
Developer Guide: Mobile Workflow
Packages

Sybase Unwired Platform 2.1
ESD #3

DOCUMENT ID: DC01218-01-0213-04
LAST REVISED: January 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Guide for Mobile Workflow
Packages ..1

Documentation Roadmap for Unwired Platform1
Introduction to Developing Mobile Workflow

Applications With Sybase Unwired Platform3
Hybrid Web Container Architecture3
Hybrid Web Container Development Task Flow5

Identify a Business Process for Workflow
Development ...6

Hybrid Web Container Patterns7
Online Lookup ..9
Server Notification ...14
Cached Data ...19

Mobile Workflow Application Configuration for Data
Change Notification ..28

Extending Data Change Notification to Mobile
Workflow Clients ..28

Non HTTP Authentication Workflow DCN
Request ...30

Sending Workflow DCN to Users Regardless of
Individual Security Configurations30

Mobile Workflow DCN Request Response31
Workflow DCN Design Approach and Sample

Code ..31
Mobile Workflow Development ...37

Develop a Mobile Workflow Application Using the
Mobile Workflow Forms Editor37

Deploy the Mobile Workflow Package to Unwired
Server ...37

Generating the Files for a Mobile Workflow
Package ...37

Developer Guide: Mobile Workflow Packages iii

Deployment Modes ..39
Hybrid Web Container Customization40

Android Hybrid Web Container Customization40
iOS Hybrid Web Container Customization75
PhoneGap Support ..90

Mobile Workflow Package Customization121
Adding Custom Code ...121
Adding Local Resources to a Mobile Workflow

Project ...122
Generated Mobile Workflow Files122
Reference ..129
Using Third-Party JavaScript Files176
Repackaging Mobile Workflow Package Files .. .176
Common Customizations177

Install and Configure the Hybrid Web Container On the
Device ...181

Preparing Android Devices for the Mobile
Workflow Package ...181

Preparing iOS Devices for the Mobile Workflow
Package ...186

Preparing BlackBerry Devices for the Mobile
Workflow Package ...196

Installing the Mobile Workflow Container on
Windows Mobile Devices198

Configure Connection Settings on the Device . . .199
Install and Test Certificates on Simulators and

Devices ..203
Manage a Mobile Workflow Package208

Registering and Reregistering Mobile Workflow
Application Connections208

Enabling and Configuring the Notification
Mailbox ..210

Assigning and Unassigning Mobile Workflows . .211
Activating the Workflow211

Contents

iv Sybase Unwired Platform

Configuring Context Variables for Mobile
Workflow Packages212

Security ...214
Credentials ...214
Configuring the Workflow Application to Use

Credentials ..218
Content Security on Devices225

Localization and Internationalization231
Localization Limitations232
Localizing a Mobile Workflow Package232
Mobile Workflow Package Internationalization . .237
Internationalization on the Device238

Test Mobile Workflow Packages239
Testing Server Initiated Mobile Workflow

Packages ...240
Launching a Server-initiated Mobile Workflow

on the Device ...243
Debugging Custom Code244

Create a Mobile Workflow Package Manually246
Mobile Workflow URL Parameters246
Calling the Hybrid Web Container247
Mobile Workflow Package Files249
Using Third-party Files270

Troubleshoot ..271
HTTP Error Codes ..271
Recovering from EIS Errors ..272
Mapping of EIS Codes to Logical HTTP Error Codes .273
Credentials Are Lost after User Successfully Passes

Activation Screen ..274
Mobile Workflow Exception Handling274
Unable to Deploy Workflow ...275

Index ..277

Contents

Developer Guide: Mobile Workflow Packages v

Contents

vi Sybase Unwired Platform

Introduction to Developer Guide for Mobile
Workflow Packages

This developer guide provides information about using Sybase® Unwired Platform features to
create Mobile Workflow packages. The audience is Mobile Workflow developers.

This guide describes requirements for developing a Mobile Workflow package, how to
generate Mobile Workflow package code, and how to deploy the Mobile Workflow package to
the device or simulator.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object Development
• Sybase Unwired WorkSpace – Mobile Workflow Package Development
• Tutorial: Mobile Workflow Package Development
• Troubleshooting for Sybase Unwired Platform

Documentation Roadmap for Unwired Platform
Sybase® Unwired Platform documents are available for administrative and mobile
development user roles. Some administrative documents are also used in the development and
test environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on the Sybase Product Documentation Web site.

Check the Sybase Product Documentation Web site regularly for updates: access http://
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Introduction to Developer Guide for Mobile Workflow Packages

Developer Guide: Mobile Workflow Packages 1

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Introduction to Developer Guide for Mobile Workflow Packages

2 Sybase Unwired Platform

Introduction to Developing Mobile Workflow
Applications With Sybase Unwired Platform

A Mobile Workflow application includes both business logic (the data itself and associated
metadata that defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of Mobile Workflow
application development:

• The data aspects of the Mobile Workflow application are called mobile business objects
(MBO), and “MBO development” refers to defining object data models with back-end
enterprise information system (EIS) connections, attributes, operations, and relationships.
Mobile Workflow applications can reference one or more MBOs and can include load
parameters, personalization, and error handling.

• Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your Mobile Workflow application using the Mobile
Workflow Forms Editor.

Note: See Sybase Unwired WorkSpace – Mobile Business Object Development for
procedures and information about creating and deploying MBOs.

Hybrid Web Container Architecture
The Hybrid Web Container is the runtime on the device within which Mobile Workflows are
executed.

The Hybrid Web Container is a native application that embeds a browser control supplied by
the device OS, which allows you to build applications with simplicity of Web development but
utilize the power of native device services. The Hybrid Web Container enables the rapid
development of mobile workflows, in which you can extend existing enterprise business
processes, to a mobile device so that business process decisions can be made on a mobile
device.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 3

Mobile Workflow Forms Editor
The Mobile Workflow Forms editor uses the Hybrid Web Container as the runtime for Mobile
Workflow packages. The Mobile Workflow Forms Editor included with Sybase Unwired
Platform is a tool that helps you design the user interface and test the flow of the business
process for a mobile workflow application. Using the Mobile Workflow Forms Editor allows
you to develop mobile workflow screens that can call on the create, update, and delete
operations, as well as object queries, of a mobile business object.

Mobile Workflow package files are generated using the Mobile Workflow Package generation
wizard in the Mobile Workflow Forms editor. The generated Mobile Workflow package
contains files that reference a mobile business object (MBO) package, an MBO in that
package, and the operation or object query to call along with a mapping of which key values
map to parameter values. The generated Mobile Workflow package's output is translated to
HTML\CSS\Javascript. The logic for accessing the data and navigating between screens is
exposed as a JavaScript API.

Mobile Workflow packages can be deployed to Unwired Server and assigned to users using
the Mobile Workflow Forms Editor in Eclipse.

Customization
You can modify certain files in the generated Mobile Workflow package to customize
application behavior.

The Hybrid Web Container uses HTML, JavaScript, and CSS Web technologies, which allow
you to customize the generated files with JavaScript code.

• HTML – HTML files are generated in the Mobile Workflow Forms editor. The files that
are generated depend on the device platform. You can open these files with a third-party
Web-development tool and modify them, but they are overwritten if generated from the
Mobile Workflow deployment tool. The Mobile Workflow Forms editor also includes a

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

4 Sybase Unwired Platform

HTMLView user interface element that can be placed on a screen, and in which custom
HTML code can be inserted, which will be published in-line when the file is re-generated.

• JavaScript – the JavaScript API exposes customization points for navigation events, and
allows access to data-access functions for requests and cached values. Customization of
the HTML page should be executed using the embedded jQuery in these customization
points. For example, execute jQuery logic to modify the toolbar in
customBeforeWorkflowLoad(). Additional custom JavaScript files can be added
to the Mobile Workflow package in the Eclipse WorkSpace.

• CSS – the Hybrid Web Container uses a 3rd-party CSS library, which enables you to
modify the look-and-feel of the HTML page. The jQueryMobile CSS file is embedded as
the default look-and-feel, which allows you to select from the variety of themes within the
jQueryMobile framework, or use your own CSS rules for skinning pages and screen
elements. These can be device operating system-specific. You can also leverage existing
CSS style rules from your own organization's Web standards.

The generated files are documented in the Reference section of this guide.

Management
You can deploy Mobile Workflow Packages in Eclipse and manage them through the Sybase
Control Center console. No device interaction is required from the administrator. Once a
Mobile Workflow package is deployed into an existing installation, the administrator can
configure the Mobile Workflow package and assign it to any active user in the system.

Offline Capabilities
Server-initiated notifications extract data from the backend and Unwired Platform sends them
to the client device. The client device does not need to be online at the time the notification is
sent—the message is received as soon as the client device comes online. Submit Workflow
actions on the client can also be sent while the device is offline. They will be sent to the server
as soon as the device comes online. These notifications are made available offline for
processing once they are delivered to the device.

Online Request actions only work when the device is online. The results of object queries run
by these types of actions can be cached on the client so that the next time the same query is
invoked with the same parameters it is able to get those results from the client-side cache
without needing to go to the server. This is achieved by specifying a non-zero cache timeout
for the action.

Hybrid Web Container Development Task Flow
Developing a Hybrid Web Container includes these basic tasks.

1. Open or import a mobile application project with predefined mobile business objects
(MBOs).

2. Deploy the Mobile Application Project:
b. On the Target Server page, select the server and connect to it.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 5

c. On the Server Connection Mapping page, map the database connection profile to the
server.

3. Create the application connection in Sybase Control Center (SCC).

Note: This step is normally performed by the system administrator.

4. Use the Mobile Workflow Forms Editor to create a new Hybrid Web application.

Note: Optionally, you can create a Hybrid Web application manually, however, using the
Mobile Workflow Forms Editor, automates many tasks and provides integration across
different device platforms.

5. Use the Mobile Workflow Forms Editor to generate screens by dragging and dropping
MBOs and MBO operations from WorkSpace Navigator to the Flow Design page.

6. Create, delete, and edit screens, controls, menus, screen navigations, and so on.
7. Use the Mobile Workflow Package Generation wizard to generate the Hybrid Web

Container files.
8. (Optional) Customize the generated Custom.js file.

9. (Optional) If you customized the Hybrid Web application files, re-generate the files using
the Mobile Workflow Package Generation Wizard.

10. Deploy the Mobile Workflow package to Unwired Server.
11. Install and configure the Hybrid Web Container on the device or simulator.
12. In SCC, assign the Hybrid Web application to the device user.
13. On the device or simulator, run, test and debug the Hybrid Web application.

Note: See Sybase Unwired WorkSpace – Mobile Business Object Development for
procedures and information about creating and deploying MBOs.

Identify a Business Process for Workflow Development
The first step is identifying whether a workflow package can implement a decision point in a
particular business process.

Workflow packages enable a decision step or triggering of a business process, essentially
mobilizing a small decision window in a business process. While some business processes
require a thick application with business logic and access to reference data, some others do
not. Sometimes a business process can be made mobile simply by providing the ability to
capture a single "Yes" or "No" from a user, or by providing the ability to send data in structured
form into the existing backend systems.

A typical Workflow package allows creating a mobile business object (MBO) and sending it to
the Unwired Server, or retrieving an MBO from the Unwired Server and displaying that
information in a decision step. A more complex Workflow package could involve an
application that uses online request menu items to invoke various create, update, or delete
operations and/or object queries all in the same flow.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

6 Sybase Unwired Platform

An example of a business process that would be a suitable mobile workflow would be the
ability of an employee to use a mobile device to submit an expense report while out of office,
or to report on their project activities, or to make a request for travel.

Hybrid Web Container Patterns
The Hybrid Web container allows you to create lightweight applications that implement
various business solutions. These are some of the primary Hybrid Web container and the
Unwired Platform patterns (models):

• Server notification – the enterprise information system (EIS) notifies SUP of data changes
and SUP sends notifications to subscribed devices based on the rules.

• Online lookup – the client retrieves data directly from the EIS. This pattern typically uses a
client-initiated starting point.

• Cached data – the client retrieves data from the Unwired Server cache. This pattern
typically uses a client-initiated starting point.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 7

These patterns are not mutually exclusive. You can create applications that combine patterns
in various ways to meet business needs. For example:

1. An external process or application updates EIS data.
2. The changed data triggers a data change notification (DCN), which is sent to Unwired

Server, or a message from another workflow client updates mobile business object (MBO)
data contained on Unwired Server.

3. The DCN could be programmed to update MBO data.
4. Unwired Server notifies the client that some action needs to be taken.
5. The client views the message.
6. The client opens a screen to perform the required action. The form may, for example, call

an object query to return cached data or online data, call an MBO operation, or perform
some other action.

7. The client sends an update to Unwired Server.
8. Unwired Server updates the EIS.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

8 Sybase Unwired Platform

Online Lookup
This pattern provides direct interaction between the data requester (workflow client) and the
enterprise information system (EIS), supplying real-time EIS data rather than cached data.

While the server notification and cached data patterns are flexible regarding MBO definition
and cache group policy, the online lookup pattern must have at least one findByParameter and
use the Online cache group policy:

1. The workflow client requests data using the findByParameter object query.
2. Since the MBO associated with the object query is in a cache group that uses an Online

policy, Unwired Server retrieves the requested data directly from the EIS and not the
cache.

3. Online data is returned to the client.

In this example, online data retrieval by the workflow client is triggered when the user selects
the Submit menu item that calls the findByParameter object query.

Implementing Online Lookup for Workflow Clients
Define an MBO with at least one load argument that maps to a propagate-to attribute, add the
MBO to a cache group that uses an Online policy, then define the workflow application that
calls the findByParameter object query to return real-time results from the EIS.

Defining Mobile Workflow Load Arguments from Mapped Propagate to Attributes
Create an MBO with at least one load argument, map as propagate to attributes, then assign the
MBO to a cache group that uses an Online policy.

1. From Unwired WorkSpace, create an MBO that has at least one load argument. For
example, you could define an Emp MBO as:

SELECT id,
 empName,

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 9

 empDeptId FROM sampledb.dba.employee
WHERE empDeptId = :deptIdLP

2. In the MBO Properties view, select the Attributes > Load Arguments tab, map each load
argument to be used as an operation load argument for the Mobile Workflow package to a
Propagate to Attribute. This example requires you to map the deptIdLP load argument to
the empDeptId attribute. You must also verify that data types are INT and the default value
is a valid INT.

3. Set the Online cache group policy for the MBO.

a) Add the MBO to a cache group that uses the Online cache group policy. For example,
create a new cache group named CacheGroupOnline and set the policy to Online.

b) Drag and drop the MBO to CacheGroupOnline.

The findByParameter object query is automatically generated based on all load arguments
that have propagate-to attributes:

4. Deploy the project that contains the MBO to Unwired Server.

Binding the findByParameter Object Query to a Menu Action
For synchronous, online data access, define an Online Request menu action and bind it to the
findByParameter object query.

Prerequisites
You must have propagate-to attributes mapped to MBO load parameters, and the deployed
MBO must use an Online cache group policy. Unwired Platform services must be running.

Task

1. From Unwired WorkSpace, launch the Mobile Workflow Forms Editor.

2. From the Flow Design screen, double-click the screen for which you are defining a
mapping to open it in the Screen Design tab.

For example, you can have a client-initiated starting point with a Start screen that connects
to the Online Data screen.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

10 Sybase Unwired Platform

3. Highlight the menu item you want to map, or create a new menu item.

4. Define a Submit action that invokes the findByParameter object query:

a) From the General tab, select Online Request as the Type.
b) In the Details section, select Search to locate the MBO that contains the

findByParameter object query.
c) Click the General tab, select Invoke object query and select findByParameter.

If you select the Parameter Mappings tab, you see all the load parameters defined for
the MBO and used to generate the findByParameter object query. In addition to Key,
you can map parameters to BackEndPassword, BackEndUser, DeviceId,
DeviceName, DeviceType, UserName, MessageId, ModuleName, ModuleVersion,
and QueueId.

Unmapped parameters can get their value from the default value, if specified, or from
the personalization key value they are mapped to, if that is specified. If the key is
unmapped, and the parameter has no default value and is not mapped to a
personalization key value, the parameter value is empty (NULL for string, 0 for
numeric, and so on).

Defining the Control that Contains the findByParameter Object Query Parameter
Add a control to pass the load argument to Unwired Server. Define a screen that displays the
results returned from the EIS.

1. Define a control that passes the load argument to Unwired Server from the screen (named
Online Data) that contains the menu item (named Find) that invokes the findByParameter
object query:

a) Select an EditBox control and click in the control area.
b) Name the EditBox DeptId.

c) From the Properties view, select New key and name it DeptIdKey. Click OK.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 11

2. Select the Find menu item, and from the Parameter Mappings tab, map parameters to input
keys defined for the controls. For example, map the deptIDLP parameter to the DeptIdKey
key.

3. Define a screen that displays the results of the findByParameter object query:

a) From the Flow Design window, add a new Screen and name it Results. Select the
Screen Design tab.

b) Drag and drop a Listview control onto the control area.
c) Select the Flow Design tab and double-click the Online Data screen to open it.
d) Select the Find menu item, and in the Properties view, specify Results as the success

screen.
The Online Data screen now sends successful results returned by the EIS to the Results
screen. The Flow Design window indicates the connection between the screens.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

12 Sybase Unwired Platform

4. Configure the Results screen to display the results. In this example, the Emp MBO,
contains three attributes: Id, empName, and empDeptId. Create a Listview with a cell for
each attribute to display the results returned from the EIS as a list:

a) From the Flow Design window, double-click the Results screen to display it in the
Screen Design window.

b) Select the control area, select the General tab in the Properties view, and for the Input
Data Binding Key select <MBOName> (where MBOName is the name of the MBO).

c) Select the Cell tab, then click Add to add cell line 0.
d) Select Add in the "Fields for cell line 0" section, then select the Emp_id_attribKey

key. Click OK.

This maps cell line 0 with the id attribute for the Emp MBO results returned by the
object query.

e) Repeat steps 3 and 4 again for the remaining two attributes.

5. Select the Problems view, and verify there are no errors.

You now have a deployable workflow package that passes the DeptID value to the
findByParameter object query which returns matching EIS results and displays them in the
Results screen.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 13

Server Notification
Configure matching rules for MBO-related data on Unwired Server. Any data changes
matching these rules trigger a notification from Unwired Server to the workflow client.

1. MBO data is updated from the EIS, by an external process or application that updates EIS
data and triggers a data change notification (DCN), or a scheduled data refresh.

2. If matching rules that correspond to the notification message fields are configured for the
MBO/mobile workflow package, Unwired Server sends a notification to the client.

Implementing Server Notification for Workflow Clients
Set up Unwired Server to send notifications to workflow clients when matching rules are
encountered.

Defining the Mobile Business Object for Server Notification
The server notification pattern supports any number of MBO definitions. For this example,
create an MBO with one load argument, assign the load argument a propagate-to attribute
value, then assign the MBO to a cache group that uses an Online policy.

The MBO definition described here allows retrieval of online results by the workflow
application to which the MBO belongs.

1. In Unwired WorkSpace, create an MBO from the sampledb database that has at least one
load argument. For example, you could define a Sales_order MBO as:

SELECT id,
 cust_id,
 order_date,
 fin_code_id,
 region FROM sampledb.dba.sales_order
WHERE id = :order_id

2. Preview the MBO by selecting Preview from the Definition tab. Enter 2001 as the value.
The preview returns one row from the sales_order table based on the id attribute (2001).

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

14 Sybase Unwired Platform

3. In the MBO Properties view, click the Load Arguments tab, select the id attribute as the
Propagate to attribute that maps to the order_id load argument. Change the datatype to
INT, and include an integer value for the data source default value.

4. Set the Online cache group policy for the MBO.

a) Add the MBO to a cache group that uses the Online cache group policy. For example,
create a new cache group named CacheGroupOnline and set the policy to Online.

b) Drag and drop the MBO to CacheGroupOnline.

The findByParameter object query is automatically generated based on the order_id load
argument:

SELECT x.* FROM Sales_order x WHERE x.id = :order_id
5. Deploy the project that contains the MBO to Unwired Server.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 15

Creating the Server-Driven Notification Starting Point
Create a new workflow application with a server-initiated starting point.

1. From Unwired WorkSpace, select File > New > Mobile Workflow Forms Editor.

2. Select the folder that contains the Sales_order MBO as the parent folder, name the file
Sales_order.xbw, and click Next.

3. In the Starting Points screen, select Responds to server-driven notifications, and click
Next.

4. Configure the starting point:

a) In the Select a Mobile Business Object and Object Query screen, select Search.
b) Select the project that contains the Sales_order MBO and select Search. Select the

Sales_order MBO and select OK.
c) Select the findByParameter object query.

The order_id parameter appears in the Parameters field. Click Next.
d) Specify a sample notification. Enter Order (2001) created in the Subject line.

Click Next.
e) Click and drag to select "Order (", while this phrase is highlighted, right-click and

select Select as Matching Rule:
f) Click Next. Select order_id. In the Extraction Rule Properties:

1. Select Subject as the field.
2. Select "Order (" as the Start tag.

3. Select ") created" as the End tag.

When the notification is sent to the client, the sample value (2001 in this example), is
replaced with the order_id key, which identifies the id attribute of the object query. The
workflow the client receives is populated with values returned by the findByParameter
object query.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

16 Sybase Unwired Platform

5. Click Finish to create default screens and starting points.

Screens are populated with menu items and controls based on the MBO definition.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 17

6. Deploy the workflow package to Unwired Server.

Sending an Order Notification to the Device
Use the mobile workflow "Send a notification" option to send a message to the registered user,
which tests the server notification process.

Prerequisites
Before sending notification to the client, you must:

1. Register a device user and assign it to the workflow package in Sybase Control Center
(SCC).

2. Download and configure the Sybase messaging client on the device or emulator to match
those performed in SCC.
See your Sybase documentation for details.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

18 Sybase Unwired Platform

Task
Use this method only for testing purposes, during development. In a production system,
notifications would come in as DCN, or e-mail-based notifications.

1. In the Flow Design of the Mobile Workflow Forms Editor, right-click and select Send a
notification.

2. Select Get Device Users, and set the To field to User1, or whatever device user is
registered in SCC and assigned to the workflow package.

3. In the Subject field, enter a sales order that meets the matching rules criteria defined for the
Sales_order workflow application. For example:
Order (2001) created

4. Click Send.

The message is sent to the device. The number 2001 in the notification identifies and
returns row 2001 (the findByParameter object query parameter).

Cached Data
This pattern is efficient when access to cached data is sufficient to meet business needs. For
example, it may be sufficient to refresh the cache once a day for noncritical MBO data that
changes infrequently.

1. EIS data is cached based on the MBO cache policy (Scheduled or On demand). Either
policy lets you define the length of time for which cached data is valid.

2. The workflow client requests data through an object query.
3. Cached data is returned to the client if it is within the cache policy's specified cache

interval.

Implementing the Cached Data Pattern
Define an MBO that uses either a Scheduled or On demand cache group policy to allow the
workflow application to which it belongs to retrieve cached data.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 19

Defining the Mobile Business Object
Create an MBO with the required attributes, assign the MBO to a cache group that uses a
Scheduled policy, and define an object query that returns the results from the Unwired Server
cache (also called the CDB) to the client.

This example defines an MBO that retrieves employee benefit information for all employees
of a given department based on the dept_id attribute using the findByDeptId object query.

1. From Unwired WorkSpace, create an MBO. For example, you could define the employee
MBO as:

SELECT emp_id,
 emp_fname,
 emp_lname,
 dept_id,
 bene_health_ins,
 bene_life_ins,
 bene_day_care
 FROM sampledb.dba.employee

2. Set the cache group policy for the MBO:

a) Create a new cache group named CacheGroupScheduled and set the policy to
Scheduled. Set the Cache interval to 24 hours, so the cache is refreshed once a day.

b) Drag and drop the MBO to CacheGroupScheduled.

3. Define an object query for the MBO that retrieves employee information based on the
dept_id attribute. For example, define the findByDeptId object query as:
SELECT x.* FROM Employee x
WHERE x.dept_id = :deptIDLP

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

20 Sybase Unwired Platform

4. Deploy the project that contains the MBO to Unwired Server.

Binding the findByDeptId Object Query to a Menu Action
For access to cached data, define a Submit menu action and bind it to the findByDeptId object
query.

1. From Unwired WorkSpace, launch the Mobile Workflow Forms Editor.

2. From the Flow Design screen, double-click the screen for which you are defining a
mapping to open it in the Screen Design tab.

For example, you can have a client-initiated starting point with a Start screen that connects
to the Cached Data screen.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 21

3. Highlight the menu item you want to map, or create a new menu item.

4. Define a Submit action named FindBenefitsInfo that invokes the findByDeptId object
query:

a) In the Properties view, in the General properties for the selected menu item, select
Online Request as the Type.

b) In the Details section, select Search to locate the MBO that contains the findByDeptId
object query.

c) Click the General tab, select Invoke object query and select findByDeptId.

If you select the Parameter Mappings tab, you see the parameters associated with the
object query (findByDeptId). Map this parameter to a key.

Defining the Control that Contains the findByDeptId Object Query Parameter
Add a control to pass the object query parameter to Unwired Server. Define a screen that
displays the results returned from the Unwired Server cache.

1. Define a control that passes the object query parameter to Unwired Server from the screen
(named Cached Data) that contains the menu item (named FindBenefitsInfo) that invokes
the findByDeptId object query:

a) Select an EditBox control and click in the control area.
b) Name the EditBox DeptId.

c) From the Properties view, select New key and name it DeptIdKey. Click OK.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

22 Sybase Unwired Platform

2. Select the FindBenefitsInfo menu item, and from the Parameter Mappings tab, map
parameters to input keys defined for the controls. For example, map the deptIDLP
parameter to the DeptIdKey key.

3. Define a screen that displays the results of the findByDeptId object query:

a) From the Flow Design window, add a new Screen and name it Results. Select the
Screen Design tab.

b) Drag and drop a Listview control onto the control area.
c) Select the Flow Design tab and double-click the Cached Data screen to open it.
d) Select the FindBenefitsInfo menu item, and in the Properties view, in General

properties, select Online Request as the Type and in the Details section, select Results
as the Success screen.
The Cached Data screen now sends successful results returned by the Unwired Server
cache to the Results screen. The Flow Design window indicates the connection
between the screens.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 23

4. Configure the Results screen to display the results. In this example, the Employee MBO,
contains seven attributes that identify the employee and their benefits. Create a Listview
with a cell for each attribute to display the results returned from the cache as a list:

a) From the Flow Design window, double-click the Results screen to display it in the
Screen Design window.

b) Select the control area, select the General tab in the Properties view, and for the Input
Data Binding Key select MBOName_findByDeptId_resultSetkey (where
MBOName is the name of the MBO).

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

24 Sybase Unwired Platform

c) Select the Cell tab, then click Add to add cell line 0.
d) Select Add in the "Fields for cell line 0" section, then select the

Employee_emp_fname_attribKey key. Click OK.

This maps cell line 0 with the id attribute for the Emp MBO results returned by the
object query.

e) Repeat steps 3 and 4 again for the remaining employee's last name and benefits related
attributes.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 25

5. Select the Problems view, and verify there are no errors.

You now have a deployable workflow package that passes the DeptID value to the
findByDeptId object query which returns matching cached results and displays them in the
Results screen.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

26 Sybase Unwired Platform

Binding Transient Personalization Keys to Mobile Workflow Keys
Use transient personalization key values to determine the data to be cached.

Prerequisites
You must have transient personalization keys mapped to Mobile Business Object load
arguments.

Task

1. Launch the Mobile Workflow Forms Editor from Unwired WorkSpace and create a new
Mobile Workflow form:

a) Select File > New > Mobile Workflow Forms Editor.
b) Select the parent folder that contains the MBO with a load argument mapped to a

transient personalization key. Name the file and click Next.
c) Select Responds to server-driven email notifications from the Starting Points screen

and click Next.
d) Select the MBO that contains the load argument to transient key mapping in the Search

for MBO screen and click OK, then click Next.
e) Specify sample e-mail contents and click Next.
f) Specify the matching rules used to trigger a screen flow by highlighting the text, right-

clicking it, and selecting Select as matching rule.
g) Click Finish.

2. In the Mobile Workflow Forms Editor, map the personalization keys to the Mobile
Workflow keys for the menu item:

a) From the Flow Design screen select the operation for which you are defining a
mapping.

b) Select the Screen Design tab, and highlight the menu item you want to map.
c) Select Personalization Key Mappings, click Add, and select a personalization key

from the drop-down list and the key to which it maps.

You can also fill the personalization key values from values extracted from the e-mail,
depending on from where you are invoking the object query.

When the application runs, the values are sent from the client which are used to fill the load
argument values, and determine what data is cached in the Unwired Server cache (CDB) and
returned to the client.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 27

Mobile Workflow Application Configuration for Data Change
Notification

This section contains details about developing workflow applications that take advantage of
DCN updates.

Mobile workflow applications require a server-initiated starting point and defined matching
rules, which allows Unwired Server to push changes to workflow application clients. See the
topics Starting Points and Adding Matching Rules.

Extending Data Change Notification to Mobile Workflow Clients
Mobile Workflow data change notification (WF-DCN) requests allow Unwired Server to
process the DCN request and send notification to the device of that data change.

Depending on the cache policy used by the affected MBO, once the workflow application
receives notification, it can retrieve data directly from the EIS or from the Unwired Server
cache, keeping the application synchronized. DCN messages targeted for MBOs used in
workflow applications (WF-DCN), uses similar syntax as general DCN, with these
differences:

• The value of cmd is wf for WF-DCN requests, compared to dcn for regular DCN.
• The message contains the fields required for workflow notification, such as the to address,

from address, e-mail subject, and e-mail body.
• The WF-DCN message is captured and parsed by the workflow server-initiated starting

point, which processes the WF-DCN message differently, depending on the message type:
with payload or without payload.

WF-DCN format
The WF-DCN request is a JSON string consisting of these fields: workflow engine convert
MBO data and WF-DCN message into workflow email, and push it to device mobile inbox

1. Operation name(op) :upsert or :delete– same as regular DCN.
2. Message ID (id) of the Mobile Workflow – used for correlation (a :delete for a previously

submitted request with :upsert is possible)
3. Username (to) – the Sybase Unwired Platform user name. For the user to be recognized by

WF-DCN, the device user should first have established communication using the
activation mechanism in Sybase Control Center.

Note: The "To" field must match the Unwired Platform user name—not the user name
used to register the device.

4. Subject (subject) – subject of the workflow message.
5. Originator <from> – who the workflow message is from.
6. Body of the workflow message <body> – it can embed customized information.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

28 Sybase Unwired Platform

7. <received> – received time of the Mobile Workflow message.
8. <read> – whether the Mobile Workflow message is read.
9. <priority> – whether the Mobile Workflow message has a high priority.
10. List of dcn request <data> – JSON format string.

Example DCN request in JSON format:
{
"op":":upsert",
"id":"WID123",
"to":"SUPAdmin",
"subject":"Trip request approval required",
"from":"user321",
 "body":"This is a message just used to do a test",
"received":"2009-03-29T10:07:45+05:00",
"read":false,
"priority":true,
"data":
 [
 {"id": "1",
 <general dcn request>
 }
 …
 {"id": "4",
 < general dcn request>
 }
]
}

Mobile Workflow DCN request flow
WF-DCN with and without payload differ slightly, but the general flow is similar for each.
When the WF- DCN request is received, Unwired Server gets the wf cmd value from the
request first, and:

1. Unwired Server invokes preProcessFilter if the DCN filter is specified.
2. Unwired Server receives a raw HTTP POST body to generate and return a WF- DCN

request message object.
3. The JSON format string is parsed into a WF-DCN request object.
4. The DCN request in the Mobile Workflow message object is parsed and those within the

scope of a single transaction per DCN request object in the array are executed. Results are
recorded for a report after completing the WF-DCN request.

5. From the CDB, the server looks up all users assigned to the indicated workflow package in
the “to” attribute of the Mobile Workflow message, then matches them with the receiver
list.
For every receiver, Unwired Server generates multiple workflow messages (all workflow
messages are created within one transaction), one per device identified (one user might
have multiple devices), and then sends them to the JMS queues.
The lookup of the logical id is performed by combining the username in the “to” list to the
“securityProfile” specified in the HTTP POST REQUEST URL parameter list.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 29

6. If any errors occur in step four, step five does not execute. If any errors occur in step five,
step five is not committed. If any errors occur in either of those steps, an HTTP 500 error is
returned.

7. Unwired Server invokes the postProcessFilter, if specified.
8. If no errors occur, Unwired Server returns success to the caller HTTP 200 with the body of

the JSON string (or any opaque data returned from the postProcessFilter) of the WF-DCN
Result. Otherwise, Unwired Server returns an HTTP 500 error with the body of the JSON
log records.

Non HTTP Authentication Workflow DCN Request
You can send Mobile Workflow DCN requests that are not authenticated.

The URL is:

http://host:8000/dcn/DCNServlet?
cmd=wf&security=admin&domain=default&username=supAdmin&password=sup
Pwd&dcn_filter=aa.bb&dcn_request=<wfrequestdata>

where supAdmin represents the Unwired Server Administrator, and supPwd represents the
Administrator's password defined during Unwired Platform installation.

Sending Workflow DCN to Users Regardless of Individual Security
Configurations

You can send Mobile Workflow DCN requests to users in other security configurations if you
belong to the default security configuration.

If the workflow DCN sender is authenticated against the default admin security configuration,
they are automatically authorized to push data to all users regardless of their individual
security configuration. If not, the sender can only push to users within the same security
configuration.

For example, in the case of a non HTTP authentication request, this request is authorized to
push data to users in other security configurations since the sender supAdmin, belongs to the
admin security configuration:

http://host:8000/dcn/DCNServlet?
cmd=wf&security=othersecurity&domain=default
&username=supAdmin@admin&password=supPwd&dcn_filter=aa.bb&dcn_reque
st=<request>

And this request is denied because supAdmin@mysecurityconfig can only push data to users
in the same security configuration:

http://host:8000/dcn/DCNServlet?
cmd=wf&security=othersecurity&domain=default
&username=supAdmin@mysecurityconfig&password=supPwd&dcn_filter=aa.b
b&dcn_request=<request>

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

30 Sybase Unwired Platform

Mobile Workflow DCN Request Response
After processing of the Mobile Workflow DCN request, Unwired Server sends the response to
notify the caller whether the request was processed successfully.

The response includes two parts:

1. The result of processing the Mobile Workflow request.
2. The result of processing the general DCN requests.

The response is also in a JSON format string:

{
<wf dcn result>
"result":
 [
 {
 <general dcn result>
 },
 {
 <general dcn result>
 }
]
}

An example response is:
{
 "id":"1",
"success":false,
"statusMessage":"there is error in processing dcn",
"result":
 [
 {
 "id":"1",
 "success":true,
 "statusMessage":""
 },
 {
 "id":"2",
 "success":false,
 "statusMessage":"bad msg2"
 }
]
}

Workflow DCN Design Approach and Sample Code
Understand the design approach for both WF-DCN with and without payload, and view
samples for each approach.

Note: Samples are for illustrative purposes only and should not be used as a guide for
developing your DCN requests.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 31

Comparing Workflow DCN With and Without Payload
This section compares the two types of WF-DCN and includes examples of each.

Mobile Workflow DCN Without Payload
Understand how to construct a workflow DCN without payload message.

This example illustrates data flow of a WF-DCN without payload using an SAP® EIS:

1. The WF-DCN pushes new messages (workitems) to Unwired Server, which are then
delivered to the device, for example, a workflow notification.

2. After the EIS sends a workitem id to Unwired Server, Unwired Server uses workitem
MBO and workitem id to retrieve details of the workitem from the EIS.

3. After Unwired Server receives the message, a matching workflow server starting point
parses the message and extracts data fields from the message, including data into the
parameter of an MBO object query operation.

4. Since the MBO uses an online cache policy, the object query is mapped to a load operation,
allowing the data to be passed into the load operation as a load argument to trigger an MBO
data refresh.

5. The workflow engine converts MBO data and the WF-DCN message into a notification,
and pushes it to the device's mobile inbox.

MBO cache group policy
The cache group policy of MBOs used in the WF-DCN without payload must be online. The
online MBO contains the findByParameter object query with the same parameters defined in
the load operation. The query is triggered by the workflow server-initiated starting point after
extracting the parameter values from the WF-DCN message body.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

32 Sybase Unwired Platform

Message format
The message format of the WF-DCN message without payload is:

{”id”:””,”op”:””,”subject”:””,”to”:””,”from”:””,”read”:,”priority”:
””,”body”:””,
“data”:{}

For example:
{”id”:””,”op”:”:upsert”,”subject”:”test”,”to”:”test”,”from”:”test”,
”read”:,
”priority”:””,”body”:”MATCH:SUP_MWF,TaskID:TS97200149, WIID:
1470577,
USER:PERF0111*#END#*”,“data”:{}

Unwired Server extracts information from the DCN message and retrieves details from the
EIS.

Processing the WF-DCN without payload message
After Unwired Server receives the message, a matching workflow server-initiated starting
point parses the message and extracts data fields from the message. The server-initiated
starting point sets extracted data into the parameter of an object query operation. Since the
MBO used by the without payload message uses an online cache policy, the object query is
mapped to a load operation. The data is passed into the load operation as a load argument to
trigger MBO data refresh.

Mobile Workflow DCN With Payload
Understand how to construct a workflow DCN with payload message.

This example illustrates data flow of a WF-DCN with payload using an SAP EIS:

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 33

1. When the EIS has new or modified data to push to Unwired Server, it initiates an HTTP
request to the WF-DCN URL. The WF-DCN message contains the new or changed data
object.

2. When the WF-DCN message reaches Unwired Server, the workflow engine evaluates the
matching rule against all registered workflows. If a matching rule matches this message,
the workflow server starting point for that workflow is triggered to process the message.

3. The data object included in the WF-DCN message is applied to the MBO CDB table by
inserting new records or updating existing records.

4. The workflow server-initiated starting point extracts parameter values from the message
body and triggers the MBO object query to retrieve the newly inserted or updated record.

5. The workflow engine converts the MBO data and WF-DCN message into a workflow
notification, then pushes it to the device mobile inbox using Sybase messaging (MOCA).

MBO cache group policy
The cache group policy of MBOs used in WF-DCN with payload must be DCN.

Message format
The message format of the WF-DCN message with payload is:

{”id”:””,”op”:””,”subject”:””,”to”:””,”from”:””,”read”:””,”priority
”:””,”body”:””,
“data”:[{”id”:””,”pkg”:”Package”,”messages”:
[{”id”:”2”,”mbo”:”MBO”,”op”:”:upsert”,
”cols”:
{”attribute1”:”value1”,”attribute2”:”value2”,”attribute3”:”value3”}
}

The message must contain e-mail information: subject, to, from, and so on, and include the
MBO package name and version, MBO name, attribute name, and attribute value. The
message can include multiple MBOs. For example:
{”id”:”1137”,”op”:”:upsert”,”subject”:”PERF0111’s Leave Request”,
”to”:”PERF0111”,”from”:”Leave Work
Flow”,”read”:”false”,”priority”:”true”,
”body”:”MATCH:SUP_MWF,TaskID:TS97200149, WIID:1470577,
USER:PERF0111*#END#*”,
”data”:[{”id”:”dcbtest”,”pkg”:”sup_mwf:1.2”,”messages”:
[{”id”:”2”,”mbo”:”Workitem”,
”op”:”:upsert”,”cols”:
{”WORKITEM”:”1470577”,”USERNAME”:”perf0111”,”DESCRIPTION”:”cc”,
”DECISION”:”test”}},{”id”:”6”,”mbo”:”Alternatives”,”op”:”:upsert”,
”cols”:
{”WORKITEM”:”1470577”,”USERNAME”:”perf0111”,”PKEY”:”01”,”PVALUE”:”A
p”}}]}]}

Sample Java Function for Generating Workflow DCN
This WF-DCN sample illustrates WF-DCN without payload.

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

34 Sybase Unwired Platform

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;
import java.net.Authenticator;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.PasswordAuthentication;
import java.net.ProtocolException;
import java.net.URL;
import java.net.URLEncoder;

public class HttpAuth
{
 /**
 * @param args
 * @throws MalformedURLException
 */
 public static void main(String[] args) throws Exception
 {
 URL url = null;

 String wfdcn_request = "{\"id\":\"dcntest_69\",\"op\":
\":upsert\","
 + "\"subject\":\"dept_id = 1300\",\"to\":\"perf0111\","
 + "\"from\":\"SAP Leave WorkFlow\",\"read\":false,
\"priority\":true,"
 + "\"body\":\",TaskID:, WIID:000001468382,
USER:perf0111#END#\"}";

 url = new URL("HTTP", "10.42.39.149", 8000,
 "/dcn/HttpAuthDCNServlet?
cmd=wf&security=admin&domain=default");

 HttpURLConnection con = null;

 con = (HttpURLConnection) url.openConnection();

 con.setDoOutput(true);
 con.setRequestMethod("POST");

 final String login = "supAdmin";
 final String pwd = "AdminPassword";
 Authenticator.setDefault(new Authenticator()
 {
 protected PasswordAuthentication
getPasswordAuthentication()
 {
 return new PasswordAuthentication(login,
pwd.toCharArray());
 }
 });

 StringBuffer sb = new StringBuffer();

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

Developer Guide: Mobile Workflow Packages 35

 sb.append(wfdcn_request);
 OutputStream os = con.getOutputStream();
 os.write(sb.toString().getBytes());
 os.flush();
 os.close();

 StringBuffer xmlResponse = new StringBuffer();

 int returnCode = con.getResponseCode();
 if (returnCode != 200)
 {
 String rspErrorMsg = "Error getting response from the
server (error code "
 + returnCode + ")" + con.getResponseMessage();
 System.out.println(rspErrorMsg);

 }
 else
 {
 BufferedReader in = new BufferedReader(new
InputStreamReader(con
 .getInputStream(), "UTF-8"));
 String line;
 while ((line = in.readLine()) != null)
 {
 xmlResponse.append(line).append("\n");
 }
 System.out.println("xmlResponse: " + xmlResponse);
 }

 }
}

Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform

36 Sybase Unwired Platform

Mobile Workflow Development

Mobile Workflows support the occasionally connected user and addresses the replication and
synchronization issues those users present for the back-end system.

A Mobile Workflow application requires an integration module on the server side, which is
implemented by a static set of logic that processes Mobile Workflow-specific metadata to map
keys to and from mobile business object attributes, personalization keys, and parameters. This
integration module processes the notifications identified by matching rules configured for the
server-initiated starting point and also processes the responses sent to the server from the
device.

You can generate Mobile Workflow forms that work on these platforms:

• Apple iOS
• BlackBerry
• Windows Mobile Professional
• Android

See Supported Hardware and Software for supported version levels.

Develop a Mobile Workflow Application Using the Mobile
Workflow Forms Editor

The Mobile Workflow Forms editor provides UI controls that make development of Hybrid
Web Containers fast and easy.

For information about using the Mobile Workflow Forms editor to develop Mobile Workflow
applications, see online help, Sybase Unwired WorkSpace – Mobile Workflow Package
Development.

Deploy the Mobile Workflow Package to Unwired Server
Use the Mobile Workflow Package generation wizard to generate the Mobile Workflow
package and deploy it to Unwired Server to make it available for device clients.

Generating the Files for a Mobile Workflow Package
Use the Mobile Workflow Package Generation wizard to generate the files for the mobile
workflow package, optionally deploy the generated package files to the server, and assign the
package to one or more users' devices.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 37

1. Right-click in either the Flow Design or Screen Design page of the Mobile Workflow
Forms Editor and select Generate Mobile WorkflowPackage, or click the code
generation icon on the toolbar.

2. In the Mobile Workflow Package Generation wizard, enter or select:

Option Description

Favorite configurations (Optional) Select a configuration.

Package Generation and Deployment

Update generated code Generate the mobile workflow package and its
files. When this option is unselected, the mobile
workflow package files are not regenerated, so
that modifications made to files that are nor-
mally regenerated are not overwritten. This also
means, however, that changes made in the Mo-
bile Workflow Forms Editor are not reflected in
the generated files.

Note: The manifest.xml and work-
flow_package.zip files are generated
even if this is not selected.

Generate into the project Place the generated mobile workflow package
and its files in the current project.

Generate to an external folder Place the generated ZIP file containing the mo-
bile workflow package and its generated files
into a location outside of the current project.
Click Browse to select the alternate location.

jQuery Mobile theme Choose a theme for devices that use the jQuery
Mobile as the UI framework. The default is
theme B. See the jQuery Mobile documentation
at http://jquerymobile.com/ for information
about the jQuery Mobile themes.

Unwired Server profile Select the Unwired Server profile with which to
associate the mobile workflow and extract the
user name and password credentials if you are
using static authentication.

Deploy to an Unwired Server Deploy the mobile workflow package to an
Unwired Server.

Deploy mode The deploy mode is automatically set; you can-
not change it.
• New
• Replace
• Update

Mobile Workflow Development

38 Sybase Unwired Platform

http://jquerymobile.com/

Option Description

Assign workflow to user(s) The mobile workflow must be assigned to a
device user before the mobile workflow is visi-
ble on the user's device. You can assign the
same mobile workflow to multiple users. Sep-
arate multiple users with a comma. Device
users must be registered in Sybase Control
Center.

Click Get Users to select device users from the
list. You must have registered device users in
Sybase Control Center to populate this.

Validate controls as soon as the user tries to
change focus away from them

If this option is unselected, validation occurs
only when the screen is saved. If selected, val-
idation occurs as soon as the control loses fo-
cus. If validation fails, a help element appears
and shows the error message.

Note: Windows Mobile devices do not support
this feature.

Optimize JavaScript in the generated workflow
package

The public JavaScript files (API.js, Call-
backs.js, Camera.js, and so on) contain the cli-
ent API functions that you can access for use
with your Mobile Workflow package customi-
zation. By default, the wizard generates a single
JavaScript file (such as SUP0.js, SUP1.js, or
SUP2.js), that concatenates these files. Unse-
lect this option if you prefer to use the Java-
Script files separately.

Note: If you are deploying to a BlackBerry 7 or
later device, selecting this option can make the
workflow open more quickly.

3. Click Finish.

A ZIP file containing the application and its generated files is created and placed in the
specified location.

Deployment Modes
These are the deployment modes when you generate the mobile workflow package.

New
The New deployment mode initially generates and deploys the mobile workflow package.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 39

Replace
The Replace deployment mode removes an installed mobile workflow package and installs a
new mobile workflow package with the same name and version. The Replace deployment
mode acquires a list of assigned devices for the original package, uninstalls the original
package, installs the new package with the same name and version, then assigns the orginal
device list to the new package, thus preserving any device assignments associated with the
original package.

Use the replace deployment mode for minor changes and updates to the mobile workflow, or
during initial development.

Update
The Update deployment mode installs a new mobile workflow package with the original
package name and assigns a new, higher version number than the existing installed mobile
workflow package. During the update operation, a list of assigned devices is acquired from the
original package, the new package is installed and assigned a new version number and then the
administrator specifies device assignments for the new package from the acquired list of
assigned devices. Existing notifications are preserved.

Use the Update deployment mode for major new changes to the mobile workflow.

Hybrid Web Container Customization
Customize the appearance and default behavior of the Hybrid Web Container.

Android Hybrid Web Container Customization
The Android Hybrid Web Container project is accompanied by libraries and the source code
necessary for you to build the Hybrid Web Container. You can customize the Hybrid Web
Container in a variety of ways.

Before getting started, build the Hybrid Web Container project as described in Building the
Android Hybrid Web Container Using the Provided Source Code. The
HybridWebContainer directory contains directories such as libs, as well as images
and other files.

Documentation for the application (com.sybase.hwc) and the library
(com.sybase.hybridApp) are included as JavaDoc in the docs directory of the
HybridWebContainer project.

Whenever a customization requires a source code modification, there is a reference to “touch
points” in the code. These references are annotated with
ANDROID_CUSTOMIZATION_POINT_<descriptor> and a descriptor identifying the
customization to which they belong.

Mobile Workflow Development

40 Sybase Unwired Platform

For example, all code areas associated with changing the About screen are annotated with
ANDROID_CUSTOMIZATION_POINT_BRAND. The touch points are typically
accompanied by brief comments in the code explaining the necessary changes. Only source
code files contain these touch points. Many of the customizations are done in the
CustomizationHelper.java file.

Note: After performing any customizations, you must rebuild the Hybrid Web Container.
Sybase recommends that you always test your changes before using the resulting application.

Android Customization Touch Points
All code areas associated with Hybrid Web Container customizations are annotated with
ANDROID_CUSTOMIZATION_POINT_<customization> comment tags, or touch
points.

Touch Point Description

ANDROID_CUSTOMIZA-
TION_POINT_COLORS

Use custom colors for the Hybrid Web Container.

ANDROID_CUSTOMIZA-
TION_POINT_FONTS

Use custom fonts in the Hybrid Web Container.

ANDROID_CUSTOMIZA-
TION_POINT_BRAND

Change application name, copyright, and devel-
oper information

ANDROID_CUSTOMIZA-
TION_POINT_SPLASHSCREEN

Add a splash screen to the Hybrid Web Container.

ANDROID_CUSTOMIZATION_POINT_DE-
FAULTSETTINGS

Set the defaults for the Settings screen.

ANDROID_CUSTOMIZATION_POINT_PRE-
SETSETTINGS

Hard code settings for the Settings screen so they
do not show up on the device. This prevents the
user from changing the settings.

ANDROID_CUSTOMIZATION_POINT_AU-
TOSTART

Make the Hybrid Web Container automatically
launch a Workflow application.

ANDROID_CUSTOMIZATION_POINT_PIN Use for PIN screen customizations, or to remove
the PIN screen.

ANDROID_CUSTOMIZA-
TION_POINT_SORTING

Sort Workflow application messages based on
different criteria.

ANDROID_CUSTOMIZATION_POINT_FIL-
TERING

Filter the list of Workflow application messages
so only messages meeting certain criteria are
shown.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 41

Touch Point Description

ANDROID_CUSTOMIZATION_POINT_HY-
BRIDAPPSORT

Customize the criteria for how the Workflow ap-
plication list is sorted.

ANDROID_CUSTOMIZATION_POINT_HY-
BRIDAPPSEARCH

Make the list of Mobile Workflow packages
searchable.

ANDROID_CUSTOMIZATION_POINT_HY-
BRIDAPPLIST

Customize the Mobile Workflow package list ap-
pearance.

ANDROID_CUSTOMIZATION_POINT_CAT-
EGORIZEDVIEWS

Create categorized views of the Mobile Workflow
packages.

ANDROID_CUSTOMIZA-
TION_POINT_HTTPHEADERS

Set HTTP headers for the Android Hybrid Web
Container to include authentication tokens.

Look and Feel Customization of the Android Hybrid Web Container
Customizations you can make to the look and feel include changing the splash screen,
changing the Hybrid Web application icons and name, changing the Mobile Workflow
package icons, changing labels and text, adding support for new languages, and so on.

Changing the Hybrid Web Container Icon
Modify the application icon shown on the home screen by replacing the icon image files..

Changing this icon also changes the image used on the About screen, and the image that
sometimes shows up in the title bar.

The icon image files are located in these directories:

• ...\HybridWebContainer\res\drawable-hdpi
• ...\HybridWebContainer\res\drawable-ldpi
• ...\HybridWebContainer\res\drawable-mdpi
1. Go to each directory and replace the icon.png image file with another .png image of your

choice.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

2. Rebuild the project.

Changing the Mobile Workflow Package Icon for Android
Modify the Workflow package application icon.

You cannot add new icons to the folder, but you can replace the existing icon images, using the
same file name. The Workflow application icons are named ampicon<index>.png,
where <index> is a number between 30 and 116. The icon ampicon48.png is the default
Workflow application icon. Any Workflow application that has not had its icon specified uses

Mobile Workflow Development

42 Sybase Unwired Platform

this icon. This is also the icon that is shown on the menu item that shows all the Workflow
applications.

Each Workflow icon has two associated image files that contain images for processed and
unprocessed messages. The files have the names ampicon<index>.png and
ampicon<index>p.png. The second file, with the additional "p" in the name, is the
processed message icon, while the other is for unprocessed messages. Processed means the
message has been submitted to the server.

When you build the Hybrid Web Container with custom icons, the original icons still appear in
Sybase Control Center and in Sybase Unwired Workspace. You must remember the original
icon, so you can select it in Sybase Unwired WorkSpace and in Sybase Control Center.

1. Identify the image currently used by the Mobile Workflow Package that you want to
replace. To find the image that is currently used by the Workflow:

a) Log into Sybase Control Center.
b) In Workflows, select the Workflow package for which to replace the image.
c) Click the General tab.

The icon is shown in Display icon.

2. Go to the …\HybridWebContainer\res\drawable\ folder and find and replace
the ampicon<index>.png and ampicon<index>p.png image files with the new
images.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

If you do not want to overwrite the icon entirely, make a copy of it using another name and
move it out of the folder. Having extra files in the drawable folder may interfere with the
indexing of the resources.

3. Rebuild the Hybrid Web Container.

Customizing the About Screen and Other Branding
Customize the About screen.

In some parts of the code, branding information is retrieved not from strings.xml, but
from a constant in the Brand class. You cannot change these constants, but they are used only
in a small number of places, and you can replace them where they are used. The Brand class
is used mostly in the About screen, but there are a few other cases (all marked by the
ANDROID_CUSTOMIZATION_POINT_BRAND comment tag).

1. Open the CustomizationHelper.java file, which is located in ...
\HybridWebContainer\src\com\sybase\hwc.

This is where the strings in the About screen are set.

2. Locate the customAbout method.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 43

Sample code is shown in this method. The default behavior is for the method to return
false.The sample code produces the below dialog.

3. Uncomment the sample code, change the text to what you want to display, and change
return false; to return true;.

Adding a Splash Screen
Add a splash screen to the Hybrid Web Container.

This procedure shows an example of a splash screen, which is the first screen that you see in
the Hybrid Web Container. The related comment tag is
ANDROID_CUSTOMIZATION_POINT_SPLASHSCREEN.

1. Open the SplashScreenActivity.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Edit SplashScreenActivity.java.

a) You must call finish() on the splash screen as soon as you are finished displaying the
screen.

Currently this is done in the onStart method, so you must remove it from there.

b) Create an intent that launches the EnterPasswordActivity after finish() is called. You
must do this even if you disable the PIN screen.

It is important that finish() is called first. Currently this is done in the onStop method.

Changing Labels and Text
You can customize most of the text found in labels, dialogs, or error messages used by the
Hybrid Web Container.

Mobile Workflow Development

44 Sybase Unwired Platform

1. Open the strings.xml file, which is located in ...\HybridWebContainer\res
\values for editing.

This files contains the text for error messages, screen titles, screen labels, validation
messages, and so on.

2. Make your changes and save the file.

Keep in mind that for any change you make, you must also make the same change for each
language if you want your changes to translate across other languages. You must edit the
strings.xml files located in the values-<language_code> folder for each
language.

Adding a New Language
Add support to the Hybrid Web Container for a new language.

1. In the ...\HybridWebContainer\res folder, create a new folder named
values-<xx>, where <xx> is the ISO 639 code of the language, for example,
values-it, for Italian.

2. Add a file called strings.xml to the new folder. Use the strings.xml file from the
values folder as a template for the new strings.xml file.

3. Open the default strings.xml file, which is located in ...
\HybridWebContainer\res\values and use it as a template for the new
strings.xml file.

You need not include strings that do not require localization in the new strings.xml
file. Strings that are missing from a localization are pulled from the default
strings.xml file.

The new language is used automatically by a device that is set to that language.

Using Custom Colors
Use custom colors to change the look of Workflow messages and the Hybrid Web Container.

These examples modify the colors of the Workflow messages. You can also use custom colors
for the Hybrid Web Container using similar steps. The related comment tag for customizing
colors is ANDROID_CUSTOMIZATION_POINT_COLORS.

1. Open the colors.xml file, which is located in ...\HybridWebContainer\res
\values, for editing.

2. Find the ANDROID_CUSTOMIZATION_POINT_COLORS comment tag and add these
tags inside the resources tag:
 <color name="hybridapp_message_title_color">#F23431</color>
 <color name="hybridapp_message_from_color">#FF1111</color>
 <color name="hybridapp_message_date_color">#3234F1</color>

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 45

3. Open the workflowmessages.xml file, which is located in ...
\HybridWebContainer\res\layout, for editing.

4. In the msg_datetime TextView tag, modify the android:textColor attribute
to:

android:textColor="@color/hybridapp_message_date_color"
5. Make similar changes to the msg_from and the msg_title tags, using the color

resource defined in step 2.

If you build the Hybrid Web Container without making any more changes, notice that the
custom colors are used for msg_datetime and msg_title, but not for msg_from. This is
because the color for msg_from is overridden by the Java code. To stop a custom attribute
from being overridden:

a) Select Search > File from the menu.
b) For Containing text, enter msg_from and click Search.

The search result shows two files: workflowmessages.xml and
UiHybridAppMessagesScreen.java.

c) Open the UiHybridAppMessagesScreen.java file for editing.

d) Search the file for "msg_from."

You will find this line: TextView tf = (TextView)
v.findViewById(R.id.msg_from);
The TextView object tf represents msg_from.

e) You are changing the color, so search for “tf.setTextColor.”

The search results return two occurrences because the color is set depending on
whether the message has been read or not.

f) Comment out both lines to ensure that msg_from is always the color you set in the
workflowmessages.xml file. Save the file.

Using Custom Fonts
Customize fonts for Workflow messages and the Hybrid Web Container.

This example customizes the fonts for Workflow messages.

1. Create a new XML file named attrs.xml in the ...\HybridWebContainer
\res\values\ folder.

2. Open the attrs.xml and add this code:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <declare-styleable name="com.sybase.hwc.CustomFontTextView" >
 <attr name="customFont" format="string"/>
 </declare-styleable>
</resources>

Mobile Workflow Development

46 Sybase Unwired Platform

3. You cannot set the font attribute using the standard TextView control, so you must extend
the TextView object by creating a new file named CustomFontTextView.java.

4. Add this code to the CustomFontTextView.java file:

package com.sybase.hwc;

import android.content.Context;
import android.widget.TextView;
import android.text.TextUtils;
import android.util.AttributeSet;
import android.content.res.TypedArray;
import android.graphics.Typeface;

public class CustomFontTextView extends TextView {

 public CustomFontTextView(Context oContext)
 {
 super(oContext);
 }

 public CustomFontTextView(Context oContext, AttributeSet
oAttrs)
 {
 super(oContext, oAttrs);
 setCustomFont(oContext, oAttrs,
R.styleable.com_sybase_hwc_CustomFontTextView,
R.styleable.com_sybase_hwc_CustomFontTextView_customFont);
 }

 private void setCustomFont(Context oContext, AttributeSet
oAttrs, int[] aiAttributeSet, int iFontId)
 {
 TypedArray taStyledAttributes =
oContext.obtainStyledAttributes(oAttrs, aiAttributeSet);
 String sCustomFont =
taStyledAttributes.getString(iFontId);
 if(!TextUtils.isEmpty(sCustomFont))
 {
 Typeface oTypeFace = null;

 try
 {
 oTypeFace = getFont(oContext, sCustomFont);
 setTypeface(oTypeFace);
 }
 catch (Exception e)
 {
 System.out.println("Count not set font!");
 // can't set the font
 }
 }
 else
 {
 System.out.println("Custom font string was empty!");
 }

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 47

 }

 private Typeface getFont(Context oContext, String
sCustomFont)
 {
 String sFullCustomFont = "fonts/" + sCustomFont;
 Typeface oTypeFace =
Typeface.createFromAsset(oContext.getAssets(),
sFullCustomFont);
 return oTypeFace;
 }
}

5. Create a fonts folder in ...\HybridWebContainer\assets and add the TTF
font file to this new folder.

For example, Windows fonts are usually in C:\Windows\Fonts\ if you want to use
one of those.

6. Open the workflowmessages.xml file for editing and add this attribute to the
RelativeLayout tag:
xmlns:custom="http://schemas.android.com/apk/res/com.sybase.hwc"

7. Find the TextView tag with the "ID msg_from" and change the tag from a TextView tag to a
"com.sybase.hwc.CustomFontTextView" tag.

8. Add this attribute to the com.sybase.hwc.CustomFontTextView tag:
custom:customFont="<NAME_OF_YOUR_FONT_FILE.TTF>"

9. Repeat the above steps for tags with the "id msg_title" and "msg_datetime."

If you build the Hybrid Web Container without making any more changes, you see that
"msg_title" and "msg_datetime" are shown with the custom font, but "msg_from" is not.
This is because the font for "msg_from" is overridden in the Java code.

10. To prevent the font from being overridden:

a) Select Search > File from the menu.
b) For Containing text, enter msg_from and click Search.

The search result shows two files: workflowmessages.xml and
UiHybridAppMessagesScreen.java.

c) Open the UiHybridAppMessagesScreen.java file for editing.
d) Search the file for "msg_from."

You will find this line: TextView tf = (TextView)
v.findViewById(R.id.msg_from);
The TextView object tf represents msg_from.

e) You are changing the font, so search for “tf.setTypeface.”

The search results return two occurrences because the text is either bolded or not
depending on whether the message has been read. Set bold, italic, or normal style for
the text in the same way you specify the font.

f) To ensure your custom font is used, make these modifications to the two occurrences of
the method calls to setTypeface:

Mobile Workflow Development

48 Sybase Unwired Platform

tf.setTypeface(tf.getTypeface(), Typeface.BOLD);

tf.setTypeface(tf.getTypeface(), Typeface.NORMAL);

Default Behavior Customization for the Android Hybrid Web Container
Default behavior that you can change includes removing a PIN screen, configuring default
values for the Settings screen, automatically launching the Workflow application, sorting
Workflow messages, and so on.

Removing Fields from the Settings Screen
You can hard-code settings for the Settings screen so they do not appear on the Settings screen
on the device.

The comment tag associated with the fields on the Settings screen is
ANDROID_CUSTOMIZATION_POINT_DEFAULTSETTINGS.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. All of the settings screen customization functionality is grouped together under this
comment in the file:
//---

 // Setting screen customization methods
 //--

3. To remove a field, set the associated property to false.

For example, if you want to remove the user name field, change:
public boolean isConnectionUserNameVisible()
{
return true;
}

to
public boolean isConnectionUserNameVisible()
{
return false;
}

Configuring Default Values for the Settings Screen
Set default values for the Settings screen.

The comment tag associated with customizations of the default settings is
ANDROID_CUSTOMIZATION_POINT_DEFAULTSETTINGS.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 49

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the collection of methods named with the pattern
getDefaultConnection<setting_name> or
isDefaultConnect<setting_name>, where <setting_name> is the name of the
setting.

3. Edit the methods to return the specific value you require.

The save button on the settings screen is enabled only when all of the fields requiring
values are populated and a field is changed by the user, so if you change the return value for
all of the methods to values that users do not have to modify on the device, you can run into
a problem. To avoid this issue:

a) Find the method in CustomizationHelper named
isSettingsSaveButtonAlwaysEnabled(), which, by default, returns
false.

b) Change the method to return true so the save button is always enabled if all of the fields
requiring values are populated.

Removing the PIN Screen
Remove the PIN screen (password screen) from the Hybrid Web Container.

The related comment tag is ANDROID_CUSTOMIZATION_POINT_PIN.

Note: Removing the PIN screen leaves data that is stored on the device less secure. You should
remove the PIN screen only if you are not concerned about keeping your data secure.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the enablePIN method.

By default it returns true and shows the password screen.

3. Change the enablePIN method to return false.

The application does not show a password screen if it has been idle and is reactivated.

4. Test the application.

Automatically Launching a Workflow Application
If you anticipate using the Hybrid Web Container only for a single Hybrid Web application,
you can customize the Hybrid Web Container to launch the application directly at start-up.

The related comment tage is ANDROID_CUSTOMIZATION_POINT_AUTOSTART.

1. Open the UiHybridAppMessagesScreen.java file for editing and navigate to the
public void onCreate(Bundle) function.

2. Insert the following lines of code just before the “m_sBaseTitle =
this.getTitle().toString();” line.

Mobile Workflow Development

50 Sybase Unwired Platform

HybridApp [] aoHybridApps = HybridAppDb.getInvocableHybridApps();
if(aoHybridApps.length >= 1)
{
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
START_MODE, Consts.START_MODE_WORKFLOW);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
ID, ((HybridAppDb)aoHybridApps[0]).getHybridAppId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
PROGRESS_TEXT, aoHybridApps[0].getDisplayName());
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_WORKFLOW_CONTAINER);
}

3. To close the Hybrid Web Container when the application is finished executing, insert this
code after the if{…} in the public void onActivityResult(…) function:

else
{
 finish();
}

Note: Implementing this step causes the Hybrid Web Container to exit when the Workflow
application exits, so the user cannot navigate to the messages screen. Skip this step to go to
the messages screen when exiting the Workflow application.

Using Multiple Hybrid Web Containers on the Same Android Device
It is possible to configure the Hybrid Web Container so that two or more Hybrid Web
Containers can co-exist on the same device.

1. Open the AndroidManifest.xml file, which is located under the
HybridWebContainer project folder.

2. In the manifest tag, change the "com.sybase.hwc" package attribute to something
else.

3. Search the file and change any references to "com.sybase.hwc" to the new package
from step 2.

Note: Do not change any references to com.sybase.hybridApp, as these refer to the
library jar files.

4. Save the file and choose Yes when asked if you want to change your launch configuration.

5. Change to the Eclipse Java perspective.

6. Right-click the package under src (it will be the old package name, com.sybase.hwc) and
choose Refactor > Rename.

7. Set the name to be the package name you set in step 2.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 51

8. Open the CustomizationHelper.java file, which is located in ...
\HybridWebContainer\src\com\sybase\hwc, and find the method named
getAppId():

By default getAppId() returns Brand.OEM_HYBRIDAPP_APPID. Change it to
return a String that uniquely identifies your application.

9. You must now add an application with a matching App id in Sybase Control Center, and if
you want to use the automatic registration option, you must also add an Application
Connection Template.

See Sybase Control Center for Sybase Unwired Platform > Administer > Applications >
Application Creation > Manually Creating Applications and Sybase Control Center for
Sybase Unwired Platform > Administer > Applications > Application ID Overview.

Now when you build the Hybrid Web Container, you can install it on a device that already
has a Hybrid Web Container installed (but with a different package name). You should
make other changes to your new Hybrid Web Container, such as app_short_name in the
strings.xml file, or the icon .png image, to differentiate the Hybrid Web Containers on the
device.

Sorting the List of Mobile Workflow Packages
You can sort and filter the list of Mobile Workflow packages.

By default, the Hybrid Web Container displays Mobile Workflow packages in alphabetical
order by package name. This procedure shows how to change the list so that it is case-
sensitive. The related comment tag is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPSORT.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the getHybridAppComparator() method.

The comparator is used to order application (HybridApp) objects and is called by sort.

3. Modify the comparator to order the applications to meet your requirements.

4. Save the file.

Sorting Workflow Messages
Sort Workflow messages based on different criteria.

The comment tag associated with sorting Workflow messages is
ANDROID_CUSTOMIZATION_POINT_SORTING.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the getMessageComparator() method.

The comparator is used to order Message objects and is called by sort.

Mobile Workflow Development

52 Sybase Unwired Platform

3. Modify the comparator to order the messages to meet your requirements.

4. Save the file.

Filtering the Workflow Messages
Filter the list of Workflow application messages so only messages that meet specified criteria
are shown.

The comment tag associated with Workflow messages is
ANDROID_CUSTOMIZATION_POINT_FILTERING.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the getFilteredMessages() method.

The default behavior is to return all messages.

3. To return a subset of messages, you can modify getFilteredMessages() to return a
list of messages based on your criteria.

For example, if you want all but the low importance messages to appear in the message list,
you can change the code to the following:
// Eliminate low importance messages.
 ArrayList<Message> filteredMessages =
MessageDb.getMessages();
 for(int iMessageIndex = 0; iMessageIndex <
filteredMessages.size(); iMessageIndex++)
 {
 if(filteredMessages.get(iMessageIndex).getMailPriority()
== com.sybase.mo.AmpConsts.EMAIL_STATUS_IMPORTANCE_LOW)
 {
 filteredMessages.remove(iMessageIndex);
 //we need to decrement the index so we don't skip an
element now
 iMessageIndex--;
 }
 }
 return filteredMessages;

Modifying the Mobile Workflow Package List Appearance
Change how the Workflow packages are shown on the device.

The comment tag associated with customizing the Workflow package list appearance is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPLIST.

To show the list of applications, the HybridWebContainer calls the
getHybridAppScreenClass() method in CustomizationHelper.java. That
method returns the class that displays the list. The default class is UiHybridAppScreen.

This example changes the view from a list view to a gallery view.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 53

1. To make small changes to the list view, open the UiHybridAppScreen.java file,
which is located in the ...\HybridWebContainer\src\com\sybase\hwc
folder, and make your changes.

Note: Optionally, you can create your own class that extends UIHybridAppScreen. If you
do this, you must modify the getHybridAppScreenClass() method in
CustomizationHelper to return the name of your new class.

2. Save the file.

Creating a Gallery View
Change the Mobile Workflow Package list view to a gallery view.

The comment tag associated with creating categorized views is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPLIST.

1. Add an XML layout called hybridappgallery.xml to the HybridWebContainer
project.

2. Match your hybridappgallery.xml layout to:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <Gallery xmlns:android="http://schemas.android.com/apk/res/
android"
 android:id="@+id/gallery"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

</LinearLayout>
3. Create a new activity for the HybridWebContainer.

a) Open the AndroidManifest.xml file.
b) Click the Application tab.
c) In the Application Nodes section (at the bottom left), click Add.
d) Choose Activity and click OK.
e) Select the new activity and change its name to

com.sybase.hwc.HybridAppGalleryActivity.
f) Click Name* to generate the stub Java file.
g) Click Finish.

4. Enter this code into the HybridAppGalleryActivity.java file:

package com.sybase.hwc;

import java.util.ArrayList;
import java.util.Vector;
import java.util.Arrays;

Mobile Workflow Development

54 Sybase Unwired Platform

import com.sybase.hybridApp.*;
import com.sybase.hybridApp.amp.Consts;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.BaseAdapter;
import android.widget.Gallery;
import android.widget.ImageView;

public class HybridAppGalleryActivity extends Activity {

 ImageAdapter m_adapter;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.hybridappgallery);

 Gallery oGallery = (Gallery) findViewById(R.id.gallery);
 m_adapter = new ImageAdapter(this);
 oGallery.setAdapter(m_adapter);

 oGallery.setOnItemClickListener(new OnItemClickListener ()
 {
 public void onItemClick(AdapterView parent, View v, int
position, long id)
 {
 startHybridApp(parent, v, position, id);
 }
 });
 }

 public void startHybridApp(AdapterView oParent, View v, int
iPos, long id)
 {
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
START_MODE, Consts.START_MODE_WORKFLOW);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
ID, m_adapter.getItem(iPos).getHybridAppId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
PROGRESS_TEXT, m_adapter.getItem(iPos).getDisplayName());

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 55

 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_WORKFLOW_CONTAINER);
 }

 @Override
 public void onActivityResult(int iRequestCode, int
iResultCode, Intent relaunchData)
 {
 super.onActivityResult(iRequestCode, iResultCode,
relaunchData);
 if (iRequestCode == Consts.INTENT_ID_WORKFLOW_CONTAINER &&
iResultCode == Consts.RESULT_RELAUNCH)
 {
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
START_MODE, Consts.START_MODE_WORKFLOW);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
ID, relaunchData.getIntExtra(Consts.INTENT_PARAM_WORKFLOW_ID,
0));

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
PROGRESS_TEXT,
relaunchData.getStringExtra(Consts.INTENT_PARAM_WORKFLOW_PROGRES
S_TEXT));
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_WORKFLOW_CONTAINER);
 }
 }

 public class ImageAdapter extends BaseAdapter
 {
 //int mGalleryItemBackground;
 private Context mContext;
 private Vector<HybridApp> mHybridApps;

 private ArrayList<Integer> mImageIds;

 public ImageAdapter(Context c)
 {
 mContext = c;
 mImageIds = new ArrayList<Integer>();

 //have to get a list of all installed HybridAppss
 mHybridApps = new
Vector<HybridApp>(Arrays.asList(HybridAppDb.getInvocableHybridAp
ps()));
 for(int iHybridAppIndex = 0; iHybridAppIndex <
mHybridApps.size(); iHybridAppIndex++)
 {
 HybridAppDb oHybridApp = (HybridAppDb)
mHybridApps.get(iHybridAppIndex);
 int iconIndex = oHybridApp.getIconIndex();
 if(iconIndex >= 30 &&

Mobile Workflow Development

56 Sybase Unwired Platform

 iconIndex <= 116)
 {
 //luckily the icon resources are consecutive
 int iResource = 0;
 if(iconIndex < 100)
 {
 iResource = 0x7f020022;
 iResource += (iconIndex - 30)*2;
 }
 else
 {
 iResource = 0x7f020000;
 iResource += (iconIndex - 100)*2;
 }
 mImageIds.add(new Integer(iResource));
 }
 }
 }

 public int getHybridAppId(int position)
 {
 return
((HybridAppDb)mHybridApps.get(position)).getHybridAppId();
 }

 public String getDisplayName(int position)
 {
 return
((HybridAppDb)mHybridApps.get(position)).getDisplayName();
 }

 public int getCount()
 {
 return mImageIds.size();
 }

 public HybridAppDb getItem(int position)
 {
 return (HybridAppDb)mHybridApps.get(position);
 }

 public long getItemId(int position)
 {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup
parent)
 {
 ImageView imageView = new ImageView(mContext);

imageView.setImageResource(mImageIds.get(position).intValue());
 imageView.setLayoutParams(new
Gallery.LayoutParams(150,100));
 imageView.setScaleType(ImageView.ScaleType.FIT_XY);

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 57

 return imageView;
 }
 }

}
5. Save the file.

6. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.
That class must extend Activity.

7. Update the manifest.xml file to include the new activity you create.

Creating Categorized Views
Create categories so that Workflow applications and messages appear in lists under a category
heading.

The comment tag associated with creating categorized views is
ANDROID_CUSTOMIZATION_POINT_CATEGORIZEDVIEWS.

First, determine names for the categories. Sybase recommends that you name the final
category “Miscellaneous;” this adds all applications and messages that do not match a
category to the Miscellaneous category. Also in this example, all applications that belong to a
category must include the category name contained in their display name. For example, an
application named “Financial Claim” belongs in the “Financial” category.

There are other ways to determine categories; if you know the names of the applications in
advance, you can simply list all the application names that belong in each category.

1. Create a new XML layout called category.xml and paste the following code into the
auto generated file:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
android:layout_width="fill_parent"
android:layout_height="?android:attr/listPreferredItemHeight"
android:padding="6dip">

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
android:orientation="vertical"
android:layout_width="0dip"
android:layout_weight="1"
android:layout_height="fill_parent">
<TextView
android:id="@+id/category"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1"

Mobile Workflow Development

58 Sybase Unwired Platform

android:singleLine="true"
android:ellipsize="marquee"
android:gravity="center_vertical"
/>
</LinearLayout>

</LinearLayout>
2. Copy the UiHybridAppScreen.java file and rename it to your own class, for

example, CategorizedAppScreen.java, and open it for editing.

3. Add the list of categories to the UiHybridAppScreen class, as a public static final
member variable:
public static final String[] m_asHybridAppCategories =
{ "Financial", "Utilities", "Miscellaneous" };

4. Replace the HybridAppAdapter class with:

private class HybridAppAdapter extends ArrayAdapter<Object>
 {
 private String[] m_asCategories;

 public HybridAppAdapter(Context context, int
textviewResourceId, List<Object> items, String[] categories){
 super(context, textviewResourceId, items);

 m_asCategories = categories;

 for(int index = 0; index < m_asCategories.length; index
++)
 {
 this.add(m_asCategories[index]);
 }
 }

 @Override
 public View getView(int position, View convertView,
ViewGroup parent)
 {
 Object oObject = this.getItem(position);
 View v = null;
 if(oObject instanceof HybridApp)
 {
 HybridApp oHybridApp = (HybridApp) oObject;
 LayoutInflater vi =
(LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE)
;
 v = vi.inflate(R.layout.workflows, null);

 if (oHybridApp != null)
 {
 ImageView ic = (ImageView)
v.findViewById(R.id.workflow_icon);

ic.setImageResource(UiIconIndexLookup.getNormalIconIdForIndex(o
HybridApp.getIconIndex()));
 TextView tt = (TextView)

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 59

v.findViewById(R.id.workflow_title);
 if (tt != null) {
 tt.setText(oHybridApp.getDisplayName());
 }
 }
 }
 else
 { //This position is not a HybridApp, but a category
heading
 String sString = (String) oObject;
 LayoutInflater vi = (LayoutInflater)
getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(R.layout.category, null);
 if(sString != null)
 {
 TextView tt = (TextView)
v.findViewById(R.id.category);
 if (tt != null)
 {
 tt.setText(sString);
 }
 }
 }
 return v;
 }

 public void remove(HybridApp oApp)
 {
 // The object to remove has a different pointer
 // so match it up with the one in the list
 for (int i = 0; i < this.getCount(); i++)
 {
 Object oObject = getItem(i);
 if(oObject instanceof HybridApp)
 {
 HybridApp oTemp = (HybridApp) oObject;

 if (oApp.getModuleId() == oTemp.getModuleId()
 && oApp.getVersion() == oTemp.getVersion())
 {
 super.remove(oTemp);
 return;
 }
 }

 }
 }

 public void sort()
 {
 // Sorts applications by name
 this.sort(new Comparator<Object>()
 {
 @Override
 public int compare(Object oObject1, Object

Mobile Workflow Development

60 Sybase Unwired Platform

oObject2)
 {
 if(oObject1 instanceof String && oObject2
instanceof String)
 {
 String sString1 = (String) oObject1;
 String sString2 = (String) oObject2;
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(sString1.equals(m_asCategories[index]))
 {
 return -1;
 }
 if(sString2.equals(m_asCategories[index]))
 {
 return 1;
 }
 }

 }
 else if(oObject1 instanceof HybridApp && oObject2
instanceof HybridApp)
 {
 HybridApp oHybridApp1 = (HybridApp) oObject1;
 HybridApp oHybridApp2 = (HybridApp) oObject2;

 int iCategoryIndex1 =
getCategoryIndex(oHybridApp1);
 int iCategoryIndex2 =
getCategoryIndex(oHybridApp2);

 if(iCategoryIndex1 == iCategoryIndex2)
 {
 return
oHybridApp1.getDisplayName().toLowerCase().compareTo(oHybridApp2
.getDisplayName().toLowerCase());
 }
 else
 {
 return iCategoryIndex1 - iCategoryIndex2;
 }
 }
 else
 { //we have one String (category heading) and one
HybridApp
 HybridApp oHybridApp = null;
 String sString = null;
 int iSwitch = 1;
 if(oObject1 instanceof HybridApp)
 {
 oHybridApp = (HybridApp) oObject1;
 sString = (String) oObject2;
 }
 else

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 61

 {
 oHybridApp = (HybridApp) oObject2;
 sString = (String) oObject1;
 iSwitch = -1;
 }

 int iHybridAppCategoryIndex =
getCategoryIndex(oHybridApp);
 int iCategoryIndex = getCategoryIndex(sString);
 if(iCategoryIndex <= iHybridAppCategoryIndex)
 {
 return 1*iSwitch;
 }
 else
 {
 return -1*iSwitch;
 }

 }

 return 0;
 }

 private int getCategoryIndex(String sString)
 {
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(m_asCategories[index].equalsIgnoreCase(sString))
 {
 return index;
 }
 }
 return m_asCategories.length - 1;
 }

 private int getCategoryIndex(HybridApp oHybridApp)
 {
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(oHybridApp.getDisplayName().toLowerCase().indexOf(m_asCatego
ries[index].toLowerCase()) >= 0)
 {
 return index;
 }
 }
 return m_asCategories.length - 1;
 }
 });
 }
 }

Mobile Workflow Development

62 Sybase Unwired Platform

5. In the onResume method, make modifications to the following line (changes are shown
in bold):
this.m_adapter = new HybridAppAdapter(this, R.layout.workflows,
new
ArrayList<Object>(Arrays.asList(HybridAppDb.getInvocableHybridAp
ps())), m_asHybridAppCategories);

6. Modify the onListItemClick method as shown in the example code (changes are
shown in bold):
public void onListItemClick(ListView oParent, View v, int iPos,
long id)
{
 Object oObject = m_adapter.getItem(iPos);
 if(oObject instanceof HybridApp)
 {
 HybridApp oHybridApp = (HybridApp) oObject;
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
START_MODE, Consts.START_MODE_WORKFLOW);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
ID, ((HybridAppDb) oHybridApp).getHybridAppId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
PROGRESS_TEXT, oHybridApp.getDisplayName());
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_WORKFLOW_CONTAINER);
 }
}

7. Save the file.

8. Open the UiHybridAppMessagesScreen.java file for editing, and in the
onCreateContextMenu method, make these modifications (changes are shown in
bold):
public void onCreateContextMenu(ContextMenu oMenu, View v,
ContextMenu.ContextMenuInfo menuInfo)
 {
 super.onCreateContextMenu(oMenu, v, menuInfo);

 AdapterContextMenuInfo oInfo = (AdapterContextMenuInfo)
menuInfo;
 Object oObject = m_adapter.getItem(oInfo.position);
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;

 oMenu.setHeaderTitle(oMsg.getSubject());
 oMenu.add(0, CONTEXT_MENU_DELETE, 0,
R.string.Context_Menu_Delete);

 // Save the id for operations used in the context menu

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 63

 m_iContextMessageId = oMsg.getMessageId();
 }
 }

9. In the onContextItemSelected method, make these modifications (changes are
shown in bold):
public boolean onContextItemSelected(MenuItem oItem)
 {
 if (oItem.getItemId() == CONTEXT_MENU_DELETE)
 {
 AdapterContextMenuInfo oInfo = (AdapterContextMenuInfo)
oItem.getMenuInfo();

 // The message might have been deleted while the context
menu was open.
 // Make sure the position is still present and matches
the id we expect
 if (oInfo.position < m_adapter.getCount())
 {
 Object oObject = m_adapter.getItem(oInfo.position);
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;

 if (oMsg.getMessageId() == m_iContextMessageId)
 {
 // Remove message from database
 MessageDb.delete(oMsg.getMessageId());
 }
 }
 }
 return true;
 }
 return false;

 }
10. Replace the MessageAdapter class:

private class MessageAdapter extends ArrayAdapter<Object>
 {
 String[] m_asCategories;

 public MessageAdapter(Context context, int
textviewResourceId, ArrayList<Object> items, String[]
categories){
 super(context, textviewResourceId, items);

 m_asCategories = categories;

 for(int index = 0; index < m_asCategories.length; index
++)
 {
 this.add(m_asCategories[index]);
 }
 }

Mobile Workflow Development

64 Sybase Unwired Platform

 @Override
 public View getView(int position, View convertView,
ViewGroup parent) {
 Object oObject = getItem(position);
 View v = null;
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;
 LayoutInflater vi =
(LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE)
;
 v = vi.inflate(R.layout.workflowmessages, null);

 if (oMsg != null)
 {
 //set the workflow message priority icon
 ImageView imageForPriority = (ImageView)
v.findViewById(R.id.priority_icon);

 if (oMsg.getMailPriority() ==
AmpConsts.EMAIL_STATUS_IMPORTANCE_HIGH)
 {

imageForPriority.setImageResource(R.drawable.readhi);

imageForPriority.setVisibility(View.VISIBLE);
 }
 else if (oMsg.getMailPriority() ==
AmpConsts.EMAIL_STATUS_IMPORTANCE_LOW)
 {

imageForPriority.setImageResource(R.drawable.readlow);

imageForPriority.setVisibility(View.VISIBLE);
 }
 else
 imageForPriority.setVisibility(View.GONE);

 ImageView ic = (ImageView)
v.findViewById(R.id.msg_icon);
 if (oMsg.isMsgProcessed())

ic.setImageResource(UiIconIndexLookup.getProcessedIconIdForIndex
(oMsg.getIconIndex()));
 else

ic.setImageResource(UiIconIndexLookup.getNormalIconIdForIndex(o
Msg.getIconIndex()));
 TextView tf = (TextView)
v.findViewById(R.id.msg_from);
 TextView tt = (TextView)
v.findViewById(R.id.msg_title);
 TextView bt = (TextView)
v.findViewById(R.id.msg_datetime);
 if (tf != null) {

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 65

 tf.setText(oMsg.getMsgFrom());
 }
 if (tt != null) {
 tt.setText(oMsg.getSubject());
 }
 if(bt != null){
 Calendar dtReceived =
Calendar.getInstance();

dtReceived.setTime(oMsg.getReceivedDate());

 Calendar dtNow = Calendar.getInstance();

 if (dtNow.get(Calendar.YEAR) ==
dtReceived.get(Calendar.YEAR) &&
 dtNow.get(Calendar.MONTH) ==
dtReceived.get(Calendar.MONTH) &&
 dtNow.get(Calendar.DAY_OF_MONTH) ==
dtReceived.get(Calendar.DAY_OF_MONTH))
 {
 bt.setText((new
SimpleDateFormat("hh:mm
a")).format(oMsg.getReceivedDate()));
 }
 else {
 bt.setText((new SimpleDateFormat("MM/
dd/yy")).format(oMsg.getReceivedDate()));
 }
 }

 // Update appearance unread messages
 if (tf != null && tt != null && bt != null)
 {
 if (!oMsg.isMsgRead())
 {
 // Setup view for unread message

v.setBackgroundResource(R.drawable.unread_selector);

 tf.setTextColor(Color.WHITE);
 tf.setTypeface(null, Typeface.BOLD);
 }
 else
 {
 // Setup view for read message
 v.setBackgroundResource(0);

 TypedValue tv = new TypedValue();

getTheme().resolveAttribute(android.R.attr.textColorSecondary,
tv, true);

tf.setTextColor(getResources().getColor(tv.resourceId));
 tf.setTypeface(null, Typeface.NORMAL);
 }

Mobile Workflow Development

66 Sybase Unwired Platform

 }
 }
 }
 else
 {
 String sString = (String) oObject;
 LayoutInflater vi = (LayoutInflater)
getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(R.layout.category, null);
 if(sString != null)
 {
 TextView tt = (TextView)
v.findViewById(R.id.category);
 if (tt != null)
 {
 tt.setText(sString);
 }
 }
 }
 return v;
 }

 public void sort()
 {
 // Sorts applications by name
 this.sort(new Comparator<Object>()
 {
 @Override
 public int compare(Object oObject1, Object
oObject2)
 {
 if(oObject1 instanceof String && oObject2
instanceof String)
 {
 String sString1 = (String) oObject1;
 String sString2 = (String) oObject2;
 for(int index = 0; index <
m_asCategories.length; index++)
 {

if(sString1.equals(m_asCategories[index]))
 {
 return -1;
 }

if(sString2.equals(m_asCategories[index]))
 {
 return 1;
 }
 }

 }
 else if(oObject1 instanceof Message && oObject2
instanceof Message)
 {
 Message oMessage1 = (Message) oObject1;

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 67

 Message oMessage2 = (Message) oObject2;

 int iCategoryIndex1 =
getCategoryIndex(oMessage1);
 int iCategoryIndex2 =
getCategoryIndex(oMessage2);

 if(iCategoryIndex1 == iCategoryIndex2)
 {
 return
oMessage1.getReceivedDate().compareTo(oMessage2.getReceivedDate(
));
 }
 else
 {
 return iCategoryIndex1 - iCategoryIndex2;
 }
 }
 else
 { //we have one String (category heading) and one
HybridApp
 Message oMessage = null;
 String sString = null;
 int iSwitch = 1;
 if(oObject1 instanceof Message)
 {
 oMessage = (Message) oObject1;
 sString = (String) oObject2;
 }
 else
 {
 oMessage = (Message) oObject2;
 sString = (String) oObject1;
 iSwitch = -1;
 }

 int iMessageCategoryIndex =
getCategoryIndex(oMessage);
 int iCategoryIndex = getCategoryIndex(sString);
 if(iCategoryIndex <= iMessageCategoryIndex)
 {
 return 1*iSwitch;
 }
 else
 {
 return -1*iSwitch;
 }

 }

 return 0;
 }

 private int getCategoryIndex(String sString)
 {
 for(int index = 0; index < m_asCategories.length;

Mobile Workflow Development

68 Sybase Unwired Platform

index++)
 {

if(m_asCategories[index].equalsIgnoreCase(sString))
 {
 return index;
 }
 }
 return m_asCategories.length - 1;
 }

 private int getCategoryIndex(Message oMessage)
 {
 MessageDb oMessageDb = (MessageDb) oMessage;
 if(oMessageDb != null)
 {
 HybridApp oHybridApp =
HybridAppDb.getHybridApp(oMessage.getModuleId(),
oMessage.getModuleVersion());
 String sModuleName =
oHybridApp.getDisplayName();
 if(sModuleName != null)
 {
 for(int index = 0; index <
m_asCategories.length; index++)
 {

if(sModuleName.toLowerCase().indexOf(m_asCategories[index].toLo
werCase()) >= 0)
 {
 return index;
 }
 }
 }
 }
 return m_asCategories.length - 1;
 }
 });
 }
 }

11. In the onResume method, make these changes (changes are shown in bold):
try
 {
 // ANDROID_CUSTOMIZATION_POINT_FILTERING
 ArrayList<Message> alMessages = MessageDb.getMessages();
 ArrayList<Object> alMessagesObjects = new
ArrayList(alMessages);
 this.m_adapter = new MessageAdapter(this,
R.layout.workflowmessages, alMessagesObjects,
UiHybridAppScreen.m_asHybridAppCategories);

 this.m_adapter.sort();
 }

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 69

12. In the onListItemClick method, make these modifications (changes are shown in
bold):
public void onListItemClick(ListView oParent, View v, int iPos,
long id)
 {
 try
 {
 Object oObject = m_adapter.getItem(iPos);
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;

 // Check if workflow is available
 HybridApp oHybridApp =
HybridAppDb.getHybridApp(oMsg.getModuleId(),
oMsg.getModuleVersion());

 // CR668069 -Check if we can handle transform data -
1mb limit by sqllite database
 try
 {
 oMsg.getTransformData();
 }
 catch (Exception ex)
 {
 MocaLog.getAmpHostLog().logMessage("Failed to
read transform data", MocaLog.eMocaLogLevel.Normal);

 new AlertDialog.Builder(this)
 .setTitle(android.R.string.dialog_alert_title)
 .setMessage(R.string.IDS_MSG_ERR_MESSAGE_TOO_L
ARGE)
 .setIcon(android.R.drawable.ic_dialog_alert)
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener()
 {
 public void onClick(DialogInterface dialog, int
whichButton)
 {
 dialog.dismiss();
 }
 })
 .show();

 return;
 }

 // Update read flag
 if (!oMsg.isMsgRead())
 {
 m_adapter.notifyDataSetChanged();
 }

Mobile Workflow Development

70 Sybase Unwired Platform

 // Open workflow
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
START_MODE, Consts.START_MODE_MESSAGE);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
MSG_ID, oMsg.getMessageId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
MODULE_ID, oMsg.getModuleId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
MODULE_VERSION, oMsg.getModuleVersion());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_WORKFLOW_
PROGRESS_TEXT, oMsg.getSubject());
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_WORKFLOW_CONTAINER);
 }
 }
 catch(Exception ex)
 {
 MocaLog.getAmpHostLog().logMessage("Failed to open
message. Caught exception - " + ex.getMessage(),
MocaLog.eMocaLogLevel.Normal);
 }
 }

13. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class, which you created in step 2.

That class must extend Activity.

14. Update the manifest.xml file to include the new activity you create.

Making the List of Mobile Workflow Packages Searchable
Make the list of Mobile Workflow packages searchable.

The comment tag associated with making the list of Workflow packages searchable is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPSEARCH.

1. Add an XML layout called emptyview.xml, and do not add anything to the resulting
autogenerated XML file.

2. Open the workflows_list.xml file for editing and add the following tag above the
ListView tag:
<EditText
 android:hint="@string/SEARCH_HINT"
 android:id="@+id/EditTextSearchHybridAppList"

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 71

 android:layout_width="match_parent"
 android:layout_height="47dp" />

3. Open ...\Values\Strings.xml and, between the <resource> and </resource>
tags, add:
 <string name="SEARCH_HINT">search</string>

4. Copy the UiHybridAppScreen.java file to your own class name, for example,
SearchableAppScreen.java and open it for editing.

a) Add these import statements:
import android.widget.EditText;
import android.text.Editable;
import android.text.TextWatcher;

b) Add the following code to the end of the onCreate method:

final EditText edittext = (EditText)
findViewById(R.id.EditTextSearchHybridAppList);
edittext.addTextChangedListener(new TextWatcher()
{
 public void afterTextChanged(Editable s)
 {
 String sSearchFor = s.toString();
 m_adapter.setSearch(sSearchFor);
 m_adapter.notifyDataSetChanged();
 }

 // stubs; have to implement the abstract methods
 public void beforeTextChanged(CharSequence s, int start, int
count, int after) {}
 public void onTextChanged(CharSequence s, int start, int
before, int count) {}
});

c) Add this member variable to the HybridAppAdapter class:

String m_sToSearchFor;
d) Add this line of code to the end of the HybridAppAdapter contstructor method:

m_sToSearchFor = "";
e) Replace the code inside the getView method with:

public View getView(int position, View convertView, ViewGroup
parent)
{
 LayoutInflater vi =
(LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVI
CE);
 View v = vi.inflate(R.layout.workflows, null);

 HybridApp oHybridApp = getItem(position);
 if(oHybridApp != null)
 {
 if(m_abDisplayThisApp == null || position >=
m_abDisplayThisApp.length || m_abDisplayThisApp[position])
 {
 ImageView ic = (ImageView)

Mobile Workflow Development

72 Sybase Unwired Platform

v.findViewById(R.id.workflow_icon);

ic.setImageResource(UiIconIndexLookup.getNormalIconIdForIndex
(oHybridApp.getIconIndex()));
 TextView tt = (TextView)
v.findViewById(R.id.workflow_title);
 if (tt != null)
 {
 tt.setText(oHybridApp.getDisplayName());
 }
 }
 else
 {
 v = vi.inflate(R.layout.emptyview, null);
 }
 }
 return v;
}

f) Add a search method to the HybridAppAdapter class:

public void search()
{
 m_abDisplayThisApp = new boolean[m_adapter.getCount()];

 for(int index = 0; index < m_adapter.getCount(); index++)
 {
 int iIndexOfResult =
m_adapter.getItem(index).getDisplayName().indexOf(m_sToSear
chFor);
 if(iIndexOfResult >= 0)
 {
 m_abDisplayThisApp[index] = true;
 }
 }
}

g) Add these methods to the HybridAppAdapter class:

public void notifyDataSetChanged()
{
 search();
 super.notifyDataSetChanged();
}
public void setSearch(String sSearchFor)
{
 m_sToSearchFor = sSearchFor;
 }

h) Add this member variable to the UiHybridAppScreen class:

private boolean[] m_abDisplayThisApp;
5. Open the CustomizationHelper.java file, which is located in the ...

\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 73

That class must extend Activity.

6. Open the file you created in step 4, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.

7. Update the manifest.xml file to include the new activity you create.

Setting HTTP Headers
You can set HTTP headers for the Android Hybrid Web Container to include authentication
tokens.

There are three sample methods showing how to do this in the Android Hybrid Web Container
template source code, which include:

• setHttpHeaders() – use this method to set the authentication tokens. The tokens you
set are used until setHttpHeaders is called again.

• setWorkflowTokenErrorListener() – use this method to call
setHttpHeaders() to put the authentication tokens back in a good state, if, for
example, they have expired.

• setHttpErrorListener() – use this method to handle HTTP errors.

The comment tag associated with setting HTTP headers is
ANDROID_CUSTOMIZATION_POINT_HTTPHEADERS.

1. Open the CustomizationHelper.java file and make your changes.

2. Save the file.

Testing Android Hybrid Web Containers
After making any customizations to the provided Hybrid Web Container source code, you
should test the changes before using the application.

Note: The steps or interface may be different depending on which Android SDK version you
are using.

This procedure assumes that you are using Eclipse.

1. Create a new Android virtual device.

a) a. Open the Android SDK Manager. If you are using Eclipse choose Window > AVD
Manager.

b) b. Select Tools > Manage AVDs.
c) Click New.
d) Enter a name for the device and select Android 2.2 as the target.
e) Click Create AVD.

2. Create a debug configuration for Android applications.

Mobile Workflow Development

74 Sybase Unwired Platform

a) In Eclipse, in WorkSpace Navigator, right-click the Hybrid Web Container project and
select Debug as > Debug Configurations.

b) Right-click Android Application.
c) Click Target.
d) In Deployment Target Selection Mode, select Manual and click Debug.

In the future you will only need to right-click the project and choose Debug As >
Android Application.

e) In the Android Device Chooser, select Launch a New Android Virtual Device (AVD)
and select the AVD you created in step 1.

f) Click Start.
g) Click Launch.

The Hybrid Web Container automatically launches when the emulator is fully started.

iOS Hybrid Web Container Customization
The Hybrid Web Container project that comes with Sybase Unwired Platform is accompanied
by libraries and the source code necessary for you to build the Hybrid Web Container.

You can customize the Hybrid Web Container in a variety of ways.

Before getting started, unzip the directory that contains the Hybrid Web Container project as
outlined in Building the Mobile Workflow Container Using the Provided Source Code. The
Hybrid Web Container project unzips to a directory called WorkFlow. Any references to a
directory path in these procedures are relative to that top-level WorkFlow directory.

The WorkFlow directory contains directories such as Classes, libs, and includes, as
well as images and other files. It also contains the WorkFlow.xcodeproj, which is the
Xcode project that builds the Hybrid Web Container, and is the project that is referenced in the
customization procedures.

Whenever a customization requires a source code modification, there is a reference to “touch
points” in the code. These references are annotated with IOS_CUSTOMIZATION_POINT
and a descriptor identifying the customization to which they belong.

For example, all code areas associated with removing the PIN screen are annotated with
IOS_CUSTOMIZATION_POINT_PIN. The touch points are typically accompanied by
brief comments in the code explaining the necessary changes. Only source code files contain
these touch points. The procedures describe where to modify plist files, strings files, and other
non-source code files, but you must locate where to apply those changes.

The CustomizationHelper.m file inlcuded in the WorkFlow project under the Classes group
folder in the Xcode Project Navigator is used to encapsulate some of your customizations in a
single place. In many cases, this file contains sample implementations of the customizations
that you can follow.

Note: After performing any customizations, you must rebuild the project. Sybase
recommends that you always test your changes before using the resulting application.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 75

iOS Customization Touch Points
All code areas associated with Hybrid Web Container customizations are annotated with
IOS_CUSTOMIZATION_POINT_<customization> comment tags, or touch points.

Touch Point Description

IOS_CUSTOMIZATION_POINT_PRESET-
SETTINGS

Provides alternative ways to get connection set-
tings so they do not show up on the Settings
screen. This prevents the user from changing
them. There are variations on this customization.

IOS_CUSTOMIZATION_POINT_DEFAULT-
SETTINGS

Set the defaults for the Settings screen.

IOS_CUSTOMIZATION_POINT_AUTOS-
TART

Make the Hybrid Web Container automatically
launch a Workflow application.

IOS_CUSTOMIZATION_POINT_PIN Use for PIN screen customizations, or to remove
the PIN screen.

IOS_CUSTOMIZATION_POINT_SORTING Sort Workflow applications or messages based on
different criteria.

IOS_CUSTOMIZATION_POINT_FILTERING Filter the list of Workflow applications or mes-
sages so only items meeting certain criteria are
shown.

IOS_CUSTOMIZA-
TION_POINT_HTTPHEADERS

Set HTTP headers for the iOS Hybrid Web Con-
tainer to include authentication tokens.

IOS_CUSTOMIZATION_POINT_FONTS Customize fonts in the Hybrid Web Container.

IOS_CUSTOMIZATION_POINT_SPLASH-
SCREEN

Change the splash screen, or the length of time for
which it is shown.

IOS_CUSTOMIZATION_POINT_COEXIST-
ING

Run two or more independent Hybrid Web Con-
tainers on the same device.

Look and Feel Customization of the iOS Hybrid Web Container
Customizations you can make to the look and feel include changing the splash screen,
changing the Hybrid Web application icons and name, changing the Mobile Workflow
package icons, changing labels and text, and adding support for new languages.

Replacing an Existing Mobile Workflow Package Icon
Mobile Workflow package icons appear in the WorkFlow list within the Hybrid Web
Container and can be modified by replacing files in the WorkflowImages directory.

Mobile Workflow Development

76 Sybase Unwired Platform

Each Workflow icon has two associated image files that contain images for processed and
unprocessed messages. The files have the names ampicon<index>.png and
ampicon<index>p.png. The second file, with the additional "p" in the name, is the
processed message icon, while the other is for unprocessed messages. Processed means the
message has been submitted to the server.

1. Identify the image currently used by the Mobile Workflow Package that you want to
replace.

2. Go to the Workflow/WorkflowImages directory, and replace the
ampicon<index>.png and ampicon<index>p.png image files you identified in
step 1 with the new image files.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

3. Rebuild the project.

Note: The new icons do not show up in Sybase Unwired Platform or Sybase Control
Center; those applications continue to display the original icons. You must remember the
mapping between the icon you replaced and the icon you replaced it with if you want to use
it when creating future Workflow packages.

Changing the Hybrid Web Container Application Icon
Modify the application icon shown on the home screen by replacing the image files in the
WorkFlow directory.

1. Go to the WorkFlow directory, and replace the Icon-72.png (iPad) and Icon.png
(iPhone) image files with the new images.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

2. Rebuild the project.

Changing the Hybrid Web Container Application Name
Edit a plist file to modify the application name.

1. In Xcode, use Project Navigator to find the file named SUPWorkFlows-
Info.plist.

2. Open the file and change the Bundle display name to the new name.

3. Save the file.

4. Rebuild the project.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 77

Splash Screen Customization
The splash screen is the first screen that appears when you start the Hybrid Web Container.

You can change either the image that is shown, or you can change the length of time that it
appears.

Changing the Splash Screen Image
Change the image that is shown on the splash screen.

The splash screen is stored on a per-language basis in the WorkFlow/
<language>.lproj directories. In each of these directories, there are three files that
contain the splash screens for iPhone (Default.png) and iPad (Default-
Landscape.png and Default-Portrait.png).

Note: You must replace the file in each language subdirectory, or your new splash screen does
not appear when the language setting is changed. The splash screen does not include any
localizable strings, so you must provide the correct screen for each language, if you plan to
support multiple languages.

1. Add a custom splash screen by replacing the appropriate files in the WorkFlow/
<language>.lproj directory.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

2. Rebuild the project.

Changing the Length of the Time the Splash Screen Appears
Modify the length of time the splash screen is shown.

1. In Xcode Project Navigator, open the CustomizationHelper.m file, which is in the
Workflow project, under the Classes group folder.

2. Locate the splashScreenDelay function, and change it so that it returns the new time
interval in seconds.

Note: Because iOS always tries to display a splash screen even if one does not exist, setting
splashScreenDelay to return zero does not altogether remove the splash screen, but
it will make the elapsed time as short as possible. You can couple this with removing the
image files for the splash screen so that nothing is displayed.

3. Rebuild the Workflow project.

Changing Labels and Text
You can customize most of the text found in labels, dialogs, or error messages used by the
Hybrid Web Container.

Changes that you can make include:

Mobile Workflow Development

78 Sybase Unwired Platform

• Buttons, labels, and error messages – these strings are in Localizable.strings,
under the Resources/<language>.lproj group folders in the Xcode Project
Navigator.

• Application branding – strings that identify the application, among other things. These
strings are in Branding.strings, under the Resources/<language>.lproj
group folder in the Xcode Project Navigator.

• About box – these strings are in About.strings, under the Resources/
Settings.bundle/en.lproj folder. Expand the Settings.bundle under the
Resources group folder in the Xcode Project Navigator. Here, you can change the
company name or the version number that is shown in the About box in the Settings screen.

Keep in mind that for any change you make you must also make equivalent changes for each
language if you want your changes to translate across other languages.

When modifying one of the *.strings files, you need only to change the second string
value. For example, to change the AppId in Branding.strings, on this line: AppId =
HWC, change only the "HWC."

Adding a New Language
Add support for new languages by dropping new <language>.lproj directories into the
project.

By default, the Hybrid Web Container is localized to several different languages. Localized
resources are in <language>.lproj directories and group folders throughout the project,
where <language> may be the full language name, or a two-digit country code. The simplest
way to add a new language is to copy existing lproj directories for another language,
translate the strings into the new language, and add the new lproj directories to the project.

This procedure uses English as a starting point.

1. Copy WorkFlow/English.lproj directory to WorkFlow/
<new_language>.lproj.

This contains resources for the PIN screens and for the splash screen. You can localize or
entirely redesign the PIN screen .

2. Add the newly created WorkFlow/<new_language>.lproj directory to the
project, at the top level (not under any group folders).

3. In Finder, right-click WorkFlow/Settings.bundle, and select Show Package
Contents.

The Settings.bundle directory opens.

4. Copy en.lproj to <new_language>.lproj.

5. Translate the strings in Root.strings (these are the strings that identify names of
settings in the Settings screen) and About.strings (associated with the About
box).

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 79

6. In Xcode, in the Project Navigator, find the newly created <new_language>.lproj
directory under the Resources/Settings.bundle.

You do not need to explicitly add the new directory to the project, but you should verify it is
there.

7. Copy WorkFlow/strings/English.lproj to WorkFlow/strings/
<new_language>.lproj.

8. Translate the strings in Branding.strings and Localizable.strings.

9. In Project Navigator, add the newly created WorkFlow/strings/
<new_language>.lproj directory to the project under the Resources group folder.

Using Custom Fonts
Change the fonts used in the applications or messages lists.

All code areas associated with font customization are annotated with
IOS_CUSTOMIZATION_POINT_FONTS.

1. In the Xcode project, in the Project Navigator, find and open
CustomizationHelper.m file in the Classes group folder.

2. Locate the customization tags that accompany several functions that each end in the word
Font.

You can override any of these functions to return the font you want to use in the applicable
situation. See the comments in the file for how each is used.

Note: If you replace the default table view as described in Changing to a New UI Control,
the font settings in CustomizationHelper.m will not apply.

3. Save the file and rebuild the project.

Default Behavior Customization for the iOS Hybrid Web Container
You can change the default behavior of the iOS Hybrid Web Container, including customizing
or removing the PIN screen, changing the default behavior for the way the application
launches, sorting and filtering the list of Mobile Workflow packages and messages, and so
on.

Customizing PIN Screens on iOS
PIN screens prompt the user to either create or enter a password, respectively.

You can modify the PIN screens with custom text, or you can redesign them entirely. PIN
screens include Create PIN and Enter PIN screens.

The PIN screens are stored in .xib files in the WorkFlow/<language>.lproj
directories:

• CreatePasswordViewController.xib – constructs the Create Password screen

Mobile Workflow Development

80 Sybase Unwired Platform

• EnterPasswordViewController.xib – constructs the Enter Password screen

Creating New PIN Screens
You can completely redesign the PIN screens by modifying the .xib files.

1. Using Interface Builder, open the CreatePasswordViewController.xib and
EnterPasswordViewController.xib files located in WorkFlow/
<language>.lproj.

2. Make your modifications.

You can change the look and feel of buttons, change the text, or change the background.
You likely do not want to remove buttons or fields, as doing so interferes with the
functioning of the application.

Note: You must make the equivalent changes to each language for your new PIN screen to
show correctly in other languages.

3. Rebuild the project.

Changing Localizable Strings in the PIN Screen
To modify the text, you must change strings files.

Each of the PIN screen .xib files has a corresponding strings file with the same name
with .strings appended to the end, for example, WorkFlow/<French>.lproj
\CreatePasswordViewController.xib.strings.

1. Open the CreatePasswordViewController.xib.strings and
EnterPasswordViewController.xib.strings files, which are located in
WorkFlow/<language>.lproj.

2. Modify and save the files.

3. Regenerate the .xib files:

a) Open a Terminal window.
b) Navigate to the WorkFlow directory, and execute:

ibtool --strings-file <language>.lproj/<strings file>
<language>.lproj/<xib file> --write <language>.lproj/
<xib file>

Note: <language> must be the same throughout, and the .strings file must correspond
with the .xib file.

4. After rebuilding the .xib files, you can return to Xcode and view the new screens before
rebuilding the Hybrid Web Container.

5. Rebuild the project.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 81

Removing the PIN Screen
You can disable and remove the PIN screen by making a minor code modification to the
CustomizationHelper.m file.

Note: If you have previously used the Hybrid Web Container with a password on a particular
device, you will no longer be able to access the encrypted database, or any data stored there,
and the application may not work correctly if you remove the PIN screen. In this case, uninstall
the Hybrid Web Container from the device before using the Hybrid Web Container without a
PIN screen. For a simulator, click Reset Content and Settings first.

Note: Removing the PIN screen leaves data that is stored on the device less secure. You should
remove the PIN screen only if you are not concerned about keeping your data secure.

All code areas associated with removing the PIN screen are annotated with
IOS_CUSTOMIZATION_POINT_PIN.

1. In Xcode Project Navigator, open the CustomizationHelper.m file, which is
located in WorkFlow\Classes.

2. Find the usePIN function and change it to return NO instead of YES.

3. Save the file.

4. Rebuild the project.

Settings Screen Customization

Using Default Connection Settings
You can customize the Hybrid Web Container so that it is pre-populated with connection
settings, or to use certain default values if nothing is provided by the user, or to always use
default values on startup.

These customizations involve changes to either Root.plist or
CustomizationHelper.m.

All code areas associated with removing fields from the Settings screen are annotated with
IOS_CUSTOMIZATION_POINT_DEFAULTSETTINGS. The customizations described
here assume the Settings screen is used as the interface for providing input from the user. For
alternatives to using the default Settings screen, see Removing Fields from the Settings
Screen.

1. In the Xcode project, in the Project Navigator, expand Resources > Settings.bundle and
open the Root.plist file.

2. Expand the item for the settings you want to preset, and fill in the DefaultValue attribute.

This example sets a default value of 5001 for the server port.

Mobile Workflow Development

82 Sybase Unwired Platform

Note: Pre-populating a value only sets its initial value on a one-time basis; it does not
prevent the user from later changing it, nor does it prevent a server change from
overwriting it. This approach also cannot be combined with the Removing Fields from the
Settings Screen customization because it relies on using the settings bundle.

3. Save the file.

4. Rebuild the project.

Removing Fields from the Settings Screen
Customize the Settings screen to prevent certain settings from showing.

For example, you can preset the server port connection value, and then choose not to display
that field in the Settings screen, bypassing the user’s ability to change or see that field. If you
want this behavior, but you want the user to also see the property value, see Using Default
Connection Settings.

All code areas associated with removing fields from the Settings screen are annotated with
IOS_CUSTOMIZATION_POINT_PRESETSETTINGS.

Keep in mind that connection settings sometimes have more than one “internal” name because
different developers may reference the same settings using different names, particularly in
local variable names. For example:

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 83

• server name = server id
• company id = farm id
• activation code = validation code

1. In the Xcode project, in the Project Navigator, expand Resources > Settings.bundle and
open the Root.plist file.

2. Delete the dictionary item that corresponds to the setting to remove from the Settings
screen.

For example, to remove the server port setting, delete the Text Field item with the title
ServerPortSetting.

3. Save the file.

4. For each property you remove from the Settings screen, you need to provide a way to
configure that property.

See Providing Default Values for Missing Connection Settings.

Providing Default Values for Missing Connection Settings
Provide default values for missing connection settings.

1. In the Xcode Project Navigator, open CustomizationHelper.m, which is located in
the WorkFlow\Classes group folder.

2. Find the customization tag, IOS_CUSTOMIZATION_POINT_DEFAULTSETTINGS,
inside the registerSettingDefaults function.

This contains sample code that reads the current user-entered value, and supplies a hard-
coded default value if the current value is invalid. You can follow this approach, or you can
obtain the value in other ways, such as by prompting the user or reading from a custom
database.

3. Save the file and rebuild the project.

Providing Default Connection Settings at Application Startup
You can provide default connection settings for the application to use when it starts.

1. In the Xcode Project Navigator, open CustomizationHelper.m, which is located in
the WorkFlow\Classes group folder.

2. Locate the customization tags that accompany the functions that begin with
getDefaultConnection.

For example, the function getDefaultConnectionServerName returns the server
name value that is used by the application when it starts up. You can override these
functions so they always return a default value.

3. If you are providing a default activation code, you need change the implementation of the
hasCredentials function.

In the default implementation, this function checks the settings bundle to see if it contains a
nonempty value. Since you know you are providing one, you can make

Mobile Workflow Development

84 Sybase Unwired Platform

hasCredentials always return YES, or you can call
getDefaultConnectionActivationCode and test that the returned value is
nonempty. Be sure you call getDefaultConnectionActivationCode only if
you override its implementation so that it does not call getConfigProperty.Your
implementation would look like this:
- (BOOL) hasCredentials {
return [[self getDefaultActivationCode] length] != 0;
 }

Note: Providing default connection settings only populates the initial values each time the
application starts. The user can still change the values in the Settings screen, but those
changes are disregarded when the application starts. This approach still does not prevent a
server change from overwriting the properties on the client, but those changes will get
reverted once the application restarts.

Mobile Workflow Application Launching Behavior
If you anticipate using the Hybrid Web Container for only a single Workflow application, you
can customize the Hybrid Web Container to launch the application directly at start-up.

Note: Make sure you implement a Cancel or Back button when you design your Workflow
application. If you fail to do this, and you use this customization, your Workflow application
opens automatically, but the user will have no way to navigate back to the list of Workflow
messages.

This customization makes the Hybrid Web Container initially load an empty TableView until a
Workflow package comes down from the server. When this happens, the first Workflow
package that comes down opens. When you click Back or Cancel from within the Workflow,
you return to the list of installed Workflow packages. From there, you can manually launch
Workflows, or go to the Messages list. The Workflow does not launch automatically again
until you return from the Messages list. This is the behavior on iPhone. iPad functions slightly
differently, both in portrait and landscape mode.

If there is more than one Workflow application assigned to the user, this customization loads
the first one that comes down from the server on the initial synchronization. After that, it loads
the application that comes first alphabetically, which is the default sorting behavior. If you
plan to assign more than one Workflow to a user and you want to use this customization, it is a
good idea to combine this with a filtering or sorting customization.

Automatically Launching a Hybrid Web Application
This customization allows you to automatically launch a Workflow application if one exists.

If there are applications on the device, it loads the first one. It also toggles a flag, so it does not
automatically open the application again until the Hybrid Web Container restarts.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 85

Note: If you combine this customization with the Changing to a New UI Control
customization, you will need to replace the logic in SingleWorkflowTableView.m to
implement your own auto-launching behavior.

Note: If you combine this customization with the PIN screen removal customization, this
interferes with the auto-launching on iPad devices because the auto-launch on iPad relies on
events that are generated by the submission of PIN credentials.

1. In the Xcode Project Navigator, open CustomizationHelper.m, which is located in
the WorkFlow\Classes group folder.

2. Locate the customization tag that accompanies the function autoLaunchHybridApp,
and override this function to return YES.

3. Save the file.

4. Rebuild the project.

Using Multiple Hybrid Web Containers on the Same iOS Device
You can configure two or more Hybrid Web Containers to coexist on the same device.

All code areas associated with creating co-existing applications are annotated with
IOS_CUSTOMIZATION_POINT_COEXISTING.

This customization allows two or more independent users to use the same device, but with
their own private version of the application. In summary, you need to change the application
ID, the bundle identifier, and possibly the URL scheme.

The application ID is used by the server to identify the application, and because of this, you
cannot run two applications on the same device with the same application ID. By default, the
Hybrid Web Container uses “HWC” for its application ID. Changing the application ID
involves a minor change to CustomizationHelper.m. Additionally, you must signify to
iOS that this is a distinct application. This requires a minor change to a plist file. Finally, if
you are using Afaria to provision your application, you need to specify a unique URL scheme.
This requires changes to the same plist file.

1. Change the application ID:

a) In Xcode Project Navigator, find and open the CustomizationHelper.m file,
which is located in the Classes group folder,

b) Locate the customization point that accompanies the getAppId function, and change
it so that it returns a unique name.

c) Save and close the file.

2. To differentiate this version of the Hybrid Web Container from another:

a) In Xcode Project Navigator, find and open the SUPWorkFlows-Info.plist file,
which is located in the Resources group folder.

b) Change the bundle identifier value to something unique.

Mobile Workflow Development

86 Sybase Unwired Platform

c) Save and close the file.

3. If you are using Afaria to provision your application, you must specify a unique URL
scheme for your application.

a) In Xcode Project Navigator, find and open the CustomizationHelper.m file, which is
located in the Classes group folder.

b) Locate the customization point that accompanies the getAppUrlScheme function,
and change it so that it returns a unique name.

c) In Xcode Project Navigator, find and open the SUPWorkFlows-Info.plist file,
which is located in the Resources group folder.

d) Expand the URL types item, and expand Item 0.
e) Change the URL identifier value to the value you specified for the Bundle identifier in

the previous section.
f) Save and close the file.

4. Rebuild the project.

Sorting and Filtering the List of Mobile Workflow Packages and Messages
By default, the Hybrid Web Container sorts the list of applications and messages in
alphabetical order by package name.

There is no filtering by default.

You can sort and filter this list in any way you want. For example, you can filter Workflow
packages from appearing according to whatever criteria you specify. You can filter out
particular Workflow packages by name, or you can sort Workflow messages by subject.
Workflow messages are server-initiated messages associated with a Workflow package, and
appear in a separate TableView.

The WorkflowViewController.h file defines the interface for a Workflow object. You
can sort and filter the properties of this object.

1. Locate the WorkflowViewController.h file.

You do not need to modify this file, but you can view the properties of a WorkFlow object
on which you might want to filter or sort.

This file is included in the WorkFlow/includes directory, but it is not explicitly
included in the Xcode project. To get the file to appear in the Xcode editor:

a) In Xcode, open the Workflow.xcodeproj.

b) Open the WidgetFolderController.h file.

c) Locate this line: #import “WorkflowViewController.h”, right-click
inside the quotes, then select Jump to Definition.

Xcode opens the file.

2. Customizations involving filtering and sorting for both Mobile Workflow packages and
messages can be made in the CustomizationHelper.m file.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 87

a) In Xcode Project Navigator, open the CustomizationHelper.m file, which is
located in Workflow\Clases.

b) If you are customizing sorting behavior, locate the
IOS_CUSTOMIZATION_POINT_SORTING customization tag that accompanies
the functions compareApplicationPackages and compareMessages.

Overwrite the implementation of one or both of these functions to customize the
comparison criteria for application packages and messages, respectively.

c) If you are customizing the filtering behavior, locate the
IOS_CUSTOMIZATION_POINT_FILTERING customization tag that accompanies
the functions filterApplicationPackages and filterMessages.

Overwrite the implementation of one or both of these functions to customize the
filtering for application packages and messages, respectively.

3. Save the file.

4. Rebuild the project.

Changing to a New UI Control
You can change the way the list of Workflow packages and messages appear.

Hybrid Web Container uses UITableView objects to display the list of WorkFlow packages
and messages. To change this behavior, you must completely rewrite some files. This
procedure shows an example of a fully functional Cover Flow style view. You can use any UI
library.

This customization involves rewriting one or two classes, depending on whether you want to
customize the appearance of the application list or the messages list, or both. The application
list view is in the HybridAppsFolderView (.m and .h) files, while the messages list view
is in the MessagesFolderView (.m and .h) files. You can change the appearance of one or
the other independently of one another.

While this may seem daunting at first, it is not too difficult if you use the existing classes as an
example. For the most part, you can (and probably should) reuse a lot of the code in the original
classes. You will likely see the biggest divergence when you replace the
UITableViewDelegate and UITableViewDataSource functions, as well as the
code that creates cells. This code is tailored to a UITableView, but you will probably find
that the UI library you are trying to replace it with will have callback functions that accomplish
similar things. In many cases, you will be able to copy and paste code from the original
functions into your new class with very few modifications needed. The sample code provides
very rudimentary views, but you can experiment with different views.

This example uses an open source UI library called iCarousel, available under the zlib
License. The source is at http://cocoacontrols.com/platforms/ios/controls/icarousel. This
example replaces the UI for the applications folder, while leaving the messages folder
unchanged.

Mobile Workflow Development

88 Sybase Unwired Platform

http://cocoacontrols.com/platforms/ios/controls/icarousel

1. Download the iCarousel source code.

2. Copy the iCarousel.h and iCarousel.m files to the WorkFlow/Classes
directory, then add these files to the Classes group folder in the Project Navigator in
Xcode.

3. If you are viewing this guide online from the Sybase Product Documention web site, click
iOS_HWC_Customization_Supplement.zip to access the ZIP file containing new copies
of HybridAppsFolderView.h and HybridAppsFolderView.m.

4. Drop the unzipped HybridAppsFolderView files into the WorkFlow/Classes
directory, overwriting the original files.

You can customize the code to suit your needs, for example, you may want to design your
own UIViews, or change from a cover flow to any of the other supported view types within
iCarousel, or to a different UI library altogether.

Setting HTTP Headers
You can set HTTP headers for the iOS Hybrid Web Container to include authentication tokens.

There are three sample methods showing how to do this in the iOS Hybrid Web Container
template source code, which include:

• setHttpHeaders – use this method to set the authentication tokens. The tokens you set
are used from then on until setHttpHeaders is called again.

• onWorkflowTokenError – use this method to call setHttpHeaders to put the
authentication tokens back in a good state, if, for example, they have expired.

• onHTTPError – use this method to handle HTTP errors.

All code areas associated with HTTP header customization are annotated with
IOS_CUSTOMIZATION_POINT_HTTPHEADERS.

1. Open the CustomizationHelper.m file, which is located in WorkFlow
\Classes.

2. Locate the setHttpHeaders method, and uncomment its contents.

The stub code that is provided shows an example of how to add headers and cookies. You
simply need to replace the header and cookie assignments with your own. The
setHttpHeaders function is already called in the startEngine function just before the client
engine starts, so you need to provide the implementation of setHttpHeaders.

3. CustomizationHelper.m also includes stub implementations of
onWorkflowTokenError and onHTTPError that you can implement.

The onWorkflowTokenError method is called when Workflow token authentication
failure occurs, so it is a good idea to use this callback as an opportunity to refresh the HTTP
headers again. A common way to do this is to maintain member variables that contain the
values for the headers you want to set. Implement the setHttpHeaders function to use
the values in those member variables when it sets the headers, then, in

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 89

onWorkflowTokenError, you can update the member variables with the new header
values, and then call setHttpHeaders again, for example:

[[CustomizationHelper getInstance] setHttpHeaders];
4. If you have custom code to run when an HTTP error occurs, add it to the onHTTPError

function.

This method is called any time there is an HTTP error. You can use this to inform the user of
errors, or log errors, or perform other custom steps in response to particular error codes.

PhoneGap Support
PhoneGap is an open source framework that leverages Web technologies such as HTML and
JavaScript to access native (system and third-party) functionality across platforms.

Sybase Unwired Platform comes with PhoneGap 1.4.1 libraries, which handle common tasks
supported by most devices, linked in and ready to use. Integrating PhoneGap plug-ins with
Hybrid Web Containers allows you to extend the set of APIs available within a Mobile
Workflow application. See www.phonegap.com for information about the supported
PhoneGap APIs.

You can use both Hybrid Web Container JavaScript APIs and PhoneGap APIs in a single
Workflow application.

Table 1. PhoneGap Supported Features

API Object and Function Plat-
form

Accelerometer

accelerometer

• getCurrentAcceleration

Note: On iOS, this function must be
called after watchAcceleration.

• watchAcceleration
• clearWatch

• An-
droi
d

• iOS

Acceleration

• x
• y
• z
• timeStamp

• An-
droi
d

• iOS

Camera

Mobile Workflow Development

90 Sybase Unwired Platform

http://docs.phonegap.com/en/1.4.1/index.html
http://docs.phonegap.com/en/1.4.1/phonegap_accelerometer_accelerometer.md.html#Accelerometer
http://docs.phonegap.com/en/1.4.1/phonegap_camera_camera.md.html#Camera

API Object and Function Plat-
form

Camera

• getPicture (Camera.PictureSource-
Type.CAMERA)

• getPicture (Camera.PictureSource-
Type.PHOTOLIBRARY)

• getPicture (Camera.PictureSource-
Type.SAVEDPHOTOALBUM)

• An-
droi
d

• iOS

CameraOptions

• quality
• dedestinationType.DATA_URL
• dedestinationType.FILE_URI

FILE_URI is the default.
• allowEdit
• encodingType
• targetWidth
• targetHeight

• An-
droi
d

• iOS

Capture

Capture

• captureAudio

Note: On Android, whether this works
depends on which application the de-
vice uses to record the audio. You can
use media.record instead to
work around this issue.

• captureImage
• captureVideo

• An-
droi
d

• iOS

MediaFile

• getFormatData

• An-
droi
d

• iOS

Compass

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 91

http://docs.phonegap.com/en/1.4.1/phonegap_media_capture_capture.md.html#Capture
http://docs.phonegap.com/en/1.4.1/phonegap_compass_compass.md.html#Compass

API Object and Function Plat-
form

compass

• getCurrentHeading
• watchHeading
• clearWatch
• watchHeadingFilter

• An-
droi
d

• iOS

Compass.Heading

• magneticHeading
• trueHeading
• headingAccuracy
• timestamp

• An-
droi
d

• iOS

Connection

network.connection.type • An-
droi
d

• iOS

Contacts

Contacts.create • An-
droi
d

• iOS

Contacts.find • An-
droi
d

• iOS

Contact.clone • An-
droi
d

• iOS

Contacts.remove

Note: On Android, there is an issue with
contacts not being fully removed. See
https://issues.apache.org/jira/browse/
CB-75.

• An-
droi
d

• iOS

Mobile Workflow Development

92 Sybase Unwired Platform

http://docs.phonegap.com/en/1.4.1/phonegap_connection_connection.md.html#Connection
http://docs.phonegap.com/en/1.4.1/phonegap_contacts_contacts.md.html#Contacts
https://issues.apache.org/jira/browse/CB-75
https://issues.apache.org/jira/browse/CB-75

API Object and Function Plat-
form

Contacts.save • An-
droi
d

• iOS

Device

Device.name • An-
droi
d

• iOS

Device.phonegap • An-
droi
d

• iOS

Device.platform • An-
droi
d

• iOS

Device.uuid • An-
droi
d

• iOS

Device.version • An-
droi
d

• iOS

Events

Deviceready • An-
droi
d

• iOS

Pause • An-
droi
d

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 93

http://docs.phonegap.com/en/1.4.1/phonegap_device_device.md.html#Device
http://docs.phonegap.com/en/1.4.1/phonegap_events_events.md.html#Events

API Object and Function Plat-
form

Resume • An-
droi
d

Online • An-
droi
d

• iOS

Offline • An-
droi
d

• iOS

Batterycritical iOS

Batterylow iOS

Batterystatus

Note: On Android, PhoneGap 1.4.1, this
does not work due to a known issue. See
https://issues.apache.org/jira/browse/
CB-173.

iOS

Menubutton • An-
droi
d

Searchbutton • An-
droi
d

File

Mobile Workflow Development

94 Sybase Unwired Platform

https://issues.apache.org/jira/browse/CB-173
https://issues.apache.org/jira/browse/CB-173
http://docs.phonegap.com/en/1.4.1/phonegap_file_file.md.html#File

API Object and Function Plat-
form

DirectoryEntry

• copyTo
• moveTo
• toURI
• remove
• removeRecursively
• getParent
• createReader
• getDirectory
• getFile

• An-
droi
d

• iOS

FileEntry

• copyTo
• moveTo
• toURI
• remove
• getParent
• createWriter
• file

• An-
droi
d

• iOS

FileReader

• abort
• readAsDataURL
• readAsText

• An-
droi
d

• iOS

FileWriter

• abort
• seek
• truncate
• write

• An-
droi
d

• iOS

DirectoryReader

• readEntries

• An-
droi
d

• iOS

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 95

API Object and Function Plat-
form

LocalFileSystem

• requestFileSystem
• resolveLocalFileSystemURI

• An-
droi
d

• iOS

FileTransfer

• upload
• download

• An-
droi
d

• iOS

Geolocation

geolocation

• getCurrentPosition

Note: This function does not work on
the Android Galaxy Tab P1000 device.

• watchPosition
• clearWatch

• An-
droi
d

• iOS

Position

• coords
• timestamp

• An-
droi
d

• iOS

Mobile Workflow Development

96 Sybase Unwired Platform

http://docs.phonegap.com/en/1.4.1/phonegap_geolocation_geolocation.md.html#Geolocation

API Object and Function Plat-
form

Coordinates

• latitude
• longitude
• altitude
• accuracy

Note: On Android, the returned accu-
racy property is always null.

• altitudeAccuracy

Note: On Android, the returned altitu-
deAccuracy property is always null.

• heading

Note: Android only. The returned
heading property is always null.

• speed

Note: On Android, the returned speed
property is always null.

• An-
droi
d

• iOS

Media

Media.play • An-
droi
d

• iOS

Media.pause • An-
droi
d

• iOS

Media.stop • An-
droi
d

• iOS

Media.release • An-
droi
d

• iOS

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 97

http://docs.phonegap.com/en/1.4.1/phonegap_media_media.md.html#Media

API Object and Function Plat-
form

Media.record • An-
droi
d

• iOS

Media.startRecord • An-
droi
d

• iOS

Media.stopRecord • An-
droi
d

• iOS

Media.getCurrentPosition • An-
droi
d

• iOS

Media.seekTo • An-
droi
d

• iOS

Media.getDuration

Note: On Android, this function returns a
value without an error but always returns
-1, which indicates duration is not availa-
ble.

• An-
droi
d

• iOS

Notification

Notification.beep • An-
droi
d

• iOS

Mobile Workflow Development

98 Sybase Unwired Platform

http://docs.phonegap.com/en/1.4.1/phonegap_notification_notification.md.html#Notification

API Object and Function Plat-
form

Notification.confirm • An-
droi
d

• iOS

Notification.alert • An-
droi
d

• iOS

Notification.vibrate • An-
droi
d

• iOS

Storage

window

• OpenDatabase

• An-
droi
d

• iOS

Database

• transaction

• An-
droi
d

• iOS

SQLTransaction

• executeSQL

Note: On Android, queries on the first da-
tabase created do not work. You can work
around this by creating and opening two
databases, the first of which can have the
size of 0, and the second to use as you nor-
mally do. For example:

var db = window.openData-
base("aName1", "1.0",
"aName1", 0);
db = window.openData-
base("aName2", "1.0",
"aName2", 200000);

• An-
droi
d

• iOS

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 99

http://docs.phonegap.com/en/1.4.1/phonegap_storage_storage.md.html#Storage

API Object and Function Plat-
form

SQLResultSet

• insertid
• rowAffected

Note: The returned SQLResultSet ob-
ject does not contain a rowAffec-
ted property, as the PhoneGap API
states. Instead, use rowsAffec-
ted.

• rows

• An-
droi
d

• iOS

SQLResultSetList

• item
• length

• An-
droi
d

• iOS

SQLError

• code
• message

• An-
droi
d

• iOS

localStorage

• key
• getitem
• setitem
• removeitem
• clear

iOS

PhoneGap APIs
The Hybrid Web Container comes with the PhoneGap library linked in and ready to use.

The PhoneGap library included with Sybase Unwired Platform handles common tasks
supported by Android and iOS devices, for example, accessing geolocation, accessing
contacts, and invoking calls to make those common functions available to JavaScript.

Note: Keep in mind that PhoneGap APIs cannot be accessed successfully until certain
initialization has taken place. If you make calls to the PhoneGap API from the
customAfterShowScreen function, they should occur only after the PhoneGap subsystem is
initialized and ready to execute these calls. For more information, see http://
wiki.phonegap.com/w/page/36868306/ UI%20Development%20using
%20jQueryMobile#HandlingPhoneGapsdevicereadyevent.

Mobile Workflow Development

100 Sybase Unwired Platform

http://wiki.phonegap.com/w/page/36868306/ UI%20Development%20using%20jQueryMobile#HandlingPhoneGapsdevicereadyevent
http://wiki.phonegap.com/w/page/36868306/ UI%20Development%20using%20jQueryMobile#HandlingPhoneGapsdevicereadyevent
http://wiki.phonegap.com/w/page/36868306/ UI%20Development%20using%20jQueryMobile#HandlingPhoneGapsdevicereadyevent

You can make PhoneGap calls from the Hybrid Web Container JavaScript, such as
Custom.js. For example, to save an entry to the contacts database, you can implement
something similar to:

 var contact = navigator.contacts.create();
 contact.nickname = "Plumber";
 var name = new ContactName();
 name.givenName = "Jane";
 name.familyName = "Doe";
 contact.name = name;
 // save
 contact.save(onSaveSuccess,onSaveError);

Android
Supported PhoneGap APIs allow you to access the native iOS device functionality.

Upgrading the PhoneGap Library Used by the Android Hybrid Web Container
Sybase Unwired Platform comes with PhoneGap 1.4.1 libraries linked in; to upgrade to a later
version of the PhoneGap library for use by the Hybrid Web Container, there are a few steps you
must perform.

The PhoneGap library that is included with the Hybrid Web Container has been slightly
modified to support title bars and loading URLs using binary.

1. Download the PhoneGap package you are upgrading to from github.com.

2. Open the DroidGap.java file for editing and under the onCreate method, comment
out this line; doing so allows the screen to show the title bar:
getWindow().requestFeature(Window.FEATURE_NO_TITLE)

3. Replace the existing spinnerStop method with the following:

public void spinnerStop() {
 if (this.spinnerDialog != null) {
 try
 {
 this.spinnerDialog.dismiss();
 }
 catch(Exception e)
 {
 // an exception occurs if the activity this dialog is
associated with is closed
 // before this dialog
 LOG.d(TAG, "Tried to dismiss a dialog of an activity
that no longer exists.");
 }
 finally
 {
 this.spinnerDialog = null;
 }
 }
 }

4. Add these methods to the DroidGap class:

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 101

https://github.com/apache/incubator-cordova-android/tags

public void loadUrlWithData(String url, byte[] abData)
{
 this.loadUrlIntoView(url, abData);
}
private void loadUrlIntoView(final String url) {
 loadUrlIntoView(url, null);
}

5. Modify the original private void loadUrlIntoView(final String url)
method so that the signature accepts binary data.
private void loadUrlIntoView(final String url, final byte[]
abData)

6. At the bottom of the private void loadUrlIntoView(final String url)
method, change the line me.appView.loadUrl(url); to:

if (abData == null)
 me.appView.loadUrl(url);
else
 me.appView.loadDataWithBaseURL(url, new String(abData), null,
"utf-8", null);

7. Open the CordovaWebViewClient.java file and, at line 137, add:

if (url.indexOf(this.ctx.baseUrl) == 0) { return false; }

This step is a workaround for a problem PhoneGap 1.4.1 has when loading a local file into
an Iframe; it opens in the main window instead. See https://issues.apache.org/jira/browse/
CB-132.

8. Use Apache Ant to build PhoneGap, run the following command from the PhoneGap
framework directory:

a) In the parent directory of the PhoneGap framework directory, create a file named
"VERSION" (no extension).

b) Edit this file with a text editor and enter the version number (this is the value that is used
when naming the .jar file).

For example, if you have "1.5.0" in the VERSION file, the jar is named
cordova-1.5.0.jar.

c) Create a file named "local.properties" in the PoneGap framework directory.
d) Edit this file with a text editor and enter:

"sdk.dir=C:\\Program Files\\android-sdk-windows"
Ensure the filepath is the correct filepath to your Android installation directory.

e) From the PhoneGap framework directory, execute:

ant.bat –f build.xml

If you do not have Apache Ant installed, you can download it from http://ant.apache.org/
bindownload.cgi.

9. Put the resulting cordova-<version>.jar file in the HybridWebContainer
\libs folder of the project and delete the old phonegap-<oldversion>.jar file
from the folder.

Mobile Workflow Development

102 Sybase Unwired Platform

https://issues.apache.org/jira/browse/CB-132
https://issues.apache.org/jira/browse/CB-132
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi

10. In the Java perspective in Eclipse, right-click the HybridWebContainer project and
choose Properties.

11. Go to the Java Build Path section, and click the Libraries tab.

12. Select the old phonegap<version>.jar file and click Remove.

13. Add the new cordova-<version>.jar file.

14. Open the UiHybridAppContainer.java file and update the Hybrid Web Container
template code by changing import com.phonegap.DroidGap to import
org.apache.cordova.DroidGap.

15. Open the plugins.xml file, which is located in HybridWebContainer\res\xml\,
for editing and change all references of com.phonegap to org.apache.cordova
For example, change com.phonegap.App to org.apache.cordova.App.

These steps complete the upgrade to the new version of PhoneGap. Some additional steps
are required to upgrade the Mobile Workflow Forms Editor to use the new version of
PhoneGap so that new Mobile Workflow applications reference the correct version of
PhoneGap.

16. Navigate to <UnwiredPlatform_InstallDir>\UnwiredPlatform
\Unwired_WorkSpace\Eclipse\sybase_workspace\mobile\eclipse
\plugins.

17. Use WinZip to open
com.sybase.uep.xbw.generatewizard_2.1.3.201202161213.jar.

18. Replace the generate\html\js\android\phonegap-1.4.1.javascript
file with the JavaScript file framework\assets\www\cordova-
<version>.javascript.

Note: The extension must be .javascript, not .js. If necessary, modify the
extension to .javascript.

To change the PhoneGap version for other platforms as well, replace the
phonegap-1.4.1.javascript for each platform, for example, for iOS, replace
\html\js\ios\phonegap-1.4.1.javascript.

19. For each Workflow application that is using the new version of PhoneGap, open the
Generated Workflow\<workflow_name>\html\js\API.js file for
editing.

20. Locate the loadPhoneGap() function at the bottom of the file and change the line jsfile
= pre + "js/android/phonegap-1.4.1.javascript"; to jsfile =
pre + "js/android/cordova-<version>.javascript";, where
<version> is the new version of PhoneGap.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 103

Note: You must modify the same line for each platform if you want other platforms to use
the new version of PhoneGap, for example, for iOS: jsfile = pre + "js/ios/
phonegap-1.4.1.javascript";.

Performing Additional Steps for Android 2.2 OS
If you upgrade to the new version of PhoneGap and you are using the Android 2.2 operating
system, there are some additional steps to perform if you want the Hybrid Web Container to be
compatible with Android 2.2.

You must modify the PhoneGap Cordova framework to eliminate all references to features
that are not included in Android 2.2.

1. Import the PhoneGap Cordova framework into Eclipse.

2. Right-click the Cordova project and choose Properties.

3. In the left pane of the Properties window, choose Android.

4. Select Android 2.2 as the Project Build Target and click OK.

The Cordova project now shows some errors because the code is trying to read and write
attributes of a file, but these attributes do not exist in Android 2.2.

5. Open the ExifHelper.java file for editing (all errors occur in this file).

6. Comment out each line that has an error and save the file.

Any functions that depend on these attributes subsequently do not work

Removing PhoneGap from the Android Hybrid Web Container
If PhoneGap functionality is not required, you can make a few modifications to remove all
references to the PhoneGap library that is linked to the Hybrid Web Container.

Leaving PhoneGap in place does not cause any issues, but does increase overall application
size by about 70KB.

1. Open the UiHybridAppContainer.java file for editing and comment out this line:

//import com.phonegap.DroidGap;
2. Change the superclass of UiWorkflowContainer from Droidgap to Activity:

public class UiWorkflowContainer extends Activity {
3. Around line 80, change the USE_PHONEGAP variable to false, so the line of code looks

like this:
private static final boolean USE_PHONEGAP = false;

4. At this point, there are 5 errors, which are caused by calling methods that were inherited
from the Droidgap class (but do not exist in the Activity class); comment out the 5
lines that cause these errors :

a) To find these lines, search for "USE_PHONEGAP."

These lines are all contained in "if (USE_PHONEGAP)" statements.

Mobile Workflow Development

104 Sybase Unwired Platform

b) Around line 110, comment out:
// super.init();
 // m_oWebView = this.appView;

c) Around line 205, comment out:
// super.setStringProperty("loadingDialog", m_sProgressText);
 // super.setIntegerProperty("loadUrlTimeoutValue",
300000);
 // super.loadUrlWithData(sBaseURL, abData);

5. Switch to the Java perspective, right-click on the HybridWebContainer project, and
choose Properties.

6. Under Java Build Path, click the Libraries tab.

7. Remove the PhoneGap library (phonegap<version>.jar-
HybridWebContainer/libs).

8. Delete the phonegap<version>.jar file from the HybridWebContainer
\libs folder.

iOS
Supported PhoneGap APIs allow you to access the native iOS device functionality.

Upgrading the PhoneGap Library Used by the iOS Hybrid Web Container
Sybase Unwired Platform comes with PhoneGap 1.4.1 libraries linked in; to upgrade to a later
version of the PhoneGap library used by the Hybrid Web Container, perfom these steps.

The PhoneGap library that is included with the Hybrid Web Container uses source code that
has been modified slightly from the source available from PhoneGap, mainly because the
original source does not support some Hybrid Web Container user interface.

Beginning with PhoneGap 1.5.0, PhoneGap rebranded the name PhoneGap to Cordova,
which means that when you upgrade, changes to internal class names must be updated.

In addition to the name change, version 1.5.0 ushered in a reorganization of core classes in the
PhoneGap implementation. Because of the coupling between the Hybrid Web Container UI
code and PhoneGap classes, upgrading requires a careful replacement of the existing
PhoneGap integration.

Note: This document describes the process of upgrading the iOS Hybrid Web Container from
PhoneGap 1.4.1 to Cordova 1.5.0. Because of its rapid release cycle, Cordova remains a
somewhat volatile platform. These instructions are up to date at the time of this writing, but no
guarantee is made about how the Cordova implementation may change in the future.

1. Go to http://www.phonegap.com and download the Cordova package you are upgrading
to.

2. Install the Cordova .dmg file.

This typically places a set of Cordova files under ~/Documents/CordovaLib.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 105

http://www.phonegap.com

3. In Xcode, open the CordovaLib.xcodeproj.

4. In the Xcode Project Navigator, find and open the CDVViewController.h file, which
is in the Classes/Cleaver group folder.

a) In the interface declaration, remove UIWebViewDelegate from the list of
implemented protocols.

b) Add a UIViewController property declaration:
@property (nonatomic, retain) UIViewController*
viewController;

c) Find and remove the declaration of the createGapView function:
#if 0
-(void) createGapView;
#endif

d) Add these function declarations:
-(void) reset;
-(void)setTheWebView: (UIWebView*) theWebView;
-(void)setTheViewController: (UIViewController*)
theViewController;

5. In Xcode Project Navigator, find and open the CDVViewController.m file, which is
next to the CDVViewController.h file.

a) Synthesize the viewController property:
@synthesize viewController;

b) In order to avoid memory leak issues, you must move a portion of the viewDidLoad
function, around line 94, to the init function. First, remove the following code from
viewDidLoad:
#if 0
// read from Cordova.plist in the app bundle
NSString* appPlistName = @"Cordova";
NSDictionary* cordovaPlist = [[self class]
getBundlePlist:appPlistName];
if (cordovaPlist == nil) {
NSLog(@"WARNING: %@.plist is missing.", appPlistName);
return;
}
self.settings = [[[NSDictionary alloc]
initWithDictionary:cordovaPlist] autorelease];

// read from Plugins dict in Cordova.plist in the app bundle
NSString* pluginsKey = @"Plugins";
NSDictionary* pluginsDict = [self.settings
objectForKey:@"Plugins"];
if (pluginsDict == nil) {
NSLog(@"WARNING: %@ key in %@.plist is missing! Cordova will
not work, you need to have this key.", pluginsKey,
appPlistName);
return;
}

// set the whitelist

Mobile Workflow Development

106 Sybase Unwired Platform

self.whitelist = [[[CDVWhitelist alloc] initWithArray:
[self.settings objectForKey:@"ExternalHosts"]]
autorelease];

self.pluginsMap = [pluginsDict dictionaryWithLowercaseKeys];
#endif

If you do not move this portion of the viewDidLoad function, it is called automatically
by the OS every time a workflow application is opened. This function contains code
that initializes some Cordova components that need to be initialized only once.

c) Move the code you just removed into the init function inside the "if (self !=
nil)" block, at the very end of this block.

Since the init function does not return void, change the two return statements in the
code you just moved so they read "return nil;", to avoid compiler warnings.

d) There are portions of the viewDidLoad function that do some UI initialization that is
unnecessary, and which clashes with UI behavior of the Hybrid Web Container.
Around line 118, remove this code:
#if 0
 NSString* startFilePath = [self
pathForResource:self.startPage];
 NSURL* appURL = nil;
 NSString* loadErr = nil;

 if (startFilePath == nil) {
 loadErr = [NSString stringWithFormat:@"ERROR: Start Page
at '%@/%@' was not found.", self.wwwFolderName,
self.startPage];
 NSLog(@"%@", loadErr);
 self.loadFromString = YES;
 appURL = nil;
 } else {
 appURL = [NSURL fileURLWithPath:startFilePath];
 }

 [self createGapView];
#endif

In the same function, around line 181, remove this code:
#if 0
 if (!loadErr) {
 NSURLRequest *appReq = [NSURLRequest
requestWithURL:appURL
cachePolicy:NSURLRequestUseProtocolCachePolicy
timeoutInterval:20.0];
 [self.webView loadRequest:appReq];
 } else {
 NSString* html = [NSString
stringWithFormat:@"<html><body> %@ </body></html>", loadErr];
 [self.webView loadHTMLString:html baseURL:nil];
 }
#endif

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 107

e) Remove the implementation of the createGapView function:
#if 0
- (void) createGapView
{
 CGRect webViewBounds = self.view.bounds;
 webViewBounds.origin = self.view.bounds.origin;

 if (!self.webView)
 {
 self.webView = [[[CDVCordovaView alloc]
initWithFrame:webViewBounds] autorelease];
 self.webView.autoresizingMask =
(UIViewAutoresizingFlexibleWidth |
UIViewAutoresizingFlexibleHeight);

 [self.view addSubview:self.webView];
 [self.view sendSubviewToBack:self.webView];

 self.webView.delegate = self;
 }
}
#endif

f) Since you added a UIViewController property to the CDVViewController
class, you must ensure that view controller gets used at the appropriate time. In the
getCommandInstance function, there is code that creates an instance of a CDVPlugin
object. Find the if block that attempts to set the view controller of this object, and
change it to use self.viewController instead of self, for example:

if ([obj isKindOfClass:[CDVPlugin class]] && [obj
respondsToSelector:@selector(setViewController:)]) {
[obj setViewController:self.viewController];
}

g) Add these implementations for the reset function:
-(void) reset
{
[self onAppWillTerminate:nil];
self.pluginObjects = nil;
self.webView = nil;
self.commandDelegate = nil;
self.view = nil;
}
-(void) setTheWebView: (UIWebView*) theWebView {
self.webView = theWebView;
}
-(void) setTheViewController: (UIViewController
*)theViewController {
self.viewController = (CDVViewController*)theViewController;
}

This ensures that the plug-in objects that are saved by Cordova for later use are
destroyed when the Workflow application is closed. The plug-in objects each contain a

Mobile Workflow Development

108 Sybase Unwired Platform

reference to the WebView, and this causes problems if they are retained after closing a
Workflow application and then opening a new one.

h) In the dealloc function, add the following line, just before [super dealloc];

self.whitelist = nil;
6. In the Xcode Project Navigator, find and open the CDVPlugin.m file, which is in the

Classes/Commands group folder, and add this code at the very top of the dealloc
function:
if (self.viewController != nil)
{
 self.viewController = nil;
}

7. In the Xcode Project Navigator, find and open the CDVConnection.m file, which is
located in the Classes/Commands group folder, and in the dealloc function, locate the
line that calls the removeObserver function:
[[NSNotificationCenter defaultCenter] removeObserver:self
 name:kReachabilityChangedNotification object:nil];

Change the line to:
[[NSNotificationCenter defaultCenter] removeObserver:self];

This causes the connection plug-in object to remove itself as an observer for all of these
events when a Workflow application is closed, rather than only for specified events. This is
necessary because during initialization, Cordova creates a CDVConnection object,
then adds this object as an observer to NSNotificationCenter. It adds itself as the
callback delegate for online/offline connection events, as well as for background/
foreground processing notifications. The Hybrid Web Container implementation of
Cordova is somewhat nonstandard, in that it expects Cordova to initialize and de-initialize
when a Workflow application is opened and closed. If the observers are left, they remain
even after the Workflow application is closed, and may cause memory issues.

8. As of PhoneGap version 2.1.0, supporf for the Contacts API does not yet exist for iOS 6
devices. To add this support:

a) In Xcode, in the Project Navigator, find and open the CDVContacts.h file in the
Classes/Commands group folder.

Add this protocol definition BEFORE the CDVContacts interface declaration:

@protocol MissingFeaturesProvider <NSObject>
- (void) requestContactsAccess;
@end

Add this function declaration inside the CDVContacts interface declaration:

+ (void) setContactsAccessDelegate:
(id<MissingFeaturesProvider>)accessProvider;

b) In Xcode, in the Project Navigator, find and open the CDVContacts.m file in the
Classes/Commands group folder.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 109

At the very TOP of the CDVContacts implementation block, just after
@implementation CDVContacts, add:

static id<MissingFeaturesProvider> s_contactsAccessDelegate =
nil;

In the initWithView: function, before return self, add

if (s_contactAccessDelegate != nil)
{
[s_contactsAccessDelegate requestContactsAccess];
}

Somewhere within the CDVContacts implementation block, add this function
definition:
+ (void) setContactsAccessDelegate:
(id<MissingFeaturesProvider>)accessProvider
{
s_contactsAccessDelegate = accessProvider;
}

There is one final modification necessary to prevent a crash due to freeing unallocated
memory. In the save:withDict: function, you will see:
[aContact release];
CFRelease(addrBook);

Modify the code so that it checks whether addrBook is nil before trying to release it,
like this:
[aContact release];
if (addrBook != nil)
{
CFRelease(addrBook);
}

9. Build all configurations of the CordovaLib target (Debug-iphoneos, Debug-
iphonesimulator, Release-iphoneos, and Release-iphonesimulator), which produces files
named libCordova.a.

10. Copy the libCordova.a file for each configuration to the corresponding libs folder
in WorkFlow/libs/<configuration>.

These folders already have libMo.a, existing PhoneGap libraries, and other Sybase
Unwired Platform libraries in them. Delete the existing libPhoneGap.a for each
configuration.

11. You must now include the PhoneGap javascript file, which is under the javascripts folder
where PhoneGap was installed, in any workflow application that is built using the new
Hybrid Web Container with the new PhoneGap library.

Starting with PhoneGap 1.5.0, this file is called cordova-<version>.js.

a) For each workflow package that is to be generated, copy this file to the js folder in the
Generated Workflow folder of the Eclipse WorkSpace where the Sybase Mobile
SDK is installed.

Mobile Workflow Development

110 Sybase Unwired Platform

b) Remove any old instances of this file, and regenerate the workflow package.

Updating the iOS Hybrid Web Container Project
After upgrading the PhoneGap library to Cordova, you must update the Hybrid Web Container
project.

1. In Xcode, in the Project Navigator, open WorkFlow.xcodeproj.

2. Select the WorkFlow project so that the project settings screen is displayed, then select the
WorkFlow target, find the Other Linker Flags entry, and for each configuration, replace
all instances of "libPhoneGap.a" with "libCordova.a."

3. Create two directories: WorkFlow/CordovaLib and WorkFlow/CordovaLib/
Classes.

4. Copy all of the .h files from ~/Documents/CordovaLib/Classes to
WorkFlow/CordovaLib/Classes.

Be sure to get all .h files, even in nested directories.

5. Again, open the project settings screen, find the Header Search Paths entry, and change
all instances of "PhoneGapLib" to "CordovaLib."

6. In the Xcode project, perform two global search-and-replace operations:

a) Replace all instances of USE_PHONEGAP with USE_CORDOVA.

b) Replace all instances of PHONEGAP_FRAMEWORK with CORDOVA_FRAMEWORK.

After this, it is assumed that the code no longer includes references to
USE_PHONEGAPand instead contains references to USE_CORDOVA.

7. In the Xcode Project Navigator, find and open the WorkFlowAppDelegate.h file in
the Classes group folder.

a) Near the top of the file, replace the import of PhoneGapDelegate.h.

The import should look like this:
#ifdef USE_CORDOVA
#ifdef CORDOVA_FRAMEWORK
#import <Cordova/CDVViewController.h>
#import <Cordova/CDVContacts.h>
#else
#import "CDVViewController.h"
#import "CDVContacts.h"
#endif
#endif

Note: USE_PHONEGAP has already been changed to USE_CORDOVA, and
PHONEGAP_FRAMEWORK to CORDOVA_FRAMEWORK.

b) Find the declaration of the SUPWorkFlowAppDelegate interface, and in the #ifdef
USE_CORDOVA block, change the super class from PhoneGapDelegate to
CDVViewController.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 111

c) In the same #ifdef block, add the UIApplicationDelegate protocol to the list
of implemented protocols.

8. In Xcode Project Navigator, find the WorkFlowAppDelegate.m file, which is located
next to WorkFlowAppDelegate.h.

a) Near the top of the file, remove the entire #ifdef USE_CORDOVA block that is
currently importing PhoneGapDelegate.h, as this is already done in
WorkFlowAppDelegate.h, and is unnecessary here.

b) Find the application:didFinishLaunchingWithOptions: and remove the entire
contents of the #ifdef USE_CORDOVA block at the very end:

#ifdef USE_CORDOVA
if ([super
respondsToSelector:@selector(application:didFinishLaunchingWit
hOptions:)])
[super application:[UIApplication sharedApplication]
didFinishLaunchingWithOptions:launchOptions];
#endif

c) Find the applicationDidBecomeActive: function and remove the entire contents of the
#ifdef USE_CORDOVA block at the very end:

#ifdef USE_CORDOVA
if ([super
respondsToSelector:@selector(applicationDidBecomeActive:)])

[super applicationDidBecomeActive:application];
#endif

d) Find the applicationWillResignActive: function and remove the entire contents of the
#ifdef USE_CORDOVA block at the very end:

#ifdef USE_CORDOVA
if ([super
respondsToSelector:@selector(applicationWillResignActive:)])

[super applicationWillResignActive:application];
#endif

e) Find the applicationWillTerminate: function and remove the entire contents of the
#ifdef USE_CORDOVA block at the very end:

#ifdef USE_CORDOVA
if ([super
respondsToSelector:@selector(applicationWillTerminate:)])
[super applicationWillTerminate:application];
#endif

f) Find the webViewDidFinishLoad: function, and add this code at the top of that
function:
#ifdef USE_CORDOVA
if ([super
respondsToSelector:@selector(onAppDidBecomeActive:)])
[super onAppDidBecomeActive:nil];
#endif

Mobile Workflow Development

112 Sybase Unwired Platform

g) Find the applicationWillEnterForeground: function and change it so it is no longer
calling the same function on the super class, but is instead calling
onAppWillEnterForeground:, like this:
if ([super
respondsToSelector:@selector(onAppWillEnterForeground:)])
[super onAppWillEnterForeground:nil];

h) Find the applicationDidEnterBackground: function and change it so it is no longer
calling the same function on the super class, but is instead calling
onAppDidEnterBackground:, like this:
if ([super
respondsToSelector:@selector(onAppDidEnterBackground:)])
[super onAppDidEnterBackground:nil];

i) In the initializeAppAfterKeyVaultUnlocked: find the line [PGContacts
setContactsAccessDelegate:self]; and replace the class name
PGContacts with CDVContacts, like this:

[CDVContacts setContactsAccessDelegate:self];
9. In the Xcode Project Navigator, locate the file named VERSION, at the top level of the

project hierarchy, and remove it.

10. In the Resources group folder, locate and remove these resources:
PhoneGap.plist, Capture.bundle, and the www directory.

11. In the WorkFlow/PhoneGapLib directory, locate the PhoneGap.plist file and
copy it to WorkFlow/CordovaLib.

a) Rename the newly copied PhoneGap.plist file to Cordova.plist.

b) With any text editor, open the Cordova.plist file, and perform these two global
search-and-replace operations:

• Replace all instances of com.phonegap with org.apache.cordova.

• Replace all instances of PG with CDV.

c) Save the file.

12. Locate where Cordova.framework was installed on your machine, typically, is in /
Users/Shared/Cordova/Frameworks/Cordova.framework.

a) Open this framework directory, and copy VERSION, Capture.bundle, and the
www directory to WorkFlow/CordovaLib.

Capture.bundle is a resource bundle that contains around a dozen or so png files
that enable the capture.captureAudio API to function.

b) Remove the cordova-1.5.0.js and index.html files from the www directory.

c) If you plan to use the notification.beep API in Cordova, you must also place a
file named beep.wav in the www directory.

See the PhoneGap documentation for more details.

13. In the Xcode Project Navigator, under the top level of the project, add the new VERSION
file.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 113

http://docs.phonegap.com

a) In WorkFlow/CordovaLib, in the Resources group folder, add the new
Capture.bundle, Cordova.plist, and www directory.

Make sure you create folder references, not group references, for the added folders.

14. Clean and rebuild all configurations of the Hybrid Web Container.

15. The Cordova JavaScript file, usually named cordova-<version>.js, and which is
typically located in ~/Documents/CordovaLib/javascripts, must now be
included in any Workflow targeting the new Hybrid Web Container with the new Cordova
library.

For each Workflow you want to generate, copy this file to the Generated Workflow
\js folder of the Eclipse WorkSpace where the Sybase Mobile SDK is installed, and
remove any old instances of the file.

16. Regenerate the Workflow.

Removing PhoneGap from the iOS Hybrid Web Container
If PhoneGap functionality is not required, you can make a few modifications to remove all
references to the PhoneGap library that is linked to the Hybrid Web Container.

Leaving PhoneGap in place does not cause any issues, but does increase overall application
size by about 400KB.

1. In Xcode, open the WorkflowAppDelegate.h file and comment out this line:

#define USE_PHONEGAP 1
2. In the Build Settings tab, for the Workflow project under Other Linker Flags, remove

libPhoneGap.a for all build configurations.

3. Under Warning Linker Flags remove libPhoneGap.a for all build configurations.

4. In the Workflow Project Navigator remove references to these files:

• VERSION
• PhoneGap.plist

5. In Xcode, in the Workflow Project Navigator, remove the reference to the www directory.

6. In Xcode, in the Workflow Project Navigator, remove the reference to the
Capture.bundle directory.

7. Clean and rebuild the Workflow project for all configurations.

PhoneGap Custom Plug-ins
You can write custom plug-ins for PhoneGap.

Custom PhoneGap plug-ins have a JavaScript component that exposes the custom native
component and a native component. See the PhoneGap documentation for information about
PhoneGap plug-ins.

Mobile Workflow Development

114 Sybase Unwired Platform

http://wiki.phonegap.com/w/page/36752779/PhoneGap%20Plugins

Custom Plug-ins for the Android Hybrid Web Container
Integrate PhoneGap plug-ins with the Android Hybrid Web Container.

In general, adding a custom plug-in to Hybrid Web Container is identical to adding a plug-in to
any PhoneGap application. The basic steps are as follows (see the PhoneGap Wiki for details).

1. Create an Android project.
2. Include PhoneGap dependencies.
3. Implement the plug-in class.
4. Implement the plug-in JavaScript.

Adding a Custom Plug-in to the Android Hybrid Web Container
Add a PhoneGap plug-in to the Hybrid Web Container.

1. In Eclipse, open the HybridWebContainer project.

2. Open the plugins.xml file, which is located in res/xml.

3. Add your custom plug-in, for example:
<plugin name="DirectoryListPlugin"
value="com.sybase.hwc.DirectoryListPlugin" />

4. Add plug-in images to the HybridWebContainer project.

The plug-in used in this example does not include images, but they are allowed in plug-ins.
Images for plug-ins are usually stored in a location similar to: ...
\<projectFolder>\assets\www\<nameOfPlugin>\, where
<projectFolder> is the root folder of the project, and <nameOfPlugin> is the name of the
plug-in you are adding.

5. Add your Java source file that implements the custom plugin, for example,
DirectoryListPlugin.java.

This example PhoneGap plugin lists all files on the SDCard of the device.
/**
 * Example of Android PhoneGap Plugin
 */
package com.sybase.hwc;

import java.io.File;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.util.Log;

import com.phonegap.api.Plugin;
import com.phonegap.api.PluginResult;
import com.phonegap.api.PluginResult.Status;

/**

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 115

http://wiki.phonegap.com/w/page/36753494/How%20to%20Create%20a%20PhoneGap%20Plugin%20for%20Android

 * PhoneGap plugin which can be involved in following manner from
javascript
 * <p>
 * result example - {"filename":"/
sdcard","isdir":true,"children":
[{"filename":"a.txt","isdir":false},{..}]}
 * </p>
 * <pre>
 * {@code
 * successCallback = function(result){
 * //result is a json
 *
 * }
 * failureCallback = function(error){
 * //error is error message
 * }
 *
 * window.plugins.DirectoryListing.list("/sdcard",
 * successCallback
 * failureCallback);
 *
 * }
 * </pre>
 * @author Rohit Ghatol
 *
 */
public class DirectoryListPlugin extends Plugin {

 /** List Action */
 public static final String ACTION="list";

 /*
 * (non-Javadoc)
 *
 * @see com.phonegap.api.Plugin#execute(java.lang.String,
 * org.json.JSONArray, java.lang.String)
 */
 @Override
 public PluginResult execute(String action, JSONArray data,
String callbackId) {
 Log.d("DirectoryListPlugin", "Plugin Called");
 PluginResult result = null;
 if (ACTION.equals(action)) {
 try {

 String fileName = data.getString(0);
 JSONObject fileInfo = getDirectoryListing(new
File(fileName));
 Log
 .d("DirectoryListPlugin", "Returning "
 + fileInfo.toString());
 result = new PluginResult(Status.OK, fileInfo);
 } catch (JSONException jsonEx) {
 Log.d("DirectoryListPlugin", "Got JSON Exception "
 + jsonEx.getMessage());
 result = new PluginResult(Status.JSON_EXCEPTION);

Mobile Workflow Development

116 Sybase Unwired Platform

 }
 } else {
 result = new PluginResult(Status.INVALID_ACTION);
 Log.d("DirectoryListPlugin", "Invalid action : "+action
+" passed");
 }
 return result;
 }

 /**
 * Gets the Directory listing for file, in JSON format
 * @param file The file for which we want to do directory
listing
 * @return JSONObject representation of directory list. e.g
{"filename":"/sdcard","isdir":true,"children":
[{"filename":"a.txt","isdir":false},{..}]}
 * @throws JSONException
 */
 private JSONObject getDirectoryListing(File file)
 throws JSONException {
 JSONObject fileInfo = new JSONObject();
 fileInfo.put("filename", file.getName());
 fileInfo.put("isdir", file.isDirectory());

 if (file.isDirectory()) {
 JSONArray children = new JSONArray();
 fileInfo.put("children", children);
 if (null != file.listFiles()) {
 for (File child : file.listFiles()) {
 children.put(getDirectoryListing(child));
 }
 }
 }

 return fileInfo;
 }
}

6. Save the file.

These are all the changes needed for the Hybrid Web Container; you can now build it and
install it on the device. What the plug-in actually does is implemented in the Java file in the
execute function. The rest of this example explains how to test and use the PhoneGap
plug-in.

7. Test the plug-in:

a) Create a new Mobile Workflow application:

1. Select File > New > Mobile Application Project.
2. In Project name, enter PhonegapTest.

3. Click Finish.
b) Right-click the PhonegapTest project folder and select New > Mobile Workflow

Forms Editor.
c) Click Next.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 117

d) Select Can be started, on demand, from the client and click Finish.
e) Add an HtmlView control to the start screen of the Mobile Workflow application.

For this example, the HtmlView control key's name is "key2." This is the key name you
will use in the custom.js file for the customAfterWorkflowLoad()
function.

f) Run the Mobile Workflow Package Generation wizard to create the Generated
Workflow directory structure Generated Workflow\PhonegapTest\ html
\js.

g) Add your JavaScript implementation to the generated js folder, for example,
directorylisting.js,, and paste in this code:

/**
 *
 * @return Instance of DirectoryListing
 */
var DirectoryListing = function() {

}

/**
 * @param directory The directory for which we want the listing
 * @param successCallback The callback which will be called when
directory listing is successful
 * @param failureCallback The callback which will be called when
directory listing encouters an error
 */
DirectoryListing.prototype.list =
function(directory,successCallback, failureCallback) {

 return PhoneGap.exec(successCallback, //Callback which
will be called when directory listing is successful
 failureCallback, //Callback which will
be called when directory listing encounters an error
 'DirectoryListPlugin', //Telling PhoneGap
that we want to run "DirectoryListing" Plugin
 'list', //Telling the plugin,
which action we want to perform
 [directory]); //Passing a list of
arguments to the plugin, in this case this is the directory path
};

/**
 *
 * Register the Directory Listing Javascript plugin.
 * Also register native call which will be called when this
plugin runs
 *
 */
PhoneGap.addConstructor(function() {
 //Register the javascript plugin with PhoneGap
 PhoneGap.addPlugin('directorylisting', new
DirectoryListing());
});

Mobile Workflow Development

118 Sybase Unwired Platform

This code has a wrapper for the PhoneGap plug-in execution call, and adds the custom
plug-in to the list of known PhoneGap plug-ins.

h) Open the custom.js file for editing and add this code, which makes use of the plug-
in, to the customAfterWorkflowLoad() function:
var directoryListingFunction = function()
{

 var dl = new DirectoryListing();

 function onSuccess(r)
 {
 var replace = document.getElementById('key2');
 if(replace)
 {
 var theHtml = "<html><head><title>A Title</
title></head><body>Top level contents of sd card:
";
 if(r.children)
 {
 var index = 0;
 for(index = 0; index <=
r.children.length;index++)
 {
 if(r.children[index]){
 theHtml += r.children[index].filename +
"
";
 }
 }
 }
 else
 {
 alert("No r.children!!");
 }
 theHtml +="</body></html>";
 replace.innerHTML = theHtml;
 }
 }

 function onError(e)
 {
 alert("Error: " + e);
 }

 var result = dl.list("/sdcard", onSuccess, onError);

 }

 directoryListingFunction();

i) Generate the Mobile Workflow Package again.
j) Assign the Mobile Workflow to a device that has the modified Hybrid Web Container

(that was built after steps 1 through 4).
k) On the device, run the Mobile Workflow application. You may want to add some files

to the SD card so you get non-trivial results. The Mobile Workflow application should
look something like the following (depending on what you put on the SD card):

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 119

Custom Plug-ins for the iOS Hybrid Web Container
Integrate PhoneGap plug-ins with the iOS Hybrid Web Container.

In general, adding a custom plug-in to Hybrid Web Container is identical to adding a plug-in to
any PhoneGap application. The basic steps are as follows (see the PhoneGap Wiki for
details).

1. Implement the plug-in class that extends PGPlugin in an .h and .m file.
2. Implement the PhoneGap plug-in JavaScript.
3. Edit the PhoneGap plist file with a new plug-in entry.
4. Use the plug-in from JavaScript.

Adding a Custom Plug-in to the iOS Hybrid Web Container
An example plug-in class that allows access to the iOS network activity monitor is available in
WorkFlow/Classes/Plugins.

1. Copy the networkActivityMonitor.h and networkActivityMonitor.m
files from WorkFlow/Classes/Plugins to the Workflow.xcodeproj project.

2. Add the networkActivityMonitor.js to the Generated Workflow/
<Workflow_Name>/html/js/ directory that corresponds with the Eclipse project that
generated the Workflow.

3. Modify Custom.js for any event desired to call the new plug-in.

Here is an example that reacts to a menu item and uses a global variable to toggle the
activity indicator on and off.:
var gActIndicator = true; // global variable

function customAfterMenuItemClick(screen, menuItem) {
if (screen === "Start" && menuItem === "networkActivityIndicator")
{
window.plugins.networkActivityIndicator.set(gActIndicator,
aiSuccess, aiFail);
// Toggle the network activity indicator each time plugin is
selected
if (gActIndicator)
gActIndicator = false;

Mobile Workflow Development

120 Sybase Unwired Platform

http://wiki.phonegap.com/w/page/36753496/How%20to%20Create%20a%20PhoneGap%20Plugin%20for%20iOS
http://wiki.phonegap.com/w/page/36753496/How%20to%20Create%20a%20PhoneGap%20Plugin%20for%20iOS

else
gActIndicator = true;
return false;
}
}

function aiSuccess() {
alert("Successfully enabled activity indicator");
}

function aiFail() {
alert("Failed to enable activity indicator");
}

4. Add a plug-in entry to PhoneGap.plist:

Key: networkActivityIndicator
Type: String
Value: networkActivityIndicator

5. Generate and deploy the Workflow application.

6. Test the event in the Custom.js that is hooked into the new plug-in.

If the plug-in requires additional resources, such as images or other files, these should be
added to the project under the Resources group folder. For example, the ChildBrowser
plug-in available at github.com contains icons that are stored in a file called
ChildBrowser.bundle. In this example, the ChildBrowser.bundle should be
added to the Resources group folder in the project in Xcode.

Some plug ins also require files to be in a www/ directory. The notification.beep
API is one example. If this is the case, add the resources to the www directory that is
referenced by the project under the Resources group folder as described in Step 7 in
Upgrading the PhoneGap Library used by the iOS Hybrid Web Container.

Mobile Workflow Package Customization
The designer-based user interface is customizable using HTML, JavaScript and CSS Web
technologies.

Adding Custom Code
Use JavaScript code to customize the Mobile Workflow application.

1. Use the Mobile Workflow Package Generation wizard to generate the Mobile Workflow
package and its files.

When the Mobile Workflow package is generated, the Custom.js file is generated if not
already present in the project. The Custom.js file is located in Generated
Workflows\<workflow_project_name>\html\js.

2. Right-click the Custom.js file and select the editor with which to open the file.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 121

https://github.com/purplecabbage/phonegap-plugins/tree/master/iPhone/ChildBrowser

3. Add your JavaScript code.

You can also add your own separate JavaScript files to Generated Workflows
\<workflow_project_name>\html\js, then add custom code to the
Custom.js file that calls the functions in the JavaScript files you added. This prevents
the Custom.js file from becoming extremely long, which makes it difficult if multiple
developers are working on the same Mobile Workflow application simultaneously.

4. Save and close the Custom.js file.

Since the Custom.js file is generated only if it is not already present in the Mobile
Workflow project, this file will not be re-generated if you subsequently re-generate the
Mobile Workflow package, so any modifications you make are preserved.

5. Deploy the Mobile Workflow package to Unwired Server.

Adding Local Resources to a Mobile Workflow Project
When loading resources using custom JavaScript, be aware of the folder structure.

Depending on localization, the structure and path to the local resource may be different.
Possible folder paths include:

• .../html/default/workflow.html
• .../html/{locale}/workflow.html
• .../html/workflow.html

Referencing custom resources in HTML elements requires the use of relative URLs. The
parent directory may be the HTML directory, the root, or something else. There is no
guarantee that the URL structure is always http://hostname/html/workflow.html. It is possible
to copy the resources into each localization directory or reference the resources from one
directory (paying attention to localization paths).

An example of a useful helper function to get the relative path to the HTML directory is:
/**
 * Returns relative URL to the html directory
 */
function getRelativeRoot()
{
 return ((resources != null) ? "../" : ""
}

// Helper function usage
var imageElement = document.getElementById("ImageElement");
imageElement.src = getRelativeRoot() + "images/myImage.gif";

Generated Mobile Workflow Files
When you generate mobile workflow package files, some files are generated every time and
others are generated only under certain conditions.

These files are generated every time you generate the mobile workflow package:

Mobile Workflow Development

122 Sybase Unwired Platform

• manifest.xml – describes how the contents of the Mobile Workflow package .zip file
are organized.

• workflow_name.zip – contains all of the Mobile Workflow files, including the Web
application files, look and feel files, the JavaScript files, and so on.

These files are regenerated only if you select the Generate option in the Mobile Workflow
Package Generation wizard:

• workflow_name.html – an HTML file that describes simple workflow screens and
forms. Default name: workflow.html.

• workflow_name_CustomLookAndFeel.html – a workflow html file that adds
Sybase JavaScript functions and CSS styles.

• workflow_name_jQueryMobileLookAndFeel.html – a workflow html file
that adds jQuery Mobile functions and CSS styles.

• WorkflowClient.xml – contains metadata that specifies how to map the data in the
workflow message to and from calls to Mobile Business Object (MBO) operations and
object queries.

• workflow_name.xml – look and feel file that uses the basic
workflow_name.html file.

• Resources.js – allows you to access localized string resources.

• Workflow.js – contains functions for common menu, screen, and database operations.

These files are generated only if you select the Generate option and the files do not exist:

• API.js and Utils.js – provide Mobile Workflow functions used to communicate
with the Hybrid Web container.

• Custom.js – enables you to add JavaScript code to customize the Mobile Workflow
application. Your file is preserved each time you regenerate the package.

• WorkflowMessage.js – provides functions to access Workflow Message resources.

• All *.css files – defines formatting rules to render the screens in HTML.

When you generate the mobile workflow package into the current project, the ZIP file
containing the mobile workflow application and its files is placed in the Generated
Workflow folder in the project, for example, C:\Documents and Settings
\username\workspace\Project_Name\Generated Workflow. The files are
shown in the WorkSpace Navigator. This shows the generated file structure for a project
named PurchaseOrder.

The Generated Workflow\project_name folder contains:

• html – this folder includes:

• workflow.html – contains all the screens in the Hybrid App, each in its own <div>
section. This is used on BlackBerry, Android, and iOS platforms with the Optimize for
performance look and feel. On Windows Mobile, it is used for all looks-and-feels.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 123

• workflow_customlookandfeel.html – contains all the screens in the Hybrid
App. This is used with the Optimize for appearance look and feel on BlackBerry 5.0

• workflow_jquerymobilelookandfeel.html – contains all the screens in
the Hybrid App. This is used with the Optimize for appearance look and feel on iOS,
BlackBerry 6.0, and Android.

• js\Custom.js – edit this file to customize the Mobile Workflow application. Since
you can modify this file, it is generated only once, or when not already present in the
generated files. This ensures that it is not overwritten if you subsequently regenerate
the Mobile Workflow package. Examples of ways you can customize the Mobile
Workflow application include:
• Manipulating HTML elements.
• Writing code that is called before or after generated behavior is invoked for menu

items.
• Implementing custom validation logic.

• <project_name>.zip – contains the mobile workflow application and its files,
including the images, user interface, and controls

Look and Feel Files
By default, on BlackBerry 6.0, Android and iOS platforms, the jQuery Mobile look and feel is
used. On BlackBerry 5.0, a custom look and feel is used as the default.

Note: In Preferences, Optimize for appearance is the default look and feel.

CSS files include:

• jquery.mobile-1.0.css – located in Generated Workflow
\<mobile_workflow_name>\html\css\jquery folder and used on
BlackBerry 6.0, Android, and iOS platforms. By default, pages are generated using the B
data theme. Modify the ui-body-a class selector in this file to modify the look and feel,
for example, the background image or color.

• master.css– located in Generated Workflow\<mobile_workflow_name>
\html\css\bb and used on the BlackBerry 5.0 platform. This is used on the
BlackBerry 5.0 platform when the Optimize for appearance preference is selected. Modify
the body selector to change the look and feel, for example, the background color.

• stylesheet.css – located in Generated Workflow
\<mobile_workflow_name>\html\css. This look and feel is considerably
simpler, using no JavaScript code to manipulate the controls, and only a single CSS file.
This style sheet is used on all platforms for the Optimize for performance preference is
selected. To modify the background color for this look and feel, modify the body selector.

BlackBerry 6.0, Android, and iOS Look and Feel
The default look and feel for BlackBerry 6.0, Android, and iOS is provided by the jQuery
Mobile framework.

For this look and feel, the layout of the HTML at a high level is:

Mobile Workflow Development

124 Sybase Unwired Platform

• Each screen has a block, contained in a <div> element, with a data-role of "page" and a
data-theme of 'a.' Each <div> has a <div> with a data-role of "header," and a child element
for the menu. Use the contents of the header <div> to manipulate the menu.
<div data-role="page" data-theme='a'
id="Department_createScreenDiv">
 <div data-role="header" data-position="inline">
 <a data-icon="arrow-l"
id="Department_createScreenDivCancel" name="Cancel"
onclick="menuItemCallbackDepartment_createCancel();"> Cancel
 <h1>Department_create</h1>
 <a id="Department_createScreenDivCreate" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">
Create
 </div>

• The menu has one anchor, <a>, for each menu item:
<a id="Department_createScreenDivCreate" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">
Create

• In addition to a menu, each screen <div> has a <div> with a data-role of "content," a child
element where the controls are hosted. The content <div> has a child <div> with a data-
role of "scroller." This <div> in turn has a form with a number of <div>s. The "content"
<div> is where you can do customizations, for example, branding.
<div data-role="content" class="wrapper" >
 <div data-role="scroller">
 <form name="Department_createForm"
id="Department_createForm">
 <div class="customTopOfFormStyle" ><span
id="Department_createForm_help" class="help"></div>
 <div class="customTopOfFormStyle"
id="topOfDepartment_createForm"></div>
 <div class="editbox">
 <label class="left"
for="Department_create_dept_name_paramKey">Dept name:</label>
 <input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_name_paramKey_help"
class="help">
 </div>

The first <div> is a block for use to display help, a element.
The next <div> is a built-in element that can be used to find the top of the form. The last
<div> is another built-in element that can be used to find the bottom of the form.
If you look into Custom.js file, it is recommended that you add customizations such as
branding to the <div> "TopOf" ScreenKey "Form" and "bottomOf" screenKey "Form."
For example:
/*
var screenKey = getCurrentScreen();
var form = document.forms[screenKey "Form"];
if (form) {
var topOfFormElem = document.getElementById("topOf" screenKey
"Form");

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 125

! topOfFormElem.innerHTML = "Use this screen to ...";
var bottomOfFormElem = document.getElementById("bottomOf"
screenKey "Form");
bottomOfFormElem.innerHTML = "Click here to
open help";
}
*/

All the other <div>s in the form correspond to the controls put on that screen during design
time in the Mobile Workflow Forms editor. You might see, for example, a <div> that holds
a label, <label>, and a textbox, <input>. When the page is opened, the controls are
enhanced by jQuery Mobile to supply additional functionality for controls like buttons,
sliders, text inputs, and combo boxes.

A typical mobile workflow with this look and feel, without extraneous attributes, looks similar
to this:
<html>
 <body onload="onWorkflowLoad();">
 <div data-role="page" data-theme='a'
id="Department_createScreenDiv">
 <div data-role="header" data-position="inline">
 <a data-icon="arrow-l" id="Department_createScreenDivCancel"
name="Cancel" onclick="menuItemCallbackDepartment_createCancel();">
Cancel
 <h1>Department_create</h1>
 <a id="Department_createScreenDivCreate" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">
Create
 </div>
 <div data-role="content" class="wrapper" >
 <div data-role="scroller">
 <form name="Department_createForm"
id="Department_createForm">
 <div class="customTopOfFormStyle" ><span
id="Department_createForm_help" class="help"></div>
 <div class="customTopOfFormStyle"
id="topOfDepartment_createForm"></div>
 <div class="editbox">
 <label class="left"
for="Department_create_dept_name_paramKey">Dept name:</label>
 <input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_name_paramKey_help"
class="help">
 </div>
 <div class="customBottomOfFormStyle"
id="bottomOfDepartment_createForm"></div>
 </form>
 </div>
 </div>
 </div>
 </body>
</html>

Mobile Workflow Development

126 Sybase Unwired Platform

BlackBerry 5.0 Look and Feel
A custom look and feel is used, by default, for BlackBerry 5.0.

Each screen has a block, a <div>. Each <div> has a form, <form>, where the controls are
hosted. Each form has a number of divs. The first div has a block put aside for use to display
help, a element. The next div is a built-in element that can be used to find the top of the
form. The last div is another built-in element that can be used to find the bottom of the form.
All the divs in the form correspond to the controls put on that screen in the Mobile Workflow
Forms Editor. You might get, for example, a <div> that holds a label, <label>, and a textbox,
<input>.

A typical mobile workflow with this look and feel, without extraneous attributes, looks similar
to this:
<html>
 <body onload="onWorkflowLoad();">
 <div id="Department_createScreenDiv">
 <form name="Department_createForm"
id="Department_createForm">
 <div class="customTopOfFormStyle" ><span
id="Department_createForm_help" class="help"></div>
 <div class="customTopOfFormStyle"
id="topOfDepartment_createForm"></div>
 <div class="editbox">
 <label class="left"
for="Department_create_dept_name_paramKey">Dept id:</label>
 <input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_id_paramKey_help"
class="help">
 </div>
 </form>
 </div>
 </body>
</html>

Optimized for Performance Look and Feel
This is a simple look and feel you can use on all platforms.

Note: Windows Mobile 6.x Professional platforms always use the Optimized for performance
look and feel, as this platform is not supported by jQuery Mobile.

Choose the Optimized for performance option when you configure Mobile Workflow
Forms Editor preferences. For this look and feel, the layout of the HTML at a high level is:

• Each screen has a block, a <div> element. Each of those <div> elements has an unordered
list element, , a child element for the menu. The menu has one list item, , for each
menu item.

• In addition to a menu, each <div> has a form element, <form>, where the controls are
hosted.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 127

• Each form has a single table, <table>, with a number of table rows, <tr>. The first table row
has a block to display help, a element. The next table row is a built-in element, a
table data or <td>, that can be used to find the top of the form.

• The last table row is another built-in element, a <td>, that can be used to find the bottom of
the form.

• All the other rows in the form correspond to the controls put on that screen in the Mobile
Workflow Forms editor. You might get, for example, a row with two table datas, the first
holding a <label> and the second holding a textbox (<input>).

• A column can have only one width, so if you have more than one line, one column may
contain different widths, which means the last width prevails. The contents of a field are
wrapped only where there is a space. If there is no space, the contents are not wrapped. As a
result, depending on the length of the data, Listviews may not respect the field widths
specified in the Mobile Workflow Forms Editor with this look-and-feel.

A typical mobile workflow with this look and feel, without extraneous attributes, looks similar
to this:
<html>
 <body onload="onWorkflowLoad();">
 <div id="Department_createScreenDiv">
 <ul id="Department_createScreenDivMenu" class="menu">
 <a class="nav" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">Creat
e
 <a class="nav" name="Cancel"
onclick="menuItemCallbackDepartment_createCancel();">Cancel</
li>

 <form name="Department_createForm"
id="Department_createForm">
 <table class="screen">
 <tr>
 <td colspan="2"><span id="Department_createForm_help"
class="help"></td>
 </tr>
 <tr>
 <td colspan="2" id="topOfDepartment_createForm"></td>
 </tr>
 <tr>
 <td class="left"><label
for="Department_create_dept_name_paramKey">Dept name:</label></td>
 <td class="right"><input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_name_paramKey_help"
class="help"></td>
 </tr>
 <tr><td colspan="2" id="bottomOfDepartment_createForm"></
td></tr></table>
 </form>
 </div>
 </body>
</html>

Mobile Workflow Development

128 Sybase Unwired Platform

Reference
This section describes the generated files and the Workflow client API.

Workflow Client API
Sybase Unwired Platform Mobile Workflow applications include a JavaScript API that open
Mobile Workflow applications to customization, from including client-side business logic to
changing the presentation layer.

Use the client API to build custom applications to support Sybase Unwired Platform Mobile
Workflow features and functionality.

Public JavaScript Functions
The JavaScript files contain the functions that you can access for use with your Mobile
Workflow package customization.

These JavaScript files are also included:

• Utils.js – does not contain public functions to call
• Workflow.js – does not contain public functions to call
• json2.js – third-party library. For information about the functions in this library, see the

JSON documentation.at http://json.org
• phonegap-1.4.1.javascript – contains PhoneGap APIs. For information about PhoneGap

APIs, see the documentation at www.phonegap.com.

API.js
The API.js file contains several different types of functions.

They include:

General Utility Functions
This file gives you access to the Mobile Workflow general utility functions.

All of general utility functions are synchronous.

Method Description

guid() Generates a unique string.

S4() This function is for use in generating a GUID.

trimSpaces(str) Removes spaces from the specified string.

str – the specified string.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 129

http://json.org
http://docs.phonegap.com/en/1.4.1/index.html

Method Description

convertToValidJavaScriptName(str) Converts the specified string to one that is a valid JavaScript
function name.

str – the specified string.

escapeValue(str) Replaces all instances in the specified string:

• Of the & character with '&'.

• Of the < character with '<'.

• Of the > character with '>'.

• Of the " (quotation mark) character with '"'.

• Of the ' (apostrophe) character with '''.

str – the specified string.

unescapeValue(str) Replaces all instances in the specified string:

• Of the '&' substring with ‘&’.

• Of the '<’ substring with '<’.

• Of the ‘>’ substring with ‘>’.

• Of the ‘"’ substring with '"'.

• Of the ‘'’ substring with '''.

str – the specified string.

isIOS() Returns true if the Mobile Workflow application is running

on an iOS platform.

isBlackBerry() Returns true if the Mobile Workflow application is running

on a BlackBerry platform.

isBlackBerry5() Returns true if the Mobile Workflow application is running

on the BlackBerry 5 platform.

isBlackBerry5WithTouchScreen() Returns true if the Mobile Workflow application is running on
the BlackBerry 5 platform with touchscreen capabilities.

isBlackBerry6NonTouchScreen() Returns true if the Mobile Workflow application is running on
a BlackBerry 6 platform without touchscreen capabilities.

isWindowsMobile() Returns true if the Mobile Workflow application is running

on a Windows Mobile Professional platform.

isWindows() Returns true if the Mobile Workflow application is running on
a Windows platform.

Mobile Workflow Development

130 Sybase Unwired Platform

Method Description

isAndroid() Returns true if the Mobile Workflow application is running on
the Android platform.

isAndroid3() Returns true if the Mobile Workflow application is running on
the Android 3.0 platform.

isLocaleDatetimeFormat(htmlEle-
ment)

Returns true if the specified HTML element has an attribute

indicating that it should use a locale-specific display.

• htmlElement – the specified HTML element.

• attributeName – the attribute name.

getAttribute(htmlElement, attribute-
Name)

Reliably returns the specified attribute value for the specified
HTML element.

• htmlElement – the specified HTML element.

• attributeName – the attribute name.

getElementsByTagName(htmlEle-
ment, tagName)

Reliably returns the list of elements with the specified tag
name, searching only the subtree underneath the specified
element.

• htmlElement – the specified HTML element.

• tagName – the specified tag name.

isSomeFormOfParent(htmlElement,
htmlElementToTest)

Determines whether the second specified HTML element is
an ancestor of the first specified HTML element.

• htmlElement – the specified HTML element.

• htmlElementToTest – the HTML element to test.

getFormElementById(formEle-
ment, elementID)

Returns the form element with the specified ID.

• formElement – the form element.

• elementId – the specified ID.

getXMLHTTPRequest() Reliably returns an XMLHttpRequest object.

Note: This method is supported only on BlackBerry and
Windows Mobile platforms.

getURLParam(paramName) Returns the specified parameter value from the current URL
(window.location.href).

paramName – the specified parameter name.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 131

Mobile Workflow Utility Functions
Methods that allow you to access the Mobile Workflow utility functions.

All of the Mobile Workflow utility functions are synchronous.

Method Description

getISODateString(date) Returns a string representation of the specified
date (currently in yyyy-mm-dd format only).

date – the specified date.

getLocaleDateString(date) Returns a string representation of the specified
date using a locale-specific display.

date – the specified date.

getISODateTimeStringToDisplay(datetime, pre-
cision)

Returns a string representation of the specified
date with the specified precision (currently in
yyyy-mm-ddThh, yyyy-mm-ddThh:mm or yyyy-
mm-ddThh:mm:ss format only, depending on the
precision string (HOURS, MINUTES, SEC-
ONDS)).

• datetime – the specified datetime.

• precision – (optional) the specified precision,
determines the precision used when round-
ing.

getLocaleDateTimeString(datetime) Returns a string representation of the specified
datetime using a locale-specific display.

datetime – the specified datetime.

getISOTimeString(time, precision) Returns a string representation of the specified
time with the specified precision (currently in hh,
hh:mm, or hh:mm:ss format only, depending on
the precision string—HOURS, MINUTES, or
SECONDS).

• time – the specified time.

• precision – (optional) the specified precision,
determines the precision used when round-
ing.

Mobile Workflow Development

132 Sybase Unwired Platform

Method Description

getLocaleTimeString(time) Returns a string representation of the specified
time using a locale-specific display.

time – the specified time.

getTimeStringToDisplayFromStr(datetime, pre-
cision)

Returns a string representation of the specified
datetime string as a time with the specified pre-
cision—HOURS, MINUTES, or SECONDS.

• datetime – the specified datetime.

• precision – (optional) the specified precision,
determines the precision used when round-
ing.

getDateFromExpression(toolingStr) Returns a date for the specified string, which must
be either a string representation of a date or of the
form “today” or “today+d” or “today-d”, where d
is a number of days.

toolingStr – the date as specified in the Mobile
Workflow Forms editor.

parseBoolean(value) Returns true if the specified string is equal, in a
case-insensitive way, to true.

parseDateTime(value) Returns a date that corresponds to the specified
string.

parseTime(value) Returns a date that corresponds to the specified
string.

convertToSUPType(typeAttribute) Returns the XmlWorkflowMessage type for the
type attribute value.

• typeAttribute – the type of the specified
HTML element.

getHTMLValue(htmlElement, typeAttribute) Returns a string representation of the specified
HTML element’s value.

• htmlElement – the specified HTML element.

• typeAttribute – the type of the specified
HTML element.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 133

Method Description

setHTMLValue(htmlElement, value, screen-
Name, adjustForUTC)

Sets the value of the specified HTML element
from the specified string representation of the
value.

• htmlElement – the specified HTML element.

• value – the new value.

• screenName – the screen on which the HTML
element appears.

• adjustForUTC – hardware clock will adjust
for coordinated universal time (UTC)

resetHTMLValue(htmlElement, screenName) Resets the value of the specified HTML element.

• htmlElement – the specified HTML element.

• screenName – the screen on which the HTML
element appears.

Workflow UI Functions
Functions that allow you to access the Mobile Workflow user interface (UI).

The Mobile Workflow UI functions are synchronous.

Method Description

getCurrentScreen() Returns the key of the current (open) screen.

setCurrentScreen(screenKey) Sets the value of the current (open) screen.

Note: This does not open the specified screen—
this function is called only after the screen has
already been opened.

getPreviousScreen() Returns the key of the screen that was open pre-
vious to the current screen being opened, if ap-
plicable.

getListViewKey(screenName) Returns the key of the first listview on the speci-
fied screen.

screenName – the specified screen.

Mobile Workflow Development

134 Sybase Unwired Platform

Method Description

navigateForward(screenKey, listviewKey) Navigates from the current (open) screen to a new
screen with the specified key.

• screenKey – the screen to open.

• (optional) listViewKey – the listview row for
which the details screen is being opened.

navigateBack(isCancelled) Closes the current screen and returns to the pre-
vious screen, if applicable. If the specified pa-
rameter value is false, the values on the open
screen are persisted to the Mobile Workflow mes-
sage if they pass validation.

isCancelled – true for a Cancel action, false for a
Save action.

updateUIFromMessageValueCollection(screen-
Name, values)

Updates the values of the controls on the given
screen based on the contents of the specified
MessageValueCollection. This func-

tion will rarely, if ever, need to be called.

• screenName – the screen.

• values – the message value collection.

updateMessageValueCollectionFromUI(values,
screenName, keys, keyTypes, updateModified-
Value)

Updates the contents of the specified Messa-
geValueCollection based on the values

of the controls on the given screen. In most cases,
saveScreen is called instead of this function.

• screenName – the screen.

• values – the message value collection.

• (optional) keys – an array of keys, which is a
list of only the keys to be updated.

• (optional) keyTypes – an array of types for the
list of keys, if supplied.

• updateModifiedValue –

removeModifiedMessageValuesBasedOnCur-
rentScreen(values, screenName)

Removes the modified contents of the specified
MessageValueCollection. This func-

tion is called when a screen is cancelled.

• screenName – the screen.

• values – the message value collection.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 135

Method Description

saveScreen(values, screenKey, needsValidation) Saves the contents of the specified screen to the
specified MessageValueCollection. This function
differs from updateMessageValue-
Collection in these ways:

• If directed, it first performs validation on the
screen.

• It supports customization.

• It is capable of handling the credential request
screen.

Parameters include:

• values – the current message value collection.

• screenKey – the current screen.

• (optional) needsValidation – false if valida-
tion should not be done before saving, true (or
unspecified) if validation should be done be-
fore saving. Returns true if saving (and vali-
dation, if requested) was successful, other-
wise, returns false.

saveScreens(skipValidation) Saves the contents of all open screens if they are
successfully validated.

skipValidation –

updateUIFromMessageValueCollection
To completely override the behavior provided by updateUIFromMessageValueCollection for
a given screen, provide a UIUpdateHandler object for that screen. That UIUpdateHandler
object has a screenName property, which indicates which screen's behavior it is overriding,
and a callback function that indicates the function to call for that screen. That function is
passed in the relevant MessageValueCollection object and it is its responsibility to update the
controls' values based on its contents. An example of this is:
function MyListViewUpdateHandler() {
 this.screenName = "Prev_Expenses";
 this.values;
 }

 MyListViewUpdateHandler.prototype.callback = function(valuesIn)
{
 // Rows returned from RMI Call
 this.values = valuesIn;

 // construct our table
 try {

Mobile Workflow Development

136 Sybase Unwired Platform

 var mvc =
this.values.getData("PurchaseTrackingJC_findOtherRequests_resultSet
Key");
 var txt = "";
 var htmlOut = "<p>";

 // Do we have any rows to display?
 if (mvc.value.length > 0) {
 // Start the table and header
 htmlOut += "<table id='MyPrevExpensesTable'
class='altrowstable'>";
 htmlOut += "<tr><th>Item Name</th><th>Cost</th></tr>";

 // Draw the rows+H15
 for (var rows = 0; rows < mvc.value.length; rows++) {
 var mvName =
mvc.value[rows].getData("PurchaseTrackingJC_itemName_attribKey");
 var mvCost =
mvc.value[rows].getData("PurchaseTrackingJC_itemCost_attribKey");

 if (mvName && mvCost) {
 // Alternate the row colors
 htmlOut += "<tr
onclick='navigateForward(\"Prev_Expenses_Detail\", " +
mvc.value[rows].getKey() + ");'";
 if (rows % 2 == 0) {
 htmlOut += " class='evenrowcolor'>";
 }
 else {
 htmlOut += " class='oddrowcolor'>";
 }

 htmlOut += "<td>" + mvName.getValue() + "</
td><td>" + mvCost.getValue(); +"</td></tr>";
 }
 }

 // Finish the table
 htmlOut += "</table>";
 }
 else {
 htmlOut += "No rows returned.";
 }
 htmlOut += "</p>";

 //Now add the table to the document
 var form = document.forms[curScreenKey + "Form"];
 if (form) {
 //var topOfFormElem = document.getElementById("topOf" +
curScreenKey + "Form");

 var topOfFormElem =
document.getElementById("PurchaseTrackingJC_findOtherRequests_resul
tSetKey");
 topOfFormElem.innerHTML = htmlOut;
 }

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 137

 }
 catch (e) {
 alert(e.message);
 }
 } // function callback

 function customAfterWorkflowLoad() {
 //Setup UIHandler to draw our Listview Screen
 UIUpdateHandlers[0] = new MyListViewUpdateHandler();
 }

Mobile Workflow Native Device Functions
Access the native features of the device using the native device functions.

Method Description

setScreenTitle(screenKey, screenTitle) Sets the specified screen’s title based on its sup_screen_ti-
tle attribute value.

• screenKey – the screen.

• (optional) screenTitle – an explicit screen title to use
rather than the sup_screen_title attribute value.

closeWorkflow() Closes the Mobile Workflow application.

addMenuItem(menuItemName, func-
tionName, subMenuName, screenToSh-
ow)

Allows the user to add a native menu item with the speci-
fied name and with the specified callback, which is in-
voked when the menu item is clicked.

• menuItemName – the specified menu item name.

• functionName – the specified callback name.

• (optional) subMenuName – the specific submenu
name for Windows Mobile platforms.

• screenToShow – the screen that is about to be shown.
This is an optional parameter; if it is not supplied, it is
assumed that you are adding the menu item to current
screen.

removeAllMenuItems() Removes all native menu items.

Note: Removes all menu items from the current screen.
On iOS devices, all the menu buttons on the header and
footer bars are removed. On Blackberry and Android de-
vices, all native menus are removed. It is recommended
that this method be called from customAfter-

ShowScreen.

Mobile Workflow Development

138 Sybase Unwired Platform

Method Description

clearCache() Allows the user to clear the contents of the on-device
request result cache for the current workflow.

clearCacheItem(cacheKey) Allows the user to clear an item from the contents of the
on-device request result cache for the current Mobile
Workflow form.

cacheKey – the key for the item to be removed. See the
Workflow.js file for details on how to construct this.

Note: This function is for the "Online Request" cache only
and does not apply to cached credentials.

logToWorkflow(message, level, noti-
fyUser)

Allows the user to log a message to the device trace log,
which can be remotely retrieved from the server.

• message – message to log.

• level – level at which to log (ERROR, WARN, INFO,
or DEBUG).

• notifyUser – if true, an alert dialog is shown before
logging commences.

showCertificatePicker() Opens a form on the device that allows the user to specify
the credentials through the use of certificate-based au-
thentication.

showUrlInBrowser(url) Open the supplied URL in the browser.

Use this method only for opening external HTML files. To
open a local HTML file, you must add an HtmlView con-
trol to the screen and use something similar to the follow-
ing for the control's value:

<iframe src="./local_file_name.html"
width="100%" height="80%">
<p>Your browser does not support
iframes.</p>
</iframe>

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 139

Method Description

showAttachmentContents(contents,
mimeType, fileName)

Shows the given file contents in a content-appropriate
way. The content type is supplied by either the MIME type
or the file name, at least one of which must be supplied.
The content itself should be presented as a Base64-enco-
ded string.

• contents – the Base64-encoded version of the binary
content of the attachment to show.

• mimeType – (optional) the MIME type of the file.

• fileName – (optional) the name of the file.

showAttachmentFromCache(unique-
Key, mimeType, fileName)

Shows the given file contents in a content-appropriate
way. The content type is supplied by either the MIME type
or the file name, at least one of which must be supplied.
The content itself is a unique key supplied earlier to a call
to doOnlineRequest.

• uniqueKey – the unique key for the attachment.

• (optional) mimeType – the MIME type of the file.

• (optional) fileName – the name of the file.

showLocalAttachment(key) Shows a local attachment.

key – the key.

Mobile Workflow Development

140 Sybase Unwired Platform

Method Description

doOnlineRequest(screenKey, reques-
tAction, timeout, cacheTimeout, error-
Message, errorCallback, workflowMes-
sageToSend, cacheKey)

Allows the user to cause an operation/object query to be
invoked.

• screenKey – the specified screen on which the submit
is occurring.

• requestAction – the specified action for the submit.

• timeout – specifies the time, in seconds, to wait for a
response.

• cacheTimeout – specifies the time, in seconds, since
the last invocation with the same input parameter val-
ues, to use the same response as previously retrieved
without making a new call to the server.

• errorMessage – specifies the string to show if an on-
line request fails.

• errorCallback – name of the function to be called if an
online request fails.

• workflowMessageToSend – Mobile Workflow mes-
sage that is sent as the input in an online request.

• cacheKey – string used as the key for this request in
the on-device request result cache.

doAttachmentDownload(screenKey, re-
questAction, workflowMessageToSend,
attachmentKey, requestGUID, down-
loadCompleteCallback)

• screenKey – the specified screen on which the submit
is occurring.

• requestAction – the specified action for the submit.

• workflowMessageToSend – the Mobile Workflow
message that is sent as the input in an online request.

• attachmentKey – the specified key of the result is not
returned in the workflow message but is, instead,
stored on the device for later access.

• requestGUID – if specified, represents a unique key
that can be used to store/access the cached key value
from the request results. Must be specified if keyToC-
ache is specified. Used to support attachments.

• downloadCompleteCallback – if specified, is a func-
tion that is invoked when the cached value has been
downloaded to the device and is ready to be accessed.
Must be specified if keyToCache is specified. Used to
support attachments.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 141

Method Description

doSubmitWorkflow(screenKey, reques-
tAction, submitMessage, resubmitMes-
sage)

Allows the user to cause an operation/object query to be
invoked. Will close the workflow application when fin-
ished.

• screenKey – the specified screen on which the submit
is occurring.

• requestAction – the specified action for the submit.

• submitMessage – specifies the string to show if an
asynchronous request is successfully submitted.

• resubmitMessage – specifies the string to show if an
asynchronous request is not submitted because the
workflow has already been processed.

showAlertDialog(message, title) Brings up a message dialog with the specified message, or,
optionally, on iOS only, the specified title.

showConfirmDialog(message, title) Shows a confirmation dialog.

showUrlInBrowser(url)

To have a hyperlink in the default value for the HtmlView control, or for doing customization
in Javascript, follow the showUrlInBrowser method without using standard HTML. To add
HTML in the default value for the HtmlView control, you can use something similar to:
<html>
<body>
Welcome to Sybase Mobile Workflow

Your activation was successful, the newly created Workflow
requests will automatically be pushed to you.

For more information contact your administrator or visit us
at:

<a href="javascript:showUrlInBrowser('http://www.sybase.com/
unwiredenterprise')">The Unwired Enterprise
</body>
</html>

View an attachment such as an image, a Word document, a .pdf file, and so on as part of the
Mobile Workflow package. This example uses an image file.

1. Generate the Mobile Workflow package and its files.
2. In WorkSpace Navigator, go to the location where the generated Mobile Workflow files are

located and add an images folder under the html folder, for example, Generated
Workflow\<Workflow_name>\html\images.

3. Copy an image to the images folder.

4. In the Mobile Workflow Forms editor, add a menu item to the Mobile Workflow.

Mobile Workflow Development

142 Sybase Unwired Platform

5. Open the Custom.js file with a text editor and edit the method
customBeforeMenuItemClick:

if (screen === "ScreenKeyName" && menuItem === "ShowAttachment") {
 showLocalAttachment("html/images/ipod.jpg");
 return false;
 }

6. Save and close the Custom.js file.
7. Deploy the Mobile Workflow package to Unwired Server.

Workflow Message Data Functions
Access the mobile workflow application message data functions.

A mobile workflow application has an in-memory data structure where it stores data. This data
is used to update the controls on the screen through
updateUIFromMessageValueCollection(). Values are extracted from those
controls and used to update the data through
updateMessageValueCollectionFromUI().

You can program the data content and use it to make decisions on the client. To get the active
instance of this data structure, you start by calling getWorkflowMessage(). This returns a
WorkflowMessage object. This object has a function, getValues(), that is used to return the
top-level MessageValueCollection object. This object has a list of key-value pairs, represented
by MessageValue objects and is retrieved by calling getData(key). getData() returns either a
single MessageValue object, or an array of MessageValueCollection objects.

Method Description

getCurrentMessageValueCollection(listKey) Recommended for listviews so that the user gets
the appropriate part, or values, of the message, for
the current screen.

Each row in the listview corresponds to a Values
section. So, for example, if the user is on the de-
tails screen and getCurrentMessage-
ValueCollection is called, the portion

that matches the listview row the user clicked
appears. If getWorkflowMessage is

called, the entire message appears.

getWorkflowMessage() Allows the user access to the Mobile Workflow
message.

getMessageValueCollectionForOnlineRe-
quest(screenKey, requestAction, keys, keyTypes)

Gets the message value collection to be sent in an
online request.

A typical mobile workflow message might look similar to this.
WorkflowMessage
 .getHeader() <undefined>

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 143

 .getWorkflowScreen() "salesorderList_newSOCreate"
 .getRequestAction() "Submit_Workflow"
 .getValues() MessageValueCollection
 .getData("salesorderList_newSOCreate_WITHOUT_COMMIT_para
mKey")
 .getKey()
"salesorderList_newSOCreate_WITHOUT_COMMIT_paramKey"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_DOC_TYPE_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_DOC_TYPE_attribKey"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_SALES_ORG_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_SALES_ORG_attribKey
"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_DISTR_CHAN_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_DISTR_CHAN_attribKe
y"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_DIVISION_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_DIVISION_attribKey"
 .getType() "TEXT"
 .getValue() "1"
 .getData("salesorderList_newSOCreate_ORDER_PARTNERS_para
mKey")
 MessageValue
 .getKey()
"salesorderList_newSOCreate_ORDER_PARTNERS_paramKey"
 .getType() "LIST"
 .getValue() MessageValueCollection[]
 [0].getKey() "6476c1a4-94e9-e5a4-b903-
caf2ca613c4a"
 [0].getState() "add"
 [0].getData("PARTN_ROLE")
 MessageValue
 .getKey() "PARTN_ROLE"
 .getType() "TEXT"
 .getValue() "1"
 [0].getData("PARTN_NUMB")
 MessageValue
 .getKey() "PARTN_NUMB"
 .getType() "TEXT"
 .getValue() "1"

Mobile Workflow Development

144 Sybase Unwired Platform

getCurrentMessageValueCollection
Handling individual items
var message = getCurrentMessageValueCollection();

var cityObj = message.getData("Customer_city_attribKey");
var city = cityObj.getValue();

var stateObj = message.getData("Customer_state_attribKey");
var state = stateObj.getValue();

var zipObj = message.getData("Customer_zip_attribKey");
var zip = zipObj.getValue();

List
var message = getCurrentMessageValueCollection();
var itemList = message.getData("CustDocs");

var items = itemList.getValue();
var noOfItems = items.length;
var i = 0;

while (i < noOfItems) {
 var theItems = items[i];
 var
fileNameObj=theItems.getData("CustDocs_fileName_attribKey");
 var fileName = fileNameObj.getValue();
 i = i + 1;
}

Workflow Validation Functions
Workflow validation methods allow you to access the Mobile Workflow application
validation functions.

The Mobile Workflow validation methods are synchronous.

Method Description

setValidationText(helpElement, helpMessage) Sets the text for the specified help element.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 145

Method Description

validateRegularExpression(value, regularExp, user-
SuppliedMsg, helpElement)

Returns true if the specified value matches
the specified regular expression.

• value – the specified value.

• regularExp – the specified regular ex-
pression.

• (Optional) userSuppliedMsg –the mes-
sage to use if the specified value is in-
valid.

• (Optional) helpElement – the help ele-
ment.

validateDate(value, required, minValue, maxValue,
userSuppliedMsg, helpElement)

Returns 0 if the specified value represents a
valid date, given the constraints specified;
otherwise, returns an error code.

• value – the specified value.

• (Optional) required – true if the value
must be specified, otherwise, false.

• (Optional)minValue – the minimum al-
lowable value.

• (Optional) maxValue – the maximum
allowable value.

• (Optional) userSuppliedMsg – the mes-
sage to use if the specified value is in-
valid.

• (Optional) helpElement – the help ele-
ment.

Mobile Workflow Development

146 Sybase Unwired Platform

Method Description

validateDateTime(value, required, minValue, maxVal-
ue, userSuppliedMsg, helpElement)

Returns 0 if the specified value represents a
valid datetime, given the constraints speci-
fied; otherwise, returns an error code.

• value – the specified value.

• (Optional) required – true if the value
must be specified, otherwise, false.

• (Optional) minValue – the minimum al-
lowable value.

• (Optional) maxValue – the maximum
allowable value.

• (Optional) userSuppliedMsg – the mes-
sage to use if the specified value is in-
valid.

• (Optional) helpElement – the help ele-
ment.

validateTime(value, required, minValue, maxValue,
userSuppliedMsg, helpElement)

Returns 0 if the specified value represents a
valid time, given the constraints specified;
otherwise, returns an error code.

• value – the specified value.

• (Optional) required – true if the value
must be specified, otherwise, false.

• (Optional) minValue – the minimum al-
lowable value.

• (Optional) maxValue – the maximum
allowable value.

• (Optional) userSuppliedMsg – the mes-
sage to use if the specified value is in-
valid.

• (Optional) helpElement – the help ele-
ment.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 147

Method Description

validateNumber(value, required, minValue, maxVal-
ue, numOfDecimals, maxLength, userSuppliedMsg,
helpElement)

Returns 0 if the specified value represents a
valid number, given the constraints speci-
fied; otherwise, returns an error code.

• value – the specified value.

• (Optional) required – true if the value
must be specified, otherwise, false.

• (Optional) minValue – the minimum al-
lowable value.

• (Optional) maxValue – the maximum
allowable value.

• (Optional) numOfDecimals – the max-
imum allowable number of digits after
the decimal place.

• (Optional) maxLength – the maximum
number of characters.

• (Optional) userSuppliedMsg – the mes-
sage to use if the specified value is in-
valid.

• (Optional) helpElement – the help ele-
ment.

validateText(value, required, maxLength, userSup-
pliedMsg, helpElement)

Returns 0 if the specified value represents a
valid text, given the constraints specified;
otherwise, returns an error code.

• value – the specified value.

• (Optional) required – true if the value
must be specified, otherwise, false.

• (Optional) maxLength – the maximum
number of characters.

• (Optional) userSuppliedMsg – the mes-
sage to use if the specified value is in-
valid.

• (Optional) helpElement – the help ele-
ment.

Mobile Workflow Development

148 Sybase Unwired Platform

Method Description

validateEmail(value, helpElement) Returns 0 if the specified value represents a
valid email; otherwise, returns an error
code.

• value– the specified value.

• (Optional) helpElement – the help ele-
ment.

validateControl(screenKey, controlKey, control) Validates the specified control.

• screenKey – the screen the control is on.

• controlKey – the control's key.

• control – the HTML element for the
control.

validateScreen(screenName, values, keysToValidate) Validates the specified screen.

• screenName– the specified screen.

• values – the current message value col-
lection.

• keysToValidate –

validateAllScreens() Validates all open screens.

Credential Functions
Access the Mobile Workflow credential functions.

Method Description

saveLoginCredentials(userName, password) Saves login credentials to the credential cache.

• userName – the user name to save

• password – the password to save

saveLoginCertificate(certificate) Saves login credentials from a certificate. The
common name is used for the user name, and the
signed certificate is used for the password.

Callbacks.js File
This file contains callback functions.

Callback functions are typically used for event handlers that are asynchronous.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 149

Function Description

CallbackSet() Invoked to instantiate a new CallbackSet object.

CallbackSet.prototype.registerCallback() Invoked asynchronously to handle callbacks from
the container.

CallbackSet.prototype.callbackHandler() Invoked asynchronously to handle callbacks from
the container.

Camera.js
Using the Camera.js file, you can take a picture from the camera, or pick one from the
photolibrary and use the picture in the mobile workflow.

getPicture Function
The getPicture function provides access to the device's default camera application or device's
photo library for retrieving a picture asynchronously.

If the SourceType is CAMERA or BOTH, the getPicture function opens the device's default
camera application (if the device has a camera) so the user can take a picture. Once the picture
is taken, the device's camera application closes and the mobile workflow application is
restored. If the device does not have a camera application, the function reports that it is not
supported.

Mobile Workflow Development

150 Sybase Unwired Platform

Function Description

getPicture(onGetPictureError, onGetPictureSuc-
cess, options)

• onGetPictureError – If an error occurs with
the picture chooser or the device camera, an
appropriate error code is returned in the on-
GetPictureError function.

• onGetPictureSuccess (fileName, response) –
the return value is sent to this function

Note: The function defined must use the for-
mat onGetPictureSuccess(fileName, re-
sponse). fileName is required.

• options – picture options:

• PictureOption.SourceType

• CAMERA – specifies the built-in cam-
era as the image source where image
content is not persisted by the device

• PHOTOLIBRARY –specifies the photo
library as the image source where image
content is already persisted on the device

• BOTH –Specifies the built-in camera as
the image source where image content is
persisted by the device

Note: The BOTH source type is not sup-
ported on Android or Windows Mobile.

• PictureOption.DestinationType

• imageUri – returns uniform reference
identifier for the image

• imageData – Deprecated. It is recom-
mended that you use imageUri.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 151

Function Description

onGetPictureError(errorcode) This is a user-defined function. Error codes in-
clude:

• PictureError.NO_ERROR = 0;

• PictureError.NOT_SUPPORTED = -1; –
getPicture() not implemented, camera not
present,

• PictureError.IN_PROGRESS = -2; – getPic-
ture() has already been requested but has not
yet completed.

• PictureError.USER_REJECT = -3; – the user
has canceled the request.

• PictureError.BAD_OPTIONS = -4; – sup-
plied options were not recognized.

• PictureError.TOO_LARGE = -5; – the re-
turned image size was too large to be handled
by JavaScript

• PictureError.UNKNOWN = -6; – an un-
known error occurred.

Mobile Workflow Development

152 Sybase Unwired Platform

Function Description

onGetPictureSuccess(fileName, response) This is a user-defined function. The return value
is sent to the onGetPictureSuccess
function, in one of the following formats, de-
pending on the GetPicture options you

specify. You can take this value and set it as a
value into the MessageValueCollec-
tion function.

• File name – file name of the image

• response – the response will be either a
Base64-encoded JPG string or a URI.

In the code, onGetPictureSuccess(fileName, re-
sponse) will be used as onGetPictureSuccess(fil-
eName, imageURI) or onGetPictureSuccess(fil-
eName, imageData). The parameter should co-
incide with the PictureOption.DestinationType.
There are two conditions:

• destinationType: PictureOption.Destina-
tionType.IMAGE_URI – returns a uniform
reference identifier for the image onGetPic-
tureSuccess(fileName, imageURI)

• destinationType: PictureOption.Destina-
tionType.IMAGE_DATA – returns Base64-
encoded string onGetPictureSuccess(file-
Name, imageData)

Using the getPicture Function for Larger Image Sizes
For larger images, use the IMAGE_URI destination type.

For larger images, use the IMAGE_URI destination type. The MIME type for the image URI
is determined using the extension of the file name parameter in the onGetPictureSuccess
callback. You must add this extension information to the Workflow message as a separate
MessageValue to use it on the server. For the HTML image tags, the browser should be able to
determine the type through the HTTP connection opened on the URI.

You must create a new option object similar to this:
var options = { destinationType:
PictureOption.DestinationType.IMAGE_URI,
 sourceType: PictureOption.SourceType.CAMERA
 };

getPicture(onPictureError, onPictureSuccess, options);

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 153

The destinationType can be PictureOption.DestinationType.IMAGE_DATA (Base64 string
behavior), or the new PictureOption.DestinationType.IMAGE_URI type. Depending on the
destination type specified, the picture success callback's second parameter may be a Base64
string or a URI. The source type can be PictureOption.SourceType.CAMERA,
PictureOption.SourceType.PHOTOLIBRARY., or PictureOption.SourceType.BOTH.

The image URI passed back is expected to be valid and resolvable to the image by the browser.
You can create an HTML image tag with a URI to display the image, for example, . This can also be used
to create thumbnails.

Uploading the Image to the Server for a URI
To upload the image to the server for a URI, you must create a MessageValue in the JavaScript
with a “FILE” type. When the JavaScript Workflow message is serialized it will identify if the
message contains files. During a submit or online request, the query sent to the container will
contain a new query parameter that identifies that this message must be parsed again. The
query looks similar to: ?querytype=submit&parse=true.

Note: When you upload a large image to the server using an online request, rather than a
submit workflow, the image contents come back from the online request, which can result in
too large of a workflow message for the container to handle. It is recommended that you use
the submit workflow action instead of online request action when it is likely that the message
size will be very large, such as when it includes large images.

The custom code must call the function
getWorkflowMessage().setHasFileMessageValue(true); for the parse
query to be sent to the container.

When uploading the image to the server for a URI, the JavaScript looks similar to this
example:
var options = { destinationType:
PictureOption.DestinationType.IMAGE_URI, sourceType:
PictureOption.SourceType.PHOTOLIBRARY };

getPicture(onGetPictureError, onGetPictureSuccess, options);

function onGetPictureSuccess(fileName, imageUri){
 // Set file for upload
 var fileDataKey = "Picture_create_fileData_paramKey";

 var messageValue =
getWorkflowMessage().getValues().getData(fileDataKey);

 if (messageValue)
 {
 // Update file for upload
 messageValue.setValue(imageUri);
 }
 else

Mobile Workflow Development

154 Sybase Unwired Platform

 {
 // Add file for upload
 messageValue = new MessageValue();
 messageValue.setKey(fileDataKey);
 messageValue.setValue(imageUri);
 messageValue.setType(MessageValueType.FILE);
 getWorkflowMessage().getValues().add(fileDataKey,
messageValue);
 }

 getWorkflowMessage().setHasFileMessageValue(true);
}

Handling a larger image size example:
function reportError(errCode)
{
 if (errCode != PictureError.USER_REJECT) {
 // error occurred
 }
}

function reportImage(fileName, imageUri)
{
 // Image captured
 alert("Photo taken");

 // Optional - Display preview in image tag
 var imageTagId = "Thumbnail"; // The id of your image tag
 var imageElement = document.getElementById(imageTagId);
 imageElement.src = imageUri;

 // Optional - Create message value to upload image
 var fileKey = "Picture_create_fileData_paramKey"; // Key that
maps to submit or online request parameter
 var messageValue = new MessageValue();
 messageValue.setKey(fileKey);
 messageValue.setValue(imageUri);
 messageValue.setType(MessageValueType.FILE);

 // Add message value to Workflow message - NOTE: Code may differ
dependent on the context for adding image (Eg. ListView).
 getWorkflowMessage().getValues().add(fileKey, messageValue);

 getWorkflowMessage().setHasFileMessageValue(true); //
Explicitly tell Workflow about image
}
 var options = { destinationType:
PictureOption.DestinationType.IMAGE_URI, sourceType:
PictureOption.SourceType.CAMERA};
 getPicture(onGetPictureError, onGetPictureSuccess, options);

Limitations
The server has a limit of 75MB per parameter, which is what the Hybrid Web Container uses as
the XmlWorkflowMessage. Therefore, the server imposes a maximum size limit of 50 MB

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 155

(assuming one picture per XmlWorkflowMessage, and no other keys are present). Keep in
mind that clients may impose a lower limit than 50MB.

Note:

When accessing very large binary (image) data in the mobile business object associated with
the mobile workflow, ensure that the attribute set in the mobile business object is a BigBinary
datatype, rather than Binary.

Certificate.js
Use these functions for X.509 credential handling.

Use these functions to create a user interface in HTML and JavaScript, that uses X.509
certificates as the Workflow credentials.

This file contains the functions that allow parsing a certificate date, creating a certificate from
a JSON string value, retrieving a certificate from a file (Android), retrieving a certificate from
the server (iOS), and so on.

Function Description

CertificateStore.parseCertDate(value) Parses a certificate date.

CertificateStore.createCert(value) Creates a certificate from the specified JSON
string value.

CertificateStore.prototype.certificateLabels(fil-
terSubject, filterIssuer)

Returns a list of all the certificate labels in this
store (can be empty). Each certificate in this store
has a unique label.

CertificateStore.getDefault() Returns a certificate without the signedCer-
tificate part set.

CertificateStore.prototype.getPublicCertifi-
cate(label)

Returns a certificate without the signedCer-
tificate part set.

Supported platforms:

• Windows Mobile Professional

• BlackBerry

Mobile Workflow Development

156 Sybase Unwired Platform

Function Description

CertificateStore.prototype.getSignedCertifi-
cate(label, password)

Returns the certificate with the specified label,
decrypting it if necessary using the specified
password; or returns null if the certificate is en-
crypted and the password is incorrect.

Supported platforms:

• Windows Mobile Professional

• BlackBerry

CertificateStore.prototype.listAvailableCertifi-
catesFromFileSystem(folder, fileExtension)

Returns a list of full path names for the certificate
files found in the file system for import.

Android platforms only.

CertificateStore.prototype.getSignedCertificate-
FromFile(filePath, password)

Gets a certificate from a file.

Android platforms only.

CertificateStore.prototype.getSignedCertificate-
FromServer(username, serverPassword, cert-
Password)

Gets a certificate from the server.

iOS platforms only.

getSignedCertificateFromAfaria(common-
Name, challengeCode)

To retrieve an x509 certificate from Afaria, you
must get a CertificateStore and then call get-

SignedCertificateFromAfaria. If Afaria is instal-
led and configured on the device, this gets the
Afaria seeding file from the Afaria server. If the
seeding file is retrieved from the Afaria server, the
user is prompted to update user specific informa-
tion in the Settings screen. The parameters are:

• commonName – this parameter is required.

• challengeCode – this parameter is optional,
depending on how the Afaria server is con-
figured.

For example:

var certStore = Certifica-
teStore.getDefault();
afariaCert = certStore.get-
SignedCertificateFromAfa-
ria(commonName, challenge-
Code);

You can choose to set the results of a getSignedCertificate function as the password.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 157

certificateLabels(filterSubject, filterIssuer)

// The following script gets all the labels for certificates
// with the provided subject and issuer
var certStore = CertificateStore.getDefault();
var labels = certStore.certificateLabels("MyUser", "mydomain.com");

- getPublicCertificate(label)

// The following script gets the certificate data for the first
// certificate to match the provided subject and issuer
var certStore = CertificateStore.getDefault();
var labels = certStore.certificateLabels("MyUser", "mydomain.com");
var cert = certStore.getPublicCertificate(labels[0]);

- getSignedCertificate(label)

// The following script gets the signed certificate data for the
first
// certificate to match the provided subject and issuer
var certStore = CertificateStore.getDefault();
var labels = certStore.certificateLabels("MyUser", mydomain.com");
var cert = certStore.getSignedCertificate(labels[0]);

var username = cert.subjectCN;
var password = cert.signedCertificate;

- listAvailableCertificatesFromFileSystem(sFolder, sFileExtension)

// The following script gets an array of file paths for files on
// the sdcard with the extension p12
var certStore = CertificateStore.getDefault();
var certPaths = certStore.listAvailableCertificatesFromFileSystem("/
sdcard/", "p12");

- getSignedCertificateFromFile(filePath, password)

// The following script gets the signed certificate data for the
first
// p12 file found on the sdcard
var certStore = CertificateStore.getDefault();
var certPaths = certStore.listAvailableCertificatesFromFileSystem("/
sdcard/", "p12");
var cert = certStore.getSignedCertificateFromFile(certPaths[0],
"password");

- getSignedCertificateFromServer(username, serverPassword,
certPassword)

// The following script gets the signed certificate data for the
// user MYDOMAIN\MYUSERNAME from the server
var certStore = CertificateStore.getDefault();
cert = certStore.getSignedCertificateFromServer("MYDOMAIN\
\MYUSERNAME", "myserverpassword", "mycertpassword");

Mobile Workflow Development

158 Sybase Unwired Platform

Custom.js File
The first time you generate the Mobile Workflow package files, the Custom.js file is
generated.

In subsequent file generations for the same Mobile Workflow package, this file will not be
overwritten, so any customizations you make are preserved.

These touch points are available for customization: WorkflowLoad, Submit,
NavigateForward, NavigateBackward, ShowScreen, MenuItemClick, and Save. At each
touch point, a custom Before method is invoked and a customAfter method is invoked. The
Before method returns a boolean. If it returns true, it continues to execute the default
behaviour, for example, navigating to a new screen or performing an online request. If it
returns false, it does not execute the default behavior, so you can override the default behavior
by customizing these methods.

The Custom.js file contains these methods:

Method Description

customBeforeWorkflowLoad() Invoked when the application is first launched,
before any data is loaded, or screens are opened.

Because workflow settings are not yet initialized
at this point, you cannot call any SharedStorage
functions here.

customAfterWorkflowLoad() Invoked when the application is first launched,
after data is loaded and screens are opened.

customBeforeSubmit(screenKey, requestAction,
workflowMessageToSend)

Invoked before an operation or object query is
about to be called as the result of the user clicking
a Submit menuitem.

You can set this to return false to prevent the de-
fault behaviour from occurring.

customAfterSubmit(screenKey, requestAction) Invoked after an operation or object query is
called as the result of the user clicking a Submit
menuitem.

customBeforeNavigateForward(screenKey, dest-
ScreenKey)

Invoked when another screen is about to be
opened. Set to false to prevent the screen from
being opened.

customBeforeNavigateBackward(screenKey, is-
Cancelled)

Invoked when another screen is about to be
opened.

You can set to false to prevent the screen from
being opened.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 159

Method Description

customAfterNavigateForward(screenKey, dest-
ScreenKey)

Invoked after another screen has been opened.

customAfterNavigateBackward(screenKey, is-
Cancelled)

Invoked after a screen has been closed.

customBeforeShowScreen(screenToShow,
screenToHide)

Invoked when a screen is about to be shown.

User can return false to prevent the screen from
being shown.

customAfterShowScreen(screenToShow, screen-
ToHide)

Invoked after a screen is shown.

customValidateScreen(screenKey, values) Invoked when the contents of a screen need to be
validated.

User can return false to indicate that the contents
of the screen are not valid.

customBeforeMenuItemClick(screen, menuI-
tem)

Invoked after a menuitem has been clicked. User
can return false to prevent the default behavior
(which might open a new screen, or perform a
submit, and so on) from occurring.

customAfterMenuItemClick(screen, menuItem) Invoked after a menuitem has been clicked and
the default behavior has occurred.

customBeforeSave(screen) Invoked before a screen’s contents are persisted
to the Mobile Workflow message.

User can return false to prevent the default be-
haviour from occurring.

customAfterSave(screen) Invoked after a screen’s contents are persisted to
the Mobile Workflow message through the de-
fault logic.

Mobile Workflow Development

160 Sybase Unwired Platform

Method Description

customConditionalNavigation(currentScreen-
Key, actionName, defaultNextScreen, condition-
Name, workflowMessage)

For online request menu items and custom ac-
tions, this method is invoked to evaluate the given
condition after a given action is executed. If the
screen associated with the condition should be
navigated to, the condition is true.

For server-initiated starting points, the judgement
condition is if((currentScreenKey
=== SERVERINITIATEDFLAG).
This method is different from the others in two of
its attributes:

• It returns true or false – the custom code used
to implement this method can peer into the
workflow message and execute logic. This
routine generally does not modify the HTML
or anything else.

• There is no before or after behavior – this
function is executed after the workflow mes-
sage is received from the server, but before
the screen is opened. Therefore, this is exe-
cuted before the "customBefore-
ShowScreen()" because this function is used
to help decide what screen to show next.

Conditions set by the user in the designer are
executed serially, and the first one that returns
true determines what the start screen is. As soon
as a true condition is found, evaluation stops and
the screen is executed.

customBeforeReportErrorFromNative(error-
String)

Invoked when a native error is reported on. Return
false to prevent the default behavior from execut-
ing (bringing up an alert dialog)

customAfterReportErrorFromNative(error-
String)

Invoked after a native error is reported.

customAfterDataReceived(incomingWorkflow-
Message)

Invoked after data is received from the server.
This allows you to view and manipulate the data.

customGetPictureURIFromCamera() Use this method to get a picture URI from the
camera for submission to the workflow message.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 161

Method Description

customGetPictureURIFromLibrary() Use this method to get a picture URI from the
photo library for submission to the workflow
message.

customGetPictureURISuccess(fileName, image-
URI)

Handles success from one of the URI calls.

customGetPictureDataFromCamera() Use this method to get picture data from the cam-
era for submission to the workflow message.

Note: The picture data length should not be too
long.

customGetPictureDataFromLibrary() Use this method to get picture data from the photo
library for submission to the workflow message.

Note: The picture data length should not be too
long.

customGetPictureDataSuccess(fileName, im-
ageData)

Handles success from one of the "Data" calls.

customGetPictureError(result) Invoked after an error is reported.

getMimeType(fileName) A helper method that allows you to include the
MIME data type in the workflow message.

Note: You can delegate the implementation of these functions to different functions supplied
in other custom JavaScript files. It is not necessary to include all of your customization logic in
the single Custom.js file.

//Use this method to add custom html to the top or bottom of a form
function customBeforeWorkflowLoad() {

 var form = document.forms[curScreenKey + "Form"];
 if (form) {
 // header
 var topOfFormElem = document.getElementById("topOf" +
curScreenKey + "Form");

 if (topOfFormElem) {
 topOfFormElem.innerHTML = "<img id='ImgSylogo' src='./
images/syLogo.gif'/>
";

 // footer
 var bottomOfFormElem = document.getElementById("bottomOf"
+ curScreenKey + "Form");
 bottomOfFormElem.innerHTML = "<p>Copyright 2010, Sybase
Inc.</p>";
 }

Mobile Workflow Development

162 Sybase Unwired Platform

 }
 return true;
}

When using the customBeforeNavigateForward(screenKey, destScreenKey) { } function, if
you want to create your own JQuery Mobile style listview, remember that JQueryMobile does
not allow duplicate ID attributes. So if there is an existing listview with the same ID attribute,
you must:

1. Delete the existing listview with the same ID attribute.
2. Re-create the listview.
3. Call refresh for your listview.

For example:
//Use this method to add custom code to a forward screen transition.
If you return false, the screen
//transition will not occur.
function customBeforeNavigateForward(screenKey, destScreenKey) {

..
try {
 if (destScreenKey == 'Personal_Work_Queue') {

 //grab the results from our object query
 var message = getCurrentMessageValueCollection();
 var itemList = message.getData("PersonalWorkQueue");
 var items = itemList.getValue();
 var numOfItems = items.length;
 var i = 0;

 //iterate through the results and build our list
 var htmlOutput = '<div id="CAMSCustomViewList"><ul data-
role="listview" data-filter="true">';
 var firstOrder = '';

 while (i < numOfItems){
 var currItem= items[i];
 var opFlags =
currItem.getData("PersonalWorkQueue_operationFlags_attribKey").getV
alue();
 var orderId =
currItem.getData("PersonalWorkQueue_orderId_attribKey").getValue();
 var operationNumber =
currItem.getData("PersonalWorkQueue_operationNumber_attribKey").get
Value();
 var description =
currItem.getData("PersonalWorkQueue_description_attribKey").getValu
e();
 try {
 var promDate =
currItem.getData("PersonalWorkQueue_datePromised_attribKey").getVal
ue();
 } catch (err) {
 var promDate = "";

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 163

 }

 try {
 var planDate =
currItem.getData("PersonalWorkQueue_dateStartPlan_attribKey").getVa
lue();
 } catch (err) {
 var planDate = "";
 }

 var onHold =
currItem.getData("PersonalWorkQueue_onHold_attribKey").getValue();

 htmlOutput += '<a id ="' + currItem.getKey() + '"
class="listClick">';
 htmlOutput += '<p>Flags: ' + opFlags + '</p>';
 htmlOutput += '<p>Order Id: ' + orderId + '</
p>';
 htmlOutput += '<p>Operation No: ' +
operationNumber + '</p>';
 htmlOutput += '<p>Title: ' + description + '</
p>';
 htmlOutput += '';

 i++;

 }

 htmlOutput += '</div>';

 //append the html to the appropriate form depending on the
key
 if (destScreenKey == 'Personal_Work_Queue') {

 var listview = $('div[id="CAMSCustomViewList"]');
 //Try to remove it first if already added
 if (listview.length > 0) {
 var ul = $(listview[0]).find('ul[data-
role="listview"]');
 if (ul.length > 0) {
 htmlOutput = htmlOutput.replace('<div
id="CAMSCustomViewList"><ul data-role="listview" data-
filter="true">','');
 ul.html(htmlOutput);
 ul.listview('refresh');
 }
 } else {
 $
('#Personal_Work_QueueForm').children().eq(2).hide();
 $
('#Personal_Work_QueueForm').children().eq(1).after(htmlOutput);
 }
 }
 //add the listener based on the class added in the code
above
 $(".listClick").click(function(){

Mobile Workflow Development

164 Sybase Unwired Platform

 currListDivID = $(this).parent().parent();
 $(this).parent().parent().addClass("ui-btn-active");

 //special case for bb
 navigateForward("Shop_Display", this.id);

 if (isBlackBerry()) {
 return;
 }
 });
 }

Overriding the showErrorFromNative Function
The generated JavaScript allows you to override the behavior of the showErrorFromNative
function using the customBeforeReportErrorFromNative(errorString)and
customAfterReportErrorFromNative(errorString) methods.

This shows an example of how to override or customize the error message based on the
returned numeric error codes through customBeforeReportErrorFromNative.

function customBeforeReportErrorFromNative(errorString) {
 var errorCode = getURLParamFromNativeError("errCode",
errorString);
 // 500 and above are network errors
 if (errorCode >= 500)
 {
 // Could check lang global variable if so desired
 //if (lang == ...)
 {
 // Show your own custom error message based on errorCode
 showAlertDialog("Do you have a network connection?", "My
custom error");
 // return false to by pass default behavior
 return false;
 }
 }
 return true;
}

Identified error scenarios include:

• Any network related errors during an online (synchronous) request contain an error code
of 500 or greater (check for >= 500)

• public static final int UNKNOWN_ERROR = 1; // "unknown
error"

• public static final int ATTACHMENT_NOT_DOWNLOADED =
100; //"Attachment has not been downloaded"

• public static final int UNKNOWN_MIME_TYPE = 101; //"Unknown
MIME type"

• public static final int FILENAME_NO_EXTENSION =
102; //"File name without extension"

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 165

• public static final int REQUIRED_PARAMETER_NOT_AVAILABLE =
103; //"Required parameter is not available"

• public static final int UNSUPPORTED_ATTACHMENT_TYPE =
105; //attachment type is not supported

• public static final int SSOCERT_EXCEPTION = 106; //SSO
Certificate manager exception

• public static final int FAIL_TO_SAVE_CREDENTIAL = 107; //
Fail to save credential

• public static final int FAIL_TO_SAVE_CERTIFICATE = 108; //
Fail to save certificate

• public static final int DEVICE_NOT_CONNECTED = 109; //
Device is not connected

Resources.js
The resource functions allow you to access localized string resources.

Function Description

Resources(currentLocaleName) Creates a new resources object with the specified
locale as the default locale.

resources.prototype.hasLocale(localeName) Returns true if the locale supplied is included in
the Mobile Workflow application; otherwise, re-
turns false.

resources.prototype.getStringFromLocale(key,
localeName)

Returns the localized string for the supplied key
for the current locale.

resources.prototype.getString(key) Returns the localized string for the supplied key
for the specified locale.

Mobile Workflow Development

166 Sybase Unwired Platform

ExternalResource.js
These functions allow you to access resources on external HTTP servers.

Function Description

getExternalResource(url, options) Makes a request to access resources on an exter-
nal HTTP server.

• options – a set of key/value pairs that config-
ure the underlying request. Supported options
are:

• method – one of GET, PUT, DELETE,
HEAD, OPTIONS, or POST. The default
is GET.

• HTTP and HTTPS are supported.

• async – request should be sent asynchro-
nously. The default is true.

• headers – request headers to be sent with
request.

• data – data to be sent. If this is an array, it
is converted to a query string. For a GET
request, this is added to the end of the
URL.

• complete – callback for when this meth-
od completes.

Note: An X.509 certificate blob (used in SSO)
cannot be used as a client certificate for HTTPS
communication. In other words, you can use only
client certificates from trusted certificate author-
ities, which means that self-signed certificates do
not work.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 167

Function Description

complete(resultXHR) The complete(resultXHR) callback is sent when
getExternalResource finishes. Its input is a re-
sultXHR structure which closely mirrors the
JavaScript XmlHttpRequest object.

The fields/methods available on resultXHR are:

• status

• statusText

• responesText

• getReponseHeader(key)

• getAllResponesHeaders()

These fields and methods are not supported for
resultXHR:

• open()

• setRequestHeader()

• responseXML

• send()

• abort()

This shows an example of the UPDATE function:
function update() {
 // Using json to update a value
 var url = // URL of your external resource;
 var webResponse;
 var options = {
 method: "PUT",
 data: "{\"Value\":\"Value A Updated\"}",
 headers: {
 "Content-type": "application/json"
 },
 async: false,
 complete: function(response) { webResponse = response; }
 };

 getExternalResource(url, options);

 if (webResponse.status === 200)
 alert("Update successful");
 else
 alert("Update Failed");
}

This shows an example of the DELETE function:
function delete() {
 // Delete a value

Mobile Workflow Development

168 Sybase Unwired Platform

 var url = // URL of your external resource;
 var webResponse;
 var options = {
 method: "DELETE",
 async: false,
 complete: function(response) { webResponse = response; }
 };

 getExternalResource(url, options);

 if (webResponse.status === 200)
 alert("Delete successful");
 else
 alert("Delete Failed");
}

SUPStorage.js
Access the storage functions, which allow you to specify a cache that stores results from
online requests.

These functions give you the ability to:

• Name the cached result sets
• Enumerate the cached result sets
• Read, delete, and modify cached contents individually for each cached result set

Cached result sets must be stored as strings (before deserialization to an
xmlWorkflowMessage structure).

Method Description

SUPStorage(store) Provides encrypted storage of name value pairs.
Results from online requests are one example.
Strings stored in SUPStorage are encrypted and
persisted to survive multiple invocations of the
mobile workflow application.

SharedStorage() Used to construct a new shared SUP storage. You
can use the returned value to access the shared
storage data with the exising SUPStorage inter-
face, however, the operation only affects the items
belonging to the specified shared storage key.

getSharedStorageKey() Used to return the shared storage key defined for
the mobile workflow application during design
time. An empty string is returned if the shared
storage function is disabled.

isSharedStorageEnabled() Indicates whether the shared storage is enabled
for the current workflow application.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 169

Method Description

SUPStorage.prototype.length() Gets the number of available keys in this object.
Retrieve the keys themselves by using key().

length – returns the number of key/value pairs
currently present in the list

SUPStorage.prototype.key(index) Returns the key at the supplied index. Keys are
guaranteed to remain at the same index until a
modification is made.

SUPStorage.prototype.getItem(key) Retrieves the value associated with the specified
key. Returns a copy of the current value associ-
ated with the given key. If the given key does not
exist in the list, null is returned.

SUPStorage.prototype.setItem(key, value) Sets the value associated with a specified key.
This replaces the key’s previous value, if any. If
the given key does not exist in the list, a new key
value is added to the list with the given key and
with its value set to a copy of value.

SUPStorage.prototype.clear() Removes all key/value pairs from this object.

SUPStorageException(code, message) Constructs a new SUPStorageException object.

Calls to these methods do not trigger events.

- constructor

// The following script creates a 2 local storage instances with
their own domain
var store1 = new SUPStorage("mydomain");
var store2 = new SUPStorage("myotherdomain");

- length

// The following script displays the current number of elements in
the storage
var store = new SUPStorage();
alert(store.length());

- key(index)
// The following script displays the value at the provided index in
the storage
var store = new SUPStorage();
alert(store.key(2));

- getItem(key)

// The following script displays the value for the provided key

Mobile Workflow Development

170 Sybase Unwired Platform

var store = new SUPStorage();
alert(store.getItem("mykey"));

- setItem(key, value)
// The following script sets a key/value pair
var store = new SUPStorage();
store.setItem("mykey", "myvalue");

- removeItem(key)
// The following script removes a key/value pair
var store = new SUPStorage();
store.removeItem("mykey");

- clear
// The following clears the storage
var store = new SUPStorage();
store.clear();

SUP Storage
The SUP Storage API allows you to store structured data on the client side.

You can also use these functions as an arbitrary key or value storage mechanism. Keys are
strings, and any string (including the empty string) is a valid key. Keys cannot be duplicated in
the same Mobile Workflow package. Values are also strings and values can be duplicated in
the same Mobile Workflow package. Keys and values can contain multi-byte characters.

SUP Storage can span multiple screens in the Mobile Workflow application, and lasts beyond
the current session. This allows the storage of user data on the client, such as entire user-
authored documents.

Using platform-specific mechanisms, the items stored using the SUP Storage API are
encrypted according to the particular platform policies:

Platform Encryption policy

BlackBerry PersistentStore, which adheres to the Content
Protection BES IT policy

Android Encrypted before storing into the SQLite data-
base

iOS Stored in SQLite Encryption Extensions database

Windows Mobile Unencrypted SQLite—security is deferred to
Afaria Security Manager

The amount of data that can be stored on the client is limited only to the available storage space
on the particular platform:

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 171

Platform Data storage

BlackBerry Amount of free PersistentStore

iOS and Android Amount of free file system for the SQLite data-
base, and/or the SQLite database size limit

Windows Mobile Amount of free file system, and/or the SQLite
database size limit.

Limitations

• The amount of data that can be retrieved using the SUPStorage API, and returned to the
JavaScript space, is limited to the JavaScript size limitation as established for each
platform. See the topic AttachmentViewer and Image Limitations.

• On Windows Mobile devices, there is a 500K limitation for the length of the shared storage
item. If the length of a shared item is more than 500K, the JavaScript does not accept
anything.

• Physical SUP storage is tied to a Mobile Workflow package. When the Mobile Workflow
package is uninstalled, the corresponding SUP storage for the Mobile Workflow package
is removed immediately.

• Items stored using the SUPStorage API are persisted, and therefore, survive soft device
resets.

• SUP Storage persists through invocations of the Mobile Workflow application.
• The SUPStorage API does not restrict reading or writing of the storage data from different

domains. For example, if a Mobile Workflow application loads some code from an
external HTTP server that attempts to access the SUPStorage API, it is allowed.

• The SUPStorage API does not take into account the current locale or language of the
device. You can, however, access the global JavaScript variable called lang and implement
this in your custom code.

Shared Storage
All Mobile Workflow applications with a shared storage key assigned share the storage with
other Mobile Workflows that have the same storage key assigned.

• When the last Mobile Workflow application with the shared storage key is removed from
the device, the storage data is also removed.

• Since shared storage data is loaded into JavaScript, the same limitations apply to it as that
which applies to the JavaScript size limitation as established for each platform. See the
topic AttachmentViewer and Image Limitations. If a large amount of data is involved in the
operation, the shared storage should be used only to store the reference or location of the
data, not the data itself. This helps to ensure you stay within the JavaScript size limitations.
For example, if data for an image needs to be saved in shared storage for later use, the
image data should be stored in the device file system or the persistent store, and then store
only the file path to the shared storage.

Mobile Workflow Development

172 Sybase Unwired Platform

• Shared storage items are removed when the last Workflow using the same shared storage
key is removed from the device (it happens on unassignment

• On Windows Mobile devices, there is a 500K limitation for the length of the shared storage
item. If the length of a shared item is more than 500K, the JavaScript does not accept
anything.

Timezone.js
The date/time functions allow you to extract and format the date and time for the Workflow
application.

Function Description

getCurrentLocale() Returns the current locale for the device.

getLocalizedDateTime(date) Returns the specified Date as a locale-specific
display as a datetime using native functionality.

getLocalizedDate(date) Returns the specified Date as a locale-specific
display as a date using native functionality.

getLocalizedTime(date) Returns the specified Date as a locale-specific
display as a time using native functionality.

convertUtcToLocalTime(date) Converts the specified Date to the device’s local
time.

convertLocalTimeToUtc(date) Converts the specified Date to UTC time.

getOffsetFromUTC(date) Given the specified Date, queries the device's OS
to determine the total offset (difference) between
the given “local” time and UTC, including any
daylight savings time (DST) offsets if applicable.
Returns a signed integer representing this GMT
offset in minutes. For example, if the device was
in the London timezone (GMT+1) and it is DST is
currently in effect, the function would return
“120”—60 minutes normal offset plus 60 mi-
nutes for its DST offset.

isDstActiveAtGivenTime(date) Given the specified Date, queries the device's OS
to determine if DST rules are in effect for the
current timezone at the time specified in the Date
object.

getDstOffsetAtGivenTimeInMinutes(date) Given the specified Date, queries the device's OS
to determine the DST offset for the current time-
zone at the time specified in the Date object.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 173

Function Description

getTimezoneId() Returns the current timezone’s standard name.

getUsesDST() Determines whether or not the device’s current
timezone resides in a timezone that practices
daylight savings.

WorkflowMessage.js
Use these functions to access Workflow Message resources.

Function Description

MessageValue() Constructs a new MessageValue object.

MessageValue.prototype.getKey() Returns the key of the given MessageValue
object

MessageValue.prototype.setKey(key) Sets the key of the given MessageValue ob-
ject

MessageValue.prototype.getValue() Returns the value of the given MessageVal-
ue object

MessageValue.prototype.setValue(value) Sets the value of the given MessageValue
object

MessageValue.prototype.getType() Returns the type of the given MessageValue
object

MessageValue.prototype.setType(type) Sets the type of the given MessageValue
object

MessageValueCollection() Constructs a new MessageValueCollection
object

MessageValueCollection.prototype.getKey() Returns the key of the given MessageVa-
lueCollection object

MessageValueCollection.prototype.setKey(key) Sets the key of the given MessageValue-
Collection object

MessageValueCollection.prototype.getState() Returns the state of the given MessageVa-
lueCollection object.

MessageValueCollection.prototype.setState(state) Sets the state of the given MessageValue-
Collection object

Mobile Workflow Development

174 Sybase Unwired Platform

Function Description

MessageValueCollection.prototype.getParent() Returns the parent key of the given Messa-
geValueCollection object

MessageValueCollection.prototype.setParent(parent) Sets the parent key of the given Message-
ValueCollection object.

MessageValueCollection.prototype.getParentValue() Returns the parent object of the given Mes-
sageValueCollection object

MessageValueCollection.prototype.setParentVal-
ue(parentValue)

Sets the parent object of the given Messa-
geValueCollection object. Does not change
the actual parenting.

MessageValueCollection.prototype.add(key, value) Adds a new value to the given MessageVa-
lueCollection

MessageValueCollection.prototype.clear() Removes all value from the given Messa-
geValueCollection

MessageValueCollection.prototype.getData(key) Returns the value corresponding to the
specified key for the given MessageValue-
Collection

MessageValueCollection.prototype.remove(key) Removes the value corresponding to the
specified key for the given MessageValue-
Collection

MessageValueCollection.prototype.getCount() Returns the number of values in the given
MessageValueCollection

MessageValueCollection.prototype.getKeys() Returns an array of the keys in the given
MessageValueCollection.

MessageValueCollection.prototype.getValues() Returns an array of the values in the given
MessageValueCollection.

WorkflowMessage(message) Constructs a new WorkflowMessage object
with the specified contents (represented as a
string).

WorkflowMessage.prototype.getHeader() Returns the header of the given Workflow-
Message.

WorkflowMessage.prototype.setHeader(header) Sets the header of the given WorkflowMes-
sage.

WorkflowMessage.prototype.getRequestAction() Returns the request action of the given
WorkflowMessage.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 175

Function Description

WorkflowMessage.prototype.setRequestAction(re-
questAction)

Sets the request action of the given Work-
flowMessage.

WorkflowMessage.prototype.getValues() Gets the values in the given WorkflowMes-
sage.

WorkflowMessage.prototype.getWorkflowScreen() Returns the workflow screen of the given
WorkflowMessage.

WorkflowMessage.prototype.setWork-
flowScreen(workflowScreen)

Sets the workflow screen of the given
WorkflowMessage.

WorkflowMessage.prototype.createFromString(mes-
sageAsString)

Updates the contents of the given Work-
flowMessage object from the given string.

WorkflowMessage.prototype.serializeToString() Returns a string representation of the given
WorkflowMessage.

WorkflowMessage.prototype.updateValues(source-
Values, listViewValuesKey)

Updates the values of the given Workflow-
Message.

Using Third-Party JavaScript Files
To include your own files in the container application, copy them into the appropriate place in
the Generated Workflows folder.

To load external JavaScript and CSS files dynamically, copy the relevant third-party
JavaScript and CSS files to the Generated Workflow
\<Workflow_package_name>\html and js or css folders. If the files are
JavaScript files, and are in the html\js folder, they are automatically included in the HTML as
script.

Note: On Android, individual HTML, JavaScript, and CSS files cannot exceed 1MB.

These files will be included in the Mobile Workflow manifest.xml and .zip files automatically
when the Mobile Workflow package is re-generated.

Repackaging Mobile Workflow Package Files
After modifying the Custom.js file, you must redeploy the Mobile Workflow package to
Unwired Server.

1. Save and close the modified files after adding your custom code.

2. In WorkSpace Navigator, right-click the <mobile_workflow_name>.xbw file and
select Generate Mobile Workflow Package.

Mobile Workflow Development

176 Sybase Unwired Platform

3. In the Mobile Workflow Package Generation wizard, select Deploy to an Unwired
Server, and select the Unwired Server connection profile.

4. In Deploy Mode, select either:

• New – generates and deploys the mobile workflow package and its files for the first
time.

• Update – updates any pre-existing Mobile Workflow package in-place, preserving
associated assignments.

• Replace – removes any pre-existing Mobile Workflow package and notifications
before deploying.

5. Click Finish.

Common Customizations

Implementing Conditional Navigation
Conditional navigation allows you to implement a custom function that allows you to override
navigation behavior between screens.

This procedure gives an example of how you can use conditional navigation to skip a screen.

1. In the Screen Design page, modify the menu item by adding conditions.

In this example, two conditions are added to the Previous Expenses menu item.

2. Go to the Flow Design page to see the conditional navigation paths in the flow.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 177

3. In the Custom.js file, add the custom code for conditional navigation.

//This example demonstrates the conditional navigation
functionality for an online request.
//In this example we skip the list view screen and go directly to
the details screen if there is only one item in the list
function customConditionalNavigation(currentScreenKey,
actionName, defaultNextScreen, conditionName, workflowMessage) {
 if ((currentScreenKey === 'Process') && (actionName ===
'Previous Expenses')) {
 if (conditionName === 'ONE_ROW') {
 var values = workflowMessage.getValues();
 var m = workflowMessage.serializeToString();
 var expenseTracking =
values.getData("ExpenseTracking21View");
 var etList = expenseTracking.getValue();
 var count = etList.length;
 if (count == 1) {
 var etRow1 = etList[0];
 workflowMessage.updateValues(etRow1);
 return true;
 }
 }
 else if (conditionName === 'MANY_ROWS') {
 return false; //ie do the normal navigation which is
to go to the listview screen
 }
 }
 // default case is to NOT change the flow
 return false;
}

4. Use the Mobile Workflow Package Generation wizard to re-generate the Mobile
Workflow Package with a new workflow_jQueryMobileLookAndFeel.html
file that contains the newly added conditional navigations.

5. Use a browser to debug the code.

Mobile Workflow Development

178 Sybase Unwired Platform

Implementing a Conditional Start Screen
Add conditions that determine which start screen the user sees based on the conditions.

Like the conditional success navigation feature, there is a table of condition names with the
matching Start screen. If all of the conditions are evaluated as false (or if they are absent), the
default navigation is executed.

1. In the Flow Design page, select the server-initiated starting point to see the Properties.

2. In the Properties view, click Start Screen(s).

3. Click Add to add a condition.

4. In the dialog, enter the condition name, select the target screen with which to associate the
condition, and click OK.

This means that if the defined condition is found to be true, the screen you choose here will
be the start screen. Condition names can include:
• Letters A-Z and a-z
• Numbers 0-9
• Embedded spaces (beginning and ending spaces are trimmed off)
• Special characters in the set $._-+

In the Flow Design page, you can see the flow line for the conditional start is a shade of
gray to differentiate it from the default GoTo line.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 179

5. Add you custom code to the Custom.js file. For example:

function customConditionalNavigation(currentScreenKey,
actionName,
 defaultNextScreen, conditionName,
 workflowMessage) {
 if((currentScreenKey === SERVERINITIATEDFLAG) && (actionName
=== '')) {
 // conditional start screen uses this magic screen key and
the empty action name.
 if(conditionName === 'Wilma_first_ss1') {
 // custom logic
 return true;
 }
 else if(conditionName === 'Fred_second_screen'){
 // custom logic
 // return true or false
 return false;
 }
 }
 // default case is to NOT change the flow
 return false;
}

6. Regenerate the Mobile Workflow package.

When you regenerate the Mobile Workflow package, the Workflow.js file is
regenerated. The conditional start screen method is shown in the Workflow.js file
similar to this:
function customNavigationEntry() {
 this.condition;
 this.screen;
}
function customNavigationEntry(a_condition, a_screen) {
 this.condition = a_condition;
 this.screen = a_screen;
}

/**
 * For the specific pair - screen named 'currentScreenKey' and the
action 'actionName', return
 * the list of custom navigation condition-names and their
destination screens.
 */
function getCustomNavigations(currentScreenKey, actionName) {
 var customNavigations = new Array();
 if((currentScreenKey === SERVERINITIATEDFLAG) && (actionName
=== '')) {
 customNavigations[0] = new
customNavigationEntry('Wilma_first_ss1',
'Screen_Start_One');
 customNavigations[1] = new
customNavigationEntry('Fred_second_screen',
'Screen_Start_Two');
return customNavigations;
 }

Mobile Workflow Development

180 Sybase Unwired Platform

 return customNavigations;
}

Clearing the Contents of the Signature Control
Add JavaScript to clear the contents of a signature control.

1. Use the Mobile Workflow Package Generation wizard to generate the Mobile Workflow
package and its files.

When the Mobile Workflow package is generated, the Custom.js file is generated if not
already present in the project. The Custom.js file is located in Generated Workflows
\<workflow_project_name>\html\js.

2. Open the Custom.js file and add your JavaScript code to the click event of a menu or
button.

For example:
function customAfterMenuItemClick(screen, menuItem) {
 if (menuItem === "Clear_Signature") {
 $.data(document.getElementById('sigKey'),
'signature').clearSignature();
 }
}

3. Save and close the Custom.js file.

4. Re-generate the Mobile Workflow package and deploy it to Unwired Server.

Install and Configure the Hybrid Web Container On the
Device

To enable deploying mobile workflow packages to a device, you must download, install, and
configure the Mobile Workflow container on the device.

Deploy the Mobile Workflow container to devices and register the devices with Unwired
Server. You can use Afaria® to install the container on devices for enterprise deployment. For
information on setting up an Afaria environment, see System Administration > Device and
Application Provisioning Overview > Provisioning With Afaria.

See the configuration procedure for your device type.

Preparing Android Devices for the Mobile Workflow Package
Install the Mobile Workflow container on the Android device using the Android SDK.
In the Settings for your Android device, disable all keyboards except the Android keyboard.

Installing Sybase Mobile Workflow on Android Devices
Use the Android SDK Manager to install Sybase Mobile Workflow application files.

To install Sybase Mobile Workflow on your Android device:

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 181

1. Connect the device.
2. Install the Android SDK.
3. Run platform-tools\adb and install UnwiredPlatform_InstallDir

\UnwiredPlatform\MobileSDK<version>\HybridWeb\Android
\HybridWebContainer.apk.

For example:
C:\Android\android-sdk\platform-tools\adb install ^
C:\Sybase\UnwiredPlatform\MobileSDK\HybridWeb\Android
\HybridWebContainer.apk

Building the Android Hybrid Web Container Using the Provided Source Code
The Hybrid Web Container in this procedure is a sample container provided with the Sybase
Unwired Platform Mobile SDK installation.

Prerequisites

• Install the Android SDK version 2.2, API Level 8. You can get the Android SDK at http://
developer.android.com/sdk/index.html.

• If you are developing in Eclipse, install the ADT Plug-in for Eclipse.

Task

This example uses Eclipse as the development environment, but you can use any development
environment.

1. Open Eclipse and select File > Import.

2. Expand the General folder, choose Existing Projects into Workspace, and click Next.

3. Choose Select archive file, browse to <UnwiredPlatform_InstallDir>
\UnwiredPlatform\MobileSDK<version>\HybridWeb\Android, and
select template.zip.

4. Click Finish.

A Hybrid Web Container project folder is added to Workspace Navigator. You may receive
an error indicating that the source folder gen is missing. If so, add an empty folder named
gen to the src folder in the project.

5. Open the local.properties file in the main directory of the project. This file
contains a non-commented line, sdk.dir = <filepath>. Verify the <filepath>
matches the filepath to your installation of the Android SDK.

6. If you receive an Android requires compiler compliance level 5.0
or 6.0. Found '1.4' instead. Please use Android Tools > Fix
Project Properties error, follow the instructions and then clean the project.

7. If you receive errors of the type … must override a superclass method,
make sure the Java compiler has its compliance set to 1.6.

Mobile Workflow Development

182 Sybase Unwired Platform

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

a) Right-click the HybridWebContainer project and select Properties.
b) Go to the Java Compiler section and set the Compiler compliance level to 1.6.
c) Rebuild the project.

Building the Android Hybrid Web Container Outside of Eclipse
You can build the Android Hybrid Web Container independent from Sybase Unwired
Platform.

1. Open a command prompt and navigate to the base directory of the Hybrid Web Container
project.

2. Run either the ant debug or ant release command, depending on whether you want to
debug or release the Hybrid Web Container.

You can download Apache Ant from http://ant.apache.org/bindownload.cgi, if necessary.

A file named either HybridWebContainer-debug.apk or
HybridWebContainer-release-unsigned.apk (depending on the command
you used) is added to the bin folder. If a file already exists with that name, it is
overwritten.

3. Use Android Debug Bridge (ADB), which is included in the Android SDK installation, to
install the .apk to the emulator.

a) Launch an Android Virtual Device (AVD) that does not have the Hybrid Web
Container installed (or uninstall it if it is installed).

b) In the Command Prompt window, navigate to the folder that contains the adb.exe
file, which should be in the …/android-sdk/platform-tools/ folder.

c) Execute: adb install <path>, where <path> is the full filepath to the
HybridWebContainer.apk file.

Configuring the Android Emulator
Configure an Android emulator for testing a Sybase Mobile Workflow package.

Note: The steps or interface may be different depending on which Android SDK version you
are using.

1. Install the Android SDK.

Go to http://developer.android.com/sdk/ to download and install the Android SDK. Click
Install and accept the default values. Follow the instructions on the Android page, with
these exceptions:
• See Supported Hardware and Software for the most current version information for

mobile device platforms and third-party development environments.
• When specifying the install location, consider choosing a path that does not contain

spaces, such as C:\Android\android-sdk. Some versions of the Android SDK

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 183

http://ant.apache.org/bindownload.cgi
http://developer.android.com/sdk/

do not work correctly when installed in the default drive:\ Program Files
location.

• If the Android installer stops with a message that the required Java JDK is not found on
your system (even when the JDK is installed), try clicking Back and then Next, one or
more times, until the installer detects the JDK.

2. Install the SDK Platform-tools:

a) Run the Android SDK Manager
b) Select these options:

• In Tools, Android SDK Platform-tools.
• The version of Android whose emulators you want to use, and that Unwired

Platform supports.
c) Click the Install button.

3. Click Start Programs > Android SDK Tooks > AVD Manager.

4. Add a device:

a) In the Android AVD Manager, click New.
b) In the Create new Android Virtual Device window, enter a name.
c) For the target, select a supported Android version.
d) Set any other available options you want, then click Create AVD.

Mobile Workflow Development

184 Sybase Unwired Platform

5. Select the new virtual device and click Start.

6. In Launch Options, optionally modify the default display scaling, then click Launch.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 185

7. When the Android screen finishes loading, open a command prompt and run the
Android_InstallDir\android-sdk\platform-tools\adb.exe
command to install HybridWebContainer.apk to the emulator:
For example:
C:\Android\android-sdk\platform-tools\adb install ^
C:\Sybase\UnwiredPlatform\MobileSDK213\HybridWeb\Android
\HybridWebContainer.apk

Preparing iOS Devices for the Mobile Workflow Package
Install the Mobile Workflow client on the device using the App Store, or use the source code
provided for the Mobile Workflow container to deploy to the iOS simulator from the Xcode
project.

Complete these prerequisites before provisioning the Mobile Workflow application:

• Determine your security policy – Unwired Platform provides a single administration
console, Sybase Control Center, which allows you to centrally manage, secure, and deploy
applications and devices. Device user involvement is not required and you can maintain
the authorization methods you already have in place. See Security > Device Security.

• Register each application connection using Sybase Control Center – application
connections pair an application with a device. See Sybase Control Center for Sybase
Unwired Platform documentation.

Mobile Workflow Development

186 Sybase Unwired Platform

Apple Push Notification Service
Sybase Unwired Platform provides support for Apple Push Notification Service by pushing
notifications to Mobile Workflow applications when the Mobile Workflow application is
offline.

With APNS, each device establishes encrypted IP connections to the service and receives
notifications about availability of new items awaiting retrieval on Unwired Server. This
feature overcomes network issues with always-on connectivity and battery life consumption
on 3G networks.

For more information on end-to-end iPhone application development and provisioning, see
System Administration > Device and Application Provisioning Overview.

Note: APNS cannot be used on a simulator.

Examples of cases when notifications are sent include:

• The server identifies that a new message needs to be sent to the device. This could include:
• A new Mobile Workflow is assigned to the device.
• A Mobile Workflow DCN message is sent to Unwired Server, targeting a particular

user and the Mobile Workflow is not running.

If you want to use APNs for the Mobile Workflow application, you can:

• Use the .p12 located in <Unwired_Platform_InstallDir>
\UnwiredPlatform\Servers\MessagingServer\bin\ with the pre-built
Workflow application that is available from the App Store.
These .p12 certificates are provided:
• MobileWorkflowPushDistCert.p12 – for Sybase Mobile Workflow – Free, 2.0, or

2.0.1
• MobileWorkflow21PushDistCert.p12 – for Sybase Mobile Workflow 2.1
• MobileWorkflow212PushDistCert.p12 – for Sybase Mobile Workflow 2.1.2 and later

• Use the Apple Provisioning Portal to create your own .p12 certificate if you build your own
Mobile Workflow application using the source code included in
<UnwiredPlatform_InstallDir>\UnwiredPlatform
\MobileSDK<version>\HybridWeb\iOS.

After creating the .p12 certificate, you must configure the APNs settings in Sybase Control
Center.

Provisioning iOS Devices
Use this procedure to provision your iOS device for APNs if you build your own Mobile
Workflow application using the source code provided in
UnwiredPlatform_InstallDir\UnwiredPlatform

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 187

\MobileSDK<version>\HybridWeb\iOS\MobileWorkflow-
<version>.tar.gz.

See the Apple developer documentation for Provisioning and Development. These procedures
are documented in detail there. Applications developed for distribution must be digitally
signed with a certificate issued by Apple. You must also provide a distribution provisioning
profile that allows user devices to execute the application.

1. Register with Apple to download and use the iOS SDK. A free account allows you to
download the SDK and develop with the simulator. To deploy Mobile Workflow
applications to devices, you must create a certificate in your developer account and
provision your device. See the Apple Local and Push Notification Programming Guide at
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/ProvisioningDevelopment/ProvisioningDevelopment.html for
details.

2. Use the iPhone Provisioning Portal at http://developer.apple.com/devcenter/ios/
index.action to create the SSL certificate and Keys. Configure the certificate to enable for
Apple Push Notification service.

3. On your Mac, launch the Keychain Access program. This is located in the Utilities
folder.

a) In Keychain Access, select Keychain Access > Certificate Assistant > Request a
Certificate from Certificate Authority.

b) In the Certificate Information window, enter the information. Use a unique Common
Name.

Note: Make sure you use a different Common name than a development certificate you
already have. This creates a private key with the name you enter here.

A certificate request is created and saved in the Desktop folder by default.

4. In the Apple Provisioning Portal, continue with the App ID provisioning and browse to the
certificate request file created in Keychain Access in the previous step, then click
Generate.

5. Click Continue.

6. Click Download Now.
The certificate is downloaded onto your Mac and the Keychain utility appears and the
certificate is imported into the "login" keychain.

7. Verify that the certificate is associated with a private key.

8. Create and install a Provisioning profile for the Mobile Workflow application.

9. In XCode, open the MobileWorkflow project.

Note: Note the product name. This is used to configure the mobile workflow in Sybase
Control Center and corresponds to the Application Name property in SCC. By default, the

Mobile Workflow Development

188 Sybase Unwired Platform

http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ProvisioningDevelopment/ProvisioningDevelopment.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ProvisioningDevelopment/ProvisioningDevelopment.html
http://developer.apple.com/devcenter/ios/index.action
http://developer.apple.com/devcenter/ios/index.action

application name is HWC. This needs to be configured in the properties for the target.
There is a 15-character limit for the product name.

10. Change AppName and AppId in the Branding.strings file for the necessary
language resources.

This file is available under the Resources folder of the Workflow XCode project.

Note: The Bundle Identifier must correspond to the Bundle identifier specified in the App
ID. By default, the project comes with a bundle ID of com.sybase.mobileworkflow<xxx>.
Change it to something unique.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 189

11. Copy the exported certificate_name.p12 certificate to the machine where Sybase
Control Center is installed and follow the instructions in Configuring Apple Push Settings
for the Mobile Workflow Application and use the certificate you just created.

Note: Make sure you select only the certificate in the Keychain tool before exporting

Mobile Workflow Development

190 Sybase Unwired Platform

Configuring Apple Push Settings for the Mobile Workflow Application
The certificate that was exported from the keychain corresponding to Apple Push settings
must be configured with the correct application name in SCC.

Note: When configuring the Apple Push Notification Service, change the push gateway, push
gateway port, feedback gateway, and feedback gateway port values only when configuring
notifications in a development environment. To enable Apple push notifications, the firewall
must allow outbound connections to Apple push notification servers on default ports 2195 and
2196. The default URL is for production and should be changed to
gateway.sandbox.push.apple.com. After making these changes, you must restart your
machine.

1. In the left navigation pane, expand the Servers folder and select a server.

2. Select Server Configuration.

3. In the Messaging tab, select Apple Push Configuration.

4. Click New.

5. Enter the Application name. Make sure this name matches the AppId entered in the
Branding.strings file.

Note: The application name is HWC.

6. Select Use existing certificate to use a security certificate file that already exists on the
server.

When you select this option, the list of available certificates appears in the Certificate
name menu.

a) Select the desired certificate from the list, for example,
MobileWorkflow212PushDistCert.p12, which is located in
<Unwired_Platform_InstallDir>\UnwiredPlatform\Servers
\MessagingServer\bin.

b) Enter and confirm the certificate password.

Note: If you are using the Sybase Mobile Workflow <version> version of the
Workflow from the App Store, enter the password: M0bileW0rkfl0w;SUP.

7. Select Use new certificate to create a new certificate on the server.

a) Enter a name for the new certificate.
b) Specify a Base64-encoded string by choosing one of these:

• Browse from file – select a security certificate file on the server that contains the
Base64-encoded string.

• Base64-encoded string – manually enter the Base64-encoded string.
c) If you selected a file from the server for the Base64-encoded string, you can overwrite

the existing certificate file with the details you specify during new certificate creation.
To do so, select the box adjacent to Overwrite existing certificate.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 191

d) Enter and confirm the certificate password.

8. Click OK.

9. You can verify that the device is configured for APNS correctly by verifying that the device
token has been passed from the workflow application after the workflow application runs
once on the device.

Use the Send a Notification tool inside the Mobile Workflow Forms editor to send a test
notification.

APNS Trace Files
<UnwiredPlatform_InstallDir>\Unwired Server\log\trace
\APNSProvider has tracing information.

Increase the trace level to Debug in Sybase Control Center.

Apple Push Notification Properties
Apple push notification properties allow iOS users to install client software on their devices.
This process requires you to create a different e-mail activation message using the appropriate
push notification properties.

• APNS Device Token – the Apple push notification service token. An application must
register with Apple push notification service for the iOS to receive remote notifications

Mobile Workflow Development

192 Sybase Unwired Platform

sent by the application’s provider. After the device is registered for push properly, this
should contain a valid device token. See the iOS developer documentation.

• Alert Message – the message that appears on the client device when alerts are enabled.
Default: New items available.

• Delivery Threshold – the frequency, in minutes, with which groupware notifications are
sent to the device. Valid values: 0 – 65535. Default: 1.

• Sounds – indicates if a sound is a made when a notification is received. The sound files
must reside in the main bundle of the client application. Because custom alert sounds are
played by the iOS system-sound facility, they must be in one of the supported audio data
formats. See the iOS developer documentation.

Acceptable values: true and false.

Default: true
• Badges – the badge of the application icon.

Acceptable values: true and false

Default: true
• Alerts – the iOS standard alert. Acceptable values: true and false. Default: true.
• Enabled – indicates if push notification using APNs is enabled or not.

Acceptable values: true and false.

Default: true

Installing the Mobile Workflow Application on Your iOS Device
How you install the Mobile Workflow application on your iOS device depends on how your
company provisions the application.

Your company will choose a method for provisioning the application. Your system
administrator determines how you obtain and install the Mobile Workflow application. The
possible methods include:

• Downloading and installing the free version of the Mobile Workflow application from the
Apple App Store. The free version should not be used for enterprise deployment.

• Obtaining a copy of the application on your corporate network or through a link in an e-
mail message, then using iTunes to install and synchronize it to your device. This
mechanism should be used for enterprise deployment and is based on the application built
using the XCode project, which is included as part of Sybase Unwired Platform
installation.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 193

Building the Mobile Workflow Container Using the Provided iOS Source Code
The mobile workflow container referenced is a sample container. You can use the provided
source code in Xcode to build your own customized user interface and configure other
resources.

Prerequisites

• Register the device in Sybase Control Center.
• Have access to a Mac with a supported version of Xcode and the iOS SDK.

See Supported Hardware and Software for the most current version information for mobile
device platforms and third-party development environments.

Task

1. On your Mac, connect to the Microsoft Windows machine where Sybase Unwired
Platform is installed:

a) In the Apple menu, click Go > Connect to Server.
b) Enter the name or IP address of the machine.

For example, smb://<machine DNS name> or smb://<IP Address>.

2. Copy the MobileWorkflow-version.tar.gz archive from
UnwiredPlatform_InstallDir\UnwiredPlatform
\MobileSDK213\HybridWeb\iOS\ to a location on your Mac.

In the archive file name, version is the current Unwired Platform version number. For
example, MobileWorkflow-2.1.3.tar.gz.

3. Unpack MobileWorkflowversion.tar.gz.
The extraction creates a Workflow directory.

4. In the Workflow directory, double-click WorkFlow.xcodeproj to open it in the
Xcode IDE.

5. If necessary, click Project > Edit Active Target > ProjectName > General and add these
files from the SDK to the project:

• Security.framework
• AddressBook.framework
• QuartzCore.framework
• CoreFoundation.framework
• libicucore.A.dylib
• libz.1.2.5.dylib
• libstdc++.dylib

6. In Xcode, click Build > Build to build the project.

Mobile Workflow Development

194 Sybase Unwired Platform

Installing the Mobile Workflow Container from the Apple App Store
Install the Mobile Workflow container from the Apple App Store.

This is a free version of the Sybase Mobile Workflow and should not be used for enterprise
deployment.

1. On your device, on the iOS home page, tap App Store.

2. Search for Sybase Mobile Workflow.

3. In the search results find the version of the Sybase Mobile Workflow container to install
and click Free.

4. Tap Install to download the application.

5. In Settings > Workflow<version>, for Connection Info, enter:

a) In Connection Info, enter:

• Server Name – the machine that hosts the server where the mobile application
project is deployed.

• Server Port – Unwired Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the application connection

in Sybase Control Center.
• User Name – the user you registered in Sybase Control Center.
• Activation Code – the activation code for the user, for example, 123.

• Protocol – HTTP or HTTPS. The protocol with which to connect to the Relay
Server or the reverse proxy server. The default is HTTP.

• Password – enter your password so that the container registers using the automatic
registration option.

Note: The Activation Code and Enable Automatic Registration options are
mutually exclusive. If you use a password for automatic registration, you cannot
enter an activation code, and vice versa.

• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See System
Administration > System Reference > Application Connection Properties > Device
Advanced Properties.

6. Scroll to the page that contains the Workflow icon, then tap to launch.

7. Enter your personal identification number (PIN). Choose the number that you need to
enter to start the Mobile Workflow application. This PIN is a security measure to safeguard
your company's data.

• The PIN must be at least six digits and cannot be consecutive digits (for example,
123456), or same digit (for example, 111111).

• (First time/reinstallation) Create a PIN in the Password field, then verify it in the
second field.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 195

• (Second or subsequent logins) Enter the PIN in the Password field. Select Change
Password to change the PIN. You can change the PIN once you enter the current PIN.

The Workflows page appears.

8. Click the Messages tab bar, then tap Messages to view the Workflows.

9. (Optional) If instructed by your system administrator, enable notifications on your
device.

Installing the Mobile Workflow Application Using iTunes
Install the Mobile Workflow application using iTunes.

1. Launch iTunes.

2. Download the application from your corporate network to your Applications library.

3. Sync the Mobile Workflow application to your Apple mobile device.

4. Specify the connection settings in Settings > Workflow.

Preparing BlackBerry Devices for the Mobile Workflow Package
Install the Mobile Workflow container on the BlackBerry device using BlackBerry Desktop
Manager.

Prerequisites
For prerequisites and complete information about provisioning BlackBerry devices see BES
Provisioning for BlackBerry in System Administration > Device Provisioning.

Task

1. Connect the BlackBerry device to the computer that contains the Mobile Workflow
container for BlackBerry.

2. Run the BlackBerry Desktop Manager following the instructions in the RIM
documentation.

3. In the BlackBerry Desktop Software, select Application Loader.

4. Under Add/Remove Applications, select Start.

5. Browse to the location on your local machine or network that contains the mobile
workflow .cod and .alx container files, <UnwiredPlatform_InstallDir>
\UnwiredPlatform\MobileSDK<version>\HybridWeb\BB.

• CommonClientLib
• MessagingClientLib
• MocaClientLib
• Workflow

6. Select the files and click Open.

Mobile Workflow Development

196 Sybase Unwired Platform

The application is listed on the Application Loader wizard.

7. Click Next.

8. Click Finish.

9. Restart your BlackBerry device.

Installing the Mobile Workflow Container on BlackBerry Devices Over the Air
Your system administrator must provide the appropriate information for installing the Mobile
Workflow container over the air, and the BlackBerry Exchange Server (BES) must be
available.

Note: For complete information about provisioning BlackBerry devices see BES
Provisioning for BlackBerry in System Administration > Device Provisioning.

The administrator stages the OTA files in a Web-accessible location and notifies BlackBerry
device users via an e-mail message with a link, or A URL to the Hybrid Web Container
installation file. This can be accomplished by pointing the BlackBerry browser to the
SybaseMobileWorkflow.jad file. This single JAD and associated files for this type of
deployment are located in <UnwiredPlatform_InstallDir>
\UnwiredPlatform\MobileSDK<version>\HybridWeb\BB\OTA.

Configuring the BlackBerry Simulator for Mobile Workflow Packages
Copy the .cod files to the BlackBerry Simulator directory.

Prerequisites
MDS must be running.

Task

1. Start the BlackBerry simulator.

2. From File > Load BlackBerry Application or Theme. .

3. Navigate to <UnwiredPlatform_InstallDir>\UnwiredPlatform
\MobileSDK<version>\HybridWeb\BB.

4. Select the required .cod files, then click OK. These include:

• CommonClientLib.cod – shared code that can be used by native Sybase Unwired
Platform BlackBerry applications.

• MessagingClientLib.cod – the main Messaging library, shared code that can
be used by native SUP BlackBerry applications.

• MocaClientLib.cod – messaging library.

• Workflow.cod – the main Mobile Workflow application and Sybase Settings,
where the user enters the server connection information.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 197

Installing the Mobile Workflow Container on Windows Mobile Devices
Install and configure the Hybrid Web Container required to prepare a Windows Mobile device
to run Mobile Workflow packages.

1. Navigate to <UnwiredPlatform_InstallDir>\UnwiredPlatform
\MobileSDK\HybridWeb\WM .

2. Copy the Windows Mobile Professional device file, SybaseMobileWorkflow.cab,
to the device's My Documents folder.

3. Cradle the Windows Mobile device.

4. Connect a USB cable between the PC and device, and transfer the .cab file.

5. Open the SybaseMobileWorkflow.cab file from the Windows Mobile device. This
installs the container.

6. In Programs, click the Workflow Settings icon to open the Mobile Workflow settings
connection screen.

7. In the Workflow Settings Connection screen, enter the connection settings. These settings
should match the values you used when you registered the device in Sybase Control
Center.

Note: Select the right arrow icon () to view the container log. This is useful for checking
the connection, or retrieving other debugging information.

8. From the Start menu, select Sybase Mobile Workflow.

9. Select a Mobile Workflow package from the list of available packages.

Mobile Workflow Development

198 Sybase Unwired Platform

Configure Connection Settings on the Device
Configure the connection settings for the Hybrid Web Container on the device.

See the topic for your platform.

Configuring Android Connection Settings
Configure the connection settings for the Mobile Workflow application.

1. Click the Workflows icon on the applications screen, then select Settings.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 199

2. In the basic authentication screen, enter the user name and password if you are
prompted.

3. Enter the settings for the Mobile Workflow application:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – Unwired Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the application connection in

Sybase Control Center.
• User Name – the user you registered in Sybase Control Center.
• Activation Code – the activation code for the user, for example, 123.

• Protocol – HTTP or HTTPS. The protocol with which to connect to the Relay Server or
the reverse proxy server. The default is HTTP.

• Password – enter your password so that the container registers using the automatic
registration option.

Note: The Activation Code and Enable Automatic Registration options are mutually
exclusive. If you use a password for automatic registration, you cannot enter an
activation code, and vice versa.

• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See System
Administration > System Reference > Application Connection Properties > Device
Advanced Properties.

Select Save to save the settings.

4. Start the Mobile Workflow application, then view the settings log to verify that the
connection is active.

From the Mobile Workflow application, tap Settings > Show Log.

Configuring BlackBerry Connection Settings
Configure the connection settings for the Mobile Workflow application.

1. Click the Workflow icon on the applications screen, then press the Menu key and select
Settings.

2. Enter the settings for the Mobile Workflow application:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – Unwired Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the device in Sybase Control

Center.
• User Name – the user you registered in Sybase Control Center.
• Activation Code – the activation code for the user, for example, 123.

Mobile Workflow Development

200 Sybase Unwired Platform

• HTTP – the protocol with which to connect to the Relay Server or the reverse proxy
server.

• Enable Automatic Registration – when you select this option, the Registration
Password field is enabled. Enter your password.

Note: The Activation Code and Enable Automatic Registration options are mutually
exclusive. If you use a password for automatic registration, you cannot enter an
activation code, and vice versa.

• URL Suffix (Optional) – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See System
Administration > System Reference > Application Connection Properties > Device
Advanced Properties.

3. Select Menu > Save to save the settings.

4. Start the Mobile Workflow application, then view the settings log to verify that the
connection is active.

In Workflows, select Settings. On the Connection settings screen, select Show Log.

Configuring iOS Connection Settings
Configure the settings for the Mobile Workflow application.

1. Go to the device Settings screen and click WorkFlows.

2. In the basic authentication screen, enter the user name and password if you are
prompted.

3. Enter the settings for the Mobile Workflow application:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – Unwired Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the application connection in

Sybase Control Center.
• User Name – the user you registered in Sybase Control Center.
• Activation Code – the activation code for the user, for example, 123.

• Protocol – HTTP or HTTPS. The protocol with which to connect to the Relay Server or
the reverse proxy server. The default is HTTP.

• Password – enter your password so that the container registers using the automatic
registration option.

Note: The Activation Code and Enable Automatic Registration options are mutually
exclusive. If you use a password for automatic registration, you cannot enter an
activation code, and vice versa.

• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See System

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 201

Administration > System Reference > Application Connection Properties > Device
Advanced Properties.

Configuring Windows Mobile Connection Settings
Configure the connection settings.

Prerequisites
Install the Mobile Workflow Container CAB file.

Task

1. Select Start > Programs > Sybase Settings.

2. Click Connection.

3. In the Connection screen, enter the connection settings:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – Unwired Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the device in Sybase Control

Center.
• User Name – the user you registered in Sybase Control Center.
• Activation Code – the activation code for the user, for example, 123.

• HTTP – the protocol with which to connect to the Relay Server or the reverse proxy
server.

• Enable Automatic Registration – when you select this option, the Registration
Password field is enabled. Enter your password.

Note: The Activation Code and Enable Automatic Registration options are mutually
exclusive. If you use a password for automatic registration, you cannot enter an
activation code, and vice versa.

• URL Suffix (Optional) – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See System
Administration > System Reference > Application Connection Properties > Device
Advanced Properties.

Note: The URL Suffix setting is in Advanced settings.

4. Click Done.

5. Start the Mobile Workflow application, then view the settings log to verify that the
connection is active.

Select tap Start > Programs > Sybase Settings > Menu > Show Log.

Mobile Workflow Development

202 Sybase Unwired Platform

Install and Test Certificates on Simulators and Devices
Install and test certificates on various types of simulators and devices.

Note: The supported algorithm for the public-key cryptography used in the X.509 certificates
is RSA.

Copy the generated .p12 certificate to the device on which you are installing.

See the User Guide for your device or simulator for instructions.

Installing X.509 Certificates on Windows Mobile Devices and Emulators
Install the *.p12 certificate on a Windows Mobile device or simulator and select it during
authentication.

1. Launch the simulator or device.

2. Start the Windows synchronization software and cradle the device.

3. Use File Explorer to copy the *.p12 certificate to the simulator or device.

4. Navigate to and double-click the certificate.

5. Enter the password at the prompt and click Done.

An informational window indicates the certificate installed successfully.

Testing X.509 Certificates on Windows Mobile Devices and Emulators
Select an X.509 certificate to use for Mobile Workflow application user authentication.

Prerequisites

1. Create a Mobile Workflow application that prompts the user to specify a certificate as
credentials.

2. Package and assign the Mobile Workflow application to a Windows Mobile device user.

Task

1. From Inbox > Workflows, select the Mobile Workflow.

2. Select the Specify Certificate Credentials menu item from the Certificate Picker.

3. Select the certificate (for example, Sybase101) and continue with the Mobile Workflow.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 203

Installing X.509 Certificates on Android Devices and Emulators
Install the *.p12 certificate on an Android device or emulator.

Prerequisites

• Java SE Development Kit (JDK) must be installed.
• The Android SDK must be installed.

Task

1. Connect the Android device to your computer with the USB cable.

2. To install using Eclipse with the ADT plugin:

Note: USB debugging must be enabled.

a) Open the Windows File Explorer view. From the menu bar, navigate to Window >
Show View > Other.

b) In the Show View dialog, expand the Android folder and select File Explorer.
c) Expand mnt > sdcard and select the sdcard folder.
d) In the top right of the File Explorer view, click Push a file onto the device.

Mobile Workflow Development

204 Sybase Unwired Platform

e) In the Put File on Device dialog, select the certificate and click Open.

3. To install using Windows Explorer:

Note: USB debugging must be disabled.

a) Open Windows Explorer
b) Under your computer, click the Android device to expand the folder.
c) Click Device Storage, navigate to and select the certificate.
d) Import the certificate to the Device Storage folder.

4. To install using the Android Debug Bridge (adb):

Note: USB debugging must be enabled.

a) Open the command line directory to the adb.exe file, for example, C:\Program
Files\android-sdk-windows\tools, or C:\Program Files
\android-sdk-windows\platform-tools

b) Run the command: adb push %PathToCert%\MyCert.p12 /sdcard/
MyCert.p12

Testing X.509 Certificates on Android Devices and Emulators
Select an X.509 certificate for Mobile Workflow application user authentication.

Prerequisites

1. Create a Mobile Workflow application that prompts the user to specify a certificate as
credentials.

2. Package and assign the Mobile Workflow application to an Android device user.

Task

1. On the Android device or emulator, in applications, click Workflow.

2. Select the Mobile Workflow on which to test the installed certificate.

3. From the Certificate Picker, select the Specify Certificate Credentials menu item.

4. Select the certificate and click OK.

5. Enter the password and click OK.

Installing X.509 Certificates on BlackBerry Simulators and Devices
Install the .p12 certificate on the BlackBerry device or simulator and select it during
authentication.

1. Install the certificate on a device:

a) Connect to the device with a USB cable.
b) Browse to the SD Card folder on the computer to which the device is connected.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 205

c) Navigate to and select the certificate. Enter the password.
d) Import the certificate.

You can also use the BlackBerry Desktop Manager to intstall the certificate on the device,
but you may need to perform a custom installation to access the Synchronize Certificates
option.

2. Install the certificate on a simulator:

a) From the simulator, select Simulate > Change SD Card.
b) Add/or select the directory that contains the certificate.
c) Open the media application on the device, and select Menu > Application > Files >

MyFile > MediaCard.
d) Navigate to and select the certificate. Enter the password.
e) Check the certificate and select Menu > Import Certificate. Click Import

Certificate then enter the data vault password.

Testing X.509 Certificates on BlackBerry Devices and Simulators
Select an X.509 certificate to use for workflow application user authentication.

Prerequisites

1. Create a Mobile Workflow application that prompts the user to specify a certificate as
credentials.

2. Package and assign the Mobile Workflow application to a BlackBerry device user.

Task

1. From Inbox > Workflows, select the mobile workflow.

2. From the Certificate Picker, select the Specify Certificate Credentials menu item.

3. Select the certificate (for example, Sybase101) and continue with the workflow
application.

Mobile Workflow Development

206 Sybase Unwired Platform

Installing X.509 Certificates on iOS Devices
Add an authentication screen to the workflow client from which you can authenticate with a
generated X.509 certificate instead of a user name and password combination.

1. Copy the X.509 certificate used for authentication into a directory on the same host as
Unwired Server. For example, c:\certs.

2. Create a registry string value on Unwired Server at HKLM\Software\Sybase
\Sybase Messaging Server\CertificateLocation and populate it with
the path. For example, c:\certs.

3. Name the X.509 certificate file as domain_user.p12, where domain is the Unwired
Server domain and user is the certificate user. The user must have read permission
for .p12 file.

4. The system administrator must ensure the specified domain\user has “log on as batch job”
permission on the Windows machine on which Unwired Server runs:

a) Double-click Control Panel > Administrative Tools > Local Security Policies.
b) Expand Local Policies and select User Rights Assignment.
c) Right-click Log on as a batch job and select Properties.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 207

d) Select Add User or Group and add the domain\user.

5. The account under which Unwired Server runs must have adequate permissions to
impersonate the domain\user, for example, the Administrator account for the domain.

Testing X.509 Certificates on iOS Devices and Simulators
Select an X.509 certificate for Mobile Workflow application user authentication to test.

Prerequisites

1. Create a Mobile Workflow application that prompts the user to specify a certificate as
credentials.

2. Package and assign the Mobile Workflow application to an iOS device user.

Task

1. During device application development, define and add a screen that has a Certificate
Picker menu item.

2. Generate and deploy the application to the iPhone client.

3. Select Certificate Picker from the iPhone client.

4. Enter Windows credentials and certificate password in the dialog and click Done. Make
sure the format is domain\user.

5. Submit the credentials to Unwired Server.

Manage a Mobile Workflow Package
The Workflows node in Sybase Control Center allows administrators to view and manage
deployed Mobile Workflow packages, including Mobile Workflow display name, module
name, and module version.

Administrators deploy Mobile Workflow packages into the Unwired Platform cluster through
this node, as well as manage e-mail settings configuration.

Registering and Reregistering Mobile Workflow Application
Connections

Use Sybase Control Center to trigger the registration and application activation process for
Mobile Workflows.

Note: When using a Windows Mobile emulator or BlackBerry simulator to register an
application connection in Sybase Control Center, the device ID changes each time you reset
the emulator to factory settings and reinstall the client. Before reinstalling, you must delete the
original application connection from Unwired Server. Then, reregister the application
connection. Otherwise, the device log shows a Wrong Device for Code error when the

Mobile Workflow Development

208 Sybase Unwired Platform

device attempts to connect after registration. This problem occurs with Windows Mobile
emulators and BlackBerry simulators.

1. Log in to Sybase Control Center.

2. In the left navigation pane, click the Applications node.

3. In the right administration pane, click the Application Connections tab.

4. Click Register to register the Mobile Workflow application connection to a device, or
Reregister to update the application connection for an existing application connection.

5. In the Register Application Connection or the Reregister Application Connection
dialog:

a) For new registrations only, type the name of the user that will activate and register the
Mobile Workflow application. For reregistrations or clones, the same name is used and
cannot be changed.

Users can use an e-mail address as a username, however, those users must ensure that
e-mail addresses are processed correctly, especially when a security configuration is
paired with the e-mail address. See Security > Server Security > Enabling
Authentication and RBAC for User Logins > Supported Providers and Credential
Types > Considerations for Using E-mail Addresses as User Names.

b) Select the HWC template.
The template you choose supplies initial values in the subsequent activation fields.

6. Change the default activation field values for the template you have chosen.

If you are using a relay server, ensure the correct values are used.

• Server name – the DNS name or IP address of the primary Unwired Server, such as
"myserver.mycompany.com". If using relay server, the server name is the IP address or
fully qualified name of the relay server host.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 209

• Port – the port used for messaging connections between the device and Unwired
Server. If using relay server, this is the relay server port. Default: 5001.

• Farm ID – a string associated with the relay server farm ID. Can contain only letters A
– Z (uppercase or lowercase), numbers 0 – 9, or a combination of both. Default: 0.

Note: If the device uses relay server to connect to Unwired Server, the farm ID should
be the name of the Unwired Server farm configured in the relay server for messaging-
based synchronization applications. If the device connects to Unwired Server directly,
the farm ID should be 0.

• Activation code length – the number of characters in the activation code. If you are
reregistering or cloning an application connection, this value cannot be changed.

• Activation expiration – the number of hours the activation code is valid.

7. (Optional) Select the check box adjacent to Activation Code to enter the code sent to the
user in the activation e-mail. This value can contain letters A – Z (uppercase or lowercase),
numbers 0 – 9, or a combination of both. Acceptable range: 1 to 10 characters.

If the activation code is automatically generated, the code for the application connection
can be retrieved from the Connections group of the Application Connection Properties
dialog

8. Click OK.

Enabling and Configuring the Notification Mailbox
Configure the notification mailbox settings that allow Unwired Server to transform e-mail
messages into mobile workflows.

The notification mailbox configuration uses a listener to scan all incoming e-mail messages
delivered to the particular inbox specified during configuration. When the listener identifies
an e-mail message that matches the rules specified by the administrator, it sends the message
as a mobile workflow to the device that matches the rule.

Note: Saving changes to the notification mailbox configuration deletes all e-mail messages
from the account. Before proceeding with configuration changes, consult your e-mail
administrator if you want to back up the existing messages in the configured account.

1. Log in to Sybase Control Center.

2. In the left navigation pane, click Workflows.

3. In the right administration pane, click Notification Mailbox.

4. Select Enable.

5. Configure these properties:

• Protocol – choose between POP3 or IMAP, depending on the e-mail server used.
• Use SSL – encrypt the connection between Unwired Server and the e-mail server in

your environment.

Mobile Workflow Development

210 Sybase Unwired Platform

• Server and Port – configure these connection properties so Unwired Server can
connect to the e-mail server in your environment. The defaults are localhost and port
110 (unencrypted) or 995 (encrypted).

• User name and Password – configure these login properties so Unwired Server can
log in with a valid e-mail user identity.

• Truncation limit – specify the maximum number of characters taken from the body
text of the original e-mail message, and downloaded to the client during
synchronization. If the body exceeds this number of characters, the listener truncates
the body text to the number of specified characters before distributing it. The default is
5000 characters.

• Poll seconds – the number of seconds the listener sleeps between polls. During each
poll, the listener checks the master inbox for new e-mail messages to process. The
default is 60 seconds.

6. If you have added at least one distribution rule, you can click Test to test your
configuration. If the test is successful, click Save.

Assigning and Unassigning Mobile Workflows
Assign mobile workflow packages to make them available to a device user. Unassign them
when a package is no longer required.

1. In the left navigation pane of Sybase Contorl Center, click Workflows >
<Mobile_WorkFlow_Package>.

2. In the right administration pane, click the Application Connections tab.

3. Locate the device to assign a mobile workflow package to, then:

a) Click Assign Workflow.
b) List the activation users to assign the mobile workflow package to.

By default, no users are listed in this window. Search for users by selecting the user
property you want to search on, then selecting the string to match against. Click Go to
display the users.

c) Select the user or users from the list to which to assign the mobile workflow package.
d) Click OK.

4. To unassign a mobile workflow package, select the User and click Unassign Workflow.

Activating the Workflow
The menu items on a Workflow screen can be either a Submit Workflow (asynchronous) or
Online Request (synchronous) menu item type.

To complete the mobile workflow activation process, the last screen in the mobile workflow
application must have a Submit Workflow menu item. This is necessary for the device and
server-side to activate the mobile workflow for the device.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 211

Mobile workflows are considered to have been processed and/or activated only if they are
closed with a Submit Workflow menu item, and which may, or may not, have a corresponding
mobile business object (MBO) operation tied to it.

Configuring Context Variables for Mobile Workflow Packages
The administrator can change some of the values of a selected variable, should the design-time
value need to change for a production environment.

Which values are configurable depends on whether the developer hard-coded a set of user
credentials or used a certificate.

1. In the left navigation pane, click Workflows >
<Workflow_Package>:<Workflow_Version>.

2. In the right administration pane, click the Context Variables tab.

3. Select the context variable to configure, then click Modify.

Context Variable Description

SupUser The valid mobile workflow application user
ID that Unwired Server uses to authenticate
the user. Depending on the security configu-
ration, Unwired Server may pass that authen-
tication to an EIS.

SupUnrecoverableErrorRetryTimeout After sending a JSON request to Unwired
Server, if you receive an EIS code that indi-
cates an unrecoverable error in the response
log, the mobile workflow client throws an ex-
ception. A retry attempt is made after a retry
time interval, which is set to three days by
default. Select this property to change the retry
time interval.

SupThrowCredentialRequeston401Error The default is true, which means that an error
code 401 throws a CredentialRe-
questException, which sends a cre-
dential request notification to the user's inbox.
If this property is set to false, error code 401 is
treated as a normal recoverable exception.

SupRecoverableErrorRetryTimeout After sending a JSON request to Unwired
Server, if you receive an EIS code that indi-
cates a recoverable error in the response log,
the mobile workflow client throws an excep-
tion. A retry attempt is made after a retry time
interval, which is set to 15 minutes by default.
Select this property to change the retry time
interval.

Mobile Workflow Development

212 Sybase Unwired Platform

Context Variable Description

SupPassword The valid mobile workflow application user
password that Unwired Server uses to authen-
ticate the user. Depending on the security con-
figuration, Unwired Server may pass that au-
thentication to an EIS. An administrator must
change development/test values to those re-
quired for a production environment.

SupPackages The name and version of the MBO packages
that are used in the workflow. This cannot be
changed.

SupMaximumMessageLength Use this property to increase the allowed max-
imum Mobile Workflow message size. Limi-
tations vary depending on device platform:
• For BlackBerry 5, the limit is 512KB.
• For Windows Mobile the limit is 500KB.
• For BlackBerry 6 and Android, the limit

depends on the memory condition of the
device. Large message may result in an out
of memory error.

4. In the Context Variable dialog, change the value of the named variable and click OK.

Changing Hard Coded User Credentials
The administrator can change hard coded user credentials assigned at design time if the design
time value needs to change for a production environment.

1. In the left navigation pane, click Workflows >
<Workflow_Package>:<Workflow_Version>.

2. In the right administration pane, click the Context Variables tab.

3. Select one or both of the variables: SupUser or SupPassword, and click Modify.

4. Type the new value and click OK.

Adding a Certificate File to the Mobile Workflow Package
The administrator can change the credential certificate assigned at design time.

Note: Sybase recommends that you use Internet Explorer to perform this procedure.

1. In the left navigation pane, click Workflows >
<Workflow_Package>:<Workflow_Version>.

2. In the right administration pane, click the Context Variables tab.

3. Select SupPassword and click Modify.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 213

4. Select Use certificate-base credentials and click Browse to find and upload a certificate
file.

5. Set the value for Certificate password and click OK.
On the Context Variables page, the read-only values of SupUser, SupCertificateSubject,
SupCertificateNotBefore, SupCertificateNotAfter, and SupCertificateIssuer change to
reflect values of the new certificate and password you set.

Security
Set up static or dynamic authentication, and configure the Mobile Workflow application to use
credentials.

Credentials
You can use either dynamic or static credentials in a mobile workflow form.

See Security and System Administration for more detailed information about implementing
security and certificates.

The user name and password values are required when the mobile workflow application
invokes a mobile business object operation. These authentication values can be provided
statically (at design time), or dynamically (by the user at runtime). For requests sent by the
client with a credential screen specified, requests are always invoked on the server using the
credentials specified by the user, regardless of whether static or dynamic authentication is
specified.

The choice of static versus dynamic authentication applies only to requests that must be
executed on the server that do not have any credentials, or that do not have valid credentials.
This happens when an object query needs to be run by a server-initiated notification, for
example, or if the client provides incorrect credentials. In that scenario, the decision between
static and dynamic becomes important. If static was chosen, it silently uses those hard-coded
credentials. If dynamic was chosen, it sends a notification to the client and asks the user to
supply the credentials.

As an example of this, you might define a server-initiated workflow with a credential screen
and static authentication. When the notification first comes in, it runs an object query using the
hard-coded credentials. This is then sent to the user, who opens the notification and then
makes an online request. This online request, be it an operation or an object query, will be
made using the credentials supplied by the user.

Dynamic credentials mean that the user sets the user name and password on a screen that is
pointed to by the credential request starting point. The text fields must have the corresponding
Credential Cache User Name and Password checkbox checked to indicate the value is to be
used to provide the user name and password on the client. When the user logs in, the
credentials are authenticated using the stored credentials.

Mobile Workflow Development

214 Sybase Unwired Platform

Note: If an e-mail triggered workflow has dynamic cached credentials, the cached credentials
are not cached between invocations of the workflow form through an email trigger.

Static credentials mean that everyone who has access to the resource uses the same user name
and password. By default, static credentials are used. The static credential user name and
password for the mobile workflow application can be extracted from the selected Sybase
Unwired Platform profile user name and password when the mobile workflow application is
generated, or they can be hard-coded using the Properties view. After deployment, you can
change static credentials in Sybase Control Center.

The application can also have a credential screen (Credential Request) that appears if the
mobile workflow application detects that the cached credentials are empty or incorrect.

Setting Up Static Authentication
With static authentication, everyone who has access to the resource uses the same user name
and password.

Set up static credentials in the Authentication section of the Properties tab. To see the
Properties page, verify there are no objects selected on the Flow Design page.

1. In the Properties view, click Authentication.

2. Select Use static credentials.

3. Select from these options:

• Use SUP Server connection profile authentication – selected by default. When the code
is generated for the mobile workflow application, the user name and password
associated with the SUP connection profile are used.

• Use hard-coded credentials – sets the user name and password. When you select this
option, the User name and Password fields are activated.

• Use certificate-based credentials – when you select this option, you can use a
certificate to generate authentication credentials.

4. (Optional) If you selected the Use hard-coded credentials option in the previous step,
enter the User name and Password that are to be used for authentication.

5. Select File > Save.

Setting Up Static Authentication Using a Certificate
Set up static authentication credentials generated from a certificate.

1. In the Properties view, click Authentication.

2. Select Use static credentials and Use certificate-based credentials.

3. Click Generate from Certificate to select a certificate file from which to generate
authentication.

4. In the Certificate Picker, click Browse to locate the certificate to use.

5. Enter a password and select an alias, then click OK.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 215

The information from the certificate is shown in the Properties view.
• Issuer – the issuer of the certificate
• Subject – the value of the subject field in the metadata of the certificate as defined in the

X.509 standard
• Valid from – the date the certificate is valid from
• Valid until – the date after which the certificate expires

6. Select File > Save.

Setting Up Dynamic Authentication
Use dynamic authentication when you want the user to set the name and password on the
client.

You can create the Credential Request starting point with a Credential screen automatically
when you initially create a new mobile workflow, or you can create the Credential Request
starting point and associated screen manually. This procedure shows how to create the
Credential Request starting point automatically when you create a new mobile workflow.

1. In the Mobile Development perspective, select File > New > Mobile Workflow Forms
Editor.

2. Follow the instructions in the New Mobile Workflow Forms Editor wizard:

Field Description

Enter or select the parent folder Select the mobile application project in which
to create the mobile workflow form.

File name Enter a name for the mobile workflow form.
The extension for mobile workflow forms
is .xbw.

Advanced Link the mobile workflow form to an existing
file in the file system.

Link to file in the file system Click Browse to locate the file to which to link
the mobile workflow form. Linked resources
are files or folders that are stored in the file
system outside of the project's location. If you
link a resource to an editor, when you select the
editor, the resource is selected in the Work-
Space Navigator. Conversely, when you select
the resource in the WorkSpace Navigator, the
editor is selected.

Click Variables to define a new path variable.
Path variables specify locations on the file sys-
tem.

3. In the Starting Points page, select Credentials (authentication) may be requested
dynamically from the client application.

Mobile Workflow Development

216 Sybase Unwired Platform

4. Continue with the New Mobile Workflow wizard as appropriate to create the type of
mobile workflow application you want to create. Click Finish.

5. When the Mobile Workflow Forms Editor opens, click Flow Design.

The Credential Request starting point and its associated Credential Request screen appear
on the Flow Design page.

Select the Credential Request starting point. You see the two pre-defined keys
(cc_username and cc_password) in the Properties view.

6. Double-click the Credential Request screen to go to the Screen Design page.

Two editbox controls, which are bound to the pre-defined cc_username and cc_password
keys appear on the screen.

7. Select the Username editbox, then click Advanced on the left side of the Properties view.

The Username editbox has the Credential cache username checkbox selected. Select the
Password editbox and note that is has the Credential cache password checkbox checked.

If you create a Credential Request starting point and screen manually, you must add the
editbox controls, create the keys for the username and password, and check the
corresponding Credential cache username or password box.

8. (Optional) To use certificate-based authentication instead of the user name and password:

a) Add a MenuItem to the Menu box.
b) Select the MenuItem to see the Properties.
c) In the Properties view, from Type, choose Select Certificate.

When the user selects the menu item on the device, a dialog is opened that allows the
user to select a certificate to use for credentials.

9. Select File > Save.

The first time the mobile workflow is started following deployment, the credential screen
is shown. The username and password values are then cached in the credential cache.

Note: If an e-mail triggered workflow form has dynamic cached credentials, the cached
credentials are not cached between invocations of the workflow form through an email
trigger.

Basic Authentication
On iOS, Android, and BlackBerry platforms, each Hybrid Web Container has a default basic
authentication screen to enter credentials if challenged for basic authentication when Hybrid
Web Container connects with the server.

The entered credentials are persisted, so any time the application restarts, the previously
accepted credentials are used.

If the basic authentication screen is canceled, it is shown again only under these
circumstances:

• New connection information is entered and saved on the settings screen

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 217

• The restart engine menu item is pressed on the settings screen
• The application is restarted (device restart or force stop)

See Security > Server Security » Enabling Authentication and RBAC for User Logins >
Authentication in Unwired Platform > Built-in Security Providers for User Authentication
and Authorization > HTTP Authentication Security Provider for more information.

Single Sign-on
Android, BlackBerry, and iOS Workflow applications can provide a single sign-on (SSO)
token.

Cookie-based Network Edge Authentication
Unlike standard credential cache authentication, network edge authentication is global to the
Hybrid Web Container, not specific to each workflow application. Each Hybrid Web
Container has a dialog to prompt for HTTP basic authentication credentials when challenged,
and a session header or cookie is returned if the system is so configured for SSO. See Security
> Server Security > Enabling Authentication and RBAC for User Logins > Authentication in
Unwired Platform > Built-in Security Providers for User Authentication and Authorization >
HTTP Authentication Security Provider for more information.

The sequence of authentication is as follows:

1. Client Network Edge authentication – The client begins a session by sending an HTTP(S)
request to the Reverse Proxy. The Reverse Proxy detects the un-authenticated request and
challenges for Basic authentication. After the 401 challenge, the client may already have
network credentials configured, or perhaps there is a callback to prompt for credentials.

2. The client sends another HTTP request with the credentials, which the Reverse Proxy
validates, and if valid issues a Cookie with an SSO token value. The HTTP headers will be
added to the request that is created and sent to Sybase Unwired Platform.

3. Sybase Unwired Platform receives the request and uses an enhanced CSI LoginModule
to authenticate. This login module is configured to extract HTTP Headers from the request
(Cookie values are a subset).

4. Sybase Unwired Platform processes the request and a response is sent back to the client.
The client is still waiting on the original HTTP request from the Reverse Proxy. When the
response comes back, the Reverse Proxy typically adds the setCookie response header at
this time to pass the SSO data back to the client to use in subsequent HTTP requests.
• If the SSO token is valid, everything proceeds.
• If the SSO token is invalid, a server to device method instructs the Hybrid Web

Container to prompt for crdentials again.

Configuring the Workflow Application to Use Credentials
Configure a Mobile Workflow application to pass user credentials, which are authenticated by
Unwired Server and the EIS.

For information about configuring and implementing X.509 and SSO2 on the server, see the
Sybase Unwired Platform Security documentation.

Mobile Workflow Development

218 Sybase Unwired Platform

Configuring the Workflow Application to Use X.509 Credentials
Add a screen that contains a Specify Certificate Credentials menu item to the Credential
Request starting point from which a workflow application user selects a certificate to gain
access to the MBO and related resources.

1. In the Mobile Workflow Forms Editor, add a Credential Request starting point to the
workflow application.

2. Add a screen named Credentials and connect it to the Credential Request starting point.

3. Double-click Credentials to open it in the Screen Design. Add a Select Certificate menu
item of the Submit Workflow type.

On the device, the Specify Certificate Credentials action prompts the user for a *.p12
certificate and passes it to Unwired Server for validation.

4. Add a Client-initiated starting point to which you add screens that contain the Submit
menu items used to run MBO operations and object queries, return and display results, and
so on. These actions all use the same credentials created in the previous steps.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 219

Configuring the Workflow Application to Use Static X.509 Credentials
When using static credentials, the workflow application does not prompt the user for
credentials, instead it passes the credentials to Unwired Server automatically and displays the
workflow application's start screen.

1. Remove the Credential Request starting point and screen from the workflow application
(so the client is no longer prompted for credentials).

2. From Flow Design, select Authentication, Use static credentials, and Use certificate-
based credentials.

3. Click Generate from Certificate.

4. Browse to the location of the *.p12 certificate file.

5. Enter the certificate's password, select the alias and click OK.

6. Save and regenerate the Mobile Workflow package, and reassign it to a device.

Propagating a Client's Credentials to the Back-end Data Source
Use client credentials to establish enterprise information system (EIS) connections on the
client's behalf for all data source types.

To use client credentials, map an EIS connection's user name and password properties to
system-defined "user name" and "password" personalization keys respectively. This creates a
new connection for each client and the connection is established for each request (no
connection pooling.)

1. During development of the mobile business object MBO/operation, from the data source
definition page (available either in the Creation wizard or from the Properties view), in the
Runtime Data Source Credential section (or HTTP Basic Authentication section for a
Web Service, RESTful Web Service, or SOAP MBO), enter the client credentials in the
User name and Password fields. The runtime data source credential values (user name and
password) that Unwired WorkSpace uses for refresh or preview operations is taken in this
order:

a) Any literal value entered in the User name and Password fields.
b) User-defined personalization keys that have non-empty default values.
c) System personalization keys 'user name' and 'password'.
d) User name and password property values contained in the connection profile.

2. During deployment of the package that contains such MBOs, map the design-time
connection profiles to the existing or new server connections, but be aware that the user
name and password portions for the selected server connection is replaced by the user
name and password propagated from the device application.

Note:

Mobile Workflow Development

220 Sybase Unwired Platform

• Do not set client credentials using the Runtime Data Source Credential option for
MBO's that belong to a cache group that uses a Scheduled policy, since this is
unsupported.

• In general, a MBO operation that uses data source credential settings as connection
properties cannot have these settings mapped to an enterprise information system
(EIS) during deployment. Instead, they maintain their original settings, which you can
map after deployment using Sybase Control Center (SCC).

• When you create a new security configuration that includes the
SAPSSOTokenLoginModule, and deploy it to a new domain, if the mobile workflow
application uses the MBOs associated with the new security configuration, you must
specify an Unwired Server domain that corresponds to the domain using the security
configuration. See the Sybase Unwired Platform Security guide for more information
about security configurations

Configuring a Workflow Application to Use SSO2 Tokens
Configure a Credential Request starting point from which a workflow application user can
pass a user name and password to gain access to the MBO and related resources.

1. In the Mobile Workflow Forms Editor, add a Credential Request starting point to the
workflow application.

2. Add two keys to the Credential Request named cc_username and cc_password.

3. Add a screen named Credentials and connect it to the Credential Request starting
point.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 221

4. Double-click Credentials to open it in the Screen Design. Add a Save screen menu item to
the Menu, and two edit boxes (Username and Password).

The Save screen saves the Username and Password entered by the workflow
application. You could also add a Submit workflow menu item instead of Save screen.

5. Add a Client-initiated starting point to which you add screens that contain the Submit
menu items used to run MBO operations and object queries, return and display results, and
so on. These actions all use the same credentials created in the previous steps.

Mobile Workflow Development

222 Sybase Unwired Platform

Configuring the Workflow Application to Use a Static SSO2 Token
When using static credentials, the workflow application does not prompt the user for
credentials, instead it passes the credentials to Unwired Server automatically and displays the
workflow application's start screen.

1. Remove the Credential Request starting point and screen from the workflow application
(so the client is no longer prompted for credentials).

2. From Flow Design, select Authentication, Use static credentials, and Use hard-coded
credentials. Enter a username and password that corresponds to those defined in
Sybase Control Center for the server connection (for example: snctest/snctest).

3. Save and regenerate the workflow package, and reassign it to a device.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 223

Modify Certificate Information for Workflow Packages
If using static credentials, either SSO token or static x.509 certification, you can replace the
workflow package certificate using either Sybase Control Center or the
SUPMobileWorkflow.replaceMobileWorkflowCertificate() API. To replace a certificate, you
must have access to the certificate file and password.

Replacing the Mobile Workflow Certificate Through Sybase Control Center
If using static credentials, you can set or modify the context variable certificate settings for a
mobile workflow package from Sybase Control Center.

The mobile workflow certificate password context variable is read-only. You can modify this
only by using the Admin Java API method
SUPMobileWorkflow.replaceMobileWorkflowCertificate().

1. From Sybase Control Center, navigate to Workflows > WorkflowName, where
WorkflowName is the name of the workflow package.

2. On the Context Variables tab, verify that SupUser and SupPassword contain valid
credentials for the specified security configuration, for workflow packages that do not use
certificate-based authentication.

3. For workflow packages that use certificate based authentication, you can view these
context variables:

• SupCertificateIssuer
• SupCertificateSubject
• SupCertificateNotAfter
• SupCertificateNotBefore

Replacing the Mobile Workflow Certificate Using the Admin API
Use the SUPMobileWorkflow.replaceMobileWorkflowCertificate() method to set or modify
the certificate password context variable for the workflow package.

InputStream is = workflowRL.getResourceAsStream("sybase101.p12");
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte[] buf = new byte[512];
int count;
while ((count = is.read(buf)) != -1) {
 baos.write(buf, 0, count);
}
is.close();
baos.flush();
baos.close();
MobileWorkflowIDVO workflowID = new MobileWorkflowIDVO();
workflowID.setWID(4);
workflowID.setVersion(1);

workflow.replaceMobileWorkflowCertificate(workflowID,
 baos.toByteArray(), "password");

Mobile Workflow Development

224 Sybase Unwired Platform

Content Security on Devices
This explains how the files that make up the mobile workflow container are protected when
stored on the device, and under what circumstances the files are stored in plaintext.

Content Security on BlackBerry Devices
In general, all Hybrid Web Container files and extra data entered by the user, or retrieved from
the server, are stored on the BlackBerry device’s PersistentStore.

This is the same storage area used by e-mail, calendar entries, and applications. See your
BlackBerry documentation for information about persistent store APIs.

The BlackBerry Hybrid Web Container uses the RIM PersistentContent APIs when reading
and writing of data from PersistentStore is required. This ensures that the content being
written is stored at the device’s current encryption level. See your BlackBerry documentation
for information about content protection strength settings.

When content protection is turned on, content on the BlackBerry device is protected using the
256-bit Advanced Encryption Standard (AES) encryption algorithm.

• Use 256-bit AES encryption to encrypt stored data when the BlackBerry device is locked
• Use an Elliptic Curve Cryptography (ECC) public key to encrypt data that the BlackBerry

device receives when it is locked

These settings apply to the encryption of data that the BlackBerry device receives while
locked:

Content protection strength setting ECC encryption key length (in bits)

Strong 160

Stronger 283

Strongest 571

The BlackBerry Hybrid Web Container also registers a PersistentContentListener, which
allows it to be notified when the device’s encryption level changes. This also enables
previously stored content to be re-encoded to the new encryption level setting. The device’s
encryption level setting can be changed by a BlackBerry Enterprise Server Administrator
remotely, or by the user, from the device.

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<workflow_package_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the Workflow zip package.
When the platform’s browser control requests these Web files, they are read from the device’s
PersistentStore and passed to the browser control in memory, which means there are no temp
files.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 225

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<workflow_package_name>.zip deployed to the device, they are stored on the
device’s PersistentStore:

• When the JavaScript requests to display these attachments, they are read from the
PersistentStore, and temporarily written unencrypted to the device’s flash memory for the
external viewers to display them.

• Once the mobile workflow application closes, these temporary attachment files are
immediately removed.

Attachments that are downloaded using an online request that use an object query are stored
unencrypted in the device’s flash memory for the file viewers to display them. Once the
mobile workflow application closes, these temporary attachment files are immediately
removed.

Images
Images are stored unencrypted on the file system and saved into the Pictures folder
(ImageOptions.BOTH).

Cached Online Requests
The results of online requests that are specified to be cached are stored on the device’s
PersistentStore. Cached results are removed when the Hybrid Web Container is unassigned
from the device, or uninstalled from the server.

Notifications From the Server
Notifications from the server are stored in the same PersistentStore area, including the payload
that makes up the notification. When the notification is acted upon, the JavaScript makes a
request for the notification contents. This is read from the PersistentStore and passed to the
browser in memory.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a mobile workflow
application for the server to process, the data destined for the server is queued up on the device.
This queue is part of the device’s PersistentStore.

Content Security on Android Devices
On Android operating systems, all Hybrid Web Container files, and extra data entered by the
user or retrieved from the server, are encrypted before being stored into a SQLite database on
the device.

The crypto libraries provided by Google/Android are used. Specifically, the encryption
algorithm used is AES-256 symmetric encryption.

Mobile Workflow Development

226 Sybase Unwired Platform

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<workflow_package_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the zip package.

• When the platform’s browser control requests these Web files, they are read from the
device’s SQLite database, stored unencrypted on the file system temporarily, and then
passed to the browser control through a Content Provider.

• These temporary files are removed from the Content Provider immediately after the last of
them are requested by the browser control. The Content Provider URL is further
obfuscated with a randomly generated number that is required on the URL when the files
are requested.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<workflow_package_name>.zip deployed to the device, they are stored in the
encrypted SQLite database after they have been encrypted through the Google/Android
crypto libraries.

• When the JavaScript requests these attachments for viewing, they are read from the SQLite
database, and temporarily written unencrypted to the device’s flash memory for the
external viewers to display them.

• Once the mobile workflow application closes, these temporary attachment files are
immediately removed.

Note: The Android operating system enforces the sandboxing of these temporary files.

Attachments that are downloaded through an online request using an object query are stored
unencrypted in the device’s flash memory for the file viewers to display them. Once the
mobile workflow closes, these temporary attachment files are immediately removed.

Images
The image is saved, unencrypted on the file system, into the Gallery application,
(ImageOptions.CAMERA, ImageOptions.BOTH).

Note: The Android operating system enforces the sandboxing of these image files.

Cached Online Requests
The results of online requests that are specified to be cached are stored on the device’s SQLite
database (after they are encrypted through the Google/Android crypto libraries). Cached
results are removed when the Hybrid Web Container is unassigned from the device, or
uninstalled from the server.

Notifications From the Server
Notifications from the server are stored in the same SQLite database after they have been
encrypted through the Google/Android crypto libraries, including the payload that makes up

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 227

the notification. When the notification is acted upon, the JavaScript makes a request for the
notification contents. This is read from the SQLite database, unencrypted, and passed to the
browser in memory.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a Workflow for the server
to process, the data destined for the server is queued up on the device. The contents of this
queue are again encrypted through the Google/Android crypto libraries before it is stored into
the SQLite database.

Encryption Keys

• How the encryption key is generated:
• A generated GUID is used as the key for encrypting the data (“data password”)
• A user-provided password (PIN) is used to secure/encrypt the “data password," which

is persisted in its encrypted form. In order to have access to the "data password", one
must know the user password.

• The salt is a different persisted, generated GUID.
• Encryption of data is done with the "data password."

• Where is the encryption key stored?
• The "data password" is persisted in its encrypted form in a separate table in the SQLite

database.

Content Security on iOS Devices
On iOS devices, all Hybrid Web Container files and extra data entered by the user or retrieved
from the server, are stored in a SQLite database that uses the SQLite Encryption Extensions
(AES-128).

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<workflow_package_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the Workflow zip package.
When the iOS device's browser control requests these Web files, they are read from the
encrypted SQLite database. The data is temporarily written to the file system under the
application sandbox, after which the browser control reads the file contents into memory. The
temp files are removed when the package is finished loading.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<workflow_package_name>.zip deployed to the device, they are stored in the encrypted
SQLite database.

Mobile Workflow Development

228 Sybase Unwired Platform

• When the JavaScript requests the attachments for viewing, they are read from the database,
and temporarily written, unencrypted, to the Hybrid Web Container's’s sandbox for the
viewer to display them.

• Once the mobile workflow application closes, these temporary attachment files are
immediately removed.

Attachments that are downloaded using an online request that uses an object query are stored
unencrypted in the Hybrid Web Container's sandbox for the file viewers to display them. Once
the mobile workflow application closes, these temporary attachment files are removed
immediately.

Images
Images are stored unencrypted in the Hybrid Web Container's sandbox, then removed when
the Workflow application closes.

Cached Online Requests
The results of online requests that are specified to be cached are stored in the encrypted SQLite
Database. Cached results are removed when the Hybrid Web Container is unassigned from the
device, or uninstalled from the server.

Notifications From the Server
Notifications from the server are stored in the same encrypted SQLite database, including the
payload that makes up the notification. When the notification is acted upon, the JavaScript
makes a request for the notification contents. This is read from the SQLite database and passed
to the browser in memory.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a Workflow application for
the server to process, the data destined for the server is queued up on the device. This queue is
again part of the encrypted SQLite database.

Encryption Keys

• The Hybrid Web Containerontainer generates a hash from the password entered by the
user, and a salt, combined

• The Hybrid Web Container generates a random key
• The Hybrid Web Container encrypts the key with the hash and stores it in the app area of

the keychain

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 229

Content Security on Windows Mobile Devices
On Windows Mobile Professional, Hybrid Web Container files are stored unencrypted on the
device’s file system, and Hybrid Web Container Settings are stored unencrypted in the
device’s registry.

Note: The Windows Mobile Hybrid Web Container defers all security and encryption
responsibilities to the Afaria® Security Manager; therefore, Sybase strongly recommends that
you use Afaria Security Manager.

If you do not use Afaria Security Manager, you must:

• Protect these files through alternative means. The \Program Files\Sybase
\Messaging\AMP folder (and all if its sub folders) must be secured on the device.

• To protect the Hybrid Web Container settings, the [HKEY_LOCAL_MACHINE
\Software\Sybase\MessagingClientLib] registry key (and all of its sub
keys) must be secured on the device.

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<workflow_package_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the Workflow zip package.
These are all stored unencrypted on the file system of the device.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<workflow_package_name>.zip deployed to the device, they are stored unencrypted on the
file system of the device.

• When the JavaScript requests these attachments for viewing, a file URI is constructed for a
suitable external viewer to display these files.

• Once the mobile workflow application closes, these temporary attachment files are
immediately removed.

Images
Images are stored unencrypted on the file system, then removed when the Workflow
application closes.

Cached Online Requests
The results of online requests that are specified to be cached are stored unencrypted on the
device’s file system. Cached results are removed when the Hybrid Web Container is
unassigned from the device, or uninstalled from the server.

Notifications From the Server
Server notifications are stored unencrypted in the Inbox database of the device (the same
database that houses the device’s regular e-mail messages). When the notification is acted

Mobile Workflow Development

230 Sybase Unwired Platform

upon, the JavaScript makes a request for the notification contents. This is read from the Inbox
database and passed to the browser in memory. If you are not using Afaria Security Manager,
the Windows Mobile Inbox database must be secured.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a Workflow for the server
to process, the data destined for the server is queued up on the device. The contents of this
queue are stored in an unencrypted SQLite database.

Localization and Internationalization
You can localize different objects in the Mobile Workflow Forms Editor, such as the names of
screen controls, screens, and mobile business objects.

You can localize the mobile workflow by creating locale properties files. You can then load,
update, and generate localized mobile workflow applications.

All the localizable strings in the Mobile Workflow Forms Editor XML model work as resource
keys in the localization properties file. All the localization properties files are in the same
directory as the Mobile Workflow packages (.xbw files).

Resource keys are divided into these categories, which include all the elements of the Mobile
Workflow Forms Editor XML model:

• Menus
• Controls
• Screens

Localization consists of two levels of localization—the Mobile Workflow Forms Editor XML
model localization and the Mobile Workflow client localization.

All locale properties files are saved in the same directory as the Mobile Workflow package.

To ensure that the correct locale is picked up for the Mobile Workflow container, the following
mechanism is used:

1. If a precise match is found for language and country, for example, English - United States
(en-us) is the locale and the file exists in html\en-us\workflow*.html, that file is
used and the HTTP lang parameter is set to "en-us."

2. If a precise match for country is not found, the language is used. For example, English (en).
If the file exists in html\en\workflow*.html, that file is used and the HTTP lang
parameter is set to "en."

3. If a language match is not found, the default locale is used. If the file exists in html
\default\workflow*.html, that file is used and the HTTP lang parameter is set to
"default";

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 231

4. If a default match is not found, no locale is used. If the file exists in html
\workflow*.html, that file is used and the HTTP lang parameter is set to "".

Localization Limitations
Some restrictions for the locale properties files apply:

• Traditional Chinese characters are not supported on iOS.
• Mobile workflow applications that have names that begin with numbers or special

characters cannot be localized; you will receive an error when you generate the code. Make
sure that any mobile workflow you want to localize does not have a file name that begins
with a number or special character.

• When you specify a country for the language, the basic language locale must also be
available. For example, if you create a locale and specify English as the language and the
United States as the country, then a locale for English (the basic language) must also be
available.

• If you create a locale that specifies language, country, and variant, the locale for the basic
language and the locale for the basic language and the country must be available. For
example, if you create a locale and specify English as the language, United States as the
country, and WIN as the variant, then English (United States) and English locales must
also be available.

• The language code must be a 2-letter code, and the country code can be either a 2-letter or
3-letter code.

Note: BlackBerry 9800 Asia simulators do not have a place to specify a country name, so
you can specify only a language.

• If you specify a variant, the country code must be a 2-letter code.

Localizing a Mobile Workflow Package
Use the Mobile Workflow Forms Editor to complete these tasks to localize Mobile Workflow
packages (.xbw files).

Changing the Encoding Type
Change the encoding type in Preferences.

If you manually localize the locale properties file using an external editor, you must make sure
the file is encoded in ASCII, so that the content can be correctly read and converted to
Unicode. The localization file is encoded in standard ISO-8859-1. All non-ASCII character
values are converted to escaped Unicode hexadecimal values before they are written to the
properties files. Before translating the localization file, select the correct file encoding option,
for example UTF-8.

1. In Sybase Unwired Platform, select Window > Preferences.

2. Expand General > Content Types.

Mobile Workflow Development

232 Sybase Unwired Platform

3. In the right pane, select, Text > Java Properties File.

4. In the File Associations list, select *.properties(locked).

5. In the Default encoding field, change ISO-8859-1 to UTF-8, and click Update.

Creating and Validating a New Locale Properties File
Create a locale properties file as the default locale.

Prerequisites
You must have an existing Mobile Workflow package before you create the locale properties
file.

Task
When you create a new locale, keep in mind:

• When you specify a country for the language, the basic language locale must also be
available. For example, if you create a locale and specify English as the language, then
there must also be a locale for English (the basic language).

• If you create a locale that specifies language, country, and variant, the locale for the basic
language and the locale for the basic language and the country must be available. For
example, if you create a locale and specify English as the language, United States as the
country, and WIN as the variant, then English (United States) and English locales must
also be available.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 233

1. In WorkSpace Navigator, double-click the <mobile_workflow>.xbw file to open the
Mobile Workflow Forms Editor.

2. Click the Flow Design tab.

3. Right-click in a blank area on the Flow Design page, and select Show Properties View.

4. In the Properties view, on the left, click the Localization tab.

5. In the right pane, click New.

6. Select or enter the information for the new locale, select Automatically create default
locale, and click Finish.

Option Description

Language Select the language.

Country Select the country.

Variant Enter the variant, which is the vendor or brows-
er-specific code. For example, enter "WIN" for
Windows, "MAC" for Macintosh and "POSIX"
for POSIX. If there are two variants, separate
them with an underscore, and put the most im-
portant one first. For example, a Traditional
Spanish collation might construct a locale with
parameters for language, country, and variant
as: "es", "ES", "Traditional_WIN".

Overwrite existing file Overwrite an existing localization file.

Mobile Workflow Development

234 Sybase Unwired Platform

Option Description

Automatically create default locale Automatically create the default locale proper-
ties file. For example, if you specify the lan-
guage as "English" and the country as the
"United States" for a device application called
test, then both test_en_uS.prop-
erties and test.properties files
are created.

For example:
• Language – select French.
• Country – select France.
• Variant – enter a value to make this locale file unique from others, for example, WM for

Windows Mobile.

This locale file is now the default locale file, and will be used when the regional setting of
the device does not match that of any supplied locale file.

7. In the Properties view, in the Localization page, select the file to validate and click
Validate.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 235

The properties file is scanned and if there are any errors, a dialog appears. Click Yes to
correct the errors automatically; click No to see the errors in the Problems view.

Editing the Locale Properties File
Edit the locale properties file.

1. In WorkSpace Navigator, under the Generated Code folder, right-click the locale
properties file you created, and select Open With > Properties File Editor.

2. You can make and save changes to the file in the Properties File editor, for example, you
can replace all the values of the resource keys with Chinese characters.

3. Select File > Save.

The next time you open the locale properties file, notice that all of the ASCII characters
have been changed.

4. In the Localization pane, select the localization file you edited, and click Load.

The elements of the application in the editor are translated into the language you specified
if the localization file passes the loading validation.

Removing a Locale
Remove locale properties files.

1. In the Screen Design page Properties view, click Localization.

2. Select the locale to remove and click Remove.

3. Click Yes to confirm the deletion.

Updating the Current Locale
Update the currently loaded locale properties file with the resource keys from the current
Mobile Workflow Designer.

If the locale properties file does not already exist, it is created. If the current locale is not
defined in the mobile workflow application file, the updated locale is used as the default, and
the file name is {device_application}.properties. Otherwise, the locale defined in the mobile
workflow application file is updated.

Mobile Workflow Development

236 Sybase Unwired Platform

Note: When you update the localization bundle, it removes all resources that are not explicitly
bound to existing UI elements (screens, menuitems, controls, and so on). If you want to
manually supply resources, you must do so after updating, and be careful not to update the
resource bundles afterwards, or you will have to re-add those manually-supplied resources
after updating.

1. In the Screen Design page Properties view, click Localization.

2. Click Update.

Mobile Workflow Package Internationalization
The internationalization feature depends on the internationalization setting on the operating
system where Sybase Unwired Platform Mobile Workflow is running.

In the Mobile Workflow Forms Editor, you can use international data in:

• Matching rules for notifications.

• Key names – you can create keys with names in other languages and map them to mobile
business object parameters.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 237

• Generated Code folder – you can include languages other than English in the code
generation path based on the name of the selected language.

Internationalization on the Device
On the device, e-mail messages and data can include languages other than English.

The internationalization feature depends on the internationalization setting on the device
where the Mobile Workflow client running.

E-mail messages can be sent and received using Chinese, for example, which can then be used
to extract the parameter. You can also create and update records in using international data,
such as Chinese. For example:

Mobile Workflow Development

238 Sybase Unwired Platform

Test Mobile Workflow Packages
Test a Mobile Workflow on a device or simulator.

1. Launch and/or connect to the mobile device or emulator.
2. Deploy the Mobile Workflow package to the device.
3. Establish the connection to the server on the device.
4. For user-initiated Mobile Workflow packages, go to the Workflows menu of the e-mail

inbox and click on the appropriate Workflow package.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 239

5. For e-mail subscription Mobile Workflow packages, send the e-mail to the device, either
automatically, for example, database trigger, or manually, through the Send E-mail dialog;
then open that e-mail on the device.

6. Enter data and execute menu items appropriately.
7. Verify that the backend is updated correctly.
8. Check the logs.

Testing Server Initiated Mobile Workflow Packages
Test a server-initiated Mobile Workflow package.

1. In the Mobile Workflow Forms editor, open the Mobile Workflow form,
<workflow_form>.xbw.

2. Click Flow Design.

3. Right-click in the editor, and select Send a notification.

4. In the Send a Notification window:

a) Select the Unwired Server profile and click Get Device Users.
b) Choose the desired user and fill in the fields according to the matching rules specified

when creating the Mobile Workflow form.

5. Click Send.

6. On the client, from the applications screen, open SUPWorkflows.

7. In the client application, click WorkFlow Messages. This contains the server-initiated
Mobile Workflow form.

Viewing Workflow Messages on the Device
Where Workflow messages that are sent to the device appear varies by platform.

Note: Registration must be successfully completed either through providing an activation
code or a password for automatic registration in the Workflow connection settings before any
Workflow packages appear on the device.

BlackBerry
To see Workflow messages on BlackBerry devices and simulators:

1. Close the Mobile Workflow application.
2. Go to the Messages inbox. The mobile workflow messages are in the inbox.
3. Select Workflows from the menu.

Android
To see Workflow messages on Android devices and simulators:

1. Open the Workflows application.
2. Open the Mobile Workflow application for which you want to view messages.

Mobile Workflow Development

240 Sybase Unwired Platform

3. Click the message to view.

iOS
To see Workflow messages on iOS devices and simulators:

1. Open the Workflows application.
2. Click Mobile Workflow Messages to view messages.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 241

Windows Mobile
To see Workflow messages on Windows Mobile devices and emulators:

1. Open the Outlook E-mail inbox.
2. Workflow messages are in the inbox, with a mobile workflow icon.

Mobile Workflow Development

242 Sybase Unwired Platform

Launching a Server-initiated Mobile Workflow on the Device
Server-initiated Mobile Workflow messages show up as an e-mail message on the Windows
Mobile or BlackBerry device inbox.

On Windows Mobile platforms, Mobile Workflow packages are integrated with the Outlook
Mail inbox. On iOS, messages are sent to a container that is provided by the Workflow device
client.

Click the e-mail message to launch the Mobile Workflow container and display the Mobile
Workflow associated with the e-mail message.

When you click the Workflows menu item in the device inbox, only the latest version of the
Workflows appear. When you click the Workflow icon for a particular workflow, the
Workflow version that is associated with the e-mail notification is launched, whether it is the
latest version or not.

Example
You develop a Mobile Workflow application that has both client-initiated and server-initiated
starting points. You deploy the initial version, which is called version 1, and a Mobile
Workflow e-mail notification is sent.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 243

Next, make some changes and deploy a second version, version 2. Again, a Mobile Workflow
e-mail notification is sent.

There are now three ways that this Mobile Workflow application can be launched, and the way
that it is launched determines which version of the Workflow is launched:

• If you launch the application from the Workflows menu item, the last deployed version of
the Workflow, in this case, version 2, is launched. Although version 1 of the Mobile
Workflow application still exists somewhere on the device it is never used as long as you
launch the Workflow from the Workflows menu.

• If you launch the Workflow by opening the initial e-mail notification, the version that
corresponds with the latest version that existed at the time the notification was sent, is used.
In this case, that is version 1; it does not matter that a later version (version 2) exists.

• If you launch the Workflow by opening the second notification, the version that
corresponds with the latest version that existed at the time the notification was sent is used.
In this case, that is version 2.

Debugging Custom Code
Debug the Mobile Workflow package html and js files using a Windows desktop browser.

This procedure uses Google Chrome as an example, but you can use any browser that supports
JavaScript debugging.

1. Change the tracing level of Mobile Workflow to Debug.

2. Open the browser to use for debugging and open the Java Console.

If you are using Chrome:

a) Add the following command line option to the shortcut used to start Chrome:

..\chrome.exe" --allow-file-access-from-files
3. You can debug a client-initiated Mobile Workflow application up until the point where a

menu item of the Submit Workflow type is performed. If the menu item action is an Online
Request, place the XMLWidgetMessage (available in the WorkflowClient trace log
located in <UnwiredPlatform_InstallDir>\UnwiredPlatform
\Servers\UnwiredServer\logs\WorkflowClient) that is the expected
response message into an rmi.xml file and place it at the same level as the generated
workflow.html file.

Note: Control characters are not parsed correctly when using rmi.xml and Chrome to
debug the Mobile Workflow. Do not format the content of the rmi.xml when debugging
the Mobile Workflow using Chrome. If you want a formatted look at the rmi.xml file,
make a copy of the file for that purpose.

4. From WorkSpace Navigator, drag and drop the workflow.html file for the Mobile
Workflow application to debug onto the browser window.

5. Find the name of the key to debug:

Mobile Workflow Development

244 Sybase Unwired Platform

a) In Flow Design, click the screen to debug.
b) In the Properties view, click General in the left pane.

The key name is shown, in this example, that is TravelRequest_create.

6. In the URL, add the ?screenToShow=<Screen_name> parameter to the end of the URL,
for example:

file:///C:/Documents%20and%20Settings/<user_name>/
workspace/MobileWorkflow101/Generated%20Workflow/
travelrequest/html/workflow.html?
screenToShow=TravelRequest_create

7. To simulate an e-mail message triggered Mobile Workflow application:

a) Create a file called transform.xml and place the contents of the
XMLWidgetMessage into it.

The contents of the XMLWidgetMessage are in the WorkflowClient trace log in
<UnwiredPlatform_InstallDir>\UnwiredPlatform\Servers
\UnwiredServer\logs\WorkflowClient).

b) To provide data to the Mobile Workflow application you are debugging, place the
transform.xml file at the same level as the generated workflow.html file
(Generated Workflow\<Workflow_application_name>\html).

c) Add a ?loadtransformdata=true parameter to load the data into the Workflow
application.

Configuring Mobile Workflow Tracing in SCC
Change the tracing level for Mobile Workflow packages in SCC.

1. Log on to Sybase Control Center.

2. In the Unwired Platform Cluster view, select Servers > <host_name> > Log.

3. Click Message Server > Settings.

4. Select WorkflowClient and click Properties.

5. From Level, select Debug and click OK.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 245

Create a Mobile Workflow Package Manually
While using the Mobile Workflow Forms Editor is the easiest and fastest way to develop and
customize mobile workflow applications, it is also possible to develop a mobile workflow
package outside of the constraints of the Mobile Workflow Forms Editor.

Developing a mobile workflow application this way allows you to use of a greater variety of
application designs, from using different HTML formatting to using different Web application
frameworks, and beyond. It should be emphasized, however, that the Mobile Workflow Forms
Editor does a lot of the work to seamlessly support multiple platforms, which you must
duplicate if you choose not to use it.

Note: When writing your own HTML and JavaScript to create a Mobile Workflow package
manually, there is one absolute requirement—you must implement the following JavaScript
function:

function processWorkflowMessage(incomingWorkflowMessage)
The Workflow container needs to call this function when online request processing is
complete. The incoming workflow message is an XML-formatted string.

Mobile Workflow URL Parameters
When writing your own HTML and JavaScript, when the document is loaded, these URL
parameters will be present.

An example of how to use these URL parameters can be found in the onWorkflowLoad()
function in the Utils.js file.

URL parameter Description

loglevel Current device log level.

screenToShow Name of the screen which should be displayed.

supusername Username of the current Workflow (if available).

lang Current language of the device.

isalreadyprocessed Indicates whether or not the Workflow message
has been processed. The JavaScript can, for ex-
ample, choose to show all controls as read-only if
it has already been processed but viewed again.

Mobile Workflow Development

246 Sybase Unwired Platform

URL parameter Description

loadtransformdata Indicates that the JavaScript should request the
transform data (contents of the e-mail message)
from the Container using the loadtransformdata
querytype. For information about the query types,
see the topic Calling the Hybrid Web Container.

ignoretransformscreen Indicates that the JavaScript should ignore the
RequestScreen tag in the transform data (contents
of the e-mail message). This is set to true when the
screen that needs to be shown is either the Acti-
vation or Credentials screen.

Calling the Hybrid Web Container
It is easiest to learn how to call the Hybrid Web container by examining the API.js and
Utils.js files that the Mobile Workflow Forms editor generates.

Making calls to the Hybrid Web container is platform-dependent, as shown in this example:

 if (isWindowsMobile()) {
 var xmlhttp = getXMLHTTPRequest();
 xmlhttp.open("POST", "/sup.amp?
querytype=setscreentitle&version=2.0", false);
 xmlhttp.send("title=" + encodeURIComponent(screenTitle));
 }
 else if (isIOS()) {
 var xmlHttpReq = getXMLHTTPRequest();
 xmlHttpReq.open("GET", "http://localhost/sup.amp?
querytype=setscreentitle&version=2.0&title=" +
encodeURIComponent(screenTitle), true);
 xmlHttpReq.send("");
 }
 else if (isAndroid()) {
 var request = "http://localhost/sup.amp?
querytype=setscreentitle&version=2.0&title=" +
encodeURIComponent(screenTitle);
 _WorkflowContainer.getData(request);
 }
 else { //must be BlackBerry
 var xmlhttp = getXMLHTTPRequest();
 xmlhttp.open("POST", "http://localhost/sup.amp?
querytype=setscreentitle&version=2.0", false);
 xmlhttp.send("title=" + encodeURIComponent(screenTitle));
 }

From a high-level perspective, these are the query types used for calling the Hybrid Web
container.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 247

setscreentitle
Sets the native screen title on the Web Container.

close
Closes the native Web Container (Windows Mobile only).

addMenuItem
Adds a single menu item to the Web Container.

removeallmenuitems
Removes all the menu items from the Web Container.

clearrequestcache
Clears the entire Online Request cache for the current Mobile Workflow application.

clearrequestcacheitem
Clears a single Online Request cache entry for the current Mobile Workflow application.

logtoworkflow
Logs a message to the AMPHostLog.txt (mocalog.txt for iOS) on the device. This log
file can be retrieved remotely from Sybase Control Center.

showcertpicker
Shows a native platform certificate picker on the device for selecting certificate credentials.

showInBrowser
On iOS, this function shows the URL in the Workflow Container in a separate browser
instance. On all other platforms, this launches the native Web browser in another window with
the given URL.

showattachment
Using third party file viewers, this function displays an attachment that has previously been
downloaded using the downloadattachment querytype in a separate window.

Note: On iOS, the attachment is shown within the Web Container.

showlocalattachment
Using third party file viewers, this function displays an attachment that was included as part of
the Workflow .zip package, in a separate window.

Note: On iOS, the attachment is shown within the Web Container.

Mobile Workflow Development

248 Sybase Unwired Platform

rmi
This function executes an online request to the Unwired Server synchronously, in other words,
a network connection must be available. This can indicate results should be cached for future
access (in which case a network connection does not need to be available).

downloadattachment
Requests an attachment to be downloaded from the Unwired Server through an object query.
A network connection is required for this operation. This operation occurs asynchronously,
and the calling JavaScript is notified when it is complete.

submit
Submits the current MessageValueCollection to the Unwired Server for processing
by the server plug-in. This operation occurs asynchronously. If a network connection is not
available when this operation is performed, the request is queued up and executed the next
time a network connection is available.

alert
Shows a message box in native code (iOS and Android platforms only).

loadtransformdata
Requests the Web Container for the transform data (the contents of the e-mail message) for the
current Workflow message.

addallmenuitems
Instructs the Web Container to add the supplied list of menu items.

formredirect
Notifies the Container that a screen navigation is occurring, and to update credentials in the
credentials cache, if required.

Mobile Workflow Package Files
To build a mobile workflow package manually, you should first familiarize yourself with its
contents.

This section describes the contents of the Mobile Workflow package—which files are
required, and what the contents of those files should be. Particular attention is paid to the
contents of the Manifest.xml and WorkflowClient XML files, along with the Web application
files (HTML, JavaScript, CSS), most specifically the public API functions available to you.

The Web Application Files
A Mobile Workflow package contains Web application files.

When developing a Mobile Workflow package manually:

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 249

• Include HTML files that follow the same general pattern as the files generated when using
the Mobile Workflow Forms editor to generate the Mobile Workflow package.

• Use the API.js, Callbacks.js, Camera.js, Certificate.js,
ExternalResource.js, SUPStorage.js, and Timezone.js. files to
communicate with the Hybrid Web container

• Use WorkflowMessage.js to view and manipulate the workflow messages

HTML Format
This is the basic HTML format.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="HandheldFriendly" content="True" />
 <meta http-equiv="PRAGMA" content="NO-CACHE" />
 <link rel="stylesheet" href="css/MyStylesheet.css"
type="text/css" />
 […]
 <script src="js/API.js"></script>
 <script src="js/Utils.js"></script>
 <script src="js/WorkflowMessage.js"></script>
 <script src="js/MyJavaScript.js"></script>
 […]
 <script>
[…]
 </script>
 </head>
 <body onload="onWorkflowLoad();">
 <div id=Screen1KeyScreenDiv" sup_screen_title=”Screen1Title"
style="display: none"
sup_menuitems="NativeMenu1Key,NativeMenu1DisplayName,NativeMenu2Key
,NativeMenu2DisplayName" sup_okaction="myOKAction()">
[…]
 <form style="margin: 0px;" name="Screen1KeyForm"
id="Screen1KeyForm" onSubmit="return false;" autocomplete="on">
[…]
 </form>
[…]
 </div>
 </body>
 <script>
[…]
$(document).ready(function(){
 […]
 });
 […]
 </script>
</html>

Mobile Workflow Development

250 Sybase Unwired Platform

Manifest.xml File
The manifest.xml file describes how the contents of the Mobile Workflow package .zip
file are organized.

This file must reside at the root of the Mobile Workflow .zip package. This shows the outline
of what the manifest.xml file contains.

Manifest.xml
<?xml version="1.0" encoding="utf-8"?>
<Manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AMPManifest.xsd">
 <ModuleName>…</ModuleName>
 <ModuleVersion>…</ModuleVersion>
 <ModuleDesc>…</ModuleDesc>
 <ModuleDisplayName>…</ModuleDisplayName>
 <ClientIconIndex>…</ClientIconIndex>
 <InvokeOnClient>…</InvokeOnClient>
 <PersistAppDomain>…</PersistAppDomain>
 <MarkProcessedMessages>…</MarkProcessedMessages>
 <DeleteProcessedMessages>…</DeleteProcessedMessages>
 <ProcessUpdates>…</ProcessUpdates>
 <CredentialsCache>…</CredentialsCache>
 <RequiresActivation>…</RequiresActivation>

 <TransformPlugin>
 <File>WorkflowClient.dll</File>
 <Class>Sybase.UnwiredPlatform.WorkflowClient.Transformer</Class>
 </TransformPlugin>

 <ResponsePlugin>
 <File>WorkflowClient.dll</File>
 <Class>Sybase.UnwiredPlatform.WorkflowClient.Responder</Class>
 </ResponsePlugin>

 <ClientWorkflows>
 <WindowsMobileProfessional>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </WindowsMobileProfessional>
 <BlackBerry>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry>

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 251

 <BlackBerry6>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry6>
 <Android>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </Android>
 <iPhone>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </iPhone>
 </ClientWorkflows>

 <ContextVariables>
 <ContextVariable>
 <Name>…</Name>
 <Value>…</Value>
 <Certificate>…</Certificate>
 <Password>…</Password>
 </ContextVariable>
 </ContextVariables>

 <MatchRules>
 <SubjectRegExp>…</SubjectRegExp>
 <ToRegExp>…</ToRegExp>
 <FromRegExp>…</FromRegExp>
 <CCRegExp>…</CCRegExp>
 <BodyRegExp>…</BodyRegExp>
 </MatchRules>
</Manifest>

ModuleName
<ModuleName>SampleActivitiesModule</ModuleName>
The ModuleName defines the name of the Mobile Workflow package.

ModuleVersion
<ModuleVersion>2</ModuleVersion>

Mobile Workflow Development

252 Sybase Unwired Platform

The ModuleVersion defines the version of the Mobile Workflow package.

ModuleDesc
<ModuleDesc>AMP Sample - Activities Collection</ModuleDesc>
The ModuleDesc provides a short description of the Mobile Workflow package.

ModuleDisplayName
<ModuleDisplayName>Activities Sample</ModuleDisplayName>
The name of the Mobile Workflow package that is displayed to the user in the Worfklow list on
the device for Mobile Workflows that are client-invoked. When the Mobile Workflow package
is deployed, you can override the DisplayName specified here with one of your own
choosing.

ClientIconIndex
<ClientIconIndex>35</ClientIconIndex>
The index of the icon associated with the Mobile Workflow package. This icon is shown
beside the e-mail message in the device’s Inbox listing instead of the regular e-mail icon.
When the Mobile Workflow package is deployed, you can override the icon that is specified
here with one of your own choosing.

InvokeOnClient
<InvokeOnClient>1</InvokeOnClient>
Specifies whether this Mobile Workflow can be used without an associated e-mail. 1 = true, 0
= false. If 1 is specified, the Mobile Workflow is shown in the Workflow list on the device and
can be used without the context of an e-mail message.

PersistAppDomain
<PersistAppDomain>1</PersistAppDomain>
States whether this Mobile Workflow uses a persistent application domain when the .NET
assembly plugin is loaded. 1 = true, 0 = false. By default, it is set to false, meaning an
application domain is created and removed every time the plugin is loaded.

MarkProcessedMessages
<MarkProcessedMessages>1</MarkProcessedMessages>
Indicates whether a Workflow message shows a visual indication in the Inbox after it has been
processed (1 = true, 0 = false).

Note: When a Workflow message shows a visual indication that it has been processed, the
visual indication disappears if the device is re-registered, or if the device user performs a
Refresh All Data action.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 253

DeleteProcessedMessages
<DeleteProcessedMessages>1</DeleteProcessedMessages>
Indicates whether a Workflow message is deleted from the mobile device’s Inbox after it has
been processed (1 = true, 0 = false).

Note: You cannot set both DeleteProcessedMessages and MarkProcessedMessages to true
(1). To set MarkProcessedMessages to true, you must set DeleteProcessedMessages to false
(0) as shown:
<MarkProcessedMessages>1</MarkProcessedMessages>
 <DeleteProcessedMessages>0</DeleteProcessedMessages>

ProcessUpdates
<ProcessUpdates>1</ProcessUpdates>
Indicates whether Workflow messages associated with this Workflow package that are already
delivered to the device can be updated from the server with modified content. (1 = true, 0 =
false). By default, this is set to false (0).

CredentialsCache
<CredentialsCache key="activity_credentials>1</
CredentialsCache>
Specifies whether a Workflow requires credentials (1 = true, 0 = false). Different Workflows
can specify different credentials keys. Workflows with the same credentials key share that set
of credentials. In the case of shared credentials, they are requested only once by the Workflow
that is launched first.

RequiresActivation
<RequiresActivation key=”shared_credentials_key”>1</
RequiresActivation>
Specifies whether a workflow requires activation (1 = true, 0 = false). If set to true, the screen
defined in the ActivationScreen tag is displayed the very first time the workflow is
launched, before the default screen is displayed.

If the Activation Screen contains credentials controls (and the workflow requires credentials),
the values are updated to the Credentials Cache automatically, without further prompting,
with the specified Credentials Screen.

Different workflows can specify different activation keys. Workflows with the same activation
key share their activation status. For example, if Workflow A and Workflow B both specify an
activation key of AB (using the key attribute on the RequiresActivation tag), when Workflow
A gets activated, it also activates Workflow B so that when Workflow B is invoked for the very
first time, its activation screen is not seen; it goes directly to the default screen.

Mobile Workflow Development

254 Sybase Unwired Platform

TransformPlugin
<TransformPlugin> <File/> <Class/> </TransformPlugin>
Describes the server module implemented as a .NET assembly that implements the
IMailProcessor interface. This module is responsible for processing the intercepted e-mail
message before it gets delivered to the device.

Inner tags

<File shared=”true”>WorkflowClient.dll</File> The path, including the
filename of the assembly that implements the IMailProcessor interface. The path is relative to
the zip package. If the shared property is present and set to true, the DLL is located in the
<UnwiredPlatform_InstallDir>\Servers\MessagingServer\bin folder
(installed by an external process) and all workflows using that DLL will use the same version
of the DLL. If the shared property is not present, or is present and is set to false, each workflow
will use its own version of that DLL in the Workflow’s own folder.

<Class>Sybase.UnwiredPlatform.WorkflowClient.Transformer</
Class> The .NET Type in the assembly that implements the IMailProcessor interface.

ResponsePlugin
<ResponsePlugin> <File/> <Class/> </ResponsePlugin>
Describes the server module implemented as a .NET assembly that implements the
IResponseProcessor interface. This module is responsible for processing the response from
the device.

Inner tags

<File shared=”true”>WorkflowClient.dll</File> The path, including the
filename, of the assembly that implements the IResponseProcessor interface. The path is
relative to the Mobile Workflow .zip package. If the shared property is present and set to true,
the DLL is expected to be located in the <UnwiredPlatform_InstallDir>
\Servers\MessagingServer\bin folder (installed by an external process), and all
workflows using that DLL will use the same version of the DLL. If the shared property is not
present, or is present and set to false, each workflow will use its own version of that DLL in the
Workflow’s own folder.

<Class>Sybase.UnwiredPlatform.WorkflowClient.Responder</
Class> The .NET Type in the assembly that implements the IResponseProcessor interface.

ClientWorkflows
<ClientWorkflows>
 <WindowsMobileProfessional>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 255

 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </WindowsMobileProfessional>
 <BlackBerry>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry>
 <BlackBerry6>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry6>
 <iPhone>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </iPhone>
 <Android>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </Android>
</ClientWorkflows>

This section of the manifest.xml file describes the supported device platforms for the
Mobile Workflow and the corresponding client module to use for each platform.

Inner tags

• <WindowsMobileProfessional>…</WindowsMobileProfessional> –
Windows Mobile Professional device support

• <iPhone>…</iPhone> – iOS device support

• <BlackBerry>…</BlackBerry> – BlackBerry 5.0 device support

• <BlackBerry6>…</BlackBerry6> – BlackBerry 6.0 device support

• <Android>…</Android> – Android device support

Mobile Workflow Development

256 Sybase Unwired Platform

<File>…</File>
Contains a reference to an XML file. That XML file should have contents similar to this:
<?xml version="1.0" encoding="utf-8"?>
<widget>
 <screens src="html/myAndroidWorkflow.html" default="Start_Screen">
 <screen key="html/myAndroidWorkflow.html">
 </screen>
 </screens>
</widget>

The referenced HTML file must be present in the list of HtmlFiles tags that follow and must
also be present in the Mobile Workflow .zip package.

<HtmlFile>…</HtmlFile>
Indicates that the named file (html/js/API.js, html/myAndroidWorkflow.html) will be used on
the specified platform. The referenced file must be present in the Mobile Workflow .zip
package.

ContextVariables
<ContextVariables>...</ContextVariables>
Describes the collection of context variables that will be made available to the methods in the
IMailProcessor and IResponseProcessor interfaces. When the Mobile Workflow package is
deployed by the administrator, the Display Name that is specified here can be overriden with
one of their own choosing.

<ContextVariables >
<ContextVariable>
<Name/>
<Value/>
<Certificate/>
<Password/>
</ContextVariable>

Describes a context variable that will be made available to the methods in the IMailProcessor
and IResponseProcessor interfaces. When Administrators deploy a Mobile Workflow
package, they have the ability to override the value of the context variable that is specified
here.

It is good practice for developers of Mobile Workflows to provide sufficient documentation so
that Administrators can knowledgeably edit a context variable’s value as necessary. Context
variables are a good place to store configuration information that will likely change between
development and production environments.

Inner tags

<Name>OutputFolder</Name> The name of the context variable. This is the key used
to retrieve the value of the context variable in the methods defined in the IMailProcessor and
IResponseProcessor interface.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 257

Note: The value of the <Name> tag supports single-byte characters only.

<Value>C:\ActivitiesSampleOutput</Value> The value of the context
variable. When Administrators deploy a Mobile Workflow, they have the ability to override
the value of the context variable that is specified here.

Note: The value of the <Value> tag supports single-byte, double-byte, or both, characters.

<Certificate>false</Certificate> Indicates whether this context variable is a
Base64 string representation of an X.509 certificate. If this value is set to true, Sybase Control
Center displays a dialog specific to selecting an X.509 certificate.

<Password>false</Password> Indicates whether this context variable is a password.
If set to true, the value is displayed as asterisks in the Sybase Control Center console.

MatchRules
<MatchRules>...</MatchRules>
Describes the collection of match rules that will be used to determine if an e-mail message
should be sent to a TransformPlugin server module for processing. When Administrators
deploy a Mobile Workflow, they have the ability to Add, Delete and /or override the Match
Rules that are specified here.

<MatchRule>... </MatchRule> Describes a single match rule.

Note: The value of the <MatchRule> tag supports double-byte characters.

Inner tags

<SubjectRegExp>…</SubjectRegExp> The value to test for against the "Subject"
line of an e-mail message.

<ToRegExp>…</ToRegExp> The value to test for against the "To" line of an e-mail
message.

<FromRegExp>…</FromRegExp> The value to test for against the "From" line of an e-
mail message.

<CCRegExp>…</CCRegExp> The value to test for against the "CC" line of an e-mail
message.

<BodyRegExp>…</BodyRegExp> The value to test for against the <Body> text of an e-
mail message.

Mobile Workflow Development

258 Sybase Unwired Platform

WorkflowClient.dll File
The WorkflowClient.dll file is used by the Unwired Platform messaging server to
transform the data that is sent to the device as notifications, and to respond to online request
and submit workflow actions from the device.

The supplied WorkflowClient.dll file loads the metadata in the WorkflowClient.xml
file to determine how to map the data in the workflow message to and from calls to Mobile
Business Object operations and object queries.

The WorkflowClient.dll is shared by all Mobile Workflows. It is installed only once,
into the UnwiredPlatform_InstallDir>\UnwiredPlatform\Servers
\MessagingServer\bin folder. Your Manifest.xml file must refer to the
WorkflowClient.dll as a shared file. It does not need to be included in the Mobile
Workflow .zip file.

WorkflowClient.xml File
The WorkflowClient.xml file contains metadata that specifies how to map the data in
the workflow message to and from calls to Mobile Business Object (MBO) operations and
object queries.

WorkflowClient.xml
<?xml version="1.0" encoding="utf-8"?>
<Workflow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="WorkflowClient.xsd" >
 <Globals>
 <DefaultScreens activation="…" credentials="…"/>
 </Globals>
 <Triggers>
 <Actions>
 <Action name="…" sourcescreen="…" targetscreen="…"
errorscreen="…">
 <Methods>
 <Method type="replay" mbo="…" package="…" >
 <InputBinding optype="…" opname="…"
generateOld="…">
 <Value sourceType="…" workflowKey="…" paramName="…"
mboType="…"/>
 <Value sourceType="…" workflowKey="…"
relationShipName="…" mboType="list">
 <InputBinding optype="delete" opname="…" generateOld="….">
 <Value sourceType="…" workflowKey="…" paramName="…"
attribName="…" mboType="…"/>
 </InputBinding>
 <InputBinding optype="update" opname="…" generateOld="….">
 <Value sourceType="…" workflowKey="…" paramName="…"
attribName="…" mboType="…"/>
 </InputBinding>
 <InputBinding optype="create" opname="…" generateOld="….">
 <Value sourceType="…" workflowKey="…" paramName="…"

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 259

attribName="…" mboType="…"/>
 </InputBinding>
 </Value>
 </InputBinding>
 <OutputBinding generateOld="…">
 <Mapping workflowKey="…" workflowType="…" attribName="…"
mboType="…"/>
 <Mapping workflowKey="…" workflowType="list"
mboType="list">
 <Mapping workflowKey="…" workflowType="…" attribName="…"
mboType="…"/>
 </Mapping>
 </OutputBinding>
 </Method>
 </Methods>
 </Action>
 </Actions>
 <Notifications>
 <Notification type="onEmailTriggered"
targetscreen="…">
 <Transformation>
 <Rule type="regex-extract" source="…" workflowKey="…"
workflowType="…" beforeMatch="…" afterMatch="…" format="…"/>
 </Transformation>
 <Methods>
 <Method name="…" type="…" mbo="…" package="…">
 <InputBinding opname="…" optype="…">
 <Value sourceType="…" workflowKey="…" paramName="…"
attribName="…" mboType="…"/>
 </InputBinding>
 <OutputBinding generateOld="…">
 <Mapping workflowKey="…" workflowType="…" attribName="…"
mboType="…"/>
 <Mapping workflowKey="…" workflowType="list"
mboType="list">
 <Mapping workflowKey="…" workflowType="…"
attribName="…" mboType="…"/>
 </Mapping>
 </OutputBinding>
 </Method>
 </Methods>
 </Notification>
 </Notifications>
 </Triggers>
</Workflow>

Globals
<Globals> <DefaultScreens activation="Introduction"
credentials="Authentication"/> </Globals>
Describes the global information for the Mobile Workflow metadata.

Inner tags

Mobile Workflow Development

260 Sybase Unwired Platform

<DefaultScreens activation=”…” credentials=”…”/> contains two
optional attributes—activation and credentials—that allow you to specify the screens to use
for activation and credential requests.

Triggers
<Triggers> <Actions> … </Actions> <Notifications> … </
Notifications> </Triggers>
Describes the conditions under which MBO operations and/or object queries run and, where
appropriate, what to return to the device.

Inner tags

<Actions> … </Actions> Contains the description for one or more MBO operations
and/or object queries to execute when an online request or submit workflow action is received
from the client.

<Notifications> … </Notifications> Contains the description of, at most, one
way to extract values from an incoming server notification, execute an MBO object query, and
send that notification on to the device.

Action
<Action name="Online_Request" sourcescreen="Reports_Create"
targetscreen="OnReportsCreateSuccess"
errorscreen="OnReportsCreateFailure"> … </Action>
Describes the conditions under which MBO operations and/or object queries run and, where
appropriate, what to return to the device.

Table 2. Attributes

Attribute Description

name The name of the action, which typically corre-
sponds to the key of the menuitem that invoked
the action.

sourcescreen The screen from where the action was invoked.

targetscreen This attribute is optional. The screen to which the
client will return, by default, if the MBO opera-
tion/object query succeeds. If left unspecified, the
client application remains on the current screen.
This attribute is applicable only to online request
actions.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 261

Attribute Description

errorscreen This attribute is optional. The screen to which the
client will return, by default, if the MBO opera-
tion/object query fails. If left unspecified, the cli-
ent application remains on the current screen.
This attribute is applicable only to online request
actions.

• errorlogskey

• errorlogmessagekey

• errorlogmessageaslistkey

The keys used to fill any error log messages.

Inner tags

<Methods> … </Methods> Contains the description for one or more MBO operations
and/or object queries to be executed when this online request or submit workflow action is
received from the client.

Method
<Method type="replay" mbo="Reports" package="testReports:
1.0"> … </Method>
Describes the conditions under which MBO operations and/or object queries run and, where
appropriate, what to return to the device.

Table 3. Attributes

Attribute Description

type The type of method to invoke. For object queries,
this must be search. For operations, it must be
replay.

mbo The name of the mobile business object (MBO).

package The Mobile Workflow package name and version
of the MBO, separated by a colon, for example,
<package_name>:<mbo_version>.

Inner tags

<InputBinding> … </InputBinding> Contains the description of how to map the
key values to the parameters of one or more of the MBO operations and/or object queries to be
executed when this online request or submit workflow action is received from the client.

<OutputBinding> … </OutputBinding> Contains the description of how to map
the response from the object query to key values.

Mobile Workflow Development

262 Sybase Unwired Platform

InputBinding
<InputBinding optype="create" opname="create"
generateOld="false"> … </InputBinding>
Contains the MBO operation to invoke and how to map the key values to the parameters of that
operation.

Table 4. Attributes

Attribute Description

optype The type of MBO operation to invoke. Must be
one of these types:

• none

• create

• update

• delete

• other

opname The name of the MBO operation to invoke.

generatedOld A boolean that indicates whether or not to gen-
erate old value keys.

Inner tags

<Value> … </Value> Contains the description of where to obtain the parameter values
of the MBO operations to be executed when this online request or submit workflow action is
received from the client.

Value
<Value sourceType="Key"
workflowKey="Reports_type_id_attribKey" attribName="id"
mboType="int"/>
Describes how to obtain the parameter value or attribute value from the workflow message.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 263

Table 5. Attributes

Attribute Description

sourceType The source of the data. Must be one of these types:

• Key

• BackEndPassword

• BackEndUser

• DeviceId

• DeviceName

• DeviceType

• UserName

• MessageId

• ModuleName

• ModuleVersion

• QueueId

• ContextVariable

workflowKey If the sourceType is Key, the name of the key in
the workflow message from which to obtain the
value.

contextVariable If the sourceType is ContextVariable, the name of
the context variable from which to obtain the val-
ue.

paramName If present, the name of the parameter the value is
supplying.

pkName If present, the name of the personalization key the
value is supplying.

attribName If present, the name of the attribute name the val-
ue is supplying. This value may, or may not, be
present together with paramName.

parentMBO The name of the parent MBO, if any.

relationShipName The name of the relationship, if any.

Mobile Workflow Development

264 Sybase Unwired Platform

Attribute Description

mboType The type of the value in MBO terms. Must be one
of these types:

• string

• char

• date

• datetime

• time

• int

• byte

• short

• long

• decimal

• boolean

• binary

• float

• double

• list

• integer

• structure

array A boolean that indicates whether or not the value
is an array. The default is false.

length The length of the parameter/attribute/personali-
zation key.

precision The precision of the parameter/attribute/person-
alization key.

scale The scale of the parameter/attribute/personaliza-
tion key.

convertToLocalTime A boolean that indicates whether or not to convert
the value to a local time before passing it to the
MBO. The default is false.

Inner tags

<InputBinding> … </InputBinding> If the mboType is “list,” it will be necessary
to specify child input bindings to indicate which MBO operations to invoke when a child is
updated, deleted, or created.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 265

OutputBinding
<OutputBinding generateOld="true"> … </OutputBinding>
Contains a series of mappings that indicate how to map the results of the object query to the
workflow message.

Table 6. Attributes

Attribute Description

generatedOld A boolean that indicates whether or not to gen-
erate old value keys.

Inner tags

<Mapping> … </Mapping> Contains the description of how to map the results of the
object query to a key in the workflow message.

Mapping
<Mapping workflowKey=”Department_dept_id_attribKey”
workflowType=”number” attribName=”dept_id” mboType=”int”/>
Describes how to fill a key’s value in the workflow message from the results of the object
query.

Table 7. Attributes

Attribute Description

workflowKey The name of the key in the workflow message to
fill with the results of the object query.

workflowType The type of the data in the workflow message.
Must be one of these types:

• text

• number

• boolean

• datetime

• date

• time

• list

• choice

attribName If present, the name of the attribute name to which
the key is mapped.

Mobile Workflow Development

266 Sybase Unwired Platform

Attribute Description

hardCodedValue If the workflowType is not choice, and attrib-
Name is not present, the hard-coded value to
which the key is mapped.

keyWorkflowKey If the workflowType is choice, the key to which to
map the dynamic display names of the choice.

valueWorkflowKey If the workflowType is choice, the key to which to
map the dynamic values of the choice.

assumeLocalTime A boolean to indicate whether or not to assume
that the values coming back from the object query
are in local time or not. The default is false.

array A boolean that indicates whether or not the value
is an array. The default is false.

mboType The type of the value in MBO terms. Must be one
of these types:

• string

• char

• date

• datetime

• time

• int

• byte

• short

• long

• decimal

• boolean

• binary

• float

• double

• list

• integer

• structure

relationShipName The name of the relationship, if any.

Inner tags

<Mapping> … </Mapping> If the mboType is list, you must specify child mappings to
indicate how to map the attributes of child MBO instances to keys in the workflow message.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 267

Notification
<Notification type="onEmailTriggered" targetscreen="dept"> …
</Notification>
Describes how to formulate the workflow message for the given notification type and which
screen to open on the device when that workflow message is opened.

Table 8. Attributes

Attribute Description

type The type of the notification. Must be onEmail-
Triggered.

targetscreen The screen to which the client will be opened if
the object query succeeds.

errorscreen The screen to which the client will be opened, by
default, if the object query fails.

• errorlogskey

• errorlogmessagekey

• errorlogmessageaslistkey

The keys to use to fill any error log messages.

Inner tags

<Transformation> … </Transformation> Contains the description for one or
more rules that dictate how to extract values from the server notification and map it to a key in
the workflow message.

<Methods> … </Methods> Contains the description for one or more object queries to be
executed when this online request or submit workflow action is received from the client.

Rule
<Rule type="regex-extract" source="subject" workflowKey="ID"
workflowType="number" beforeMatch="Purchase order request \("
afterMatch="\) is ready for review" format=""/>
Describes how to extract a value from the server notification and map it to a key in the
workflow message.

Table 9. Attributes

Attribute Description

type The type of the rule. Must be regex-extract.

Mobile Workflow Development

268 Sybase Unwired Platform

Attribute Description

source The source of the data to be extracted. Must be
one of these sources:

• body

• subject

• from

• to

• cc

• receivedDate

• custom1, custom2, custom3, custom4, cus-
tom5, custom6, custom7, custom8, custom9,
or custom10

workflowKey The name of the key in the workflow message to
fill with the value extracted from the server noti-
fication.

workflowType The type of the data in the workflow message.
Must be one of these data types:

• text

• number

• boolean

• datetime

• date

• time

• list

• choice

assumeLocalTime A boolean to indicate whether or not to assume
that the values coming back from the object query
are in local time or not. The default is false.

beforeMatch A regular expression used to indicate where the
value starts.

afterMatch A regular expression used to indicate where the
value ends.

format If the workflowType is datetime or time, the C#
formatting string to be passed to DateTime.Par-
seExact when converting the value to a datetime.

Mobile Workflow Development

Developer Guide: Mobile Workflow Packages 269

The Look and Feel XML Files
Each device platform (WindowsMobileProfessional, BlackBerry, BlackBerry6, iOS, and
Android) provides a <File>…</File> tag, which refers to an .xml file in the Mobile
Workflow .zip package.

The contents are similar to this:
<?xml version="1.0" encoding="utf-8"?>
<widget>
 <screens src="html/myAndroidWorkflow.html" default="Start_Screen">
 <screen key="html/myAndroidWorkflow.html">
 </screen>
 </screens>
</widget>

Different platforms can share the same look and feel .xml file, or they can use different .xml
files, depending on the application design. Different .xml files can refer to the same .html file,
or to different .html files, depending, again, on the application design.

When a Mobile Workflow package is generated usuing the Mobile Workflow Forms editor,
the with the Optimized for appearance option selected in Preferences, three look and
feel .xml files are generated: workflow.xml,
workflow_CustomLookAndFeel.xml, and
workflow_jQueryMobileLookAndFeel.xml.

Using Third-party Files
To load external JavaScript and CSS files dynamically when creating a Mobile Workflow
package manually:

Add the path of the third-party JavaScript or CSS files to the manifest.xml file, in the
device platform section. For example:

<BlackBerry>
<HTMLWorkflow>
<File>TokenSI_CustomLookAndFeel.xml</File>
<HtmlFiles>
<HtmlFile>html/css/bb/some-3rd-part.css</HtmlFile>
<HtmlFile>html/css/bb/checkbox.css</HtmlFile>
<HtmlFile>html/css/bb/datepicker.css</HtmlFile>
<HtmlFile>html/css/bb/editBox.css</HtmlFile>
<HtmlFile>html/css/bb/img/btn_check_off.png</HtmlFile>
<HtmlFile>html/css/bb/img/btn_check_on.png</HtmlFile>
<HtmlFile>html/css/bb/img/btn_radio_off.png</HtmlFile>

Mobile Workflow Development

270 Sybase Unwired Platform

Troubleshoot

Use troubleshooting tips to isolate and resolve common issues.

See Troubleshooting Sybase Unwired Platform for information about troubleshooting issues
for Workflow package and other Sybase Unwired Platform components.

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps it to a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

These tables list recoverable and unrecoverable error codes. All error codes that are not
explicitly considered recoverable are considered unrecoverable.

Table 10. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS is down, or the connection is terminated.

Table 11. Unrecoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/Web service/BA-
PI) not found on backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

Troubleshoot

Developer Guide: Mobile Workflow Packages 271

Error Code Probable Cause Manual Recovery Action

500 Sybase Unwired Platform internal
error in modifying the CDB
cache.

N/A

Error code 401 is not treated as a simple recoverable error. If the
SupThrowCredentialRequestOn401Error context variable is set to true (the
default), error code 401 throws a CredentialRequestException, which sends a
credential request notification to the user's inbox. You can change this behavior by modifying
the value of the SupThrowCredentialRequestOn401Error context variable in
Sybase Control Center. If SupThrowCredentialRequestOn401Error is set to false,
error code 401 is treated as a normal recoverable exception.

Recovering from EIS Errors
After sending a JSON request to Unwired Server, if you receive in the response log message an
EIS code which is recoverable, the mobile workflow client throws a
TransformRetryException or ResponseRetryException, as is appropriate.

A retry attempt is made after a retry time interval, which is set by default to 15 minutes for
recoverable errors, and by default to 3 days for unrecoverable errors. You can configure the
retry time interval by setting the SupRecoverableErrorRetryTimeout (default: 15
minutes) and SupUnrecoverableErrorRetryTimeout context variables through the
Sybase Control Center admin console.

Only certain error codes are considered to be recoverable.

Table 12. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS down or the connection is terminated.

Note: If the problem with the EIS is not corrected, the retry process can continue indefinitely.
Ensure that you set an appropriate retry time interval.

Other error codes are considered to be non-recoverable. A retry attempt is made after a retry
time interval, which is set to three days by default.

Troubleshoot

272 Sybase Unwired Platform

Table 13. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/webservice/BA-
PI) not found on Backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SUP internal error in modifying
the CDB cache.

N/A

Mapping of EIS Codes to Logical HTTP Error Codes
A list of SAP® error codes mapped to HTTP error codes. By default, SAP error codes that are
not listed map to HTTP error code 500.

Note: These JCO error codes are not applicable for DOE-based applications.

Table 14. Mapping of SAP Error Codes to HTTP Error Codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or un-
availability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing login. Usually caused
by unknown user name,
wrong password, or invalid
certificates.

401

Troubleshoot

Developer Guide: Mobile Workflow Packages 273

Constant Description HTTP Error Code

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool.

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later.

503

Credentials Are Lost after User Successfully Passes
Activation Screen

User logs in successfully on Activation screen, but is no longer logged in at some point after
that.

This happens when you do not execute a Save from the Activation screen, and then execute a
Cancel on a subsequent screen, before a Save is executed.

Always execute a Save immediately after credentials are successfully validated on the
Activation screen.

Mobile Workflow Exception Handling
Describes how to handle a blocked mobile workflow.

If a mobile workflow is not received or processed on a device, this may indicate the mobile
workflow is blocked in the message queue. By default, Unwired Server retries actions that
threw recoverable exceptions every 15 minutes, and it retries actions that threw unrecoverable
exceptions every 3 days. Both types will continue to retry indefinitely, unless the administrator
intervenes, either by fixing the error or by unblocking the mobile workflow in the Sybase
Control Center queue.

This typically indicates that a workflow operation failed with a recoverable or unrecoverable
error. To resolve the situation:

1. Check the mobile workflow trace log, which is located in
<UnwiredPlatform_InstallerDir>\UnwiredPlatform\Servers
\UnwiredServer\logs\WorkflowClient, for information.

This log tracks incoming messages, either from the client or from DCN or e-mail
notifications, what Sybase Unwired Platform calls get invoked as a result, what the output
is from the Unwired server, and what message it is transformed into when a response is sent
back to the client.

2. Check the Workflow client trace logs:
• 1. Log in to Sybase Control Center.

Troubleshoot

274 Sybase Unwired Platform

• 2. In the left pane, select Applications.
• 3. Select the application for which you want to view the trace logs and click Get

Trace.
The trace files are located in <UnwiredPlatform_InstallerDir>
\UnwiredPlatform\Servers\UnwiredServer\logs\ClientTrace.

3. Use information in the logs to resolve the problem.
4. Use Sybase Control Center to check message queue status, and to suspend, resume,

unblock, or remove items in the queue. See:
Sybase Control Center for Sybase Unwired Platform > Deploy > Mobile Workflow
Packages > Configuring a Mobile Workflow Package > Checking Mobile Workflow Users
and Queues.

Unable to Deploy Workflow
Problem: When generating the Mobile Workflow package, you get an error that the Mobile
Workflow package cannot be deployed similar to this:

==
Deployment to Unwired Server
==
Deploying the workflow
Unable to deploy workflow:
System.Web.Services.Protocols.SoapException: Could not find a
part of the path 'C:\Sybase\UnwiredPlatform\Servers\MessagingServer
\Data\Mobile Workflow\117_1'.
at Admin.ReplaceWorkflow(Byte[] baZippedPackage)

Explanation: Some software, such as Microsoft Security Essentials, locks the temp folder, or
files in the temp folder when they are written by the Workflow installation routine, thus
preventing the Directory.Move from succeeding.

Solution: Disable Microsoft Security Essentials.

Troubleshoot

Developer Guide: Mobile Workflow Packages 275

Troubleshoot

276 Sybase Unwired Platform

Index
.p12 certificates 203

A

activating devices 208
Advanced Encryption Standard 225
AES

See also Advanced Encryption Standard
AES-128 228
AES-256 226
Alert Message property 192
Alerts property 192
Android 181, 183
Android Hybrid Web Container customization

setting HTTP headers 74
ANDROID_CUSTOMIZATION_POINT_CATEG

ORIZEDVIEWS 58
API.js 129
APNS 187
APNS Device Token property 192
App Store 195
Apple push notification properties 192
Apple push notification, configuring 191

B

Badges property 192
BlackBerry 197
BlackBerry 5.0 127
BlackBerry Desktop Manager 196

C

cached data lookup pattern
data flow diagram 19
overview 19

Callbacks.js 149
CallbackSet 149
certificate picker 215
Certificate.js 156
certificates

for context variables 212
client trace logs 274
ClientIconIndex 251

conditional navigation 177
conditional start 179
connection settings

configuring 199
device 199
Hybrid Web Container 199

content security 225
Android 226
BlackBerry 225
iOS 228

content type preference, changing 232
context variables 213

configuring 212
convertToSUPType() 132
credential functions 149
Credentials

dynamic 214
static 214

CredentialsCache 251
Custom.js 121
custom.js file

methods 159
customAfterNavigateForward 159
customAfterReportErrorFromNative 165
customAfterShowScreen 159
customAfterSubmit 159
customAfterWorkflowLoad 159
customBeforeMenuItemActivate 159
customBeforeNavigateBackward 159
customBeforeNavigateForward 159
customBeforeReportErrorFromNative 165
customBeforeShowScreen 159
customBeforeSubmit 159
customBeforeWorkflowLoad 159
customization touch points

ANDROID_CUSTOMIZATION_POINT_DE
FAULTSETTINGS 49

touch points 49
customValidateScreen 159

D
data change notification 30

GET 28
JSON format 28
POST 28

Index

Developer Guide: Mobile Workflow Packages 277

request response 31
DCN 31
debugging 244
default locale, creating 233
defining an MBO

for cached data lookup 20
for real-time data lookup 9

DeleteProcessedMessages 251
Delivery Threshold property 192
deploy 37
deploying the workflow 275
deployment mode

replace 39
update 39

device platforms 37
device users

assigning mobile workflow packages 211
devices

Apple push notification properties 192
documentation roadmap 1
Dynamic authentication 216

E

editing
locale properties file 236

EIS error codes 271–273
Enable property 192
encoding type

changing 232
default 232
ISO-8859-1 232
non-ASCII 232
UTF-8 232

encryption key length 225
encryption policy 171
error codes

EIS 271–273
HTTP 271–273
mapping of SAP error codes 273
non-recoverable 271, 272
recoverable 271, 272

F

file associations 232
findByParameter

binding to a Workflow menu item 10
findByParameter object query 14

functions
general utility 129
resource 166
workflow UI 134

G

general utility functions 129
generated files 122
getCurrentMessageValueCollection() 143
getHTMLValue() 132
getISODateString() 132
getISODateTimeStringToDisplay 132
getLocaleDateString() 132
getPicture 150
getWorkflowMessage() 143

H

hard coded credentials 213
HTML format 249
HTTP error codes 271–273
Hybrid Web Container

Android 49
ANDROID_CUSTOMIZATION_POINT_DE

FAULTSETTINGS 49
architecture 3
customization 3, 49
default values for settings screen 49
management 3
offline capabilities 3
settings screen 49
settings screen, default values 49

I

installing 193, 195
internationalization

Mobile Workflow Forms editor 237
on the device 238

InvokeOnClient 251
iOS 186
iOS Hybrid Web Container customization 80

setting HTTP headers 89
iOS push notification properties 192
IOS_CUSTOMIZATION_POINT 75
IOS_CUSTOMIZATION_POINT_DEFAULTSET

TINGS 84
iTunes 196

Index

278 Sybase Unwired Platform

J

jquery.mobile-1.0.css 124

L

locale
editing 236
properties file 236

locale properties file
creating 233
validating 233

localization 231
creating a new locale 233
limitations 232
Mobile Workflow package 232
task flow 232

Localization
current locale 236
updating the current locale 236

look and feel 270
look and feel files 124

M

manage 208
manifest.xml 251
MarkProcessedMessages 251
master.css 124
matching rules

specifying 16
messaging device registration 208
messaging device setup 208
methods

utility 132
validation 145

mobile workflow
client trace logs 274
exception handling 274
unblocking 274

Mobile Workflow Container
building using source code 194

Mobile Workflow Generation wizard 37
mobile workflow package

generated files 122
mobile workflow packages

assigning device users 211
configuring notification mailbox 210

ModuleDesc 251
ModuleDisplayName 251
ModuleName 251
ModuleVersion 251

N
native device functions 138
non HTTP authentication request 30
notification mailbox 210

O
object queries

binding to a workflow menu item 21
object query parameters

defining a control that passes 22
offline capabilities 3
optimized for performance 127
OTA 197
over the air 197

P
parseBoolean() 132
parseDateTime() 132
PersistAppDomain 251
PersistentContent 225
PersistentContentListener 225
PersistentStore 225
PIN screens

CreatePasswordViewController.xib 80
customizing 80
EnterPasswordViewController.xib 80
iOS 80

preferences
appearance 232
content types 232
general 232

ProcessUpdates 251
properties

push notification for iOS 192
PurchaseOrderSample 233
push notification properties for iOS 192

Q
query types

addallmenuitems 247

Index

Developer Guide: Mobile Workflow Packages 279

addMenuItem 247
alert 247
clearrequestcache 247
clearrequestcacheitem 247
close 247
downloadattachment 247
formredirect 247
loadtransformdata 247
logtoworkflow 247
removeallmenuitems 247
rmi 247
setscreentitle 247
showattachment 247
showcertpicker 247
showInBrowser 247
showlocalattachment 247
submit 247

R

real-time lookup pattern
data flow diagram 9
overview 9

registering messaging devices 208
RequiresActivation 251
resource functions 166
rmi.xml 244
RSA algorithm 203

S

send a notification 240
sending server notification to a device 18
server notification pattern

creating an MBO for 14
data flow diagram 14
overview 14

server-driven notification
creating 16

setHTMLValue() 132
shared storage 172
SharedStorage 172
showErrorFromNative 165
single sign-on

using credentials 218
using SSO2 tokens 221
using static SSO2 tokens 223
using static X.509 certificates 220

single sign-on task flow 28

Sounds property 192
SQLite Encryption Extensions (AES-128) 228
static authentication 215
strings.xml 44
stylesheet.css 124
SupCertificateIssuer 213
SupCertificateNotAfter 213
SupCertificateNotBefore 213
SupCertificateSubject 213
SUPMobileWorkflow.replaceMobileWorkflowCert

ificate() 224
SupPassword 213

for context variables 212
SUPStorage 171
SUPStorage.js 169
SupUser 213

for context variables 212

T

task flow 5
testing

X.509 certificates 203, 208
touch point 75
tutorial

configuring the Android emulator 183

U

Unwired Server logs 274
URL parameters 246
UTF-8 encoding 232

V

validateAllScreens 145
validateControl 145
validateDate 145
validateDateTime 145
validateEmail 145
validateNumber 145
validateRegularExpression 145
validateScreen 145
validateText 145
validateTime 145
variables, context

configuring 212
viewing workflow messages

Android 240

Index

280 Sybase Unwired Platform

BlackBerry 240
iOS 240
Windows Mobile 240

W

workflow client
using credentials 219

workflow clients
and static SSO2 tokens 223
and static X.509 certificates 220
using credentials in 218

using SSO2 tokens in 221
Workflow control

that passes object query parameters 11
Workflow screen

that displays results 11
workflow_CustomLookAndFeel.xml 270
workflow_jQueryMobileLookAndFeel.xml 270
workflow.html 124
WorkFlow.xcodeproj 75
workflow.xml 270
WorkflowClient.dll 259
WorkflowClient.xml 259

Index

Developer Guide: Mobile Workflow Packages 281

Index

282 Sybase Unwired Platform

	Developer Guide: Mobile Workflow Packages
	Contents
	Introduction to Developer Guide for Mobile Workflow Packages
	Documentation Roadmap for Unwired Platform

	Introduction to Developing Mobile Workflow Applications With Sybase Unwired Platform
	Hybrid Web Container Architecture
	Hybrid Web Container Development Task Flow
	Identify a Business Process for Workflow Development

	Hybrid Web Container Patterns
	Online Lookup
	Implementing Online Lookup for Workflow Clients
	Defining Mobile Workflow Load Arguments from Mapped Propagate to Attributes
	Binding the findByParameter Object Query to a Menu Action
	Defining the Control that Contains the findByParameter Object Query Parameter

	Server Notification
	Implementing Server Notification for Workflow Clients
	Defining the Mobile Business Object for Server Notification
	Creating the Server-Driven Notification Starting Point
	Sending an Order Notification to the Device

	Cached Data
	Implementing the Cached Data Pattern
	Defining the Mobile Business Object
	Binding the findByDeptId Object Query to a Menu Action
	Defining the Control that Contains the findByDeptId Object Query Parameter
	Binding Transient Personalization Keys to Mobile Workflow Keys

	Mobile Workflow Application Configuration for Data Change Notification
	Extending Data Change Notification to Mobile Workflow Clients
	Non HTTP Authentication Workflow DCN Request
	Sending Workflow DCN to Users Regardless of Individual Security Configurations
	Mobile Workflow DCN Request Response
	Workflow DCN Design Approach and Sample Code
	Comparing Workflow DCN With and Without Payload
	Mobile Workflow DCN Without Payload
	Mobile Workflow DCN With Payload

	Sample Java Function for Generating Workflow DCN

	Mobile Workflow Development
	Develop a Mobile Workflow Application Using the Mobile Workflow Forms Editor
	Deploy the Mobile Workflow Package to Unwired Server
	Generating the Files for a Mobile Workflow Package
	Deployment Modes

	Hybrid Web Container Customization
	Android Hybrid Web Container Customization
	Android Customization Touch Points
	Look and Feel Customization of the Android Hybrid Web Container
	Changing the Hybrid Web Container Icon
	Changing the Mobile Workflow Package Icon for Android
	Customizing the About Screen and Other Branding
	Adding a Splash Screen
	Changing Labels and Text
	Adding a New Language
	Using Custom Colors
	Using Custom Fonts

	Default Behavior Customization for the Android Hybrid Web Container
	Removing Fields from the Settings Screen
	Configuring Default Values for the Settings Screen
	Removing the PIN Screen
	Automatically Launching a Workflow Application
	Using Multiple Hybrid Web Containers on the Same Android Device
	Sorting the List of Mobile Workflow Packages
	Sorting Workflow Messages
	Filtering the Workflow Messages
	Modifying the Mobile Workflow Package List Appearance
	Creating a Gallery View
	Creating Categorized Views
	Making the List of Mobile Workflow Packages Searchable

	Setting HTTP Headers

	Testing Android Hybrid Web Containers

	iOS Hybrid Web Container Customization
	iOS Customization Touch Points
	Look and Feel Customization of the iOS Hybrid Web Container
	Replacing an Existing Mobile Workflow Package Icon
	Changing the Hybrid Web Container Application Icon
	Changing the Hybrid Web Container Application Name
	Splash Screen Customization
	Changing the Splash Screen Image
	Changing the Length of the Time the Splash Screen Appears

	Changing Labels and Text
	Adding a New Language
	Using Custom Fonts

	Default Behavior Customization for the iOS Hybrid Web Container
	Customizing PIN Screens on iOS
	Creating New PIN Screens
	Changing Localizable Strings in the PIN Screen
	Removing the PIN Screen

	Settings Screen Customization
	Using Default Connection Settings
	Removing Fields from the Settings Screen
	Providing Default Values for Missing Connection Settings
	Providing Default Connection Settings at Application Startup

	Mobile Workflow Application Launching Behavior
	Automatically Launching a Hybrid Web Application

	Using Multiple Hybrid Web Containers on the Same iOS Device
	Sorting and Filtering the List of Mobile Workflow Packages and Messages
	Changing to a New UI Control
	Setting HTTP Headers

	PhoneGap Support
	PhoneGap APIs
	Android
	Upgrading the PhoneGap Library Used by the Android Hybrid Web Container
	Performing Additional Steps for Android 2.2 OS

	Removing PhoneGap from the Android Hybrid Web Container

	iOS
	Upgrading the PhoneGap Library Used by the iOS Hybrid Web Container
	Updating the iOS Hybrid Web Container Project

	Removing PhoneGap from the iOS Hybrid Web Container

	PhoneGap Custom Plug-ins
	Custom Plug-ins for the Android Hybrid Web Container
	Adding a Custom Plug-in to the Android Hybrid Web Container

	Custom Plug-ins for the iOS Hybrid Web Container
	Adding a Custom Plug-in to the iOS Hybrid Web Container

	Mobile Workflow Package Customization
	Adding Custom Code
	Adding Local Resources to a Mobile Workflow Project
	Generated Mobile Workflow Files
	Look and Feel Files
	BlackBerry 6.0, Android, and iOS Look and Feel
	BlackBerry 5.0 Look and Feel
	Optimized for Performance Look and Feel

	Reference
	Workflow Client API
	Public JavaScript Functions
	API.js
	General Utility Functions
	Mobile Workflow Utility Functions
	Workflow UI Functions
	Mobile Workflow Native Device Functions
	Workflow Message Data Functions
	Workflow Validation Functions
	Credential Functions

	Callbacks.js File
	Camera.js
	getPicture Function
	Using the getPicture Function for Larger Image Sizes

	Certificate.js
	Custom.js File
	Overriding the showErrorFromNative Function

	Resources.js
	ExternalResource.js
	SUPStorage.js
	SUP Storage
	Shared Storage

	Timezone.js
	WorkflowMessage.js

	Using Third-Party JavaScript Files
	Repackaging Mobile Workflow Package Files
	Common Customizations
	Implementing Conditional Navigation
	Implementing a Conditional Start Screen
	Clearing the Contents of the Signature Control

	Install and Configure the Hybrid Web Container On the Device
	Preparing Android Devices for the Mobile Workflow Package
	Installing Sybase Mobile Workflow on Android Devices
	Building the Android Hybrid Web Container Using the Provided Source Code
	Building the Android Hybrid Web Container Outside of Eclipse

	Configuring the Android Emulator

	Preparing iOS Devices for the Mobile Workflow Package
	Apple Push Notification Service
	Provisioning iOS Devices
	Configuring Apple Push Settings for the Mobile Workflow Application
	APNS Trace Files
	Apple Push Notification Properties

	Installing the Mobile Workflow Application on Your iOS Device
	Building the Mobile Workflow Container Using the Provided iOS Source Code
	Installing the Mobile Workflow Container from the Apple App Store
	Installing the Mobile Workflow Application Using iTunes

	Preparing BlackBerry Devices for the Mobile Workflow Package
	Installing the Mobile Workflow Container on BlackBerry Devices Over the Air
	Configuring the BlackBerry Simulator for Mobile Workflow Packages

	Installing the Mobile Workflow Container on Windows Mobile Devices
	Configure Connection Settings on the Device
	Configuring Android Connection Settings
	Configuring BlackBerry Connection Settings
	Configuring iOS Connection Settings
	Configuring Windows Mobile Connection Settings

	Install and Test Certificates on Simulators and Devices
	Installing X.509 Certificates on Windows Mobile Devices and Emulators
	Testing X.509 Certificates on Windows Mobile Devices and Emulators

	Installing X.509 Certificates on Android Devices and Emulators
	Testing X.509 Certificates on Android Devices and Emulators

	Installing X.509 Certificates on BlackBerry Simulators and Devices
	Testing X.509 Certificates on BlackBerry Devices and Simulators

	Installing X.509 Certificates on iOS Devices
	Testing X.509 Certificates on iOS Devices and Simulators

	Manage a Mobile Workflow Package
	Registering and Reregistering Mobile Workflow Application Connections
	Enabling and Configuring the Notification Mailbox
	Assigning and Unassigning Mobile Workflows
	Activating the Workflow
	Configuring Context Variables for Mobile Workflow Packages
	Changing Hard Coded User Credentials
	Adding a Certificate File to the Mobile Workflow Package

	Security
	Credentials
	Setting Up Static Authentication
	Setting Up Static Authentication Using a Certificate
	Setting Up Dynamic Authentication
	Basic Authentication
	Single Sign-on

	Configuring the Workflow Application to Use Credentials
	Configuring the Workflow Application to Use X.509 Credentials
	Configuring the Workflow Application to Use Static X.509 Credentials

	Propagating a Client's Credentials to the Back-end Data Source
	Configuring a Workflow Application to Use SSO2 Tokens
	Configuring the Workflow Application to Use a Static SSO2 Token

	Modify Certificate Information for Workflow Packages
	Replacing the Mobile Workflow Certificate Through Sybase Control Center
	Replacing the Mobile Workflow Certificate Using the Admin API

	Content Security on Devices
	Content Security on BlackBerry Devices
	Content Security on Android Devices
	Content Security on iOS Devices
	Content Security on Windows Mobile Devices

	Localization and Internationalization
	Localization Limitations
	Localizing a Mobile Workflow Package
	Changing the Encoding Type
	Creating and Validating a New Locale Properties File
	Editing the Locale Properties File
	Removing a Locale
	Updating the Current Locale

	Mobile Workflow Package Internationalization
	Internationalization on the Device

	Test Mobile Workflow Packages
	Testing Server Initiated Mobile Workflow Packages
	Viewing Workflow Messages on the Device

	Launching a Server-initiated Mobile Workflow on the Device
	Debugging Custom Code
	Configuring Mobile Workflow Tracing in SCC

	Create a Mobile Workflow Package Manually
	Mobile Workflow URL Parameters
	Calling the Hybrid Web Container
	Mobile Workflow Package Files
	The Web Application Files
	HTML Format

	Manifest.xml File
	WorkflowClient.dll File
	WorkflowClient.xml File
	The Look and Feel XML Files

	Using Third-party Files

	Troubleshoot
	HTTP Error Codes
	Recovering from EIS Errors
	Mapping of EIS Codes to Logical HTTP Error Codes
	Credentials Are Lost after User Successfully Passes Activation Screen
	Mobile Workflow Exception Handling
	Unable to Deploy Workflow

	Index

