
Utilities Guide

Sybase Aleri Streaming Platform
3.1

DOCUMENT ID: DC01289-01-0311-01

LAST REVISED: June, 2010

Copyright © 2010 Sybase, Inc.

All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in
new editions or technical notes. Information in this document is subject to change without notice. The
software described herein is furnished under a license agreement, and it may be used or copied only in
accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800)
685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the
above fax number. All other international customers should contact their Sybase subsidiary or local dis-
tributor. Upgrades are provided only at regularly scheduled software release dates. No part of this pub-
lication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechan-
ical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at http://www.sybase.com/detail?id=1011207. Sybase and the marks
listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

DB2, IBM and Websphere are registered trademarks of International Business Machines Corporation.

Eclipse is a trademark of Eclipse Foundation, Inc.

Excel, Internet Explorer, Microsoft, ODBC, SQL Server, Visual C++, and Windows are trademarks or
registered trademarks of Microsoft Corp.

Intel is a registered trademark of Intel Corporation.

JDBC, Solaris, Sun and Sun Microsystems are trademarks or registered trademarks of Sun Microsys-
tems or its subsidiaries in the U.S. and other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Netezza is a registered trademark of Netezza Corporation in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

SPARC is a registered trademark of SPARC International, Inc. Products bearing SPARC trademarks are
based on an architecture developed by Sun Microsystems, Inc.

Teradata is a registered trademark of Teradata Corporation and/or its affiliates in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/
Open Group Ltd.

All other company and product names mentioned may be trademarks of the respective companies with
which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph
(c)(1)(ii) of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian

http://www.sybase.com/detail?id=1011207

agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Table of Contents
About This Guide ... vi

1. Preface ... vi
2. Audience ... vi
3. Organization .. vi
4. Related Documents ... vi

1. Overview of Sybase Aleri Streaming Platform Executables .. 1
1.1. Streaming Processor Executables ... 1
1.2. Command and Control Executables .. 1
1.3. Publish and Subscribe Executables ... 1
1.4. Authoring Executables ... 2

2. AleriRT ... 3
2.1. Using AleriRT .. 3

2.1.1. The Connection Wizard ... 3
2.1.2. The Subscription Wizard .. 5
2.1.3. The Publication Wizard ... 7
2.1.4. Automatic Publishing .. 9
2.1.5. Saving Subscription Queries ... 10

2.2. Applying A Query ... 10
2.3. Known Issues and Limitations ... 11

3. Server Executables ... 12
sp ... 13
sp_clustermgr ... 16
sp_clustermon .. 18
sp_ld .. 20
sp_monitor .. 21
sp_playback ... 25
sp_query ... 34
sp_server ... 36
sp_upgrade .. 38
sslwrap ... 39

4. Command and Control Executables ... 43
sp_cli .. 44
sp_cnc .. 68

5. Publish and Subscribe Executables .. 70
sp_archive ... 71
sp_convert ... 79
sp_histexport .. 82
sp_kdbin ... 97
sp_kdbout .. 100
sp_stream2olap ... 103
sp_subscribe .. 112
sp_upload .. 116
sp_viewer .. 119

6. Authoring Executables .. 122
sp_encmodel .. 123
sp_sql2xml .. 125
sp_studio ... 127

7. Advanced Debugging ... 128
7.1. Introduction to Sybase Aleri Streaming Platform Debugging Tools 128

7.1.1. The Stream Processing Loop ... 128
7.1.1.1. “Locations” in the Stream Processing Loop 128
7.1.1.2. Pausing the Streaming Processor in Trace Mode 131

7.1.2. Trace Mode Basics .. 132

iv

7.2. Debugging in Trace Mode ... 132
7.2.1. Pausing the Streaming Processor .. 133

7.2.1.1. Caveats when the Streaming Processor is Paused 134
7.2.2. A Simple Example .. 134
7.2.3. Example Part 2: Single-Stepping .. 136
7.2.4. Changing the History Size Limit .. 140

7.3. Automatic single-stepping ... 141
7.3.1. An extra parameter and its creative uses .. 144

7.4. Breakpoints and exceptions ... 145
7.4.1. Unconditional breakpoints and exceptions ... 146
7.4.2. Conditional breakpoints ... 151

7.5. Notification of the debugger events ... 153
7.6. Examining the data in the Sybase Aleri Streaming Platform 155

7.6.1. Examining with Filters ... 158
7.6.2. Dumping the Store Data ... 159

7.7. Changing the Data in the Sybase Aleri Streaming Platform 159

Utilities Guide

v

About This Guide
1. Preface

This guide explains how to use the various scripts, utilities and tools that comprise the Sybase Aleri
Streaming Platform.

2. Audience

This guide is intended for system administrators who will manage the Sybase Aleri Streaming Platform
along with the applications built for it. It includes all of the UNIX® style manual pages for command
line utilities.

3. Organization

Chapter 1, Overview of Sybase Aleri Streaming Platform Executables briefly describes the command-
line executables that are available for managing the Sybase Aleri Streaming Platform.

Chapter 2, AleriRT describes the Real-Time Data add-in for Microsoft Excel®.

Chapter 3, Server Executables contains man pages for those executables used in starting, monitoring,
and querying the Streaming Processor.

Chapter 4, Command and Control Executables contains man pages for those executables used in con-
trolling and querying information from a running Streaming Processor.

Chapter 5, Publish and Subscribe Executables contains man pages for those executables used in publish-
ing records to and subscribing to records from the Streaming Processor.

Chapter 6, Authoring Executables contains man pages for those executables used in authoring models.

Note:

The man pages for the scripts, tools and example code are included in the package. To make
these man pages accessible from the command line via the man command, add the path where
they were installed to the MANPATH environment variable. Enter

export MANPATH=$MANPATH:$PLATFORM_HOME/man
where $PLATFORM_HOME is the environment variable containing the location of the Sybase
Aleri Streaming Platform that you created in the installation procedure.

4. Related Documents

This guide is part of a set. The following list briefly describes each document in the set.

Product Overview Introduces the Aleri Streaming Platform and related Aleri
products.

Getting Started - the Aleri Studio Provides the necessary information to start using the Aleri Studio
for defining data models.

Release Bulletin Describes the features, known issues and limitations of the latest
Aleri Streaming Platform release.

Installation Guide Provides instructions for installing and configuring the Streaming
Processor and Aleri Studio, which collectively are called the Aleri
Streaming Platform.

vi

Authoring Guide Provides detailed information about creating a data model in the
Aleri Studio. Since this is a comprehensive guide, you should
read the Introduction to Data Modeling and the Aleri Studio. first.

Authoring Reference Provides detailed information about creating a data model for the
Aleri Streaming Platform.

Guide to Programming Interfaces Provides instructions and reference information for developers
who want to use Aleri programming interfaces to create their own
applications to work with the Aleri Streaming Platform.

These interfaces include:

• the Publish/Subscribe (Pub/Sub) Application Programming In-
terface (API) for Java

• the Pub/Sub API for C++

• the Pub/Sub API for .NET

• a proprietary Command & Control interface

• an on-demand SQL query interface

Utilities Guide Collects usage information (similar to UNIX® man pages) for all
Aleri Streaming Platform command line tools.

Administrators Guide Provides instructions for specific administrative tasks related to
the Aleri Streaming Platform.

Introduction to Data Modeling and
the Aleri Studio

Walks you through the process of building and testing an Aleri
data model using the Aleri Studio.

SPLASH Tutorial Introduces the SPLASH programming language and illustrates its
capabilities through a series of examples.

Frequently Asked Questions Answers some frequently asked questions about the Aleri Stream-
ing Platform.

About This Guide

vii

Chapter 1. Overview of Sybase Aleri Streaming
Platform Executables
1.1. Streaming Processor Executables

sp The debug version of the Streaming Processor executable.

sp_clustermgr The Cluster Manager is an interactive command-line interface that supports simple
commands to start, stop and inquire about the status of a distributed model
(cluster).

sp_clustermon The Cluster Monitor monitors the health of a running cluster and repairs failed
modules.

sp_ld The Launch Daemon executes commands used to manage the modules of a cluster
under the direction of the sp_clustermgr and sp_clustermon commands.

sp_monitor The Monitoring Tool receives and displays performance data from a running in-
stance of the Sybase Aleri Streaming Platform. The performance data is written to
the standard output.

sp_query The Query utility reads an SQL query from the standard input and forwards it to a
running instance of the Sybase Aleri Streaming Platform for execution. The result
of the query is written to the standard output.

sp-opt The optimized version of the Streaming Processor executable, which is suitable
for production use.

sp_server The Server command initiates the Streaming Processor (sp-opt) and the encryp-
tion proxy server for the Command and Control interface.

sslwrap The secure communication proxy offers support for secure communications with
the Command and Control interface. (Presently, the Abyss (HTTP) server embed-
ded in the Sybase Aleri Streaming Platform for the command and control interface
does not natively support encryption.)

1.2. Command and Control Executables

sp_cli The interactive Command-Line shell can query meta-information, inject rows of data, make
table snapshots, and control a running Streaming Processor instance. It can also be used to
stop the Streaming Processor, fetch the list of streams and their definitions, and determine
the host and the port of the Gateway interface.

sp_cnc The Command and Control utility executes individual control commands. It is supplied with
the source, to serve as an example of writing client applications.

1.3. Publish and Subscribe Executables

sp_convert The Converter utility reads XML or delimited records from standard input and
produces binary format records on standard output.

sp_histexport The History Export utility moves data from a running instance of the Streaming
Processor to a historical vector store that is part of an OLAP server. The data to be

1

transferred is described as an XML file which is passed as input to the
sp_histexport executable.

sp_subscribe The Subscribe command connects to a running instance of the Streaming Pro-
cessor and subscribes to streaming data. The received records are converted to
XML (or optionally delimited format) and written to standard output.

sp_upload The Upload command reads binary records from standard input and publishes
them to a current instance of the Sybase Aleri Streaming Platform through the
Gateway interface.

sp_archive The Archive command archives data from the specified stream(s).

sp_viewer The Streamviewer enables users to view in a graphical user interface (GUI) the
streams that are being maintained on a specified Sybase Aleri Streaming Platform
instance.

1.4. Authoring Executables

sp_sql2xml The SQL to XML Translator converts a set of Aleri SQL statements to the correspond-
ing AleriML representation.

sp_studio This shell script launches the Aleri Studio, which can be used to visually author data
models, and to initiate and monitor the Streaming Processor.

Overview of Sybase Aleri Streaming Platform Executables

2

Chapter 2. AleriRT
AleriRT is a real-time data add-in for Microsoft Excel® that lets you view records in one or more in-
stances of the Sybase Aleri Streaming Platform and publish records to it. It is not packaged with the Sy-
base Aleri Streaming Platform; for information about downloading and installing it, contact your Sybase
representative.

On the display side, AleriRT lets you select the streams and view the columns within the stream. It also
enables you to filter records based on data values. You can view the most recent “N” records, or the
most recent “N” records that match a specified filter (where “N” is the specified number of records).

On the publish side, AleriRT provides the ability to automatically publish data whenever data changes in
a range of cells. You can also manually publish data to the Sybase Aleri Streaming Platform by selecting
a range of cells and using the Publish Wizard.

2.1. Using AleriRT

Click on the AleriRT button to bring up the AleriRT Wizard screen. The screen contains tab pages for
three wizards: the Connection Wizard, Subscription Wizard, and Publish Wizard. This screen is non-
modal, meaning that the Excel worksheet can be modified even when the screen is open.

2.1.1. The Connection Wizard

The image below shows the AleriRT Wizards screen with the Connection Wizard tab active.

The Connection Wizard provides a way to simultaneously connect to one or more instances of the Sy-
base Aleri Streaming Platform. The second tab is the Subscription Wizard. which lets you define and
control one or more subscriptions, the results of which are displayed in Excel. The last tab is the Public-
ation Wizard, which provides a way to manually publish data to a stream in any instance of the Sybase
Aleri Streaming Platform. Each of these wizards is explained in detail below.

The Connection Wizard pane allows simultaneous connections to multiple instances of the Sybase Aleri

3

Streaming Platform.

Connection Enter the name of a new connection, or select from a list of previously
defined connections. When a connection is selected from this listbox, all
the information associated with the connection is displayed.

Host Name Enter the name of the computer on which the Sybase Aleri Streaming
Platform is running. This property is required.

Port Enter the port on which the Sybase Aleri Streaming Platform is listening.
Contact the system administrator to obtain this required value.

Hot Spare Host Name If you are running a hot spare Sybase Aleri Streaming Platform on anoth-
er system, enter the name of that system. When the primary server fails,
data is automatically retrieved from the hot spare.

Hot Spare Port Enter the port on which the hot spare is listening. This is only required
when using Hot Spares.

User Name Enter the user name to connect to the host machine. This property is re-
quired unless you selected None as the authentication type.

Password Enter the password associated with the user name. This is an optional
property that needs to be provided with PAM authentication and the un-
derlying authentication mechanism has user names and passwords.

Encrypt Traffic If the Sybase Aleri Streaming Platform is started in encrypted mode, se-
lect this option in order to "talk" to it. Otherwise, a connection error oc-
curs.

Authentication Type An authentication type needs to be selected from this list. The authentica-
tion type selected must match the mode that was used when starting the
Sybase Aleri Streaming Platform.

RSA Key File If RSA authentication is selected, enter the RSA key file. You can either
type the location and name of the key file or click on the button next to
the field to browse and choose the file.

Save This button saves the connection information in a hidden worksheet asso-
ciated with the active workbook. This enables the connection information
to be retrieved and displayed automatically when the active workbook is
reopened at a later time.

Connect After providing all the information, click this button to connect to the
server. If the connection is successful, only the Disconnect button is
available for this connection. This also causes the connection information
to be saved for future use.

Disconnect Click on this button to drop the connection to the Sybase Aleri Streaming
Platform. On a successful disconnect, this button is disabled and the Con-
nect and Delete buttons are enabled. If there are queries actively using
this connection then the queries are stopped after user confirmation be-
fore disconnecting.

Delete Click on this button to delete a connection.

Hide Click on this button to hide the window while preserving all information.
To redisplay the screen, click the AleriRT button on the toolbar.

AleriRT

4

The connection information for an Excel workbook is saved with the workbook.

2.1.2. The Subscription Wizard

The Subscription Wizard pane enables you to define the queries for the results to be displayed in the Ex-
cel worksheet. The figure below shows the Subscription Wizard pane.

This pane has the following components:

Subscription Queries Enter the name of a new query, or choose a previously defined query
by selecting the Query Name from the drop down list. When a previ-
ously saved query is selected, all information associated with the se-
lected query is automatically displayed.

Connection Name Select the connection associated with the query from the drop down
list of currently active connections. The query can only be run if the
associated Connection is active.

Start Cell Enter the location in the Excel worksheet to start inserting the real-
time data formulas. Specify the location in the “A1” notation. For ex-
ample, entering a value of B5 will tell AleriRT to insert the formulas
as a grid starting at column B, row 5.

Max Rows Enter the number of records (the maximum value allowed is 65536) to
be displayed in the Excel worksheet. When there are more rows to be
displayed than the number specified, the oldest records is discarded.

Get Base Transactions To get the base records in a stream before getting new transactions,
click on the box to put a check in it. To get just the new transactions,
leave the box unchecked. For small tables with relatively few new
transactions, it is better to turn this option on. Otherwise, the data for

AleriRT

5

the query will not be displayed. For dynamic tables with high transac-
tion activity, it is better to leave this option turned off. Otherwise, Ex-
cel tries to potentially load millions of records every time it starts.

Lossy Subscription To turn on the this option, click on the box to put a check in it. To
leave it turned off, leave the box unchecked. This option is typically
used when the network connection between the client and the Sybase
Aleri Streaming Platform is slow. If turned on, the client may not get
all the transactions if it cannot keep up with the Sybase Aleri Stream-
ing Platform. If turned off, the client receives all the transactions at the
expense of potentially slowing down the Sybase Aleri Streaming Plat-
form, especially if the network is slow and the subscription buffer is
filled up.

Streams Displays all the streams available in the server with which the selected
Connection is associated. This box is automatically populated on
choosing a connection.

Columns When one of the streams is selected, this area displays each column,
along with its data type and a check box to indicate whether or not it is
a key column. You can choose a different key column for the stream
than the specified one.

SQL Statement If you wish to customize what is retrieved from the Sybase Aleri
Streaming Platform, specify an SQL statement in this textbox. The
statement cannot include Joins, Group By and Order By clauses as the
SQL is being applied to the individual transaction logs for the stream,
not the data in the stream. See the documentation for sp_query for in-
formation on the supported SQL syntax. The SQL Statement textbox
is only enabled when the <<SQL Statement>> entry is selected in the
Streams listbox.

Parse SQL Click on this button to have the SQL statement typed in the SQL
Statement textbox parsed. If the SQL is parsed successfully, the
column names and corresponding data types are displayed in the
Columns listbox. Note that even though by default none of the
columns are marked as key fields, the appropriate key columns need to
be selected before being able to apply the real-time data query.

Apply Click on this button to apply the real-time data formulas in the Excel
worksheet after configuring a new subscription or modifying an exist-
ing subscription. Once the formulas have been applied, the Start but-
ton is displayed and the query can be started.

Reset Click on this button to display the properties of the Subscription
Query when it was last saved. Use this button if changes have been
made to the query that need to be completely reversed.

Delete Click on this button to delete a previously saved query.

Start Click on this button to start the query and the data will appear in the
Excel worksheet.

Stop Click on this button to stop the running query and no more data will
appear in the Excel worksheet. However, any displayed data continues
to be displayed until the worksheet is closed and reopened or the query
starts again.

AleriRT

6

AleriRT keeps track of the locations of your queries. That means your queries work even if its defined
cells are shifted horizontally or vertically.

2.1.3. The Publication Wizard

The Publication Wizard provides a way to manually publish data and graphically construct publication
formulas meant for automatic publishing. The following figure shows the Publication Wizard:

This screen has the following components:

Connection Name This is the name of the connection to use for publishing. Only act-
ive connections are displayed in this box. When a connection is
clicked, the streams the connection object is connected to are dis-
played in the Streams list box and the columns and the data types
for the stream are displayed in the table named Columns.

Operation Code Select INSERT, UPDATE, DELETE or UPSERT from this list
box. If none is selected, the default Operation Code is UPSERT.
(If the record exists, update it; if not, insert it.)

Data Range Specify the range of cells in the Excel worksheet containing the
data to publish. This field cannot be edited directly. You must se-
lect the cells in the worksheet to publish and then click the blue
button next to this field in order to populate it.

Publishing multiple non-contiguous areas simultaneously is not
supported. Selecting multiple non-contiguous areas in the Excel
worksheet and displaying the address of these selected areas in
this field causes an error when attempting to publish the data.

WorkBook Name This is a read-only field that shows the workbook where the selec-

AleriRT

7

ted range is located.

WorkSheet Name This is a read-only field that shows the name of the WorkSheet
where the selected range is located.

First Row Has Columns Click on this checkbox to indicate that the first row in the selected
range has column names. Leave it unchecked if it does not. When
the column names are provided, the data columns can be in any
order and only values for the desired fields need to be supplied.
The rest of the columns are automatically filled with NULLS.
However, if the column names are not provided, AleriRT expects
all the columns in the streams to be provided in the exact same or-
der as defined in the Sybase Aleri Streaming Platform.

Transpose Rows To Columns Click on this checkbox if the data columns for a record are
provided vertically in a single column instead of the horizontally
across multiple columns, which is the normal way of representing
records. Otherwise, leave the box unchecked.

Streams This list box contains an automatically maintained list of streams
in the Sybase Aleri Streaming Platform to which the selected
Connection is connected. Select the stream for which a publica-
tion should be made.

Columns This table is automatically maintained and displays the columns
and the corresponding data types for the selected stream. This is
provided for information only: you cannot select the columns
where to publish from this table. But you can copy the names of
the columns and paste them in Excel.

Log File Specify the path and file name of the log file, either entering it
directly into the field or browsing and selecting the filename and
path by clicking on the button beside this field. This is an optional
parameter that specifies the name of the Log File into which any
errors that occur during publication are written. Note that the er-
rors are written to this file in addition to being displayed in the
Result box.

Result This box is a read-only box that displays the results of the public-
ation.

Publish Data Once all the data has been provided, click on this button to pub-
lish the data to the Sybase Aleri Streaming Platform. The result of
the publication is displayed in the Result box.

When the data is published to the Sybase Aleri Streaming Plat-
form, it only acknowledges that the data were received (or not).
To find out whether the record was rejected for some reason, such
as a duplicate insert or bad data, you can either subscribe to the
stream or submit an SQL Query.

Show Formula Click on this button after providing all the information in this
screen to graphically create the formula. This provides a conveni-
ent way to create a formula for automatic publishing. If there are
no errors, the formula is displayed in the result box. You can then
copy this formula and place it in the Excel worksheet to start
automatically publishing the data. See Section 2.1.4, “Automatic
Publishing” for more information.

AleriRT

8

Clear Results Click on this button to clear the Result field if there are too many
entries.

2.1.4. Automatic Publishing

AleriRT provides a mechanism for publishing data automatically whenever a cell is changed. This is ac-
complished by using the Add-In function called AleriRTP. AleriRTP is a wrapper function around the
underlying Excel real-time data mechanism used for publishing data. The syntax for this formula is as
follows:

=AleriRTP("ConnectionName","StreamName","OperationCode",DataRange,
[[ColumnRange],[TransposeRows],["LogFile"],[InstanceNo],[NoResults])]

where

ConnectionName The name of the connection to use for publishing. The connection must be es-
tablished before publishing can successfully take place.

StreamName The name of the stream where to publish data.

OperationCode The operation code that needs to be applied for publish. It can be one of "IN-
SERT", "UPDATE", "DELETE" or "UPSERT".

DataRange The address or name of the Excel range containing the data to publish. The
DataRange object MUST NOT be enclosed in double quotes.

[ColumnRange] The optional parameter that specifies the Excel Range Address or Range Name
containing the stream column names. This parameter MUST NOT be enclosed
in quotes.

[TransposeRows] The optional parameter that specifies whether the data record is specified in a
column instead of a row. It can be either True or False. The default value is
False.

[LogFile] The optional parameter that specifies the name and location of the log file to
which any errors are logged. If not provided, no logging is done.

[InstanceNo] This is for internal use. Always leave this value empty.

[NoResults] This is for internal use. Always set this value to False or empty.

For example:

=AleriRTP("Connection1","Trades","INSERT",A2:E10, A1:E1,False,"C:\logs\log1.log",,)

The above formula can be placed in any sheet in the workbook. The only thing to keep in mind is to tell
Excel when constructing the formula, from which Workbook and Worksheet the Address is referring to
either by selecting the appropriate cells in the desired worksheet or using the
[Workbook]Worksheet!A1:E5 format.

Once the formula has been placed in Excel, then any change made to any of the cells causes the entire

AleriRT

9

range to be published. But if you want to publish only when certain cells are changed, you have to make
this call inside a custom wrapper that encapsulates the business logic dictating when to call this function.

The return value for this function is an array which is formatted as a string using Excel-style location:
{{val11,val12},{val21,22}....}. This formula can then be converted into an Excel-style array object. The
string will contain one or more array of elements and each sub element contains two subitems. The array
string will contain only one element when there are errors in passed in values. Otherwise it will contain
one more element than the number of rows to publish.

The first element in the array string is a summary that indicates whether the publish was completely suc-
cessful or not. If errors are detected when parsing the formula, a one-element array of the form

{{"1","Some error message."}}

is returned.

If errors are detected when validating the records, or the publish completed successfully, there will be
one more array element than the number of rows to publish. For example if there are two rows to publish
and both the records have been successfully published, the array string will look like the following ex-
ample.

{{"0",""},{"0",""},{"0",""}}

If only one record was published successfully, and another failed for some reason then the return array
string will look like this:

{{"1","An error message"},{"0",""},{"1","row level error message"}}

2.1.5. Saving Subscription Queries

Subscription Queries can be saved permanently simply by saving the Excel Worksheet containing the
formula associated with the query. The next time the Excel Worksheet is opened, the query appears in
the AleriRT Subscription Wizard and it can be acted upon normally.

2.2. Applying A Query

When the Apply button is clicked, the following sequence of events occurs.

1. AleriRT first verifies that the supplied Subscription query name hasn't already been used, and then
verifies that the provided Start Cell is a valid Excel cell address. If either of the conditions is false,
control returns to the user to resolve the problem.

2. AleriRT next constructs Excel real-time data formulas based on the specified subscription query
and inserts one formula per cell into the active worksheet. Depending on the query, hundreds of for-
mulas may potentially be inserted. AleriRT uses the following logic to insert formulas:

• Formulas are always inserted as a grid, starting at the specified Start Cell location. Each selected
column appears in separate but contiguous columns in the Excel worksheet. The value of Max
Rows controls the number of rows to which the filter is applied.

• Soon after the first formula is inserted into the active worksheet, Excel recognizes the real-time

AleriRT

10

data formula and makes a call to the AleriRT server that passes the query information for the first
filter. The real-time server looks at the information passed, recognizes it as a new query, and
spawns a query object. The real-time data server also stores the passed-in information for future
use.

• This process is repeated for every formula of the query, with the exception that the real-time serv-
er recognizes that the formula is part of the previously seen query. Therefore, it does not create a
new query object. Rather, it stores the information so that it can return the data corresponding to
the formula.

When the Start button is clicked, the following occurs:

1. AleriRT verifies that the connection to the Sybase Aleri Streaming Platform is active and that the
specified query is still valid. If either of these condition is false then it returns.

2. Next, AleriRT spawns a new read thread to read the transaction log data from Sybase Aleri Stream-
ing Platform and stores it in an internal buffer.

3. Every tenth of a second AleriRT reads the transaction logs from the internal buffer, decides whether
to insert/update or delete records in a display buffer, based on the user-specified key fields. When
there is an insert into the display buffer and the number of records in the buffer is equal to the spe-
cified Max Rows then the oldest record in the buffer is deleted, the rest of the records are moved
up and the record is inserted at end. When a record needs to be updated, an in place update is per-
formed. This insert/update mechanism results in a more stable view of the data in the Excel work-
sheet and makes it easier to create charts based on the subscribed data.

4. Once the display buffer has been populated, AleriRT notifies Excel that new data is available to be
displayed. When it receives a request for the data, it sends the data in a format that Excel can under-
stand and display in the appropriate location in the worksheet.

2.3. Known Issues and Limitations

• When the Max Rows is set to a large value (for example, several thousand rows or more), then the
performance degrades. The machine becomes very busy as it attempts to process and complete the
request.

• When the Sybase Aleri Streaming Platform is stopped, or the connection is lost due to network fail-
ure, the AleriRT screen is not automatically refreshed to reflect the current state of the Query and
Connection. However, refreshing the screen by again selecting either the Connection or the Query
shows the current state of the selected object.

• You cannot use more than one worksheet containing AleriRT Connection and/or subscription in-
formation within the same instance of Excel.

AleriRT

11

Chapter 3. Server Executables

12

Name
sp — Streaming Processor, a server for processing relational stream data

Synopsis

sp [OPTION...]

Description

sp starts the Streaming Processor, a server process that accepts relational input from files or sockets,
processes the data according to a configuration, and sends the data to publish/subscribe clients. Clients
may also connect to an SQL interface (for example, using JDBC or through a native C++ API) and issue
ad-hoc SQL queries.

sp is the debug version of the Streaming Processor and sp-opt is the optimized version. The optimized
version is suitable for production use.

Options

-a username:password Sets the authorization credentials used for inter-node communica-
tion when running a distributed cluster or in high availability(hot
spare) mode. If running a distributed cluster, all nodes must share
these credentials; when running as a high availability system, both
the primary and secondary nodes must share these credentials.

-B path Set the name of the file to which all rejected records will be writ-
ten.

-c port Set the Command and Control port. If the port is 0 or out of the
range 1-65535, the program will pick an arbitrary port. The Com-
mand and Control interface accepts commands, such as
sp_upload or sp_cli, from clients.

-C cluster Choose the cluster configuration to use when running as part of a
distributed system.

-d level Set debug level. The valid range is 0-7, with 7 being verbose.

-DD Start the Sybase Aleri Streaming Platform with trace mode on,
paused. This is actually the option -D with argument "D". Most of
the possible arguments for this option are internal and undocu-
mented.

-DX Quick exit. Bypasses the proper destruction of platform objects on
exit. This option is useful mostly for running benchmarks with a
simple time command. This is actually the option -D with argu-
ment "X". Most of the possible arguments for this option are in-
ternal and undocumented.

-e path Negotiate encrypted links on SQL and Gateway interface sockets.
The path is the full pathname of the directory containing the
server private key and certificate. The files must be named
server.key and server.crt.

-f path Specify the full pathname of the XML configuration file.

-F path Specify the full pathname of the XML Schema file (the default is

Server Executables

13

$PLATFORM_HOME/etc/Platform.xsd).

-g port Set the Gateway port. If the port is 0 or out of the range 1-65535,
the program will pick an arbitrary port. The Gateway interface is
responsible for the publish and subscribe mechanism.

-H pHost:pPort Specify the host name and the command and control port of the
primary server (indicating that the server is a secondary server).

-j path Set the Java CLASSPATH for Java callouts.

-k path Specify the full pathname of the directory containing the RSA
public keys for RSA authentication.

-K user:private key file Set the user and the user's RSA private key for RSA authentica-
tion in HA mode.

-l 0|1|2|3 Control where log messages get sent. Use 0 for no log messages,
1 to send to stderr only, 2 to send to syslog only, and 3 to send to
both stderr and syslog.

-L license key file Specify the full pathname of the license key file (the default is
$PLATFORM_HOME/etc/license.key).

-m megabytes Set the maximum virtual memory size (default is 0, meaning un-
limited).

-M module Start the Sybase Aleri Streaming Platform with only those streams
and stores that are contained in the specified module.

-o true|false Optimize; eliminates redundant updates during processing
(default false).

-P precision Set the number of decimal places in output. The default value is 6.

-q port Set the SQL Listener port. If the port is 0 or out of the range
1-65535, the program will pick an arbitrary port. The SQL Listen-
er interface provides the means of accepting SQL queries from
clients and sending results back to those clients.

-r true|false Turn access control on or off (the default is false for off).

-s Run as a daemon.

-S mem|log|stateless Force stores without a "kind" attribute to have a specific kind,
either "mem" for memory stores, "log" for log stores or "stateless"
for stateless stores.

-t sec Set the performance timer interval (default 0 for no timer). This
produces performance statistics every "sec" seconds, which are
sent to the log and which can be displayed graphically in the per-
formance monitoring tool of the authoring environment.

-T Start a module within a clustered model, ignoring the connection
topology of the configuration file.

-V authentication Use the specified type of authentication. Valid values are
none, pam, rsa, and gssapi. The default is none. If -V pam is spe-
cified, clients connecting to the server will need to use the -c

Server Executables

14

user:password option. If -V rsa is specified, clients con-
necting to the server will need to use the -k rsaDir and -c
user options. If -V gssapi is specified, clients connecting to
the server will need to use the -G and -c user options.

If you have SonicWall software that creates an additional network
interface with a new IP address, running on a Windows server,
you may have to disable it in order to run the Sybase Aleri
Streaming Platform with Kerberos authentication enabled (-V
gssapi).

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-v Print the detailed revision number for the Sybase Aleri Streaming
Platform and exit.

Configuration Files

Configuration of the server is done in XML.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp_cli(1), sp_cnc(1), sp_convert(1), sp_histexport(1), sp_query(1), sp_server(1), sp_sql2xml(1),
sp_studio(1), sp_subscribe(1), sp_upload(1), sp_viewer(1)

Bugs

See the documentation for known issues.

Server Executables

15

Name
sp_clustermgr — cluster manager for the Sybase Aleri Streaming Platform

Synopsis

sp_clustermgr

Description

The sp_clustermgr brings up the interactive cluster management command line interface, which sup-
ports simple commands to inquire about the status of a cluster, start a cluster, and stop a cluster.

Commands

set ldPort <port> Specify the TCP port used to communicate with each of the
cluster nodes. Each node must be running an instance of sp_ld.
for the cluster manager to communicate with it.

set homeDir <home directory> Specify the home directory for the instance of sp(-opt). This is
used only when a cluster is started. The cluster manager passes
this to the launch daemon on each node, and those launch dae-
mons issue a chdir(<home directory>) call prior to starting an in-
stance of sp(-opt). The specified directory must have read/execute
permissions with respect to the UID of the running launch dae-
mon.

set execDir <path to sp(-opt)> Specify the fully qualified path to the sp(-opt) executable on the
remote nodes. The executable must reside in the same location on
each of the nodes in a cluster. The recommended practice is to in-
stall the software, and then mount this install directory by NFS on
all nodes in the cluster.

set logDir <log directory> Specify the log directory for the instance of sp(-opt). This direct-
ory is used on each node to create a log file that captures mes-
sages written by sp(-opt) to standard output and standard error. A
log file containing these messages is created in this directory hav-
ing the name <cluster>-<module>.log.

The recommended practice is for this directory to also be a shared
NFS mount across the different nodes. This places all the cluster
log files in the same location, so they may be easily monitored.

set commandLine <command
line for sp launch>

Sets the command line used when starting a cluster. The -M
<module>, -C <cluster> and -c <c&c port> options
need not be specified, as the cluster manager fills these in from its
analysis of the configuration file. The -f <config file> op-
tion must be part of the command line, and should either be a rel-
ative path with respect to the <home directory>, or an absolute
path. Also The -a <user>:<passwd> option must also be
specified, as authentication is required when one node connects to
another node in the cluster.

show
[ldPort|homeDir|execPath|logPat
h]

Without any arguments specified the show command lists the val-
ues for each cluster manager internal variable. If the argument is a
specific internal variable, then the value for the variable is dis-
played.

Server Executables

16

status <cluster name> <config
file>

Scan the configuration file, extract the nodes(including cold spare
nodes) for the given named cluster. For each node, contact the
sp_ld running on that node and query it for all modules running in
the named cluster. All status information is displayed as to what
modules are running on what nodes, including if the sp_ld could
not be contacted on a given node.

start <cluster name> <config
file>

Scan the configuration file, extract the nodes for the given named
cluster. For each node, contact the sp_ld running on that node and
have it start an instance of sp(-opt) for the module bound to that
node as specified in the cluster.

stop <cluster name> <config file>
<username> <password>

Scan the configuration file, extract the nodes for the given named
cluster (including cold spare nodes). For each node, contact the
sp_ld running on that node and ask if there are any modules run-
ning for the given <cluster name>. For each running module on
each node, send the command and control file sendStreamsExit,
which causes each node in the cluster to shut down.

Recommendations

Have an NFS shared directory across all nodes in the cluster of the form /<prefix-path>/aleri/
with sub-directories run/ install/ The run/ directory should contain the configuration file, and be
used for the home and log directories. The exec path is /
<prefix-path>/aleri/install/bin/sp[-opt].

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Server Executables

17

Name
sp_clustermon — cluster monitor for the Sybase Aleri Streaming Platform

Synopsis

sp_clustermon

Description

The sp_clustermon performs real-time monitoring and maintenance of a cluster. This tool will use all
primary and spare nodes to keep the cluster in a fully functional state. It supports detection of failed
modules and nodes, with automatic restart of modules.

Options

-C cluster Specify the cluster (from within the config file) to monitor.

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming
Platform; if the password is not given, the user will be prompted
for it. If the Sybase Aleri Streaming Platform successfully authen-
ticates with these credentials, the connection is maintained, other-
wise the Sybase Aleri Streaming Platform will immediately close
the connection.

This option must correspond to the type of authentication spe-
cified for the Streaming Processor when it was started up. If it
was started without specifying a -V option or using the -V none
option, omit this option. If it was started using the -V pam op-
tion, specify -c user:password. If it was started using the -
V rsa or -V gssapi option, specify -c user.

-f config-file Sets the configuration file defining the cluster.

-F path Specify an alternate path for the XML schema file (the default is
$PLATFORM_HOME/etc/Platform.xsd).

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-k privateRsaKeyFile Authentication is performed using the RSA private key file mech-
anism instead of password authentication. The privateRsaKeyFile
must specify the pathname of the private RSA key file. This op-
tion is required if the Streaming Processor was started with the -V
rsa option. With this option enabled, the user name must be spe-

Server Executables

18

cified with the -c option, but the password is not required. In ad-
dition, the Streaming Processor must have been started with the -
k option specifying the directory in which to store the RSA keys.

-p sp-ld-port Sets the port used for all copies of the launch daemon, sp_ld

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp_ld(1), sp_clustermgr(1)

Bugs

See the documentation for known issues.

Server Executables

19

Name
sp_ld — launch cluster daemon for the Sybase Aleri Streaming Platform

Synopsis

sp_ld [OPTION ...]

Description

The sp_ld daemon listens on a bound TCP port and executes commands used in the management of
modules within the Sybase Aleri Streaming Platforms clustered environment. It supports a command
API to start, stop and report the status of instances of the Sybase Aleri Streaming Platforms. This dae-
mon is used in conjunction with the cluster manager, sp_clustermgr, and the cluster monitor,
sp_clustermon. When run in the foreground (see -f), all logging goes to stderr, when run as a dae-
mon, logging is done though the syslog facility. Each node of a cluster (including cold spare nodes)
should have a single instance of the sp_ld application running.

In a production environment, all nodes of a cluster (including cold spare nodes) should start the sp_ld
daemon from the servers initialization scripts during system boot.

Options

-p <port> Specify the TCP port that the application binds to.

-P <root path> Specify the home directory. The daemon issues a chdir(<root
path>) when started.

-f Run the program in the foreground and send logging messages to
stdout.

-h Print usage.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Server Executables

20

Name
sp_monitor — read performance data from a running instance of the Sybase Aleri Streaming Platform
and print it in XML format on standard output.

Synopsis

sp_monitor [OPTION...]

Description

sp_monitor reads performance data from a running instance of the Sybase Aleri Streaming Platform and
displays it on standard output. Monitoring data is only available if the Sybase Aleri Streaming Platform
was started with monitoring option -t. A set of performance records, one per stream and one per gateway
connection, is obtained from the running Sybase Aleri Streaming Platform every n seconds, where n is
specified when the Sybase Aleri Streaming Platform is started, (see sp -t n). The
Aleri_Clients_Monitor stream contains basic information about the connected clients but performance-re-
lated fields are populated only with the monitoring option.

A record in the following format, is produced for each stream.

<Aleri_Streams_Monitor ALERI_OPS="i" stream="stream1"
cpu_pct="0.000000" trans_per_sec="0.499451"
rows_per_sec="1.098791" inc_trans="5" inc_rows="11" queue="0"
store_rows="2" last_update="2008-08-26 14:17:14" sequence="123"
posting_to_client="-1"/>

where:

ALERI_OPS holds the opcode for the record

stream contains the name of the stream whose stats are reported

cpu_pct is the percentage CPU utilization over the last reporting interval

trans_per_sec is the transaction rate for this interval

rows_per_sec is the rate of row arrivals for this interval

inc_trans is the number of transactions for this interval

inc_rows is the number of new rows for this interval

queue is the number of records in the queue for the stream

store_rows is the number of rows in the table

last_update is the date/time of the last update

sequence is the sequence number of the update (redundant, since the stream name and
last_update already provide an unique identification)

posting_to_client is the handle of the gateway client where the stream was trying to post data
at the moment, or -1 if none

Server Executables

21

A record in the following format, is produced for each gateway client.

<Aleri_Clients_Monitor ALERI_OPS="u"
handle="129" user_name="user" ip="127.0.0.1" host="localhost"
port="12345" login_time="2008-08-26 12:05:01" conn_tag="rdr"
cpu_pct="0.000000" last_update="2008-08-26 14:17:14"
subscribed="1" sub_trans_per_sec="0.499451"
sub_rows_per_sec="1.098791" sub_inc_trans="5"
sub_inc_rows="11" sub_total_trans="502" sub_total_rows="1018"
sub_dropped_rows="0" sub_accum_size="0" sub_accum_ops="-1"
sub_queue="0" sub_queue_fill_pct="0.000000" sub_work_queue="0"
pub_trans_per_sec="0.000000" pub_rows_per_sec="0.000000"
pub_inc_trans="0" pub_inc_rows="0" pub_total_trans="0"
pub_total_rows="0" pub_stream_id="-1"
/>

where:

ALERI_OPS holds the opcode for the record

handle contains the handle of this gateway client

user_name contains the user name of this client

ip contains the address from which this client is connected

host contains the host name from which this client is connected, if resolvable

port contains the port from which this client is connected

login_time contains the timestamp when this client logged in

conn_tag contains the connection tag, if any

cpu_pct is the percentage CPU utilization over the last reporting interval by this cli-
ent's gateway thread

last_update is the date/time of the last update

subscribed is (1) if this client has subscribed or (0) if not

sub_trans_per_sec is the subscription transaction rate for this interval; the envelopes and ser-
vice messages are also counted equal to transactions

sub_rows_per_sec is the subscription row rate for this interval

sub_inc_trans is the number of subscription transactions/envelopes/messages for this in-
terval

sub_inc_rows is the number of subscription rows for this interval

sub_total_trans is the total number of subscription transactions/envelopes/messages sent

sub_total_rows is the total number of subscription rows sent

sub_dropped_rows is the number of subscription rows dropped due to the client not keeping

Server Executables

22

up

sub_accum_size for the pulsed subscriptions, the current number of rows collected in the
accumulator, to be sent in the next pulse

sub_accum_ops reserved for the future with the purpose: for the pulsed subscriptions, the
number of operations applied to the accumulator since the last pulse (it
may differ from the accumulator size, if multiple operations become col-
lapsed in the accumulator); currently is a placeholder with value of -1

sub_queue is the number of records in the "proper queue" for this client (the total
amount of data buffered consists of sub_accum_size, sub_queue and
sub_work_queue)

sub_queue_fill_pct contains the size of sub_queue in percent relative to its limit

sub_work_queue is the number of records being transferred from the queue to the socket
buffer

pub_trans_per_sec is the publish transaction rate for this interval; the envelopes and service
messages are also counted equal to transactions

pub_rows_per_sec is the publish row rate for this interval

pub_inc_trans is the number of publish transactions/envelopes/messages for this interval

pub_inc_rows is the number of publish rows for this interval

pub_total_trans is the total number of publish transactions/envelopes/messages received

pub_total_rows is the total number of publish rows received

pub_stream_id is -1 if the publisher could not write to the stream to which it is currently
trying to publish, otherwise it is the numeric id of that stream

Required Arguments

-p [host:]port Specifies the port number, or the host name and port number, of the Command
and Control interface within a running instance of the Sybase Aleri Streaming
Platform. The default host name is localhost.

Options

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming
Platform; if the password is not given, the user will be prompted
for it. If the Sybase Aleri Streaming Platform successfully authen-
ticates with these credentials, the connection is maintained, other-
wise the Sybase Aleri Streaming Platform will immediately close
the connection.

This option must correspond to the type of authentication spe-
cified for the Streaming Processor when it was started up. If it
was started without specifying a -V option or using the -V none
option, omit this option. If it was started using the -V pam op-
tion, specify -c user:password. If it was started using the -

Server Executables

23

V rsa or -V gssapi option, specify -c user.

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-k privateRsaKeyFile Authentication is performed using the RSA private key file mech-
anism instead of password authentication. The privateRsaKeyFile
must specify the pathname of the private RSA key file. This op-
tion is required if the Streaming Processor was started with the -V
rsa option. With this option enabled, the user name must be spe-
cified with the -c option, but the password is not required. In ad-
dition, the Streaming Processor must have been started with the -
k option specifying the directory in which to store the RSA keys.

Examples

To monitor an instance of the Sybase Aleri Streaming Platform running on the host "amazon.aleri.com"
with a Command and Control port of 31415, use the following:

sp_monitor -p amazon.aleri.com:31415 -c user:pass

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Bugs

See the documentation for known issues.

Server Executables

24

Name
sp_playback — A command-line tool that loads data into the Sybase Aleri Streaming Platform from a
variety of sources at the specified rate.

Synopsis

sp_playback [OPTION...]

Description

sp_playback is a command line tool that reads data from a variety of formats and loads the data into the
Sybase Aleri Streaming Platform. The formats that are currently supported are AleriML, Aleri Delim-
ited, Aleri Binary Format, ODBC Sources and Teradata (using the Parallel Transporter API).

This tool is also capable of playing data at a user specified rate. The rate can be specified either in rows/
millisecond or at a rate determined by the values in a timestamp/datetime column in input data. If the
latter mechanism is used, the user has the additional capability of specifying a timescale rate, which can
be used to speed up or slow down the playback.

This tool is intended to replace the need for sp_upload and sp_convert, which work only on Sybase file
sources.

Options

-a Use asynchronous publish. In this mode the publication will not
wait for the Sybase Aleri Streaming Platform to acknowledge the
received data. The default is synchronous publishing.

-c user[:password] Authenticate with a user id and optionally a password. If
neither the password nor the -k option is provided, the user is
prompted for the password.

This option must correspond to the type of authentication spe-
cified for the Streaming Processor when it was started up. If it
was started without specifying a -V option or using the -V none
option, omit this option. If it was started using the -V pam op-
tion, specify -c user:password. If it was started using the -
V rsa or -V gssapi option, specify -c user.

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-h Prints a list of possible options on the screen along with a brief
explanation for each option.

Server Executables

25

-i Turns on the shine through flag. In this mode, if there are any
missing columns in an update, they are filled in with the previous
values for the updated row. The default behavior is to fill any
missing columns with NULLS.

-e Specifies that communications to the Sybase Aleri Streaming
Platform should be encrypted. Note that the Sybase Aleri Stream-
ing Platform must be started in encrypted mode for this to work.

-k rsaKeyFile Authentication is performed using the RSA private key file mech-
anism instead of password authentication. The privateRsaKeyFile
must specify the pathname of the private RSA key file. This op-
tion is required if the Streaming Processor was started with the -V
rsa option. With this option enabled, the user name must be spe-
cified with the -c option, but the password is not required. In ad-
dition, the Streaming Processor must have been started with the -
k option specifying the directory in which to store the RSA keys.

-p [hostname:]port Specify the hostname and port, or just the port of the com-
mand and control interface of the Sybase Aleri Streaming Plat-
form. Default hostname is localhost if not provided.

-C connStr This is a source specific connection string, which specifies the ar-
guments that pertain to the input source being used. The connec-
tion string is in the general format
sourceName:option1[:option2...]. Note that each token is
separated by a colon. If a colon must be supplied in the option, be
sure to escape it with a backslash (\). It is a good practice to put
the connection string inside single quotes.

The following examples show the connection string formats for
the supported sources.

odbc:dsnName:{file|sql}:{fileName|query}>

where:

odbc Is the ODBC source string identifier. An
ODBC 3.0 compliant driver for the re-
quired source must be installed and con-
figured on the machine running this utility
to use this source option.

dsnName Is the ODBC data source name.

file|sql This specifies whether the following argu-
ment is a file name or a SQL query. Only
one of these two value must be provided.

fileName|query The fileName is the name of the file
containing a SQL statement. The query is
the SQL query that needs to be executed
to retrieve the data. Only one of these two
values must be provided.

Server Executables

26

teradata:host:user:password:configFile

where:

teradata is the identifier for a Teradata database source.
To use this source, the Teradata Parallel Trans-
porter API version 12.0 must be installed on the
machine on which this utility is running.

This source is currently supported on Microsoft
Windows 32 bit and Linux X86_64 environ-
ments.

To use it under Linux, make sure that the
$PLATFORM_HOME/lib path is part of the
PATH variable. Under Windows, make sure the
%PLATFORM_HOME%\lib folder is in the
LD_LIBRARY_PATH.

host is the hostname or IP address of the host ma-
chine running the Teradata database server.

user is the user name to use to connect to the
Teradata database.

password is the password corresponding to the user name
to connect to the Teradata database.

configFile is the configuration file that specifies the SQL
query to use, the table structure corresponding to
the data returned by the SQL query (using the
TPTAPI datatypes) and any TPTAPI related
configuration values. See the section called
“Defining a Teradata Configuration File” for
more information on creating a configuration
file.

alerixml:inputFile

where:

alerixml is an identifier for an AleriML file source.

inputFile is the full path and name of the file containing
data in AleriML format.

aleridlm:inputFile[:delimiter]

where:

aleridlm is an identifier for an Aleri Delimited file source.

Server Executables

27

inputFile is the full path and name of the file containing
data in Aleri Delimited format.

delimiter This optional parameter is a single character field
delimiter; the default is a comma.

alerixml:inputFile

where:

alerixml is an identifier for an AleriML file source.

inputFile is the full path and name of the file containing
data in Aleri Delimited format.

binary:inputFile

where:

binary is an identifier for an Aleri Binary file source. The
advantage to this format is that the loads will be
faster because there is no conversion required be-
cause the data is already in a format that the Sy-
base Aleri Streaming Platform can absorb. The
disadvantage to this format is that it is machine
architecture specific.

One can use sp_convert to convert data from
either AleriML or Aleri Delimited formats into
the Aleri Binary format.

inputFile is the full path and name of the file containing
data in Aleri Binary format.

recorder:inputFile

where:

recorder is an identifier for a file generated by the Record-
er. The recorder can be started via the Aleri Stu-
dio or the through the recorder examples in the
$PLATFORM_HOME/client/pubsub/ folder.

inputFile is the full path and name of the file containing
data generated by the recorder.

-R playRate This specifies how fast/slow the data must be played back. If this
parameter is not supplied, it means play as fast as possible. The
following examples show the two ways that the playback rate can
be supplied.

Server Executables

28

records:milliseconds

where:

records is the number of records to publish in the giv-
en number of milliseconds. This value can be
0 only if the millisecond component is
also 0. A value of 0 indicates play as fast as
possible.

milliseconds is the number of milliseconds to playback the
given number of records such that re-
cords/milliseconds gives the number
of records to playback in a millisecond.

This property is not supported for source of
type Recorder.

columnName

is the column name in the target stream that controls how fast the
record is played back. The column name is case sensitive and a
error is reported if the provided column name does not exist in the
target Stream.

The columnName property is ignored for source of type Recorder
and is currently not supported for Binary file sources.

-T timeScaleRate specifies a multiplication factor for the delta between the times
for two consecutive records. This is used in conjunction with the
playback rate, when the playback rate is controlled by a column in
the source. It takes an integer value between -N to +M. A positive
value greater than +1 speeds up the time and negative less than -1
slows down the rate. A value of +1 or -1 plays back at the rate
specified in the column and a value of 0 specifies that the column
values be ignored. Default value is 1.

-r interval specifies the minimum number of seconds to wait between each
reporting of the publish statistics. The default is 5 seconds. A
value of 0 indicates no reporting. Note that the time interval check
is triggered when there is a record to be published. This means
that even when the reporting interval has been exceeded the stat-
istics will not be reported if there are no records to trigger the
check.

-B bufferSize is the value is used to specify the internal read and write buffer
sizes. Default is 32K, which is the maximum. Note that smaller
buffer sizes will use less memory but may run slower under some
situations.

-t size specifies that transaction blocks must be used to publish data to
the Sybase Aleri Streaming Platform, with each block size

Server Executables

29

large. The Sybase Aleri Streaming Platform will process data
faster if transaction blocks are used to deliver the data to the Sy-
base Aleri Streaming Platform. The performance boost is
achieved in two ways. The first is that the network is used more
efficiently because a larger number of records are packed into a
single network packet. The second way that the Sybase Aleri
Streaming Platform achieves the performance boost is by treating
the records as a single block, which fails or passes in its entirety.
Treating the records this results in less processing overhead. De-
pending on the nature of the application, this option may not be
suitable.

-w size This specifies that envelopes must be used to publish data to the
Sybase Aleri Streaming Platform, with each envelope of size
size. If neither the -t nor -w option is specified, the default value
is -w64. The value of size must be between 1 and 1024. Using
this option ensures network efficiency in delivering data to the
Sybase Aleri Streaming Platform by modifying it to treat the re-
cords as individual records.

-H [hostname:]port specifies the hostname and port, or just the port of the com-
mand and control interface of the hot spare instance of the Sybase
Aleri Streaming Platform. If no hostname is provided, the default
is localhost.

-s streamName specifies the target stream name for this utility. This option is re-
quired for the ODBC and Teradata sources. All other sources
have the target Stream-name/Stream-Id embedded in them.

The streamName is case sensitive.

-S maxStringSize specifies the maximum string size that can be handled. This op-
tion is used in ODBC and Teradata sources. The default value is
1024.

This value is global for all strings in the source. Specifying a large
value for this option may result in increased memory usage de-
pending on the number of strings in the record and the value spe-
cified with the -B option.

-m dateMask This is the date mask to use for XML and Delimited files. The de-
fault is ''%Y-%m-%dT%H:%M:%S'. Note that the date mask is
common for all the date columns. This option is only meaningful
for the AleriML and Aleri Delimited file sources.

Defining a Teradata Configuration File

The 'teradata' source described above uses the Teradata Parallel Transporter API to load data from
Teradata into the Sybase Aleri Streaming Platform in very efficient manner. This source, unlike the oth-
er source formats, requires that an XML configuration file be specified that contains the following in-
formation:

SQL Statement The SQL statement that must be executed on the Teradata database to fetch
the data that needs to be loaded into the Sybase Aleri Streaming Platform.
The SQL statement is a required element and is enclosed between the
<SQL></SQL> tags. A sample SQL statement element is provided below.

Server Executables

30

<SQL>
Select Id, cast(TradeTime as CHAR(23)), Symbol, Price, Shares, "Corr" from Trades

</SQL>

There are a couple of items to note in the above example. The first is that the
column names used in this query do not matter as they are not used by the
playback utility.

The second is that if the target column in the Sybase Aleri Streaming Plat-
form is a timestamp column then the corresponding datetime column in
teradata must be cast to a (CHAR(23)). If the target column is of type date
then the datetime column must be cast to CHAR(19).

Schema Definition The schema definition element is a required element that defines the schema
of the resulting data when the SQL statement is executed on the Teradata
database. A sample schema element is shown below.

<Schema>
<Field name="Id" type="TD_INTEGER" length="4" />
<Field name="TradeTime" type="TD_CHAR" length="23"/>
<Field name="Symbol" type="TD_VARCHAR" length="10"/>
<Field name="Price" type="TD_FLOAT" length="8"/>
<Field name="Shares" type="TD_INTEGER" length="4" />
<Field name="Corr" type="TD_INTEGER" length="4" />

</Schema>

A schema element can contain one or more Field elements. Each Field ele-
ment describes a column of data being returned by the SQL statement and it
has the following components:

name is name of the column. This name must match a column name in
the target stream in the Sybase Aleri Streaming Platform in order
to be used by the Playback utility. The case of the column does
not matter, but if the column name does match, then the column
is ignored by the Playback utility.

type is the type of the column. The type of the column must be ex-
actly the same type as the corresponding column in the SQL
statement. If it is not an error is generated. Also, the type of the
column must be compatible with the target column type in the
Sybase Aleri Streaming Platform. If not, an error is generated.
The sp_playback tool currently supports the following data
types:

• TD_SMALLINT

• TD_INTEGER

• TD_FLOAT

• TD_DECIMAL

• TD_CHAR

• TD_BYTEINT

Server Executables

31

• TD_VARCHAR

• TD_BIGINT

For timestamp types, convert to CHAR(19) or CHAR(23) de-
pending on whether the corresponding type of the column in the
target stream in the Sybase Aleri Streaming Platform is a date or
a timestamp.

length is the length of each column. For more information on determin-
ing the lengths to specify, see the Teradata™ TPTAPI document-
ation.

Options The options correspond to the Teradata TPTAPI options. This is an optional
element. There is no limit to the number of options that can be specified. A
sample Option element is shown below.

<Options>
<Option name="TD_TENACITY_HOURS" value="0"/>

</Options>

The options are specified within a tag called 'Options'. An 'Options' element
can have one or more 'Option' elements under it. The Option element itself
consists of the following components:

name This is the name of the option as defined in the Teradata™
TPTAPI documentation.

value This is a suitable value for the option.

The playback utility, for the most part, passes these options as is to the
TPTAPI. However, there are a few options that playback sets by default and
these options cannot be overridden. A list of these options follows.

• TD_USER_NAME (taken from the connection string)

• TD_USER_PASSWORD (taken from the connection string)

• TD_TPD_ID

Examples

To read data from an ODBC source with a DSN name of 'foo' using a command line SQL statement into
a stream called 'foobar' specify the following command line.

sp_playback -cuser:pass -p22200 -C'odbc:foo:query:select * from foobar_db' -sfoobar

The following command line will read data from a Teradata database running on a server called myserv-
er, using a config file called foo.xml and a target stream called bar.

sp_playback -cuser:pass -p22200 -C'teradata:myserver:dbuser:dbpass:/tmp/foo.xml' -sbar

Server Executables

32

To read data from an AleriML source, play the data at a rate of 10,000 rows per second and report the
progress every 15 seconds, use the following command line.

sp_playback -cuser:pass -p22200 -C'alerixml:/tmp/foo.xml' -sbar -R10000:1000 -r15

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_convert(1), sp_upload(1)

Bugs

See the documentation for known issues.

Server Executables

33

Name
sp_query — Send an SQL query to the Sybase Aleri Streaming Platform and print results on the screen.

Synopsis

sp_query [OPTION...]

Description

sp_query accepts an SQL query on the standard input and forwards it to a running instance of the Sy-
base Aleri Streaming Platform. It then prints the results of the query on the standard output.

Options

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform; if
the password is not given, the user will be prompted for it. If the Sybase
Aleri Streaming Platform successfully authenticates with these credentials,
the connection is maintained, otherwise the Sybase Aleri Streaming Plat-
form will immediately close the connection.

This option must correspond to the type of authentication specified for the
Streaming Processor when it was started up. If it was started without spe-
cifying a -V option or using the -V none option, omit this option. If it
was started using the -V pam option, specify -c user:password. If
it was started using the -V rsa or -V gssapi option, specify -c
user.

-d database The database name when connecting to the Sybase Aleri Streaming Plat-
form. The default is "database". The value of this is ignored.

-e Use an encrypted SSL connection to the Sybase Aleri Streaming Platform.

-G Use Kerberos authentication. This option is required when the Streaming
Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to the
Sybase Aleri Streaming Platform is the default ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current domain
controller

2. logged in to one user account and used a different one to connect to the
Sybase Aleri Streaming Platform

-k path Authentication is performed using the RSA private key file mechanism in-
stead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file. This option is required if the
Streaming Processor was started with the -V rsa option. With this option
enabled, the user name must be specified with the -c option, but the pass-
word is not required. In addition, the Streaming Processor must have been
started with the -k option specifying the directory in which to store the
RSA keys.

-m date format Set the format for date values using strptime format. The default is

Server Executables

34

"%Y-%m-%d %H:%M:%S+00".

-q [hostname:]port Set the hostname and port of the SQL Listener of the target Streaming Pro-
cessor. The default host is "localhost" and the default port is "22200".

-P precision Set the number of decimal places in output (default 2).

-t table name Set the name of the table for the XML output. The default name is "Res-
ult".

SQL Syntax

The Sybase Aleri Streaming Platform accepts a subset of SQL92 select, insert, update, and de-
lete statements. Queries using select are limited to single streams, with no joins or subqueries, but
may use where, group by, and order by clauses. The insert, update, and delete state-
ments are restricted to source streams. These modification statements can be put in sequence with a
semicolon, though.

See the Programming Interfaces Guide for more information.

Examples

Suppose the Sybase Aleri Streaming Platform is running on the machine "brule" with SQL port 11100.
To print the contents of a stream Emp,

echo "select * from Emp" | sp_query -q brule:11100 -c u:p

To delete an entry from the Dept stream, and update the Emp stream accordingly,

echo "delete from Dept where dn='SWP'; update Emp set dn='' where dn='SWP'" | sp_query -q
brule:11100 -c u:p

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_cli(1)

Bugs

See the documentation for known issues.

Server Executables

35

Name
sp_server — start the Streaming Processor

Synopsis

sp_server [OPTION ...]

Description

sp_server is a shell script that starts up the Streaming Processor (sp(-opt)) and the encryption proxy for
Command and Control (sslwrap).

Options

-a username:password Sets the authorization credentials used for inter-node communica-
tion when running a distributed cluster or in high availability(hot
spare) mode. If running a distributed cluster, all nodes must share
these credentials; when running as a high availability system, both
the primary and secondary nodes must share these credentials.

-B path Set the name of the file to which all rejected records will be writ-
ten.

-c port Set the Command and Control port. This is mandatory and cannot
be 0.

-d level Set debug level. The valid range is 0-7, with 7 being verbose.

-e path Specify the directory containing the SSL keys and certificates.
The default value is /etc/keys.

-f path Set the continuous query specification file. This is mandatory.

-F path Specify the full pathname of the XML Schema file (the default is
$PLATFORM_HOME/etc/Platform.xsd).

-g port Set the Gateway port. If the port is 0 or out of the range 1-65535,
the program will pick an arbitrary port. The Gateway interface is
responsible for the publish and subscribe mechanism.

-H pHost:pPort Indicates that the server is a secondary server and specifies the
host name and the command and control port of the primary serv-
er.

-j path Set the Java CLASSPATH for Java callouts.

-k path Specify the full pathname of the directory containing RSA public
keys for RSA authentication.

-K user:private key file Set the user and the user's RSA private key for RSA authentica-
tion in HA mode.

-l 0|1|2|3 Control where log messages get sent. Use 0 for no log messages,
1 to send to stderr only, 2 to send to syslog only, and 3 to send to
both stderr and syslog.

-L license key file Set the license key file (default is $PLATFORM_HOME/

Server Executables

36

etc/license.key).

-m megabytes Set the maximum virtual memory size (default is 0, meaning un-
limited).

-o true|false Optimize; eliminates redundant updates during processing
(default false).

-P precision Set the number of decimal places in output. The default value is 6.

-q port Set the SQL Listener port. This is mandatory and cannot be 0.

-r true|false Turn on/off access control (default false for off).

-S mem|log|stateless Force stores without a "kind" attribute to have a specific kind,
either "mem" for memory stores, "log" for log stores, or "state-
less" for stateless stores.

-t sec Turn on performance monitoring statistics, which are updated
every <delay> seconds. This option enables the performance
monitoring from the graphical user interface.

-V authentication Use the specified type of authentication. Valid values are
none, pam, rsa, and gssapi. The default is none. If -V pam is spe-
cified, clients connecting to the server will need to use the -c
user:password option. If -V rsa is specified, clients con-
necting to the server will need to use the -k rsaDir and -c
user options. If -V gssapi is specified, clients connecting to
the server will need to use the -G and -c user options.

-v Print the detailed revision number for the Sybase Aleri Streaming
Platform and exit.

Configuration Files

Configuration of the server is done in XML.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Bugs

See the documentation for known issues.

Server Executables

37

Name
sp_upgrade — convert release 2.x data models to release 3.0 data models.

Synopsis

sp_upgrade [filename]

Description

The sp_upgrade command converts an existing data model file for release 2.x of the Sybase Aleri
Streaming Platform to a release 3.0 data model file. It reads the data model from the specified filename
and writes to standard output. It is invoked automatically by the Aleri Studio to do an in-place update
when you open a data model.

It handles most conversion issues automatically; but there are several things that must be done manually.

• converting Rules (sp_upgrade comments them out in the XML file)

• converting Exprs (these can appear only in Rules, see previous item)

• converting row local storage to eventCaches

If your data models include any of these, you may want to run the sp_upgrade and make the necessary
manual changes before opening your data model in the Aleri Studio.

Examples

To convert an existing release 2.x data model named foo.xml to a release 3.0 data model named
bar.xml,

sp_upgrade foo.xml > bar.xml

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp_convert(1)

Bugs

See the documentation for known issues.

Server Executables

38

Name
sslwrap — simple TCP service encryption using TLS/SSL

Synopsis

sslwrap [-addr arg] [-cert file|-nocert] [-rsa file]
[-verify arg] [-Verify arg] [-nbio] [-nbio_test]
[-debug] [-state] [-cipher arg] [-quit]
[-no_tmp_rsa] [-ssl2|-ssl3] [-bugs] -port arg
-accept arg

-addr arg Address to connect to (default is
127.0.0.1)

-port arg port to connect to
-accept arg port to accept on (default is stdin for

inetd)
-verify arg turn on peer certificate verification
-Verify arg turn on peer certificate verification,

must have a cert.
-cert arg certificate file to use, PEM format assumed

(default is server.pem)
-key arg RSA file to use, PEM format assumed, in cert

file if not specified (default is server.pem)
-nbio Run with non-blocking IO
-nbio_test test with the non-blocking test bio
-debug Print more output
-state Print the SSL states
-nocert Don't use any certificates (Anon-DH)
-cipher arg play with 'openssl ciphers' to see what goes

here
-quiet No server output
-no_tmp_rsa Do not generate a tmp RSA key
-ssl2 Just talk SSLv2
-ssl3 Just talk SSLv3
-bugs Turn on SSL bug

DESCRIPTION

sslwrap is a simple UNIX service that sits over any simple TCP service such as POP3, IMAP, SMTP,
and encrypts all of the data on the connection using TLS/SSL. It uses ssleay to support SSL version 2
and 3. It can run out of inetd. It can also encrypt data for services located on another computer.

It works with the servers you already have, and does not require any modifications to your existing serv-
ers.

Get a certificate

You need a certificate for your server. You can make a self-signed certificate with no encryption using
these commands from the ssleay FAQ:

cd /usr/bin/ssl
/usr/bin/ssl/openssl req -new -x509 -nodes \

-out /etc/sslwrap/server.pem -keyout \
/etc/sslwrap/server.pem \
-days 365

ln -s server.pem `/usr/bin/ssl/openssl -x509 \

Server Executables

39

-noout -hash > server.pem`.0

There is information on getting a real server certificate from a Certificate Authority (CA) in the ssleay
FAQ. Note that Verisign previously would not issue a certificate for a server using ssleay; though this
may have changed.

There is a security problem with sslwrap: it requires an unencrypted private key. Since sslwrap runs out
of inetd it is not particularly convenient to prompt the server operator for the private key password. I'm
only using sslwrap for the link encryption (not server identity verification), so I'm using a self-signed
certificate, and I'm not as concerned about the private key being stolen.

You can use self-signed certificates using Netscape Navigator 2.0 or later, or Microsoft Internet Ex-
plorer 3.02 or later. The client will need to go through several dialogs to add the certificate, either for the
session or until expiration.

You will want to chmod 600 your certificate file so that normal users won't be able to read your unen-
crypted private key.

Also, when req prompts for you “Common Name (eg, YOUR name) []” enter your host name, not your
name, for a server certificate. Netscape 3.0.2 and later allow wildcards (for example, “*.acme.com”) but
Microsoft Internet Explorer 4.0 does not. The hostname can be an IP CNAME, but must match whatever
you specified to connect to (in the https URL, mail configuration, and other places) or you will get a
warning dialog in the client.

Add to /etc/services

According to IANA, the following port numbers have been assigned for SSL:

https 443/tcp # http protocol over TLS/SSL
ssmtp 465/tcp # smtp protocol over TLS/SSL
nntps 563/tcp # nttp protocol over TLS/SSL
telnets 992/tcp # telnet protocol over TLS/SSL
imaps 993/tcp # imap4 protocol over TLS/SSL
ircs 994/tcp # irc protocol over TLS/SSL
pop3s 995/tcp # POP3 protocol over TLS/SSL
ftps-data 989/tcp # ftp protocol, data, over TLS/SSL
ftps 990/tcp # ftp protocol, control, over TLS/SSL

If you do not have the entries above in /etc/services, you will probably want to add them.

Running out of inetd

If you want to run sslwrap out of inetd, you will need to edit inetd.conf to add all of the services
you want to front-end:

https stream tcp nowait sslwrap /usr/sbin/tcpd \
/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 80

imaps stream tcp nowait sslwrap /usr/sbin/tcpd \
/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 143

telnets stream tcp nowait sslwrap /usr/sbin/tcpd \
/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 23

pop3s stream tcp nowait sslwrap /usr/sbin/tcpd \
/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 110

Server Executables

40

The service (https, imaps, telnets, pop3s, or other) is the service identifier you added to /
etc/services.

Running as daemon

You can also run sslwrap as a daemon instead of running out of inetd.

/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 80 \
-accept 443 &

/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 143 \
-accept 993 &

/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 23 \
-accept 992 &

/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 110 \
-accept 995 &

You might type in commands like this, or perhaps add it to one of the startup files, like /etc/inet.d.

Connection to another machine

You can “ssl-ize” a service running on a computer other than the one you're running sslwrap on. Of
course anyone between you and the server you are connecting on can still look at your clear text data,
but if you'll be connecting to the SSL server from an even more distant or insecure area, you may still
have benefits from doing this.

Remote connection can be done from inetd or as a daemon; add a “-addr” parameter to the command
line:

imaps stream tcp nowait sslwrap /usr/sbin/tcpd \
/usr/sbin/sslwrap -cert /etc/sslwrap/server.pem -port 143 \
-addr 123.45.67.89

The address must be specified in dotted decimal notation and \ be an IP address, not a hostname.

NOTES

Note that you cannot front-end ftp data connections with sslwrap nor can you front-end UDP services.
While you can front-end telnet using sslwrap, only the “sslonly” variant of telnet is supported. Other
SSL telnet implementations such as SSL-MZtelnet also support SSL via telnet option negotiation to the
standard telnet port (23) instead of using the special port (992).

While you can front-end your HTTP server with sslwrap, you're better off using one of the Apache with
SSL variations of Apache. It is more efficient and won't adversely affect your logs. If you use sslwrap,
all connections appear to come from “localhost”. The Stronghold version of Apache also comes with a
Thawte certificate. Using a self-signed certificate for electronic commerce is probably not a good idea.

This man page is not part of the sslwrap source package. It was created for the Debian GNU/Linux dis-
tribution.

SEE ALSO

Server Executables

41

sslwrapconfig(1)

AUTHOR

Debian GNU/Linux, Raphael Bossek <bossekr@debian.org> sslwrap is written by Rick Kaseguma
<rickk@rickk.com>

More information can be found at the sslwrap web site at http://www.rickk.com/sslwrap/

Server Executables

42

http://www.rickk.com/sslwrap/

Chapter 4. Command and Control Executables

43

Name
sp_cli — Sybase Aleri Streaming Platform Command line utility

Synopsis

-p [host:]port [OPTION...] [COMMAND...]

Description

sp_cli is a command-line utility that is used to control and get information from a running Sybase Aleri
Streaming Platform instance. For example, it can be used to stop the Sybase Aleri Streaming Platform,
get the list of streams and their definitions, or get the host and port of the Gateway interface.

Required Arguments

-p [host:]port Specifies the port number, or the host name and port number, of the Command
and Control interface within a running instance of the Sybase Aleri Streaming
Platform. The default host name is localhost.

Options

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform;
if the password is not given, the user will be prompted for it. If the Sy-
base Aleri Streaming Platform successfully authenticates with these cre-
dentials, the connection is maintained, otherwise the Sybase Aleri
Streaming Platform will immediately close the connection.

This option must correspond to the type of authentication specified for
the Streaming Processor when it was started up. If it was started without
specifying a -V option or using the -V none option, omit this option.
If it was started using the -V pam option, specify -c
user:password. If it was started using the -V rsa or -V gssapi
option, specify -c user.

-e Encrypt messages between the server and sp_cli via an OpenSSL sock-
et.

-G Use Kerberos authentication. This option is required when the Stream-
ing Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to
the Sybase Aleri Streaming Platform is the default ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current do-
main controller

2. logged in to one user account and used a different one to connect to
the Sybase Aleri Streaming Platform

-h Prints out detailed help.

-i file Run the commands in the given file.

Command and Control Executables

44

-k privateRsaKeyFile Authentication is performed using the RSA private key file mechanism
instead of password authentication. The privateRsaKeyFile must specify
the pathname of the private RSA key file. This option is required if the
Streaming Processor was started with the -V rsa option. With this op-
tion enabled, the user name must be specified with the -c option, but
the password is not required. In addition, the Streaming Processor must
have been started with the -k option specifying the directory in which
to store the RSA keys.

-q Disable the prompt. Particularly useful when reading commands from a
file piped to standard input on Windows®. (which can't tell that it's not
getting the input from a terminal and disable the prompt automatically).

-x Enable echoing of commands before execution. This can also be
changed later with the command echo on|off.

Commands

When a command takes arbitrary values as parameters, they should be quoted. The sp_cli command
provides two kinds of quotes: back quotes (`) and curly braces {}. For example, `parameter` or
{parameter}. (These quotes are used to avoid confusion with the normal single and double quotes
that are already used in the syntax of the shell and SPLASH expressions.) Each of these quotes has its
own limitations.

The strings enclosed in back quotes may not have back quotes in the middle. This is usually not an issue,
since there is no use for back quotes in SPLASH and SQL. A more serious limitation is that the sp_cli
commands cannot be specified on the command line in double quotes. If they were, the UNIX shell
would try to interpret the back quotes. To prevent this, in this case the back quotes need to be shielded
with back slashes (\`). For example:

sp_cli -c user:password -p 12345 "history \`100\`"

The strings enclosed in braces ({}) must have a balanced number of braces inside them, just like in Tcl.
For example:

{ row.value = '{a}' }

If the parameter contains an unbalanced number of braces, the only way around is by using the back
quotes instead. For example:

` row.value = '{' `

The quoting styles can be mixed within the same command. Different parameters of the same command
may use different quoting styles. But they can't be mixed within the same parameter. The command de-
scriptions mostly show the back quotes to avoid confusion with "{" as a metacharacter. But the braces
quoting can be used instead, and would be more convenient in most of the practical cases.

Unlike shell and Tcl, back quotes and curly braces cannot be used for multi-line values. Yet another
quoting style is intended for the large multi-line parameters, such as the inlined configuration files.
These parameters start with <<!, then from the next line goes the inline text of the parameter, and fi-
nally a line containing only ! on it (without even any whitespace before or after it). This syntax is simil-

Command and Control Executables

45

ar to the shell's "<<" syntax but the terminating word is fixed to be "!" and can not be changed. The line
breaks after the "<<!" and before the terminating "!" are not part of the parameter, so the usual single-
line values can be specified through the syntax as well, if desired. There is also a way to specify multiple
inline parameters: separate them with lines containing !<<!. For example:

load_config_inline_conv {nobackup,nocompat} <<!
... text of the model ...
!<<!
... text of the conversion model ...
!

This syntax is not specific to any particular commands, it can be used with any commands if desired.

Many commands can redirect output to a file using the following syntax.

command > `outfile.dat`
command >> `outfile.dat`
command | `filter-program`

The ">" operator overwrites an existing file, and ">>" appends to an existing file. The operator "|" pipes
the output to a UNIX command pipeline. The file name or the filter program should be quoted, either in
back quotes or braces, as usual.

The general commands are:

addrsize Output the address/pointer size (in bytes) of the connected plat-
form instance (4 bytes for 32 bit addressing, 8 bytes for 64 bit ad-
dressing). This value reflects how the connected platform instance
was compiled (32 bit vs. 64 bit). For example, a 32 bit platform
could be running on a 64 bit host, in which case the addrsize
command would return the value 4, not 8.

backup Creates a backup of all the Log Stores. The backup files are cre-
ated with suffix ".bak". So the file dynamic.log would be
backed up into the file dynamic.bak. The backup files are cre-
ated as sparse files, with compacted contents.

clear base stream stream Clear (delete) the contents of the specified base stream.

clock Print the current state of the Sybase Aleri Streaming Platform lo-
gical clock. For example:

current time: 1071014401.018 2003-12-10 00:00:01.018
rate: 6.000 real: 0 stop depth: 0 max sleep: 100

The time is printed as both the number of seconds since UNIX
epoch and a user-readable value. Rate is the clock rate relative to
real time: 10 means "10 times faster", 0.1 means "10 times
slower". The real flag shows whether the clock matches the sys-
tem time of the machine where the Sybase Aleri Streaming Plat-
form runs (1), or if the clock has been changed artificially (0).

Command and Control Executables

46

Stop depth shows how many times the clock has been stopped re-
cursively, or in other words how many times start clock would
have to be called to actually resume the flow of time. When the
clock is running, the stop depth is 0. Max sleep is the period of
time, in real milliseconds, that guarantees that all the sleepers dis-
cover the changes in the clock rate or time. The calls that change
the clock rate do sleep automatically for that long (with the logic-
al clock stopped) to ensure that their effects have been applied
cleanly.

clock [rate `value`] [time [add]
`value`]

Change the current time and/or rate of the logical clock. Rate is
specified as a floating-point number, the minimum rate is 0.001.
Time may be specified as a floating point number of seconds
since the UNIX epoch or in the format year-month-day
Thour:min:sec, or the same with milliseconds:
year-month-dayThour:min:sec.NNN. The letter "T" is literal, as in
the default Sybase Aleri Streaming Platform time format. If the
time value is prepended with add, it specifies a change to the cur-
rent time. In this case it must be a floating point number of
seconds. Prints the previous state of the clock as it was before ex-
ecuting the command. See the description in the clock command.

clock real Return the logical clock of the Sybase Aleri Streaming Platform
to the real time. In other words, to use the system clock of the ma-
chine where the Sybase Aleri Streaming Platform is running. The
clock can not be set to real time while it's stopped (since a stopped
clock would diverge from real time immediately). Prints the pre-
vious state of the clock as it was before executing the command.
See the description in the clock command.

clock stop on pause [`0|1`] Show or change the flag that controls whether the Sybase Aleri
Streaming Platform logical clock stops when the Sybase Aleri
Streaming Platform is paused in trace mode. Prints the previous
state of the clock as it was before executing the command. See the
description in the clock command.

clear base stream `stream` Clear (delete) the contents of the specified base stream.

datesize Output the size of a date field (in bytes) of the connected Sybase
Aleri Streaming Platform instance (4 bytes for 32 bit date repres-
entation, 8 bytes for 64 bit date representation).

echo `string` Print the string to standard output.

echo on|off Enable or disable the printing of commands to standard output be-
fore execution.

endian Output the endian value ("big" or "little") of the machine on
which the connected Sybase Aleri Streaming Platform instance is
running.

fd Display the field delimiter value.

fd delimiter Set a new field delimiter value. The delimiter must NOT be
quoted. Any non-space character is taken as the new delimiter.

gateway Output the host and port number of the Gateway interface.

Command and Control Executables

47

get_config Get the current running XML configuration and print it on stand-
ard output or to a local file by specifying >file after the command.

help Output the general help message.

help flags Output help for the set of output control flags.

history `number` [`stream`] Change the maximum history size of a stream. The history is col-
lected only with the trace mode on. Every time the trace mode is
turned off the history is discarded. As the history collects, only
the last number of input and output transaction pairs are kept, the
older ones are discarded. The default limit on the Sybase Aleri
Streaming Platform is 100.

history ex `stream` Display the current maximum history size of a stream.

idx `streamName` Output the index for the stream specified.

immediate stop Stop the Sybase Aleri Streaming Platform immediately, without
shutting down any streams.

immediate pause Force the Sybase Aleri Streaming Platform to think that it's in a
paused state. This is a last-resort way to examine it if it is intern-
ally deadlocked or otherwise frozen. This command corrupts the
Sybase Aleri Streaming Platform state. It should only be used
when it is already hopelessly stuck.

kill `handle` Kill the client connection with the specified handle. The list of all
open connections can be found in the metadata stream
Aleri_Clients.

kill every `name` Kill all the client connections with the specified tag name. The list
of all open connections and their tag names can be found in the
metadata stream Aleri_Clients. The tag name can be specified
with option -m of such commands as sp_subscribe and
sp_upload.

load_config [`option,...`] `remote-
File`

Load the new configuration from this file on the server. If the file
contains errors, the error messages will be printed in the log file,
the error code returned, and the Sybase Aleri Streaming Platform
will be left unchanged.

The options affect the way the changes are applied. The option
string consists of options separated by commas (no spaces), for
example: regen,nobackup. Options to be enabled are listed by
names (for example, regen), options to be disabled are prefixed
with "no" (for example, noregen). Some options may have argu-
ments specified after "=" (optname=value). When an option
takes multiple arguments, the arguments are also separated from
each other by equal signs (optname=arg1=arg2=arg3). The fol-
lowing options are currently supported:

• [no]regen

Perform/skip the regeneration of the modified streams. The de-
fault is regen. If the regeneration is skipped, only the pro-
cessing of the new data will change, and the old data will be
left unchanged and thus inconsistent. The allowed modifica-
tions with option "noregen" are further limited. The option

Command and Control Executables

48

"noregen" is potentially very dangerous and must never be used
in production. It's intended only for very quick and dirty experi-
mentation with models in development. Since the base streams
can not be regenerated, this option does not affect them. The re-
generation may take a long time to complete. Options noregen
and nocompat are mutually exclusive.

• [no]backup

Perform/skip a backup before changing anything. The default is
backup. If the backup is skipped and a crash occurs in the
middle of the dynamic modification, the data in the Log Stores
may be left in an unrecoverable state.

• [no]compat

Limit/don't limit the changes to the existing streams only to the
compatible ones, those that don't require the stream to be de-
leted and then re-created in the new form, with new stream
handle. The option to allow incompatible changes is nocom-
pat (not incompat). Think of it as an abbreviation of “no
compatibility check”. The noregen and nocompat options
are mutually exclusive. The default is compat.

• [no]base

Allow/disallow the changes on the base streams. Since the data
in the base streams can't be regenerated, their contents may be-
come inconsistent with the new configuration. The option "no-
base" serves to prevent accidental changes that could cause
such issues. The meaning of this option depends on the "com-
pat" option: with "compat,nobase" no changes are allowed on
the base streams at all; with "nocompat,nobase" only compat-
ible changes are allowed on the base streams. The default is no-
base.

• [no]verbose

Has effect on the error messages in the "nocompat" mode:
when an incompatible change is found, print the messages
about it, even if the change is acceptable and not an error. This
can be confusing, since these messages look like errors, but
also helpful in diagnostics of dependent changes. The default is
noverbose.

• conv= remoteFile

Requires a conversion performed on the base stream data, and
specifies that the data conversion model is in the remoteFile on
the server. The conversion model is a special temporary model
that reads the data from the base streams of the original model,
processes it to match the row definitions of the base streams of
the modified model, and then places it into the base streams of
the modified model (after modification but before regenera-
tion). The typical case for using the conversion model is when
the row definition of some base stream changes in an incompat-
ible way. See the more detailed description in the Administrat-

Command and Control Executables

49

or's Guide. The default is empty.

The option list (if present) and the file name must be quoted. The
details of allowed configuration changes are described in the Ad-
ministrator's Guide.

load_config_inline `[option,...]`
`XML_model_text`

Similar to load_config, only the new configuration is specified
in-line as the last argument of the command, instead of a file on
the server. Typically the "<<!" syntax would be used instead of
back quotes to specify the argument with the text of the model:

load_config_inline [`option,...`] <<!
XML text of the model
!

The command line must end with "<<!", the following lines con-
tain the XML configuration, and the last terminating line contains
only the "!" in it. This syntax is similar to the shell's "<<" syntax
but the terminating word is fixed to be "!" and can not be
changed.

load_config_inline_conv
[`option,...`] `XML_model`
`XML_conversion`

Similar to load_config_inline, but the conversion configuration is
also specified in-line instead of a file on the server. Typically the
"<<!" syntax would be used instead of back quotes to specify the
argument with the text of the model:

load_config_inline [`option,...`] <<!
XML text of the model
!<<!
XML text of the conversion model
!

The command line must end with "<<!", the following lines con-
tain the XML configuration, then the separator line containing
"!<<!" (without any spaces in it), then the lines containing the
conversion XML configuration and finally the last terminating
line consists of "!". The option conv may not be used with this
command, the conversion is always implied.

lock timeout [`seconds`] Show or change the value of exclusive lock timeout of the Sybase
Aleri Streaming Platform. Most of the commands (except those
that wait for certain events) are serialized using the lock, with one
command executing at a time. Normally this should happen fast.
The timeout prevents the following commands from hanging
forever waiting for this lock if something goes wrong. The default
timeout is 60 seconds.

loglevel `level` Set the logging level of the Sybase Aleri Streaming Platform.

putd `delimited SP record` Put a single delimited record (within back quotes or braces) to the
Gateway I/O process. Refer to "PUT COMMAND NOTES" be-
low.

putx `XML SP record` Put a single XML formatted record (within back quotes or braces)
to the Gateway interface. Refer to "PUT COMMAND NOTES"

Command and Control Executables

50

below.

quiesced Output the quiesced state (1 for true or 0 for false). The state is 1
if there are no publisher connections and all the input data has
fully propagated through the model.

quit Exit out of the sp_cli utility.

refresh_calendars Refresh calendar data from files; this does nothing if the Sybase
Aleri Streaming Platform has not loaded any calendars via its cal-
endar functions.

save_config ` remoteFile` Save the current running XML configuration to this file on the
server (file must not exist yet). The file name must be quoted.

setparam ` param` `value` Set the specified model parameter to this value.

settings Output the field separator, flag values, and so forth.

snapshot `streamName` Output the current content of the stream in tabular form, using the
output control flag settings (refer to "OUTPUT CONTROL
FLAGS" below).

start connector initial Start all the connectors as specified in the Sybase Aleri Streaming
Platform <StartUp> configuration element, just like they get star-
ted on the Sybase Aleri Streaming Platform start-up. The connect-
ors that were already running will be left running, the connectors
that haven't been running will get restarted. This command waits
for all the started connectors to complete their initial loading.

start clock Resume the logical clock of the platform. Prints the previous state
of the clock as it was before executing the command. See the de-
scription in the clock command.

start connector
`connector-or-group`

Start a named connector, or all the connectors from a named
group from the <StartUp> element. For the connectors that are
already running, this command has no effect. This command does
not wait for the full start of the connectors, it returns immediately.
Use the command wait connector initial to wait for completion
of initial loading.

stop Issue the "exit streams" command to the Sybase Aleri Streaming
Platform Command and Control interface, causing the Sybase
Aleri Streaming Platform engine to exit.

stop clock Stop the logical clock of the Sybase Aleri Streaming Platform.
The records will still be processed but the notion of time won't
change and the timer events won't happen. While the clock is
stopped, the time and rate may be changed but the clock may not
be switched to real time. Stopping may be called multiple times,
then resume must be called the same number of times to have the
time flow resumed. Be careful with it, since the Sybase Aleri
Streaming Platform may also stop and resume the clock intern-
ally, don't resume what you didn't stop. Prints the previous state
of the clock as it was before executing the command. See the de-
scription in the clock command.

stop connector
`connector-or-group`

Stop a named connector, or all the connectors from a named
group from the <StartUp> element. For the connectors that are

Command and Control Executables

51

already not running, this command has no effect. The output con-
nectors are allowed to complete the processing of their output
queue before they get stopped (however as of this command no
more new events will be added to this queue). This command
does not wait for the connectors to be stopped, it returns immedi-
ately. Use the command wait connector to wait for completion of
the connectors.

stop connector immediate
`connector-or-group`

Stop a named connector, or all the connectors from a named
group from the <StartUp> element. Similar to stop connector but
has a slightly different effect on the output connectors. Their out-
put queue gets discarded and the connectors are requested to stop
immediately. For the input connectors stop connector and stop
connector immediate are equivalent, since these connectors have
no output queue. This command does not wait for the connectors
to be stopped, it returns immediately. Use the command wait con-
nector to wait for completion of the connectors.

stream `streamName` Output the definition of the specified stream, using the "hdr" and
"sphdr" output control flags (refer to "OUTPUT CONTROL
FLAGS" below).

streams Output the list of base and derived streams.

throttle `number` [`stream`] Change the input queue throttle value for one or all streams. Any
writes to the stream's input queue get blocked when the queue size
reaches double the throttle value. The throttle value can not be in-
creased beyond the default value. It can only be reduced. Redu-
cing this value is useful for easier tracing of records during de-
bugging.

throttle ex `stream` Display the current throttle value of a stream.

trace_mode [on|off] Change or get the current state of the trace mode. Without any ar-
gument prints the current state, on enables the trace mode, off dis-
ables it. The trace mode is prerequisite for the commands related
to single-stepping, breakpoints and examining the debugging in-
formation.

wait connector
`connector-or-group`

Wait for a named connector, or for all the connectors from a
named group from the <StartUp> element to terminate. They may
be terminated by any reason, either naturally (running out of data
in the data source) or as a result of the stop connector command.

wait connector initial
`connector-or-group`

Wait for a named connector, or for all the connectors from a
named group, from the <StartUp> element to complete the initial
loading. In other words, it waits for the connector state to change
to something other than "INITIAL".

wait quiesced Wait until all the input fully propagates through the model. The
new input received after this point will be buffered until the
propagation of the previous data completes. Then the Sybase
Aleri Streaming Platform resumes normal operation.

wait quiesced gateway Wait until all the publishing clients disconnect and all the re-
ceived input fully propagates through the model. This command
essentially waits for the condition when the command quiesced
would return 1. If any new clients connect while this command is

Command and Control Executables

52

waiting for the data to propagate, the data from them will be buf-
fered until the wait completes.

Commands Requiring the Trace Mode

pause Pause the Sybase Aleri Streaming Platform execution. Returns
after the pause begins. All the data examination and single-
stepping commands require the Sybase Aleri Streaming Platform
to be paused first, explicitly with this command or on a break-
point or exception on bad data. If the Sybase Aleri Streaming
Platform is already paused, this command returns success imme-
diately.

check_pause Show whether or not the Sybase Aleri Streaming Platform is cur-
rently paused.

wait_pause Wait until the Sybase Aleri Streaming Platform gets paused by a
breakpoint or from another instance of sp_cli. The wait is not in-
terruptible (other than by killing sp_cli).

run Continue the normal platform execution.

step [`stream`] Do a single step on a paused platform. If a stream name is given
as an argument, a single step is done on this stream. Otherwise a
stream to be stepped is picked at random among the streams ready
to process data. If no streams are ready to process (all of them are
waiting for input or output), or with the stream argument if this
stream is not ready to process, this command is a no-op and re-
turns success immediately.

step timeout [`number`] Set the timeout in milliseconds for the automatic stepping (as de-
scribed below). The default timeout is 0.3s. Using a negative or
zero value resets the timeout to default.

step trans `stream` [`limit`] Automatically step the stream at least once, and then to just be-
fore the end of transaction (the "PUT" location on the stream state
diagram). The second argument may be specified to limit the
number of steps to be made, to limit the running time in case of
very big transactions. The default limit is 10000. If the stream has
no input pending, or if it blocks on the output for more than
timeout (see above), the stepping will also stop and return an er-
ror.

step quiesce stream `stream`
[`limit`]

Automatically step the stream and all its descendants until all of
them are quiesced (their input queues are empty). Note that the
first word "stream" above is a literal and the second one repres-
ents a parameter, the stream name. The second argument may be
specified to limit the number of steps to be made, to limit the run-
ning time in case of large amount of data collected in the queues.
The default limit is 100000. If the stream is a base stream, and the
input on it keeps coming fast enough, the call will return only
when the limit of steps is achieved. There is no such danger for a
derived stream since the Sybase Aleri Streaming Platform is
paused when stepping, any inputs of this stream will be paused
too. Though if this stream's input queue was full and any inputs
are waiting to deposit their already processed data on it, as the in-

Command and Control Executables

53

put queue gets processed, these waiting inputs would add their
one transaction to the queue. If none of the streams has input
pending, or if all of them block on the output for more than
timeout (see above), the stepping will also stop and return an er-
ror.

step quiesce downstream `stream`
[`limit`]

Similar to step quiesce stream, except the stream itself is not
stepped. Only its descendants are stepped. This command is con-
venient to clear out the descendant streams' input queues. Then
when the argument stream will produce its output, the progression
of the data through the descendant streams can be traced easily.

step quiesce from base [`limit`] Automatically step all the derived (non-base) streams until their
input queues are empty. The argument may be specified to limit
the number of steps to be made, to limit the running time in case
there is a large amount of data collected in the queues. The default
limit is 100000. If none of the streams has input pending, or if all
of them block on the output for more than timeout (see above),
the stepping will also stop and return an error. This command is
useful to clean out the queues of derived streams before pro-
cessing an interesting record through the base stream. Then the
progression of data through the derived streams can be watched
easily.

dump `filePrefix` [`stream`] Dump the contents of each stream or one specific stream to a file.
Each file is named filePrefixdump_streamName.xml.

bp add `stream` `inputStream`
[`condition`]

Add a breakpoint on a stream, before it starts processing an input
record from another stream inputStream. Optionally, a condition
may be specified, and the breakpoint would trigger only when the
condition evaluated on the input record is true. The condition is a
SPLASH expression. It may refer to two predefined variables:
row - the current input record, and for the deletes and update
blocks in the derived streams oldrow - the previous value of the
record with this key, that is being updated or deleted. The condi-
tion may refer to the fields in the records as usual, "row.field".
The stream's local and global variables may be used as well.

This command prints the ID of the newly created breakpoint.

bp add `stream` any Add a breakpoint on a stream, before it starts processing an input
record from any stream. The condition may not be specified in
this case.

This command prints the ID of the newly created breakpoint.

bp add `stream` out [`condition`] Add a breakpoint on a stream, after it has processed an input re-
cord and produced some (possibly empty) output. Optionally, a
condition may be specified, and the breakpoint would trigger only
when the condition evaluated on any of the produced output re-
cords is true. The condition is a SPLASH expression. It may refer
to one predefined variable: row - the current output record. Since
one input record may produce multiple output records, the condi-
tion is evaluated for each of them in order. If there was no output
produced, the condition still evaluates once with row set to NULL.
The condition may refer to the fields in the records as usual,
"row.field".

Command and Control Executables

54

This command prints the ID of the newly created breakpoint.

bp del `id` Delete the breakpoint with specified ID (as returned from bp add
or reported by bp list).

bp del all Delete all the breakpoints.

bp on|off `id` Enable or disable the breakpoint with specified ID.

bp on|off all Enable or disable all the breakpoints.

bp every `count` `id` Make the breakpoint with specified ID trigger on every Nth occa-
sion. For example, to make the breakpoint with ID 8 trigger on
every 100th record, use "bp every `100` `8`". Setting the count to
1 makes the breakpoint trigger every time, just like when it was
originally created.

bp every `count` all Make all the breakpoints trigger on every Nth occasion.

bp list List the breakpoints. A convenience alias for "ex `breakpoints`".
See the details there.

ex `kind` [`stream` [`object`]] Examine data in the Sybase Aleri Streaming Platform. It takes the
name of the kind of data, of the stream to which it belongs, and of
the particular object. For some kinds of data, the stream and ob-
ject arguments may not be applicable. The data is printed in XML
format, with the element name for most data kinds set to "row". If
the data represents a transaction, it's enclosed in a <trans> ele-
ment. If the data represents an update pair, it's enclosed in a
<pair> element. The exact fields depend on the data being ex-
amined.

When examining the input data kinds (input queue, current input
transactions and row, input history), the data may be a mix of
rows of different types, produced by different streams. In this
case, to tell them apart, the name of the XML element is set to the
name of the stream that produced it (for base streams it would be
the name of the base stream itself).

The following kinds of data are currently supported:

• `pause`

State of the user streams when paused. The fields are:

• name

Name of the stream.

• loc

Location where the stream is paused.

• onbp

If on a triggered breakpoint, the ID of that breakpoint, other-
wise 0. If multiple breakpoints were triggered at the same
time, will contain the ID of one of them.

Command and Control Executables

55

• throttle

The input queue throttle value (see the throttle command).

• history

Maximum size of the kept history.

• postSeq

Count of transactions ever posted to the input queue.

• inSeq

Count of transactions ever read from the input queue.

• outSeq

Count of transactions ever processed to the output (including
the empty transactions that get discarded, and the expiry
transactions).

• stepSeq

The count of steps (as defined by the step command) made
in the trace mode. This includes both single-stepping and
running. The changes in this count can be used to find out
which streams have changed their state.

• `pauseAll`

Same as pause, only includes the metadata streams as well.

• `breakpoints`

Information about all the currently registered breakpoints. The
fields are:

• id

ID of the breakpoint. Never changes throughout the break-
point's life.

• stream

Name of the stream on which the breakpoint is defined.

• origin

Contains the name of the input stream for a breakpoint on a
particular input stream, "*" for a breakpoint on input from
any stream, and "" (empty) for a breakpoint on output.

• expr

Conditional expression.

• enabledEvery

Command and Control Executables

56

N to trigger the breakpoint on every Nth matching record.
See the bp every command for details.

• leftToTrigger

How many matches are currently left for the breakpoint until
triggering.

• onit

1 if the breakpoint is currently triggered, 0 otherwise.

• `var` `` `var-name`

Contents of a global variable (one defined in the XML node
<Global>). The fields depend on the type of variable. The in-
dexes in the arrays are shown as Aleri_Index. The keys in the
dictionaries are shown as Aleri_Key_<field-name>. The val-
ues of records are shown with fields as in the record definition.
The simple variables are represented with the Aleri_Value
field. For structured values, this command may return multiple
rows. If a variable is NULL, nothing is returned. For an array,
only the elements with non-NULL values are shown. To access
streams' local variables, see below the version of this command
with the stream name parameter.

• `listVar`

The list of all global variable names. To list streams' local vari-
ables, see below the version of this command with the stream
name parameter.

• name

Name of the variable.

• type

Type of the variable.

• `store` `stream`

Contents of a stream's store. The fields are as in the stream's
row definition.

• `outTrans` `stream`

The current output transaction as it's being built. The fields are
as in the stream's row definition.

• `outRow` `stream`

Output produced from processing of the previous input row.
May contain multiple or no rows. The fields are as in the
stream's row definition.

Command and Control Executables

57

• `badRows` `stream`

When the Sybase Aleri Streaming Platform is paused on a bad
rows exception, contains these bad rows. The fields are as in
the row definition of the stream that produced the data (or, for a
base stream, of the current stream).

• `badRowsReason` `stream`

For each bad row reported by badRows contains an error mes-
sage explaining why it's bad. The message is in the reason
field.

• `outHist` `stream`

The output transactions from the stream's history. The empty
transactions are returned as records with all fields containing
NULL. There is one-to-one match between the transactions re-
turned by ex `outHist` and ex `inHist`. The fields are as in the
stream's row definition.

• `lastOutTrans` `stream`

The newest output transaction in the stream's history. Essen-
tially the same thing as " ex `outHistLatest` `stream` `0`", but
in case if the history is empty, returns a success with no rows,
while outHistLatest returns an error. The fields are as in the
stream's row definition.

• `outHistEarliest` `stream` `index`

Select an individual output transaction from the stream's his-
tory. The index is a number, the index 0 selects the earliest
transaction saved in the history, increasing index means later
transactions. If there is no transaction with such an index, re-
turns the "No such object" error. The fields are as in the
stream's row definition.

• `outHistLatest` `stream` `index`

Select an individual output transaction from the stream's his-
tory. The index is a number, the index 0 selects the latest trans-
action saved in the history, increasing index means earlier
transactions. If there is no transaction with such an index, re-
turns the "No such object" error. The fields are as in the
stream's row definition.

• `var` `stream` `var-name`

Contents of a stream's external variable. Only the external vari-
ables (those defined in the XML node <Local>) may be ex-
amined. This includes the variables of types array, dictionary
and eventCache. The variables defined inside the SPLASH
blocks exist only when the appropriate methods run, and can't
be examined. The fields depend on the type of variable. The in-
dexes in the arrays and eventCaches are shown as Aleri_Index.
The keys in the dictionaries and eventCaches are shown as
Aleri_Key_<field-name>. The values of records are shown

Command and Control Executables

58

with fields as in the record definition. The simple variables are
represented with the Aleri_Value field. For structured values,
this command may return multiple rows. If a variable is NULL,
nothing is returned. For an array only the elements with non-
NULL values are shown. The global variables can not be ac-
cessed this way, use the empty stream name to access them.

• `listVar` `stream`

The list of all variable names defined on this stream. Applic-
able only to the streams that are allowed to have the node
<Local>. Does not include the global variables.

• name

Name of the variable.

• type

Type of the variable.

• `queue` `stream`

An input data kind. Contents of the stream's input queue. The
fields are as in the row definition of the stream that produced
the data (or, for a base stream, of the current stream).

• `inTrans` `stream`

An input data kind. The current input transaction that is being
processed. The fields are as in the row definition of the stream
that produced the data (or, for a base stream, of the current
stream).

• `inRow` `stream`

An input data kind. The current input row that is being pro-
cessed. The fields are as in the row definition of the stream that
produced the data (or, for a base stream, of the current stream).

• `queueHead` `stream` `index`

An input data kind. Select an individual transaction from the
stream's input queue. The index is a number, the index 0 selects
the transaction at the head of queue, increasing index means
next transactions. If there is no transaction with such an index,
returns the "No such object" error. The fields are as in the row
definition of the stream that produced the data (or, for a base
stream, of the current stream).

• `queueTail` `stream` `index`

An input data kind. Select an individual transaction from the
stream's input queue. The index is a number, the index 0 selects
the last transaction at the tail of the queue, increasing index
means previous transactions. If there is no transaction with
such an index, returns the "No such object" error. The fields are
as in the row definition of the stream that produced the data (or,

Command and Control Executables

59

for a base stream, of the current stream).

• `inHist` `stream`

An input data kind. The input transaction from the stream's his-
tory. There is one-to-one match between the transactions re-
turned by ex `outHist` and ex `inHist`. The fields are as in the
row definition of the stream that produced the data (or, for a
base stream, of the current stream).

• `lastInTrans` `stream`

An input data kind. The newest input transaction in the stream's
history. Essentially the same thing as "`inHistLatest` `stream`
`0`", but in case if the history is empty, returns a success with
no rows, while `inHistLatest returns an error. The fields are as
in the row definition of the stream that produced the data (or,
for a base stream, of the current stream).

• `inHistEarliest` `stream` `index`

An input data kind. Select an individual input transaction from
the stream's history. The index is a number, the index 0 selects
the earliest transaction saved in the history, increasing index
means later transactions. If there is no transaction with such an
index, returns the "No such object" error. The fields are as in
the row definition of the stream that produced the data (or, for a
base stream, of the current stream).

• `inHistLatest` `stream` `index`

An input data kind. Select an individual input transaction from
the stream's history. The index is a number, the index 0 selects
the latest transaction saved in the history, increasing index
means earlier transactions. If there is no transaction with such
an index, returns the "No such object" error. The fields are as in
the row definition of the stream that produced the data (or, for a
base stream, of the current stream).

• `hist` `stream`

This is a mixed representation of history, with both input and
output data. Each input transaction is followed by its matching
output transaction. In other words, it's an interleaving of the
transactions that would be returned by ex `inHist` and ex
`outHist`. The rows in the input transactions are marked with
the XML tag of their origin stream name, the rows in the output
transaction are marked with the XML tag "row". If you have an
input stream named "row", good luck telling them apart.

• `lastTrans` `stream`

A mixed input-and-output data kind, see the description of
`hist` for details. The newest input and output transactions in
the stream's history.

• `histEarliest` `stream` `index`

Command and Control Executables

60

A mixed input-and-output data kind, see the description of
`hist` for details. Select an individual transaction pair from the
stream's history. The index is a number, the index 0 selects the
earliest transaction saved in the history, increasing index means
later transactions. If there is no transaction with such an index,
returns the "No such object" error.

• `histLatest` `stream` `index`

A mixed input-and-output data kind, see the description of
`hist` for details. Select an individual transaction pair from the
stream's history. The index is a number, the index 0 selects the
latest transaction saved in the history, increasing index means
earlier transactions. If there is no transaction with such an in-
dex, returns the "No such object" error.

• `aggrGroup` `aggregationStream`

The internal state of an Aggregation Stream, from its group in-
dex. Works only for Aggregation Streams that are not optim-
ized to use the additive aggregations (since there is no group in-
dex kept for the additive aggregations). The value fields have
names from the input stream row definition. The key fields
have the same name as in this stream's row definition but with
Aleri_Key_ prepended to them, to avoid conflicts with the data
fields. Finally, the index of the record in the aggregation bucket
is in the Aleri_Index field.

• `states` `patternStream` [`patternNum`]

States of the automatons in a PatternStream. Initially a Pattern-
Stream has one automaton per defined pattern. As data is re-
ceived and matched by patterns, a new automaton is cloned for
each seen sequence of events that might match the pattern. As
complete patterns are found, or the sequences of events are
found to not match the patterns, the automatons are destroyed.

If the optional parameter patternNum is present, shows only the
automatons for that pattern.

The fields are:

• pnum

Number of the pattern that is being parsed by this automaton.
The patterns are numbered starting from 0.

• instance

Instance number of the automaton. As new automatons are
cloned, each of them gets an unique instance number. The
instance numbers are never repeated (unless the Sybase Aleri
Streaming Platform gets restarted). The pair (pnum, instance)
allows to identify an automaton during the whole time of its
execution.

• state

Command and Control Executables

61

A number identifying the current state of the automaton. The
automatons are linear; they have no loops in their logic, and
may visit a state only once. If the state hasn't changed since
last examination, this means the automaton hasn't matched
any new data. Even though the automatons are linear, the
numbers used for states are not sequential.

• timed

If set to 1, this automaton has an expiration timer attached to
it. If the timer expires, its pattern match would be considered
failed and the automaton would be destroyed. If set to 0,
means that this automaton does not expire. The untimed
automaton is the very initial automaton of a pattern, used to
clone all the others.

• time_left

For a timed automaton, time in seconds left until expiration.
For an untimed automaton, always 0. When the Sybase Aleri
Streaming Platform is paused, by default the platform logical
clock stops. However, if the clock is set to not stop on pause,
the timers keep ticking. A value of 0 or negative means that
the automaton will expire when the Sybase Aleri Streaming
Platform execution resumes.

• `bindings` `patternStream` [`patternNum`]

For each automaton in a PatternStream, the pattern variable
bindings that have been caused by the data parsed so far.

If the optional parameter patternNum is present, shows only the
data for that pattern.

The fields are:

• pnum

Number of the pattern that is being parsed by this automaton.
The patterns are numbered starting from 0.

• instance

Instance number of the automaton. As new automatons are
cloned, each of them gets an unique instance number. The
instance numbers are never repeated (unless the Sybase Aleri
Streaming Platform gets restarted). The pair (pnum, instance)
allows to identify an automaton during the whole time of its
execution.

• var

Name of the bound variable. Besides the variables as such,
the bound events and constants are listed as well. The con-
stants are shown with unique compiler-generated names.

Command and Control Executables

62

• value

Value of the bound variable, in string format. The values of
bound events are not shown here, they are reported as
NULL. Examine the events data kind to see the contents of
the event rows.

• `events` `patternStream` [`patternNum`]

For each automaton in a PatternStream, the events that have
been parsed by the automaton so far. This data kind returns a
mix of records of different types. The record types are named
after the input streams where they came from.

If the optional parameter patternNum is present, shows only the
data for that pattern.

The fields are:

• Aleri_Pnum

Number of the pattern that is being parsed by this automaton.
The patterns are numbered starting from 0.

• Aleri_Instance

Instance number of the automaton. As new automatons are
cloned, each of them gets an unique instance number. The
instance numbers are never repeated (unless the Sybase Aleri
Streaming Platform gets restarted). The pair (pnum, instance)
allows to identify an automaton during the whole time of its
execution.

• Aleri_Var

Name of the event variable.

• as in input stream

The rest of the fields keep the names as in the row type of
the input stream from which they came.

• `expect` `patternStream` [`patternNum`]

For each automaton in a PatternStream, the expected records
that would advance the automaton to the next state. This data
kind returns a mix of records of different types. The record
types are named after the input streams from which they came.

If the optional parameter patternNum is present, shows only the
data for that pattern.

The fields are:

• Aleri_Pnum

Number of the pattern that is being parsed by this automaton.

Command and Control Executables

63

The patterns are numbered starting from 0.

• Aleri_Instance

Instance number of the automaton. As new automatons are
cloned, each of them gets an unique instance number. The
instance numbers are never repeated (unless the Sybase Aleri
Streaming Platform gets restarted). The pair (pnum, instance)
allows to identify an automaton during the whole time of its
execution.

• Aleri_Var

Name of the event variable. If preceded by a "!", receiving
such a record would cause a pattern mismatch. Otherwise it
would advance the automaton to the next state.

• as in input stream

The rest of the fields keep the names as in the row type of
the input stream from which they came. Only the fields that
are bound to values are shown, the rest are shown as NULL.

exf `kind` [`stream` [`object`]]
`filter`

Same as ex, only specifies a filter SPLASH expression to be eval-
uated on the Sybase Aleri Streaming Platform side. Only the re-
cords for which the filter evaluates to a true (non-zero, non-
NULL) value are returned. With filters any transaction and update
pair boundaries are lost, each record is returned by itself.

The filter may refer to the predefined variables with names
matching the XML tags of the rows when printed. For most of the
data kinds it would be the variable row which contains the current
record to be filtered. For the input data kinds multiple variables
get defined, each named after an input stream of the target stream.
In this case when evaluating a record, the variable matching the
stream of its origin will contain the record and all the other vari-
ables will be set to NULL. The condition may refer to the fields
in the records as usual, for example " row.field".

eval `stream` `block` Evaluate a SPLASH statement (not expression!) on a stream, to
change the contents of the external variables (those defined in the
XML node <Local> or <Global>) of this stream. The variables
defined inside the SPLASH blocks of a stream exist only when
the appropriate methods run, and can't be modified. Evaluation in
context of any computational stream (that is, pretty much any
stream type except CopyStream and UnionStream) can be used to
modify the global variables.

An important point is that the unit of code evaluated is not an ex-
pression but a SPLASH statement, which must be either a simple
statement terminated by ";" or a block enclosed in braces "{}".
Multiple statements must always be enclosed in a block. Remem-
ber that if you use braces to quote the block argument, the outside
braces don't count as the block delimiters, they are just sp_cli
quotes!

Command and Control Executables

64

Good examples:

`a := 1;`
{a := 1;}
`{ typeof(input) r := [a=9; |
b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }`

{{ typeof(input) r := [a=9; |
b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }}

Bad examples:

`a := 1`
{a := 1}
`typeof(input) r := [a=9; |
b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r);`

{ typeof(input) r := [a=9; |
b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }

All the usual SPLASH syntax applies, including defining the tem-
porary variables in the block. All the stream's variables and global
variables are visible and may be read or changed in the statement.
No streams or stream iterators are visible in the statement.

Remember that the back quotes and curly braces don't allow you
to enter multi-line statements. In the previous examples, splitting
of the lines represents the wrapping of the line on the terminal. In
many cases, the multi-line quoting format would be more con-
venient:

eval {stream} <<!
{ typeof(input) r := [a=9; |

b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }

!

Operations on eventCaches require special preparation. Normally,
the key of the eventCache is determined by the current input re-
cord. But in this case there is no input record, so the key is not set
and any operations on eventCaches would have no effect. For
them to work, the key has to be set manually using the operator
keyCache(ec-variable, record). It must be set before performing
aggregation operations on the eventCache, as in the example
above.

No value is returned from the evaluation.

Command and Control Executables

65

Output Control Flags

hdr [on|off] Without any argument, display the state of the "include column name
header line" flag, otherwise enable or disable the "include column name
header line" flag. When enabled, the column name heading is output prior
to the tabular data. For snapshots, the field position, name and field type
are displayed. If the field is a key field, the field name will be prefixed
with an asterisk "*" character.

sphdr [on|off] Without any argument, display the state of the "include header/data prefix"
flag, otherwise enable or disable "include header/data prefix" flag. When
enabled, the StreamName and OpCode values will prefix each line of the
tabular snapshot data. In addition, if the hdr flag is enabled, the header line
will include the Sybase Aleri Streaming Platform "StreamName" and "Op-
Code" field names. The platform header/prefix is used by the "putd" and
"putx" sp_cli commands.

txb [on|off] Without any argument, display the state of the "include TRANSACTION
BLOCK content" flag, otherwise enable or disable the "include TRANS-
ACTION BLOCK content" flag. When enabled, the output produced by
the snapshot command will include all of the messages contained within
the Gateway I/O TRANSACTION blocks. If disabled, the tabular snapshot
output is generated using only the INSERT messages from the TRANS-
ACTION blocks.

verbose [on|off] Without any argument, display the state of the "verbose" output flag, other-
wise enable or disable the "verbose" output flag. When enabled, this flag
produces additional output when processing the snapshot commands. In
particular, start_sync, end_sync, TRANSACTION block indicators, final
snapshot, and record/row count, are produced.

xml [on|off] Without any argument, display the state of the "XML" output flag, other-
wise enable or disable the "XML" output flag. When enabled, the output
produced by the snapshot command will be in the Aleri XML record
format. The XML format is used by the "sp_cli" putx command.

Put Command Notes

The putd and putx commands use the sphdr StreamName and OpCode prefix. In addition, when putting
date fields, the date strings are in the format

%Y-%m-%dT%H%M%S

In addition, the TZ environment variable is set to "UTC" before the record is uploaded to the Gateway
interface.

Usage Notes

In console mode, the user can issue commands from the console, which allows for command-line edit-
ing, and command history retrieval. This mode is entered via the following command:

sp_cli -p hostName:22000 -c user:password

In command-string mode, the user can feed in a double quoted string containing one or more commands.
If multiple commands are specified in the double quoted string, each command must be terminated with

Command and Control Executables

66

a semicolon character. When setting the field separator from the command line, enclose the new field
separator character within single quotes, and place a space character between the ending single quote
and the semicolon.

For example, to produce a comma separated/delimited snapshot of the "BalanceType" table, using a
command string:

sp_cli -p hostName:22000 -c user:password "fs \`,\` ; sphdr on; snapshot {BalanceType}"

To run the command in input-file mode, specifying a text file (commands.txt) containing a list of
commands to execute:

sp_cli -p hostName:22000 user:password -i commands.txt

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_cnc(1), sp_convert(1), sp_subscribe(1), sp_upload(1)

Command and Control Executables

67

Name
sp_cnc — sample client app for submitting command and control commands to the Sybase Aleri
Streaming Platform

Synopsis

sp_cnc -C command -p [host:]port [OPTION...]

Description

The sp_cnc application connects to the Sybase Aleri Streaming Platform via the Command and Control
and Gateway interfaces, and issues simple Command and Control commands to the server. It prints the
results on the standard output.

Required Arguments

-C command The command may be one of the following literals: getGateway, get-
BaseStreams, getDerivedStreams, getStreamDefinition, getAddressSize, get-
DateSize, sendStreamsExit, augmentSubscriber, removeSubscriber, isBi-
gEndian, isQuiesced, isQuiescedNow, returnWhenQuiesced, setParam,
getVersion, getStreamHandle.

-p [host:]port Specifies the port number, or the host name and port number, of the Command
and Control interface within a running instance of the Sybase Aleri Streaming
Platform. The default host name is localhost.

Options

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform;
if the password is not given, the user will be prompted for it. If the Sy-
base Aleri Streaming Platform successfully authenticates with these cre-
dentials, the connection is maintained, otherwise the Sybase Aleri
Streaming Platform will immediately close the connection.

This option must correspond to the type of authentication specified for
the Streaming Processor when it was started up. If it was started without
specifying a -V option or using the -V none option, omit this option.
If it was started using the -V pam option, specify -c
user:password. If it was started using the -V rsa or -V gssapi
option, specify -c user.

-e Encrypt traffic via openSSL. When this option is not present, no en-
cryption occurs.

-G Use Kerberos authentication. This option is required when the Stream-
ing Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to
the Sybase Aleri Streaming Platform is the default ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current do-
main controller

Command and Control Executables

68

2. logged in to one user account and used a different one to connect to
the Sybase Aleri Streaming Platform

-H handle Specifies the client handle to direct an augmentSubscriber or remove-
Subscriber command. This option is required for those commands.

-h Print detailed help.

-k privateRsaKeyFile Authentication is performed using the RSA private key file mechanism
instead of password authentication. The privateRsaKeyFile must specify
the pathname of the private RSA key file. This option is required if the
Streaming Processor was started with the -V rsa option. With this op-
tion enabled, the user name must be specified with the -c option, but
the password is not required. In addition, the Streaming Processor must
have been started with the -k option specifying the directory in which
to store the RSA keys.

-P name:value Specifies the new value to be associated with the parameter. Required
for the setParam command.

-s stream Specifies a single stream. Required for the commands getStreamDefin-
ition, augmentSubscriber, getStreamHandle and removeSubscriber.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Command and Control Executables

69

Chapter 5. Publish and Subscribe Executables

70

Name
sp_archive — Archive data from the Sybase Aleri Streaming Platform to SybaseIQ.

Synopsis

sp_archive -f configFile -p [host:]port [OPTION...]

Description

The sp_archive command archives data from one or more streams in the Sybase Aleri Streaming Plat-
form to SybaseIQ, either in batch mode or in real-time. It uses the 'LoadTable' feature of SybaseIQ to
archive inserts. Updates and deletes are archived via ODBC.

sp_archive subscribes to the streams that need to be archived. On receiving data, it writes the data to an
intermediate file either in a delimited format suitable for bulk loading for inserts or as SQL DML state-
ments for updates and deletes. Running sp_archive in Data Warehousing mode (-I option) is the only
exception to this rule. In this case, the updates are treated as inserts and deletes are ignored.

When sp_archive encounters an error, it quits.

sp_archive keeps track of the last transaction that was archived. In the event sp_archive, the Streaming
Processor, or SybaseIQ stops, on restart sp_archive begins archiving data from the point where it left
off. In order to achieve this, every stream to be archived must use the Persistent Subscribe pattern, that
is, it must have two additional streams associated with it. The first stream is a Log Stream, which con-
tains the transaction logs for the stream to archive; the second stream is a Control Stream. The Control
Stream is an input to the Log Stream; its primary purpose is to serve as a gateway into the Log Stream to
purge the archived transaction logs. The Aleri Studio can be used to create the Log and Control Streams
by using the 'Create Persistent Subscribe Pattern' action.

The Control Stream and the Log Stream have to be persisted in order to guarantee that no transaction is
lost if the Sybase Aleri Streaming Platform is brought down. Consequently at least one Log Store has to
be created to store these two Streams. The data stream itself must be able to regenerate.

To stop a running sp_archive process, enter Ctrl-C on the command line.

Required Arguments

-f configFile Specifies the XML style configuration file that describes the
streams that need to be archived, the connection information to Sy-
baseIQ, the SybaseIQ LoadTable options and other information.

-p [host:]port Specifies the port number, or the host name and port number, of the
Command and Control interface within a running instance of the
Sybase Aleri Streaming Platform. The default host name is local-
host.

Options

-b Sets byteswap mode. This means that the server on which the Sy-
base Aleri Streaming Platform is running has a different byte or-
der than the architecture where sp_archive is running. You can
use sp_archive to connect to machines of differing byte orders,
but not differing address size.

-B batchsize Specifies the commit batch size when archiving data using ODBC

Publish and Subscribe Executables

71

and SQL data manipulation statements. The default is 1000. This
does not modify the commit batch size of bulk loaded transac-
tions. To do this, the appropriate option for the 'LoadStatement'
must be specified in the configFile. The default batch size for
bulk loaded transactions is 100,000. It is important to choose a
proper setting for this option. If the batch size is too small, it may
generate a lot of small intermediate files and make the archiving
inefficient. If it is set too large then it may cause problems when
committing the data into the database.

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming
Platform; if the password is not given, the user will be prompted
for it. If the Sybase Aleri Streaming Platform successfully authen-
ticates with these credentials, the connection is maintained, other-
wise the Sybase Aleri Streaming Platform will immediately close
the connection.

This option must correspond to the type of authentication spe-
cified for the Streaming Processor when it was started up. If it
was started without specifying a -V option or using the -V none
option, omit this option. If it was started using the -V pam op-
tion, specify -c user:password. If it was started using the -
V rsa or -V gssapi option, specify -c user.

-d delimiter Specifies the delimiter that sp_archive uses when it writes inter-
mediate files. By default, it uses HEX 31 as the delimiter.

It is important not to choose a delimiter that is part of the data be-
ing archived. Doing so results in the archived data being corrup-
ted or rejected by the bulk load executable.

-D Enables delta mode. If this is not specified, sp_archive archives
all existing data for the specified streams and exits.

-e Enables encryption via OpenSSL sockets.

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-h Displays the command line help text.

-I Enables Data Warehousing mode. In this mode, all deletes are ig-
nored and any updates are treated as inserts. This mode is typic-
ally used in a data warehousing scenario where data must not be
deleted. In order for this option to work, the tables in SybaseIQ
must not have any primary keys specified or the primary keys

Publish and Subscribe Executables

72

must be auto generated. In this mode the executable guarantees
the use of only the bulk load mechanism to load the data.

-k privateRsaKeyFile Authentication is performed using the RSA private key file mech-
anism instead of password authentication. The privateRsaKeyFile
must specify the pathname of the private RSA key file. This op-
tion is required if the Streaming Processor was started with the -V
rsa option. With this option enabled, the user name must be spe-
cified with the -c option, but the password is not required. In ad-
dition, the Streaming Processor must have been started with the -
k option specifying the directory in which to store the RSA keys.

-P precision Specifies an integer value between 0 and 6 that defines how many
decimal places to print after the decimal point for floating point
numbers. The default value is 6.

-q queueSize It sets the maximum subscription buffer size. The default is 8K.
You can set it to a higher value if the data arrives in bursts, and
the Sybase Aleri Streaming Platform reports the subscription buf-
fer has filled up. The minimum value is 1001. You should not set
the Block Size parameter in the configuration file to more
than 12000.

-R Enables recovery mode. In this mode, sp_archive does not con-
nect to the Streaming Processor to get more data. Rather, it
archives any data that was written out to disk previously but not
archived because sp_archive was interrupted. Once the data has
been archived, it exits. In this mode, the -D option is ignored.

-T interval Specifies approximately how often sp_archive should archive
data deltas when archiving in real-time mode. The interval is from
the time the last delta archive operation completed.

-W wait_time Specifies how many milliseconds the Sybase Aleri Streaming
Platform should wait for sp_archive to consume the base data.
The default value is 30000, and the minimum is 1000.

Environment Configuration

For sp_archive to work properly, the environment must be set up correctly:

• The ODBC driver for SybaseIQ must either be in the path where it can be found by sp_archive, or
it must be configured via the ODBC driver manager. An appropriate .odbc.ini file (typically in
the users home directory) should also be available. This file must contain the connection informa-
tion for the target database.

• The user account under which sp_archive runs must have full permissions on the working direct-
ory and the log directory, including the ability to create these directories, if they do not exist.

• The working directory for sp_archive must be readable by SybaseIQ. If SybaseIQ is running on a
different server than the one on which you are running sp_archive, this directory must be shared
(for example, on a SAN or NAS) between the two servers. This is required for the 'LoadTable'
statement to work properly.

• When archiving data, it is possible that the archive executable may not keep up with the Sybase
Aleri Streaming Platform, especially when applying SQL DML to archive data. In this case a large
number of intermediate files may be written out to disk. Therefore, the working directory must

Publish and Subscribe Executables

73

have sufficient disk space to handle surges in volume.

• The target tables in the destination database must be predefined and must have the same structure
as the source stream (that is, the same columns in the same order with the appropriate datatypes).
See the section below on datatype conversions between the Sybase Aleri Streaming Platform and
SybaseIQ to create the tables. One additional datetime column can be added to the destination table
if the archive executable is instructed to populate this column. This column must be the first or the
last column. See the next section for more information.

Archive Configuration

The archive is configured using an XML configuration file. A description of the different elements used
to configure the sp_archive are listed below.

PlatformArchive

<?xml version="1.0" encoding="UTF-8"?>
<PlatformArchive xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:///home/aleri/etc/sp_archive.xsd">
archive definition
.
.

</PlatformArchive>

This is the topmost element. This example assumes that the sp_archive.xsd schema file is located
in the /home/aleri/etc directory. If it is not, replace that path with the actual path to the schema
file.

After the header, the objects used in the archive configuration can be defined in any order. The follow-
ing describes the syntax for each of the objects that can be included.

SybaseIQ

<SybaseIQ id="DestinationName" dsn="DsnName">
<Option...../>
<Option..../>

.

.
</SybaseIQ>

where

DestinationName is the name of the destination. It may be any name but it must be unique within
the configuration file.

DsnName is the name of the dsn found in the odbc.ini file. This name is case sensitive
and must match exactly the way it was entered in the odbc.ini file.

This element describes a SybaseIQ target and provides a way to specify the bulk load options specific to
the target. More than one element of this kind may be specified, but only one target can be used for a
given sp_archive instance.

Publish and Subscribe Executables

74

Option

<Option name="OptionName" value="OptionValue"/>

where

• OptionName is the name of the LoadTable statement option. This name is not case sensitive.

• OptionValue is the value for the LoadTable statement option.

There may be any number of options specified and a particular option may be repeated more than once.
However, only the most recent value will be picked up. Note that sp_archive does not attempt to valid-
ate the options. But the options will be validated by 'LoadStatement' and any errors will cause 'Load-
Statement' and consequently the archive process to exit.

Streams

<Streams id="CollectionName">
<Stream .../>
<Stream .../>

.

.
</Streams>

where

CollectionName specifies the name of the collection of streams to be archived. It can be any name
as long as it is unique within the configuration file.

This element defines the collection of streams, whose data needs to be archived. There must be at least
one <Streams> element defined and in turn this element must contain at least one <Stream> element.

Stream

<Stream sourceName="SourceName"
targetName="TargetName"
logStreamName="LogStreamName"
controlStreamName="ControlStreamName"
[timestampLocation="{first | last}"]

/>

where

• SourceName is the name of the stream in the Sybase Aleri Streaming Platform. This name is case
sensitive (for example, the name must match the name of the stream exactly as specified in the
XML model.

• TargetName is the name of the Table in the target database. The case sensitivity of this name de-
pends on the type of the destination. For most, if not all the relational databases, this name is not
case sensitive.

Publish and Subscribe Executables

75

• LogStreamName is a required parameter that specifies the name of the stream in the Sybase Aleri
Streaming Platform that contains the Transaction Logs for the stream to archive.

• ControlStreamName is a required parameter that specifies the name of the Control Stream,
which is an input to the LogStream. This stream is used to control the purging of the transaction
logs in the LogStream which has been archived. If the persistent subscribe pattern in the Aleri Stu-
dio is used to generate the LogStream and the ControlStream then the default ControlStream has
the name of SourceName_.

• TimestampLocation is an optional parameter that specifies that a timestamp needs to be in-
cluded in the archive. This timestamp may be the first or the last column in the destination table.

Archive

<Archive target="DestinationName"
archiveStreams="CollectionName"
[dbtempDir="WindowsDirPath"]
[tempDir="WorkingDirPath"]
[timestampName="TimestampColumnName"]
[logDir="LogDirPath"]

/>

where

• DestinationName specifies the "id" of the SybaseIQ element, which describes the target data-
base server.

• CollectionName specifies the "id" of the <Streams> element, which defines information about
the Sybase Aleri Streaming Platform streams to be archived.

• WindowsDirPath specifies the location that sp_archive will use to manage the intermediate
archive data files using Windows conventions. It is used when SybaseIQ is running on a Windows
server and the Sybase Aleri Streaming Platform is running on a UNIX® or Linux server because
this directory must be shared between SybaseIQ and the Sybase Aleri Streaming Platform.

• WorkingDirPath specifies the location that sp_archive will use to manage the intermediate
archive data files. If it does not exist, this directory is automatically created. If no directory name is
provided, the default is archiveTemp in the current directory.

• TimestampColumnName is the name of the timestamp column in the target table that
sp_archive will use to store the time the archive executable processed a record. This name is not
case sensitive for most RDBMS.

• LogDirPath is the path where the 'LoadTable' of the bulk load executable will place its log files.
This directory is created if it does not exist. The appropriate option for the 'LoadTable' statement
must be provided in the <SybaseIQ> element in order for the 'LoadTable' statement to generate the
logs in this directory.

Datatype Conversion

The following table shows a suggested mapping between the Sybase Aleri Streaming Platform datatypes
and the corresponding datatypes in SybaseIQ. You may choose to use other compatible datatypes if re-
quired. The two exceptions to this rule are the date and timestamp datatypes, where the corresponding
SybaseIQ datatype must be set to datetime.

Publish and Subscribe Executables

76

Sybase Aleri Streaming Platform Datatypes SybaseIQ Datatypes

int32 integer

int64 long

string varchar(n)

date datetime

timestamp datetime

double float

money float

Sample Configuration Files

Listed below is a sample archive configuration file:

<PlatformArchive
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file:///aleri/etc/sp_archive.xsd" >
<SybaseIQ id="Warehouse" dsn="ArchiveDsn">
<Option name="FORMAT" value="BINARY"/>
<Option name="ESCAPES" value="ON"/>
<Option name="BLOCK SIZE" value="100000"/>

</SybaseIQ>

<Streams id="MyArchive">
<Stream sourceName="Titles" targetName="Titles" \

timestampLocation="last" controlStreamName="Titles_truncate"
logStreamName="Titles_log"/>

<Stream sourceName="Books" targetName="Books_Archive" \
controlStreamName="Books_truncate" logStreamName="Books_log"/>

<Stream sourceName="Sales" targetName="Sales" \
timestampLocation="last" controlStreamName="Sales_truncate"
logStreamName="Sales_log"/>

</Streams>

<Archive target="Warehouse" archiveStreams="MyArchive" \
tempDir="/tmp/workdir" timestampName="ArchiveTime" \
logDir="/tmp/logDir/"/>

</PlatformArchive>

Listed below is a sample ODBC DSN entry in the .odbc.ini file:

[ArchiveDSN]
Description = Sybase ODBC Data Source
UID = dba
PWD = sql
Driver = Adaptive Server Enterprise
ENG = datawarehouse_server
DBN = books
LINKS = tcpip(host=dbServer;port=2638)

where

Publish and Subscribe Executables

77

• UID is the user id for SybaseIQ

• PWD is the password for the above user.

• Driver is the name of the driver when using ODBC driver manager. This name must match with
one of the driver information sections in the odbcinst.ini file. This is not required when using
the SybaseIQ ODBC driver directly.

• ENG is the name of the SybaseIQ server.

• DBN is the name of the database.

• LINKS is the network protocol used to connect to the database.

Limitations and Known Issues

• When archiving updates and deletes, sp_archive may not be able to keep up with the Sybase Aleri
Streaming Platform. This is because individual update and delete SQL statements are applied via
ODBC. to archive the data.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Bugs

See the documentation for known issues.

Publish and Subscribe Executables

78

Name
sp_convert — Read XML or delimited records from standard input and produce Sybase Aleri Streaming
Platform binary records on standard output.

Synopsis

sp_convert -f configFile -p [host:]port [OPTION...]

Description

sp_convert converts XML and delimited records into binary records compatible with the Sybase Aleri
Streaming Platform. The metadata describing the streams is obtained either from a connection to a run-
ning instance of the Sybase Aleri Streaming Platform (via the Command and Control interface) or via an
Sybase Aleri Streaming Platform compatible configuration file.

Required Arguments

-f configFile Specifies the XML style configuration file that describes the data
that need to be converted to Sybase Aleri Streaming Platform
format.

-p [host:]port Specifies the port number, or the host name and port number, of
the Command and Control interface within a running instance of
the Sybase Aleri Streaming Platform. The default host name is
localhost.

Options

-b Indicates that the machine architecture on which the server (that is
consuming our data) is running has the reverse byte order of the
machine architecture on which sp_convert is running.

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming
Platform; if the password is not given, the user will be prompted
for it. If the Sybase Aleri Streaming Platform successfully authen-
ticates with these credentials, the connection is maintained, other-
wise the Sybase Aleri Streaming Platform will immediately close
the connection.

This option must correspond to the type of authentication spe-
cified for the Streaming Processor when it was started up. If it
was started without specifying a -V option or using the -V none
option, omit this option. If it was started using the -V pam op-
tion, specify -c user:password. If it was started using the -
V rsa or -V gssapi option, specify -c user.

-d separator Read and convert delimited records from standard input instead of
the default XML format.

-e Negotiate encrypted OpenSSL sockets for all communication with
the Sybase Aleri Streaming Platform. This option requires that the
Sybase Aleri Streaming Platform be started in encrypted mode.

-f file Read and parse the specified Sybase Aleri Streaming Platform
configuration file for the metadata required to perform the record

Publish and Subscribe Executables

79

conversion. The -f and -p options are mutually exclusive.

-F path Specify the full pathname of the XML Schema file (default is
$PLATFORM_HOME/etc/Platform.xsd).

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-h Print detailed help.

-k privateRsaKeyFile Authentication is performed using the RSA private key file mech-
anism instead of password authentication. The privateRsaKeyFile
must specify the pathname of the private RSA key file. This op-
tion is required if the Streaming Processor was started with the -V
rsa option. With this option enabled, the user name must be spe-
cified with the -c option, but the password is not required. In ad-
dition, the Streaming Processor must have been started with the -
k option specifying the directory in which to store the RSA keys.

-m format Specifies the format string for date values (in strptime format -
default is "%Y-%m-%dT%H:%M:%S").

-p [hostname:]port Specify the port or the hostname and port of the Command and
Control interface within a running instance of the Sybase Aleri
Streaming Platform. This instance of the Sybase Aleri Streaming
Platform is queried for the metadata required to perform the re-
cord conversion. The -f and -p options are mutually exclusive.

Input Formats

The following example shows a record in delimited format.

StreamName<sep>Operation<sep>column_1..<sep>column_n

All columns must be present in the delimited form and the row must end with a line feed character. Op-
eration is a single character, {i|u|d|s|p} for insert, update, delete, safe delete (delete only if the record ex-
ists), and upsert respectively.

The following example shows a record in XML format.

<StreamName [ALERI_OPS="i|u|d|s|p"] [ALERI_FLAGS="s"]
column_name="value" ... column_name="value" />

Publish and Subscribe Executables

80

If ALERI_OPS is not present, operation is taken as an upsert. There is no requirement on the number of
columns present. Those that are missing are taken to have null values. If ALERI_FLAGS is present, it
can only have the value "s" indicating that the SHINE flag should be set for the record.

Examples

To convert all XML records in file foo.xml to native binary format, and post them to a running in-
stance of the Sybase Aleri Streaming Platform:

cat foo.xml | sp_convert -p 11180 | sp_upload -p 11180

To convert all comma-separated records in file foo.csv to native binary format, and post them to a
running instance of the Sybase Aleri Streaming Platform:

cat foo.csv | sp_convert -d "," -p 11180 | sp_upload -p 11180

To convert all XML records in file foo.xml to native binary format, and post them to a running in-
stance of the Sybase Aleri Streaming Platform on a target machine HOST which has a differing byte or-
der than the machine on which sp_upload is running:

cat foo.xml | sp_convert -b -p HOST:11180 | sp_upload -b -p HOST:11180

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_subscribe(1), sp_upload(1)

Bugs

See the documentation for known issues.

Publish and Subscribe Executables

81

Name
sp_histexport — used to migrate data to Live OLAP

Synopsis

sp_histexport [options] [p1=val p2=val... .. pN=val]

Description

The sp_histexport utility is used to migrate data from the Sybase Aleri Streaming Platform to the Live
OLAP system. The data to be migrated is described in an XML file that is passed as input to this utility
via the -f option.

Options

-cuser[:password] Pass authentication credentials to the Sybase Aleri Streaming
Platform; if the password is not given, the user will be prompted
for it. If the Sybase Aleri Streaming Platform successfully authen-
ticates with these credentials, the connection is maintained, other-
wise the Sybase Aleri Streaming Platform will immediately close
the connection.

This option must correspond to the type of authentication spe-
cified for the Streaming Processor when it was started up. If it
was started without specifying a -V option or using the -V none
option, omit this option. If it was started using the -V pam op-
tion, specify -c user:password. If it was started using the -
V rsa or -V gssapi option, specify -c user.

-e Enables encryption via openSSL sockets

-Fsp_histexport.xsd Specifies the XSD Schema file for validating the XML configura-
tion file. You must enter the full pathname of the XSD schema
file. The default is $PLATFORM_HOME/
etc/sp_histexport.xsd.

-f input file The input file contains a metadata description along with instruc-
tions on how the Sybase Aleri Streaming Platform source data is
to be migrated over to the historical vector store.

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos
ticket, you must ensure that the ticket issued to the account used
to connect to the Sybase Aleri Streaming Platform is the default
ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current
domain controller

2. logged in to one user account and used a different one to con-
nect to the Sybase Aleri Streaming Platform

-h Prints out help.

Publish and Subscribe Executables

82

-kprivateRsaKeyFile Authentication is performed using the RSA private key file mech-
anism instead of password authentication. The privateRsaKeyFile
must specify the pathname of the private RSA key file. This op-
tion is required if the Streaming Processor was started with the -V
rsa option. With this option enabled, the user name must be spe-
cified with the -c option, but the password is not required. In ad-
dition, the Streaming Processor must have been started with the -
k option specifying the directory in which to store the RSA keys.

-llogdir Specifies the directory where the sp_histexport recov-
ery.log file is saved. The recovery.log file recovers the
target vector store directory if a failure occurs during migration.

NOTE: It is important to specify a directory on a disk that has a
low probability of running out of disk space or crashing. Similar
to the outpath value, the sp_histexport application appends a
trailing slash at the end of the value that is stored in the logpath
attribute when producing the recovery.log file.

-m create_using_sql The migration process creates the vector target output area using
the SQL statements specified within the XML input file specified
with the -f option. When using this option, the directory specified
via the -o option must be empty.

-ooutpath Specifies the target directory of the historical vector store. You
must enter the full pathname of the directory. The directory and
its contents are usually produced by running a process on the Sy-
base Aleri Streaming Platform.

NOTE: When producing vector store file names, the
sp_histexport application will append a trailing slash onto the
end of the value that the outpath attribute stores.

-p[hostName:]portNumber Command and Control host name and port number. The port-
Number is a required command line option. If the hostName is
not specified, it defaults to localhost.

-q sqlHost-
Name:sqlPortNumber, -q
sqlPortNumber

The Sybase Aleri Streaming Platform SQL database server host
name and port number. The sqlPortNumber is a required com-
mand line option. If the sqlHostName is not specified, it defaults
to localhost.

-rrecovery.log file The -r option is used to start up the utility in recovery mode.
When the utility is started in recovery mode, it will attempt to per-
form recovery using the specified recovery.log file and then
simply exit.

You must enter the complete path to the recovery.log file.
See the recovery notes to find out more on how the recovery
mechanism works.

p1=val1 p2=val2 pN=valN At the end of the command line argument list, a set of optional
SQL query substitution parameter name=value pairs can be spe-
cified. These name=value pairs will be used to parameterize SQL
query statements set up in the input.xml file, from the com-
mand line at runtime. The name of a substitution parameter must
start with a lower case "p" character, followed immediately by
one or more digits, followed immediately by an equal '=' sign, that

Publish and Subscribe Executables

83

is then followed immediately by the value. Within the XML input
file, the SQL statements will look something like this: select Bal-
anceType from BalanceMovements where f1 = ${p1}. At
runtime, all of the ${p1} place holders within the SQL queries
will be replaced with the value that is assigned to the p1 paramet-
er passed in on the command line.

Usage Notes

The following is an example of how to start this utility without any substitution parameters.

sp_histexport -p myhost:3241 -c user:password -s myhost:5434 -f ./dm.xml \
-F ./sp_histexport.xsd -o "/home/tst152/models/alm/staging/output/1/NEW_21" \
-l "/home/tst152/sp_histexport" > output.dat 2>&1

The following is an example of how to start this utility with several substitution parameters.

sp_histexport -p myhost:3241 -c user:password -s myhost:5434 -f ./dm.xml \
-F ./sp_histexport.xsd -o "/home/tst152/models/alm/staging/output/1/NEW_21" \
-l "/home/tst152/sp_histexport" p1=100 p2="a string" \
p3="\"with double quotes\"" >output.dat 2>&1

Output messages generated by the utility go to stderr. If you want to redirect the output messages to an
output file, use the “> output.dat 2>&1” syntax at the end of the command line.

The XML input file contains several key entities that are used to describe the overall data migration pro-
cess. These XML entities are as follows:

Environment

The Environment entity has an attribute called online that is set to either true or false. If set to true,
where running V-OLAP services will be notified if the migration completes successfully. If the online
attribute is set to false, running V-OLAP services will NOT be notified when the migration process fin-
ishes successfully.

When using the online migration feature, an OlapServices entity will have to be specified within the
XML input file and each MigrateStream entity, must have its host attribute set. The OlapServices con-
tains a list of host port pairs corresponding to each OLAP service that has to be notified upon the com-
pletion of a successful data migration. See the MigrateStream and OlapServices XML entities defined
below for more information.

FieldMapDefinition

A FieldMapDefiition has a set of ordered targetFieldName attributes. The order in which these
targetFieldName attributes are defined corresponds to the order of the columns appearing in the
SQL query select statement defined within the MigrateStream entity that is using the FieldMapDefini-
tion.

In the historical vector store, the data for each column is stored in a file, the name of which is the num-
ber assigned to the targetFieldName attribute.

MigrateStream

A MigrateStream entity specifies what Sybase Aleri Streaming Platform source stream data, is to be ap-
pended onto a table in the historical vector store. In the historical vector store, each table is represented

Publish and Subscribe Executables

84

by a directory, the name of which is represented by a number. The MigrateStream entity has an id at-
tribute which is the name of the stream defined in the Sybase Aleri Streaming Platform engine, along
with an targetTable attribute that specifies the target table name in the historical vector store.

The MigrateStream entity contains a query attribute that is set to a select statement that is executed
against the Sybase Aleri Streaming Platform SQL database server in order to extract the data that is to be
migrated from the Sybase Aleri Streaming Platform database to the historical vector store. Each Mi-
grateStream entity is associated with a FieldMapDefinition, which is a one-to-one mapping between the
projection of fields in the SQL query statement and the corresponding fields (vector column files) in the
historical vector store.

For online migration support, the MigrateStream entity contains an attribute called host that must be
set to a value. The host attribute setting, along with the directory path of the table being migrated, will
be used to produce a "host/directory" message that is sent to each of the online V-OLAP Services spe-
cified in the OlapServices entity when the migration finishes. This information is used by the online V-
OLAP Services in order to determine the location of the data that was successfully migrated. The value
of the host attribute here should match the value of the host attribute in the definition of the Service
used to specify the fact data partition in LiveOLAP metadata.

OlapServices

The OlapServices entity contains a list of host and port pairs, each representing a running V-OLAP Ser-
vice. If the online attribute of the Environment entity is set to true, each V-OLAP Service will be no-
tified when the migration successfully completes.

Recovery

The recovery mechanism is used to encapsulate the migration process (which is the set of tables spe-
cified in the input.xml file, for which data is being copied from the Sybase Aleri Streaming Platform
and appended onto the specified vector store), within a single recoverable transaction. Either all of the
vector store tables are appended, or none of them are. In case of a data migration failure, this mechanism
preserves the target vector store area, leaving it in a consistent state (the way it was just before the mi-
gration attempt was made).

The utility uses a WAL (Write-Ahead-Log) mechanism to implement recovery. During the migration
process, the header of each vector store file is first written out to the recovery.log file. After the
vector store header has been successfully written out to the recovery.log file, the utility attempts to
append the Sybase Aleri Streaming Platform data onto the corresponding vector store file. If all goes
well, and all vector store files have been successfully appended to, the utility will truncate the recov-
ery.log file. If there is a non-fatal error at any point in the migration attempt, the utility will detect
the error and attempt to recover/rollback the vector store files to the state that they were in (prior to the
migration attempt) before exiting. It does this using the entries in the recovery.log file. If a success-
ful recovery is accomplished, the utility will truncate the recovery.log file.

If a fatal error occurs, and the utility aborts in the middle of a migration attempt, the next time the utility
is started up, the recovery.log file is inspected to see if there are any entries in it. If there are, the
utility will first attempt to recover/rollback the vector store files using the entries in the recov-
ery.log file. Upon a successful start-up recovery/rollback, the utility will truncate the recov-
ery.log file and then proceed with the migration (as dictated by the input.xml file).

The user can start the utility in "recovery" mode via the -r option. The -r should be followed by the file
name (including the path), of the recovery.log file. If the application is started up in this mode then
just a recovery attempt will be made and the program will exit. If the recovery attempt is successful, the
recovery.log file will be truncated.

The location/directory of the recovery.log file is specified via the logpath attribute of the Envir-
onment entity of the input.xml file.

Publish and Subscribe Executables

85

XML Input File Example

The following is an example of a sp_histexport input.xml file. This file would be specified on the
sp_histexport command line using the -f option.

The input.xml file contains several key entities that the sp_histexport utility uses to conduct data
migration.

The entities shown in XML format are as follows:

1)<Environment id="BcgOlapMigrateEnv"
source="platform"
target="olap" />

This entity has the following attributes:

• Environment id - Identifies the object.

• source - String that identifies where the source data is coming from. Currently, it could be any text
because the sp_histexport system is not using the specified value.

• target - String that specifies a target system name. Currently, it could be any text because the
sp_histexport system is not using the specified value.

2)<FieldMapDefinition id="W_ChannelLocationFieldMap">
<Column targetFieldName="3377" />
<Column targetFieldName="3379" />
<Column targetFieldName="3380" />
<Column targetFieldName="3381" />
</FieldMapDefinition>

This entity has the following attributes:

• FieldMapDefinition id - Uniquely identifies this object as a FieldMapDefinition.

• Column targetFieldName - [1,...,n] is an ordered list of aie field numbers, with each field number
enclosed in double quotes. In the example above, there are four entries in the FieldMapDefinition.

NOTE: Each aie field number corresponds to the name of a vector store file located in a subdirect-
ory (representing an aie table) of the specified outpath. Later on, this list of field numbers is
mapped onto the columns of the “select” statement in the corresponding MigrateStream entity.
Source data is retrieved from the Sybase Aleri Streaming Platform through the select statement and
each column of source data is appended onto the appropriate vector store file according to the
FieldMapDefinition list.

In addition, a column can have an optional aieRefField attribute setting. The aieRefField setting de-
faults to “false”. This setting is only applicable for aie symbol (character) data fields. Note that the
provider of the historical vector store application must indicate which column(s) of their FieldMap-
Definition(s) must have the optional “aieRefField=true” setting.

Publish and Subscribe Executables

86

3)<MigrateStream id="W_ChannelLocation"
targetTable="298"
method="query"
query="select ChannelId, Location, TimeZone, WindowEnd
from W_ChannelLocation"
fieldmap="W_ChannelLocationFieldMap" />

This entity has the following attributes:

• MigrateStream id - Uniquely identifies this object.

• targetTable - Represents the name of a subdirectory of the vector store where the individual
column/field files are stored. This subdirectory represents the corresponding aie table.

NOTE: The targetTable must be enclosed within double quotes. The sp_histexport utility
produces the subdirectory name by appending a slash “/” and the targetTable onto the end of
the specified outpath.

• method - Currently, there is only one type of method used to retrieve source data from the Sybase
Aleri Streaming Platform. This method is called “query”, and it indicates that the source data is re-
trieved from the Sybase Aleri Streaming Platform through an SQL query.

• query - The actual "select" statement.

• fieldmap - The name of the FieldMapDefinition list that maps the SQL select statement columns
onto the corresponding aie vector store columns. The sp_histexport utility produces the path to an
individual vector store file by taking the outpath, appending a slash “/” character, the
“aieTableNumber”, a slash “/” character, and finally the “aieFieldNum”.

The following is an example of the full input.xml file (note the use of special aieRefField attributes
in the TransactionsFieldMap):

<?xml version="1.0" encoding="UTF-8"?>
<PlatformMigration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- Sample XML configuration file for the
Sybase Aleri Streaming Platform

Data Migration sp_histexport Utility. -->

<Environment id="BcgOlapMigrateEnv"
source="platform"
target="olap" />

<!-- W_ChannelLocation table field map -->
<FieldMapDefinition id="W_ChannelLocationFieldMap">
<Column targetFieldName="3377" />
<Column targetFieldName="3379" />
<Column targetFieldName="3380" />
<Column targetFieldName="3381" />
</FieldMapDefinition>

<MigrateStream id="W_ChannelLocation"
targetTable="298"
method="query"
query="select ChannelId, Location, TimeZone, WindowEnd

Publish and Subscribe Executables

87

from W_ChannelLocation"
fieldmap="W_ChannelLocationFieldMap" />

<!-- W_CurrencyLocation table field map -->
<FieldMapDefinition id="W_CurrencyLocationFieldMap">
<Column targetFieldName="3378" />
<Column targetFieldName="3382" />
<Column targetFieldName="3383" />
<Column targetFieldName="3384" />
</FieldMapDefinition>

<MigrateStream id="W_CurrencyLocation"
targetTable="299"
method="query"
query="select Currency, Location, TimeZone, WindowEnd from
W_CurrencyLocation"
fieldmap="W_CurrencyLocationFieldMap" />

<!-- Transactions table field map -->
<FieldMapDefinition id="TransactionsFieldMap">
<Column targetFieldName="2888" aieRefField="true" />
<Column targetFieldName="3017" />
<Column targetFieldName="3019" />
<Column targetFieldName="3021" />
<Column targetFieldName="3023" />
<Column targetFieldName="3025" />
<Column targetFieldName="3027" />
<Column targetFieldName="3029" />
<Column targetFieldName="3031" />
<Column targetFieldName="3033" />
<Column targetFieldName="3035" />
<Column targetFieldName="3037" />
<Column targetFieldName="3039" />
<Column targetFieldName="3041" />
<Column targetFieldName="3043" aieRefField="true" />
<Column targetFieldName="3045" aieRefField="true" />
<Column targetFieldName="3047" />
<Column targetFieldName="3049" />
<Column targetFieldName="3051" />
<Column targetFieldName="3053" />
<Column targetFieldName="3055" />
<Column targetFieldName="3057" />
<Column targetFieldName="3059" />
<Column targetFieldName="3061" />
<Column targetFieldName="3063" />
<Column targetFieldName="3065" aieRefField="true" />
<Column targetFieldName="3067" />
<Column targetFieldName="3069" />
<Column targetFieldName="3071" />
<Column targetFieldName="3073" />
<Column targetFieldName="3075" />
<Column targetFieldName="3077" />
<Column targetFieldName="3079" />
<Column targetFieldName="3081" />
<Column targetFieldName="3083" />
<Column targetFieldName="3085" />
<Column targetFieldName="3087" />
<Column targetFieldName="3089" />
<Column targetFieldName="3091" />
<Column targetFieldName="3093" />
<Column targetFieldName="3095" />
<Column targetFieldName="3097" />

Publish and Subscribe Executables

88

<Column targetFieldName="3099" />
<Column targetFieldName="3101" />
<Column targetFieldName="3103" />
<Column targetFieldName="3105" />
<Column targetFieldName="3107" />
<Column targetFieldName="3109" />
<Column targetFieldName="3111" />
<Column targetFieldName="3113" />
<Column targetFieldName="3115" />
<Column targetFieldName="3117" />
<Column targetFieldName="3119" />
<Column targetFieldName="3121" />
<Column targetFieldName="3123" />
</FieldMapDefinition>

<MigrateStream id="Transactions"
targetTable="263"
method="query"
query="select Id, ActualScheduleTime, AdapterStatus,
AssociatedReference, Beneficiary, BeneficiaryBank, Branch,
ChannelId, Correspondent, Counterparty, CRAccountName,
CRNumber, CRSortCode, Currency, CurrentId,
CustomerReference, DealDate, Dealer, DestinationAccount,
DRAccountName, DRNumber, DRSortCode, EventType, Expired,
ExpiryDateTime, ExternalReference, MatchedAmount, MatchId,
MatchIgnored, MatchType, MaturityEvent, MTType,
OrderingInstitution, OriginalAmount, OriginalScheduleTime,
OriginatingSystem, Originator, OriginatorReference,
PartialMatchAllwd, PayReceive, PreviousChannel,
ProcessedDateTime, Product, RemainingAmount, RemittingBank,
ReRouted, ResponsibleUnit, Reversed, SourceSystemInfo,
Status, StreamMovementType, SystemCounterparty,
TransactionType, ValueDateTime, W_ValueDate from
Transactions where trunc(ValueDateTime) = undate('${p1}')"
fieldmap="TransactionsFieldMap" />

<!-- Events table field map -->
<FieldMapDefinition id="EventsFieldMap">
<Column targetFieldName="2887" />
<Column targetFieldName="2889" />
<Column targetFieldName="2891" />
<Column targetFieldName="2893" />
<Column targetFieldName="2895" />
<Column targetFieldName="2897" />
<Column targetFieldName="2899" />
<Column targetFieldName="2901" />
<Column targetFieldName="2903" />
<Column targetFieldName="2905" />
<Column targetFieldName="2907" />
<Column targetFieldName="2909" />
<Column targetFieldName="2911" />
<Column targetFieldName="2913" />
<Column targetFieldName="2915" />
<Column targetFieldName="2917" />
<Column targetFieldName="2919" />
<Column targetFieldName="2921" />
<Column targetFieldName="2923" />
<Column targetFieldName="2925" />
<Column targetFieldName="2927" />
<Column targetFieldName="2929" />
<Column targetFieldName="2931" />
<Column targetFieldName="2933" />
<Column targetFieldName="2935" />
<Column targetFieldName="2937" />

Publish and Subscribe Executables

89

<Column targetFieldName="2939" />
<Column targetFieldName="2941" />
<Column targetFieldName="2943" />
<Column targetFieldName="2945" />
<Column targetFieldName="2947" />
<Column targetFieldName="2949" />
<Column targetFieldName="2951" />
<Column targetFieldName="2953" />
<Column targetFieldName="2955" />
<Column targetFieldName="2957" />
<Column targetFieldName="2959" />
<Column targetFieldName="2961" />
<Column targetFieldName="2963" />
<Column targetFieldName="2965" />
<Column targetFieldName="2967" />
<Column targetFieldName="2969" />
<Column targetFieldName="2971" />
<Column targetFieldName="2973" />
<Column targetFieldName="2975" />
<Column targetFieldName="2977" />
<Column targetFieldName="2979" />
<Column targetFieldName="2981" />
<Column targetFieldName="2983" />
<Column targetFieldName="2985" />
<Column targetFieldName="2987" />
<Column targetFieldName="2989" />
<Column targetFieldName="2991" />
<Column targetFieldName="2993" />
<Column targetFieldName="2995" />
<Column targetFieldName="2997" />
<Column targetFieldName="2999" />
<Column targetFieldName="3001" />
<Column targetFieldName="3003" />
<Column targetFieldName="3005" />
<Column targetFieldName="3007" />
<Column targetFieldName="3009" />
<Column targetFieldName="3011" />
<Column targetFieldName="3013" />
<Column targetFieldName="3015" />
</FieldMapDefinition>

<MigrateStream id="Events"
targetTable="262"
method="query"
query="select UniqueId, ActualScheduleTime, AdapterStatus,
AssociatedReference, Beneficiary, BeneficiaryBank, Branch,
CalculatedId, CaptureDateTime, CaptureOperator, ChannelId,
ActualScheduleTime, Correspondent, Counterparty,
CounterpartyAlias, CRAccountName, CRNumber, CRSortCode,
Currency, CurrentId, CustomerReference, DealDate, Dealer,
DestinationAccount, DRAccountName, DRNumber, DRSortCode,
EventDateTime, EventType, Expired, ExternalReference,
FrontOfficeId, InterfaceId, MaturityEvent, MTType,
OrderingInstitution, OrderingInstitutionAlias,
OriginalAmount, OriginalId, OriginalScheduleTime,
OriginatingSystem, Originator, OriginatorAlias,
OriginatorReference, PartialMatchAllwd, PreviousChannel,
PreviousId, ProcessedDateTime, Product, RemittingBank,
ReRouted, ResponsibleUnit, Reversed, Rollable,
RollableFromId, SourceSystem, SourceSystemEventInfo,
SourceSystemInfo, StatusWeight, StreamMovementType,
SystemCounterparty, SystemCounterpartyAlias, Text,
TransactionType, ValueDateTime from Events where
trunc(ValueDateTime) = undate('${p1}')"

Publish and Subscribe Executables

90

fieldmap="EventsFieldMap" />

</PlatformMigration>

XML Input File Example (for Online Migration)

The following input.xml file example builds off the previous one, showing those sections that would
have to change to cause an online migration to take place. This file would be specified on the
sp_histexport command line using the -f option.

The input.xml file contains several key entities that the sp_histexport utility uses to conduct an on-
line data migration.

The entities shown in XML format are as follows:

1)<Environment id="OnlineBcgOlapMigrateEnv"
source="platform"
target="olap"
online="true" />

The following are the additional Environment entity attribute settings required to run an online migra-
tion:

• online - When set to true, this indicates that an online migration is to take place.

2)<FieldMapDefinition id="W_ChannelLocationFieldMap">
<Column targetFieldName="3377" />
<Column targetFieldName="3379" />
<Column targetFieldName="3380" />
<Column targetFieldName="3381" />
</FieldMapDefinition>

For online migrations, the FieldMapDefinition entities remain unchanged (refer to the previous in-
put.xml file example):

3)<MigrateStream id="W_ChannelLocation"
targetTable="298"
method="query"
host="foobar"
query="select ChannelId, Location, TimeZone, WindowEnd
from W_ChannelLocation"
fieldmap="W_ChannelLocationFieldMap" />

The following are the additional MigrateStream attribute settings required to run an online migration:

• host - This is used along with the outpath specified with the -o option and the targetTable

Publish and Subscribe Executables

91

attribute to build a "host/directory" message which is sent to the online V-OLAP Services
(specified in the OlapServices entity), indicating to the running OLAP services, indicating to them
the location of the migrated data.

4)<OlapServices id="OlapServicesList">
<Service host="olapmachine" port="11106" />

</OlapServices>

This entity has the following attributes:

• Service host="machine_of_olap_service" port="port_number_of_olap_service" Each Service entry
contains a tuple consisting of a host and port pair, indicating the location of a running V-OLAP
Service. Within the encapsulating OlapServices entity, you can specify many Service entries.

The following is an example of the full input.xml file (note the changes that were made for the on-
line migration in the Environment and MigrateStream entities, and the new OlapServices entity located
at the bottom of the input.xml file):

<?xml version="1.0" encoding="UTF-8"?>
<PlatformMigration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<!-- Sample XML configuration file for the
Sybase Aleri Streaming Platform

Data Migration sp_histexport Utility. -->

<Environment id="BcgOlapMigrateEnv"
source="platform"
target="olap"
online="true" />

<!-- W_ChannelLocation table field map -->
<FieldMapDefinition id="W_ChannelLocationFieldMap">
<Column targetFieldName="3377" />
<Column targetFieldName="3379" />
<Column targetFieldName="3380" />
<Column targetFieldName="3381" />
</FieldMapDefinition>

<MigrateStream id="W_ChannelLocation"
targetTable="298"
method="query"
host="foobar"
query="select ChannelId, Location, TimeZone, WindowEnd
from W_ChannelLocation"
fieldmap="W_ChannelLocationFieldMap" />

<!-- W_CurrencyLocation table field map -->
<FieldMapDefinition id="W_CurrencyLocationFieldMap">
<Column targetFieldName="3378" />
<Column targetFieldName="3382" />
<Column targetFieldName="3383" />
<Column targetFieldName="3384" />
</FieldMapDefinition>

Publish and Subscribe Executables

92

<MigrateStream id="W_CurrencyLocation"
targetTable="299"
method="query"
host="foobar"
query="select Currency, Location, TimeZone, WindowEnd from
W_CurrencyLocation"
fieldmap="W_CurrencyLocationFieldMap" />

<!-- Transactions table field map -->
<FieldMapDefinition id="TransactionsFieldMap">
<Column targetFieldName="2888" aieRefField="true" />
<Column targetFieldName="3017" />
<Column targetFieldName="3019" />
<Column targetFieldName="3021" />
<Column targetFieldName="3023" />
<Column targetFieldName="3025" />
<Column targetFieldName="3027" />
<Column targetFieldName="3029" />
<Column targetFieldName="3031" />
<Column targetFieldName="3033" />
<Column targetFieldName="3035" />
<Column targetFieldName="3037" />
<Column targetFieldName="3039" />
<Column targetFieldName="3041" />
<Column targetFieldName="3043" aieRefField="true" />
<Column targetFieldName="3045" aieRefField="true" />
<Column targetFieldName="3047" />
<Column targetFieldName="3049" />
<Column targetFieldName="3051" />
<Column targetFieldName="3053" />
<Column targetFieldName="3055" />
<Column targetFieldName="3057" />
<Column targetFieldName="3059" />
<Column targetFieldName="3061" />
<Column targetFieldName="3063" />
<Column targetFieldName="3065" aieRefField="true" />
<Column targetFieldName="3067" />
<Column targetFieldName="3069" />
<Column targetFieldName="3071" />
<Column targetFieldName="3073" />
<Column targetFieldName="3075" />
<Column targetFieldName="3077" />
<Column targetFieldName="3079" />
<Column targetFieldName="3081" />
<Column targetFieldName="3083" />
<Column targetFieldName="3085" />
<Column targetFieldName="3087" />
<Column targetFieldName="3089" />
<Column targetFieldName="3091" />
<Column targetFieldName="3093" />
<Column targetFieldName="3095" />
<Column targetFieldName="3097" />
<Column targetFieldName="3099" />
<Column targetFieldName="3101" />
<Column targetFieldName="3103" />
<Column targetFieldName="3105" />
<Column targetFieldName="3107" />
<Column targetFieldName="3109" />
<Column targetFieldName="3111" />
<Column targetFieldName="3113" />
<Column targetFieldName="3115" />
<Column targetFieldName="3117" />
<Column targetFieldName="3119" />

Publish and Subscribe Executables

93

<Column targetFieldName="3121" />
<Column targetFieldName="3123" />
</FieldMapDefinition>

<MigrateStream id="Transactions"
targetTable="263"
method="query"
host="foobar"
query="select Id, ActualScheduleTime, AdapterStatus,
AssociatedReference, Beneficiary, BeneficiaryBank, Branch,
ChannelId, Correspondent, Counterparty, CRAccountName,
CRNumber, CRSortCode, Currency, CurrentId,
CustomerReference, DealDate, Dealer, DestinationAccount,
DRAccountName, DRNumber, DRSortCode, EventType, Expired,
ExpiryDateTime, ExternalReference, MatchedAmount, MatchId,
MatchIgnored, MatchType, MaturityEvent, MTType,
OrderingInstitution, OriginalAmount, OriginalScheduleTime,
OriginatingSystem, Originator, OriginatorReference,
PartialMatchAllwd, PayReceive, PreviousChannel,
ProcessedDateTime, Product, RemainingAmount, RemittingBank,
ReRouted, ResponsibleUnit, Reversed, SourceSystemInfo,
Status, StreamMovementType, SystemCounterparty,
TransactionType, ValueDateTime, W_ValueDate from
Transactions where trunc(ValueDateTime) = undate('${p1}')"
fieldmap="TransactionsFieldMap" />

<!-- Events table field map -->
<FieldMapDefinition id="EventsFieldMap">
<Column targetFieldName="2887" />
<Column targetFieldName="2889" />
<Column targetFieldName="2891" />
<Column targetFieldName="2893" />
<Column targetFieldName="2895" />
<Column targetFieldName="2897" />
<Column targetFieldName="2899" />
<Column targetFieldName="2901" />
<Column targetFieldName="2903" />
<Column targetFieldName="2905" />
<Column targetFieldName="2907" />
<Column targetFieldName="2909" />
<Column targetFieldName="2911" />
<Column targetFieldName="2913" />
<Column targetFieldName="2915" />
<Column targetFieldName="2917" />
<Column targetFieldName="2919" />
<Column targetFieldName="2921" />
<Column targetFieldName="2923" />
<Column targetFieldName="2925" />
<Column targetFieldName="2927" />
<Column targetFieldName="2929" />
<Column targetFieldName="2931" />
<Column targetFieldName="2933" />
<Column targetFieldName="2935" />
<Column targetFieldName="2937" />
<Column targetFieldName="2939" />
<Column targetFieldName="2941" />
<Column targetFieldName="2943" />
<Column targetFieldName="2945" />
<Column targetFieldName="2947" />
<Column targetFieldName="2949" />
<Column targetFieldName="2951" />
<Column targetFieldName="2953" />
<Column targetFieldName="2955" />
<Column targetFieldName="2957" />

Publish and Subscribe Executables

94

<Column targetFieldName="2959" />
<Column targetFieldName="2961" />
<Column targetFieldName="2963" />
<Column targetFieldName="2965" />
<Column targetFieldName="2967" />
<Column targetFieldName="2969" />
<Column targetFieldName="2971" />
<Column targetFieldName="2973" />
<Column targetFieldName="2975" />
<Column targetFieldName="2977" />
<Column targetFieldName="2979" />
<Column targetFieldName="2981" />
<Column targetFieldName="2983" />
<Column targetFieldName="2985" />
<Column targetFieldName="2987" />
<Column targetFieldName="2989" />
<Column targetFieldName="2991" />
<Column targetFieldName="2993" />
<Column targetFieldName="2995" />
<Column targetFieldName="2997" />
<Column targetFieldName="2999" />
<Column targetFieldName="3001" />
<Column targetFieldName="3003" />
<Column targetFieldName="3005" />
<Column targetFieldName="3007" />
<Column targetFieldName="3009" />
<Column targetFieldName="3011" />
<Column targetFieldName="3013" />
<Column targetFieldName="3015" />
</FieldMapDefinition>

<MigrateStream id="Events"
targetTable="262"
method="query"
host="foobar"
query="select UniqueId, ActualScheduleTime, AdapterStatus,
AssociatedReference, Beneficiary, BeneficiaryBank, Branch,
CalculatedId, CaptureDateTime, CaptureOperator, ChannelId,
ActualScheduleTime, Correspondent, Counterparty,
CounterpartyAlias, CRAccountName, CRNumber, CRSortCode,
Currency, CurrentId, CustomerReference, DealDate, Dealer,
DestinationAccount, DRAccountName, DRNumber, DRSortCode,
EventDateTime, EventType, Expired, ExternalReference,
FrontOfficeId, InterfaceId, MaturityEvent, MTType,
OrderingInstitution, OrderingInstitutionAlias,
OriginalAmount, OriginalId, OriginalScheduleTime,
OriginatingSystem, Originator, OriginatorAlias,
OriginatorReference, PartialMatchAllwd, PreviousChannel,
PreviousId, ProcessedDateTime, Product, RemittingBank,
ReRouted, ResponsibleUnit, Reversed, Rollable,
RollableFromId, SourceSystem, SourceSystemEventInfo,
SourceSystemInfo, StatusWeight, StreamMovementType,
SystemCounterparty, SystemCounterpartyAlias, Text,
TransactionType, ValueDateTime from Events where
trunc(ValueDateTime) = undate('${p1}')"
fieldmap="EventsFieldMap" />

<OlapServices id="OlapServicesList">
<Service host="olapmachine" port="11106" />

</OlapServices>

</PlatformMigration>

Publish and Subscribe Executables

95

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Publish and Subscribe Executables

96

Name
sp_kdbin — reads data from a kdb+tick database table into an Sybase Aleri Streaming Platform stream.

Synopsis

sp_kdbin -H [kdbhost:]kdbport -p [host:]port -q source -s stream [OPTION...]

Description

The sp_kdbin adapter reads data from a kdb or kdb+tick database into a stream in the Sybase Aleri
Streaming Platform. The adapter can read either queried or streaming data, based on a configuration
parameter.

By default, the adapter matches the field names (in a case-insensitive manner) to decide the mapping
between the source kdb+tick table and the target stream. You also have the option of explicitly specify-
ing the mapping.

Required Arguments

-H [kdbhost:]kdbport Specifies the port number, or the host name and port number, on which
KDB is listening. The default host name is localhost.

-p [host:]port Specifies the port number, or the host name and port number, of the
Command and Control interface within a running instance of the Sybase
Aleri Streaming Platform. The default host name is localhost.

-q source Specifies the kdb+tick table when running in streaming mode. When
running in non-streaming mode, specifies a valid query string.

-s stream Specifies the target stream: the stream to which the data being read is
published.

Options

-a Use asynchronous mode transmission; where the adapter does not wait
for acknowledgment from the Sybase Aleri Streaming Platform that it
received the data. This option is necessary when using a hot spare con-
figuration to ensure that both the primary and the hot spare receive the
data.

-b blocksize Specify how many records to put in a block of data for transmission.
The default is 64. A higher value may increase throughput but it will
also increase latency. A block may contain fewer records than specified
if there is not enough data available.

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform.
If the Sybase Aleri Streaming Platform successfully authenticates with
these credentials, the connection is maintained, otherwise the Sybase
Aleri Streaming Platform will immediately close the connection.

This option must correspond to the type of authentication specified for
the Streaming Processor when it was started up. If it was started without
specifying a -V option or using the -V none option, omit this option.
If it was started using the -V pam option, specify -c
user:password. If it was started using the -V rsa or -V gssapi

Publish and Subscribe Executables

97

option, specify -c user.

-d Output debug messages.

-e Use encrypted OpenSSL sockets for all communications between the
adapter and the Sybase Aleri Streaming Platform (which requires that it
be started in encrypted mode). When this option is not present, no en-
cryption occurs.

-G Use Kerberos authentication. This option is required when the Stream-
ing Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to
the Sybase Aleri Streaming Platform is the default ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current do-
main controller

2. logged in to one user account and used a different one to connect to
the Sybase Aleri Streaming Platform

-g gatewayhost Use the specified gateway host. Ignore the host name returned by the
Sybase Aleri Streaming Platform.

-h Print detailed help.

-k privateRsaKeyFile Authenticate using the RSA private key file mechanism instead of a
password. The privateRsaKeyFile must specify the pathname of the
private RSA key file. This option is required if the Streaming Processor
was started with the -V rsa option. With this option enabled, the user
name must be specified with the -c option, but the password is not re-
quired. In addition, the Streaming Processor must have been started
with the -k option specifying the directory in which to store the RSA
keys.

-I interval Specifies the number of seconds to wait before running the supplied
query again when running in non-streaming mode. A value of 0 indic-
ates that the query should only be run once; no polling is performed.

-M mapping Specifies a mapping between the column name in the target stream and
the column name in the kdb+tick database table. The mapping is a colon
separated series of SPColumn=KDBColumn statements. If this para-
meter is not provided, the connector will absorb data only for those
columns where the target stream column name matches the source table
column name (in case-insensitive manner).

-m If this option is not specified, the adapter connects to a kdb+tick data-
base and reads in streaming data. If it is specified, the adapter executes
the supplied database query and feeds the result to the Sybase Aleri
Streaming Platform.

-T attempts Specifies the number of times to attempt to re-connect to the kdb or
kdb+tick database if the connection breaks during operation. The de-
fault is 1.

-t Use transaction blocks. The default is to use envelopes. This improves

Publish and Subscribe Executables

98

performance, but will cause all records in a block to be rejected when
one record fails.

-u user[:password] Pass authentication credentials to the KDB database.

Examples

To execute a basic streaming mode query that reads data from a KdbTrades table in a kdb+tick database
on the server altair, where KDB is listening on port 9200, and writes it to the SpTrades stream in the Sy-
base Aleri Streaming Platform on the local server where the Command and Control interface is on port
1190,

sp_kdbin -p 1190 -H altair:9200 -q KdbTrades -s SpTrades

To execute the same query, explicitly mapping fields in the kdb+tick database to columns in the Sybase
Aleri Streaming Platform stream,

sp_kdbin -p 1190 -H altair:9200 -q KdbTrades -s SpTrades -M SpId=KId:SpSymbol=KSymbol:SpPrice=KPrice:SpCount=KCount

To execute a pull mode operation that issues the specified query every 5 seconds to a kdb+tick database
on the server altair, where KDB is listening on port 9200, and writes data to the Sybase Aleri Streaming
Platform, on the server ceres, where the Command and Control interface is on port 1221,

sp_kdbin -p ceres:1221 -H altair:9200 -q 'select Id, Symbol, Price, Count from KdbTrades' -s SpTrades -m -I 5

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Publish and Subscribe Executables

99

Name
sp_kdbout — feeds streaming data from the Sybase Aleri Streaming Platform to a kdb+tick database ta-
ble.

Synopsis

sp_kdbout -H [kdbhost:]kdbport -p [host:]port -q source -s table [OPTION...]

Description

The sp_kdbout adapter feeds streaming data from the Sybase Aleri Streaming Platform to a kdb+tick
database table.

By default, the adapter matches the field names (in a case-insensitive manner) to decide the mapping
between and the Sybase Aleri Streaming Platform stream and the kdb+tick table. You also have the op-
tion of explicitly specifying the mapping.

Required Arguments

-H [kdbhost:]kdbport Specifies the port number, or the host name and port number, on which
KDB is listening. The default host name is localhost.

-p [host:]port Specifies the port number, or the host name and port number, of the
Command and Control interface within a running instance of the Sybase
Aleri Streaming Platform. The default host name is localhost.

-q source Specifies either the name of a stream on the Sybase Aleri Streaming
Platform or a valid SQL query to retrieve the data to write to the
kdb+tick table.

-s table Specifies the name of the kdb+tick table to which the data will be writ-
ten.

Options

-a Use asynchronous mode transmission; where the adapter does not wait
for acknowledgment from the Sybase Aleri Streaming Platform that it
received the data. This option is necessary when using a hot spare con-
figuration to ensure that both the primary and the hot spare receive the
data.

-B Use droppable subscriptions. The Sybase Aleri Streaming Platform will
drop the subscription if the adapter cannot keep up with the data.

-b batchsize This option allows you to set the maximum number of records to in-
clude in a single batch write to kdb+tick. The default is 5000.

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform.
If the Sybase Aleri Streaming Platform successfully authenticates with
these credentials, the connection is maintained, otherwise the Sybase
Aleri Streaming Platform will immediately close the connection.

This option must correspond to the type of authentication specified for
the Streaming Processor when it was started up. If it was started without
specifying a -V option or using the -V none option, omit this option.

Publish and Subscribe Executables

100

If it was started using the -V pam option, specify -c
user:password. If it was started using the -V rsa or -V gssapi
option, specify -c user.

-d Output debug messages.

-e Use encrypted OpenSSL sockets for all communications between the
adapter and the Sybase Aleri Streaming Platform (which requires that it
be started in encrypted mode). When this option is not present, no en-
cryption occurs.

-G Use Kerberos authentication. This option is required when the Stream-
ing Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to
the Sybase Aleri Streaming Platform is the default ticket.

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current do-
main controller

2. logged in to one user account and used a different one to connect to
the Sybase Aleri Streaming Platform

-h Print detailed help.

-I fieldnames Specify a comma-separated list of kdb field names whose values will be
ignored. These fields are included in the message, but are always popu-
lated with NULL.

-K If specified, the subscription from the Sybase Aleri Streaming Platform
preserves the transaction boundaries. The default is False.

-k privateRsaKeyFile Authenticate using the RSA private key file mechanism instead of a
password. The privateRsaKeyFile must specify the pathname of the
private RSA key file. This option is required if the Streaming Processor
was started with the -V rsa option. With this option enabled, the user
name must be specified with the -c option, but the password is not re-
quired. In addition, the Streaming Processor must have been started
with the -k option specifying the directory in which to store the RSA
keys.

-L interval Use pulsed subscribe when connecting to the Sybase Aleri Streaming
Platform. The pulse interval is specified in seconds.

-l Use “lossy” subscribe.

-M mapping Specifies a mapping between the column name in the target stream and
the column name in the kdb+tick database table. The mapping is a colon
separated series of SPColumn=KDBColumn statements. If this para-
meter is not provided, the connector will absorb data only for those
columns where the target stream column name matches the source table
column name (in case-insensitive manner).

-m Write the data to the table using the “upsert” operation. If this option is
not used, the adapter works in streaming mode and uses the “u.upd” op-
eration to write data to the kdb+tick database.

Publish and Subscribe Executables

101

-O fieldnames Specify a comma-separated list of kdb field names to omit from the
message. Unlike ignored fields which are part of the message but al-
ways NULL, these fields are not included in the message.

-R Subscribe with shine through (if possible) so that previously received
information is retained for any field(s) for which the update contains no
new data.

-T attempts Specifies the number of times to attempt to re-connect to the kdb or
kdb+tick database if the connection breaks during operation. The de-
fault is 1.

-t Send data to kdb+tick in transaction blocks. The base data existing in
the stream at the time of connection is not sent.

-u user[:password] Pass authentication credentials to the KDB database.

Examples

To subscribe to the SpTrades stream in the Sybase Aleri Streaming Platform on the server ceres, where
the Command and Control interface is on port 1221, and stream the data out to KdbTrades in the
kdb+tick database on the server altair, where KDB is listening on port 9200,

sp_kdbout -p ceres:1221 -H altair:9200 -q SpTrades -s KdbTrades

To populate fields XXX and YYY in a kdb+tick table may with NULL (because they have no corres-
ponding data in the Sybase Aleri Streaming Platform),

sp_kdbout -p ceres:1221 -H altair:9200 -q SpTrades -s KdbTrades -I XXX,YYY

Sometimes a table in kdb+tick may compute fields (for example, XXX and YYY) which should not be
specified in the data update message. Doing so usually results in a "length" error in kdb+tick. To omit
these fields from the update message altogether,

sp_kdbout -p ceres:1221 -H altair:9200 -q SpTrades -s KdbTrades -O XXX,YYY

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Publish and Subscribe Executables

102

Name
sp_stream2olap — migrate a data stream to V-OLAP

Synopsis

sp_stream2olap -F xsdfile -f configfile -l logdir -o outpath -p [host:]port [OP-
TION...]

Description

The sp_stream2olap adapter is used to migrate streaming data from the Sybase Aleri Streaming Plat-
form to the V-OLAP system. The adapter establishes a connection to a running instance of the Sybase
Aleri Streaming Platform Based on configuration it will then create subscriptions to one or more
streams. In addition to regular subscriptions, sp_stream2olap supports projected subscriptions which
are based on SQL queries. Subscriptions can also be persisted. The sp_stream2olap adapter receives
data from the Sybase Aleri Streaming Platform and writes it out to disk in a format readable by V-OLAP
and notifies any running OLAP instances of the new data.

In addition to streaming, sp_stream2olap supports a snapshot mode. In this mode, sp_stream2olap
subscribes to the configured streams, reads the base data (the data already stored in the stream at the
time of connection) and exits.

The adapter is driven by a combination of parameters read from an XML configuration file and com-
mand line options.

Required Arguments

-F sp_stream2olap.xsd Specify the XSD Schema file for validating the XML configuration
file. You must enter the full pathname of the XSD schema file.

-f configuration_file Specify the XML configuration file which contains a description of
the source data along with instructions on how it is to be migrated.

-l logdir Specify the directory where the log file, sp_stream2olap.log,
is saved.

-o outpath Specify the full pathname of the folder where the V-OLAP vector
store will be written. If starting in “create” mode, this folder must be
empty.

It is important to specify a directory on a disk that has a low probabil-
ity of running out of disk space or crashing.

-p [hostname:]port Specify the port, and optionally the hostname, of the command
and control interface within a running instance of the Sybase Aleri
Streaming Platform. If you do not specify a hostname, the default is
localhost.

Options

-C sp_stream2olap creates a fresh vector store using the stream defini-
tions retrieved from the Sybase Aleri Streaming Platform. When this
option is specified, the output folder specified using the -o option
must not contain the V-OLAP table folders that will be written to by
sp_stream2olap.

Publish and Subscribe Executables

103

When producing vector store file names, the sp_stream2olap applic-
ation appends a trailing slash onto the end of the value that the out-
path attribute specifies.

-c user[:password] If you are using an authentication method that requires credentials
(Kerberos, PAM, or RSA), this option passes those authentication
credentials to the Sybase Aleri Streaming Platform. If the Sybase
Aleri Streaming Platform successfully authenticates with these cre-
dentials, the connection is maintained, otherwise it is closed immedi-
ately.

The specific values for this option depend on the type of authentica-
tion being used by the Sybase Aleri Streaming Platform. If no authen-
tication is being used, then nothing should be specified. For PAM au-
thentication, user and password refer to the PAM account credentials.
For RSA and GSSAPI, specify only the user and omit the password.

-D Run in daemon mode. In this mode, sp_stream2olap spawns a dae-
mon process. The process id of the daemon is output to the console.
This id can be used to signal the daemon. Refer to the documentation
below for details.

-d n Generate debug messages at the specified debug level: from 1 to 4.

-e Encrypt the socket connection between sp_stream2olap and the Sy-
base Aleri Streaming Platform.

-G Use Kerberos authentication. This option is required when the
Streaming Processor was started with the -V gssapi option. With
this option enabled, the user name must be specified with the -c op-
tion, but the password is not required.

-h Enter this option to display the usage message for this command.

-k privateRSAKeyFile Perform authentication using the RSA private key file mechanism in-
stead of password authentication. The privateRSAKeyFile must
specify the absolute path filename of the private RSA key file. With
this option enabled, the user name must be specified with the -c op-
tion, but the password is not required. In addition, the Sybase Aleri
Streaming Platform must be started with the -k option.

-O host-
name:port[;hostname:p
ort]

Specify one or more V-OLAP services to connect to and notify when
data is written. Multiple services are separated by semicolons. The
services specified on the command line override any definitions in
the XML configuration file.

-s Run in snapshot mode. In this mode, sp_stream2olap reads just the
base data in all the configured streams and then exits.

parameter=value... sp_stream2olap allows placeholders in the SQL query that it will use
to subscribe to a stream. Specify the values for these placeholders at
the end of the command line argument list. This is a set of query sub-
stitution parameter name=value pairs. The name of a substitution
parameter must start with a lower case "p" character, followed imme-
diately by one or more digits, followed immediately by an equal '='
sign, that is then followed immediately by the value. Within the XML
configuration file, the SQL statements may look something like this:

Publish and Subscribe Executables

104

select BalanceType from BalanceMovements where f1 = ${p1}

At runtime, all of the ${p1} place holders within SQL queries will be
replaced with the value assigned to the p1 parameter on the command
line.

Configuration

sp_stream2olap migration is driven by an XML configuration file that must conform to the schema
shipped with the adapter in sp_stream2olap.xsd. The configuration file lists the streams that are
to be migrated and describes the output vector store files. Below is a simple configuration file that illus-
trates all supported options.

<?xml version="1.0" encoding="UTF-8"?>
<PlatformMigration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- Sample XML configuration file for the Aleri Platform Data Migration Adapter -->

<Environment id="RTRisk_Export" source="platform"
blockSize="5000"
online="optional" />

<!-- Transactions table field map -->
<FieldMapDefinition id="RTRisk_export_map">

<Column targetFieldName="TradeId"/>
<Column targetFieldName="Side"/>
<Column targetFieldName="Party"/>
<Column targetFieldName="Instrument"/>
<Column targetFieldName="Venue"/>
<Column targetFieldName="TradeTime"/>
<Column targetFieldName="Size"/>
<Column targetFieldName="DealValue"/>
<Column targetFieldName="Trader"/>
<Column targetFieldName="RiskUSD"/>
<Column targetFieldName="RiskEUR"/>
<Column targetFieldName="RiskLimit"/>
<Column targetFieldName="RiskConcentration"/>
<Column targetFieldName="EventTime"/>

</FieldMapDefinition>
<MigrateStream id="DealRiskDelta"

targetTable="risk_facts"
method="projection"
query="select sequenceNumber, opcode,

TradeId,Side,Party,Instrument,Venue,TradeTime,Size,DealValue,Trader,RiskUSD,RiskEUR,
RiskLimit,RiskConcentration,TradeTime from DealRiskDelta_log where SeqNbr > ${p1}
and SeqNbr < (1 + ${p2})"

host="localhost"
controlstream="DealRiskDelta_truncate"
session="10"

fieldmap="RTRisk_export_map" />
<!-- Events table field map -->

<OlapServices id="OlapServicesList">
<Service host="chidt025ux" port="11106" />

</OlapServices>
</PlatformMigration>

An sp_stream2olap XML configuration file contains one top most element: PlatformMigration. Plat-
formMigration can contain the following nodes: Environment, OlapServices, FieldMapDefinition, and
MigrateStream.

Environment

This entity specifies certain global parameters for sp_stream2olap. Its attributes are:

source Mandatory string attribute. Currently the only supported value is
“platform”.

Publish and Subscribe Executables

105

blockSize This optional integer attribute specifies the maximum number of
Sybase Aleri Streaming Platform records to batch together before
writing the data to disk. The default value is 64.

When migrating live data, sp_stream2olap keeps batching records
until the record count reaches the specified blockSize. Or, if
there is no immediate data being sent by the Sybase Aleri Stream-
ing Platform. all data read so far is written to disk instead of waiting
indefinitely.

online This optional string attribute specifies how sp_stream2olap should
deal with OlapServices. It can have one of three values:

none sp_stream2olap does not look for or notify any
OLAP services of the data it has written.

mandatory sp_stream2olap will try to connect to configured
OLAP services. If it fails, sp_stream2olap treats
that as a fatal error and exits. If a connection to
OLAP service is lost while it is migrating, this is
also treated as a fatal error.

optional sp_stream2olap will try to connect to OLAP but
will not exit if one is not found. Similarly, a lost
connection while running will not cause
sp_stream2olap to exit.

FieldMapDefinition

A FieldMapDefinition node describes the structure of a vector data store for an OLAP table. It has a set
of ordered Column elements. The order in which these Column elements are defined should correspond
to the order of the columns in the stream being subscribed to in the Sybase Aleri Streaming Platform. If
using an SQL query, these should correspond to the order of the field names in the SQL query statement.

Id A string that uniquely identifies this FieldMapDefinition node.

Column

A column element corresponds to a field in a table definition.

targetFieldName This string attribute specifies the name to use for the column when writing data
to disk. sp_stream2olap uses this to name the vector file that will contain data
for the field.

targetRefField Optional boolean attribute. If set to true, indicates that the column data should
be stored as a reference type in the vector data store. This attribute only applies
to symbol (character) data fields.

MigrateStream

A MigrateStream entity describes the migration between an Sybase Aleri Streaming Platform stream and
an OLAP table. This includes the mappings and operation modes.

Publish and Subscribe Executables

106

id This mandatory string attribute uniquely identifies this MigrateStream node.

targetTable In the historical vector store, each table is represented by a directory. This mandat-
ory string attribute specifies the name for that directory. sp_stream2olap creates
these directories under the “outpath” folder specified in the command line.

fieldmap This mandatory string attribute refers to an existing FieldMapDefinition node id
that is used to map the columns from the stream being read.

method This mandatory string attribute can be set to either “subscription” or “projection”.
If set to subscription, the connection to the stream is made using a regular sub-
scription. If set to projection, the connection is made via a SQL query which is
used to filter the data from the stream.

query If the method attribute is set to “subscription”, this refers the stream name in the
Sybase Aleri Streaming Platform from which to read data. If method is set to
“projection”, this must specify a valid SQL query. Care must be taken in naming
the fields in the query since these must map one-to-one to the columns in the re-
lated FieldMapDefinition.

host This mandatory string attribute contains the name of the host machine exactly as it
appears in the definition of the Fact Table partition for the Virtual Cube in the
OLAP metadata.

controlstream This attributes names the stream in the Sybase Aleri Streaming Platform model
that is used to clear published records.

session This integer attribute can be any positive integer greater than zero, as long as it is
different from the session of any other MigrateStream node that maybe writing to
the same physical vector store table. This will include MigrateStreams across all
instances of sp_stream2olap that may be running.

priority This mandatory integer attribute assigns a priority to the MigrateStream node. The
priority attribute plays a role if multiple MigrateStream nodes are defined.
sp_stream2olap uses the priority value to decide which stream to write to the disk
first when there is simultaneous data from multiple streams. A lower value indic-
ates higher priority.

The controlstream and session attributes are used for persistent subscribes. Please refer to the section on
persistent subscribes for details on how to set this up.

OlapServices

The OlapServices entity contains a list of host and port pairs, each representing a running V-OLAP. De-
pending on the value of the online attribute of the Environment entity, sp_stream2olap will notify each
V-OLAP service when a block of data has been successfully written to disk.

Usage Notes

sp_stream2olap is started from the command line with various options. It can run either in console or
daemon mode. In console mode, sp_stream2olap provides a command prompt. At this prompt, you can
enter the following commands to control sp_stream2olap:

quit Causes sp_stream2olap to exit

connect olap [host port] Causes sp_stream2olap to reconnect to all configured OLAP ser-
vices. If a specific host and port is supplied, sp_stream2olap tries

Publish and Subscribe Executables

107

to connect to that service even if it is not one that has been specified
in the configuration file.

show olap Displays configured OLAP services and the connection status.

SQL Substitution Parameters

sp_stream2olap allows SQL queries to contain named placeholders. If the SQL query does contain
parameters, values for these parameters must be specified in the command line. For example, if a query
is structured as follows:

select * from Trades where TradeId < ${p1} and TradeId > ${p2}

You must specify the values for the named parameters when you start sp_stream2olap. For example,

sp_stream2olap -p 3241 -f dm.xml -o output -l log p1=0 p2=10000

Persistent Subscriptions

sp_stream2olap supports persistent subscriptions to the Sybase Aleri Streaming Platform. In persistent
subscription mode, a client and the Sybase Aleri Streaming Platform cooperate to keep track of records
that have been successfully read by the client. This information is persisted. In the event of a crash of
either the client or the Sybase Aleri Streaming Platform, the subscription can be resumed from the point
of the last successful read.

In order to work, a model needs to be modified to support a persistent subscription pattern. Please refer
to the Sybase Aleri Streaming Platform Authoring Guide for a detailed description of this pattern. The
Aleri Studio can be used to make these modifications automatically. As part of this modification, the
Aleri Studio creates two additional streams for each stream that is to be subscribed to persistently. These
are named by appending the extensions _log and _truncate to the original stream name. For ex-
ample, if the stream that needs to be subscribed to persistently is named Trades, the Aleri Studio will
create Trades_log and Trades_truncate.

The XML configuration file also needs to change. The query attribute of the MigrateStream node that
will be using persistent subscriptions now has to refer to Trades_log as the stream to read instead of
the original Trades. If the subscription is projected (that is, it has an SQL query), then it too needs to
change to add two additional columns: sequenceNumber and opcode as the first two fields on the
query. For example, if the original SQL query was

select TradeId,
TradeTime,
Value from Trades

It now needs to be

select sequenceNumber,
opcode,
TradeId,
TradeTime,
Value from Trades_log

Publish and Subscribe Executables

108

In addition to change in the “query” attribute, two additional attributes need to be specified:
“controlstream” and “session”. The “controlstream” attribute should refer to the second stream that the
Aleri Studio creates. In our example it is “Trades_truncate”. The “session” attribute is an integer. While
most of the time this can be any value greater than zero, it is important to set this value properly if the
installation has multiple MigrateStream nodes pointing to the same physical vector store table. This
holds true even if the migration is being done in multiple instances of sp_stream2olap. In this case, it is
important to assign a different integer value to each MigrateStream node that shares the same physical
output location. sp_stream2olap uses this value to distinguish recovery information.

Snapshot mode

Snapshot mode is set with the -s command line option. In this mode, sp_stream2olap will exit once
the base data from all configured streams has been read and written to disk. Base data is the data that
already exists in the stream at the time the connection is made.

In order to be useful, it is important to make sure that the Sybase Aleri Streaming Platform is quiesced.

Daemon mode

This mode is set with the -D command line option. In this mode, sp_stream2olap spawns a daemon
process to continue the migration and outputs the process id of the daemon. The process id can be used
to signal the sp_stream2olap daemon process. This can be useful if any OLAP services go down and
sp_stream2olap loses the connection.

Currently sp_stream2olap recognizes two signals: SIGTERM and SIGUSR1. SIGTERM causes
sp_stream2olap to exit cleanly. SIGUSR1 causes sp_stream2olap to try to reconnect to all configured
OLAP services.

Run the sp_stream2olap in daemon mode and save the process id for use in sending signals to it.

> SPID=`sp_stream2olap -p 22000 -o output -l log -D -f config.xml`

Then, to have sp_stream2olap reconnect to OLAP services:

> kill -10 $SPID

Or, to terminate the program:

> kill -15 $SPID

The numbers 10 and 15 in the preceding commands are the signal numbers for the SIGUSR1 and
SIGTERM signals, respectively. Entering kill -l at the command line prompt will get you a com-
plete list of signals and signal numbers.

Recovery

The sp_stream2olap utility encapsulates each table migration within a single recoverable transaction.
Either all of the table columns are updated or none of them are. In case of a data migration failure, this
mechanism preserves the target vector store area, leaving it in a consistent state. Each table being
handled by sp_stream2olap has its own recovery file.

The mechanism used to implement recovery is a WAL (Write-Ahead-Log). Before writing out a fresh
batch of data, the header of each vector store column file is written out to the recovery file. After the
vector store headers have been successfully backed up in the recovery file, the adapter attempts to ap-
pend the Sybase Aleri Streaming Platform data onto the corresponding vector store. If all goes well, and
all vector store files have been successfully appended to, the adapter will truncate the recovery file. If

Publish and Subscribe Executables

109

there is a non-fatal error at any point in the migration attempt, the adapter will detect the error and at-
tempt to recover/rollback the vector store files to the state that they were in prior to the batch before ex-
iting. If a successful recovery is accomplished, sp_stream2olap will truncate the recovery file.

If a fatal error occurs, and the adapter aborts in the middle of a migration attempt, the next time the ad-
apter is started up, it will detect if a particular table has a viable recovery file. If it has, the adapter will
attempt to recover/rollback the corresponding vector store table using the entries in the recovery file.
Upon a successful start-up recovery/rollback, sp_stream2olap will truncate the recovery file and pro-
ceed with the migration.

Configuration Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="SessionId">
<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="AsapObject">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="documentation" type="xs:string" use="optional"/>

</xs:complexType>
<xs:element name="PlatformMigration" type="Container"/>
<xs:complexType name="Container">
<xs:complexContent>

<xs:extension base="AsapObject">
<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="Environment" type="Environment" />

<xs:element name="Container" type="Container" />
<xs:element name="MigrateStream" type="MigrateStream" />
<xs:element name="OlapServices" type="OlapServices" />
<xs:element name="FieldMapDefinition" type="FieldMapDefinition">

<xs:key name="UniqueColumnConstraint2">
<xs:selector xpath="Column"/>
<xs:field xpath="@targetFieldName"/>

</xs:key>
</xs:element>

</xs:choice>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="Environment">
<xs:complexContent>

<xs:extension base="AsapObject">
<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="source" use="required" >
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="platform"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="online" use="optional" default="none">
<xs:simpleType>

<xs:restriction base="xs:string">
<xs:enumeration value="none"/>
<xs:enumeration value="mandatory"/>
<xs:enumeration value="optional"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="blockSize" type="xs:integer" use="optional" default="64" />

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="FieldMapDefinition">
<xs:complexContent>

<xs:extension base="AsapObject">
<xs:sequence>

Publish and Subscribe Executables

110

<xs:element name="Column" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="targetFieldName" type="xs:string" use="required"/>
<xs:attribute name="targetRefField" type="xs:boolean" use="optional" default="false"/>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="MigrateStream">
<xs:complexContent>

<xs:extension base="AsapObject">
<xs:attribute name="id" type="xs:ID" use="required"/>

<xs:attribute name="targetTable" type="xs:string" use="required"/>
<xs:attribute name="fieldmap" type="xs:IDREF" use="required" ecore:reference="FieldMapDefinition"/>
<xs:attribute name="method" use="required" >

<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="subscription"/>

<xs:enumeration value="projection"/>
</xs:restriction>

</xs:simpleType>
</xs:attribute>
<xs:attribute name="query" type="xs:string" use="required"/>
<xs:attribute name="controlstream" type="xs:string" use="optional"/>
<xs:attribute name="session" type="SessionId" use="optional"/>
<xs:attribute name="host" type="xs:string" use="optional" default=""/>
<xs:attribute name="priority" type="xs:integer" use="optional" default="0"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name="OlapServices">
<xs:complexContent>

<xs:extension base="AsapObject">
<xs:sequence>

<xs:element name="Service" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="host" type="xs:string" use="required"/>

<xs:attribute name="port" type="xs:integer" use="required"/>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:ID" use="required"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:schema>

Examples

To run sp_stream2olap, logging in to port 9900 on a server named ohio, using the configuration file /
home/aleri/config.xml, writing the output to /home/aleri/output, and saving the logfile
sp_stream2olap.log in the /var/logs directory:

sp_stream2olap -p ohio:9900 -f /home/aleri/config.xml -o /
home/aleri/output -l /var/logs

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

Publish and Subscribe Executables

111

Name
sp_subscribe — A sample subscription client for the Sybase Aleri Streaming Platform.

Synopsis

sp_subscribe -c user:passwd -p [hostname:]port [OPTION...]

Description

The sp_subscribe client connects to an instance of the Sybase Aleri Streaming Platform via the Com-
mand and Control and Gateway interfaces and subscribes to transaction streaming data. The received re-
cords are converted to XML (or optionally delimited format) and written to the standard output.

Options

-A connectionHandle Instead of subscribing itself, subscribe the already existing connection
with handle connectionHandle to the specified streams. This
sp_subscribe will exit after processing the request.

-B Specifies that the connection should be dropped if it supplies data faster
than sp_subscribe can absorb it.

-b Indicates that the machine architecture on which the server supplying us
with data is running has the reverse byteorder of the machine architec-
ture on which sp_subscribe is running.

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform;
if the password is not given, the user will be prompted for it. If the Sy-
base Aleri Streaming Platform successfully authenticates with these cre-
dentials, the connection is maintained, otherwise the Sybase Aleri
Streaming Platform will immediately close the connection.

This option must correspond to the type of authentication specified for
the Streaming Processor when it was started up. If it was started without
specifying a -V option or using the -V none option, omit this option.
If it was started using the -V pam option, specify -c
user:password. If it was started using the -V rsa or -V gssapi
option, specify -c user.

-D connectionHandle Instead of subscribing itself, unsubscribe the already existing connec-
tion with handle connectionHandle from the specified streams.
This sp_subscribe will exit after processing the request.

-d separator Put the subscribe client into delimited output mode and use the spe-
cified separator as the delimiting character.

-e Negotiate encrypted OpenSSL sockets for all communication with the
Sybase Aleri Streaming Platform (which requires that it be started in en-
crypted mode).

-G Use Kerberos authentication. This option is required when the Stream-
ing Processor was started with the -V gssapi option.

You can obtain multiple valid Kerberos tickets by:

1. authenticating using a Kerberos server other than your current do-
main controller

Publish and Subscribe Executables

112

2. logging in to one user account and using a different one to connect
to the Sybase Aleri Streaming Platform

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to
the Sybase Aleri Streaming Platform is the default ticket.

-g gateway_host Use the specified gateway host rather than the host returned from the
get_gateway() call.

-H Subscribe to the Sybase Aleri Streaming Platform heartbeat messages
instead of data.

-h Print detailed help.

-i streamId[,...] Specify one or more streams to subscribe to, using the integer handle of
each stream.

-K Subscribe to the original transaction blocks generated within the Sybase
Aleri Streaming Platform. This option prevents those original transac-
tion blocks from being coalesced into more optimal blocks.

-k privateRsaKeyFile Authentication is performed using the RSA private key file mechanism
instead of password authentication. The privateRsaKeyFile must specify
the pathname of the private RSA key file. This option is required if the
Streaming Processor was started with the -V rsa option. With this op-
tion enabled, the user name must be specified with the -c option, but
the password is not required. In addition, the Streaming Processor must
have been started with the -k option specifying the directory in which
to store the RSA keys.

-L period Specifies a pulsed subscription, where records are collected for the spe-
cified period in seconds, and then delivered.

-l Put the subscribe client into lossy mode, where data is shed (lost) if the
subscribe client cannot keep up with the streaming data produced by the
Sybase Aleri Streaming Platform.

-M number Specify the number of multiple connections to establish (all for the
same streams).

-m name Set a symbolic tag name for the connection. This allows to look up the
connection easily in the Aleri_Clients metadata stream. The name will
be stored in the field “conn_tag”. To kill the connections by tag name,
use the sp_cli command "kill every".

-P precision Set the number of decimal places in output for DOUBLE (default 6).

-p [hostname:]port Specify the port or the hostname and port of the Command and Control
interface within a running instance of the Sybase Aleri Streaming Plat-
form.

-Q “SQL statement” Specifies an SQL “select” statement to apply to outbound records. The
SQL statement can use any of the features of the SQL syntax given in
the Guide to Programming Interfaces.

The outbound records come marked with insert, update, and delete,
even when the SQL statement might not include the key columns of the

Publish and Subscribe Executables

113

stream. To give insert/update/delete meaning in these cases, you can
specify a special column ALERI_SEQNO. For example, the statement
“select *, ALERI_SEQNO from Vwap order by Price” fills in values for
the ALERI_SEQNO column automatically. With “order by”, the
ALERI_SEQNO reflects the ordering of the rows in the output set.

-R Subscribe with shine through (if possible) so that when an update con-
tains no new data for some field(s) previously received information for
that field(s) will be retained.

-S Take a snapshot of the table: receive the initial state of the stream and
exit immediately afterward.

-s streamName[,...] Specify one or more streams to subscribe to, using the logical name of
each stream.

-T Print out block begin (namely <block>) and block end (namely
</block>) around transaction blocks.

-t Put the subscribe client into transaction-only mode. It will receive trans-
actional updates to streams upon connection to the Sybase Aleri Stream-
ing Platform and not the initial state of the streams.

-v Print the service XML entries, not only the data.

-W baseDrainTimeout Set the time limit, in milliseconds, that this client has to read all base
data from the subscribe stream before being dropped. When this para-
meter is not specified, the default value is 8,000 milliseconds or 8
seconds.

-X Exit the process after all the subscriptions exit, even if the Sybase Aleri
Streaming Platform does not drop the connection.

-z Set the internal queue size of the output gateway connection. This queue
front ends the connected socket, buffering data to be delivered to the
client. The default queue size is 8192 records.

Examples

To subscribe to two streams named PreprocessorTransactions and DebitMovements, printing all stream
data in XML format on stdout:

sp_subscribe -c user:pass \
-s PreprocessorTransactions,DebitMovements -p 11180

To subscribe to two streams named PreprocessorTransactions and DebitMovements, printing all stream
data in pipe-separated format on stdout:

sp_subscribe -c user:pass -d "|" \
-s PreprocessorTransactions,DebitMovements -p 11180

To subscribe to one stream named PreprocessorTransactions whose data is generated by a server running

Publish and Subscribe Executables

114

on a machine named HOST (which has differing byteorder than the machine that subscribe is running
on) and print all stream data in pipe-separated format on stdout:

sp_subscribe -c user:pass -d "|" \
-s PreprocessorTransactions -p HOST:11180

To subscribe to one stream named baseInput and apply a SQL statement:

sp_subscribe -c user:pass -Q \
"select intData_1, 10*intData_1+dblData_1
from baseInput where intData_1 > 20" \

-p HOST:11180

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_convert(1), sp_upload(1)

Bugs

See the documentation for known issues.

Publish and Subscribe Executables

115

Name
sp_upload — A sample record upload client for the Sybase Aleri Streaming Platform

Synopsis

sp_upload [OPTION...]

Description

The sp_upload utility reads binary records from the standard input and forwards them to a running in-
stance of the Sybase Aleri Streaming Platform via the Gateway interface.

The format of the data is zero or more occurrences of <Stream Handle><Raw Binary Record>. <Stream
Handle> is a uint32_t indicating the destination stream for the record. The <Raw Binary Record> format
is documented in the Guide to Programming Interfaces. This tool is typically used at the end of a
pipeline with the sp_convert tool.

Options

-b Set byteswap mode. The raw records fed into sp_upload (via
sp_convert -b) and the server to which sp_upload is sending data,
BOTH have different byte order than the architecture the sp_upload cli-
ent is running on (the byte order of the data must always match the byte
order of the server).

-c user[:password] Pass authentication credentials to the Sybase Aleri Streaming Platform;
if the password is not given, the user will be prompted for it. If the Sy-
base Aleri Streaming Platform successfully authenticates with these cre-
dentials, the connection is maintained, otherwise the Sybase Aleri
Streaming Platform will immediately close the connection.

This option must correspond to the type of authentication specified for
the Streaming Processor when it was started up. If it was started without
specifying a -V option or using the -V none option, omit this option.
If it was started using the -V pam option, specify -c
user:password. If it was started using the -V rsa or -V gssapi
option, specify -c user.

-d num Insert a delay of num microseconds between records or transaction
blocks.

-e Negotiate encrypted OpenSSL sockets for all communication with the
Sybase Aleri Streaming Platform (which must be started in encrypted
mode to use this option).

-f num:SQL Set a finalizer to be run. The Streaming Processor runs the SQL state-
ment (a combination of insert, update, or delete statements, separated by
semicolons) if no message is received from sp_upload within num mil-
liseconds. The SQL statement is also run when sp_upload stops.

-G Use Kerberos authentication. This option is required when the Stream-
ing Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket,
you must ensure that the ticket issued to the account used to connect to
the Sybase Aleri Streaming Platform is the default ticket.

Publish and Subscribe Executables

116

You may have obtained multiple valid Kerberos tickets if you:

1. authenticated using a Kerberos server other than your current do-
main controller

2. logged in to one user account and used a different one to connect to
the Sybase Aleri Streaming Platform

-h Print detailed help.

-k privateRsaKeyFile Authentication is performed using the RSA private key file mechanism
instead of password authentication. The privateRsaKeyFile must
specify the pathname of the private RSA key file. This option is re-
quired if the Streaming Processor was started with the -V rsa option.
With this option enabled, the user name must be specified with the -c
option, but the password is not required. In addition, the Streaming Pro-
cessor must have been started with the -k option specifying the direct-
ory in which to store the RSA keys.

-m name Set a symbolic tag name for the connection. This allows to look up the
connection easily in the Aleri_Clients metadata stream. The name will
be stored in the field “conn_tag”. To kill the connections by tag name,
use the sp_cli command

-p [hostname:]port Specify the port or the hostname and port of the Command and Control
interface within a running instance of the Sybase Aleri Streaming Plat-
form. If no hostname is specified, the default is "localhost".

-r num Upload records or transaction blocks at a rate of num per second.

-s num Synchronize the source streams every num records or transaction
blocks. This guarantees that the records have been absorbed by the
source streams.

-t num Run in transaction mode. Each record that sp_upload reads is buffered
on a per stream basis. When a buffer reaches the indicated number of
records it is wrapped as a single transaction and sent to the Sybase Aleri
Streaming Platform. If all records read are from one stream, this effect-
ively buffers the stream into num records chunks and commits them as
transactions. Any buffered records are sent as a single transaction per
stream when an EOF is read.

-w num Run in envelope mode. Each record that sp_upload reads is buffered on
a per stream basis. When a buffer reaches the indicated number of re-
cords it is wrapped in a single envelope and sent to the Sybase Aleri
Streaming Platform. If all records read are from one stream, this effect-
ively buffers the stream into num records chunks. Any buffered records
are sent as a single envelope per stream when an EOF is read.

-x Upon receiving an EOF on the standard input, send an <END OF
STREAM> marker to each stream for which data has been uploaded. If
all source streams of the Sybase Aleri Streaming Platform receive an
<END OF STREAM> marker, the Sybase Aleri Streaming Platform
will shut down and exit.

Examples

Publish and Subscribe Executables

117

To convert all XML records in file foo.xml to native binary format and post them to a running in-
stance of the Sybase Aleri Streaming Platform:

cat foo.xml | sp_convert -p 11180 | sp_upload -c user:pass -p 11180

To convert all comma-separated records in the foo.csv file to native binary format and post them to a
running instance of the Sybase Aleri Streaming Platform:

cat foo.csv | sp_convert -d "," -p 11180 | sp_upload -c user:pass -p 11180

To convert all XML records in the foo.xml file to native binary format and post them to a running in-
stance of the Sybase Aleri Streaming Platform on a target machine HOST which has a differing byte or-
der than the machine on which sp_upload is running:

cat foo.xml | sp_convert -b -p HOST:11180 | sp_upload -c user:pass -b -p HOST:11180

For a description of the format of the CSV and XML input files, refer to the sp_convert manpage.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_convert(1), sp_subscribe(1)

Bugs

See the documentation for known issues.

Publish and Subscribe Executables

118

Name
sp_viewer — View the changing state of streams in the Sybase Aleri Streaming Platform.

Synopsis

java [-cp classpath] com.aleri.asap.tools.SPViewer [OPTION...]

Description

sp_viewer allows the user to subscribe to, and view, streams being maintained on a specified Sybase
Aleri Streaming Platform instance. The program is written in Java, and uses a simple Swing GUI that al-
lows the user to retrieve the stream list, subscribe to one or more streams, view one or more streams, and
chart the update performance of a stream over time.

The Java class path must include the following jars:

• spviewer.jar

• commons-codec-1.1.jar

• xmlrpc-2.0.jar

• jfreechart-1.0.0-rc1.jar

• jcommon-1.0.0-rc1.jar

• bcprov-jdk14-134.jar

The jars can usually be specified as a colon-separated list in the Java command line option -cp or in the
CLASSPATH environment variable. Full paths to the jars must be used.

Options

c=user[:passwd] Pass authentication credentials to the Sybase Aleri Streaming Platform; if
the password is not given, the user will be prompted for it. If the Sybase
Aleri Streaming Platform successfully authenticates with these credentials,
the connection is maintained, otherwise the Sybase Aleri Streaming Plat-
form will immediately close the connection.

This option must correspond to the type of authentication specified for the
Streaming Processor when it was started up. If it was started without spe-
cifying a -V option or using the -V none option, omit this option. If it was
started using the -V pam option, specify -c user:password. If it was
started using the -V rsa or -V gssapi option, specify -c user.

e=on|off Turn encryption on or off; the default value is "off".

G=on|off Use Kerberos authentication. This option is required when the the Streaming
Processor was started with the -V gssapi option.

On a Windows server, if you have more than one valid Kerberos ticket, you
must ensure that the ticket issued to the account used to connect to the Sy-
base Aleri Streaming Platform is the default ticket.

You may have obtained multiple valid Kerberos tickets if you:

Publish and Subscribe Executables

119

1. authenticated using a Kerberos server other than your current domain
controller

2. logged in to one user account and used a different one to connect to the
Sybase Aleri Streaming Platform

k=on|off Turn RSA authentication on or off; the default value is "off". If "on", the
passwd argument in the c= option is the name of the private RSA key file.

p=[hostname:]port Command and Control host name and port number. If the host is not spe-
cified, it defaults to "localhost". The port is required.

t=timerDelay Specified in seconds, the timerDelay is used to acquire the current message
count from the subscription thread at approximately every "timerDelay" in-
terval, defaults to 10 seconds. The Java timer is not very accurate.

x=numSeconds The X axis on the performance monitoring graph shows time, defaults to 0,
enabling auto-range.

y=numUpdates The Y axis of the performance monitoring graph shows the Sybase Aleri
Streaming Platform subscription message count values, defaults to 0, en-
abling auto-range.

Usage Notes

Typically, the full Java command line, shown in the SYNOPSIS above, would be placed into a shell
script that is then executed from the command line. Here is an example showing how to run the stream-
viewer application from the command line, where the jar files are located in the ../lib directory, the
Command and Control host and port are "ganges" and 11190 respectively, while the X axis (time series)
is fixed at 180 seconds, the Y axis (platform message count) is fixed at a value of one hundred thousand,
and the timerDelay interval (between message count sampling timer events) is 10 seconds:

SVCP=""
for i in \
spviewer.jar commons-codec-1.1.jar xmlrpc-2.0.jar \
jfreechart-1.0.0-rc1.jar jcommon-1.0.0-rc1.jar bcprov-jdk14-134.jar

do
SVCP=$SVCP:../lib/$i

done

java -cp "$SVCP" com.aleri.asap.tools.SPViewer \
p=ganges:11190 c=userfoo:xyz123 e=off k=off x=180 y=100000 t=10

Relevant screens and menu items:

Main Screen The main screen is used to retrieve the list of streams from the run-
ning platform instance. To retrieve the list of streams, drop down the
"File" menu item, and select the "Retrieve Streams" menu item.
From the main screen, the left mouse button (along with the Ctrl
key) is used to highlight the stream(s) of interest. After selecting the
streams, the right mouse button is used to pop up a control menu dis-
playing a list of relevant options. The popup menu items follow next:

ViewStreamData This menu item opens a screen that displays a tabular view of the

Publish and Subscribe Executables

120

subscribed stream. From this screen you can also view the stream
definition.

ViewStreamDataWithLog This menu item opens a screen that displays a tabular view of the
subscribed stream, along with a "log" status display, that shows the
current update count, the state of the subscription thread, the type of
the last update that came in, and the value of the key fields for the
latest update.

ViewStreamPerformance This screen is used to monitor the performance of a stream that has
been subscribed to. The performance is displayed as a time series
graph, where the X axis shows time, and the Y axis shows the Sy-
base Aleri Streaming Platform message count values. These values
include the current update count, the total update count thus far, and
the current running average of the update count. The default settings
of the chart are acquired from the command line (see the x, y, and t
command line options). The user has the option of changing the set-
tings of the chart at run time using the "Settings" tab. In addition, the
user can select the "auto-range" options in order to have the charting
utility determine the settings dynamically as data flows in from the
Sybase Aleri Streaming Platform instance.

Subscribe This menu option is used to subscribe to the selected stream(s). Once
this menu selection is made, a separate thread is spawned for each of
the selected stream(s), and a subscription request is sent to the Gate-
way interface. This will start the update process flowing.

Unsubscribe This menu option is used to unsubscribe from the selected streams.

DumpMsgCounts This menu option is used to write the message counts of the sub-
scription threads out to the Java console/standard out.

Notes

When monitoring a stream for performance, the timeDelay value is used to configure the interval, at
which the Java timer event is fired. Each time the timer event is fired, the current platform message
count will be acquired from the subscription thread that is absorbing data for the corresponding stream.
The granularity of the timeDelay is in seconds. Unfortunately, the Java timer is not very accurate, and it
often lags behind the expected firing time. In the future, the use of a more precise mechanism should be
explored. In addition, the application should provide more robust charting options.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1), sp_convert(1), sp_subscribe(1), sp_upload(1)

Bugs

See the documentation and release notes for known issues.

Publish and Subscribe Executables

121

Chapter 6. Authoring Executables

122

Name
sp_encmodel — encrypt a Sybase data model

Synopsis

sp_encmodel [OPTION...] filename

Description

The sp_encmodel command is used to encrypt Sybase Aleri Streaming Platform data models to hide the
intellectual property in commercial models from the end users. It reads in a data model file and writes
out an encrypted data model file. There is no equivalent tool to read in an encrypted data model file and
write out a decrypted data model file. The Sybase Aleri Streaming Platform decrypts the encrypted mod-
el file for parsing. Hence, the encrypted data model produced by sp_encmodel may be used wherever an
unencrypted data model may be used: in arguments to sp_server(1), sp_convert(1), and other commands.

The suffix of the encrypted model's filename has no special meaning; it can be anything, including
.xml. The programs recognize the encrypted models by the file contents. The metadata stream
Aleri_Config will show the encrypted model. The sp_cli(1) commands that save the current model
will also save it in the encrypted format.

The encrypted models can not be loaded into the Aleri Studio.

Required Arguments

filename Enter the name of the data model file that you wish to encrypt.

Options

- Take the input data model from standard in. This provides the ability to use sp_encmodel in a
UNIX pipeline. For example, if you could have a single data model that required slightly different
optimizations for different operating environments. With this option you can pipe the data model
through a program to modify the model as required and then through sp_encmodel to encrypt it.

-h Enter this option to display the usage message for this command.

Examples

To read in a data model file named model.xml and write out an encrypted data model file named
model.enc,

sp_encmodel model.xml > model.enc

To read in a data model from standard input (that has first been optimized for the Solaris operating sys-
tem) and write out an encrypted data model file named encryptedmodel.xml,

cat model.xml | optimize -o solaris | sp_encmodel - > encryptedmod-
el.xml

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

Authoring Executables

123

sp_server(1)

Authoring Executables

124

Name
sp_sql2xml — Compile SQL statements and generate an Sybase Aleri Streaming Platform XML config-
uration file.

Synopsis

sp_sql2xml [OPTIONS]

Description

sp_sql2xml translates a given set of SQL statements to the corresponding XML representation in order
to be consumed by the Sybase Aleri Streaming Platform. In addition, the translator verifies the correct-
ness of the SQL statements, checks for data type consistencies and does limited optimization. For more
information on the SQL syntax supported refer to the Service Authoring Language Syntax document.

Required Arguments

-i file use the specified file as the input to be translated to XML.

Options

-o file Write the XML output to the named file; this will overwrite the file if it exists. The XML is
written to standard output by default.

-s file Use the file as the location of the XML Schema (.xsd) file used to validate the XML
when submitted to the Sybase Aleri Streaming Platform. No check is done at translation
time to verify the existence of the file; the file must exist at runtime.

Usage Notes

• All object names are case insensitive.

• Object names must begin with a letter or an underscore and can contain any number of letters, di-
gits, and underscores.

• Each SQL statement can optionally be separated by a semi-colon.

• The translator stops at the first syntax error that it encounters and displays the line number and loc-
ation of the error.

• Currently the same table cannot be used more than once in a given Join. If this functionality is re-
quired, create a copy of the table and then use the copy in the join.

• Every table in the join clause can have an alias. If an alias is not supplied, then the alias defaults to
the table name. It is recommended that a two or three character alias be used for every table be-
cause when referring to columns in rules it must be prefixed with the table alias.

• When referencing a column in the current table being defined, in a rule, the column must not be
prefixed with an alias.

Limits on Verification

Currently some verifications are not performed and as a result, if encountered, the XML produced will

Authoring Executables

125

produce errors or unexpected results. The following verifications are not performed:

• There are no checks to ensure that all non-key columns in an aggregation have aggregation func-
tion. If such a condition exists then the Sybase Aleri Streaming Platform will catch the error and
will not process the XML model.

• There are no checks to catch nested aggregation when writing a rule that refers to another column
of the same table for which the rule is being written.

• Quoted field names will parse correctly but will produce invalid XML so avoid using them.

Unimplemented SQL Features

The following SQL features are not implemented currently.

• Calls to External Library Functions.

• Self Joins.

• The HAVING clause.

• Unions of Select Statements other than a simple SELECT * FROM <tablename>.

• CREATE SERVICE statements.

• The RETENTION property of a BaseStream.

• Any of the Alter Statements and Service related statements.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Bugs

See the documentation for known issues.

Authoring Executables

126

Name
sp_studio — Script for starting the Sybase Visual Authoring Environment.

Synopsis

sp_studio

Description

sp_studio is a shell script that brings up the Aleri Studio. The environment can be used to visually au-
thor data models (in other words, continuous queries) and to kick off and monitor Streaming Processor
execution of those services. Refer to the Authoring Guide for more information.

Copyright

Copyright 2010 Sybase, Inc. All Rights Reserved.

See Also

sp(1)

Bugs

See the documentation for known issues.

Authoring Executables

127

Chapter 7. Advanced Debugging
This chapter introduces the command-line tools that can be used to debug and test a data model outside
the Aleri Studio.

7.1. Introduction to Sybase Aleri Streaming Platform Debugging Tools

The bugs that crop up while creating a solid and efficient data model may not be easy to locate and fix.
The Sybase Aleri Streaming Platform has a number of debugging features that can help with this task.
These debugging features are available through two interfaces: the GUI in the Aleri Studio, and the
command-line sp_cli tool.

The debugging tools are designed to be used during data model development; not while the Sybase Aleri
Streaming Platform is in production mode. Debugging support places a substantial overhead on the
Streaming Processor. That is why debugging features are normally disabled. To enable the debugging
features, the system must be put into “trace” mode, which is different from the logging level referred to
as debug level.

In trace mode, the Streaming Processor works as usual, but also performs extra checks for possible de-
bugging operations and breakpoints and collects more information about the history of execution. The
combination of extra synchronization overhead and extra checks can create more overhead.

Trace mode is not supported on Streaming Processor instance running in a clustered configuration. Also
not supported is using multiple copies of the Aleri Studio debugger on the same running instance of the
Streaming Processor at the same time. And while the trace mode is enabled, the dynamic modifications
can not be applied.

7.1.1. The Stream Processing Loop

To understand how the debugging tools work while the Streaming Processor is running in trace mode, it
is helpful to explain how a stream on the Streaming Processor processes data.

7.1.1.1. “Locations” in the Stream Processing Loop

Each stream in the Sybase Aleri Streaming Platform is executed on a separate thread. The internal logic
of a stream can be represented as an (almost) endless loop with the following state diagram:

128

When talking about stream processing, these states are called “locations”.

A stream may be instructed manually to do a single step, to observe the processing of data in
“freeze-frame motion”. A single step lets the stream proceed with the processing in the current location,
and move to the next location. If a stream is waiting for I/O, it can't do anything, and any attempts to
step it would just return immediately.

The normal processing sequence goes like this:

• INPUT:

The stream waits for the input queue to become non-empty and then picks a transaction from the

Advanced Debugging

129

head of the input queue. This transaction becomes visible as inTrans, the current input transac-
tion. It will be processed row-by-row.

The current output transaction is set to be empty, prepared to collect the results of processing. It be-
comes visible.

Then the stream enters the COMPUTE loop.

• COMPUTE:

The next record is selected from the current input transaction. It becomes visible as inRow, the
current input row. In some cases, the current input record may actually be two records, combined
into an UPDATE_BLOCK (see the explanation below, in the PUT location).

If this is not the first iteration of the loop, the records produced from processing the previous input
record are still visible as outRow.

If there are any input breakpoints (discussed below) defined on this stream, they are evaluated
against the current input record, which may trigger a Sybase Aleri Streaming Platform pause.

The check whether the Sybase Aleri Streaming Platform is paused (maybe by a breakpoint that has
been triggered in this same stream on the previous step) is done. If paused, the stream pauses here
and waits for permission to continue.

Finally, the actual computation is done on the current input record. It produces zero or more output
records. These records become visible as outRow, and are also appended to the end of
outTrans. These records follow certain internal rules, and are not exactly the same as when they
are published externally. For example, the update records at this point usually have the operation
type UPSERT, and the delete records are SAFEDELETE.

If there are any output breakpoints (discussed below) defined on this stream, they are evaluated
against the current input record, which may trigger a Sybase Aleri Streaming Platform pause.

If there are more records left in the input transaction, the compute loop continues; otherwise, the
stream proceeds to put the calculated data into the store. That is, unless an exception such as divi-
sion by zero has happened, in which case it proceeds to the BAD_ROW processing.

• PUT:

The Sybase Aleri Streaming Platform is checked to see whether it's paused. If so, the stream pauses
here and waits for permission to continue.

The new result is placed into the stream's store. It's not a simple process, as the result transaction
gets cleaned and transformed according to the information already in the store. Because of this, the
current output transaction is no longer visible after this point. Of course, there is no current output
row either. Some of these transformations are:

• SAFEDELETEs are either thrown away (if there was no such record in the store) or converted to
DELETEs (filled with all the data that they had in the store before being deleted).

• UPSERTS are transformed into either INSERTS or UPDATE_BLOCKs. If any UPDATEs got
here, they are converted to UPDATE_BLOCKs too, or may be simply discarded if no data is
changed in the record from its previous state. An UPDATE_BLOCK is a pair of records. The
first one has the operation type UPDATE_BLOCK and contains the new values, the second one
has the operation type DELETE and contains the old values. When an UPDATE_BLOCK is
published to outside the Sybase Aleri Streaming Platform, the second record is discarded and the
first one is converted to an UPDATE. But here, inside the Sybase Aleri Streaming Platform, the
whole update blocks are visible.

Advanced Debugging

130

The PUT may trigger an exception too, for example, when trying to insert a record with a key that
is already in the store. In this case the whole transaction is aborted and the stream moves to the
BAD_ROW location.

If all went well, the current input transaction and current output transaction (already transformed)
are inserted into the stream's history. The input transaction is added to the tail of inHist, the out-
put transaction is added to the tail of outHist. Since the processing is done now, inTrans and
inRow become invisible now. outTrans and outRow are already invisible by this time.

Then the stream moves to the OUTPUT location.

• OUTPUT:

The result transaction is enqueued for publishing to the clients. If some clients are too slow and the
output buffer fills, the stream would wait here for some buffer space to become free.

Then the result transaction is delivered to any streams which have this stream as their input. Again,
if any of their input queues become full, this stream would wait for them to become available.

After that the stream goes to INPUT the next transaction.

Besides this main loop, there are a couple of side branches. For the streams with expiry, the following
side branch occurs every second:

• EXPIRY:

Prepare the expiry update. It becomes visible as outTrans.

Then proceed just as with PUT (check pause, then put data to the store and output it).

In case of some errors in the data, the stream will enter the BAD_ROW location:

• BAD ROW:

Make the rows with detected issues visible as badRows. The short messages describing what is
wrong with them are visible as badRowsReason. There is one message per row. The same rows
are written into the bad records file and the messages are reported on the Sybase Aleri Streaming
Platform log.

At this point inTrans still contains the transaction that has triggered the issue.

Trigger an exception: ask the Sybase Aleri Streaming Platform to pause.

Wait for permission to continue. Continue with INPUT of the next transaction.

7.1.1.2. Pausing the Streaming Processor in Trace Mode

While the Streaming Processor is running in trace mode, you can issue a command to pause this pro-
cessing loop. This is where the distinction between processing and I/O locations becomes meaningful.
While the Streaming Processor is in trace mode, the stream processing mechanism checks for a pause re-
quest as it enters each of the processing group locations. If one has been issued, the stream pauses and
doesn't resume the loop until it is allowed to continue.

If the stream is engaged in actual processing when the pause is requested, the processing continues until

Advanced Debugging

131

entering the next processing location. Normally, it takes a very short amount of time, but if the stream is
a badly programmed FlexStream that has just entered an endless loop, the pause would last indefinitely,
or until the Streaming Processor shuts down.

The streams are not affected by a pause request when in an I/O location. The only type of “pause” that
can happen in an I/O location is caused by the buffer each depends on. The stream will pause in the IN-
PUT location if there are no transactions in the input queue. The stream will pause in the OUTPUT loca-
tion only if the output queue is full.

The stream may move between the I/O locations to a processing location even when it is paused. IF
there is a slow subscriber on a stream, the stream's output buffer would fill up, and the stream would sit
in the OUTPUT location, waiting until the buffer space becomes available. If the stream in this location
receives a pause request, the request is ignored. If the stream's subscriber takes a transaction off the out-
put buffer after this request, the stream would deposit its current output transaction on the buffer and go
to the INPUT location. At this point, after entering the INPUT location, the stream recognizes the pause
request. No new data is processed after the pause request, but the stream does change location.

7.1.2. Trace Mode Basics

To enable trace mode with sp_cli, use:

sp_cli> trace_mode on

To disable it, use:

sp_cli> trace_mode off

To check whether the Sybase Aleri Streaming Platform is in trace mode, use:

sp_cli> trace_mode

For example:

sp_cli> trace_mode
trace mode is off
sp_cli> trace_mode on
sp_cli> trace_mode
trace mode is on

Trace mode is not connected to the instance of sp_cli — it's a mode of the Sybase Aleri Streaming Plat-
form itself. You can start sp_cli and enable trace mode, and exit sp_cli. The Sybase Aleri Streaming
Platform will stay in trace mode until it gets explicitly turned off.

Almost all of the debugging commands, with rare exceptions, work only in trace mode. Calling them
with trace mode off is considered an error.

When the trace mode is turned off, most of the debugging state is preserved.

For example, the breakpoints will still be remembered, even though they won't be checked and
triggered. Turning trace mode back on will reactivate breakpoints. But there are some exceptions, in-
cluding the loss of the execution history since it's not updated with trace mode off.

7.2. Debugging in Trace Mode

Advanced Debugging

132

This section discusses how to use the Streaming Processor debugging features in Trace mode.

In general, there are four main debugging activities:

• Pausing the Streaming Processor while a data model is running.

• Examining trace mode statistics for each stream at the pause point.

• Examining the streams' data stores and processing histories at the pause point.

• Stepping through the data model's processing cycle to the next pause point, and seeing what hap-
pens to the debugging statistics and processed data.

One group of Sybase Aleri Streaming Platform debugging tools enables you to pause and step the
Streaming Processor manually or set breakpoints to automatically generate pauses. Another set allows
you to view debugging data and actual streaming data.

7.2.1. Pausing the Streaming Processor

The Streaming Processor can be paused automatically by hitting a breakpoint or manually. To pause the
Sybase Aleri Streaming Platform, it must be running in trace mode. You can use the sp_cli tool to pause
the Streaming Processor, or check to see whether it is already paused, as follows:

sp_cli> check_pause
Platform is not paused
sp_cli> pause
sp_cli> check_pause
PAUSED

check_pause returns the Streaming Processor's current pause state.

If the Sybase Aleri Streaming Platform is already paused, issuing another pause command has no effect.

When the Sybase Aleri Streaming Platform is paused, no calculations happen inside it (although input
and output may continue in the I/O locations and buffers). Any transactions in the streams' output buf-
fers will still be consumable by the subscribers. Publishing to the paused Streaming Processor can con-
tinue until the streams' input buffers fill up.

To “unpause” and continue execution, use the following sp_cli command:

sp_cli> run
sp_cli> check_pause
Platform is not paused

If the Sybase Aleri Streaming Platform is already running, issuing another run command has no effect.

There is also a way to start the Sybase Aleri Streaming Platform and immediately pause it. This is con-
venient if the Streaming Processor's inputs can't be easily controlled, and start publishing data as soon as
they connect to the Streaming Processor. If you start the Streaming Processor with this option, you will
be able to single-step through all the data right from the beginning.

To do this, start sp-opt (or sp) with the -DD option:

Advanced Debugging

133

sp-opt -DD ...

Another sp_cli command allows you to wait until the Sybase Aleri Streaming Platform is paused, by a
breakpoint, another sp_cli command or the Aleri Studio:

sp_cli> wait_pause

This command is not interruptible (other than by killing sp_cli). It is useful in automated scripts that in-
voke sp_cli.

The current locations of the stream in a stopped Sybase Aleri Streaming Platform can be seen using the
spl_cli command “ex” (for “examine”). The examples that follow show how this command is used.

7.2.1.1. Caveats when the Streaming Processor is Paused

When the Streaming Processor is paused, all the processing is frozen, which means that care should be
taken with certain operations.

As mentioned, the paused Streaming Processor will continue to receive data published to it until the in-
put queues fill up. At that point, the publishing will get stuck. A reliable publishing application will stop
immediately when it fails to get any confirmation, but a less reliable one might continue sending data
that the Streaming Processor does not receive.

To avoid this danger, it is best that publishers publish asynchronously, by a separate process or thread.

The same applies to reliable subscribers as well; they should send confirmations back to the Streaming
Processor. Even when the Streaming Processor is paused, it's still possible to subscribe to the streams or
get their current state.

The metadata streams are paused just like all other streams, and no updated should come from these
streams while the Sybase Aleri Streaming Platform is paused. The sole exception is the special pseudo-
stream Aleri_RunUpdates.

Dynamic modifications cannot be done when the Sybase Aleri Streaming Platform is in trace mode,
paused or not. Tracing clustered configurations are also not supported.

7.2.2. A Simple Example

<?xml version="1.0" encoding="UTF-8"?>

<Platform version="3.2">
<Store file="store" fullsize="20" id="store"/>

<SourceStream id="filterInput" ofile="output/filterInput.out"
store="store" type="dynamic">

<Column datatype="int32" key="true" name="a"/>
<Column datatype="string" key="false" name="b"/>
<Column datatype="int32" key="false" name="intData"/>

</SourceStream>
<FilterStream id="filter" istream="filterInput"

ofile="output/filter.out" store="store">
<FilterExpression>(10 / filterInput.intData) <

1</FilterExpression>
</FilterStream>

</Platform>

Advanced Debugging

134

With the following input, fed by two records per transaction:

<filterInput ALERI_OPS="i" a="1" b="a" intData="10" />
<filterInput ALERI_OPS="i" a="2" b="a" intData="20" />

<filterInput ALERI_OPS="i" a="3" b="a" intData="20" />
<filterInput ALERI_OPS="u" a="4" b="a" intData="10" />

<filterInput ALERI_OPS="u" a="2" b="a" intData="10" />
<filterInput ALERI_OPS="u" a="1" b="a" intData="20" />

<filterInput ALERI_OPS="d" a="2" />

The state of the streams in this model may be examined as:

sp_cli> ex {pause}
<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"

history="100" postSeq="4" inSeq="1" outSeq="0" stepSeq="0"/>
<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"

history="100" postSeq="0" inSeq="0" outSeq="0" stepSeq="0"/>

The pause argument tells the Streaming Processor to display the state of all paused streams. The curly
braces around pause are a newer way of quoting in sp_cli (supported since Release 2.4.) but the other
type with back quotes would also work. One type must be chosen. If you just enter what is below:

sp_cli> ex pause

you would get a syntax error, because pause is also a keyword and the name of another command.

The state data is displayed in an XML format, one record per stream. The stream filterInput is in
the COMPUTE location, about to do calculation. The stream filter is waiting for input.

The other fields provide extra information about the state of streams.

None of the streams has any breakpoints triggered. The field onbp being equal to 0 indicates this. If any
breakpoints had been triggered, the value of onbp would be the ID of that breakpoint.

Throttle shows the stream's input buffer size. When the input queue grows over this size, the stream
stops accepting further input. The streams use double-buffering for the queues, so the point where the in-
put would stop being accepted would actually be somewhere between the throttle size and twice the
throttle size.

History shows the size of the history kept for the stream. As the stream runs in trace mode, it remem-
bers the pairs of input transactions received and output transactions produced from them. The history
size determines how many of the most recent pairs will be kept. When a breakpoint is reached, the last
transaction might be just the “tip of the iceberg” since the really interesting events could have happened
earlier. The history gives you the ability to see previous transactions.

The sequence values, except stepSeq, tick whenever a transaction is moved around:

postSeq when a transaction is placed onto the stream's input queue

inSeq whenever a transaction is read off the input queue for processing

Advanced Debugging

135

outSeq whenever a transaction is sent to the output (and added to the history, together with the
matching input record)

The difference between postSeq and inSeq gives you the current size of the input queue. The input
and output sequences mostly go together but there are obscure cases that add discrepancies. For ex-
ample, an expiry action produces output transactions without any input transactions. Internal service
transactions are counted on the input but not on the output, and are not recorded in the history. These se-
quences tick even when trace mode is off.

In this example, the stream filterInput is processing the first transaction, about to compute a result
for one of the input rows. It has three more transactions queued up. It has not produced any output yet,
so the stream filter is still waiting for any data to come in.

The value of stepSeq only gets increased in trace mode, whenever a stream does a processing "step",
either during normal running or in a single-stepping mode. Usually the processing of a transaction in-
volves at least two steps.

The ex {pause} command displays data only for user-defined streams. The Streaming Processor also
contains a number of metadata streams. These streams are subject to pausing, just like other streams. To
see the state of all streams use the ex {pauseAll} command.

7.2.3. Example Part 2: Single-Stepping

Continuing the previous example, tell the filterInput stream to do a single step:

sp_cli> step {filterInput}

You can also single-step the stream filter, but since it's in the INPUT location, it won't be useful.
This call would have no effect.

In some cases, the Sybase Aleri Streaming Platform will move to the next freeze-frame. To do this, just
step any stream, and let the Sybase Aleri Streaming Platform pick a stream that has some processing to
do. This can be done with:

sp_cli> step

As the stream moves through locations, you can examine information about its data. Some data, like the
contents of the input queue, can be examined at any time. Other data elements are visible only at certain
times. For example, the current input transaction can be seen only when the stream is processing a trans-
action. These data elements can be examined at other time, but the values would be zero.

The example above ended just before the stream filterInput was to process the first row. Below is
the first transaction and what row is about to be processed:

sp_cli> ex {inTrans} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {inRow} {filterInput}

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>

Advanced Debugging

136

(In these printed displays, the indentation has been massaged a little to make the records more readable
as they wrap to the second line).

The XML element tag in the printout is the stream's name, not just <row>. For the data elements related
to the input data, the tag is the name of the stream that produced the data. This is important since a
stream may get input from multiple sources. In this case, filterInput is a source stream, so its own
name is used in the printout.

Now process the first row of the transaction.

sp_cli> step {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="1" outSeq="0" stepSeq="1"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="0" inSeq="0" outSeq="0" stepSeq="0"/>

The value in the stepSeq field of the filterInput has increased, showing that this stream has
made a step. It is still in the COMPUTE location but about to process the second row:

sp_cli> ex {inRow} {filterInput}
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

The result of the processing of the first row:

sp_cli> ex {outTrans} {filterInput}
<row ALERI_OPS="i" a="1" b="a" intData="10"/>

sp_cli> ex {outRow} {filterInput}
<row ALERI_OPS="i" a="1" b="a" intData="10"/>

At this point, the output transaction contains only this one row. Another step is needed:

sp_cli> step {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="1" outSeq="0" stepSeq="2"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="0" inSeq="0" outSeq="0" stepSeq="0"/>

sp_cli> ex {outTrans} {filterInput}
<row ALERI_OPS="i" a="1" b="a" intData="10"/>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

sp_cli> ex {outRow} {filterInput}
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

One more row has been added to the output transaction. This one is not wrapped in <trans> tags. That's
because the output transaction is still being built. Since outTrans may not contain more than rows for
one transaction, there is no need at this point to track the transaction boundaries inside it.

The PUT location shows now the stream is done with processing the transaction, and is ready to put it
into the store. Proceed to the next step:

sp_cli> step {filterInput}
sp_cli> ex {pause}

Advanced Debugging

137

<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="3"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {inTrans} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
sp_cli> ex {outTrans} {filterInput}

The filter stream is now also in the COMPUTE location: it has found the data posted to it by fil-
terInput and is prepared to process it. But it is paused at that location until it is allowed to proceed.

The filterInput stream is ready to process the next transaction. outTrans is now empty, as it has
been reset. The previous input and output transaction can be found in the history:

sp_cli> ex {inHist} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {outHist} {filterInput}

<trans>
<row ALERI_OPS="i" a="1" b="a" intData="10"/>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>

Now the output transaction is fully formed. The history for this stream shows us the output transactions
in mixed form (in matched input/output pairs):

sp_cli> ex {hist} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
<trans>

<row ALERI_OPS="i" a="1" b="a" intData="10"/>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>

In this case, the history contains only one transaction, so it's easy to get to the last transaction. But you
can also tell sp_cli to show only the last transaction.

sp_cli> ex {lastInTrans} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {lastOutTrans} {filterInput}

<trans>
<row ALERI_OPS="i" a="1" b="a" intData="10"/>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {lastTrans} {filterInput}

<trans>
<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
<trans>

<row ALERI_OPS="i" a="1" b="a" intData="10"/>

Advanced Debugging

138

<row ALERI_OPS="i" a="2" b="a" intData="20"/>
</trans>

Continuing with the next transaction:

sp_cli> ex {inRow} {filterInput}
<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>

sp_cli> step {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="4"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {outRow} {filterInput}
<row ALERI_OPS="i" a="3" b="a" intData="20"/>

One more row got processed. In the pending row, there is something unusual:

sp_cli> ex {inRow} {filterInput}
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

The problem is the stream is trying to update the record with key a=4, but this key hasn't been inserted
into the stream yet. Continuing on:

sp_cli> step {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="5"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {outTrans} {filterInput}
<row ALERI_OPS="i" a="3" b="a" intData="20"/>
<row ALERI_OPS="u" a="4" b="a" intData="10"/>

In the COMPUTE location, the stream just processes the record without knowing whether it can be in-
serted or not. The error surfaces on an attempt to put the records into the store:

sp_cli> step {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="BAD_ROW" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="6"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {inTrans} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
sp_cli> ex {outTrans} {filterInput}
sp_cli> ex {badRows} {filterInput}

<row ALERI_OPS="u" a="4" b="a" intData="10"/>
sp_cli> ex {badRowsReason} {filterInput}

<row ALERI_OPS="i" reason="Bad update writing to store."/>

The stream filterInput is in the BAD_ROW location. The input transaction is still showing fine but the
output transaction is cleared (since the transactions with errors are discarded). By examining badRows

Advanced Debugging

139

and badRowsReason you can view the offending rows, and find out what went wrong with them.

Doing the next step will clear the error and continue computations:

sp_cli> step {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="3" outSeq="2" stepSeq="7"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {hist} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
<trans>

<row ALERI_OPS="i" a="1" b="a" intData="10"/>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
<trans>

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
<row ALERI_OPS="i" />

The history now contains two pairs of transactions. It shows that this transaction resulted in no output.
There are two interesting things about the last output transaction in this history:

• The output record contains no fields at all, not even the key fields, and the operation is “N” (for
NOP, or “no operation”). This is a special placeholder record, used to show that no actual data went
out.

• The output record is not enclosed in <trans>. When a transaction contains one record only, it's
shown as just this one record, without the <trans> node.

The postSeq for the filter stream was not increased this time. Since the bad transaction was
thrown away and produced no output, there was nothing to post to the input queue of filter.

7.2.4. Changing the History Size Limit

The history size limit can be changed, for one stream or for all streams. Continuing with this example,
but changing the history limit of filterInput to 1:

sp_cli> history {1} {filterInput}
sp_cli> history ex {filterInput}

1
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"
history="1" postSeq="4" inSeq="3" outSeq="2" stepSeq="7"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {hist} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
<row ALERI_OPS="N" />

Advanced Debugging

140

The history ex command is an alternative way to see the history size limit. It works even with trace
mode off. The history limit has changed for filterInput but stayed the same for filter. As the
limit was reduced, the history of filterInput was truncated to only one pair of transactions.

Now change all the history limits to 10:

sp_cli> history {10}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"
history="10" postSeq="4" inSeq="3" outSeq="2" stepSeq="7"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="10" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {hist} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
<row ALERI_OPS="N" />

Both streams had their history value changed. The history of filterInput still contains only one pair
of transactions so increasing the limit didn't bring the contents back. But the new contents may now ac-
cumulate, up to 10 pairs.

7.3. Automatic single-stepping

Manual single-stepping gets tedious quickly. For this reason, the Streaming Processor provides automat-
ic stepping commands. They are functionally similar to the "step-over-a-call" commands in other pro-
gram debuggers.

Automatic stepping does not work with breakpoints or bad row exceptions. If any of these occur, they
are reported to the Aleri Studio but do not stop the stepping. The reason is that automatic stepping is in-
tended to let the not-so-interesting data pass through the Streaming Processor conveniently, independ-
ently of breakpoints.

The first auto-step command, step trans, is used to step to the end of transaction. It does at least one
common step, and then continues stepping as long as the stream stays in the COMPUTE location. This
means that it stops when the stream moves into the PUT or BAD_ROW location and allows you to ex-
amine the transaction's effect before committing or discarding it. The first unconditional step is to get
from this position over a pending PUT or BAD_ROW to the computation of the next transaction. You
can call step trans repeatedly to step past transactions.

If the execution blocks in the INPUT or OUTPUT location for longer than 0.3 second, step trans stops.

Continuing the previous example:

sp_cli> step trans {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="0" throttle="512"
history="10" postSeq="4" inSeq="3" outSeq="2" stepSeq="9"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="0" throttle="512"
history="10" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> ex {inTrans} {filterInput}
<trans>

<filterInput ALERI_OPS="u" a="2" b="a" intData="10"/>
<filterInput ALERI_OPS="u" a="1" b="a" intData="20"/>

</trans>
sp_cli> ex {outTrans} {filterInput}

<row ALERI_OPS="u" a="2" b="a" intData="10"/>
<row ALERI_OPS="u" a="1" b="a" intData="20"/>

sp_cli> ex {hist} {filterInput}
<trans>

Advanced Debugging

141

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
<row ALERI_OPS="N" />

The execution has stopped in the PUT location. The transaction has been fully computed, and ready to
be put to the store. The history has not changed since the last time (because the transaction has not com-
pleted yet).

The rest of the auto-stepping commands are related to the concept of quiescence (running the streams
until they have processed all the available input). These commands are:

step quiesce stream
{streamName}

Automatically step the stream and all its direct and indirect des-
cendants until all of them are quiesced (that is, until all their input
queues are empty).

step quiesce downstream
{streamName}

Similar to step quiesce stream, but only the stream's descendants
are stepped: not the stream itself. This command is convenient to
clear out the descendant streams' input queues. Then when the ar-
gument stream will produce its output, the progression of the data
through the descendant streams can be easily traced.

step quiesce from base Automatically step all the derived (non-source) streams until their
input queues are empty. This command is useful to clean out the
queues of derived streams before processing an interesting record
through the source stream. Then the progression of data through
the derived streams can be easily watched.

Unlike the step trace command, these commands don't stop at the PUT location. Instead, they run until
all the concerned streams are blocked on INPUT or OUTPUT. A stream is not quiesced if it is blocked
on OUTPUT. Since the Streaming Processor cannot do anything about that, it stops auto-stepping any-
way, so that you can fix the cause (such as an external program not reading the data fast enough) and
call the auto-stepping again.

Continue the example by quiescing downstream from filterInput. Since this model contains only
one stream, filter, derived from filterInput, the command quiesces filter.

sp_cli> step quiesce downstream {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="0" throttle="512"
history="10" postSeq="4" inSeq="3" outSeq="2" stepSeq="9"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="10" postSeq="1" inSeq="1" outSeq="1" stepSeq="3"/>

sp_cli> ex {hist} {filter}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

The filter stream is now quiesced and waiting for more input. It has processed the sole transaction it
had pending. The output of that transaction is a single row that passed through the filter.

Running "step quiesce downstream {filterInput}" would have the same effect in this example as step
quiesce from base, since filter is the only stream derived from filterInput.

Finally, process all the data left in the model by quiescing the stream filterInput:

Advanced Debugging

142

sp_cli> step quiesce stream {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="INPUT" onbp="0" throttle="512"
history="10" postSeq="4" inSeq="4" outSeq="4" stepSeq="12"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="10" postSeq="3" inSeq="3" outSeq="3" stepSeq="8"/>

All the data has been processed and both streams are waiting for more input. See what happened with
the data:

sp_cli> ex {hist} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>
<row ALERI_OPS="N" />
<trans>

<filterInput ALERI_OPS="u" a="2" b="a" intData="10"/>
<filterInput ALERI_OPS="u" a="1" b="a" intData="20"/>

</trans>
<trans>

<pair>
<row ALERI_OPS="u" a="2" b="a" intData="10"/>
<row ALERI_OPS="d" a="2" b="a" intData="20"/>

</pair>
<pair>
<row ALERI_OPS="u" a="1" b="a" intData="20"/>
<row ALERI_OPS="d" a="1" b="a" intData="10"/>

</pair>
</trans>
<filterInput ALERI_OPS="d" a="2"/>
<row ALERI_OPS="d" a="2" b="a" intData="10"/>

The next transaction contained an update for the rows with keys "1" and "2". When these records were
put into the store, they became transformed from UPDATEs to UPDATE_BLOCKs. An UP-
DATE_BLOCK is a pair of records: the first one contains the updated values, the second one contains
the old values that are being replaced.

The last transaction consisted of a single record that deleted the record with the key "2". When it was put
to the store, all the fields were filled in with the values from the record that is being deleted.

See how the data progressed through the filter:

sp_cli> ex {hist} {filter}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>
<trans>

<pair>
<filterInput ALERI_OPS="u" a="2" b="a" intData="10"/>
<filterInput ALERI_OPS="d" a="2" b="a" intData="20"/>

</pair>
<pair>
<filterInput ALERI_OPS="u" a="1" b="a" intData="20"/>
<filterInput ALERI_OPS="d" a="1" b="a" intData="10"/>

</pair>
</trans>
<trans>

<row ALERI_OPS="d" a="2" b="a" intData="20"/>
<row ALERI_OPS="i" a="1" b="a" intData="20"/>

Advanced Debugging

143

</trans>
<filterInput ALERI_OPS="d" a="2" b="a" intData="10"/>
<row ALERI_OPS="N" />

The transaction with updates became a delete and an insert because the updates have changed the filter-
ing of the rows. The row with key "2" that was previously allowed to pass through the filter is not al-
lowed to do so, so it's deleted from the output of the filter. In contrast, the row with key "1" now satisfies
the filtering condition, so it's inserted to the filter output.

The final transaction that deletes the row with key "2" has no effect on the output of the filter. This row
was previously blocked by the filter.

As the very final step in this example, stop the Sybase Aleri Streaming Platform:

sp_cli> stop

Note:

Be careful when using the debugger. If you exit sp_cli or the Aleri Studio while the Streaming
Processor is in a paused state, it will stay paused. When you connect with another instance of
sp_cli, it will still be paused. The same goes for trace mode: if you leave the Streaming Pro-
cessor in trace mode, it will stay in that mode: if it encounters a breakpoint or exception, it will
pause, and stop all processing until unpaused.

The Streaming Processor can be stopped from sp_cli even when it's paused. If you do this, the
Streaming Processor will be unpaused, trace mode will be disabled, and then the Streaming
Processor will proceed to stop and exit as usual.

Disabling trace mode will also unpause the Sybase Aleri Streaming Platform.

7.3.1. An extra parameter and its creative uses

All the auto-stepping commands have an additional (optional) argument: the value that limits the num-
ber of steps that can be taken automatically. This parameter can be used to put an upper bound on the
time of execution of these commands, since they are not interruptible. Once the limit is reached, the
stepping stops, and the debugging tool returns an appropriate error code. Debugging tools such as those
in the Aleri Studio can then use this as a polling point — an opportunity to check on whether the user
has decided to cancel the command.

In some cases, it can be an important capability. If the argument of the step quiesce stream command is
a source stream that continues to receive and dispatch data, this type of limit would be the only way to
stop the stepping.

sp_cli does not reissue these commands automatically. It just has applies some reasonable default limits.
Of course, these limits can also be specified explicitly.

These limits also have some creative uses, such as the step command without an argument, that steps
any stream in the Sybase Aleri Streaming Platform. It can be used as an auto-stepping command with a
limit of 1 to do a similar thing but step only the descendants of some interesting stream:

sp_cli> step quiesce downstream {streamName} {1}

Or to step any derived stream at random, you can use:

Advanced Debugging

144

sp_cli> step quiesce from base {1}

The limit can be changed (to 10, for example) to make things quicker. But then it will not be easy to tell
afterward which streams were stepped and by how many steps.

7.4. Breakpoints and exceptions

The breakpoint mechanism provides a way to let the Streaming Processor run unattended, and then
pause when something interesting occurs. This occurrence is usually related to a problem with the data
model. When this happens, the breakpoint should stop the Streaming Processor so you can troubleshoot
the problem.

The most basic kinds of problems are:

• A wrong record comes out of some stream.

• A record should come out as a result of another record but fails to do so or comes out in the wrong
form.

• A stream detects a bad row.

You could detect these problems at the following places:

Wrong result record At the output of a stream

Unexpected action to an input re-
cord

At the input of a stream, when the target record enters it

Bad record When the stream reports it

A bad record is always a problem, so the Streaming Processor always pauses when one is encountered
(this is when a stream enters a BAD_ROW location). This kind of response can be set up with excep-
tions, discussed further below. For other situations, the debugging tool provides user-defined break-
points.

All breakpoints are set on a stream. There are two kinds of breakpoints:

• “on input”

These breakpoints are checked when a row is taken from the input transaction for processing, be-
fore any computation is done on it. The Streaming Processor would be paused in the COMPUTE
location.

• “on output”

These breakpoints are checked after a row has been processed. The Streaming Processor would be
paused in the next location (COMPUTE for the next input row, PUT or BAD_ROW).

This is called "the origin of a breakpoint". Since a stream may take input from multiple other streams,
the "on input" breakpoints are further divided by origin:

• “on any input”

Advanced Debugging

145

Checked for input from any stream.

• “on a particular stream”

Checked only when the input transaction is coming from a particular stream.

7.4.1. Unconditional breakpoints and exceptions

In the simplest case, breakpoints are unconditional: once the stream is in the right location, the break-
point gets triggered and the whole Streaming Processor is paused. More than one breakpoint may get
triggered at the same time, since each stream runs in its own thread, so each one can trigger a breakpoint
independently. There may be a simpler reason as well: nothing stops you from defining multiple break-
points on the exact same condition. The Streaming Processor can tell one breakpoint from another by the
unique ID assigned when the breakpoint gets created. If you create two breakpoints that are the same,
the Streaming Processor gives each one a separate ID, and treats them as completely separate. So both
could get triggered at the same time.

Once a breakpoint is created, it can be enabled or disabled, and slightly altered, but little more can be
changed. The breakpoint can't be moved to another location or have its conditional expression changed.
To make major changes, you must delete the breakpoint and create a new one.

The sp_cli commands for manipulating breakpoints start with bp. Restart the simple example with the
same input, pause it, and add some breakpoints:

sp_cli> ex {pause}
<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="0" throttle="512"

history="100" postSeq="4" inSeq="1" outSeq="0" stepSeq="0"/>
<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"

history="100" postSeq="0" inSeq="0" outSeq="0" stepSeq="0"/>
sp_cli> bp add {filterInput} any

1
sp_cli> bp add {filterInput} out

2
sp_cli> bp add {filter} {filterInput}

3
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

sp_cli> ex {breakpoints}
<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>
<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>
<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>

The streams have been paused before processing the inputs and defining three breakpoints:

• On any input to filterInput.

• On output of filterInput.

• On the input of filter, when the data comes from filterInput. Since filter has only one
input, there is really not much difference whether you specify the particular input stream or just any

Advanced Debugging

146

input. There will be more differences, though, with conditional breakpoints.

Note that any and out are keywords: they must be written without quotes. The return from the com-
mand that creates a breakpoint is its assigned ID.

After the breakpoints are created, the command to print out is, bp list, which is a convenient synonym
for ex {breakpoints}. The fields in the “printout” for a breakpoint are:

id The ID of the breakpoint.

stream The stream on which the breakpoint is defined.

origin The location in the stream serving as the breakpoint's origin. It
may contain the name of the input stream or "*" for any input
stream, or it may be empty for a breakpoint on output.

expr Conditional expression. This will be discussed later.

enabledEvery, leftToTrigger Allow the breakpoint to trigger not on every occasion but on
every Nth occasion. See more below.

onit Set to 1 when the breakpoint is triggered, otherwise set to 0.

Sometimes it might be desirable to skip some number of records and then pause the Sybase Aleri
Streaming Platform. For example, if some bug surfaces on the 1000th record passing though a stream, it
would be convenient to let 999 records pass, and then pause and single-step from there. To allow this,
configure a breakpoint to be triggered on every Nth row. If a breakpoint is put on input of this stream
and configure it to be triggered on every 1000th row, then it would pass 999 records through and break
on row 1000. If the Streaming Processor is restarted, the breakpoint would trigger next time on the
2000th row. In bp list the field enabledEvery shows this number N, and leftToTrigger
shows how many records remain to be seen before the breakpoint gets triggered. Every time the break-
point is triggered, leftToTrigger is reset to the original value of enabledEvery. By default
when a breakpoint is created, enabledEvery is set to 1, to trigger on each row. It can be changed
with the sp_cli command bp every.

Another convenience is the ability to disable a breakpoint temporarily. That can be done by configuring
the breakpoint to trigger on every 0th record. The command bp on is a shorter way to do this. bp on re-
stores the breakpoint back to be triggered on each record. For example:

sp_cli> bp off all
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="0" leftToTrigger="0" onit="0"/>

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="0" leftToTrigger="0" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="0" leftToTrigger="0" onit="0"/>

sp_cli> bp every {100} {3}
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="0" leftToTrigger="0" onit="0"/>

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="0" leftToTrigger="0" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="100" leftToTrigger="100" onit="0"/>

sp_cli> bp on {1}
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

Advanced Debugging

147

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="0" leftToTrigger="0" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="100" leftToTrigger="100" onit="0"/>

sp_cli> bp every {2} all
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="2" leftToTrigger="2" onit="0"/>

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="2" leftToTrigger="2" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="2" leftToTrigger="2" onit="0"/>

sp_cli> bp on {1}
sp_cli> bp every {1} {3}
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="2" leftToTrigger="2" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

All these commands take either the ID of a breakpoint or the keyword "all" as the last argument. Break-
point 2 has been configured (on the output of filterInput) to be triggered on every 2 records, and
the other two breakpoints on each record. Let the Streaming Processor run and see where it stops:

sp_cli> run
sp_cli> wait_pause

In practice, the first breakpoint would get triggered before you can type wait_pause, but it's included
here for the sake of completeness.

sp_cli> ex {pause}
<row ALERI_OPS="i" name="filterInput" loc="COMPUTE" onbp="1" throttle="512"

history="100" postSeq="4" inSeq="1" outSeq="0" stepSeq="1"/>
<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"

history="100" postSeq="0" inSeq="0" outSeq="0" stepSeq="0"/>
sp_cli> bp list

<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""
enabledEvery="1" leftToTrigger="1" onit="1"/>

<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""
enabledEvery="2" leftToTrigger="1" onit="0"/>

<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""
enabledEvery="1" leftToTrigger="1" onit="0"/>

The ex {pause} command shows that filterInput has been stopped on the breakpoint 1 ("onbp").
And the bp list command also shows that breakpoint 1 has been triggered ("onit"). Multiple breakpoints
can be triggered on the same stream at the same time. The ex {pause} command would show the ID of
only one of them, at random. But the bp list command would show all the triggered breakpoints.)

The triggered breakpoint is an input breakpoint, and filterStream is ready to do the computation
for it.

sp_cli> ex {inTrans} {filterInput}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {inRow} {filterInput}

<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

Advanced Debugging

148

sp_cli> ex {outTrans} {filterInput}
<row ALERI_OPS="i" a="1" b="a" intData="10"/>

The second input row is about to be computed. Look closely at the output of bp list: it shows that break-
point 2 has only one record left to trigger. This means that the execution went past it once.

Remember the point when the Streaming Processor was paused initially, filterInput had picked up
the first transaction from the input and was about to compute it. When breakpoints were added, fil-
terStream was already past the place where it would check for breakpoint 1. In fact, it was stopped in
exactly the same location where it would get stopped on breakpoint 1. Since the breakpoints are not im-
mediately checked when they are added, this went unnoticed. When the Streaming Processor restarted,
the execution continued past that point; the first time that breakpoint 1 was checked was when fil-
terInput prepared to compute the second record.

To continue:

sp_cli> run
sp_cli> wait_pause
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="2" throttle="512"
history="100" postSeq="4" inSeq="1" outSeq="0" stepSeq="2"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="0" inSeq="0" outSeq="0" stepSeq="0"/>

sp_cli> bp list
<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>
<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""

enabledEvery="2" leftToTrigger="2" onit="1"/>
<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>
sp_cli> ex {inTrans} {filterInput}

<trans>
<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {outTrans} {filterInput}

<row ALERI_OPS="i" a="1" b="a" intData="10"/>
<row ALERI_OPS="i" a="2" b="a" intData="20"/>

In this part of the example, the second record got processed, and breakpoint 2 triggered. Since this was
the last record of the transaction, the stream filterInput is now in the PUT location.

Use the commands from the previous section to auto-step through one transaction on filterInput:

sp_cli> step trans {filterInput}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="2" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="5"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="3" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="0" stepSeq="0"/>

sp_cli> bp list
<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>
<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""

enabledEvery="2" leftToTrigger="2" onit="1"/>
<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""

enabledEvery="1" leftToTrigger="1" onit="1"/>
sp_cli> ex {inTrans} {filterInput}

<trans>
<filterInput ALERI_OPS="i" a="3" b="a" intData="20"/>
<filterInput ALERI_OPS="u" a="4" b="a" intData="10"/>

</trans>

Advanced Debugging

149

sp_cli> ex {outTrans} {filterInput}
<row ALERI_OPS="i" a="3" b="a" intData="20"/>
<row ALERI_OPS="u" a="4" b="a" intData="10"/>

sp_cli> ex {inTrans} {filter}
<trans>

<filterInput ALERI_OPS="i" a="1" b="a" intData="10"/>
<filterInput ALERI_OPS="i" a="2" b="a" intData="20"/>

</trans>
sp_cli> ex {outTrans} {filter}

The stream filterInput is at the PUT location of the second transaction. The data shows that the
breakpoints 2 and 3 were triggered. After the PUT and OUTPUT of the first transaction in filterIn-
put completed, filter received the transaction in its input record, and prepared to process it. This
triggered breakpoint 3 (which is on input from filterInput). By then filterInput had
cycled twice through the COMPUTE location, and on the second pass breakpoint 2 got triggered.

The cycle through COMPUTE must have triggered breakpoint 1 twice as well. But the auto-stepping
mode ignored the breakpoints: they didn't pause the execution. The stepping can only happen on an
already paused Streaming Processor. The Streaming Processor doesn't get unpaused for stepping; in-
stead, some special internal mechanics are used to let certain streams proceed to the next location.

If the Streaming Processor is running now, there are two streams that have something to do. Both are
about to trigger another pause: filterInput is about to put an output transaction its store that would
trigger a BAD_ROW exception. filter will process the current row and then trigger breakpoint 3 as it
picks the next row of the current transaction to compute. Whether one or both are triggered (and if just
one, which one) is up to the thread scheduler of your machine and operating system. The element of
chance can be taken out of this situation by quiescing the filter stream first.

sp_cli> step quiesce stream {filter}
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="PUT" onbp="2" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="5"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="1" stepSeq="3"/>

sp_cli> run
sp_cli> wait_pause
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="BAD_ROW" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="2" outSeq="1" stepSeq="6"/>

<row ALERI_OPS="i" name="filter" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="1" inSeq="1" outSeq="1" stepSeq="3"/>

sp_cli> bp list
<row ALERI_OPS="i" id="1" stream="filterInput" origin="*" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>
<row ALERI_OPS="i" id="2" stream="filterInput" origin="" expr=""

enabledEvery="2" leftToTrigger="2" onit="0"/>
<row ALERI_OPS="i" id="3" stream="filter" origin="filterInput" expr=""

enabledEvery="1" leftToTrigger="1" onit="0"/>

None of the breakpoints were triggered but the Streaming Processor got paused. The location
BAD_ROW of filterInput is the explanation. Whenever a stream enters the BAD_ROW location,
it triggers an exception that works just like a breakpoint: it pauses the Sybase Aleri Streaming Platform.
Now examine badRows and badRowsReason as in the previous section.

Before moving on to the conditional breakpoints, delete the unconditional breakpoints created:

sp_cli> bp del all
sp_cli> bp list

Advanced Debugging

150

The list of breakpoints is now empty. You can delete an individual breakpoint by entering its ID instead
of "all".

7.4.2. Conditional breakpoints

There are times when more than unconditional breakpoints are needed, such as if you want to see a re-
cord with certain contents pass through a stream.

It can be done on the Streaming Processor by specifying a filter expression for a breakpoint. The filter
expression is evaluated first and if it results in a false (0 or NULL) value, the breakpoint is skipped. The
breakpoint is triggered only if the expression evaluates to true (or its leftToTrigger count is re-
duced).

The filter expression is a normal SPLASH expression. It may use the data from two pre-defined record
variables: row and oldrow. row contains the current record; oldrow is defined only for the break-
points on input. “oldrow” would be NULL for INSERTs and plain UPDATEs. For the UP-
DATE_BLOCKs oldrow will contain the second record of the block, the old data that is being re-
placed. For DELETEs and SAFEDELETEs oldrow contains the same data as row. A particular field
can be accessed using the usual row.field syntax, and you can get the row operation code using
getOpcode(row).

The Row Definition that provides these predefined variables changes with different types of breakpoints.

For a breakpoint on output it's the Row Definition of the stream where the breakpoint is defined. The ex-
pression is evaluated on the output rows produced during the preceding COMPUTE. Since multiple
rows can be produced, the expression is evaluated on each of them. If no rows are produced, the expres-
sion is still evaluated once with row set to NULL. In this case, oldrow is not available, since the UP-
DATE_BLOCKs are never produced on output of COMPUTE.

For a breakpoint on input from a specific stream it's the Row Definition of that input stream. The expres-
sion is evaluated on the record or update block that is about to be computed.

For a breakpoint on any input there is an ambiguity. Filter expressions are not permitted for this kind of
breakpoint.

A source stream gets data from outside the Sybase Aleri Streaming Platform instead of other streams, so
to put a conditional breakpoint on the input of a source stream, you would use the source stream's own
name for the input stream by bp add {filterInput} {filterInput}.

To avoid the uncertainty when adding breakpoints about which one gets triggered first, breakpoints
should be added only to the stream filter.

sp_cli> bp add {filter} {filterInput} {row.a = 2}
4

sp_cli> bp add {filter} out {isnull(row)}
5

sp_cli> run
sp_cli> wait_pause
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="4" outSeq="4" stepSeq="12"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="4" throttle="512"
history="100" postSeq="3" inSeq="2" outSeq="1" stepSeq="3"/>

sp_cli> bp list
<row ALERI_OPS="i" id="4" stream="filter" origin="filterInput"

expr="row.a = 2" enabledEvery="1" leftToTrigger="1" onit="1"/>
<row ALERI_OPS="i" id="5" stream="filter" origin=""

expr="isnull(row)" enabledEvery="1" leftToTrigger="1" onit="0"/>
sp_cli> ex {inRow} {filter}

<trans>
<pair>

Advanced Debugging

151

<filterInput ALERI_OPS="u" a="2" b="a" intData="10"/>
<filterInput ALERI_OPS="d" a="2" b="a" intData="20"/>

</pair>
</trans>

Breakpoint 4 looks for any records received on input with the field "a" equal to 2. Breakpoint 5 looks for
any records that produce no output, which means it hasn't affected the state of the filter. If a record res-
ults in no output, the filter expression on the output breakpoint is still called once, with row set to
NULL. You can't compare the NULL values with expressions like row = null or row <> null;
you must use the functions isnull() and isnonnull() instead.

While running the Streaming Processor, it paused on breakpoint 4. The input is an update to a record
with a=2. The previous record in the same transaction, with a=1, didn't trigger the breakpoint. Continue
running:

sp_cli> run
sp_cli> wait_pause
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="4" outSeq="4" stepSeq="12"/>

<row ALERI_OPS="i" name="filter" loc="COMPUTE" onbp="4" throttle="512"
history="100" postSeq="3" inSeq="3" outSeq="2" stepSeq="6"/>

sp_cli> bp list
<row ALERI_OPS="i" id="4" stream="filter" origin="filterInput"

expr="row.a = 2" enabledEvery="1" leftToTrigger="1" onit="1"/>
<row ALERI_OPS="i" id="5" stream="filter" origin=""

expr="isnull(row)" enabledEvery="1" leftToTrigger="1" onit="0"/>
sp_cli> ex {inRow} {filter}

<filterInput ALERI_OPS="d" a="2" b="a" intData="10"/>

Another hit on breakpoint 4, with the deletion of the record with a=2. Continue:

sp_cli> run
sp_cli> wait_pause
sp_cli> ex {pause}

<row ALERI_OPS="i" name="filterInput" loc="INPUT" onbp="0" throttle="512"
history="100" postSeq="4" inSeq="4" outSeq="4" stepSeq="12"/>

<row ALERI_OPS="i" name="filter" loc="PUT" onbp="5" throttle="512"
history="100" postSeq="3" inSeq="3" outSeq="2" stepSeq="7"/>

sp_cli> bp list
<row ALERI_OPS="i" id="4" stream="filter" origin="filterInput"

expr="row.a = 2" enabledEvery="1" leftToTrigger="1" onit="0"/>
<row ALERI_OPS="i" id="5" stream="filter" origin=""

expr="isnull(row)" enabledEvery="1" leftToTrigger="1" onit="1"/>
sp_cli> ex {inRow} {filter}

<filterInput ALERI_OPS="d" a="2" b="a" intData="10"/>
sp_cli> ex {outRow} {filter}
sp_cli> ex {store} {filter}

<row ALERI_OPS="u" a="1" b="a" intData="20"/>

This time breakpoint 5 was hit. The deletion of the record with key a=2 has not produced any output. If
you look at the store contents, this record wasn't there at the start so it's not necessary to delete it. The
store doesn't get updated until the PUT is done, so the store is unchanged when the record was pro-
cessed. Why wasn't this record in the store before? It didn't pass the filter expression of the filter
stream — the value of its intData field is too low.

If the Streaming Processor is still running, this is what happens:

sp_cli> run

Advanced Debugging

152

sp_cli> wait_pause

There is no activity, because there is no more input data available to the Streaming Processor. The sp_cli
utility is waiting for the Streaming Processor to run and trigger some breakpoint. This command can't be
interrupted in sp_cli, but you can kill sp_cli itself by entering Ctrl-C and then restarting sp_cli.

7.5. Notification of the debugger events

As the Streaming Processor changes between running and pausing, single-steps, hits breakpoints and ex-
ceptions, and so on, it sends asynchronous notifications to all interested parties. To receive these up-
dates, you can subscribe to the Aleri_RunUpdates stream. This “stream” does not retain any content; its
notifications bypass the stream's store, and always have the operations type UPDATE. See the Author-
ing Reference Manual for more details.

The following small example shows the notifications sent out from Aleri_RunUpdates when the above
breakpoint example was run on the Streaming Processor:

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>

The Streaming Processor is set to run, after unconditional breakpoints are created.

<Aleri_RunUpdates ALERI_OPS="u" key="NOBREAK" value="2"
stream="filterInput"/>

The leftToTrigger field of breakpoint 2 decreases but the breakpoint is not triggered.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="0"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="1" stream="filterInput"/>

Breakpoint 1 is triggered; the Streaming Processor pauses.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>

The Streaming Processor is set to run again.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="0"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="2" stream="filterInput"/>

Breakpoint 2 is triggered.

<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="1" stream="filterInput"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="3" stream="filter"/>
<Aleri_RunUpdates ALERI_OPS="u" key="NOBREAK" value="2"

stream="filterInput"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="1" stream="filterInput"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="2" stream="filterInput"/>
<Aleri_RunUpdates ALERI_OPS="u" key="STEP" value="3"/>

Advanced Debugging

153

When the step trans command executes, it triggers a number of breakpoints along the way. Eventually
it finishes and reports that it has done three steps.

<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="3" stream="filter"/>
<Aleri_RunUpdates ALERI_OPS="u" key="STEP" value="3"/>

Now step quiesce is executed.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>

The Streaming Processor continues to run.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="0"/>
<Aleri_RunUpdates ALERI_OPS="u" key="EXCEPTION" value="0"

stream="filterInput"/>

The Streaming Processor pauses when it hits the exception.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>

The unconditional breakpoints have been deleted, conditional breakpoints have been created, and the
Streaming Processor is run again.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="0"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="4" stream="filter"/>

The Streaming Processor hits breakpoint 4.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>
<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="0"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="4" stream="filter"/>

The Streaming Processor continues, but hits breakpoint 4 again.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>
<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="0"/>
<Aleri_RunUpdates ALERI_OPS="u" key="BREAK" value="5" stream="filter"/>

The Streaming Processor continues, but this time hits breakpoint 5.

<Aleri_RunUpdates ALERI_OPS="u" key="RUN" value="1"/>

The Streaming Processor continues to the end.

Advanced Debugging

154

These notifications from Aleri_RunUpdates can be used by the automated tools just like the Aleri Stu-
dio.

7.6. Examining the data in the Sybase Aleri Streaming Platform

The debugger “examine” commands have been used throughout the examples in this chapter. The
sp_cli(1) man page provides a complete description of these commands; this section contains general in-
formation and some important highlights.

The examination commands work only when the Streaming Processor is paused.

The examination commands return the records in the same format used to send updates to common sub-
scribers. The sp_cli command generates them in an XML format. The operation types that occur in
“examined” data include not only the standard types seen by the normal subscribers, but also the types
that are used exclusively inside the Streaming Processor. These are described in Section 7.1.1, “The
Stream Processing Loop”.

There are two ways in which records returned by the examination commands may be grouped:

• Two records may be grouped into an update block. These are printed by sp_cli within an XML ele-
ment named <pair>.

• Multiple records and update blocks may be grouped into a transaction. These transactions are prin-
ted by sp_cli within an XML element <trans>. If a transaction contains only one record, it's printed
as this single record, without the <trans> wrapping.

If a stream employs an input window, as this windows fills, it starts generating SAFEDELETEs for the
earlier records. To distinguish these records from the DELETEs sent by the input streams, sp_cli prints
the pseudo-field ALERI_RETENTION=1 in each one.

There are three arguments used to choose the data to be examined:

kind Determines the kind of data to be examined.

stream Specifies the stream from which the data is taken. To get data from all the streams, leave this
field empty.

object Selects the particular data unit. Use this if there are many units of this kind (for example,
variables).

Either the stream or the data (or both) can be left empty or omitted if it's not applicable to some kind
of data requested in the examine command. The kind and stream must match: Streaming Processor-wide
data may not be requested from a stream, and per-stream data may not be requested unless there is a
value supplied for the stream argument.

Some kinds of data are available only from certain streams. For example, the pattern state can be read
only from a PatternStream. If the requested kind of data is not available for a certain stream, the error
"No such kind of data" is returned, even if this kind of data is supported for other streams.

Some kinds of data may be used both with and without the stream argument. For example, the kind
“var” can be used without a stream to examine the global variables and with a stream to examine that
stream's variables.

As previously mentioned, the data returned by the "examine" commands may be homogeneous
(consisting of records of the same type) or heterogeneous (consisting of records of different types). The

Advanced Debugging

155

examine commands return homogeneous data (most returned data will be homogeneous) within < row>
tags.

The groups of data related to the input queues are heterogeneous. Each record gets a tag matching the
name of the stream that produced it (records produced from source streams are tagged with the name of
the source stream itself). These kinds include: queue, inTrans, inRow, queueHead, queueTail,
inHist, lastInTrans, inHistEarliest, and inHistLatest.

There are also heterogeneous groupings of historic data, containing a mix of input and output data. Each
of these groups contains one or more pairs of transactions: the first record in each pair is an input trans-
action, and the second one is the matching output transaction. Each input transaction record is tagged
with the name of the stream that produced it; each output transaction record gets the tag row. If some
input stream records are also tagged with row, the only way to tell them from output transaction records
is by looking at the order in which they appear.

Some kinds of data deal with history, such as the input transactions processed by the stream and the out-
puts produced. You can get these data sets separately (as input history and output history) or in mixed
mode as described above. When the input and output history are examined separately, the transactions
are matched by their index: the first input transaction matches the first output transaction, and so on.

It is helpful to be able to examine the data history when an interesting event happens.

The amount of historical data kept for a stream is determined by the stream's history size setting. This
setting can be set globally for all streams, or set for individual streams, using the sp_cli command his-
tory. The default history size limit is 100 transactions. Using large history limits increases the memory
usage of the Streaming Processor.

If the Streaming Processor has trace mode off, all history gets discarded, but the limit is kept. The next
time trace mode is enabled, the history will start collecting again.

In some cases an empty placeholder is used in a record returned by an examine command. In a previous
example, an empty placeholder showed that no output transaction was produced from an input transac-
tion. If there is no ambiguity with transaction boundaries (such as with outTrans), sp_cli simply re-
turns no data is returned. But in other cases, such as hist, a placeholder is included to show that the
transaction occurred, but produced no output. A placeholder record includes all fields, including the key
fields; the value of each is set to NULL.

Some types of data records use their "natural" field names. Some records, such as "pause", return
metadata: the field names in such a record are defined in the Streaming Processor. But other types con-
tain a mix of fields defined by the user and added by the Streaming Processor. In a record of this type,
the fields added by the Streaming Processor will have the prefix Aleri_. This prefix is reserved and
should not be used for user-defined fields.

An example of such mixed fields is var, used to examine the variables in computational streams. With
a stream, defined in part as:

<ComputeStream id="compute" ... >
<Local>vector(int32) ivec;</Local>
...

</ComputeStream>

For this stream, the command

sp_cli> ex {var} {compute} {ivec}

Advanced Debugging

156

would return data in the following format:

<row ALERI_OPS="i" Aleri_Index="0" Aleri_Value="10"/>
<row ALERI_OPS="i" Aleri_Index="1" Aleri_Value="13"/>
<row ALERI_OPS="i" Aleri_Index="2" Aleri_Value="12"/>

Here the field name id is carried over from the key in the original data row. The field "Aleri_Index",
added by the Streaming Processor, contains the index of value per key. The field "Aleri_Value" contains
the value itself.

Another interesting example is the data kind aggrGroup, which shows the internal state of the aggrega-
tions. Suppose a stream is defined in part as:

<!-- Row definition of the aggregation's input -->
<RowDefinition id="inputRowDef">

<Column name="a" datatype="int32" />
<Column name="b" datatype="string" />
<Column name="c" datatype="double" />
<Column name="d" datatype="date" />
<Column name="intData" datatype="int32" />
<Column name="charData" datatype="string" />
<Column name="floatData" datatype="double" />
<Column name="dateData" datatype="date" />

</RowDefinition>

<RowDefinition id="aggregateRowDef">
<Column name="z" datatype="int32" />
<Column name="intData" datatype="int32" />
<Column name="charData" datatype="string" />
<Column name="floatData" datatype="double" />
<Column name="dateData" datatype="date" />

</RowDefinition>

<AggregateStream id="aggregate"
rowdef="aggregateRowDef"
keys="z"
...
>

<Group value="input.a" />
...

</AggregateStream>

The aggregation state consists of buckets indexed by the aggregation key (in this case the field z which
originates from the field "a" of the input records). Each bucket contains multiple input rows, which may
be sorted or unsorted. When the aggregation status is displayed, there are two types of fields:

• The fields of the key (in this case "z") get Aleri_Key_ prepended to them, to avoid possible con-
flicts with the names of the fields in the input rows.

• The field Aleri_Index is added to show the position of each row in its bucket.

The command

sp_cli> ex {aggrGroup} {aggregate}

would produce the output like the following:

Advanced Debugging

157

<row ALERI_OPS="i" Aleri_Key_z="1" Aleri_Index="0" a="1" b="a" c="1.111000"
d="2003-12-10 00:00:00" intData="10" charData="aa" floatData="1.111110"
dateData="2003-12-10 00:00:01"/>

<row ALERI_OPS="i" Aleri_Key_z="1" Aleri_Index="1" a="1" b="b" c="1.111000"
d="2003-12-10 00:00:00" intData="10" charData="aa" floatData="1.111110"
dateData="2003-12-10 00:00:01"/>

<row ALERI_OPS="i" Aleri_Key_z="2" Aleri_Index="0" a="2" b="b" c="2.111000"
d="2003-12-11 00:00:00" intData="10" charData="bb" floatData="2.111110"
dateData="2003-12-10 00:00:02"/>

<row ALERI_OPS="i" Aleri_Key_z="2" Aleri_Index="1" a="2" b="b" c="2.222000"
d="2003-12-11 00:00:00" intData="10" charData="bb" floatData="2.111110"
dateData="2003-12-10 00:00:02"/>

In this case, the state contains two buckets with two rows each.

The sp_cli command now supports output redirection. For example, piping the examine output to other
UNIX commands.

sp_cli> ex {aggrGroup} {aggregate} | less

7.6.1. Examining with Filters

In certain cases, you may be interested in examining just a few rows from a large volume of data. In the
"aggrGroup" example above, you might be interested in one bucket in a stream that could contain thou-
sands. The data returned by the debugging commands can be piped through commands like grep to se-
lect only the data you want, as in this example:

sp_cli> ex {pause} | grep '="filter"'
<row ALERI_OPS="i" name="filter" loc="PUT" onbp="5" throttle="512"

history="100" postSeq="3" inSeq="3" outSeq="2" stepSeq="7"/>

Each XML record is printed on a single line; in this display the lines are split. The output of this grep
command is a complete record.

But there is a more convenient and efficient way to get a subset of a large data set. The data can be
filtered right in the Streaming Processor, before it is even sent out.

The sp_cli command exf does this filtering, as follows:

exf {kind} [{stream} [{object}]] {expr}

The names of the stream and object are optional, just as with the command ex and there is an added ar-
gument containing the filter expression. The filter expression references a pre-defined variable, with
rules similar to the breakpoint filter expressions containing the current row; it compares the row with the
expression to decide if the row should be returned. Whenever the filter expression returns true (non-0,
non-NULL), the record gets returned to the user and displayed.

The rules for the defined variables are:

• If all the rows in the returned data set are of the same type, they are wrapped in a single variable
row.

Advanced Debugging

158

• If the data kind contains rows of the mixed types (the input or history data), multiple variables are
defined, with names matching the XML tags printed for these records. At each time only one vari-
able, matching the type of the current record, contains a value. All the others are set to NULL.

These filter expressions filter each row individually, ignoring all transaction and UPDATE_BLOCK
boundaries.

Consider an example of selecting a particular aggregate bucket, as defined in the previous example:

sp_cli> exf {aggrGroup} {aggregate} {row.Aleri_Key_z = 2}
<row ALERI_OPS="i" Aleri_Key_z="2" Aleri_Index="0" a="2" b="b" c="2.111000"

d="2003-12-11 00:00:00" intData="10" charData="bb" floatData="2.111110"
dateData="2003-12-10 00:00:02"/>

<row ALERI_OPS="i" Aleri_Key_z="2" Aleri_Index="1" a="2" b="b" c="2.222000"
d="2003-12-11 00:00:00" intData="10" charData="bb" floatData="2.111110"
dateData="2003-12-10 00:00:02"/>

Some data kinds may not support the filtering.

7.6.2. Dumping the Store Data

The debugging tools can also dump the contents of a stream's store into a file, in exactly the same way
as the attribute ofile in the stream's element causes the stream's contents to be dumped to a file when
the Streaming Processor exits and in exactly the same format. If this command is run after the break-
points example has processed all data:

sp_cli> pause
sp_cli> dump {/tmp/debug} {filter}

It would create the file /tmp/debugdump_filter.xml (the prefix is /tmp/debug with dump_
before the stream name) with the following contents:

<filter a="1" b="a" intData="20"/>

7.7. Changing the Data in the Sybase Aleri Streaming Platform

The debugging interface can be used to change some data within the Streaming Processor. In sp_cli, the
eval command provides this functionality. Again, this only works when the Streaming Processor is in
trace mode and paused.

This command can only change the contents of global and stream local variables (including event-
Caches). It cannot change the contents of the stores, queues or working data: that would be too danger-
ous.

The command changes data by evaluating a SPLASH statement (or block) in the limited context of the
stream. The context is limited in the sense that only the variables are visible, not the streams or stream
iterators. Any kinds of SPLASH statements may be used, including branching and loops, but writing an
infinite loop would hang the Streaming Processor indefinitely. Temporary variables can also be defined
inside the SPLASH block.

The eval command changes variables by assigning them as usual.

The operations on eventCaches require special preparation. Normally the key of the eventCache is de-

Advanced Debugging

159

termined by the current input record. But in this case there is no input record, so the key is not set and
any operations on eventCaches would have no effect. For them to work, the key has to be set manually
using the operator keyCache(ec-variable, record). It must be set before performing any operations on
eventCache. Nothing stops you from changing the key more than once, even in a loop, and thus perform-
ing operations on multiple keys.

Only external local (those defined in the XML node <Local>) and global variables may be modified by
the eval command. The variables defined inside the SPLASH blocks of a stream exist only when the ap-
propriate methods are run and can't be modified.

The unit of code evaluated is not an expression but a SPLASH statement. It must be either a simple
statement terminated by ";" or a block enclosed in braces "{}". Multiple statements must always be en-
closed in a block. If braces are used to quote the block argument, the outside quotes don't count as the
block delimiters: they are just sp_cli quotes.

For example:

eval `stream` `a := 1;`

eval {a := 1;}

eval `stream` `{ typeof(input) r := [a=9; | b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }`

eval {stream} {{ typeof(input) r := [a=9; | b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }}

Bad examples, with incorrect termination or blocking:

eval `stream` `a := 1`

eval {a := 1}

eval `stream` `typeof(input) r := [a=9; | b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r);`

eval {stream} { typeof(input) r := [a=9; | b= 's1'; c=1.; d=intDate(0);];
keyCache(s0, r); insertCache(s0, r); }

For a more complete example, consider a model with the FlexStream:

<RowDefinition id="inputRowDef">
<Column name="a" datatype="int32" />
<Column name="b" datatype="string" />
<Column name="c" datatype="double" />
<Column name="d" datatype="date" />

</RowDefinition>

<FlexStream id="compute"
store="store"
istream="input"
ofile="output/compute.out"
rowdef="inputRowDef"
variables="

int32 i32 := 999;
int64 i64;
double dbl;
date dat;
string str;
money mon;

Advanced Debugging

160

timestamp ts;
[int32 a; | string b; double c; date d;] rec;

"
keys="a" >
<RowLocalStorage id="s0" type="int32" maxsize="5"/>
<Method name="inputMethod" stream="input"

value="{
[int32 a; | string b; double c; date d;] record := input;

i32 := i32 + 1;
i64 := cast(int64, i32);
dbl := cast(double, i32);
dat := intDate(i32);
str := string(i32);
mon := cast(money, i32);
ts := cast(timestamp, i32);
rec := input;

record.c := record.c + 9;
output record;

}"
/>

</FlexStream>

Start the model with -DD, and set and examine some variables:

sp_cli> ex {listRls} {compute}
<row ALERI_OPS="i" name="s0" type="int32" maxsize="5" maxtime="-1"/>

sp_cli> ex {listVar} {compute}
<row ALERI_OPS="i" name="i32" type="int32"/>
<row ALERI_OPS="i" name="i64" type="int64"/>
<row ALERI_OPS="i" name="dbl" type="double"/>
<row ALERI_OPS="i" name="dat" type="date"/>
<row ALERI_OPS="i" name="str" type="string"/>
<row ALERI_OPS="i" name="mon" type="money"/>
<row ALERI_OPS="i" name="ts" type="timestamp"/>
<row ALERI_OPS="i" name="rec" type="[int32 a;|string b;double c;date d;]"/>

These are just convenience calls, giving a quick look at what is available. It might be useful for the auto-
mated tools, saving them from having to parse the nodes <Local> and <Global> in the XML data model
file.

sp_cli> ex {var} {compute} {i32}
<row ALERI_OPS="i" Aleri_Value="999"/>

sp_cli> eval {compute} {i32 := 0;}
sp_cli> ex {var} {compute} {i32}

<row ALERI_OPS="i" Aleri_Value="0"/>
sp_cli> ex {var} {compute} {i64}

<row ALERI_OPS="i" />
sp_cli> eval {compute} {i64 := 1;}
sp_cli> ex {var} {compute} {i64}

<row ALERI_OPS="i" Aleri_Value="1"/>
sp_cli> eval {compute} {i64 := null;}

<row ALERI_OPS="i" />
sp_cli> ex {var} {compute} {i64}

<row ALERI_OPS="i" Aleri_Value="a"/>

Here some variables are set, and you can see the changes. Variables were initially set to NULL except
for those that were initialized. To examine them, go back to the row with its only field, Aleri_Value,
which has the value NULL so it is not displayed. Unlike the result for an empty transaction, the opera-
tion type is still INSERT, not NOP. The values of variables can change to something definite or to
NULL.

Advanced Debugging

161

sp_cli> eval {compute} {rec.a := 8;}
sp_cli> ex {var} {compute} {rec}

This example attempts to set a field in a record variable. But the variable was NULL; any attempts to set
fields in a NULL record are silently ignored, so the variable retained its NULL value. Examining record
variables containing NULL has a different effect than examining any other variables. Instead of return-
ing a row with all NULL fields, the command returns no rows at all.

sp_cli> eval {compute} {rec := [a=9; | b='s1'; c=1.5; d=intDate(0);];}
sp_cli> ex {var} {compute} {rec}

<row ALERI_OPS="i" a="9" b="s1" c="1.500000" d="1970-01-01 00:00:00"/>

Now the record variable is set to contain a record.

sp_cli> eval {compute} {rec.a := 8;}
sp_cli> ex {var} {compute} {rec}

<row ALERI_OPS="i" a="8" b="s1" c="1.500000" d="1970-01-01 00:00:00"/>

And changing a field in an existing record works.

sp_cli> eval {compute} {{ Aleri_Key := [a=9; | b='s1'; c=1.5; d=intDate(0);];
aggregate(insert, s0, int32, 1); }}

sp_cli> eval {compute} {{ Aleri_Key := [a=9; | b='s1'; c=1.5; d=intDate(0);];
aggregate(insert, s0, int32, 2); }}

sp_cli> ex {rls} {compute} {s0}
<row ALERI_OPS="i" a="9" Aleri_Index="0" Aleri_Value="2"/>
<row ALERI_OPS="i" a="9" Aleri_Index="1" Aleri_Value="1"/>

This shows the use of both the RLS and SPLASH blocks.

Even though these examples show evaluation blocks split into multiple lines, each must be entered as
one continuous line. In many cases, the multi-line quoting syntax may be more convenient:

sp_cli> eval {compute} <<!
'!' to complete> {
'!' to complete> typeof(input) r := [a=9; | b= 's1'; c=1.; d=intDate(0);];
'!' to complete> keyCache(s0, r); insertCache(s0, r);
'!' to complete> }
'!' to complete> !

While you are entering a multi-line argument, sp_cli displays a different prompt, reminding you to end
the argument. You do this by entering a "!" on a line by itself. See the sp_cli(1) man page for more de-
tails on multi-line quoting.

Advanced Debugging

162

	Utilities Guide
	Table of Contents
	About This Guide
	1. Preface
	2. Audience
	3. Organization
	4. Related Documents

	Chapter 1. Overview of Sybase Aleri Streaming Platform Executables
	1.1. Streaming Processor Executables
	1.2. Command and Control Executables
	1.3. Publish and Subscribe Executables
	1.4. Authoring Executables

	Chapter 2. AleriRT
	2.1. Using AleriRT
	2.1.1. The Connection Wizard
	2.1.2. The Subscription Wizard
	2.1.3. The Publication Wizard
	2.1.4. Automatic Publishing
	2.1.5. Saving Subscription Queries

	2.2. Applying A Query
	2.3. Known Issues and Limitations

	Chapter 3. Server Executables
	sp
	sp_clustermgr
	sp_clustermon
	sp_ld
	sp_monitor
	sp_playback
	sp_query
	sp_server
	sp_upgrade
	sslwrap

	Chapter 4. Command and Control Executables
	sp_cli
	sp_cnc

	Chapter 5. Publish and Subscribe Executables
	sp_archive
	sp_convert
	sp_histexport
	sp_kdbin
	sp_kdbout
	sp_stream2olap
	sp_subscribe
	sp_upload
	sp_viewer

	Chapter 6. Authoring Executables
	sp_encmodel
	sp_sql2xml
	sp_studio

	Chapter 7. Advanced Debugging
	7.1. Introduction to Sybase Aleri Streaming Platform Debugging Tools
	7.1.1. The Stream Processing Loop
	7.1.1.1. “Locations” in the Stream Processing Loop
	7.1.1.2. Pausing the Streaming Processor in Trace Mode

	7.1.2. Trace Mode Basics

	7.2. Debugging in Trace Mode
	7.2.1. Pausing the Streaming Processor
	7.2.1.1. Caveats when the Streaming Processor is Paused

	7.2.2. A Simple Example
	7.2.3. Example Part 2: Single-Stepping
	7.2.4. Changing the History Size Limit

	7.3. Automatic single-stepping
	7.3.1. An extra parameter and its creative uses

	7.4. Breakpoints and exceptions
	7.4.1. Unconditional breakpoints and exceptions
	7.4.2. Conditional breakpoints

	7.5. Notification of the debugger events
	7.6. Examining the data in the Sybase Aleri Streaming Platform
	7.6.1. Examining with Filters
	7.6.2. Dumping the Store Data

	7.7. Changing the Data in the Sybase Aleri Streaming Platform

