Spare) Configuration” for more information.

» TheuseRsa() method returns a boolean indicating whether RSA authentication will be used when
attempting to make connections to the Sybase Aleri Streaming Platform Command and Control pro-
cess, and the Gateway 1/0O process.

» The get Aut henti cati on() method returns the authentication mechanism specified when the
SpPI at f or mPar s was created.
B.1.3. SpPlatformStatus Object
The SpPI at f or St at us object is used by severa of the Pub/Sub APl methods to return status in-

formation back to the caller. The SpPI at f or nf5t at us interface includes the following methods:

i nt getErrorCode();
std::string get Error Message();
bool isError();

108

Reference Guide to the C++ Object Model

where:

e Theget Err or Code() method returns an integer. If a problem was detected by the method this Sp-
PlatformStatus object was passed into, a non-zero error return code value is returned, otherwise a zero
isreturned to indicate success.

e Theget Error Message() returnsastring containing the error message text.

* Thei sError () method returns a boolean the value of which ist r ue if an error was detected or
f al se if no error was detected.

B.1.4. SpPlatform Object

The notion of the “Sybase Aleri Streaming Platform” has been abstracted into an object of type Sp-
Pl at f or m As described in Section 3.2.1, “Set Up Objects for SP Subscription in C++”, an SpPI at -
f or mobject is created using the SpFact ory: : createPl atforn(...) method. Once instanti-
ated, an SpPI at f or mobject implements and offers you the following Sybase Aleri Streaming Plat-
form functionality:

cstring getUrl ();

:string getUser();

:string getPassword();

:string getHost();

:string get Gat ewayHost () ;

:string get XM_Model Ver si on();

nt getPort();

nt get Gat ewayPort ();

nt get Dat eSi ze() ;

nt get AddressSi ze();

nt get Qui esced();

nt get Pri maryServerFl ag();
std::vector<SpStream *> *get BaseStreans();
std::vector<SpStream *> *get Deri vedStreans();
std::vector<SpStream *> *get Streans();
SpStream *get Stream(const char *streanmNane) ;
SpStream *get Strean(i nt streamd);

nununmuunon
— — —~ —~ —~ —~
SLCLCCICIC

SpStreanDefinition *get StreanDefinition(const char * streanmNane);

SpStreanDefinition *get StreanDefinition(int streamd);
bool i sBi gEndi an();

bool isConnected();

bool isEncrypted();

bool useRsa();

i nt shutdown();

std::string getConfig(SpPl atfornttatus * status);

i nt | oadServer ConfigFile(const char * configFile, const char * flags);

i nt |oadConfigString(const char * configString, const char * flags);

i nt | oadConfigStringAppl yi ngConversi on(const char * configString, const char * fla

i nt addStreamioC ient(int clientHandl e,
const char *streanNane);

int removeStreantronCient(int clientHandl e,
const char * streamNane);

SpSubscri ption *createSubscription(const char * nane,
int flags, int deliveryType,

109

Reference Guide to the C++ Object Model

SpPl at f or nSt at us *st at us) ;

SpPubl i cati on *createPublication(const char * nane,
SpPI at f or n5t at us *st at us) ;

Most of the SpPI at f or mobject's methods communicate internally with the Sybase Aleri Streaming
Platform Command and Control process through the XMLRPC protocol. The SpPI at f or mmethods
allow the client application program to retrieve Sybase Aleri Streaming Platform configuration informa-
tion and retrieve all the source and/or derived streams.

Details of the method set:

The get Ur | () method returns a string representing the URL which is used to connect to the Com-
mand and Control Process through XMLRPC. The context of this string depends on whether the SpPlat-
form object was created with encryption enabled. Refer to Appendix F, Using Encryption with Java Cli-
ent Applications for more information. If there is an instance of the SpPlatform, thei sEncr ypt ed()
method can be used to check whether encryption was enabled when the SpPI at f or mobject was in-
stantiated.

The get User () and get Passwor d() methods return the strings that represent a username and
password. These values are used internally for authentication when connecting to the Sybase Aleri
Streaming Platform Command and Control and Gateway 1/0 processes.

Thereis a set of methods consisting of get Host () , get Gat ewayHost (), get Port (), and get -
Gat ewayPort (). get Host () returns the name of the host machine where the Sybase Aleri Stream-
ing Platform Command and Control Process is running. get Gat ewayHost () returns the host ma-
chine where the Sybase Aleri Streaming Platform Gateway 1/O Process is running. Currently, these two
Sybase Aleri Streaming Platform processes reside on the same machine. However, this may change in
the future.

Theget Port () and get Gat ewayPort () methods return, respectively, the Command and Control
port number and Gateway 1/0 port number but refer to two different processes.

The get XM_.Model Ver si on() method returns a string indicating the AleriML data model version
which started up the Sybase Aleri Streaming Platform.

Theget Dat eSi ze() method returns the size of the dat et i nme field type. If the Pub/Sub API isused
to communicate with the Gateway 1/0 process, the dat et i e field type size isautomatically fixed. If a
different Gateway /O code will be written, your application will have to deal with this, as well as endi-
anness, when sending datetime fields to the Sybase Aleri Streaming Platform.

The get Addr essSi ze() method returns the size of a C/C++ pointer (in bytes) that the Sybase Aleri
Streaming Platform currently recognizes. The value represents how the instance of the running Sybase
Aleri Streaming Platform was compiled (either 32-bit or 64-hit).

The get Qui esced() method returns an integer that represents the “quiesced” state of the Sybase
Aleri Streaming Platform. If successful, the method will return either O to indicate f al se, or 1 toindic-
atet r ue. If the command cannot be executed successfully, an error code is returned.

The eror message associated with the eror code can be retrieved by calling
SpUtils::getErrorMessage(rc), whererc is the return code sent back from the get Qui -
esced() call.

The get Pri mar ySer ver Fl ag() method returns an integer. If a value of 1 is returned, the Sybase
Aleri Streaming Platform is considered to be the primary server in a High Availability (Hot Spare) con-
figuration. If a value of zero is returned, the Sybase Aleri Streaming Platform is not the primary server
in this configuration. If the command could not be executed successfully, an error code is returned that

110

Reference Guide to the C++ Object Model

is neither zero nor 1.

The Pub/Sub API attempts to alleviate you from having to worry about the details of a High Availability
(Hot Spare) switch over in case the primary server goes down. Y ou can use this method to check that the
connected Sybase Aleri Streaming Platform is indeed a primary server within a High Availability (Hot
Spare) configuration. Theoretically, you could use the Pub/Sub API to establish a connection to a sec-
ondary server within this configuration. Calling get Pri mar ySer ver Fl ag() on the secondary serv-
er returns avalue of zero, indicating that the server is not aprimary.

The next group of methods is used to return stream metadata from the Sybase Aleri Streaming Platform.
A stream's metadata/schema is represented within the Pub/Sub APl as an object of type SpSt r eam
Refer to Section B.1.5, “SpStream Object” for more information. The get BaseSt r eans() method
returns a pointer; these pointers reference SpStream objects representing all of the Source Streams resid-
ing on the Sybase Aleri Streaming Platform. Similarly, get Der i vedSt r eans() returns a pointer to
a vector of pointers. These pointers reference SpSt r eam objects that represents all of the derived
streams residing on the Sybase Aleri Streaming Platform. The get St r eans() method returns a vector
of SpSt r eamobjects that represents all streams (both source streams and derived streams) residing on
the Sybase Aleri Streaming Platform. For a particular stream, you can look up the stream by itsnane or
i d using the get Strean{const char * streamNane) or get Strean(int stream d)
method, respectively.

The getStrean(const char * streamNane) and get StreanDefinition(int
st ream d) methods return an object of type SpSt r eanDef i ni ti on for the specified st r eam
Name or st reanl d, respectively. Refer to Section B.1.6, “ SpStreamDefinition Object” for more in-
formation.

Thei sBi gEndi an() method returnst r ue if the Sybase Aleri Streaming Platform Server is running
on a big-endian machine, f al se if the Sybase Aleri Streaming Platform Server is running on a little-
endian machine.

Thei sConnect ed() method returnst r ue if the SpPlatform object is still connected to the Sybase
Aleri Streaming Platform. Otherwise, it returns f al se. For example, if the client application program
issues a "shutdown", subsequent i sConnect ed() calsreturnf al se.

Once an SpPI at f or mobject is shut down, the application program should set its reference to null.
Later on, another SpPl atform object can be instantiated again using the SpFact -
ory::createPlatforn(...) method.

The shut down() method tells the Command and Control Process to shut down the Sybase Aleri
Streaming Platform. This causes all socket connections to the Sybase Aleri Streaming Platform to be
closed. If your subscriptions are running, the SpCbser ver objects of those subscriptions will be noti-
fied before the shutdown.

The get Confi g(SpPl at f or n5t at us *st at us) method returns a st d: : stri ng containing
the AleriML configuration currently being executed by the running Sybase Aleri Streaming Platform in-
stance. If thereis an error in retrieving the XML configuration information from the server, this method
will return an empty string, and the error code will be stored in the SpPlatformStatus parameter passed
into the method.

The | oadSer ver Confi gFil e(const char * configFile, const char * flags)

method will attempt to load the AleriML configuration file on the server into the running Sybase Aleri
Streaming Platform instance. The flags parameter is used to provide control information used during the
AleriML configuration file load attempt. If additional control information is not needed, the value of the
flags parameter can be an empty string. Consult the Administrators Guide for more information on load-
ing AleriML configurations, and the various options that can be specified in the flags parameter. If the
AleriML configuration file was loaded successfully, the method returns zero. If it was unsuccessful, a
non-zero error code will be returned. For more information about the attempt to load the AleriML con-
figuration file into the server, inspect the log messages |ocated on the server.

111

Reference Guide to the C++ Object Model

The | oadConfi gString(const char * configString, const char * flags)
method attempts to load the AleriML configuration stored in the conf i gSt ri ng parameter, into the
running Sybase Aleri Streaming Platforminstance. The flags parameter is used to provide control in-
formation used during the XML configuration string load attempt. If additional control information is
not needed, the value of the flags parameter can be an empty string.

If the AleriML configuration was loaded successfully, the method returns zero. If the loading was un-
successful, a non-zero error is returned. In addition, when loading an AleriML configuration into the
server, inspect the log messages located on the server for more information.

The 1 oadConfigStringAppl yi ngConversi on(const char * configString,

const char * flags, const char * conversionConfigString) method will attempt
to load the AleriML configuration stored in the confi gStri ng parameter into the running Sybase
Aleri Streaming Platforminstance. The f | ags parameter provides control information used during the
AleriML configuration string load attempt. If additional control information isn't needed, the value of
thef | ags parameter can be an empty string.

Theconver si onConfi gSt ri ng parameter pointsto an AleriML model used to apply specific con-
version instructions during the AleriML configuration load.

If the AleriML configuration was loaded successfully, the method returns zero. If it was unsuccessful, a
non-zero error code is returned. Also, you should inspect the log messages located on the server for
more information when loading an AleriML configuration into the server.

The SpPI at f or mobject provides two subscription-related methods you can use if you write your own
low-level Gateway /O code for the subscription instead of utilizing the Pub/Sub API. The methods are
addSt reaniroC i ent (i nt cli ent Handl e, String streanmNanme) and re-

noveStreanfFronClient(int clientHandle, String streamNane). Both are part of
the SpPlatform interface because the two are XMLRPC calls that manage the subscription characterist-
ics of a Gateway /0 socket on which a subscription is currently running.

Once a subscription request is issued for an open Gateway /O socket connection, the connection be-
comes a read-only connection. Asynchronous stream updates are delivered from the Sybase Aleri
Streaming Platform to the client. Because of the "read-only" nature of the socket, additional Gateway 1/
O commands can no longer be issued on this socket connection, leaving the XMLRPC mechanism to fill
in the gap.

The two methods are passed acl i ent Handl e, which is an integer value returned by the Gateway 1/0
process when you send a low-level subscription request on the socket. The addSt r eanirod i -
ent(...) method lets you add an additional stream to the subscription list, and the re-
noveSt reanfronC i ent (...) method alows you to delete a stream from the subscription list.

If the Pub/Sub API subscription mechanism is used, SPplatform is an effective method. The cr eat e-

Subscri pti on(const char *narne, i nt flags, i nt del i veryType,

*SpPl at f or St at us) method can create an SpSubscri pti on object that is associated with the
SpPI at f or mobject. As the name implies, it is aso a factory method used to create SpSubscri p-

ti on objects. A SpSubscri pti on object has its own interface that is used to control the subscrip-
tion.

As mentioned earlier, a subscription is used to get asynchronous stream updates from the Sybase Aleri
Streaming Platform into your client application.

Similarly, there is a factory method called cr eat ePubl i cati on(const char *nane, Sp-
Pl at f or nf5t at us *st at us) that createsan SpPubl i cat i on object. An SpPubl i cati on ob-
ject can publish stream input data and/or issue the Gateway 1/0O commit() command) from the client ap-
plication to the Sybase Aleri Streaming Platform. Refer to Section 3.3.1.1, “ Create an SpPublication Ob-
ject” for more information.

112

Reference Guide to the C++ Object Model

B.1.5. SpStream Object

The SpSt r eamobject is used to store the metadata associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpSt r eaminterface includes the following methods:

int getld();

std::string get Name();

bool isBase();

SpStreanDefinition *getDefinition();

Details:

» Theget | d() method returns an integer that represents the stream’s internal identifier on the Sybase
Aleri Streaming Platform.

* Theget Nane() method returns a string that represents the name of the stream.
e Thei sBase() method returnst r ue if the stream is a source stream, f al se otherwise.

» Theget Definition() method returns a pointer to an object of type SpSt r eanDef i ni ti on
which contains the schema information of the stream. Refer to Section 3.3.1.2, “Create SpStream-
DataRecord Objects’ for more information.

B.1.6. SpStreamDefinition Object

The SpSt r eanDef i ni ti on object stores the schema associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpSt r eanDef i ni ti on interface has the following methods and con-
stants defined within it:

i nt get NumCol utms() ;

std: :vector<const char *> *get Col umNanes() ;
std::vector<int> *get Col umTypes();
std::vector<int> *get KeyCol ums() ;

st d: : vector<int> *get KeyCol umVect or () ;

i nt bool isKeyColum(int col umml ndex);

Details:

» Theget NuntCol umms() method returns the number of columns in the stream.

» The get Col unmNanes() method returns a vector of "const char *", where each " const
char *" representsthe name of the corresponding column.

e The get Col umTypes() method returns a vector of integers, each one a constant that represents
the field type of the corresponding column. The SpSt r eanDef i ni ti on contains a list of integer
"constants' representing the various column types.

This vector's size is equal to the value returned from the get NumCol urms() method. In the distri-
bution's i ncl ude/ Dat a directory, there is a file named Dat aTypes. hpp. This file contains an
enumeration of the different DataTypes supported by the Pub/Sub API.

» Theget KeyCol umms() method returns a vector of integers, each of which is the column index (rel
0) of akey column in the streams field list. For example, if the stream has 10 columns, and the first
three are key columns, the getKeyColumns() method returns a vector that includes the following

113

Reference Guide to the C++ Object Model

entries: [0, 1, 2].

» The get KeyCol ummVect or () method returns a vector of integers. Each field in the entire field
list is represented by an integer, the value of which is either 1 (if the field is a key field), or zero (if
thefield is not akey field).

e Thei sKeyCol um(int col uml ndex) returns a boolean value of t r ue if the column index
specified isthat of akey field; otherwise, it returnsf al se.

The columnindex is “rel-0" asthe first column of the field list has an index value of zero.

B.1.7. SpStreamProjection Object

The SpSt r eanPr oj ect i on object stores the metadata associated with a stream projection based on
an SQL query supplied to the cr eat eSubscri pti onProj ection(...) factory method of the
SpPlatform object. The SpSt r eanPr o] ect i on interface includes the following methods:

get Stream() returns a reference to the underlying SpSt r eam onto which the SQL query
was projected.

get Definition() returnsapointer to an object of type SpSt r eanDef i ni t i on, containing the
schema information of the projection. This information is returned by the Sy-
base Aleri Streaming Platform when the SQL query associated with an
SpSubscri pti onProj ecti on objectisfirst created.

SpStream *get Streamn() ;
SpStreanDefinition *getDefinition();

B.1.8. Creating an SpSubscription or SpSubscriptionProjection Object

To make subscription requests to the Sybase Aleri Streaming Platform, you must create an SpSub-
scription or SpSubscriptionProjection object. Use the appropriate factory method
provided by the SpPI at f or mobject that has been previously instantiated. The SpPI at f or mfactory
methods that are used to create SpSubscri pti on and SpSubscri pti onProj ecti on objects
have the following signatures:

>
SpSubscri pti on *createSubscri ption(const char * nane,
int flags, int deliveryType, SpPl atfornftatus *status);

SpSubscri pti onProjecti on *createSubscripti onProj ecti on(const char * nane,
int flags, int deliveryType, const char * sql Query,
SpPl at f or nS5t at us *st at us) ;

Where:

const char * nane is an identifier that the client application program intends to assign
to the SpSubscription or SpSubscriptionProjection object being cre-
ated.

int flags represents the “flag bits’ that are to be sent to the Sybase Aleri

Streaming Platform Gateway 1/O process when the low-level sub-

114

Reference Guide to the C++ Object Model

scription request is made. The flag settings control delivery from
the Sybase Aleri Streaming Platform to the client application, on
the Gateway 1/O socket connection where the subscription request
was made. The “flag bits” are defined as constants in the SpSub-
Const . hpp interface fileand are:

e BASE = 0xO;

The BASE flag hit tells the Sybase Aleri Streaming Platform that
it should send a complete “snapshot” of each stream of the sub-
scription request before sending subsequent updates to each
stream. The complete snapshot or “ state” of the stream is a group
of “insert” records sent from the Sybase Aleri Streaming Plat-
form between the EVI D _GATEWAY_SYNC START and
EVI D_GATEWAY_SYNC_END subscription events.

e LOSSY = 0Ox1;

The LOSSY flag bit puts the Sybase Aleri Streaming Platformin
“data shedding mode”, where the oldest data is dropped when a
client cannot keep up with the pace of the data coming out of the
Sybase Aleri Streaming Platform. This ensures that when the cli-
ent does read gateway data, it is always the most recent data that
the Sybase Aleri Streaming Platform has delivered to the output
gateway.

* NOBASE = 0x2

This flag tells the Sybase Aleri Streaming Platform that it should
NOT send a complete "snapshot” of each stream of the subscrip-
tion request. The Sybase Aleri Streaming Platform will send only
subsequent updates for each stream.

* DROPPABLE = 0x8

This flag tells the Sybase Aleri Streaming Platform to drop its
connection to the client application if that application (the one
using this flag) can't keep up with the data being sent and its in-
ternal buffer is filled. This protects the Sybase Aleri Streaming
Platform from getting into a situation where it has to stop pro-
cessing incoming data because the its clients can't keep up with
the datait is producing.

Because the connection is smply dropped, the client cannot ex-
pect avalid error code.

* PRESERVE_BLOCKS = 0x20

This flag tells the Sybase Aleri Streaming Platform that it should
preserve blocks while sending data to the client application.

These flag bits can be ORed together using the “|” operator. For ex-
ample, f1 ags = NOBASE | LOSSY.

int deliveryType: This integer value specifies how the client application program's
SpObser ver abject receives the stream update events. Currently,
there are several delivery type format specifiers defined in the
SpSubConst . hpp interface file. The delivery type specifiers are
asfollows:

115

Reference Guide to the C++ Object Model

e DeliveryType:: DELI VER PARSED = 1;

This delivery type setting tells the SpSubscri pt i on object to
deliver parsed field data objects representing the stream update
to the SpObser ver object.

e DeliveryType:: DELI VER Bl NARY = 3;

This delivery type setting tells the SpSubscription object to de-
liver the binary representation of the stream update record to the
SpQbser ver object.

e DeliveryType:: DELI VER_STREAM OPCODES = 5;

This delivery type setting tells the SpSubscri pti on object
not to use field level parsing, but to smply deliver the stream up-
date operation code (I NSERT, UPDATE, DELETE, UPSERT,
and so forth).

const char *sqgl Query specifies the SQL query projection on which the SpSubscri p-
ti onProjection will be based. The sql Query parameter is
only used to create an SpSubscri pti onProj ecti on object.
See Section 5.1, “Aleri SQL Queries and Statements’ for SQL
query handling limitations of the Sybase Aleri Streaming Platform.

SpPl at fornfSt at us stat us is used to return error code information from the cr eat eSub-
scription(...) and createSubscriptionProjec-
tion(...) factory methods, if the subscription object could not
be created.

The following example shows how to use the SpPI at f or mobject called sp to create both an SpSub-
scri ption object and an SpSubscri pti onProj ecti on object:

SpSubscri ption *sub = sp->createSubscription("MSubscription_ 1",
SpSubConst : : BASE,
SpSubConst : : DELI VER_PARSED,
st at us) ;

SpSubscri ptionProj ecti on *subProj = sp->createSubscriptionProjection(
"MySubscri ptionProjection_2",
SpSubConst : : BASE,
SpSubConst : : DELI VER_PARSED,
"sel ec; i nt Data, charData frominputstream where intData > 100",
st at us);

In the above example, st at us isan SpPl at f or St at us object that was created previously with the
SpFact ory: : creat ePl at f or n5t at us() factory method.

B.1.9. SpSubscriptionCommon Method Set

If the Sp->createSubscription(...) or the sp-
>creat eSubscri ptionProjection(...) calissuccessful, the client application program gets
back either an SpSubscri pti on or SpSubscri pti onPr oj ecti on object, which isthen used in
order to make the subscription. The set of methods that the SpSubscription and SpSubscri pti on-
Pr oj ecti on types have in common have been abstracted into a super type caled SpSubscri p-

116

Reference Guide to the C++ Object Model

t i onCommon. The SpSubscriptionCommon interface is inherited by both the SpSubscription and
SpSubscri ptionProj ecti on interfaces. The SpSubscri pti onConmon interface defines the
following method set:

>

std::string get Name();
i nt getFlags();

int getDeliveryType();
int getdientHandl e();

i nt removeQbserver (i nt theCookie);
int start();

int stop();

The get Nane() method returns the name assigned to the subscription object when it was created with
the SpPlatform's createSubscription(...), or createSubscriptionProjection(...) method.

Similarly, the get Fl ags() and get Del i ver yType() methods return the flag settings and the de-
livery type, respectively, that were specified in the cr eat eSubscri ption(...) orcreat eSub-
scriptionProjection(...) method.

The get d i ent Handl e() method returns an integer representing a “handle” that is assigned to the
underlying subscription connection, by the Sybase Aleri Streaming Platform. A valid handle is one that
is greater than zero. The value of the cl i ent Handl e is acquired from the Sybase Aleri Streaming
Platform when the subscription is started through the st ar t () method.

TherenoveCbserver (i nt theCooki e) method is used to remove the SpCbser ver from the
subscription's delivery mechanism. There are differences between how you add observers to the two dif-
ferent types of subscriptions. These differences will be discussed within the SpSubscri pti on and
SpSubscri pti onProj ecti on interfaces.

Thest art () method is used to start the subscription process.

At least one stream and SpQhser ver must be registered with the subscription object before the sub-

scription object can be started up through the start() method. See Section C.2.2,

“SpSubscriptionEvent” for information on how to add respective SpCbser ver objects.

When you start up a subscription object, the following sequence of events takes place:

1. The subscription object establishes a socket connection to the Sybase Aleri Streaming Platform
Gateway 1/0O process, and authentication is performed.

2. A subscription request is sent to the Sybase Aleri Streaming Platform on this socket connection.

3. If the subscription request is accepted by the Sybase Aleri Streaming Platform, the subscription ob-
ject readsthecl i ent Handl e that the Sybase Aleri Streaming Platform assigned to it.

4. A new thread is started up dedicated to reading stream update information off the read-only Gate-
way /0 socket connection.

5. Stream update messages flowing from the Sybase Aleri Streaming Platform to the client are read,
parsed and delivered to the SpObserver objects.

When the SpObserver objects are “notified” for stream updates, through not i fy(...) methods,
the SpObserver objects will actually be running within the context of this thread instead of the main
one.

117

Reference Guide to the C++ Object Model

6. Thestart () method returns a zero back to the caller indicating that the subscription was started
up successfully. If thereisan error, thest art () method returns a non-zero error code.

Note:

The SpUti | s. get Error Message(err or Code) method can be used to get the specific
error message.

The st op() method is used to shut down the subscription mechanism. The st op() method closes the
socket connection and stops the thread that was used to read, parse and deliver the Sybase Aleri Stream-
ing Platform updates to the SpCbser ver objects.

Here are additional methods in the interface;

voi d set Pul sel nterval (const uint32_t interval);

uint32_t get Pul selnterval ();

voi d set QueueSi ze(const uint32_t queue, SpPlatfornStatus * status);

ui nt 32_t get QueueSi ze();

voi d set BaseDrai nTi neout (const uint32_t millis, SpPlatfornftatus * status);
ui nt32_t get BaseDrai nTi neout () ;

voi d set Exi t OnCl ose(SpPl atfornSt atus * status);

bool get ExitOnd ose();

» set Pul sel nt erval canbeused to set the pulseinterval in seconds if the subscription was created
with the pulsed flag on.

» get Pul sel nt erval isused to retrieve the current setting of the pulseinterval in seconds.

» set QueueSi ze isused to set the internal buffer size in the Sybase Aleri Streaming Platform for this
subscription. The Sybase Aleri Streaming Platform uses this buffer to queue up messages if the sub-
scriber is slow in retrieving. The buffer prevents it from blocking and slowing down. The setting is
made when the subscription is started. It is necessary to keep the st at us parameter valid until the
time the start call is made.

e get QueuesSi ze retrieves the current value of the queue size.

* set BaseDrai nTi meout is used to set the time in milliseconds that the Sybase Aleri Streaming
Platform should wait before dropping a blocked subscription. If a subscription is started with the
DROPPABLE flag set, the Sybase Aleri Streaming Platform closes a subscription connection if the
messages block due to aslow client. This parameter specifies how long to wait before closing the con-
nection. The setting is made when the subscription is started. It is necessary to keep the st at us
parameter valid until the time the start call is made.

» get BaseDr ai nTi meout retrieves the current value in milliseconds of the base drain timeout.

» If theset Exi t OnC ose is set, the Sybase Aleri Streaming Platform will shut down once this sub-
scription connection is closed by the client. The setting is made when the subscription is started. You
must keep the st at us parameter valid until the time the start call is made.

» get Exi t Ond ose retrieves the current setting of the exit on close flag.

B.1.10. SpSubscription Method Set

If the sp- >creat eSubscri ption(...) cal issuccessful, the client application program gets an
SpSubscri pti on object back that is ultimately used to subscribe. An SpSubscri pti on object
can be used to subscribe to one or more streams, while an SpSubscri pti onProj ecti on object

118

Reference Guide to the C++ Object Model

can only subscribe to the projection defined by the sql Query passed in to the cr eat eSubscri p-
tionProjection(...) factory method. For each stream being observed, the SpSubscri pti on
object delivers to the SpChser ver, stream events that contain all of the stream's fields. The SpSub-
scri ption object extends the method set defined in the SpSubscri pti onConmon interface as
follows:

i nt /*Cookie*/ addStreantbserver(const char * streamNane,
SpGbserver *theGbserver);

i nt /*Cookie*/ addStreansCbserver (
std::vector<std::string> * theStreanNanes, SpCbserver *theCbserver);

i nt subscri be(const char *streanmNane);

i nt unsubscri be(const char *streanNane);

The next few methods are used to set up the streams and their corresponding SpCbser ver objects for
the SpSubscri pti on. The client application programs must create their own SpChser ver objects,
which are notified by the SpSubscri pti on with the updates that arrive from the Sybase Aleri
Streaming Platform for the registered streams. The client application programs create SpObserver ob-
jects by implementing the SpQbser ver interface.

The addsSt r eanmbser ver (const char * st r eamNane, SpGbser ver

*t heObser ver) method tells the SpSubscri pti on object to send all updates for the st r eam

Nane to the SpCbser ver object specified by t heCbser ver parameter. You can call this method as
many times as required.

The addStreansObserver(std::vector<std::string> *theStreamNane, Spb-
server *theCbserver) method can be used to associate several streams with a particular SpOb-
server at once. The same thing can be accomplished by making multiple calls to the addSt r eanth-
server (...) method previously shown. Again, multiple addSt r eansObser ver (...) calscan
be made to set up the streams and their corresponding observers.

The addStreanmbserver(...) and addStreansQoserver(...) cals return an integer
value that represents a “cooki€’/“handle” to the registered SpObser ver object. Later on, you can use
the cookie to remove the SpCbser ver .

Ther emoveObser ver (i nt theCooki e) method, with asignature defined in the SpSubscr i p-
t i onConmon interface, removes the SpCbser ver from the SpSubscri pti on's delivery mechan-
ism.

Once the SpSubscri ption's start () method has been caled, the SpSubscri pti on object
provides two methods to modify the stream set currently being managed by the “running” subscription,
subscri be(const char *streanNane) and unsubscri be(const char
*st reanNane) .

These two methods take a single st r eanNanme parameter. In the case of the subscri be(const
char * streanmNane) cal, the client application program must first ensure that there is an SpOb-
server associated with the subscribed stream. Y ou can do this by first calling theaddSt r eanObser v-
er (streamName, theCbserver) method to register the observer for the stream, and then calling
thesubscri be(st reanNanme) method.

If successful, both the subscri be(const char * streamNane) and unsubscri be(const
char * streamNane) methods returns a zero. Otherwise, a non-zero error code is sent back to the
caler, wherethe SpUt i | s: : get Error Message(rc) method can be used to see the error text as-
sociated with the error code.

119

Reference Guide to the C++ Object Model

B.1.11. SpSubscriptionProjection Method Set

If the sp->createSubscriptionProjection(...) cal is successful, you get back an
SpSubscri pti onProj ecti on object ultimately used to instantiate the subscription. The contents
of the data returned from the Sybase Aleri Streaming Platform back to the SpSubscri pti onPr o-
j ecti on object are determined by the SQL query passed into thecr eat eSubscri pti onPr oj ec-
tion(...) factory method. An SpSubscri pti onProj ecti on can only receive updates for the
underlying stream specified in the SQL query while the SpSubscription can get updates for more than
one stream. The SpSubscri pti onProj ecti on interface extends the method set defined in the
SpSubscriptionCommon interface as follows:

SpSt reanPr oj ecti on *get St reanProj ection();
i nt /*Cookie*/ addCbserver (SpQbserver *theQbserver);

The get St reanProj ecti on() method returns the SpSt r eanPr oj ecti on object produced
when the SQL query was sent to the Sybase Aleri Streaming Platform for parsing during the execution
of the cr eat eSubscri pti onProjection(...) factory method. If the SQL query could not be
parsed, the cr eat eSubscri pti onProj ection(...) factory method returns null; the corres-
ponding error information is added to the SpPI at f or n5t at us object that was passed to the cr e-
at eSubscriptionProjection(...) factory method. If the creat eSubscri pti onPro-
jection(...) method succeeds, the program gets back an SpSubscri pti onProj ecti on ob-
ject, which can then make a call to get St r eanPr oj ect i on() for the schema information produced
by the SQL query parse. The SpStreanProjection that is returned should be treated as
“read-only”, and not modified by the client application program. Typically, the SpSt r eanPr oj ec-
t i on objects are passed into the SpObserver's constructor, giving the SpQobser ver the list of fields
and corresponding data types. Thisinformation is typically used by the SpCbser ver to process the up-
dates that come back from the server.

B.1.12. SpSubscriptionEvent

An SpSubscriptionEvent provides the following method set:

std::string get SubName();

i nt get Type();

std::string get TypeName();
int getld();

std::string getldNane();
int getStream d();

i nt get StreampCode();

voi d *getData();

The get SubNanme() method returns a string that represents the name of the
SpSubscri ption/SpSubscri pti onProj ecti on object that generated and delivered this event
to the SpCbser ver . This“name’ was assigned to the SpSubscri pt i on/SpSubscri pti onPr o-
jection object when it was first created through the SpPl atform creat eSubscri p-
tion(...) method.

The get Type() method returns an integer representing the “type” of this SpSubscriptionEvent. Cur-
rently, there are four types (or categories) of events defined in the SpSubscriptionEvent class:

* SpSubscri pti onEvent: : EVTYPE_PARSED DATA

Events delivered from a subscription object that was created with a delivery type of SpSub-

120

Reference Guide to the C++ Object Model

Const : : DELI VER_PARSED.
* SpSubscri pti onEvent: : EVTYPE_BI NARY_DATA

Events delivered from a subscription object that was created with a delivery type of SpSub-
Const : : DELI VER_BI NARY.

e SpSubscri pti onEvent: : EVTYPE_STREAM OPCODE DATA

Events delivered from a subscription object that was created with a delivery type of SpSub-
Const : : DELI VER_STREAM OPCODES.

» SpSubscri pti onEvent:: EVTYPE_SYSTEM

Events delivered by the subscription object to indicate that a system event such as an error, halt in
communication, or shutdown of the Sybase Aleri Streaming Platform has taken place.

The get TypeName() method returns the string literal value, representing the type of event instead of
the internal integer representation. Y ou can use this for output messages.

Theget | d() method returns an integer representing a unique event ID that can be safely used within a
switch statement to “case” on. The event IDs are unique across the entire set of event types. For ex-
ample, an SpSubscri pti onEvent may have a type of SpSubscrip-
ti onEvent: : EVTYPE _SYSTEM which means it is a system-related notification. The get | d()
method returns what was actually detected by the system, for example, SpSubscri p-
ti onEvent:: EVI D_PARSI NG ERROR, SpSubscri p-
ti onEvent:: EVI D_COVMUNI CATOR_HALTED, and so forth. As is the case with the event types,
all of the event IDs are enumerated within the SpSubscri pti onEvent . hpp interface.

These are the SpSubscriptionEvent identifiers:

* SpSubscri pti onEvent: : EVI D_GATEWAY_SYNC_START

It is delivered to the SpQbser ver if the SpSubscription is sent a START _SYNC Gateway 1/0 mes-
sage from the Sybase Aleri Streaming Platform. The START_SYNC message contains the ID for the
stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates the start of the stream's “snapshot”. Sub-
sequent events should be | NSERT messages for each record in the stream until the END_SYNC Gate-
way 1/0 message is received from the Sybase Aleri Streaming Platform. A call to the START_SYNC
event's get Dat a() method returns null. For this message to be sent from the Sybase Aleri Stream-
ing Platform to the client application, the SpSubscription had to be created with the SpSub-

Const : : BASE flag specified. If the SpSubConst : : NOBASE flag is specified instead, the
START_SYNC message would never have been delivered from the Sybase Aleri Streaming Platform
to the client application.

This event is aso delivered after the dynamic Sybase Aleri Streaming Platform changesif the stream's
contents gets regenerated, after the W PEQUT event. In this situation the START _SYNC event is de-
livered even if the subscription was created with the SpSubscri pt i onComon. NOBASE flag.

» SpSubscri pti onEvent:: EVI D_GATEWAY_SYNC END
Thisevent is delivered to the SpCbser ver if the SpSubscription is sent an END_SYNC Gateway |/0
message from the Sybase Aleri Streaming Platform. The END_SYNC message contains the ID for the
stream with which the message is associated.

If this event is delivered to the SpQbser ver , it indicates that the end of the stream's “snapshot” has

121

Reference Guide to the C++ Object Model

been reached. A call to the END_SYNC event's get Dat a() method returns null. For this message to
be sent from the Sybase Aleri Streaming Platform to the client application, the subscription has to be
created with the SpSubConst : : BASE flag specified. If the SpSubConst : : NOBASE flag is spe-
cified instead, the END_SYNC message would never be delivered from the Sybase Aleri Streaming
Platform to the client application.

This event is also delivered after the dynamic Sybase Aleri Streaming Platform changesiif the stream's
contents are regenerated. The W PEQUT event is followed on the dynamic regeneration by the
START_SYNC event insertion of the new data and the END_SYNC event. All the events are delivered
even if the subscription was created with the SpSubscr i pt i onCommobn. NOBASE flag.

SpSubscri pti onEvent: : EVI D_GATEWAY_W PEOUT

It isdelivered to the SpQbser ver after the dynamic Sybase Aleri Streaming Platform changesiif the
stream's contents are regenerated. The event means the current contents of the stream are being dis-
carded. The W PEQUT event is followed by the START _SYNC event, insertion of the new data, and
the END_SYNC event. All the events are delivered even if the subscription was created with the
SpSubscri pt i onComon. NOBASE flag.

SpSubscri pti onEvent: : EVI D_BlI NARY_DATA

If the subscription is created with the delivery type of SpSubConst : : DELI VER BI NARY, the
get Dat a() method returns a pointer to an SpBi nar yDat a object containing the binary message
delivered from the Sybase Aleri Streaming Platform. See SpBi nar yDat a. hpp for the definition of
the interface.

SpSubscri pti onEvent: : EVI D_PARSED Fl ELD DATA

When a subscription object is created with a delivery type of SpSubConst : : DELI VER PARSED,
it attempts to parse the field data of the stream messages transmitted by the Sybase Aleri Streaming
Platform and delivers this parsed field information to the SpObser ver. The get St r eamOp-
Code() method can be used to determine whether the message was an | NSERT, UPDATE, or DE-
LETE. The parsed field data is accessed by the SpQbser ver through the event's get Dat a()
method.

SpSubscri pti onEvent: : EVI D PARSED PARTI AL_FI ELD DATA

It is similar to the SpSubscri pti onEvent :: EVI D_PARSED FI ELD DATA event. This event
is delivered when the SpSubscri pt i on's message parser detects an error as it parses out the field
data for the message sent from the Sybase Aleri Streaming Platform. If an error is encountered during
the parse, only those fields that were successfully parsed up to the place where the error was detected
will be delivered. The SpObser ver isnot obligated to inspect the partial results, but you may want
to use the partial results for debugging purposes.

SpSubscri pti onEvent:: EVI D_COMMUNI CATOR_HALTED

It is delivered when the low-level socket on which the subscription runs is closed. In this case, a call
totheget Dat a() method returns null.

SpSubscri pti onEvent: : EVI D_PLATFORM_SHUTDOMN

It is delivered when you attempt to issue a “ shutdown” through the SpPI at f or mobject. In this case,
acdl totheget Dat a() method returns null.

SpSubscri pti onEvent : : EVI D_PARSI NG_ERRCR

It is delivered when a parsing error is detected by the SpSubscription, and some context to report. A
call totheget Dat a() method returns an object of type SpPar ser Ret ur nl nf o.

122

Reference Guide to the C++ Object Model

For more information, see Section 3.2.3, “Receive/Process Subscription Updates Using C++”.
e SpSubscri pti onEvent:: EVI D_UNKNOAN_ PARSI NG ERROR

It indicates that the parser encountered an unexpected error before the completion of the process. In
this case, the get Dat a() method returns an integer object that contains the record length for the
message that is about to be parsed.

* SpSubscri pti onEvent:: EVI D READ STREAM RECORD ERROR

It indicates that the parser could not successfully read the record that was delivered from the Sybase
Aleri Streaming Platform. The get Dat a() method returns an integer object containing the value of
the record length that was read for the bad record.

- SpSubscri ptionEvent : : EVI D_BAD_RECORD LENGTH_ERROR

It indicates that the record length read of the socket was bad. The get Dat a() method returns an in-
teger object that contains the bad record length value read off of the socket.

e SpSubscri pti onEvent:: EVI D BAD GATEWAY OP_CODE_ERROR

It indicates that the Gateway 1/0 operation code for the message sent from the Sybase Aleri Streaming
Platform isinvalid. The get Dat a() method returns an integer object that contains the bad Gateway
1/O operation code that was read.

* SpSubscri ptionEvent:: EVI D_HOT_SPARE_SW TCH OVER | NI TI ATED

It is delivered to the SpGbser ver when the Pub/Sub API recognizes that a connection attempt
should be made to the High Availability (Hot Spare) server. The High Availability (Hot Spare) con-
nection parameters were specified in the SpPI at f r onPar ns object passed to the SpFact -
ory::createPl at f orm() method when the underlying SpPI at f or mwasfirst created.

« SpSubscri ptionEvent: : EVI D HOT_SPARE_SW TCH_OVER SUCCEEDED

It is delivered to the SpQhser ver when the connection to the High Availability (Hot Spare) server
is made successfully.

e SpSubscri pti onEvent:: EVI D HOT _SPARE SW TCH OVER FAI LED

It is delivered to the SpChser ver when the connection to the High Availability (Hot Spare) server
falls.

The get | dNarre() method returns the string literal value that corresponds to the numeric event ID.
You can useit for output messages.

The get St r eam d() method returns the stream id that is associated with this event. For example, an
SpObserver may receive an event of type SpSubscri pti onEvent: : EVTYPE_PARSED DATA,
where the event id is SpSubscri pti onEvent: : EVI D PARSED Fl ELD DATA, indicating that
the event contains parsed field data. The get St r eam d() method returns the stream id to which this
event data corresponds.

The get St r eantpCode() method returns the stream operation code that is associated with this
event. For example, an SpObserver may receive an event of type SpSubscrip-
ti onEvent:: EVTYPE_PARSED DATA, where the event id is SpSubscri p-
ti onEvent:: EVI D_PARSED FI ELD DATA, indicating that the event contains parsed field data.
The get St r eantpCode() method returns a value that indicates whether the event is an | NSERT,
UPDATE, DELETE, and so forth.

123

Reference Guide to the C++ Object Model

Theget Dat a() method returns avoid pointer to the data associated with the event. Depending on the
event id, the pointer must be typecast into a pointer to an object of the correct “type” before the data can
be inspected.

For example, if a subscription object is set up to deliver parsed data, and the SpCbser ver receives an
SpSubscriptionEvent whose event id is SpSubscri pti onEvent : : EVI D_PARSED FI ELD_DATA,
theget Dat a() method returnsavoid pointer that must be typecast into the following:

st d: : vect or<SpDat aVal ue *> *fieldData =
(std::vector<SpDataVal ue *> *) ev->getData();

Where fieldData is a pointer to a vector of pointers to SpDataVaue objects. Refer to Section B.1.14,
“SpDataVaue Object” for more information. Each element of the vector represents the data associated
with the corresponding field (in the field order specified in the corresponding stream's SpSt r eant
Definition).

In the case where the event id is SpSubscri pti onEvent: : EVI D_BI NARY_DATA, the get -
Dat a() method returns avoid pointer that must be typecast into a pointer to an SpBinaryData object as
follows:

SpBi naryDat a *bi nData = (SpBi naryData *) ev->getData();

If the subscription was created using a ddivery type of SpSub-
Const : : DELI VER_STREAM OPCODES, the get Dat a() method returns nul | . Use the ev-
>get St r eantpCode() method to determine the stream operation code (I NSERT, UPDATE, DE-
LETE, UPSERT, and so forth).

If theget Dat a() method cal returns a pointer to avector of SpDat aVal ue objects, after processing
this subscription, the following application should be done to close potential memory leaks.
1. Iterate through the vector and delete each object

2. Deélete the vector itself

B.1.13. SpParserReturninfo object

The SpPar ser Ret ur nl nf o object referenced above has the following method set to use within the
SpGbser ver:

i nt getErrorCode();

std::string get ErrorMessage();

i nt get TransMessagel ndex(); // REL O
int getCol umlndex(); // REL O
std::string getErrorData();

bool isSuccess();

Details:

e Theget Error Code() and get Err or Message() methods, respectively return the parser error

124

Reference Guide to the C++ Object Model

code and associated error message.

The get TransMessagel ndex() method is only relevant for transaction messages that are being
parsed at the time of error. If the message is not a transaction, - 1 is returned. If the message is a
transaction block, the transaction block's message index is rel 0 (the first message has an index value
of 0).

The get Col uml ndex () method returns the column index (rel 0) for the column where the pars-
ing error is detected. Again, if the error occurred before the parser event got to the first column
(having a column index value of zero), this method returns - 1.

Theget Err or Dat a() method returns a string that the parser may have put together at the point of
error to indicate what went wrong. Typically, if there is any extra error information that the parser de-
termined was important, it is stored in a string, which is returned by the get Er r or Dat a() method.

Thei sSuccess() method returnst r ue if the parse is successful and returns f al se if any error
occurs.

B.1.14. SpDataValue Object

The SpDataValue structure encapsulates the Dat a/ Dat aTypes. hpp file's datavalue structure. It
simply carries the data type of the field data and provides a destructor that is used to free the dat a-
Val ue. val . stri ngv component of the structure.

If

the string is not to be freed, ensure that the st r i ngv value of the structure is set to zero (NULL) be-

fore calling the destructor. Thisisrequired in the case where aliteral character string is assigned, such as
“my test datastring”, tothedat aVal ue. val . stringv.\

The SpDataValue structure is defined as follows:

struct SpDat aVal ue

struct Dat aTypes: : Dat aVal ue dat aVal ue;
Dat aTypes: : Dat aType type;
~SpDat aVal ue() ;

Where:

The Dat aTypes: : Dat aType enumerates the Sybase Aleri Streaming Platform data types. It is
defined in the Dat a/ Dat aTypes. hpp fileasfollows:

enum Dat aType
{

| NT32=1,

| NT64=2,
DOUBLE=3,
DATE=4,

STRI NG=5,
NUL LVALUE=6,
MONEY=7,

TI MESTAMP=8,

125

Reference Guide to the C++ Object Model

The struct DataTypes::DataValue is also defined in the Dat a/ Dat aTypes. hpp file asfollows:

struct Dat aVal ue

uni on

{
int32 t int32yv;
int64_t int64yv;
noney_t noneyyv;

doubl e doubl ev;
time_t datetyv;
ti mestanp_t tinestanpyv;
const char * stringy;
} val;
bool null;

}s

For example, using an SpDat aVal ue object pointer called pt r Dat a, an int32 field value of 100 can
be set up, asfollows:

ptrDat a- >t ype = Dat aType: : | NT32;
pt r Dat a- >dat aVal ue. val . i nt 32v = 100;
pt r Dat a- >dat aVal ue. nul | = fal se;

The same mechanism can be used to set up the other field data elements For setting up an INT64, set

pt r Dat a- >dat aVal ue. val .int64v = 100, set the ptrData->type = Data-
Type: : 1 NT64; and so forth.

Note:

Usethedat aVal ue. nul | = true statement to set aNULL field datavaue.

Look at the source code for pubexanpl e. cpp and subexanpl e. cpp (SubExanpl eSpGbser v-
er. cpp) to see the SpDataVaue structure in use. The example shows how to handle the different data
types supported by the Sybase Aleri Streaming Platform.

B.1.15. SpBinaryData Object
The SpBi nar yDat a class provides the following methods:
i nt getLength();
i nt get Server Dat eSi ze() ;

char *get Dat aBuffer();
bool get DoByt eSwapFl ag() ;

Detalls:

» Theget Lengt h() method returns the length of the character buffer that is used for storing the bin-
ary data.

e The get Server Dat eSi ze() returns an integer indicating the number of bytes that are used to

126

Reference Guide to the C++ Object Model

represent the Sybase Aleri Streaming Platform date field having the enumerated type of Data
Type::DATE.

DataType:: TIMESTAMP values are always a fixed length, whether the Sybase Aleri Streaming Plat-
form was compiled as a 32-bit or a 64-bit application.

» The get Dat aBuf f er () method returns a pointer to the buffer that stores the actual binary data
read off the low-level Gateway 1/0 socket connection. The length of this buffer (in addition to being
stored internally within the character buffer itself) is retrieved using the get Lengt h() method pre-
viously referenced. This buffer may contain null characters, but must not be interpreted as a null-
terminated character string.

* Theget DoByt eSwapFl ag() returnseither t r ue or f al se, indicating whether the client applic-
ation needs to do byte swapping in order to interpret the various field data, stored within the buffer.
Byte swapping is required if the client and the Sybase Aleri Streaming Platform use different endian-
ness: that is, if the client islittle-endian while the Streaming Processor is big-endian, or vice versa.

B.2. C++ Objects for Publication
B.2.1. SpPublication Method Set

If thesp- >cr eat ePubl i cati on(...) calissuccessful, the client application program will get an
SpPubl i cat i on object back and can proceed to use it. An SpPubl i cat i on object can be used to
publish data to one or more streams. It implements an interface that provides the following method set:

std::string getName();

int start();
i nt publish(SpStreanDat aRecord *streanRecord);

i nt publish(
std: : vect or <SpSt r eanDat aRecords *> *streanRecords,
i nt streamOpCodeOverri de,
i nt streanfFl agOverri de);

i nt publishTransaction(
st d: : vect or <SpSt r eanDat aRecords *> *streanRecor ds,
i nt streamOpCodeOverri de,
i nt streanfFl agsOverri de,
i nt maxRecor dsPer Bl ock) ;

i nt publi shEnvel ope(
std: : vect or <SpSt r eanDat aRecords *> *streanRecords,
i nt streanmOpCodeOverri de,
i nt streanfFl agsOverri de,
i nt maxRecor dsPer Bl ock) ;

int commt();
int stop();

i nt publish(

st d: : vect or <SpSt r eanDat aRecords *>
*streanRecords,

i nt streamOpCodeOverri de,

i nt streanfl agOverri de,

SpPl at f or nf5t at us * st at us);

i nt publishTransaction(
st d: : vect or <SpSt r eanDat aRecor ds *>

127

Reference Guide to the C++ Object Model

*streanRecords,

i nt streamOpCodeOverri de,

i nt streanfFl agsOverri de,

i nt maxRecor dsPer Bl ock,
SpPl at f or nSt at us * st atus);

i nt publi shEnvel ope(

st d: : vect or <SpSt r eanDat aRecor ds *>
*st reanRecor ds,

i nt streamOpCodeOverri de,

i nt streanfl agsOverri de,

i nt maxRecor dsPer Bl ock,

SpPl at f or nSt at us * st atus);

The get Name() method returns the “name” assigned to this SpPublication object when it was created
through the SpPlatform'scr eat ePubl i cati on(...) factory method.

The start () method is used to start the publication process. When an SpPubl i cat i on object is
started, the following events takes place:

1. The SpPubl i cati on object creates a socket connection to the Sybase Aleri Streaming Platform
Gateway 1/0O process.

2. The SpPublication authenticates with the Sybase Aleri Streaming Platform.

3. Thestart () method returns a zero back to the caller indicating that the SpPublication object was
successfully started. If there is an error, the st art () method will return a non-zero error return
code.

The SpUtil s:: get Error Message(error Code) method can be used to get the specific error
message.

Unlike the SpSubscri pti on mechanism, this mechanism does not create a separate thread to man-
age the publication. Behind the scenes, a socket connection to the Sybase Aleri Streaming Platform
Gateway 1/0 process is used to transmit stream data to the Sybase Aleri Streaming Platform, and to read
the its response associated with each individua request. Unless otherwise specified in the flag values
used when publishing data, a publication request is synchronous. The client application program calls
one of the Publ i sh methods, and waits for the Sybase Aleri Streaming Platform to respond with an
“ack” or “nak”. However, there is a special stream flag, enumerated as Sreaminterface::NOACK in /
i ncl ude/ Streant St ream nt er face. hpp, that can be used to make an asynchronous publica-
tion request. When this flag is specified, the Publ i sh method sends the request out to the Gateway 1/0
process and returns control immediately back to the caller, without waiting for a response from the Sy-
base Aleri Streaming Platform.

The best way for the client application to ensure data integrity is to wait for the ack. If the ack is not
received, the application can retry the publication method call.

If anak is generated by a Sybase Aleri Streaming Platform configured for High Availability, it triggers
the failover process.

The publish(SpStreamDataRecord streamRecord) method is used to publish/send a single stream input
record to the source stream on the Sybase Aleri Streaming Platform. Although it is more efficient to
send input stream records to the Sybase Aleri Streaming Platform in batches known as “transactions’,
this method can be used initially when you want to test a new data model, perhaps by sending one
stream input record at atime. If successful, areturn code of zero is sent back to the caller. Otherwise, an
error code is sent back. The SpUti | s: : get Err or Message(err or Code) method can be called

128

Reference Guide to the C++ Object Model

to get the specific error message.

Each of the Publ i sh methods of the SpPublication object takes one or more SpSt r eanDat aRe-

cor d aobjects as shown in the coding example above. The SpSt r eanDat aRecor d object represents
one row of stream data that is to be sent to the Sybase Aleri Streaming Platform. Each SpSt r eam

Dat aRecor d object has its own “op code”, which indicates how the row is to be handled by the Sy-
base Aleri Streaming Platform when it is received. For example, the op code may indicate that the row is
to be treated as an | NSERT, a DELETE, an UPDATE, and so forth.

Refer to Section B.2.4, “ SpStreamDataRecord Object” for more information.

The publish(std::vector<SpStreanDat aRecord*> *streanRecords, i nt
streanOpCodeCOverride, int streanfFl agOverride) sends a vector of SpStream
Dat aRecor d objects to the Sybase Aleri Streaming Platform with one call. The st r eanmOp-
CodeOverri de and st r eanftl agOver ri de parameters can be used to override the corresponding
values found in the individual SpStreamDataRecord objects that comprise the collection.

Although publ i sh does work with a vector of SpSt r eanDat aRecor d objects, it actually iterates
over the vector and calls publ i sh for each one. However, this method lets you create a set of stream
data records where each record can be applied to a different stream. It may be used for debugging or
testing, where the ordered sequence of updates to multiple Source Streams isimportant.

The publ i shTransacti on(std: :vect or <SpStreanDat aRecor d *>
*streanRecords, int streanmOpCodeOverride, int streanFl agsOverride, int
maxRecor dsPer Bl ock) and the publ i shEnvel -

ope(std::vector<SpStreanDat aRecord *> *streanRecords, int streamOp-
CodeOverride, int streanFl agsOverride, int maxRecordsPer Bl ock) methods
are the most efficient in terms of bundling multiple SpSt r eanDat aRecor ds for a single stream,
stored in the collection and sending at once to the Sybase Aleri Streaming Platform as a single batch.

All SpSt r eanDat aRecor d(s) that are to be sent as a transaction/envelope must be for the same
source stream. Each SpSt reanDat aRecord can have a different op code, such as | NSERT,
UPDATE, DELETE), but the records must be for the same source stream.

As previously mentioned, the override op code and f | ag values can be used to override the corres-
ponding values found within the individual SpSt r eanDat aRecor d objects that make up the collec-
tion. In addition, this method takes one more parameter called maxRecor dsPer Bl ock which is an
integer value that specifies the maximum number of SpSt r eanDat aRecor ds to send as a transac-
tional/envel ope unit to the Sybase Aleri Streaming Platform. If the value is set to zero, the method will
try to send all of the SpSt r eanDat aRecor d abjects in the vector to the Sybase Aleri Streaming Plat-
form within one transaction block. If the maxRecor dsPer Bl ock isless than the actual number of re-
cords in the collection, then the record set will be broken up (using the maxRecor dsPer Bl ock set-
ting) into multiple transactions/envel opes during transmission to the server.

The difference between a transaction and envel ope block transmitted to the server is how the server pro-
cesses the block of records upon receiving it. As the name implies, a group of records within a transac-
tion block is treated as a single transactional unit on the server side. In the case of an envelope, the group
of records contained within the envelope is processed a single record at a time by the server. So the en-
velope mechanism allows the client to send a batch of records for a specific stream to the server in one
shot as opposed to sending a single record at a time and waiting for each record's ack/nak reply from
the server.

Each of the three publish functions described above has a version that accepts a pointer to SpPI at -
f or nBSt at us. These versions are functionally similar, but in error conditions, return extended informa:
tion if availablein the SpPI at f or n5t at us parameter.

The conmi t () method issues a special Gateway 1/O command to the Sybase Aleri Streaming Plat-
form, requesting that all pending input records previously sent to the Sybase Aleri Streaming Platform
be synced to disk. Making a commit call is a tremendously expensive operation relative to latency. It's

129

Reference Guide to the C++ Object Model

designed to be used only as part of a two-phase commit process when reading from a persistent source,
such as an ActiveMQ series, and writing to a Sybase Aleri Streaming Platform instance that uses Sy-
base's |og store persistence model.

Inareal time, low latency streaming scenario, the commit call should not be used after each record.

Typically the commit call should be used as follows: For a standard two-phase commit process that
guarantees against data loss, the client reads messages from the source, such as ActiveMQ, and pub-
lishes to the Sybase Aleri Streaming Platform until reaching a pre-determined number (>1024 is recom-
mended) of processed messages or a specified amount of time has elapsed. After reaching the value set
for the maximum number messages or the elapsed time has passed, the commit() call is made and upon
return to the client, the client may inform the source, such as ActiveMQ, that the messages can be de-
leted.

Thest op() method shuts down the underlying Gateway 1/0O socket connection.
B.2.2. Stream Operation Codes

The following is a set of stream operation codes that can be set for each individual SpSt ream

Dat aRecord or one of the streamOpCodeOverri de parameters can be found in the

./include/ Stream Streanl nterface. hpp file

» Stream nterface:: NOOP
When specified as the st r eamOpCodeOver ri de parameter, it indicates that the stream op code
stored in each of the individual SpSt r eanDat aRecor d objects should be used by the Sybase Aleri
Streaming Platform. If the stream op code within the SpStreamDataRecord is set to St r eam nt er -
f ace: : NOOP, then the Sybase Aleri Streaming Platform will default the stream operation to an | N-
SERT operation.

e Stream nterface:: | NSERT

When specified, it tell the Sybase Aleri Streaming Platform to treat the published stream record as an
| NSERT operation.

 Streanl nterface:: UPDATE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPDATE operation.

e Streanl nterface: : DELETE

When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as a
DELETE operation.

o Stream nterface:: UPSERT
When specified, it tells the Sybase Aleri Streaming Platform to treat the published stream record as an
UPSERT operation. An UPSERT operation either inserts the stream record into the source stream if it
is not already present or it updates the existing source stream record using the contents of the stream
record.

B.2.3. Stream Flag Values

The following set of stream flag values that can be set for each individual SpSt r eanDat aRecor d or
asoneof thest r eantl agOver ri de parameter can befound inthe St r eam nt er f ace. hpp file:

130

Reference Guide to the C++ Object Model

e Streanl nterface:: NULLFLAG

When specified as the “ streamFlagOverride” parameter, it indicates that the stream flag stored in each
of the individual SpStreamDataRecord objects should be used by the Sybase Aleri Streaming Plat-
form. If the stream flag within the SpStreanDat aRecord is set to Streamnl nter-
face: : NULLFLAG, then it means that nothing significant needs to take place. The normal synchron-
ous publication sequence where the SpPublication waits for a Sybase Aleri Streaming Platform re-
sponse can go on.

e Streani nterface: : NOACK

It tells the Sybase Aleri Streaming Platform not to send an ack or nak back to the client application
that issued the publication request. The publ i sh method that is called runs asynchronously, and it
assumes that the record is received and processed by the Sybase Aleri Streaming Platform.

e Streanl nterface:: SH NE

This flag is only relevant for the stream op code values of UPDATE and UPSERT. Typically, all of
the fields for a stream record being published to the Sybase Aleri Streaming Platform must be as-
signed values for each of the available stream operations (I NSERT, UPDATE, UPSERT, and so forth).
In the case of UPDATE and UPSERT, you can use the SHI NE flag to update just a few values of the
“other” fields within the stream record without having to specify the values of the other fields. The
client application program can set the other fields of the stream record being published to the Sybase
Aleri Streaming Platform to nul | , and if the SHI NE flag is set, the Sybase Aleri Streaming Platform
will ignore the nulls and leave the existing field values in the record being updated. The key fields
must always be present, as they are required to locate the record.

In essence, the Sybase Aleri Streaming Platform lets the existing field values “ shine through” for each
of the null values you sent.

The flag values represent bits that can be ORed together. For example:

int flags = Streami nterface:: SHI NE | SpGat ewayConst ants. SF_NQOACK;

B.2.4. SpStreamDataRecord Object

Each “publishing” method of the SpPublication object sends stream input data from the client applica-
tion to the Sybase Aleri Streaming Platform. Every stream record or row of stream data is encapsul ated
within a SpStreamDataRecord object, which has the following method set:

SpStream *get Streamn() ;

st d: : vect or <SpDat aVal ue *> *get Fi el dDat a() ;
i nt get OpCode();

i nt set OpCode(i nt val ue);

i nt getFlags();

int setFlags(int value);

Details:

e Theget St rean() method returns a pointer to an SpSt r eamabject with which this SpSt r eam
Dat aRecor d is associated. Refer to Section B.1.5, “ SpStream Object” for more information.

» The get Fi el dDat a() method returns a pointer to a vector of pointers to SpDataValue objects,

131

Reference Guide to the C++ Object Model

representing the data for each field in the stream record. Refer to the SpDat aVal ue. cpp file for
more details. In addition, see the pubexanpl e. cpp and SubExanpl eSpCbser ver . cpp files
for examples on how to use SpDataV alue objects.

» Theget OQpCode() method returns the stream op code currently set for this record.

» Theset OpCode(i nt val ue) method sets the value of the stream op code for this record.

e Theget Fl ags() method returns the flag settings currently set for this record.

» Theset Fl ags(i nt val ue) method sets the value of the stream flag settings for this record.

B.3. C++ Objects for Record and Playback
B.3.1. SpRecorder object

Client programs need to call the factory method createRecorder defined in SpPlatform in order to create
an SPRecorder.

>
public virtual SpRecorder * createRecorder(std::string nane, std::string filenanme, std::vector<std::str
int flags, uint64_t maxRecords, SpPlatfornStatus * status)

The method takes the following parameters:

* nane isastring that will uniquely identify thisinstance of the recorder object
» fil ename isthe name of the file where recorded data will be stored
» streans isavector of strings containing names of the streams for which to record events

» f1ags control the subscription. These flags are passed to the underlying subscription on the Sybase
Aleri Streaming Platform. Can be a bitwise OR of the following values:

e One of SpSubscri pti onCommon. BASE or SpSubscri pti onConmon. NOBASE - whether
to record data already in streams at the time of connection

e SpSubscri pti onConmon. LOSSY - whether the Sybase Aleri Streaming Platform should dis-
card records if the client application cannot keep up

* maxRecor ds - maximum number of recordsto process
» st at us - an SpPlatformStatus object to return information in case of error

SpRecorder has the following public interface

public std::string get Name();

public int32_t start();

public int64 t get Recor dCount () ;
public int32 t stop();

Details

get Name() returnstheidentifier assigned to this instance of the SpRecorder object

132

Reference Guide to the C++ Object Model

start () spawns abackground thread which starts the recording process. The method returns once the
thread is started. Returns O on success.
get Recor dCount () returnsthe number of data records processed.
st op() stops the recording process by terminating the recording thread and closing connections to the
Sybase Aleri Streaming Platform. Returns O on success.

B.3.2. SpPlayback object

An SpPlayback object is created by calling the following factory method defined in SpPlatform.

>
public virtual SpPlayback * createPl ayback(std::string name, std::string filenanme, double scale, int64
SpPl at f or nSt at us * status);

The method takes the following parameters:

* nane isastring that will uniquely identify thisinstance of SpPlayback

» fil ename isthe name of the file containing the recorded data

» scal e isafactor controls the rate of playback. Vaues -1 to 1 have no effect and the data is played
back at the rate it was recorded at. Vaues greater than 1 speed up playback by that factor, for ex-
ample, avalue of 2 will play back twice as fast. Values less than -1 slow down playback by the factor
specified.

e maxr ecor ds isthe maximum number of records to playback

» st at us isan SpPlatformStatus object used to return information in case of error

SpPlayback has the following public interface

public std::string get Name() ;

public void set SendUpsert (bool upsert);
publ i c bool get SendUpsert () ;

public void set Ti meScal eRat e(doubl e scal e) ;
publ i c doubl e get Ti meScal eRat e() ;

public int32_t start();

public int64 t get NunRecor dsPl ayedBack() ;
public int get Per cent Pl ayedBack() ;

public int32 t stop();

Details:

get Nanme() returnstheidentifier assigned to this instance of SpPlayback object

set SendUpsert (bool) whether to convert INSERT opsin the datato UPSERT

get SendUpsert () returnsthe current setting of UPSERT flag

set Ti meScal eRat e(doubl e) isadoubleto control the rate of playback

get Ti meScal eRat e() returnsthe current value of the scale factor

start () spawnsabackground thread that starts the playback process. Returns 0 on success

get NunRecor dsPl ayedBack() returnsthe number of datarecords played back so far

get Per cent Pl ayedBack() returnsthe percentage of the data played back so far

st op() terminates the background playback thread and closes connections to the Sybase Aleri Stream-
ing Platform

B.4. Other C++ API Classes/Methods

Here are a few miscellaneous classes that were briefly referenced in earlier examples. One such classis

133

Reference Guide to the C++ Object Model

the SpUt i | s class. Thisclass stores the following static utility methods:

std::string get Error Message(i nt error Code)
std::string get Event TypeNanme(i nt event Type)
std::string get Eventl dNanme(int eventld)

Detalls:

» The getErrorMessage(int errorCode) method is used to retrieve the message
st d: : stri ng, associated with the errorCode passed in through the parameter list. Typically, the er-
rorCodeis returned by a previous call to one of the Pub/Sub APl methods.

» The get Event TypeNane(i nt event Type) method is typically called by an SpObser ver
object. It returns an std::string representing the literal name of the eventType passed in. The event-
Typeisusualy retrieved from an SpSubscri pti onEvent object that was delivered to the SpCb-
ser ver through the SpObserver object'snoti fy(...) method.

» Theget Event | dNane(i nt event| d) methodisaso typically caled by an SpObser ver ob-
ject. It returns an std::string representing the literal name of the event Id passed in. The event Id is
usually retrieved from an SpSubscri pti onEvent object that was delivered to the SpCbser ver
through the SpCbser ver object'snoti fy(...) method.

134

Appendix C. Reference Guide to the .NET Object
Model

C.1. Common Service Objects for .NET

C.1.1. SpFactory Object

The SpFact ory object is used by the client code to create the set of objects that are required to use/

control the Pub/Sub API. The SpFactory interface includes the following methods:

static int init();

static int dispose();

static SpPl atform ~creat ePl at f or n{ SpPI at f or nPar ms "par s,
SpPI at f or n5t at us ~st at us) ;

static SpPl atformParns “createPl atformPar ms(System : String ~theHost,
int thePort, System:String "theUser, System:String ~thePassword,
bool theEncryptedFl ag);

static SpPl atfornmParns “createPl atfornmParns(System : String ~theHost,
int thePort, System:String “theUser, System:String ~thePassword,
bool theEncryptedFl ag, bool theUseRsaFl ag);

static SpPl atfornmParns ~createPl at f or mPar ms(System : String “t heHost,
int thePort, System:String “theUser, System:String ~thePassword,
bool theEncryptedFl ag, System:String ~theHot Spar eHost ,
i nt t heHot Spar ePort);

static SpPl atfornmParns ~createPl at f or nPar s

(String “theHost, int thePort, String “theUser, String ~thePassword,
bool theEncryptedFl ag, SpAut hType theAut hType, String ~t heHot Spar eHost,

static SpPl atformParns “createPl atfornmParns(System : String ~theHost,
int thePort, System:String “theUser, System:String ~thePassword,
bool theEncryptedFl ag, bool theUseRsaFl ag,
System : String ~theHot Spar eHost, int theHot SparePort);

static SpPl atfornfttatus ~createPl atfornftatus();

static SpStreanDat aRecord ~creat eStreanDat aRecor d(SpStream ~stream
array<Cbj ect > ~fieldData, int opCode, int flags,
SpPI at f or n5t at us ~st at us) ;

Detalls:

» The createPl atform(SpPl atfornmParns “parns, SpPlatforntatus ~status)

method returns an SpPl at f or mobject if the Pub/Sub API was able to connect to the Sybase Aleri

Streaming Platform and properly initialize.

You have to use one of the overloaded SpFact ory. cr eat ePl at f or nPPar ns(...) methods,
and the SpFact ory. cr eat ePl at f or n5t at us() method to create the two parameters required

by the SpFactory.createPl atforn SpPl atfornParns ~parnms, SpPlatform

St at us “st at us) method. The contents of the SpPI at f or nPar s parameter controls how the
connection and authentication from the Pub/Sub API to the Sybase Aleri Streaming Platform takes
place. If the connection cannot be established, the cr eat ePl at f or n{ SpPI at f or nPar s
Aparns, SpPl atfornttatus ”status) method returns null, and a non-zero error codeis set
within the SpPI at f or nSt at us object See Section C.1.3, “ SpPlatformStatus Object” for informa-

tion on how to retrieve the error code/message.

e The createPl atfornParns(System:String “theHost, int thePort, Sys-
tem:String “theUser, System:String “thePassword, bool theEncryp-

t edFl ag) method returns a SpPI at f or mPar ns object that is ultimately passed as the first para-

meter to the SpFactory. createPl atforn(SpPl atfornParns ~parnms, SpPl at-

135

i nt

t he

Reference Guide to the .NET Object Model

fornttatus status) method. This createPlatformParms method call set up the basic connectiv-
ity, with the username/password for authentication. If t heEncr ypt edFl ag issettot r ue, then ht-
tps will be used to connect to the Sybase Aleri Streaming Platform's Command and Control process
and SSL socket connections will be made to the Sybase Aleri Streaming Platform's Gateway 1/O pro-
cess. If t heEncrypt edFl ag issettof al se, then http will be used to connect to the Sybase Aleri
Streaming Platform's Command and Control process and regular socket connections will be made to
the Sybase Aleri Streaming Platform's Gateway 1/0O process.

The createPl atfornmParns(System : String “theHost, int thePort, Sys-
tem:String ~theUser, System:String “thePassword, bool theEncryp-
tedFl ag, bool theUseRsaFl ag) method returns an SpPlatformParms object that is ulti-
mately passed as the first parameter to the SpFactory.createPlatform(SpPlatformParms “parms, Sp-
PlatformStatus “status) method. In addition to the basic connectivity parameters mentioned above,
this method adds an addition boolean flag called theUseRsaFlag. If this flag is set to t r ue, the Pub/
Sub API will attempt to authenticate to the Sybase Aleri Streaming Platform using the RSA mechan-
ism. To use this mechanism, the Sybase Aleri Streaming Platform must be started with the - k option
indicating the directory where your public RSA key file is stored. See the Administrators Guide for
information about key generation and placement.

When using the RSA authentication mechanism, the password of the SpPlatformParms object must
specify your private RSA key file. For example, if a user was named f 00, there would be two RSA
key files having the names f oo and f 0o. pri vat e. der, wheref oo is afile containing the public
RSA key for user "foo", and f 0o. pri vat e. der isafile containing the private RSA key for user
f 00. The public RSA key file called f oo must be placed in adirectory that is specified by the - k op-
tion to the Sybase Aleri Streaming Platform during startup.

The private RSA key filecalled f 0o. pri vat e. der must be placed on the client machine using the
Pub/Sub API to connect to the server and specified using the password parameter of the cr eat e-
Pl at f or mPar ns(. . .) method.

There are five variations of the createPlatformParams method that that accomplish the same creation
of an SpPlatformParams object, so choose the one that suits your needs.

¢ basic

basic with UseRSA flag

basic with HotSpare
e HotSpare with UseRSA
» Kerberos authentication with or without the Hot Spare

The createPl atfornParns(System : String “theHost, int thePort, Sys-
tem:String ~theUser, System:String "thePassword, bool theEncryp-
tedFl ag, System:String “theHot SpareHost, int theHot SparePort) method
returns an SpPI at f or mPar s object that is ultimately passed as the first parameter to the Sp-
Factory. creat ePl at f or n{ SpPI at f or mPar ns Apar s, SpPI at f or n5t at us
Astatus) method. In addition to the basic connectivity parameters previously mentioned, this
method adds two more parameters called String ~t heHot Spar eHost and i nt t heHot S-
par ePor t . Using an SpPlatformParms object created with this factory method will cause the Pub/
Sub API to use a High Availability configuration. In a High Availability configuration, if the primary
Sybase Aleri Streaming Platform goes down, the Pub/Sub API will automatically attempt to switch
over and use the secondary one. See the Administrators Guide for setting up a High Availability con-
figuration. See Section 2.4.6, “ Publication/Subscription in a High Availability (Hot Spare) Configura-
tion” for more information.

 The createPl atfornmParns(System:String “theHost, int thePort, Sys-

136

Reference Guide to the .NET Object Model

tem:String “theUser, System:String “thePassword, bool theEncryp-
tedFl ag, bool theUseRsaFl ag, System:String ~theHotSpareHost, int
"t heHot Spar ePor t) method returns an SpPlatformParms object that is ultimately passed as the
first parameter to the SpFact ory. creat ePl at f or m(SpPI at f or nPar s “par ns, Sp-
Pl at f or n5t at us st at us) method. This method lets you set up the Pub/Sub API for RSA au-
thentication and High Availability (Hot Spare).

» Thecreat ePl at f or n5t at us() method returns an SpPl at f or NSt at us object passed as the
second. See the SpPublication “parms, SpPlatformStatus ~status) method in order to return status in-
formation back to the caller. It's used in several other methods within the Pub/Sub API needed to re-
turn error code/status information. See Section A.1.3, “SpPlatformStatus Object” for more informa-
tion.

» The overloaded function creat ePl at f ornParns(String “theHost, int thePort,
String “theUser, String ~thePassword, bool theEncryptedFl ag, SpAuth-
Type theAuthType, String ”~theHot SpareHost, int theHot SparePort) accepts
a parameter of type SpAut hType. This can be any one of the following values: AUTH_NONE, AU-
TH_PAM, AUTH_RSA, or AUTH_KERBV5. While other versions of the factory method can be
used, this is the preferred way of creating an SpPI at f or nPar s object. If no hotspare configura-
tion exists, clients should passin anull value for the theHotSpar eHost parameter.

» The <createStreanDataRecord(SpStream “stream array<Obj ect n>
~ieldData, int opCode, int flags, SpPlatfornttatus "status) method re-
turns a SpStreamDataRecord object that is used in the SpPublication object in order to publish data to
the Sybase Aleri Streaming Platform server.

The SpPI at f or nf5t at us object is passed in as the last parameter, if the cr eat eStream
Dat aRecor d fails, a null will be returned to the caller and the SpPI at f or St at us object will
indicate the error condition.

C.1.2. The SpPlatformParms Object

The SpPI at f or nPar ns object is used by the SpFact -

ory.createPl atforn(SpPl atfornParnms “parns, SpPlatfornftatus ~"status)

method to create the SpPl at f or mobject. The SpPI at f or nPar s object is created using one of the
overloaded SpFact ory. creat ePl at f or rPar ms(. . .) methods previously described. The Sp-

Pl at f or mPar s object contains all of the connection information required by the SpPI at f or mob-
ject in order to make the appropriate connection(s) to the Sybase Aleri Streaming Platform. This inform-
ation includes the host and port of the Sybase Aleri Streaming Platform's Command and Control Pro-
cess, username, password, and flags indicating whether to use encryption, or RSA authentication, Ker-
beros authentication, or the High Availability (Hot Spare) mechanism. The SpPI at f or mPar ns inter-
face includes the following methods:

System : String “get Host ();

int getPort();

System : String “get User();

System : String “get Password();

bool isEncrypted();

System : String “get Hot Spar eHost () ;
i nt get Hot Spar ePort () ;

bool useRsa();

SpAut hType get Aut henti cation();

Detalls:

137

Reference Guide to the .NET Object Model

* Theget Host () method returns a string indicating the host name of the machine running the Sybase
Aleri Streaming Platform server's Command and Control process.

e Theget Port () method returns an integer indicating the port number of the Sybase Aleri Streaming
Platform server's Command and Control process.

» Theget User () method returns a string indicating the name used to authenticate to the Sybase Aleri
Streaming Platform.

* The get Passwor d() method returns a string containing the password used to authenticate to the
Sybase Aleri Streaming Platform. For RSA authentication, the password contains the file name of the
user's private RSA key file.

e Thei sEncrypted() method returns a boolean indicating whether or not encrypted connections
will be used to the Command and Control process and the Gateway 1/O process. If the encryption
mechanism is enabled, the Command and Control process connection will be made using https, while
the Gateway 1/O process will make SSL socket connections.

» Theget Hot Spar eHost () method returns a string containing the host name of the secondary High
Availability Sybase Aleri Streaming Platform. See the Administrators Guide for more information
about setting up a High Availability configuration.

e The get Hot Spar ePort () method returns an integer containing the port number of the secondary
High Availability Sybase Aleri Streaming Platform. See the Administrators Guide for more informa
tion about setting up a High Availability configuration.

» TheuseRsa() method returns a boolean indicating whether or not RSA authentication is used when
attempting to make connections to the Sybase Aleri Streaming Platform Command and Control pro-
cess, and the Gateway 1/0O process.

» The get Aut henti cat i on method returns the authentication mechanism specified when the Sp-
PlatformParms was created.
C.1.3. SpPlatformStatus Object
The SpPI at f or St at us object is used by severa of the Pub/Sub APl methods to return status in-

formation to the caller. The SpPI at f or 5t at us interface includes the following methods:

i nt getErrorCode();
System : String “get Error Message() ;
bool isError();

Details:

e The get Er r or Code() method returns an integer. If a problem was detected by the method this
SpPI at f or n5t at us object was passed into, a non-zero error return code value is returned, other-
wise a zero is returned to indicate success.

» Theget Err or Message() method returns a string containing the error message text.

* Thei sError () method returns aboolean which ist r ue if an error was detected or f al se for no
error.

C.1.4. SpPlatform Object

138

Reference Guide to the .NET Object Model

The notion of the Sybase Aleri Streaming Platform has been abstracted into an object of the SpPI at -
f or mtype.

An SpPlatform object is created using the SpFact ory. cr eat ePl at f or m Once instantiated, an
SpPI at f or mobject implements and offers the the following Sybase Aleri Streaming Platform func-
tionality:

System : String ~getUrl ();
System : String ~getUser();
System : String “get PaSS\(M))I’d() ;
System : String “getHost();
System : String ~“get Gat ewayHost () ;
System : String ~get XM_Model Ver si on();
i nt get Port();

nt get Gat ewayPort () ;

nt get Dat eSi ze() ;

nt get Addr essSi ze() ;

nt get Qui esced() ;

nt get Pri marySer ver Fl ag() ;
cli::array<al eri _PubSubnet:: SpStream ~> ~get BaseStreans();
cli::array<al eri _PubSubnet:: SpStream ~> ~get Deri vedSt reans() ;
cli::array<al eri _PubSubnet:: SpStream ~> ~get Streans();

al eri _PubSubnet:: SpStream ~get Stream(System : Stri ng streanmNane) ;
al eri _PubSubnet:: SpStream ~get Strean(i nt streanld);
al eri _PubSubnet:: SpStreanDefiniti on ~get StreanDefinition(
System : String ~streanmNane);
al eri _PubSubnet:: SpStreanDefinition ~get StreanDefinition(int streamd);
bool i sBi gEndi an();
bool i sConnected();
bool isEncrypted();
bool useRsa();
int shutdown();

String ~get Confi g(SpPl at f or nf5t at us “st at us);

int | oadServerConfigFile(String ~configFile, String ~flags);

int |loadConfigString(String ~configString, String ~flags);

int | oadConfigStringAppl yi ngConversion(String ~configString, String ~flags, String “convers

int addStreanToC ient(int clientHandl e, System:String ~streanmNane);
int renpveStreanfFronCient(int clientHandl e, System:String “streanmNane);

al eri _PubSubnet: : SpSubscri pti on “~creat eSubscri pti on(
System : String “nanme, int flags, int deliveryType,
al eri _PubSubnet:: SpPl at f or n5t r eat us ~st at us) ;

SpSubscri pti onProj ecti on ~createSubscriptionProjection(String “nane,
int flags, int deliveryType, String ”“sql Query,
SpPl at f or nSt at us ~st at us) ;

al eri _PubSubnet:: SpPubl i cati on ~createPublication(System: String “nane,
al eri _PubSubnet: : SpPl at f or n5t at us ~st at us) ;

Most methods provided by the SpPI at f or m object communicate internally with the Sybase Aleri
Streaming Platform Command and Control process through the XMLRPC protocol. The SpPI at f or m
method lets you retrieve Sybase Aleri Streaming Platform configuration information, all the streams and
so forth.

Details of this method set:

The get Ur | () method returns the context of a string representing the URL, which is used to connect
to the Command and Control Process through XMLRPC. This string depends on whether the SpPI at -
f or mobject was created with encryption enabled.

The i seEncrypt ed() method can check if encryption was enabled when the SpPI at f or m object

139

Reference Guide to the .NET Object Model

was instantiated.

The get User () and get Passwor d() methods return the strings that represent the username and
password. These values are used internally when authentication takes place while connecting to the Sy-
base Aleri Streaming Platform Command and Control and Gateway 1/O processes.

There is a set of methods consisting of get Host (), get Gat ewayHost (), get Port () and get -
Gat ewayPor t () . get Host () returns the name of the host machine where the Sybase Aleri Stream-
ing Platform Command and Control Process is running. get Gat ewayHost () displays the host ma-
chine where the Sybase Aleri Streaming Platform Gateway 1/0 Process is running. These two Sybase
Aleri Streaming Platform processes reside on the same machine.

The get Port () and get Gat ewayPort () methods respectively return the Command and Control
and Gateway 1/O port numbers. Unlike the get Host () and get Gat ewayHost () commands, the
values returned by these two functions will differ because they refer to two separate processes.

The get XM_Model Ver si on() method returns a string indicating the version of XML model with
which the Sybase Aleri Streaming Platform started up.

The get Dat eSi ze() method returns the size of the datetime field type. If the Pub/Sub API is used to
communicate with the Gateway 1/0 process, the datetime field type size is automatically fixed.

The get Addr essSi ze() method returns the size of a C/C++ pointer (in bytes) that the Sybase Aleri
Streaming Platform server currently recognizes. The value represents how the instance of the running
Sybase Aleri Streaming Platform Server was compiled (either 32-bit or 64-bit).

The get Qui esced() method returns an integer that represents the "quiesced" state of the Sybase
Aleri Streaming Platform. If successful, the method will return either azero to indicatef al se, or alto
indicatet r ue. If the command is not executed successfully, an error code is returned.

The error message associated with the error code can be retrieved by caling
SpUtils. get ErrorMessage(rc), where rc is the return code sent back from the get Qui -
esced() call.

The get Pri maryServer Fl ag() method returns an integer. If avalue of 1 is returned, the Sybase
Aleri Streaming Platform server is considered to be the primary server in a High Availability (Hot
Spare) configuration. If avalue of zeroisreturned, it is not the primary server. If the command could not
be executed successfully, an error code is returned that is neither azero nor a 1.

Y ou can use the Pub/Sub APl method to check that the connected Sybase Aleri Streaming Platform is a
primary server within a High Availability (Hot Spare) configuration. Theoretically, you could use the
Pub/Sub API to establish a connection to the secondary server within this configuration. Calling the
get Pri maryServer Fl ag() method on the server will return a value of zero, indicating that the
server is not the primary.

The next group of methods returns stream metadata from the Sybase Aleri Streaming Platform. The
metadata/schema for a stream is represented within the Pub/Sub API as an object of type SpSt r eam
Refer to Section C.1.5, “SpStream Object” for more information. The get BaseSt r eans() method
returns an array of SpSt r eam objects representing all of the source streams residing on the Sybase
Aleri Streaming Platform. Similarly, get Deri vedSt r eans() returns an array of SpSt r eam ob-
jects that represent all of the derived streams residing on the Sybase Aleri Streaming Platform. The
get St reans() method returns an array of SpSt r eamobjects that represent all streams (both source
streams and derived streams) residing on the Sybase Aleri Streaming Platform. You can look up a par-
ticular stream by its nane or i d using the get St rean(System : String ~streanNane) or
get Strean(i nt stream d) method, respectively.

The getSreamDefinition(System::Sring ~streamName) and get St reanDefi niti on(i nt
stream d) methods respectively return the handle to an object of type SpSt r eanDef i ni ti on for
the specified streamName or streamld. Refer to Section C.1.6, “ SpStreamDefinition Object” for more

140

Reference Guide to the .NET Object Model

information.

Thei sBi gEndi an() method returnst r ue if the Sybase Aleri Streaming Platform server is running
on a big-endian machine, f al se if the Sybase Aleri Streaming Platform server is running on a little-
endian machine.

The isConnected() method returns t r ue if the SpPl at f or mobject is till connected to the Sybase
Aleri Streaming Platform, f al se otherwise. For example, after you issue a shutdown, subsequent
i sConnect ed() calsreturnf al se.

Once an SpPI at f or maobject is shut down, you should set its reference to null. Later on, another Sp-
Pl at f or mobject can be instantiated again using the SpFact ory. creat ePl atforn{...) meth-
od.

The shut down() method tells the Command and Control Process to shut down the Sybase Aleri
Streaming Platform. This causes all socket connections to the Sybase Aleri Streaming Platform to be
closed. If the application program has subscriptions running at the time of the shutdown, the SpQb-
server objects of those subscriptions will be notified before the shutdown. Refer to Section C.2,
“Subscription Objects for .NET” for more information.

The get Confi g(SpPI at f or n5t at us “st at us) method returns a string containing the XML
configuration currently being executed by the running Sybase Aleri Streaming Platform instance. If
there is an error in retrieving the XML configuration information from the server, this method will re-
turn an empty string, and the error code will be stored in the SpPlatformStatus parameter passed into the
method.

Thel oadServer ConfigFil e(String ~configFile, String ~flags) method attempts
to load the XML configuration file that is located on the server into the running Sybase Aleri Streaming
Platform instance. The f | ags parameter is used to provide control information used during the XML
configuration file load attempt. If additional control information is not needed, the value of the f | ags
parameter can be an empty string. Consult the Administrators Guide for more information on loading
XML configurations, and the various options that can be specified inthef | ags parameter. If the XML
configuration file was loaded successfully, the method returns zero. If it was unsuccessful, the method
will return a non-zero error return code. You can get additional information from the log messages loc-
ated on the server when loading an XML configuration file into the server.

The loadConfigString(String ~configRring, Sring ~lags) method attempts to load the XML configura
tion stored in the confi gStri ng parameter into the running Sybase Aleri Streaming Platform in-
stance. The P parameter provides control information used during the XML configuration string load at-
tempt. If additional control information is not needed, the value of the f | ags parameter can be an
empty string. Consult the Administrators Guide for more information on loading XML configurations
and various options that can be specified in thef | ags parameter. If the XML configuration was |oaded
successfully, the method returns zero. If it was unsuccessful, the method will return a non-zero error
code. You can get additional information from the log messages located on the server when loading an
XML configuration file into the server.

The | oadConfigStringApplyi ngConversion(String “configString, String
~lags, String “conversionConfigString) method attempts to load the XML configura
tion stored in the confi gStri ng parameter into the running Sybase Aleri Streaming Platform in-
stance. Thef | ags parameter is used to provide control information used during the XML configuration
string load attempt. If additional control information is not needed, the value of the f | ags parameter
can be an empty string.

The conver si onConfi gSt ri ng parameter is used to provide an XML model that is used to apply
specific conversion instructions during the XML configuration load. See the Administrators Guide for
more information on loading XML configurations, and the various options that can be specified in the
conver si onConfi gSt ri ng parameter.

If the XML configuration was loaded successfully, the method returns zero. If it was unsuccessful, the

141

Reference Guide to the .NET Object Model

method returns a non-zero error code. Y ou can get additional information from the log messages located
on the server when loading an XML configuration file into the server.

The SpPI at f or mobject provides two subscription-related methods that you can use to disregard the
Pub/Sub API subscription mechanism and write your own low-level Gateway 1/0O code for the subscrip-
tion. These methods are addStreanToC ient(int clientHandle, System:String
st reaniNane) and renoveStreantrontCient (int cl i ent Handl e, Sys-
tem:String “streamNane). The two methods are part of the SpPI at f or minterface since
both are XMLRPC calls that are used to manage the subscription characteristics of a Gateway 1/0 socket
on which a subscription is currently running.

Note:

Once a subscription request is issued for an open Gateway 1/0O socket connection, the connec-
tion becomes a read-only connection. Asynchronous stream updates are delivered from the Sy-
base Aleri Streaming Platform to the client. Because of the "read-only" nature of the socket, ad-
ditional Gateway |/O commands can no longer be issued on this socket connection. The XM-
L RPC mechanism must be used to do this.

While using the Pub/Sub API subscription mechanism, the addSt r eamTod i ent and r e-
novesSt r eanfr on i ent method calls are not required. However, these must be provided
when the Pub/Sub API subscription mechanism is not being used.

The two methods are passed a cl i ent Handl e. The cl i ent Handl e is an integer value that is re-
turned by the Gateway 1/0O process when you send a low-level subscription request on the socket. The
addSt reamloC i ent (...) method lets you add an additional stream to the subscription list, while
ther enovesSt r eanfronTl i ent (.. .) method lets you delete a stream from the subscription list.

If the Pub/Sub API subscription mechanism is to be used to get asynchronous stream updates from the
Sybase Aleri Streaming Platform, then SpPI at f or mcan be used to create a subscription. There are
two forms of subscription objects that can be created using SpPI at f or m The first is an SpSub-
scri ption object, which is created using the createSubscription(System: String
Ananme, int flags, int deliveryType, aleri_PubSubnet:: SpPl atfornfttat us
Astatus) method. The second is created using the SpSubscriptionProjection
AcreateSubscriptionProjection(String “nane, int flags, int delivery-
Type, String "sqgl Query, SpPl atfornftatus “status) factory method. Refer to Sec-
tion C.2, “Subscription Objects for .NET” for the meaning of each parameter. Similarly, the SpPI at -
f or mobject can be used to publish data to the Sybase Aleri Streaming Platform. To accomplish this,
there is a factory method called createPublication(System:String “name,
aleri_PubSubnet::SpPlatformStatus ~status) that creates an SpPubl i cat i on object on your behalf.
An SpPubl i cat i on object isused to "publish” stream input data and/or issue the Gateway 1/0 "com-
mit()" command) from the client application to the Sybase Aleri Streaming Platform. Refer to Sec-
tion 4.3.1, “Create Objects for SP Publication Using .NET 2.0” for more information.

C.1.5. SpStream Object

The SpSt r eamobject is used to store the metadata associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpSt r eaminterface includes the following methods:

int getld();

al eri _PubSubnet:: String ~get Nane();

bool isBase();

al eri _PubSubnet :: SpStreanmDefinition ~getDefinition();

Details:

142

Reference Guide to the .NET Object Model

* Theget | d() method returns an integer that represents the streams internal identifier on the Sybase
Aleri Streaming Platform.

e Theget Name() method returns a string that represents the name of the stream.

* Thei sBase() method returnst r ue if the stream is a source stream, f al se otherwise.

e The getDefinition()
al eri _PubSubnet:: SpStreanDefinition. The SpStreanDefinition contans the
schema information for a given stream. See Section C.1.6, “ SpStreamDefinition Object” for more in-
formation.

C.1.6. SpStreamDefinition Object

method returns a handlefreference to an object of type

The SpSt r eanDef i ni ti on object stores the schema associated with a stream residing on the Sybase
Aleri Streaming Platform. The SpSt r eanDef i ni ti on interface has the following methods and con-
stants defined within it:

i nt get NumCol umtms() ;

cli::array<System:String ~> ~get Col umNanes();
cli::array<System:int ~> ~get Col umTypes();
cli::array<System:int ~> ~getKeyCol ums();
cli::array<System:int ~> "get KeyCol umVect or () ;
bool isKeyCol um(int col uml ndex) ;

Details:

Theget NumCol urms () method returns the number of columnsin the stream.

The get Col umNames() method returns an array of Syst em : St ri ngs handles, where each
string represents a column. The column names appear in the same order as they do in the Sybase Aleri
Streaming Platform configuration file. This array's size equals the value returned from the get Num

Col ums () method.

The get Col umTypes() method returns an array of integers, where each integer is a constant rep-
resenting the field type of the corresponding column. The
al eri _pubsubconst :: SpDat aTypes class contains a list of integer constants representing the
various column types. This array's size equals to the value returned from the get NunCol umms()
method.

The get KeyCol unms() method returns an array of integers. Each integer is the column index (rel
0) of akey column in the streams field list. For example, if the stream has 10 columns, and the first
three are key columns, the get Key Col urms() method will return an array that includes the follow-
ing entries: [0, 1, 2].

The get KeyCol utmVect or () method returns an array of integers. Each field in the field list is
represented by an integer, the value of which iseither 1if thefield isakey field or O if it isnot.

Thei sKeyCol um(i nt col uml ndex) returns a boolean value of t r ue if the column index
specified is that of a key field, otherwise it returns f al se. The columnindex is “rel-0" as the first
column of thefield list has an index value of zero.

C.1.7. SpStreamProjection Object

143

Reference Guide to the .NET Object Model

The SpSt r eanPr oj ect i on object stores the metadata associated with a stream projection based on
an SQL query supplied to the cr eat eSubscri pti onProj ection(...) factory method of the
SpPI at f or mabject. See Section A.1.7, “ SpStreamProjection Object”. The SpSt r eanPr oj ect i on
interface includes the following methods:

al eri _PubSubnet :: SpSt ream ~get St ream() ;
al eri _PubSubnet :: SpStreanmDefinition ~getDefinition();

where:

» Theget St rean() method returns a reference to the underlying SpStream that the SQL query was
projected onto.

e The getDefinition() method returns a handle/reference to an object of type
al eri _PubSubnet :: SpStreanDefi niti on, containing the schema information of the pro-
jection. Thisinformation is returned by the Sybase Aleri Streaming Platform when the SQL query as-
sociated with an SpSubscri pti onProj ecti on object is first created. See Section C.1.6,
“ SpStreamDefinition Object” for more information.

C.2. Subscription Objects for .NET
C.2.1. SpSubscriptionCommon Method Set

This interface defines the common set of methods used by the SpSubscri pti on and SpSubscri p-
ti onProj ecti on objects (henceforth referred to simply as Subscription). Typically there is no need
for an application using this API to directly use thisinterface.

The SpSubscri pti onConmmon interface defines the following method set that is used by both sub-
scription mechanisms:

System : String “get Nanme();
i nt getFlags();

int getDeliveryType();

int getdientHandl e();

i nt removeQbserver (i nt theCookie);
int start();

int stop();

The get Nane() method returns the name that you assigned to the subscri pti on object when it
was created with either the SpPlatform's cr eat eSubscription(...) or createSubscri p-
tionProjection(...) method.

Similarly, the get Fl ags() and getDeliveryType() methods return the flag settings and the delivery
type specified inthecr eat eSubscri pti on orcr eat eSubscri pti onProj ecti on object.

The get d i ent Handl e() method returns an integer representing a handl e that is assigned to the
underlying subscription connection by the Sybase Aleri Streaming Platform. A valid handl e is greater
than zero. The value of the cl i ent Handl e is acquired from the Sybase Aleri Streaming Platform
when the SpSubscri ption or SpSubscri pti onProj ecti on is started through the st art ()

144

Reference Guide to the .NET Object Model

method.

Ther emoveQbser ver (i nt t heCooki €) method is used to remove the SpObserver from the sub-
scription’s delivery mechanism. The two types of subscriptions have different ways to add observers,
which are discussed in the SpSubscr i pt i on and SpSubscri pti onProj ect i on interfaces.

Thest art () method is used to start the subscription mechanism.

There must be at least one stream and SpCbser ver registered with the Subscr i pti on object before
the Subscri pti on object can be started up through the st ar t () method.

When you start up an SpSubscr i pt i on object, the following sequence of events takes place:

1. The SpSubscri pti on object establishes a socket connection to the Sybase Aleri Streaming Plat-
form Gateway /O process and authentication is performed.

2. A subscription request is sent to the Sybase Aleri Streaming Platform on this socket connection.

3. If the subscription request is accepted by the Sybase Aleri Streaming Platform, the Subscri p-
ti on object reads the "clientHandle" that the Sybase Aleri Streaming Platform assigned to this sub-
scription request.

4. A new thread is started up, and it is dedicated to reading stream update information through the
read-only Gateway 1/0O socket connection. When your SpQhser ver objects are “notified” about
the stream updates, through noti fy(...) methods, the SpCbser ver objects will be running
within the context of this thread instead of the main one.

5. Stream update messages flowing from the Sybase Aleri Streaming Platform to the client are read,
parsed and delivered to your SpCbser ver objects.

6. Thestart () method returns a zero to the caller indicating that the subscription was started suc-
cessfully, and a non-zero value if an error OCCUrsS. The
SpUtil s. get Error Message(err or Code) method can be used to get the specific error mes-

sage.

The st op() method shuts down the subscription mechanism by closing the socket connection and
stopping the thread used to read, parse, and deliver Sybase Aleri Streaming Platform updates to the
SpObser ver objects.

Here are some additional interfaces:

voi d set Pul sel nterval (unsigned int pul selnterval);

unsi gned i nt getPul selnterval ();

voi d set QueueSi ze(int queue, SpPl atfornfttatus ~status);

int get QueueSi ze();

voi d set BaseDrai nTineout (int mllis, SpPlatfornftatus “status);
i nt getBaseDrai nTi neout () ;

voi d set Exi t OnCl ose(SpPI at f or nSt at us ~st at us) ;

bool get ExitOnd ose();

» set Pul sel nt erval canbeused to set the pulseinterval in seconds if the subscription was created
with the pulsed flag on.

» get Pul sel nt erval isused to retrieve the current setting of the pulseinterval in seconds.

» set QueueSi ze isused to set theinternal buffer sizein the Sybase Aleri Streaming Platform for this
subscription. The Sybase Aleri Streaming Platform uses this buffer to queue up messages if the sub-

145

Reference Guide to the .NET Object Model

scriber is slow in retrieving them. It can prevent the subscriber from blocking and slowing down the
Sybase Aleri Streaming Platform. The setting is made when the subscription is started. It is necessary
to keep the st at us parameter valid until the time the start call is made.

» get QueueSi ze retrieves the current value of the queue size.

» set BaseDr ai nTi meout is used to set the time in milliseconds that the Sybase Aleri Streaming
Platform should wait before dropping a blocked subscription. If a subscription is started with the
DROPPABLE flag set, the Sybase Aleri Streaming Platform closes a subscription connection if the
messages block is due to a slow client. This parameter specifies how long to wait before closing the
connection. The setting is made when the subscription is started, and you must keep the st at us
parameter valid until the time the start call is made.

e get BaseDr ai nTi neout retrieves the current value in milliseconds of the base drain timeout.

» If set Exi t OnCl ose is set, the Sybase Aleri Streaming Platform will shut down once this subscrip-
tion connection is closed by the client. The setting is made when the subscription is started, and you
must keep the st at us parameter valid until the time the start call is made.

» get Exi t OnC ose retrieves the current setting of the exit on close flag.

C.2.2. SpSubscriptionEvent

An SpSubscri pti onEvent object encapsulates an event received from the Sybase Aleri Streaming
Platform. It provides the following method set:

System : String “get SubName() ;

i nt getType();

System : String “get TypeNane();
int getld();

System : String “~getl|dNanme();

int getStream d();

i nt get StreampCode();
cli::array<Cbject ~> ~getData();

The get SubNane() method returns a string that represents the name of the subscription object that
generated and delivered this event to the SpObserver. This “name” was assigned to the subscription ob-
ject when it was first created through the SpPlatform cr eat eSubscri ption(...) orcreate-
Subscri ptionProjection(...) method.

Theget Type() method returns an integer representing the “type” of this SpSubscri pti onEvent.
Currently there are four “types’ (or categories) of events defined in the al eri _PubSubconst
namespace as follows:

* SpEvent Type. PARSED_DATA

It is delivered from a Subscri pti on object created with a delivery type of SpDel i very-
Type. DELI VER_PARSED.

» SpEvent Type. Bl NARY_DATA

It is delivered from a Subscri ption object created with a delivery type of SpDel i very-
Type. DELI VER_BI NARY.

* SpEvent Type. STREAM OPCODE_DATA

146

Reference Guide to the .NET Object Model

It is delivered from a Subscri pti on object created with a delivery type of SpDel i very-
Type. DELI VER_STREAM OPCODES.

* SpEvent Type. SYSTEM

It is delivered by the Subscr i pt i on object. The event indicates a system event has occurred, such
as an error, halt in communication, or shut down of the Sybase Aleri Streaming Platform.

The get TypeNane() method returns the string literal value, representing the type of event instead of
the internal integer representation. Y ou can use this value for output messages.

Theget | d() method returns an integer representing a unique event ID that can be safely used within a
switch statement to “case” on. The event IDs are unique across the entire set of event types. For ex-
ample, an SpSubscri pti onEvent may have a “getType()” of SpEvent Type. SYSTEM which
means it is a system-related notification. The get | d() method returns what was actually detected by
the system (for example, SpEvent | d. PARSI NG_ERROR,
SpEvent | d. COVMUNI CATOR_HALTED, and so forth). Asis the case with the event types, all of the
event |Ds are enumerated within theal eri _PubSubconst namespace.

The subscription event identifiers are;

» SpEvent | d. GATEWAY_SYNC_START

This event is delivered to the SpCbser ver if the Subscri pti on object is sent a START _SYNC
Gateway /0 message from the Sybase Aleri Streaming Platform. The START _SYNC message con-
tainsthe ID for the stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates the start of the stream's “snapshot”. Sub-
sequent events should be | NSERT messages for each record in the stream until the END_SYNC Gate-
way 1/0 message is received from the Sybase Aleri Streaming Platform. A call to the START_SYNC
event's get Dat a() method returns null. For this message to be sent from the Sybase Aleri Stream-
ing Platform to the client application, the Subscri pti on has to be created with the SpSub-
Flags.BASE flag specified. If the SpSubFl ags. NO BASE fl ag is instead specified, the
START_SYNC message will never have been delivered from the Sybase Aleri Streaming Platform to
the client application.

This event is aso delivered after the W PEQUT event, if any dynamic Sybase Aleri Streaming Plat-
form changes result in content regeneration. In this situation, the START _SYNC event is delivered
even if theSubscri pt i on was created with the SpSubscr i pt i onConmron. NOBASE flag.

* SpEvent | d. GATEWAY_SYNC_END

This event is delivered to the SpCbser ver if the Subscri pti on issent an END_SYNC Gateway
1/O message from the Sybase Aleri Streaming Platform. The END_SYNC message contains the ID for
the stream with which the message is associated.

If this event is delivered to the SpObserver, it indicates that the end of the stream'’s “snapshot” has
been reached. A call to the END_SYNC event's get Dat a() method returns null. For this message to
be sent from the Sybase Aleri Streaming Platform to the client application, the Subscri pti on
either has to be created with the SpSubFl ags. BASE flag specified, or any dynamic Sybase Aleri
Streaming Platform changes results in the data in one or more of the relevant streams to be regener-
ated. In the latter case, this event is preceded by the W PEQUT event and is followed by the
START _SYNC event, and insertion of the generated data.

* SpEvent | d. GATEWAY_W PEQUT

147

Reference Guide to the .NET Object Model

It is delivered to the SpCbser ver after any dynamic Sybase Aleri Streaming Platform changes that
results in a relevant stream's content being regenerated. The event means that the whole current con-
tent of the stream is being discarded. The W PEQUT event is followed by the START _SYNC event,
insertion of the new data, and the END_SYNC event. All events are delivered even if the Subscr i p-

t i on was created with the SpSubscri pt i onCommon. NOBASE flag.

SpEvent | d. Bl NARY_DATA

If the Subscri pti on is created with the delivery type of SpDeliveryType.DELIVER_BINARY,
the getData() method returns an SpBi nar yDat a object containing the binary message delivered
from the Sybase Aleri Streaming Platform.

The binary datais located in the unmanaged heap. Y ou need to access the unmanaged heap to manip-
ulate the data. Y our program should not free or delete this data since it's done automatically when the
object goes out of scope.

SpEvent | d. PARSED_FI ELD_DATA

When a Subscription is created with a dedivery type of SpbDelivery-
Type. DELI VER _PARSED, it attempts to parse the field data of the stream messages transmitted by
the Sybase Aleri Streaming Platform and delivers this parsed field information to the SpObserver. The
get St r eamOpCode() method can be used to determine whether the message was an | NSERT,
UPDATE, or DELETE. The parsed field data is accessed by the SpCbser ver through the event's
get Dat a() method.

SpEvent | d. PARSED PARTI AL_FI ELD_DATA
Thisevent is currently not supported in the .NET version of the API.
SpEvent | d. COWUNI CATOR_HALTED

It is delivered when you attempt to issue a "shutdown" through the SpPlatform object. A call to the
get Dat a() method returns null.

SpEvent | d. PLATFORM_SHUTDOWN

It is delivered when you attempt to issue a “ shutdown” through the SpPlatform object. A call to the
get Dat a() method returns null.

SpEvent | d. PARSI NG_ERROR

It is delivered when a parsing error is detected by the subscription, and there is at least some context
to report. A call to the get Dat a() method returns an object of type SpPar ser Ret ur nl nf o.
Currently the .NET API does not support this object.

SpEvent | d. UNKNOAN_PARSI NG_ERRCR

It indicates that the parser encountered an unexpected error before the completion of the process. In
this case, the get Dat a() method returns an integer object that contains the record length for the
message that is being parsed.

SpEvent | d. READ_STREAM RECCRD_ERROR

It indicates that the parser could not successfully read the record that was delivered from the Sybase
Aleri Streaming Platform. The get Dat a() method returns an integer object containing the value of
the record length for the bad record.

SpEvent | d. BAD_RECORD LENGTH_ERROR

148

Reference Guide to the .NET Object Model

It indicates that the record-length read off the socket was bad. The get Dat a() method returnsan in-
teger object that contains the bad record length value read off the socket.

« SEventld.BAD_GATEWAY OP_CODE_ERROR

It indicates that the Gateway 1/0O operation code for the message sent from the Sybase Aleri Streaming
Platform isinvalid. The get Dat a() method returns an integer object that contains the bad Gateway
1/O operation code that was read.

- SpEvent | d. EVI D_HOT_SPARE_SW TCH_OVER | NI TI ATED

It is delivered to the SpObserver when the Pub/Sub API recognizes that a connection attempt should
be made to the High Availability (Hot Spare) server. The High Availability connection parameters
were specified in the SpPlatfromParns object passed to the SpFact-
ory. createPl at f or n() method when the underlying SpPlatform was first created.

See Section 4.5.1, “Publication/Subscription in a High Availability (Hot Spare) Configuration” for
more information.

. SpEvent | d. EVI D_HOT_SPARE_SW TCH_OVER SUCCEEDED

It is delivered to the SpChser ver when the connection to the High Availability (Hot Spare) server
is made successfully.

See Section 4.5.1, “Publication/Subscription in a High Availability (Hot Spare) Configuration” for
more information.

. SpEvent | d. EVI D_HOT_SPARE_SW TCH_OVER FAI LED

It is delivered to the SpObserver when the connection to the High Availability (Hot Spare) server
fails.

See Section 4.5.1, “Publication/Subscription in a High Availability (Hot Spare) Configuration” for
more information.

The get | dNane() method returns the string literal value that corresponds to the numeric event ID.
Y ou can use thisin output messages.

The get St ream d() method returns the stream id that is associated with this event. For example, an
SpObser ver may receive an event type of SpEvent Type. PARSED_ DATA, where the event id is
SpEvent 1 d. PARSED_FI ELD DATA, indicating that the event contains parsed field data. The
get St r eam d() method returns the stream id to which this event data corresponds.

The get St r eantpCode() method returns the stream operation code that is associated with this
event. For example, an SpObser ver may receive an event type of SpEvent Type. PARSED DATA,
where the event id is SpEvent | d. PARSED FI ELD_DATA, indicating that the event contains parsed
field data. The get St r eantOpCode() method returns a value that indicates whether the event is an
| NSERT, UPDATE, DELETE, and so forth.

Theget Dat a() method returns an array of objects representing the event data that the SpCbser ver

should process. The selection of objects stored in the collection depend upon the delivery type that was
specified when the Subscri pt i on object was first created. For example, if the delivery type of the
Subscri ption is SpDel i veryType. DELI VER_PARSED, the get Dat a() method returns a
vector; each element in the vector is yet another vector that contains the field list of parsed objects pro-
duced by the subscription message parser.

The array size (number of elements) returned by the getData()method will be 1 when the Sybase Aleri

149

Reference Guide to the .NET Object Model

Streaming Platform delivers a non-transaction message. For example, it could be an isolated | NSERT,
UPDATE or DELETE). In the case a transaction message is delivered, the array sizeis equal to the num-
ber of messages in the transaction block.

It is also important to note that each transactional message sent from the Sybase Aleri Streaming Plat-
form contains updates for an individual stream. In other words, a single message will not contain records
for more than one stream.

If the Subscri pti on is created using a delivery type of SpDel i ver yType. DELI VER Bl NARY,
the get Dat a() method returns a ByteBuffer that has the raw binary stream message within it. If the
Sybase Aleri Streaming Platform sends a transaction block, the SpBi nar yDat a object contains the en-
tire transaction block. The ByteBuffer is located in the unmanaged memory, but your program does not
need to free this memory explicitly; this is done automatically when the SpBi nar yDat a object goes
out of scope.

If the Subscription is created wusing a ddivery type of SpDelivery-
Type. DELI VER_STREAM OPCODES, the get Data() method returns null. Use the get -
St r eamOpCode() method in order to determine the stream operation code (I NSERT, UPDATE, DE-
LETE, UPSERT, and so forth.

C.3. Methods for Publication in .NET 2.0
C.3.1. SpPublication Method Set

An SpPubl i cat i on object can be used to publish data to one or more streams. It implements the fol-
lowing interface:

System : String “get Nanme();
int start();
i nt publish(al eri _PubSubnet:: SpStreanDat aRecord ~streanRecord);

i nt publish(
cli::array<al eri PubSubnet:: SpStreanDat aRecord ~> ~streanRecords,
i nt streamOpCodeOverri de,
i nt streanfl agOverri de);

i nt publishTransacti on(
cli::array<al eri PubSubnet:: SpStreanDat aRecord ~> ~streanRecords,
i nt streamOpCodeOverri de,
i nt streanfFl agsOverri de,
i nt maxRecor dsPer Bl ock) ;

i nt publi shEnvel ope(
cli::array<al eri _PubSubnet:: SpSt reanDat aRecord ~> ~streanRecords,
i nt streamOpCodeOverri de,
i nt streanfFl agsOverri de,
i nt maxRecor dsPer Bl ock) ;

public int commt();

public int stop();

i nt publish(

cli::array<al eri _PubSubnet: : SpStreanDat aRecord ">
Ast reanRecor ds,

i nt streamOpCodeOverri de,

i nt streanfFl agOverri de,

SpPI at f or n5t at us ~st at us) ;

150

Reference Guide to the .NET Object Model

i nt publishTransaction(

cli::array<al eri _PubSubnet: : SpStreanDat aRecord ">
st reanmRecor ds,

i nt streamOpCodeOverri de,

i nt streanfl agsOverri de,

i nt maxRecor dsPer Bl ock,

SpPI at f or n5t at us ~st at us) ;

i nt publishEnvel ope(

cli::array<al eri _PubSubnet: : SpStreanDat aRecord ">
AstreanRecor ds,

i nt streamOpCodeOverri de,

i nt streanfFl agsOverri de,

i nt nmaxRecor dsPer Bl ock,

Detalls:

The get Nane() method returns the “name” assigned to this SpPubl i cat i on object when it was
created through the SpPl at f or miscr eat ePubl i cati on(. ..) factory method.

Thest art () method is used to start the publication process.

When an SpPubl i cat i on object is started, the following sequence of events take place:

1. The SpPubl i cati on object creates a socket connection to the Sybase Aleri Streaming Platform
Gateway 1/O process.

2. The SpPubl i cat i on authenticates with the Sybase Aleri Streaming Platform.

3. Thestart () method returns a zero to the caller when the SpPublication object was successfully
started; otherwise, a non-zero error code is returned.

The SpUti | s. get Error Message(err or Code) method can get the specific error message when
an error occurs.

The publication mechanism does not create a separate thread to manage the publication, unlike the sub-
scription method. Behind the scenes, a socket connection to the Sybase Aleri Streaming Platform Gate-
way /O process transmits stream data to the Sybase Aleri Streaming Platform and reads the response as-
sociated with each individual request. A publication request is synchronous unless otherwise specified in
the flag values used when publishing data. You can call one of the publ i sh methods and wait for the
Sybase Aleri Streaming Platform to respond with an ack or nak. However, there is a special stream
flag, SpGat ewayConst ant s. SF_NQACK, that can be used to make an asynchronous publication re-
quest. When this flag is specified, the publ i sh method sends the request out to the Gateway 1/O pro-
cess and returns control immediately back to the caller without waiting for a response from the Sybase
Aleri Streaming Platform.

The publish(al eri _PubSubnet:: SpStreanDat aRecord “streanRecord) method is
used to publish/send a single stream input record to a source stream on the Sybase Aleri Streaming Plat-
form athough it is more efficient to send Input Stream records to the Sybase Aleri Streaming Platform
in either transaction blocks or envelopes. This method can be used initially when the programmer wants
to test a new data model, perhaps by sending one stream input record at atime. If the send is a success, a
return code of zero is sent back to the caller, otherwise an error code is sent back. The
SpUtils. get Error Message(error Code) method can be called to get the specific error mes-

sage.

151

Reference Guide to the .NET Object Model

Each of the publish methods of the SpPubl i cat i on object takes one or more SpSt r eanDat aRe-
cor d objectsasinput. The SpSt r eanDat aRecor d object represents one row of stream data that will
be sent to the Sybase Aleri Streaming Platform. Each SpSt r eanDat aRow object has its own op code,
which indicates how the row will be handled by the Sybase Aleri Streaming Platform when it's received.

For example, the op code may indicate that the row will be treated as an | NSERT, a DELETE, an UP-
DATE and so forth. See Section B.2.4, “ SpStreamDataRecord Object” for more information.

The publish(cli::array<al eri _PubSubnet:: SpStreanDat aRecor d N>
AstreanRecords, int streanOpCodeOverride, int streanFlagOverride) sends
an array of SpSt r eanDat aRecor d objects to the Sybase Aleri Streaming Platform with one call. The
st reamOpCodeOverri de and st reantl agOverri de parameters can be used to override the
corresponding values found in the individual SpSt r eanDat aRecor d objects that comprise the col-
lection.

Although an array of SpSt r eanDat aRecor d objects is sent/published to the Sybase Aleri Streaming
Platform, this method sends each element of the array, one record at a time. However, this method al-
lows you to create a set of stream data records where each record can be applied to a different stream.
This may be used for a debugging or testing scenario, where the ordered sequence of updates to various
source streams is important.

The publishTransaction(cli::array<aleri_PubSubnet:: SpStreanDat aRecord
A> AL int streamOpCodeOverride, int streanfFl agsOverride, int maxRe-
cor dsPer Bl ock) and the publ i shEnvel -
ope(cli::array<al eri _PubSubnet:: SpStreanbDataRecord ~> *, int streamOp-
CodeOverride, int streanFl agsOverride, int maxRecordsPer Bl ock) methods
are the most efficient ways to bundle multiple SpSt r eanDat aRecor ds stored in the array to send at
once to the Sybase Aleri Streaming Platform as a single batch.

Each SpSt reanDat aRecor d to be placed within the transaction/envelope must be for the same
source stream. It can have a different “op code”, such as | NSERT, UPDATE, DELETE), but the records
must be for the same source stream.

As previously mentioned, the override op code and flag values can override the corresponding values
found within the individual SpStreamDataRecord objects that make up the collection. In addition, this
method takes one more parameter called maxRecor dsPer Bl ock, an integer value that specifies the
maximum number of SpSt r eanDat aRecor ds to be sent as a transactional/envel ope unit to the Sy-
base Aleri Streaming Platform. If the value is set to zero, then the method will try to send all of the Sp-

St r eanDat aRecor d objects in the collection to the Sybase Aleri Streaming Platform within one
transaction block. If the maxRecor dsPer Bl ock is less than the actual number of records in the col-
lection, then the record set will be broken up using the maxRecor dsPer Bl ock setting into multiple
transacti ons/envel opes during transmission to the server.

The difference between a transaction and envel ope block transmitted to the server is how the server pro-
cesses the block of records upon receiving it. As the name implies, a group of records within a transac-
tion block is treated as a single transactional unit on the server side. In the case of an envelope, the group
of records contained within the envelope are processed a single record at a time by the server. Basically,
the envelope mechanism allows the client to send a batch of records for a specific stream to the server in
one shot as opposed to sending a single record at a time, and having to wait for each record's ack/nak
reply from the server.

Each of the three publish functions described above has a version that accepts a handle to SpPI at -
f or nBSt at us. These versions are functionally similar, but in error conditions, return extended inform-
ation if available in the SpPlatformStatus.

The conmi t () method issues a special Gateway 1/O command to the Sybase Aleri Streaming Plat-
form, requesting that all pending input records previously sent to the Sybase Aleri Streaming Platform
be synced to disk. Making a commit call is a tremendously expensive operation relative to latency. It's

152

Reference Guide to the .NET Object Model

designed to be used only as part of a two-phase commit process when reading from a persistent source,
such as an ActiveMQ series, and writing to a Sybase Aleri Streaming Platform instance that uses Sy-
base's |og store persistence model.

Inareal time, low latency streaming scenario, the commit call should not be used after each record.

Typically the commit call should be used as follows: For a standard two-phase commit process that
guarantees against data loss, the client reads messages from the source, such as ActiveMQ, and pub-
lishes to the Sybase Aleri Streaming Platform until reaching a pre-determined number of processed mes-
sages (>1024 is recommended) or a specified amount of time has elapsed. After reaching the value set
for the maximum number messages or the elapsed time has passed, the commit() call is made and upon
return to the client, the client may inform the source, such as ActiveMQ, that the messages can be de-
leted.

Thest op() method shuts down the underlying Gateway 1/0O socket connection.
C.3.2. Stream Operation Codes

The following lists the stream operation codes that can be set for each individual SpSt r eanDat aRe-
cord or as one of the “streamOpCodeOverride’ parameters can be found in the aleri_PubSubconst
namespace:

e SpOpCodes. NOOP

When specified as the "streamOpCodeQOverride" parameter, this value indicates that the stream op
code stored in each of the individual SpSt r eanDat aRecor d objects should be used by the Sybase
Aleri Streaming Platform. If the stream op code within the SpSt r eanDat aRecor d is set to SpOp-
Codes.NOOP, then the Sybase Aleri Streaming Platform will default the stream operation to an IN-
SERT operation.

* SpOpCodes. | NSERT

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as an INSERT operation.

« SpOpCodes. UPDATE

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as an UPDATE operation.

. SpOpCodes. DELETE

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
asa DELETE operation.

* SpOpCodes. UPSERT

When this value is specified, the Sybase Aleri Streaming Platform treats the published stream record
as an UPSERT operation. An UPSERT operation either inserts the stream record into the source
stream if it is not already present or it updates the existing source stream record using the contents of
the stream record.

C.3.3. Stream Flag Values

The following is a set of stream flag values that can be set for each individua SpSt r eanDat aRe-
cord or as one of the streantl agOverri de parameters found in the aleri_PubSubconst
namespace:

153

Reference Guide to the .NET Object Model

* SpStreantl ags. NULLFLAG

When specified asthe st r eant| agOver ri de parameter, it indicates that the stream flag stored in
each of the individual SpSt r eanDat aRecor d objects should be used by the Sybase Aleri Stream-
ing Platform. If the stream flag within the SpStreanDat aRecord is set to SpStream
Fl ags. NULLFLAG, the default synchronous publication sequence takes place where the SpPub-
| i cat i on waitsfor aresponse from the Sybase Aleri Streaming Platform.

e SpSt reanfl ags. NOACK

When specified, it tells the Sybase Aleri Streaming Platform not to send an ack or nak back to the
client application that issued the publication request. In other words, the Publ i sh method that was
called runs asynchronously, and it assumes that the record was received and processed by the Sybase
Aleri Streaming Platform.

* SpStreantl ags. SH NE

It is only relevant for the stream op code values of UPDATE and UPSERT. Typically, all of the fields
for a stream record being published to the Sybase Aleri Streaming Platform must be assigned values
for each of the available stream operations (I NSERT, UPDATE, UPSERT, and so forth). In the case of
an UPDATE or UPSERT, you can use the SHI NE flag to ignore any NULL columns in a record and
update only the columns with actual new values. In essence, the Sybase Aleri Streaming Platform lets
the existing field values “ shine through” for each of the null values you sent in.

The flag values represent bits that can be ORed together asin the example below:

int flags = SpStreanfl ags. SHI NE | SpStreanftl ags. NOACK

The key column(s) of the record to be updated must be populated for the update/upsert operation to
succeed.

C.3.4. SpStreamDataRecord Object

Each of the SpPubl i cat i on object's publishing methods sends stream input data from the client ap-
plication to the Sybase Aleri Streaming Platform. Each stream record or row of stream data is encapsu-
lated within an SpSt r eanDat aRecor d object, which has the following method set:

al eri _PubSubnet :: SpSt ream ~get St ream() ;
cli::array<System : Cbject ~> ~getFi el dData();
i nt get OpCode();

i nt set OpCode(1 nt val ue);

i nt getFlags();

int setFlags(int value);

Details:

e The get Strean() method returns an SpSt r eam object with which this SpSt r eanDat aRe-
cor d isassociated. See Section C.1.5, “ SpStream Object” for more information.

» Theget Fi el dDat a() method returns an array of objects representing the data for each field in the
stream record. Currently, these objects can have a “type” of String, Integer, Long, Double, Date,
Money, Timestamp, and null.

154

Reference Guide to the .NET Object Model

Theget OpCode() method returns the stream op code currently set for this record.

* Theset OpCode(i nt val ue) method sets the value of the stream op code for this record.

Theget Fl ags() method returns the current flag settings for this record.

Theset Fl ags(i nt val ue) method setsthe value of the stream flag settings for this record.

C.3.5. Creating SpStreamDataRecord Objects

An SpSt reanDat aRecor d object is created using a “factory” method for consistency within the
Pub/Sub API model with the following method signature:

al eri _PubSubnet : : SpSt r eanDat aRecor d
ASpFact ory. creat eSt r eanDat aRecor d(
al eri _PubSubnet:: SpSt ream ~stream
cli::array<System:Object *> ~fiel dData,
i nt opCode,
int flags,
al eri _PubSubnet :: SpPl at f or nSt at us ~st at us) ;

Detalls:

* SpStreamstream is a handle to the SpSt r eamobject with which this new SpSt r eanDat aRe-
cor d object will be associated. Y ou can get this value through one of the appropriate SpPl at f or m
methods, such as get Stream(System :String “streanmNane) or get Strean(int
stream d).

e cli::array<System: Object "> ~fieldData isan aray of objects where each object
entry in the array matches the corresponding field data type, as indicated in the streams definition spe-
cified in the SpStream parameter.

Notes:

When creating an SpSt r eanDat aRecor d, al of the key fields must be specified with non-
null values within the f i el dDat a array. In addition, the types of the objects that are located
inthef i el dDat a array must match those in the SpStream definition.

i nt opCode is the stream operation code associated with this SpStreamDataRecord. The op code
specifies how to apply this record to the source stream: | NSERT, UPDATE, or DELETE.

e int fl ags isthestream flag settings value that is associated with this SpStreamDataRecord.

Note

Severa of the publ i sh methods include the option of overriding the stream op code and flag
settings.

» al eri _PubSubnet:: SpPl at f or nf5t at us “st at us is an object that returns error code in-
formation back from the cr eat eSt r eanDat aRecord (. ..) factory method in the case where
the SpSt r eanDat aRecor d object cannot be created.

C.3.6. Other Pub/Sub API Classes

155

Reference Guide to the .NET Object Model

Here are some of the miscellaneous classes briefly referenced in earlier examples. One class is the
SpUt i | s class, which offers the following utility methods:

static System:String “getErrorMessage(int errorCode)

static System:String “get Event TypeNane(i nt event Type)

static System:String “get Event| dNane(int eventld)

Details:

e The get Error Message(int errorCode) method retrieves the message string, associated
with the errorCode passed in through the parameter list. Typically, the errorCode is returned by a pre-
vious call to one of the Pub/Sub API methods.

» The get Event TypeNane(i nt event Type) method is typically called by an SpObser ver
object. This method returns a String representing the literal name of the event Type passed in. The
event Type is usualy retrieved from an al eri _PubSubnet : : SpSubscri pti onEvent ob-
ject that was delivered to the aeri_PubSubnet::SpObserver through the
al eri _PubSubnet : : SpObser ver object'snoti fy(...) method.

e The getEventldNane(int eventld) method is adso typicaly caled by an
al eri _PubSubnet :: SpObser ver object. It returns a string representing the literal name of the
eventld passed in. The eventld is usudly retrieved from an
al eri _PubSubnet :: SpSubscri pti onEvent object that was ddivered to the
al eri _PubSubnet : : SpObser ver through the al eri _PubSubnet : : SpCbser ver object's
notify(...) method.

C.3.7. The aleri_PubSubconst namespace

Theal eri _PubSubconst namespace contains all of the literal and constant values that can be used
as parameters to various Pub/Sub APl method calls.

The contents of theal eri _PubSubconst namespaceis broken up into the following entities:

The SpDat aTypes class contains the constants defining the various field data types supported by the
Sybase Aleri Streaming Platform. The following field data types are supported:

« DATE

 DOUBLE

* INT32

* INT64

« MONEY

* NULLVALUE

* STRING

* TIMESTAMP

156

Reference Guide to the .NET Object Model

* The MONEY datatype is a 64-bit integer with an implicit decimal place. When receiving data from
the Sybase Aleri Streaming Platform, the returned value should be passed as a parameter to the
pl at f or m noneyToDoubl e(i nt 64 noney) function to derive the correct double value.
When sending data to the Sybase Aleri Streaming Platform, the double value should be converted to
64-hit integer using the pl at f or m doubl eToMbney(doubl e noney) function to ensure the
datais processed correctly.

* The TIMESTAMP datatype is basically the same as a DATE datatype except that it is capable of
holding milliseconds. When subscribing from the Sybase Aleri Streaming Platform or publishing data
to the Sybase Aleri Streaming Platform a Syst em : Dat eTi nme object can be appropriately re-
ceived or sent. The API takes care of preserving or stripping out the millisecond component of the
DateTime object depending on the datatype of the corresponding column in the Sybase Aleri Stream-
ing Platform.

e The NULLVALUE datatype is meant for internal use. When subscribing to the Sybase Aleri Stream-
ing Platform a null Object is retrieved when the value in a column is NULL. Similarly, when publish-

ing data, a null Object must be sent to the APl when a column value should be set to NULL within the
Sybase Aleri Streaming Platform.

SpDel i ver yType contains the different types of parsers assigned to the SpSubscri pti on object.
Currently, an SpSubscri pti on object can be configured with a parser that returns just Stream Op
Codes, parsed field data, binary data, and so on.

 DELIVER BINARY

* DELIVER_PARSED

* DELIVER _STREAM_OPCODES

SpEvent | d: This class contains the different event identifiers that are returned from an SpSub-
scri ption object.

« BAD_GATEWAY_OP_CODE_ERRCR

« BAD RECORD LENGTH ERROR

* Bl NARY_DATA

« COMMUNI CATOR_HALTED

« GATEWAY_SYNC END

« GATEWAY_SYNC START

« GATEWAY_ W PEQUT

* PARSED FI ELD_DATA

* PARSED PARTI AL_FI ELD_DATA

* PARSI NG_ERROR

« PLATFORM SHUTDOM

« READ_STREAM RECORD ERROR

157

Reference Guide to the .NET Object Model

« UNKNOWN_PARSI NG_ERROR

SpEvent Type contains various types and/or classifications of events that are returned from an SpSub-
scription object.

Bl NARY_DATA

PARSED_DATA

STREAM OPCODE_DATA
. SYSTEM

SpOpCodes contains various stream operation codes, which are used to set or determine the operation
code of the record to be published or received via subscription.

DELETES

I NSERT
* NOOP

UPDATE
» UPSERT

SpSt r eantl ags contains various stream flags that can be used for publishing data.

* NOACK
* NULLFLAG
* SHI NE

SpSubFl ags contains various flags that can be specified for subscribing to data from the Sybase Aleri
Streaming Platform.

BASE
* LOSSY

NO_BASE

DROPPABLE

PRESERVE_BLOCKS

C.4. Record and Playback objects for .NET

C.4.1. SpNetRecorder Object

158

Reference Guide to the .NET Object Model

To create an SpRecorder, client programs need to call the factory method - createRecorder - defined in
SpPlatform.

SpRecor der” creat eRecorder (System: String” nane, System:String”® filenane, cli::array<System:String">
int flags, int maxRecords, aleri_pubsubnet:: SpPl atfornftat us” status);

The method takes the following parameters:

namne This string uniquely identifies this instance of the recorder object.
fil enane The name of the file where recorded data will be stored.
streams Thisis avector of strings containing the names of the streams for

which to record events.

fl ags These flags control the underlying subscription. They can be a bit-
wise OR of the following values:

< one of SpSubFl ags. BASE or SpSubFl ags. NOBASE - in-
dicates whether or not to record data already in streams at the
time of connection

e SpSubFl ags. LOSSY indicates whether or not the Sybase
Aleri Streaming Platform should discard records if the client
application cannot keep up

maxRecor ds Specifies the maximum number of records to process.
st at us Specifies an SpPlatformStatus object to return information in case
of error.

SpRecorder has the following public interface:

public System: String”® get Nane();

public int start();

public | ong get Recor dCount () ;
public int stop();

Where:

get Nane() returnstheidentifier assigned to thisinstance of the SpRecorder object.

start () spawns abackground thread which starts the recording process. The method returns once the
thread is started. Returns O on success.

get Recor dCount () returnsthe number of data records processed.

st op() ends the recording process. by terminating the recording thread and closing connections to the
Sybase Aleri Streaming Platform. Returns 0 on success.

C.4.2. SpNetPlayback object

An SpPlayback object is created by calling the following factory method defined in SpPlatform.

SpPl ayback” creat ePl ayback(System: String® name, System:String”® fil ename, double scale, int maxrecords
al eri _pubsubnet: : SpPl at f or nSt at us® st at us) ;

159

Reference Guide to the .NET Object Model

The method takes the following parameters:

» nane uniquely identifies this instance of SpPlayback.

» fil ename specifies the name of the file containing the recorded data.

» scal e controls the rate of playback. Values -1 to 1 have no effect and the data is played back at the
rate it was recorded at. Values greater than 1 speed up playback by that factor, for example, a value of
2 will play back twice asfast. Valuesless than -1 slows down playback by the factor specified.

* maxr ecor ds specifies the maximum number of records to playback.

e st at us isan SpPlatformStatus object used to return information in case of error.

SpPlayback has the following public interface:

public System:String”
public void
publ i c bool
public void
publ i ¢ doubl e
public int
public | ong
public int
public int
Where:

get Name()

set SendUpsert (bool)

get SendUpsert ()

set Ti meScal eRat e(doubl e)
get Ti meScal eRat e()
start()

get NunmRecor dsPl ayed-

Back()
get Per cent Pl ayedBack()

stop()

get Nane() ;

set SendUpsert (bool upsert);

get SendUpsert () ;

set Ti meScal eRat e(doubl e scal e) ;
get Ti meScal eRat e() ;

start();

get NunmRecor dsPl ayedBack() ;

get Per cent Pl ayedBack() ;

stop();

Returns the identifier assigned to this instance of SpPlayback ob-
ject.

Indicates whether to convert INSERT operations in the data to
UPSERT operations.

Returns the current setting of UPSERT flag.
Controls the rate of playback.
Returns the current value of the scale factor.

Spawns a background thread that starts the playback process. Re-
turns O on success.

Returns the number of data records played back so far.
Returns the percentage of the data played back so far.

Terminates the background playback thread and closes connec-
tions to the Sybase Aleri Streaming Platform.

160

Appendix D. Reference Guide to SQL Query Interface

D.1. Aleri SQL Connectivity C++ Library

C++ programs can connect to the Sybase Aleri Streaming Platform using a C++ SQL connectivity lib-
rary that was developed as a lightweight alternative to ODBC. This native C++ SQL interface to the Sy-
base Aleri Streaming Platform encapsulates the low-level messages into a more convenient API. The
static library isincluded in the distribution in thefilel i b/ 1 i bsp_sql . a.

The interface to the classes in this library is located in the distribution in the i ncl ude/ Nat -
i veSql . hpp file.

This API resembles a collection of stripped-down versions of the JDBC classes, which have been modi-
fied for C++. There are four main classes: Connect i on, St at enent , Resul t Set , and Resul t -
Set Met aDat a.

The application program establishes a connection to the Sybase Aleri Streaming Platform using the
Connect i on class. The constructor for objects sets up the host, port, database, user, and password.
You must use the open member function after construction to connect to the Sybase Aleri Streaming
Platform and then issue cr eat eSt at enent callsto create SQL statement objects.

cl ass Connecti on

{

publi c:
/1] Constructor
Connection(const char * host, int port, const char * db,
const char * user, const char * pwd);

/1] Destructor
virtual ~Connection();

/1] Open this Connection to the database.
bool open();

/1] Open this Connection to the database using an SSL
/1] socket.
bool openSSL();

/1l Rel ease this Connection object's database and

/1] resources imediately instead of waiting for them

/1] to be automatically rel eased.

voi d cl ose();

/1] Creates a Statenent object for sending SQL statenents
[/l to the database.

Statenment * createStatenent();

/1] Retrieves whether this Connection object has been

/1] closed.
bool isd osed();

The St at enent classisused for execution of queriesin the context of aConnect i on.

cl ass St at enent

{
publi c:

161

Reference Guide to SQL Query Interface

/1l Constructor _
St at ement (Connecti on * connecti on);

/1] Destructor
virtual ~Statenent();

/1l Cancels this Statenment object if both the DBMS and
/1] driver support aborting an SQ. statenent.
voi d cancel ();

/1l Rel eases this Statenment object's database and ot her
[l/resources imrediately instead of waiting for this to
[1/ happen when it is automatically closed.

voi d cl ose();

/1] Executes the given SQ. statenent, which returns a
/1l single ResultSet object.

Resul t Set * executeQuery(const char * sqgl);

/1l Retrieves the Connection object that produced this
/1l Statenment object.

Connection * get Connection();

/1l Retrieves the maxi mum nunmber of rows that a Result Set
/1] object produced by this Statenent object can contain.
i nt get MaxRows() ;

/1] Sets the limt for the maxi mum nunber of rows that any
/1] Resul t Set object can contain to the gi ven nunber
voi d set MaxRows(i nt max);

The Resul t Set classis used to get information from the results of executing an SQL query on the Sy-
base Aleri Streaming Platform.

cl ass Resul t Set

Lo

publi c:
/1] Constructor
Resul t Set (St at enent * statenment, Result SetMetaData * neta
std::vector<void *> & rows);

/1] Destructor
~Resul t Set () ;

/1l Moves the cursor to the given row nunber in this
/ 1/ Resul t Set obj ect.
bool absol ute(int row;

/1l Moves the cursor to the end of this ResultSet object,
/1] just after the | ast row.
voi d afterlLast();

/1l Moves the cursor to the front of this ResultSet object,
[1/just before the first row
voi d beforeFirst();

/1l Rel eases this ResultSet object's database and

/1] resources imediately instead of waiting for this to
/1]l happen when it is automatically cl osed.

voi d cl ose();

162

Reference Guide to SQL Query Interface

/1 Maps the given ResultSet colum nane to its Result Set
[/ col um i ndex.
int findColumm(const char * col unmNane);

// Moves the cursor to the first rowin this Result Set
/1 object.
bool first();

/'l Retrieves the value of the designated colum in the
/1 current row of this ResultSet object as a tine_t.
time_t getDate(int columlndex);

/1l Retrieves the value of the designated columm in the
/1] current row of this ResultSet object as a tine_t.
time_t getDate(const char * col umNane);

/1l Retrieves the value of the designated colum in the
/1l current row of this ResultSet object as a doubl e.
doubl e get Doubl e(i nt col unml ndex) ;

/1l Retrieves the value of the designated colum in the
current row of this Result Set

/1l object as a doubl e.

doubl e get Doubl e(const char * col utmNane) ;

/1l Retrieves the value of the designated columm in the
current row of this ResultSet object

[/l as a 32-bit signed integer.

int32_t getlnt32(int col uml ndex);

/1l Retrieves the value of the designated colum in the
current row of this Result Set

/1]l object as a 32-bit signed integer.

int32_ t getlnt32(const char * col umNane);

/1l Retrieves the value of the designated colum in the
current row of this ResultSet object

[/l as a 64-bit signed integer.

int64 t getlnt64(int col uml ndex);

/1l Retrieves the value of the designated colum in the
/1] current row of this ResultSet object as a 64-bit
/1l signed integer.

int64 t getlnt64(const char * col unmNane);

/1l Retrieves the nunmber, types and properties of this
///Result Set object's col umms.
Resul t Set Met aDat a * get Met aDat a() ;

//] Retrieves the current row nunber.
i nt get Row();

/ Retrieves the Statenent object that produced this
/ Resul t Set obj ect .
atenment * get Statenment();

/1
/1
St

/1l Retrieves the value of the designated colum in the
/1l current row of this ResultSet object as a character
/1] string.
const char * getString(int columlndex);

Retrieves the value of the designated columm in the

[11
/1] current row of this ResultSet object as a character
/1] string.

163

Reference Guide to SQL Query Interface

const char * getString(const char * col umNane);

//] Retrieves whether the cursor is after the last rowin
[l this

Resul t Set obj ect .

bool isAfterLast();

/1] Retrieves whether the cursor is before the first row
///in this ResultSet object.

bool isBeforeFirst();

/// Retrieves whether the cursor is on the first row of
///this ResultSet object.

bool

i sFirst();

[/l Retrieves whether the cursor is on the |ast row of
/1] this ResultSet object.
bool islLast();

/ Moves the cursor to the last rowin this ResultSet
/ obj ect.
ol last();

o~
o~

/// Mbves the cursor down one row fromits
/1] current position.
bool next();

/1]l Moves the cursor to the previous row in this Result Set
/1] object.
bool previous();

/1] NMoves the cursor a relative nunber of rows, either
/1l positive or negative.
bool relative(int rows);

/1] Reports whether the |ast colum read had a val ue of
/1] SQ. NULL.
bool wasNul I ();

The Resul t Set Met aDat a class describes the format of aresult set. It can be used to retrieve inform-
ation about the column names and column types.

cl ass Resul t Set Met aDat a

publi c:
/1] Constructor
Resul t Set Met aDat a(std:: vector<std::string> & col Nanes,
std::vector<int> & col Types);

[/l Destructor
~Resul t Set Met aDat a() ;

/1] Returns the nunber of colums in this ResultSet object.
i nt get Col umCount () ;

/1l CGet the designated colum's nane.
const char * get Col umName(int col umm);

/1] Cet the designated colum's position.
i nt get Col umPos(const char * nane);

164

Reference Guide to SQL Query Interface

/1] Retrieves the designated colum's SQL type.
i nt get Col umType(int col um);

/1l Retrieves the designated colunm's dat abase-specific
/1] type nane.
const char * get Col umTypeNane(i nt col um);

165

Appendix E. Reference Guide to the Command and
Control Interface

E.1. Command and Control Messages

All Command and Control functions have a 32-bit signed integer return code that follows the “C” lan-
guage standard:

» A return code of zero indicates a successful function call.

» A non-zero return code indicates that an error has occurred.

Some of the calls return a structure in which the 32-bit signed integer return code is embedded as a
structure member (usually named St at us).

The following notation is used to specify a structure return value from a command and control function
call:

s(Status) int

s(StreamNum) int
s(StreamNanes) array strings
s(Stream ds) array int

This example indicates that the return value is an XMLRPC structure with data members St at us,
St reamNum St r eanNanes, and St r eam ds, whose respective data types are int, int, array of
strings, and array of ints.

All the calls that return a structure include the field:

return: s(errMsgs): array string

If the return code is not zero, this array contains the error messages describing it. If the return code is
zero, thisarray might still contain warning messages.

The supported Command and Control functions:

e ci marron. get G ockSt opOnPause(token) returns an integer that shows whether the logical
platform clock will be stopped (value 1) or not (value 0) when the Sybase Aleri Streaming Platform
pauses in the trace mode.

i nput: auth_token: string
return: s(status): int

return: s(value): int

return: s(errMsgs): array string

e ci marron. set G ockSt opOnPause(token, value) sets the flag that determines whether the lo-
gical Sybase Aleri Streaming Platform clock will be stopped (value 1) or not (value 0) when it pauses

166

Reference Guide to the Command and Control Interface

in the trace mode.

i nput: auth_token: string

i nput: val ue: int

return: s(status): int

return: s(errMsgs): array string

ci mar r on. get Cl ock(token) returns the current status of the logical platform clock. The state con-
sists of:

clocktime clockTime is the current logical time in the Sybase Aleri Streaming Platform, in
seconds since UNIX epoch.

clockRate clockRate is the current rate of clock in the Sybase Aleri Streaming Platform relative
to real time; 10 means "10 times faster”, 0.1 means " 10 times slower".

clockReal A flag showing whether the clock is "red" (that is, matching the system time of the
machine where the Sybase Aleri Streaming Platform runs (if 1), or it has been set arti-
ficialy (if 0). If the status returned is not O, this value may be -1, and in this case the
rest of the returned values are invalid.

stopDepth How many times the clock has been stopped recursively, meaning how many times
resumeClock() would have to be called to actually resume the flow of time; when the
clock isrunning, thisvalueisO.

maxSleep maxSleep is a period of time, in real milliseconds, that guarantees all the sleepers dis-
cover the changes in the clock rate or time. The calls setClockRate(), setClockRate-
Time(), setClockReal() with argument wait=1 use this value as wait length. If these
cals are used with argument wait=0, the caller may use this value to sleep by itself.
When running in real time, it uses a larger value (currently 1000, meaning 1 second)
for more efficiency since every sleeping thread is waking up every so often; when
running in variable time it uses a smaller value (currently 100) for faster reaction to
the changes.

i nput: auth_token: string
return: s(status): int

return: s(clockTine): double
return: s(clockRate): double
return: s(clockReal): int

return: s(stopDepth): int

return: s(nmaxSleep): int

return: s(errMsgs): array string

ci marron. set C ockRat e (token, double rate, int wait) changes the rate at which the logical
clock of the Sybase Aleri Streaming Platform ticks. The rate is relative to real time. For example, 10
means 10 times faster or 0.1 means " 10 times slower.

It differs from the rate expressed in Pub/Sub, which uses a dlider position so that 10 means accelerate
10 times while -10 means slow down 10 times.

The wait parameter determines how the rate change is performed. If O, the call will perform the
change and return immediately. But parts of the Sybase Aleri Streaming Platform that are waiting for
an event (or “seeping”) might not discover that the clock rate has changed for up to maxSleep milli-
seconds.

167

Reference Guide to the Command and Control Interface

If not O, it will atomically stop the logical clock, change the rate, wait long enough for al the ongoing
sleeps to discover the rate change and restart the clock at the new rate.

This call returns the previous state of the Sybase Aleri Streaming Platform clock. See the description
above for getClock().

i nput: auth_token: string

i nput: rate: double

input: wait: int

return: s(status): int

return: s(clockTine): double
return: s(clockRate): double
return: s(clockReal): int

return: s(stopDepth): int

return: s(maxSl eep): int

return: s(errMsgs): array string

ci marron. set Cl ockTi ne(token, time) changes the current logica time of the Sybase Aleri
Streaming Platform. Time is expressed in seconds since the UNIX epoch. This call returns the previ-
ous state of the platform clock. See the above description for getClock().

i nput: auth_token: string

input: time: double

return: s(status): int

return: s(clockTinme): double
return: s(clockRate): double
return: s(clockReal): int

return: s(stopDepth): int

return: s(naxSleep): int

return: s(errMsgs): array string

ci marron. set C ockRat eTi e (token, rate, time, wait) is a combination of setting time and rate
asin the calls above. This call returns the previous state of the platform clock. See the above descrip-
tion for getClock().

i nput: auth_token: string

i nput: rate: double

i nput: tinme: double

input: wait: int

return: s(status): int
return: s(clockTine): double
return: s(clockRate): double
return: s(clockReal): int
return: s(stopDepth): int
return: s(maxSl eep): int
return: s(errMsgs): array string

ci mar r on. set Cl ockReal (token, wait) restores the clock to use the real time. It would return an
error if the clock is currently stopped. The wait argument is the same as for setClockRate(). This call
returns the previous state of the. Sybase Aleri Streaming Platform clock. See the description abovein
getClock().

168

Reference Guide to the Command and Control Interface

i nput: auth_token: string

input: wait: int

return: s(status): int

return: s(clockTinme): double
return: s(clockRate): double
return: s(clockReal): int

return: s(stopDepth): int

return: s(maxSl eep): int

return: s(errMsgs): array string

e ci marron. st opd ock (token) stops the logical clock in the Sybase Aleri Streaming Platform.
The records will still be processed but the notion of time won't change and the timer events won't hap-
pen. While the clock is stopped, the time and rate may be changed but the clock may not be switched
to real time. Stopping may be called multiple times, then resume must be called the same number of
times to have the time flow resumed. Since the Sybase Aleri Streaming Platform may also stop and
resume the clock internally, don't resume the clock more times than you've stopped it. This call re-
turns the previous state of the clock. See the description above for getClock().

i nput: auth_token: string
return: s(status): int

return: s(clockTine): double
return: s(clockRate): double
return: s(clockReal): int

return: s(stopDepth): int

return: s(maxSl eep): int

return: s(errMsgs): array string

e ci marron. resuned ock (token) resumes the flow of time in the Sybase Aleri Streaming Plat-
form. This call returns the previous state of the clock. See the description abovein get C ock() .

i nput: auth_token: string
return: s(status): int

return: s(clockTinme): double
return: s(clockRate): double
return: s(clockReal): int

return: s(stopDepth): int

return: s(naxSleep): int

return: s(errMsgs): array string

e cimarron. |l ogi n(usernane, password) authenticates with the server during login, and on
success returns an authentication token to be used in al other Command and Control calls.

i nput: username: string

i nput: password: string

return: s(status): int

return: s(hash): string (authentication token)
return: s(errMsgs): array string

e cimarron. sendStreansExi t (aut h_t oken) postsan EXI T message to each source stream.

169

Reference Guide to the Command and Control Interface

This causes an exit message to propagate through the entire dependency graph of source and streams.
When all streams have processed the exit message, the Sybase Aleri Streaming Platform shuts down.

i nput: auth_token: string
return: void - cimarron should exit after all streans
fully process queued data

ci mar ron. get Sour ceSt r eans(aut h_t oken) requests a list of the complete set of source
streams. Thisincludes the stream names and stream IDs.

i nput: auth_token: string

return: s(status): int

return: s(streanNum): int (nunber of source streans)
return: s(streamNanes): array string (the stream nanes)
return: s(streanmids): array int (streamids)

return: s(errMsgs): array string

ci marron. get Deri vedSt reans(aut h_t oken) requests alist of the complete set of derived
streams. Thisincludes the stream names and stream IDs.

i nput: auth_token: string

return: s(status): int

return: s(streanNum): int (nunber of Derived Streans)
return: s(streanNanmes): array string (the stream nanes)
return: s(streamids): array int (streamids)

return: s(errMsgs): array string

ci marron. get StreanmDefi ni ti on(aut h_t oken, stream nane) requests detailed
metadata for a particular stream. This includes the number of columns (fields), their names and types,
and a Boolean array that indicates the key columns for the stream.

i nput: auth_token: string

i nput: stream name: string

return: s(status): int

return: s(Col Num): int (nunber of fields)

return: s(Col Nanes): array string (the field nanes)
return: s(Col Types): array int (field types)
return: s(Keys): array int (0 not key, 1 key)
return: s(errMsgs): array string

ci marron. get StreanHandl eDefiniti on(aut h_token, stream handle) requests
detailed metadata for a particular stream. This includes the number of columns (fields), their names
and types, and a Boolean array that indicates the key columns for the stream. Same asget St r eam
Def i ni tion(), only usesthe stream handle to find the stream.

i nput: auth_token: string

i nput: stream handl e: int

return: s(status): int

return: s(Col Num): int (nunber of fields)

170

Reference Guide to the Command and Control Interface

return: s(Col Nanes): array string (the field nanes)
return: s(Col Types): array int (field types)
return: s(Keys): array int (0 not key, 1 key)
return: s(errMsgs): array string

ci mar ron. get Gat eway(aut h_t oken) requests the name of the machine and the port that the
Gateway Server interface is bound to and listens on.

i nput: auth_token: string

return: s(status): int

return: s(host): string (hostnane)
return: s(port): int (port number)
return: s(errMsgs): array string

ci marron. i sBi gEndi an(aut h_t oken) requests the server to identify its endian type.

i nput: auth_token: string

return: s(status): int

return: s(flag): int (1: big endian, 0: little endian)
return: s(errMsgs): array string

ci marron. i sQui esced(aut h_t oken) checks whether the server has finished processing all
pending data and if there are any active input connections. The check for "no active input connec-
tions' is done first, and this call returns f al se (zero or busy) if there are any active input connec-
tions.

i nput: auth_token: string

return: s(status): int

return: s(flag): int (1: quiesced, 0: busy)
return: s(errMsgs): array string

ci marron. addStreanifoC i ent (aut h_token, client_handl e, stream nane),
given the handle of a Gateway client is in subscription mode, augments the list of streams that are
subscribed by aclient.

i nput: auth_token: string
i nput: client_handle: int

i nput: stream nanme: string
return: int (status)

ci marron. addSt r eanHandl eTod i ent (aut h_t oken, client_handl e,
st ream handl e), given the handle of a Gateway client is in subscription mode, augments the list
of streams that are subscribed by a client. It's the same as addSt r eamToC i ent (), only it uses
the stream handle to find the stream.

i nput: auth_token: string

171

Reference Guide to the Command and Control Interface

i nput: client _handle: int
i nput: stream handl e: int
return: int (status)

ci marron. renoveStreantronCl i ent (aut h_t oken, client_handl e,
st ream nane), given the handle of a Gateway client is in subscription mode, trims the list of
streams that are subscribed by the client.

i nput: auth_token: string
i nput: client _handle: int

i nput: stream nanme: string
return: int (status)

ci marron. renoveSt r eanHandl eFr onC i ent (aut h_t oken, client_handl e,
st ream handl e), given the handle of a Gateway client is in subscription mode, trims the list of
streams that are subscribed by the client. It's the same asr enoveSt r eantronCl i ent (), only it
uses the stream handle to find the stream.

i nput: auth_token: string
i nput: client _handle: int
i nput: stream handl e: int
return: int (status)

ci marron. get Dat eSi ze(aut h_t oken) returns an integer that represents the native size in
bytes of the server's datetime fields.

i nput: auth_token: string

return: s(status): int

return: s(flag): int (8: 64 bit server, 4: 32 bit server)
return: s(errMsgs): array string

ci marron. get Addr essSi ze(aut h_t oken) returns an integer that represents the address/
pointer size of the connected Sybase Aleri Streaming Platform. In C/C++ terminology, the value re-
turnedis: si zeof (void *).

i nput: auth_token: string

return: s(status): int

return: s(flag): int (8: 64 bit server, 4: 32 bit server)
return: s(errMsgs): array string

ci marron. set Par anet er (aut h_t oken, paraneter_nane, val ue) setsthe value of
a parameter within the Sybase Aleri Streaming Platform. The flag value returned is 1 if the command
is successful, O if the named parameter exists but was not set. An example would be if the value could
not be converted to the type of the parameter or - 1 the named parameter does not exist.

i nput: auth_token: string

172

Reference Guide to the Command and Control Interface

i nput: paraneter_nane: string

i nput: val ue: string

return: s(status): int

return: s(flag): int (8 64 bit server, 4: 32 bit server)
return: s(errMsgs): array string

ci marron. get StreanHandl e(aut h_t oken, stream nane) gets the integer stream
handle by stream name.

i nput: auth_token: string

i nput: stream name: string
return: s(status): int

return: stream handle: int
return: s(errMsgs): array string

ci marron. backup(aut h_t oken) creates a backup of all the Log Stores. The backup files are
created with suffix . bak. The the file dynam c. | og is backed up into the file dynami c. bak).
The backup files are created as sparse files, with compacted contents.

i nput: auth_token: string
return: s(status): int
return: s(errMsgs): array string

ci marron. saveConfi g(aut h_token, file_nane) saves the current running AleriML
configuration to thisfile on the server (the file must not exist before the function call).

i nput: auth_token: string

input: file_nanme: string

return: s(status): int

return: s(errMsgs): array string

ci marron. get Confi g(aut h_t oken) returnsthe current running XML configuration.

i nput: auth_token: string
return: s(status): int

return: s(config): string
return: s(errMsgs): array string

cimarron. | oadConfi g(auth_token, file_nane, options) loadsthe new configura
tion from thisfile on the server. If the file contains errors, the error messages are printed in the Sybase
Aleri Streaming Platform log, the error code returned, and the Sybase Aleri Streaming Platform will
be left unchanged. The options affect the way the changes are applied. See the sp_cli man page for a
description of these options.

i nput: auth_token: string
input: file_nanme: string

173

Reference Guide to the Command and Control Interface

i nput: options: string
return: s(status): int
return: s(errMsgs): array string

cimarron. | oadConfi gl nline(auth_token, XM._config, options) loadsthe new
configuration contained in the XM__confi g string. If the configuration contains errors, the error
messages will be printed in the Sybase Aleri Streaming Platform log, the error code returned, and the
Sybase Aleri Streaming Platform will be left unchanged. The options affect the way the changes are
applied. See the description of these optionsin the sp_cli man page.

i nput: auth_token: string

i nput: XM__config: string

i nput: options: string

return: s(status): int

return: s(errMsgs): array string

ci marron. | oadConfi gl nl i neConv(aut h_t oken, XM._confi g, options,

XM__conv) loads the new configuration contained in the XML_conf i g string, and uses the model
contained in XM__conv to convert the date in the base streams. If the configuration contains errors,
the error messages are printed in the Sybase Aleri Streaming Platform log, the error code returned,
and the Sybase Aleri Streaming Platform will be left unchanged. The options affect the way the
changes are applied. See the description of options format and meaning in the sp_cli man page. The
conv option may not be used with this call.

i nput: auth_token: string

i nput: XM__config: string

i nput: options: string

i nput: XM__conv: string

return: s(status): int

return: s(errMsgs): array string

ci marron. | ogLevel (aut h_t oken, | evel) sets the logging level on the Sybase Aleri
Streaming Platform.

i nput: auth_token: string

input: level: int

return: s(status): int

return: s(errMsgs): array string

ci mar r on. get MoneyPr eci si on(aut h_t oken) returns the decimal precision of the money
data type used by the Sybase Aleri Streaming Platform.

i nput: auth_token: string
return: s(status): int

return: s(noneyPrecision) int
return: s(errMsgs): array string

174

Reference Guide to the Command and Control Interface

e cimarron. kill dient(auth_token, handl e) closesthe connection of the client identi-
fied by the connection handle. The handle can be found in the conn_handle field of the Aleri_Clients
metadata stream.

i nput: auth_token: string
i nput: level: int
return: int status

e cimarron. kil |l dient ByNane(auth_token, tag_nane) closes the connections of all
the clients that have the tag name set to equal to the specified name. The tag name can be found in the
conn_tag field of the Aleri_Clients metadata stream.

i nput: auth_token: string
i nput: level: int
return: int status

e ci marron. set TraceMde(aut h_t oken on) changes the trace mode, and disables it if on
equals 0 or enablesif on 1=0.

i nput: auth_token: string
i nput: level: int
return: int status

e ci marron. get TraceMde(aut h_t oken) returns whether the Sybase Aleri Streaming Plat-
form is currently in the trace mode as "tracemode”.

i nput: auth_token: string
return: s(status): int

return: s(traceMde) int

return: s(errMsgs): array string

e cimarron. runControl (auth_token, action, string_arg, int_arg) controlsthe
execution of the Sybase Aleri Streaming Platform while in trace mode. Action specifies a control ac-
tion to perform. Each action might take a string argument, an integer argument, both or neither, de-
pending on the particular action.

The supported actions are:
¢ pause - pause the platform execution
 run - resume the platform execution

» step [sistream_name] - do a single step; if the stream argument is not empty, then step stream with
this name, otherwise step any random stream.

e wait - wait until the Sybase Aleri Streaming Platform pauses (through runControl or on a break-
point); this command cannot be canceled. Otherwise, to get the asynchronous notifications of the
pause, subscribe to the Aleri_RunControl stream.

175

Reference Guide to the Command and Control Interface

e runwait - a combination of run and wait is paused. Checks whether the Sybase Aleri Streaming
Platform is paused; returns the status code O if it is paused, or NOPAUSE (15) if it is not.

* setStepTimeout i:milliseconds - set the timeout for automatic stepping from the integer argument;
using the negative or zero value returns the timeout to the default (0.3s).

e stepTrans s:stream_namei:n_steps - step the stream either to the end of the transaction, or no more
than n_steps steps, or until the stream get blocked on input or output for longer than the timeout
(0.3s by default). n_stepslessthan 1 is processed as 1.)

» stepQuiesceStream s:stream_name i:n_steps - step the stream and its descendant streams until
either the whole stream's input queue is processed, no more than n_steps steps, or until al the in-
volved streams get blocked on input or output for longer than the timeout (0.3s by default). n_steps
lessthan 1is processed as 1.

» stepQuiesceFromBase s:stream_name i:n_steps - step all the non-source streams until the whole
stream's input queue is processed, or no more than n_steps steps, or until all the involved streams
get blocked on input or output for longer than the timeout (0.3s by default). n_steps less than 1 is
processed as 1.

i nput: auth_token: string

i nput: action: string

input: string_arg: string

input: int_arg: int

return: s(status): int

return: s(errMsgs): array string

e cimarron. dunpStream (aut h_t oken, prefix, strean) intrace mode writes the cur-
rent contents of the stream(s) into afile. If the stream name is empty, writes al the streams. The file
name for each stream is <prefix> dump_<streamname>.xml.

i nput: auth_token: string

i nput: prefix: string

input: stream string

return: s(status): int

return: s(errMsgs): array string

e ci marron. addBr eakpoi nt (auth_token, stream origin, expr, period) in
trace mode adds a breakpoint on the specified stream. Origin is the name of an input stream, or "*" to
break on any input, or "" to break on output. If expr is not empty, it gives a conditional expression that
must be satisfied to trigger the breakpoint. Period specifies how many times the condition needs to be
detected before actually triggering a breakpoint. Returns the unique id of the newly created break-
point.

i nput: auth_token: string

i nput: stream string

input: origin: string

i nput: expr: string

i nput: period: int

return: s(status): int

return: s(id): int

return: s(errMsgs): array string

176

Reference Guide to the Command and Control Interface

e ci marron. del Breakpoi nt (aut h_t oken, id) in trace mode deletes the breakpoint with
thisid.

i nput: auth_token: string

input: id: int

return: s(status): int

return: s(errMsgs): array string

e ci marron. enabl eBr eakpoi nt (aut h_token, id, period) in trace mode enables the
breakpoint and setsits period, if period !=0; otherwise it disables the breakpoint.

i nput: auth_token: string

input: id: int

i nput: on: int

return: s(status): int

return: s(errMsgs): array string

e ci marron. exam neDataStart (auth_token, kind, stream object, start-
pos, expr) intrace mode starts the examination of the data, as identified by kind, stream, and ob-
ject name. Depending on the kind, stream and/or object name may be empty. The details are described
in the sp_cli(1) man page. Startpos allows to skip a number of records. If expr is not empty, it spe-
cifies the filter expression, and only the rows for which the filter evaluates to true are returned. This
call returnsthe format that will be returned but not the data itself.

The data may be a mix of rows from different streams or imitations of streams. The number of pos-
sible stream definitions is returned in streamCount. And the array streamDefs contains the following
information for each stream definition:

name name of the stream

colNum number of columns

colNames array of names for each column

col Types array of typesfor each column, represented as an integer code

Keys array containing 1 for each key column and O for each non-key column

The returned information also contains the bigEndian flag for the architecture where the Sybase Aleri
Streaming Platform is running. If this flag matches the one on the machine where the client program
is running, data can be interpreted with the class Row, otherwise with RowRBO.

The cookie value is to be passed to the follow-up calls ci mar r on. exani neDat aNext that return
the actual data. Currently, only one cookie may be activee If you cal cimar-
ron. exam neDat aSt art twice, ci marr on. exam neDat aNext will return the data only for
the last cookie.

nput: auth_token: string
nput: kind: string

nput: stream string
nput: object: string
nput: startpos: int

nput: object: string
return: s(status): int

177

Reference Guide to the Command and Control Interface

return: s(bigEndian): int

return: s(cookie): int

return: s(streanCount): int

return: s(streanDefs): array struct(
s(nane): string
s(col Num: int
s(col Names): array string
s(col Types): array int
s(Keys): array int

return: s(errMsgs): array string

e ci marron. exam neDat aNext (aut h_t oken, cooki e, naxcnt) in trace mode returns
the data as initiated by ci mar r on. exami neDat aSt ar t , identified by its cookie. Maxcnt is the
maximum number of rows to return. If there are more rows available than returned, this call may be
repeated to receive more data. Avoid using maxcnt that istoo high, it may overflow the capahilities of
XMLRPC. Maxcnt of 10000 is generally safe.

The returned data consists of:
« count - count of rows returned by this call
* eof - flag, non-0if thisisthe last set of rows.

 srcldx - an array containing for each row the index of its stream definition in the array returned by
ci marron. exam neDat aStart.

« flags - an array containing for each row an integer with a bitmask or this row's flags. The currently
supported flags are:

« UPDATE_PAIR = 0x0001 - thisisafirst row of an update pair
e CONTINUE_TRANS = 0x0002 - thisis NOT the last row of atransaction

« RETENTION_DEL = 0x0004 - thisis a part of block of deletes generated by retention rows - an
array of base64-encoded binary data for each row. The binary data can be interpreted using the
class Row or RowRBO.

i nput: auth_token: string

i nput: cookie: int

i nput: maxcnt: int

return: s(status): int

return: s(count): int

return: s(eof): int

return: s(srcldx): array int
return: s(flags): array int
return: s(rows): array base64
return: s(errMsgs): array string

e ci marron. exam neCount (aut h_t oken, cooki e) in trace mode returns the information
about the number of rows aready returned by examineDataNext (pos) and the total number of rows
available in this examination (count). This information can be used to get quickly last few rows from
a big volume of dataa do examineDataStart(startpos=0), examineCount(), then examineData-
Start(startpos=count-N). The values are returned as double for extended precision, and large values
may overflow the integer argument startpos.

178

Reference Guide to the Command and Control Interface

i nput: auth_token: string

i nput: cookie: int

return: s(status): int

return: s(pos): double

return: s(count): double

return: s(errMsgs): array string

e ci marron. get MaxThrottl e(aut h_t oken, stream returnsthe "throttle value" that limits
the input queue size of a stream, as max. The queue size may grow up to twice the size of throttle
vaue.

i nput: auth_token: string

i nput: stream string

return: s(status): int

return: s(max): int

return: s(errMsgs): array string

e cimarron. set MaxThrottl e(auth_t oken, stream throttle) sets the "throttle
value" that limits the input queue size of a stream. The queue size may grow up to twice the size of
throttle value. If the stream name is empty, it sets the throttle value for all the streams.

i nput: auth_token: string

i nput: stream string

input: throttle: int

return: s(status): int

return: s(errMsgs): array string

e ci marron. i sPaused(aut h_t oken), in trace mode, returns whether the Sybase Aleri Stream-
ing Platform is currently paused. It's equivalent to the same action of ci mar ron. runControl ,
only the pause flag is returned as a separate value instead of a status code.

i nput: auth_token: string
return: s(status): int

return: s(isPaused): int

return: s(errMsgs): array string

e ci marron. eval uat eExpr (aut h_t oken, stream object, expression), in trace
mode, evaluates a debugging SPLASH expression expr in the context of a stream. The argument ob-
ject is currently reserved and must always be an empty string. The result string is currently also a
placeholder and is always returned empty.

i nput: auth_token: string

i nput: stream string

i nput: object: string

i nput: expr: string

return: s(status): int

return: s(result): string
return: s(errMsgs): array string

179

Reference Guide to the Command and Control Interface

e cimarron. set Hi storySi ze(aut h_t oken, stream si ze), intrace mode, sets the size
of history kept for the stream. If the stream name is empty, sets the history size for all the streams.

i nput: auth_token: string

i nput: stream string

i nput: size: int

return: s(status): int

return: s(errMsgs): array string

e cimarron. get Hi storySi ze(aut h_t oken, stream, in trace mode, returns the size of
history kept for the stream.

i nput: auth_token: string

input: stream string

return: s(status): int

return: s(size): int

return: s(errMsgs): array string

o cimarron. i mredi at eExi t (aut h_t oken) requests the Sybase Aleri Streaming Platform to
exit immediately, bypassing the normal shutdown procedure. It's a very abrupt way to stop the Sybase
Aleri Streaming Platform, almost equivalent to crashing it. Use it only as last resort, in situations such
as when a client stops receiving data and the Sybase Aleri Streaming Platform can't flush its output
queues during anormal stop. But killing the client's connection is a better idea even in this case.

i nput: auth_token: string
return: s(status): int
return: s(errMsgs): array string

e ci marron. wi peout BaseSt rean(aut h_t oken, strean) deetes al the contents of a
source stream.

i nput: auth_token: string

input: stream string

return: s(status): int

return: s(errMsgs): array string

e ci marron. start Connect or (aut h_t oken, nane) starts the connector identified by name,
or al the connectorsin a group identified by name.

i nput: auth_token: string

i nput: nane: string

return: s(status): int

return: s(errMsgs): array string

180

Reference Guide to the Command and Control Interface

e ci marron. stopConnect or (aut h_t oken, name, i medi ate) stopsthe connector iden-
tified by name, or al the connectors in a group identified by name. Does not wait for connectorsto be
actually stopped. The immediate flag affects how the output connectors are stopped. If O, new data
stops being queued for the connector, then the Sybase Aleri Streaming Platform waits for the connect-
or to drain its queue normally, and only then stops it. If not O, the connector's queue gets discarded
immediately.

i nput: auth_token: string

i nput: nane: string

i nput: inmediate: int

return: s(status): int

return: s(errMsgs): array string

ci marron. wai t Connect or (aut h_t oken, nane) waits to exit for the connector identified
by name, or all the connectorsin a group identified by name.

i nput: auth_token: string
i nput: name: string
return: s(status): int
return: s(errMsgs): array string

ci marron.wait Connectorlnitial (auth_token, name) waitsfor the connector identi-
fied by name, or all the connectorsin a group identified by name, to complete the initial loading.

i nput: auth_token: string

i nput: name: string

return: s(status): int

return: s(errMsgs): array string

ci marron. start UpConnect or s(aut h_t oken) starts the connectors as during the normal
start-up sequence. Returns after all the connectors in the sequence have completed the initial loading.

i nput: auth_token: string
return: s(status): int
return: s(errMsgs): array string

181

Appendix F. Using Encryption with Java Client
Applications

In order to develop a Java client application that runs against an instance of the Sybase Aleri Streaming
Platform in encrypted mode (see the sp_server manpage for more information on the - e option). you
must ensure that the certificate/key information is generated and installed correctly in the environment.

Follow the stepsin this section very carefully before attempting to set up the certificate and key inform-
ation.

1. Create adirectory that will be used to store the certificate/key files.

Eventually, this directory will be populated with the certificate/key files that are generated in the
following steps. The directory must be specified as an argument to the - e option when starting up
the sp_server in encrypted mode.

2. Generate the certificate and key files using the genkeys script.

The Sybase Aleri Streaming Platform ships with a shell script, bin/genkeys, that can be used to cre-
ate the required key and certificate files. Production users must use this script to generate files
whose names have the form ser ver . * and copy them into the desired location (the directory ref-
erenced in step 1).

One of the files that is generated by the genkeys script isafilecalled server. crt . der. Thisfile
must be imported into the Java cacerts keystore file to get the Java clients to connect to the Sybase
Aleri Streaming Platform using HTTPS (for the XMLRPC Command and Control Process connec-
tions) and SSL (for secure socket connections to the Gateway /0 Process).

The genkeys application takes two command line parameters:

¢ The number of days before the certificate will expire. Thisis an integer that is set to a value that
is appropriate for a particular environment.

¢ The “Common Name” value that will be assigned to the CN fields within the certificate file
server. crt that is generated by the genkeys script. If this parameter is not specified, the script
uses the value returned by the hostname operating system command.

Note:

For Java based clients to work with encryption enabled, the CN(Common Name) field value of
the server. crt file must be set to the hostname of the machine running the Sybase Aleri
Streaming Platform. In addition, when attempting to connect to the Sybase Aleri Streaming
Platform, the Java client (sp_viewer, Adapter, and so forth) must use the exact text representa-
tion of the hostname as specified in the CN field of the server. crt file. If the two do not
match exactly, the Java client fails to connect to the Sybase Aleri Streaming Platform during
the certificate validation process.

For example, if the genkey script generates a ser ver. crt file in which the CN fields are set to
the value ganges. sybase. com the Java client must use the identical string, the hostname
ganges by itself might not work.

In the above scenario, if the Java sp_viewer client attempts to connect to the server using a host-
name vaue of “ganges’, while the CN field of the certificate is set to the value
ganges. sybase. com the Javaclient generates the following exception:

182

Using Encryption with Java Client Applications

Exception: java.io.|CException: HITPS host nane w ong: shoul d be <ganges>
java.io. | Cexception: HITPS host nhane w ong: shoul d be <ganges>
at sun. net.ww. protocol . https. Hit psC i ent. b(DashoA12275)
at sun. net.ww. protocol . https. Htpsdient. afterConnect (DashoA12275)
at sun. net.wwv. protocol . https.
Abst ract Del egat eHt t psURLConnect i on. connect (DashoA12275)
at sun. net.wwv. protocol . http.
Ht t pURLConnect i on. get Qut put St r eam(Ht t pURLConnect i on. j ava: 569)
at sun. net.wwv. protocol . https.
Ht t psURLConnect i onl npl . get Qut put St r eam(DashoA12275)
at org. apache. xn rpc.
Def aul t Xm RpcTransport. sendXm Rpc(Def aul t Xm RpcTransport. | ava: 83)
at org. apache. xn rpc.
Xm Rpcd i ent Wor ker . execut e(Xm RpcCl i ent Wor ker . j ava: 71)
at org. apache. xm rpc. Xm RpcCl i ent . execut e(Xml RpcCl i ent . | ava: 193)
at com al eri. asap.tool s. SPXm Rpc. | ogi n(Unknown Sour ce)
at comaleri.asap.tools.SPViewer.initialize(Unknown Source)
at com al eri . asap. t ool s. SPVi ewer $2. const r uct (Unknown Sour ce)
at com al eri . asap. t ool s. Sw ngWor ker $2. r un(Unknown Sour ce)
at java.lang. Thread. run(Thr ead. j ava: 534)
Could not login to the Command and Control process
on <host: port> = <ganges: 22000>, for user=ci marron

Although it is somewhat unclear, this exception indicates that a certificate was found in the Java
trusted keystore, but the CN (Common Name) field of the certificate did not exactly match the host-
name value specified by the Java client.

After running the genkeys script, make sure to copy the generated certificate/key files into a direct-
ory dedicated to storing the certificate/key information.

The genkeys script can be executed from within the directory created earlier to avoid having to copy
the certificate files manually.

Here are the important certificate/key files generated by the genkeys script:
e server.crt

e server. key

e server.crt.der

These must be copied into the directory that will be specified using the - e option when starting the
Sp server in encrypted mode.

Technically, theserver. crt . der file does not need to exist within the directory where the keys
are stored. However, its contents must be imported into the Javacacert s file. It is easier to man-
ageif all the generated certificate/key files are kept together in one place.

Import the certificate/lkey information located in the ser ver . crt . der file, which was generated
by the genkeys script, into the Java JRE environment that will be used to run the Java client applica
tions, such as sp_viewer, the Java Adapter, and so forth.

If you want to run the Java client application (sp_viewer or Adapter, for example) on Windows,
first copy the server. crt. der file that was generated on UNIX through the genkeys applica
tion onto your Windows machine. Next, use the keytool application of the JRE on your Windows
machineto import theser ver . crt. def file

Toimport server. crt. def, use the Java keytool program, and keep the target of the import as

183

Using Encryption with Java Client Applications

the Java cacerts file. The syntax of the keytool import command depends on the operating system.

On UNIX, the keytool's import command lineis:

Your JavaHoreBi nDi r ect ory/ keyt ool -keystore
Your JavaHone/ | i b/ security/cacerts -alias
AnyNaneFor TheCertificate -inmport -file server.crt.der

On Windows, the keytool's import command lineis:

Your JavaHoneBi nDi r ect or y\ keyt ool -inport -alias
AnyNaneFor TheCertificate -file server.crt.der -keystore
Your JavaHone\ | i b\ security\cacerts

Enter the password for the cacer t s keystore (the default ischangei t). Accept the trust certific-
ate.

Note

You must be sure that the ser ver . crt . der information isimported into the cacert s file
of the JRE(S) used to run the Java client application(s). If there are several JDKs on your ma-
chine, and you plan to run the Java clients on each of them, make sure that the ser v-

er.crt. der fileisimported into each one. Additionaly, the path to the Java keytool applic-
ation should reflect the JRE version wherethe ser ver . crt . der fileisbeing imported. You
must also make sure that you must have permission to changethe cacer t s file so you can run
chmod u+w onthecacert s fileif necessary.

If the import of the server. crt. der fileis not performed when the Java client is run, the fol-
lowing exception appears:

Excepti on: javax.net.ssl.SSLHandshakeExcepti on:
sun. security.validator. ValidatorException: No trusted
certificate found
j avax. net . ssl . SSLHandshakeExcepti on:
sun. security.validator. ValidatorException: No trusted
certificate found
at com sun. net.ssl .
at com sun. net. ssl .
at com sun. net. ssl .
at com sun. net. ssl .
at com sun. net. ssl .
at com sun. net. ssl .
at com sun. net. ssl .

nt er nal . ssl . BaseSSLSocket | npl . a(DashoA12275)
nt er nal . ssl . SSLSocket | npl . a(DashoA12275)
nt er nal . ssl . SSLSocket | npl . a(DashoA12275)
nternal . ssl . SunJSSE_az. a(DashoA12275)
nt ernal . ssl . SunJSSE az. a(DashoA12275)
nt er nal . ssl . SunJSSE ax. a(DashoA12275)
nt er nal . ssl . SSLSocket | npl . a(DashoA12275)
at com sun. net.ssl.internal.ssl.SSLSocket!| npl.j(DashoA12275)
at com sun. net.ssl.internal .
ssl . SSLSocket | npl . st art Handshake(DashoA12275)
at sun. net.wwv. protocol . https. Htt psC i ent.
af t er Connect (DashoA12275)
at sun. net.ww. pr ot ocol . https.
Abst r act Del egat eHt t psURLConnect i on. connect (DashoA12275)
at sun. net.ww. protocol . http.
Ht t pURLConnect i on. get Qut put St r ean{ Ht t pURLConnect i on. j ava: 569)
at sun. net.ww. pr ot ocol . htt ps.
Ht t psURLConnect i onl npl . get Qut put St r eam(DashoA12275)
at org. apache. xni r pc.

184

Using Encryption with Java Client Applications

Def aul t Xm RpcTransport. sendXm Rpc(Def aul t Xm RpcTransport. | ava: 83)
at org. apache. xn r pc.

Xm Rpcd i ent Wor ker . execut e(Xm RpcCl i ent Wor ker . j ava: 71)
at org. apache. xni r pc.

Xm Rpcd i ent. execut e(Xml RpcCl i ent. j ava: 193)
at com al eri.asap.tools. SPXm Rpc. | ogi n(Unknown Sour ce)
at comaleri.asap.tools.SPViewer.initialize(Unknown Source)
at com al eri . asap. t ool s. SPVi ewer $2. const r uct (Unknown Sour ce)
at com al eri . asap. t ool s. Swi ngWor ker $2. r un(Unknown Sour ce)
at java.lang. Thread. run(Thr ead. j ava: 534)
Caused by: sun.security.validator.

Val i dat or Exception: No trusted certificate found

at sun.security.validator.
Si npl eVal i dat or . bui | dTrust edChai n(Si npl eVal i dat or . j ava: 304)
at sun.security.validator.

Si npl eVal i dat or . engi neVal i dat e(Si npl eVal i dat or . j ava: 107)
at sun.security.validator.

Val i dat or. val i dat e(Val i dat or. j ava: 202)
at com sun. net. ssl .internal

ssl . X509Tr ust Manager | npl . checkSer ver Tr ust ed(DashoA12275)
at com sun. net. ssl.internal

ssl . JsseX509Tr ust Manager . checkSer ver Tr ust ed(DashoA12275)
... 18 nore
Could not login to the Command and Control process
on <host: port> = <ganges: 22000>, for user=ci marron
Error =0

F.1. Ready To Run in Encrypted Mode

If you have successfully performed all the steps, the following are now true:

1. Thekey directory is set up.
2. Theserver.crt,server. key,andserver. crt. der filesare present inthisdirectory.

3. The contents of the server. crt. der file have been successfully imported into the appropriate
Javacacert s file.

Now you can start up the Sybase Aleri Streaming Platform using the - e option to specify the name of
the directory where the certificate/key files were stored.

Once the server has been started up in encrypted mode, the Sybase Aleri Streaming Platform Command
and Control process will be accessed from a Java client application using XMLRPC over HTTPS. Refer
to the Utilities Guide for more information. The client connections to the Sybase Aleri Streaming Plat-
form Gateway 1/0 process will be made using SSL socket connections.

If the sp server is to be created using Java, make sure that the Java application specifies the exact same
hostname value stored in the CN fields of the ser ver . crt file If thisis not the case, the Java client

will not connect to the sp server, and the message j ava. i 0. | OExcepti on: HITPS host nane
wrong: shoul d be <host nane> exception will appear.

Touse SSL in JDBC, add ?ss! to the connection URL, for example:

j dbc: post gresql : // host nane: 22200/ dat abase?ssl

185

	Guide to Programming Interfaces
	Table of Contents
	About This Guide
	1. Purpose
	2. Organization
	3. Related Documents

	Chapter 1. Publication/Subscription Interfaces
	1.1. The Publication/Subscription Mechanism
	1.1.1. Publication/Subscription Terminology
	1.1.2. Initializing Pub/Sub Objects
	1.1.3. Subscribing to the Sybase Aleri Streaming Platform
	1.1.4. Publishing to the Sybase Aleri Streaming Platform

	1.2. Record/Playback Mechanism

	Chapter 2. Publish/Subscribe API for Java
	2.1. Overview of SP Java utilities
	2.1.1. SP .jar files
	2.1.2. Non-sp Utilities
	2.1.3. Example Files

	2.2. Design Decisions
	2.3. Subscribing to the Sybase Aleri Streaming Platform Using Java
	2.3.1. Set Up the Environment for Subscription Using Java
	2.3.1.1. Configure the API Classpath
	2.3.1.2. Set up Basic SP Objects

	2.3.2. Set Up Java Objects for Subscription
	2.3.2.1. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using Java
	2.3.2.2. SpSubscription Example
	2.3.2.3. SpSubscriptionProjection Example

	2.3.3. Receive/Process Subscription Updates in Java
	2.3.3.1. Parse Sybase Aleri Streaming Platform Data
	2.3.3.2. Inspect Parsing Errors
	2.3.3.3. Detect Nulls/Stales
	2.3.3.4. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using Java
	2.3.3.5. SpSubscription/SpSubscriptionProjection Objects and Null Sybase Aleri Streaming Platform Field Data Values

	2.3.4. Change/Stop Subscription in Java
	2.3.4.1. Stop Subscription

	2.4. Publishing to the Sybase Aleri Streaming Platform Using Java
	2.4.1. Create Publication Objects Using Java
	2.4.1.1. Create the SpPublication Object
	2.4.1.2. Example: Setting Up Objects for Publication in Java

	2.4.2. Start the Publication Connection Using Java
	2.4.3. Publish a Collection Using Java
	2.4.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using Java
	2.4.5. Handling Stale Data
	2.4.6. Publication/Subscription in a High Availability (Hot Spare) Configuration
	2.4.6.1. Subscription Mechanisms in a High Availability Configuration
	2.4.6.2. Publication Mechanisms in a High Availability Configuration

	2.5. Record/Playback using Java

	Chapter 3. Publish/Subscribe API for C++
	3.1. Overview/General Information
	3.1.1. Overview of SP C++ Utilities
	3.1.2. Design Decisions for Publication/Subscription Using C++
	3.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription
	3.1.4. C++ Usage Restrictions

	3.2. Subscribing to the Sybase Aleri Streaming Platform Using C++
	3.2.1. Set Up Objects for SP Subscription in C++
	3.2.1.1. Create an SpPlatform Object

	3.2.2. Setup and Start a Subscription in C++
	3.2.2.1. Initiate a Subscription Using SpSubscriptionProjection
	3.2.2.2. Implement the SpObserver Interface
	3.2.2.3. Start the Subscription Using SpSubscripion
	3.2.2.4. Start the Subscription Using SpSubscriptionProjection

	3.2.3. Receive/Process Subscription Updates Using C++
	3.2.3.1. Delivery to an SpObserver Notify(...) Method Implementation
	3.2.3.2. Inspect the Subscription Parsing Errors within the SpObserver
	3.2.3.3. SHINE Flag Supports Subscription Mode For Partial-Record Updates

	3.2.4. Change/Stop Subscription Using C++
	3.2.4.1. Stop Subscription

	3.3. Publishing to the Sybase Aleri Streaming Platform Using C++
	3.3.1. Create Objects for Publication Using C++
	3.3.1.1. Create an SpPublication Object
	3.3.1.2. Create SpStreamDataRecord Objects

	3.3.2. Publish Data to the Sybase Aleri Streaming Platform Using C++
	3.3.3. Handling Stale Data
	3.3.4. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using C++

	3.4. Record/Playback using C++
	3.5. Special Topics for SP Publication/Subscription Using C++
	3.5.1. Publication/Subscription In a High Availability (Hot Spare) Configuration
	3.5.1.1. Subscription Mechanisms in a High Availability Configuration
	3.5.1.2. Publication Mechanisms in a High Availability Configuration

	Chapter 4. Publish/Subscribe API for .NET 2.0
	4.1. Overview/General Information
	4.1.1. Overview of .NET Utilities for SP Publication/Subscription
	4.1.1.1. API Library
	4.1.1.2. Example Files

	4.1.2. Design Decisions for SP Publication/Subscription Using .NET 2.0
	4.1.3. Set/Get Methods For Maximum Buffer Size, Exit-On-Drop To SpSubscription Using .NET

	4.2. Subscribing to the Sybase Aleri Streaming Platform Using .NET 2.0
	4.2.1. Set Up the Environment for Subscription Using .NET 2.0
	4.2.1.1. Configure the Pub/Sub API .NET 2.0 Pub/Subnet.dll
	4.2.1.2. Initialize the SpFactory Object
	4.2.1.3. Create the SpPlatform Object

	4.2.2. Set Up/Start Subscription Using .NET 2.0
	4.2.2.1. Initiate a Subscription Using SpSubscription in .NET 2.0
	4.2.2.2. Initiate a Subscription Using SpSubscriptionProjection
	4.2.2.3. The SpObserver Interface
	4.2.2.4. Adding or Removing Streams from an Active Subscription
	4.2.2.5. SHINE Flag Supports New Subscription Mode For Partial-Record Updates Using .NET

	4.2.3. Receive/Process Subscription Updates Using .NET 2.0
	4.2.3.1. Parse Sybase Aleri Streaming Platform Data

	4.3. Publishing to the Sybase Aleri Streaming Platform Using .NET 2.0
	4.3.1. Create Objects for SP Publication Using .NET 2.0
	4.3.1.1. Create the SpPublication Object
	4.3.1.2. Create a Data Object for Publication
	4.3.1.3. Set/Get Methods for Exit-on-Drop, Exit-on-Timeout Capability to SpPublication Using .NET

	4.3.2. Handling Stale Data

	4.4. Record/Playback using .NET 2.0
	4.5. Special Topics for SP Publication/Subscription Using .NET 2.0
	4.5.1. Publication/Subscription in a High Availability (Hot Spare) Configuration
	4.5.1.1. Subscription Mechanisms in a High Availability Configuration
	4.5.1.2. Publication Mechanisms in a High Availability Configuration

	Chapter 5. The On-Demand SQL Interface
	5.1. Aleri SQL Queries and Statements
	5.2. ODBC Connectivity
	5.3. JDBC Connectivity

	Chapter 6. The Command and Control Interface
	6.1. Security for the On-Demand SQL Interface
	6.1.1. Authentication Using the SQL On-Demand Interface
	6.1.2. Encryption Using the SQL On-Demand Interface

	Chapter 7. Embeddable Sybase Aleri Streaming Platform
	Chapter 8. Plug-in Connector Framework
	8.1. Introduction
	8.2. Plug-in Connector Profile
	8.3. System Parameters and Commands
	8.4. Read Only System Parameters
	8.5. Commands
	8.6. User-Defined Parameters and Parameter Substitution
	8.7. Notes on Auto Generated Parameter Files
	8.8. A Parameter of Type configFilename
	8.9. Other Parameter Types

	Appendix A. Reference Guide to the Java Object Model
	A.1. Objects for Subscription
	A.1.1. SpFactory Object
	A.1.2. SpPlatformParms Object
	A.1.3. SpPlatformStatus Object
	A.1.4. SpPlatform Object
	A.1.5. SpStream Object
	A.1.6. SpStreamDefinition Object
	A.1.7. SpStreamProjection Object
	A.1.8. Creating an SpSubscription or SpSubscriptionProjection Object
	A.1.9. SpSubscriptionCommon Method Set
	A.1.10. SpSubscription Method Set
	A.1.11. SpSubscriptionProjection Method Set
	A.1.12. SpSubscriptionEvent
	A.1.13. SpParserReturnInfo
	A.1.14. SpNullConstants
	A.1.15. SpUtils

	A.2. Objects for Publication
	A.2.1. Stream Operation Codes
	A.2.2. Stream Flag Values
	A.2.3. SpStreamDataRecord Object
	A.2.4. Create SpStreamDataRecord Objects

	A.3. Objects for recording and playback
	A.3.1. SpRecorder Object
	A.3.2. SpPlayback Object

	Appendix B. Reference Guide to the C++ Object Model
	B.1. C++ Objects for Subscription
	B.1.1. SpFactory Object
	B.1.2. SpPlatformParms Object
	B.1.3. SpPlatformStatus Object
	B.1.4. SpPlatform Object
	B.1.5. SpStream Object
	B.1.6. SpStreamDefinition Object
	B.1.7. SpStreamProjection Object
	B.1.8. Creating an SpSubscription or SpSubscriptionProjection Object
	B.1.9. SpSubscriptionCommon Method Set
	B.1.10. SpSubscription Method Set
	B.1.11. SpSubscriptionProjection Method Set
	B.1.12. SpSubscriptionEvent
	B.1.13. SpParserReturnInfo object
	B.1.14. SpDataValue Object
	B.1.15. SpBinaryData Object

	B.2. C++ Objects for Publication
	B.2.1. SpPublication Method Set
	B.2.2. Stream Operation Codes
	B.2.3. Stream Flag Values
	B.2.4. SpStreamDataRecord Object

	B.3. C++ Objects for Record and Playback
	B.3.1. SpRecorder object
	B.3.2. SpPlayback object

	B.4. Other C++ API Classes/Methods

	Appendix C. Reference Guide to the .NET Object Model
	C.1. Common Service Objects for .NET
	C.1.1. SpFactory Object
	C.1.2. The SpPlatformParms Object
	C.1.3. SpPlatformStatus Object
	C.1.4. SpPlatform Object
	C.1.5. SpStream Object
	C.1.6. SpStreamDefinition Object
	C.1.7. SpStreamProjection Object

	C.2. Subscription Objects for .NET
	C.2.1. SpSubscriptionCommon Method Set
	C.2.2. SpSubscriptionEvent

	C.3. Methods for Publication in .NET 2.0
	C.3.1. SpPublication Method Set
	C.3.2. Stream Operation Codes
	C.3.3. Stream Flag Values
	C.3.4. SpStreamDataRecord Object
	C.3.5. Creating SpStreamDataRecord Objects
	C.3.6. Other Pub/Sub API Classes
	C.3.7. The aleri_PubSubconst namespace

	C.4. Record and Playback objects for .NET
	C.4.1. SpNetRecorder Object
	C.4.2. SpNetPlayback object

	Appendix D. Reference Guide to SQL Query Interface
	D.1. Aleri SQL Connectivity C++ Library

	Appendix E. Reference Guide to the Command and Control Interface
	E.1. Command and Control Messages

	Appendix F. Using Encryption with Java Client Applications
	F.1. Ready To Run in Encrypted Mode

