
Developer Guide: iOS Native Applications

Sybase Unwired Platform 2.1

DOCUMENT ID: DC01217-01-0210-03
LAST REVISED: July 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Guide for iOS1
Documentation Roadmap for Unwired Platform1
Device Application Development2

Development Task Flows ..3
Task Flow for Xcode IDE Development3
Using Object API to Develop a Device Application4

Generating Objective-C Object API Code4
Generated Code Location and Contents8
Validating Generated Code9

Importing Libraries and Code in the Xcode IDE9
Developing Applications in the Xcode IDE13

Generating HeaderDoc from Generated Code13
Configuring an Application to Synchronize and

Retrieve MBO Data ...13
Managing the Background State15
Referencing the iOS Client Object API17
Localizing an iOS Application25
Preparing Applications for Deployment to the

Enterprise ..26
Apple Push Notification Service Configuration27

Reference ...31
iOS Client Object API ...31

Connection APIs ..31
Message-Based Synchronization APIs33
Query APIs ..36
Operations APIs ...42
Local Business Object ...46
Personalization APIs ..47
Object State APIs ..48
Security APIs ...55

Developer Guide: iOS Native Applications iii

Installing and Testing X.509 Certificates on iOS
Clients ...66

Single Sign-On With X.509 Certificate Related
Object API ...70

Utility APIs ...72
Complex Attribute Types82
Exceptions ...85
MetaData and Object Manager API89
Messaging Client API ..90

Best Practices for Developing Applications92
Constructing Synchronization Parameters92

Index ..93

Contents

iv Sybase Unwired Platform

Introduction to Developer Guide for iOS

This developer guide provides information about using advanced Sybase® Unwired Platform
features to create applications for Apple iOS devices, including iPhone and iPad. The
audience is advanced developers who are familiar working with APIs, but who may be new to
Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object API documentation.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object Development
• Tutorial: iOS Application Development
• Troubleshooting for Sybase Unwired Platform
• Supported Hardware and Software

HeaderDoc provides a complete reference to the APIs:

• The Framework Library HeaderDoc is installed to
<UnwiredPlatform_InstallDir>\ClientAPI\apidoc\ObjectiveC.
For example, C:\Sybase\UnwiredPlatform\ClientAPI\apidoc
\ObjectiveC.

• You can generate HeaderDoc from the generated Objective-C code. See Generating
HeaderDoc from Generated Code on page 13.

See Fundamentals for high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Documentation Roadmap for Unwired Platform
Learn more about Sybase® Unwired Platform documentation.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on Production Documentation.

Check the Sybase Product Documentation Web site regularly for updates: access http://
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Introduction to Developer Guide for iOS

Developer Guide: iOS Native Applications 1

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Device Application Development
A device application includes business logic, and device-resident presentation and logic.

Mobile business objects help form the business logic for mobile applications. A mobile
business object (MBO) is derived from a data source (such as a database server, Web service,
or SAP® server). When grouped in projects, MBOs allow mobile applications to be deployed
to an Unwired Server and referenced in mobile devices (clients).

Once you have developed MBOs and deployed them to Unwired Server, you add device-
resident presentation and logic to the device application. You build a native client in the Xcode
IDE using Objective-C and Generated Object API code, and by programmatically binding to
the iOS Client Object API.

Introduction to Developer Guide for iOS

2 Sybase Unwired Platform

Development Task Flows

This section describes the overall development task flow, and provides information and
procedures for setting up the development environment, and developing device applications.

Task Flow for Xcode IDE Development
Follow this task flow to develop a device application.

Prerequisites
Before developing a device application, the developer must:

• In the Eclipse development environment, create a mobile application project and create
mobile business objects as required for your application.
See the following topics in Sybase Unwired WorkSpace – Mobile Business Object
Development for instructions on developing mobile business objects, and configuring the
mobile business object attributes, as well as synchronization and personalization
parameters:
• Sybase Unwired WorkSpace – Mobile Business Object Development > Develop >

Developing a Mobile Business Object
• Sybase Unwired WorkSpace – Mobile Business Object Development > Develop >

Working with Mobile Business Objects

Note: Ensure that you enter a package name for the mobile application project that is
appropriate as a prefix for the mobile business object generated files. In the examples that
follow, the package name is SampleApp.

• Verify the supported device platforms and code generation tools for your device
application. See Planning Your Sybase Unwired Platform Installation > Supported Device
Platforms and Databases in the Sybase Unwired Platform Installation Guide

Task

1. Create mobile business object generated code. See Generating Objective-C Object API
Code.

2. Import libraries and code into the Xcode IDE. See Importing Libraries and Code in the
Xcode IDE.

3. Develop a device application in the Xcode IDE.

a) Create HTML reference information for the methods in your generated code. This will
help you to programmatically bind to the Client Object API. See Generating
HeaderDoc from Generated Code.

Development Task Flows

Developer Guide: iOS Native Applications 3

b) Configure your application to synchronize and retrieve data from a mobile business
object. See Configuring an Application to Synchronize and Retrieve MBO Data.

c) Reference your application to the Client Object API code that you generated for your
mobile application project. See Referencing the iOS Client Object API.

4. Prepare your applications for deployment to the enterprise. See Preparing Applications for
Deployment to the Enterprise.

Using Object API to Develop a Device Application
Generate object API code on which to build your application.

Unwired Platform provides the Code Generation wizard for generating object API code. Code
generation creates the business logic, attributes, and operations for your Mobile Business
Object. You can generate code for these platforms:

• iOS

See the guidelines for generating code for each platform type.

Generating Objective-C Object API Code
Generate Objective-C code for applications that will run on Apple devices.

1. Launch the Code Generation wizard.

From Action

The Mobile
Application Diagram

Right-click within the Mobile Application Diagram and
select Generate Code.

WorkSpace
Navigator

Right-click the Mobile Application project folder that
contains the mobile objects for which you are generating API
code, and select Generate Code.

2. (Optional) Enter the information for these options:

Note: This page of the code generation wizard is seen only if you are using the Advanced
developer profile.

Development Task Flows

4 Sybase Unwired Platform

Option Description

Select code genera-
tion configuration

Select either an existing configuration that contains code generation set-
tings, or generate device client code without using a configuration:
• Continue without a configuration – select this option to generate device

code without using a configuration.
• Select an existing configuration – select this option to either select an

existing configuration from which you generate device client code, or
create a new configuration. Selecting this option enables:
• Select code generation configuration – lists any existing configu-

rations, from which you can select and use for this session. You can
also delete any and all existing saved configurations.

• Create new configuration – enter the Name of the new configura-
tion and click Create to save the configuration for future sessions.
Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

3. Click Next.

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Note: Code generation fails if the server-side (run-time) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

5. Click Next.

6. Enter the information for these configuration options:

Option Enter

Language Objective-C

Platform iOS

Unwired Server Specify an Unwired Server connection profile
to which the generated code connects at run-
time.

Development Task Flows

Developer Guide: iOS Native Applications 5

Option Enter

Server domain Choose the domain to which the generated code
will connect. If you specified an Unwired Serv-
er to which you previously connected success-
fully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an Un-
wired Server is selected.

Page size Not enabled for Objective-C.

Name Prefix Enter a name prefix for Objective C.

Destination Specify the destination of the generated device
client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location.

Select Clean up destination before code gen-
eration to clean up the destination folder before
generating the device client files.

Replication-based This option is not available for iOS.

Message-based Selected by default.

7. Select Generate metadata classes to generate metadata for the attributes and operations
of each generated client object.

8. Select Generate metadata and object manager classes to generate both the metadata for
the attributes and operations of each generated client object and an object manager for the
generated metadata.

The object manager allows you to retrieve the metadata of packages, MBOs, attributes,
operations, and parameters during runtime using the name instead of the object instance.

9. Click Finish.

By default, the MBO source code and supporting documentation are generated in the
project's Generated Code folder. The generated files are located in the
<MBO_project_name> folder under the includes and src folders. The
includes folder contains the header (*.h) files and the src folder contains the
implementation (*.m) files.

Because there is no namespace concept in Objective-C, all generated code is prefixed with
packagename_. For example, "SampleApp_".

Development Task Flows

6 Sybase Unwired Platform

The frequently used Objective-C files in this project, described in code samples include:

Development Task Flows

Developer Guide: iOS Native Applications 7

Table 1. Source Code File Descriptions

Objective-C File Description

MBO class (for example, SampleApp_Cus-
tomer.h, SampleApp_Customer.m)

Include all the attributes, operations, object
queries, and so on, defined in this MBO.

synchronization parameter class (for example,
SampleApp_CustomerSynchroniza-
tionParameter.h, SampleApp_Cus-
tomerSynchronizationParame-
ter.m)

Include any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, Sam-
pleApp_KeyGenerator.h, Sam-
pleApp_KeyGenerator.m)

Include generation of surrogate keys used to
identify and track MBO instances and data.

Personalization parameter classes (for example,
SampleApp_PersonalizationPara-
meters.h, SampleApp_Personali-
zationParameters.m)

Include any defined personalization keys.

Note: Do not modify generated MBO API generated code directly. For MBO generated
code, create a layer on top of the MBOs using patterns native to the mobile operating
system development to extend and add functionality.

Generated Code Location and Contents
Generated object API code is stored in the project's Generated Code sub-folder by default, for
example, C:\Documents and Settings\administrator\workspace
\<Unwired Platform project name>\Generated Code\src. Language,
platform, and whether or not you select the Generate metadata classes option determines the
class files generated in this folder.

Assuming you generate code in the default location, you can access it from WorkSpace
Navigator by expanding the Mobile Application project folder for which the code is
generated, and expand the Generated Code folder.

The contents of the folder is determined by the options you selected from the Generate Code
wizard, and include generated class (.h, .m) files that contain:

• MBO - the business logic of your MBO.
• Synchronization parameters - any synchronization parameters for the MBOs.
• Personalization - personalization and personalization synchronization parameters used by

the MBOs.
• Metadata - if you selected Generate metadata classes, the metadata classes which allow

you to use code completion and compile-time checking to ensure that run-time references
to the metadata are correct.

Development Task Flows

8 Sybase Unwired Platform

Validating Generated Code
Validation rules are enforced when generating client code for C# and Java. Define prefix
names in the Mobile Business Object Preferences page to correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for key word
conflicts in generated Java and C# code. For example, by displaying error messages in the
Properties view or in the wizard. Other than the known name conversion rules (converting '.' to
'_', removing white space from names, and so on), there is no other language specific name
conversion. For example, cust_id is not changed to custId.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand Sybase, Inc > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are auto-generated. For example, when you drag-and-drop a data source onto
the Mobile Application Diagram.

Importing Libraries and Code in the Xcode IDE
Import the generated MBO code and associated libraries into the iOS development
environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: http://
developer.apple.com/tools/Xcode/.

1. Start Xcode and select Create a new Xcode project.

2. Select iOS Application and Window-based Application as the project template, and
then click Next.

3. Enter <ProjectName> as the Product Name, MyCorp as the Company Identifier,
select Universal as the Device Family product, and then click Next.

4. Select the Architectures tab, and set Base SDK for All Configurations to iOS 4.3.

Development Task Flows

Developer Guide: iOS Native Applications 9

http://developer.apple.com/tools/Xcode/
http://developer.apple.com/tools/Xcode/

5. Select the Deployment tab and set the iOS Deployment Target to iOS 4.3 or iOS 4.2,
as appropriate for the device version where you will deploy. Earlier SDKs and deployment
targets are not supported.

6. Select the Valid architecture as armv6 armv7 and the Targeted device family as
iPhone/iPad. This ensures that the build of the application can run on either iPhone or
iPad.

Note: When you migrate an existing project from an older version of Xcode to Xcode 4,
you may see a build error: No architectures to compile for
(ARCHS=i386, VALID_ARCHS=armv6,armv7). You can resolve this Xcode 4
issue by manually editing "Valid Architectures" under Targets, to add i386.

Development Task Flows

10 Sybase Unwired Platform

7. Select a location to save the project and click Create to open it.

Xcode creates a folder,<ProjectName>, to contain the project file,
<ProjectName>.xcodeproj and another <ProjectName> folder, which
contains a number of automatically generated files.

Copy the files from your Windows machine in to the <ProjectName> folder that Xcode
created to contain the generated source code.

8. Connect to the Microsoft Windows machine where Sybase Unwired Platform is installed:

a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, smb://<machine DNS

name> or smb://<IP Address>.

You see the shared directory.

9. Navigate to the \UnwiredPlatform\ClientAPI\MBS\ObjectiveC directory
in the Unwired Platform installation directory, and copy the includes and libs folders
to the <ProjectName>/<ProjectName> directory on your Mac.

10. Navigate to the mobile application project (for example, C:\Documents and
Settings\administrator\workspace\<ProjectName>), and copy the
Generated Code folder to the <ProjectName>/<ProjectName> directory on
your Mac.

Development Task Flows

Developer Guide: iOS Native Applications 11

11. In the Xcode Project Navigator, right-click the <ProjectName> folder under the
project, select Add Files to "<ProjectName>", select the Generated Code folder,
unselect Copy items into destination group's folder (if needed), and click Add.

The Generated Code folder is added to the project in the Project Navigator.

12. Right-click the <ProjectName> folder under the project, select Add Files to
"<ProjectName>", navigate to the <ProjectName/ProjectName>/libs/
Debug-iphonesimulator directory, select the libclientrt.a,
libSUPObj.a, and libMO.a libraries, unselect Copy items into destination group's
folder (if needed), and click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. For example,
if you are building for a debug version of the simulator, navigate to libs/Debug-
iphonesimulator/ to add the libraries.

13. Right-click the project root, select New Group, and then rename it to Resources.

14. Right-click the Resources folder, select Add Files to "<ProjectName>", navigate to
the includes directory, select the Settings.bundle file, unselect Copy items into
destination group's folder (if needed), and click Add.

The bundle Settings.bundle is added to the project in the Project Navigator.

This bundle adds resources that lets iOS device client users input information such as
server name, server port, user name and activation code in the Settings application.

15. Click the project root and then, in the middle pane, click the <ProjectName> project.

a) In the right pane click the Build Settings tab, then scroll down to the Search Paths
section.

b) Enter the location of your includes folder ("$SRCROOT/<ProjectName>/
includes/**") in the Header Search Paths field.

$SRCROOT is a macro that expands to the directory where the Xcode project file
resides.

16. Add the following frameworks from the SDK to your project by clicking on the active
target, and selecting Build Phase > Link Binary With Libraries. Click on the + button
and select the following binaries from the list:

• AddressBook.framework
• CoreFoundation.framework
• QuartzCore.framework
• Security.framework
• libicucore.A.dylib
• libstdc++.6.dylib
• libz.1.2.3.dylib

Development Task Flows

12 Sybase Unwired Platform

17. In the Build Settings, modify the library search path to remove the stdc path from the list
of search paths.

18. Select Product > Clean and then Product > Build to test the initial set up of the project. If
you have correctly followed this procedure, then you should receive a Build Succeeded
message.

19. Write your application code to reference the generated MBO code. See the Developer
Guide for iOS for information about referencing the iOS Client Object API.

Developing Applications in the Xcode IDE
After you import Unwired WorkSpace projects (mobile application) and associated libraries
into the iOS development environment, use the iOS Client Object API to create or customize
your device applications.

This section describes how to customize device applications in the Xcode IDE using Sybase
provided APIs.

Generating HeaderDoc from Generated Code
Once you have generated Objective-C code for your mobile business objects, you can generate
HeaderDoc (HTML reference information) on the Mac from the generated code. HeaderDoc
provides reference information for the MBOs you have designed. The HeaderDoc will help
you to programmatically bind your device application to the generated code.

1. Navigate to the directory containing the generated code that was copied over from the
Eclipse environment.

2. Run:

>headerdoc2html –o GeneratedDocDir GeneratedCodeDir
>gatherheaderdoc GeneratedDocDir

You can open the file OutputDir/masterTOC.html in a Web browser to see the
interlinked sets of documentation.

Note: You can review complete details on HeaderDoc in the HeaderDoc User Guide, available
from the Mac OS X Reference Library at http://developer.apple.com/mac/library/navigation/
index.html.

Configuring an Application to Synchronize and Retrieve MBO Data
To configure an application to synchronize and retrieve MBO data you must start the client
engine, configure the physical device settings, listen for messages from the server, and
subscribe to a package.

1. Register a callback.

Development Task Flows

Developer Guide: iOS Native Applications 13

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html

The client framework uses a callback mechanism to notify the application when messages
arrive from the server. Some examples of events that are sent include login success or
failure, subscription success or failure, or a change to a MBO.

Register the callback object by executing:
MyCallbackHandler* theCallbackHandler = [MyCallbackHandler new];
[SampleApp_SampleAppDB
registerCallbackHandler:theCallbackhandler];

Note: See Developer Guide for iOS > Reference > iPhone Client Object API > Utility
APIs > Callback Handlers for more information on the Callback Handler interface. See
Developer Guide for iOS > Development Task Flows > Developing Applications in the
Xcode IDE > Referencing the iPhone Client Object APIfor more information on a sample
application which includes a callback function.

2. Make sure the client settings have been entered, and then create the database and call
startBackgroundSynchronization.

Before performing any action with the Client Object API, make sure the application’s
connection information has been entered for this application in Settings.app. To do
this, call [SUPMessageClient provisioned]. This method returns YES if the
required information is available, and NO otherwise.

If you can connect, create a local database by calling [SampleApp_SampleAppDB
createDatabase]. If a local database already exists it will not be overwritten. Next,
call startBackgroundSynchronization. You must perform these calls before
you call [SUPMessageClient start] to connect to the Unwired Server.

if ([SUPMessageClient provisioned]) {
[SampleApp_SampleAppDB createDatabase];
[SampleApp_SampleAppDB startBackgroundSynchronization];

3. Start the Sybase Unwired Platform client engine by connecting to the Unwired Server.
[SUPMessageClient start];
}

If the messaging client is able to connect to the Unwired Server, the callback handler will
receive a notification.

4. After receiving notification that the application has successfully connected to the server to
which the application has been deployed, when the application sends a request, the Client
Object API puts the current user name and credentials inside the message for the Unwired
Server to authenticate and authorize. The device application must set the user name and
credential before sending any requests to the Unwired Server. This is done by calling the
beginOnlineLogin API.

[SampleApp_SampleAppDB beginOnlineLogin:@"supUser"
password:@"s3pUser"];

Development Task Flows

14 Sybase Unwired Platform

If login to the Unwired Server was successful the callback handler will receive a
notification. Any security failure results in a rejection of the request and notification
through the callback handler.

5. After receiving notification that login was successful, subscribe to the database.
[SampleApp_SampleAppDB subscribe];

If the subscription request was accepted the callback handler will receive a notification. If
successful, the Unwired Server sends out a push message to the client application
containing the application data. The Unwired Server also sends an acceptance message.
The client receives the push and acceptance messages.

The client framework notifies the application of the result of success through an
onSubscribeSuccess callback, if a callback function is registered. If an error occurs
in the subscription process, the Unwired Server sends out a rejection message for the
subscription. The client receives a subscription request result notification message with
failure from the Unwired Server, and may resubmit the subscription request.

The client framework notifies the application of the result of failure through the
onSubscribeFailure callback, if a callback function is registered.

6. The first time the application launches and successfully connects to the server, an initial
import is done to populate the local database. When an entity is sent to the client the client
framework notifies the application through the onImport: notification. When all of the
initial objects have been sent, the client framework notifies the application through the
onImportSuccess notification.

On subsequent launches of the application the client must ask the server to send any
updates that happened since the last time the application was run.

Since a subscribe request is only sent out once, no matter how many times the
subscribe method is called on the database, you can take advantage of this in the
onLoginSuccess callback.

-(void)onLoginSuccess:(NSNotification *)obj
{
 if (![SampleApp_SampleAppDB isSubscribed]) {
 [SampleApp_SampleAppDB subscribe];
 } else {
 [SampleApp_SampleAppDB beginSynchronize];
 }
}

Managing the Background State
To allow your application to continue to safely run when it goes into the background, you must
implement code in its AppDelegate class to ensure that the connection to the server shuts

Development Task Flows

Developer Guide: iOS Native Applications 15

down gracefully when going into the background, and starts up when the application becomes
active again.

This is important because in iOS, when an application goes into the background, it can have its
network sockets invalidated, or the application may be shut down at any time. For correct
behavior of the AppDelegate connection, the connection needs to be stopped when in
background, and only started again when the application goes back to the foreground.

You must implement two appDelegate methods:
applicationWillResignActive and applicationDidBecomeActive.

Note: The applicationDidBecomeActive method is also called when the application
first starts up, where most applications would have code already to register the application and
start the AppDelegate connection. This example code uses a boolean
wasPreviouslyInBackground so that the applicationDidBecomeActive
method can detect whether it is called on coming out of the background or is called on a first
startup.

Important: This example code does not work unless you have a patch. Contact the support
organization to obtain the appropriate patch.

BOOL wasPreviouslyInBackground = NO;

- (void)applicationWillResignActive:(UIApplication *)application {
 /*
 Sent when the application is about to move from active to
inactive state. This can occur for certain types of temporary
interruptions (such as an incoming phone call or SMS message) or when
the user quits the application and it begins the transition to the
background state.
 Use this method to pause ongoing tasks, disable timers, and
throttle down OpenGL ES frame rates. Games should use this method to
pause the game.
 */

 if([SUPMessageClient status] != STATUS_NOT_START)
 [SUPMessageClient stop];

 wasPreviouslyInBackground = YES;
}

- (void)applicationDidBecomeActive:(UIApplication *)application {
 /*
 Restart any tasks that were paused (or not yet started) while the
application was inactive. If the application was previously in the
background, optionally refresh the user interface.
 */
 if(wasPreviouslyInBackground)
 [SUPMessageClient start];

Development Task Flows

16 Sybase Unwired Platform

Referencing the iOS Client Object API
Here is an example application that references the Client Object API generated for a mobile
application project in the Eclipse environment.

The application uses two mobile business objects based on the Customer and SalesOrder
tables in the sampledb Sybase SQL Anywhere® (ASA) database. A one-to-many
relationship exists between the two mobile business objects.

The following figure illustrates the MBO schema that represents the relationship between the
mobile business objects.

Figure 1: MBO Schema for Mobile Business Object Relationship

Device Application Example Code
The example code consists of five files.

• main.m – sets up settings for the Unwired Server and calls the start method.
• CallbackHandler.h – header file for the callback handler code.
• CallbackHandler.m – Objective-C source file for the callback handler.
• SampleApp.h – header file with method definitions that call the Client Object API.
• SampleApp.m – Objective-C source file.

main.m Example Code
main.m contains this example code.

#import <UIKit/UIKit.h>
#import "SampleApp.h"

int main(int argc, char *argv[]) {

Development Task Flows

Developer Guide: iOS Native Applications 17

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

CallbackHandler.h Example Code
CallbackHandler.h contains this example code.

#import <Foundation/Foundation.h>
#import "SUPDefaultCallbackHandler.h"

@interface CallbackHandler : SUPDefaultCallbackHandler
{
}

- (void)onReplayFailure:(id)theObject;
- (void)onReplaySuccess:(id)theObject;
- (void)onLoginFailure;
- (void)onLoginSuccess;
- (void)onSubscribeSuccess;
- (void)onSubscribeFailure;
- (void)onImportSuccess;
- (void)onConnectionStatusChange:
(SUPDeviceConnectionStatus)connStatus:
(SUPDeviceConnectionType)connType:(int32_t)errCode:
(NSString*)errString;
@end

CallbackHandler.m Example Code
CallbackHandler.m contains this example code.

CallbackHandler.m
#import "CallbackHandler.h"
#import "SampleApp_SampleAppDB.h"
#import "SampleApp.h"

@implementation CallbackHandler

- (void)onReplayFailure:(id)theObject
{
 MBOLog(@"=============================");
 MBOLogError(@"Replay Failed");
 MBOLog(@"=============================");
}

- (void)onReplaySuccess:(id)theObject
{
 MBOLog(@"=============================");
 MBOLog(@"Replay Successful");

Development Task Flows

18 Sybase Unwired Platform

 MBOLog(@"=============================");
}

- (void)onLoginFailure
{
 MBOLog(@"=============================");
 MBOLogError(@"Login Failed");
 MBOLog(@"=============================");
}

- (void)onLoginSuccess
{
 MBOLog(@"=============================");
 MBOLog(@"Login Successful");
 MBOLog(@"=============================");

 [SampleApp performSelectorOnMainThread:@selector(subscribeToDB)
withObject:nil waitUntilDone:NO];
}

- (void)onSubscribeSuccess
{
 MBOLog(@"=============================");
 MBOLog(@"Subscribe Successful");
 MBOLog(@"=============================");

}
-(void)onSubscribeFailure
{
 MBOLog(@"=============================");
 MBOLogError(@"Subscribe Failed");
 MBOLog(@"=============================");
}

- (void)onImportSuccess
{
 MBOLog(@"=============================");
 MBOLog(@"Import Ends Successfully");
 MBOLog(@"=============================");

 [SampleApp performSelectorOnMainThread:@selector(runAPITests)
withObject:nil waitUntilDone:NO];
}
- (void)onConnectionStatusChange:
(SUPDeviceConnectionStatus)connStatus:
(SUPDeviceConnectionType)connType:(int32_t)errCode:
(NSString*)errString
{
 if (connStatus == CONNECTED_NUM) {
 MBOLog(@"=============================");
 MBOLogError(@"Message client started");
 MBOLog(@"=============================");

 [SampleApp performSelectorOnMainThread:@selector(beginLogin)
withObject:nil waitUntilDone:NO];
 }

Development Task Flows

Developer Guide: iOS Native Applications 19

}
@end

SampleApp.h Example Code
SampleApp.h contains this example code.

SampleApp.h
@interface SampleApp: NSObject
{
}

+ (void)runAPITests;

/*Test functions that call client Object APIs */

+(void)Testfind;
+(void)TestSynchronizationParameters;
+(void)TestPersonalizationParameters;
+(void)TestCreate;
+(void)TestUpdate;
+(void)TestDelete;
+(void)printLogs;
+(void)PrintCustomerSalesOrderData;

@end

SampleApp.m Example Code
SampleApp.m contains this example code.

SampleApp.m
#import "SampleApp.h"
#import "SampleApp_Customer.h"
#import "CallbackHandler.h"
#import "SampleApp_SampleAppDB.h"
#import "SampleApp_LogRecordImpl.h"
#import "SampleApp_Sales_order.h"
#import "SampleApp_LocalKeyGenerator.h"
#import "SampleApp_KeyGenerator.h"
#import "SUPMessageClient.h"

@implementation SampleApp
+(void)subscribeToDB
{
 [SampleApp_SampleAppDB subscribe];
}

+(void)beginLogin
{
 if ([SampleApp_SampleAppDB getOnlineLoginStatus].status !=
SUPLoginSuccess) {
 [SampleApp_SampleAppDB beginOnlineLogin:@"supAdmin"
password:@"s3pAdmin"];

Development Task Flows

20 Sybase Unwired Platform

 }
}

+(void)runAPITests
{
 MBOLog(@"=============================");
 MBOLog(@"TestPersonalizationParameters");
 MBOLog(@"=============================");
 [SampleApp TestPersonalizationParameters];

 MBOLog(@"=============================");
 MBOLog(@"TestSynchronizationParameters");
 MBOLog(@"=============================");
 [SampleApp TestSynchronizationParameters];

 MBOLog(@"=============================");
 MBOLog(@"TestfindAll");
 MBOLog(@"=============================");
 [SampleApp Testfind];

 MBOLog(@"=============================");
 MBOLog(@"TestCreate");
 MBOLog(@"=============================");
 [SampleApp TestCreate];

 MBOLog(@"=============================");
 MBOLog(@"TestUpdate");
 MBOLog(@"=============================");
 [SampleApp TestUpdate];

 MBOLog(@"=============================");
 MBOLog(@"TestDelete");
 MBOLog(@"=============================");
 [SampleApp TestDelete];

 MBOLog(@"=============================");
 MBOLog(@"Print Logs");
 MBOLog(@"=============================");
 [SampleApp printLogs];

 [SampleApp_SampleAppDB unsubscribe];
}

+(void)PrintCustomerSalesOrderData
{
 SampleApp_Customer *onecustomer = nil;
 SUPObjectList *cl = nil;
 MBOLog(@"Customer data is:");
 cl = [SampleApp_Customer findAll];
 if(cl && [cl length] > 0)
 {
 int i;
 for(i=0; i<[cl length]; i++)
 {
 onecustomer = [cl item:i];
 if (onecustomer) {

Development Task Flows

Developer Guide: iOS Native Applications 21

 MBOLog(@"%@ %@, %@, %@, %@",onecustomer.fname,
 onecustomer.lname,onecustomer.address,onecustomer.city,
 onecustomer.state);
 SUPObjectList *sl = [onecustomer salesOrders];
 if(sl)
 {
 if([sl length] > 0)
 MBOLog(@" This customer's sales orders are");
 else
 MBOLog(@" This customer has no sales orders");
 for(SampleApp_Sales_order *so in sl)
 MBOLog(@"%@ %@,
%d",so.order_date,so.region,so.sales_rep);
 }
 }
 }
 }
}

/***Retrieve data based on the synchronization parameter value.***/

+ (void)TestSynchronizationParameters
{
 SampleApp_CustomerSynchronizationParameters* sp
= [SampleApp_Customer getSynchronizationParameters];
 sp.size = 3;
 sp.user = @"userone";
 sp.city = @"Raleigh";
 [sp save];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }

 [self PrintCustomerSalesOrderData];
}

/******Retrieve data based on the personalization parameter
value*****/

+ (void)TestPersonalizationParameters
{

 SampleApp_PersonalizationParameters *pp = nil;
 pp = [SampleApp_SampleAppDB getPersonalizationParameters];
 pp.PKCity = @"New York";
 [pp save];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
 [self PrintCustomerSalesOrderData];
}

Development Task Flows

22 Sybase Unwired Platform

/*******Print logs record data from LogrecordImpl*****/
+(void)printLogs
{
 MBOLog(@"******* printLogs *******");
 SUPQuery *query = [SUPQuery getInstance];
 SUPObjectList *loglist = [SampleApp_SampleAppDB
getLogRecords:query];
 for(id o in loglist)
 {
 SampleApp_LogRecordImpl *log = (SampleApp_LogRecordImpl*)o;
 MBOLog(@"Log Record %llu: Operation = %@, Timestamp = %@, MBO =
%@, key = %@, message = %@",
 log.messageId,log.operation, [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
 }
}

/
************************************find***************************
*********/
/***Find all the customer records and print the first record to the
console*/

+(void)Testfind
{
 SampleApp_Customer *onecustomer = nil;
 SUPObjectList *cl = [SampleApp_Customer findAll];
 if(cl && [cl length] > 0)
 {
 onecustomer = [cl item:0];
 if (onecustomer)
 {
 MBOLog(@"the full customer record data is : %@", onecustomer);
 }
 }
}

/*****************************Create
***********************************/
/*****Create new customer and sales order records in the local
database
 and call submitPending to send the changes to the server *****/

+(void)TestCreate
{
 long key1 = [SampleApp_KeyGenerator generateId];
 long key2 = [SampleApp_KeyGenerator generateId];
 [SampleApp_KeyGenerator submitPendingOperations];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
 SampleApp_Customer *c = [[SampleApp_Customer alloc] init];
 [c autorelease];
 c.id_ = [SampleApp_LocalKeyGenerator generateId];

Development Task Flows

Developer Guide: iOS Native Applications 23

 c.fname = @"Dorothi";
 c.lname = @"Scranton";
 c.address = @"One Money Street";
 c.city = @"smallVille";
 c.state = @"MA";
 c.zip = @"97429";
 c.phone = @"2112222345";
 c.company_name = @"iAnywhere";
 c.surrogateKey = key1;
 SUPObjectList *orderlist = [SampleApp_Sales_orderList
getInstance];
 SampleApp_Sales_order *o1 = [[SampleApp_Sales_order alloc] init];
 [o1 autorelease];
 o1.id_ = [SampleApp_LocalKeyGenerator generateId];
 o1.order_date = [NSDate date];
 o1.fin_code_id = @"r1";
 o1.region = @"Eastern";
 o1.sales_rep = 902;
 o1.surrogateKey = key2;
 [o1 setCustomer:c];
 [orderlist add:o1];
 [c setSalesOrders:orderlist];
 [c save];
 [c refresh];
 [c submitPending];
 assert(c.pending == YES);
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
}

/******************************Update
*********************************/
/****Update an existing customer and sales record in the device
database
 and call submitPending to send the changes to the server.
**********/
+ (void)TestUpdate
{
 SUPObjectList *cl = [SampleApp_Customer findAll];
 SampleApp_Customer *onecustomer = [cl item:0];
 SampleApp_Sales_order *order = [onecustomer.salesOrders item:0];
 onecustomer.fname = @"Johnny";
 order.region = @"South";
 [onecustomer save];
 [onecustomer refresh];
 [order refresh];
 [onecustomer submitPending];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }

}

Development Task Flows

24 Sybase Unwired Platform

/***************************** Delete ***************************/
/*Delete an existing record from the database and call
 submitPending to send the changes to the server.****/

+ (void) TestDelete
{
 SUPObjectList *sl = [SampleApp_Sales_order findAll];
 SampleApp_Sales_order *order = [sl item:0];
 [order delete];
 [order.customer submitPending];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
}

@end

Localizing an iOS Application
In iOS, you use Interface Builder, which is part of Xcode, to define and layout controls in a
view of the user interface. These descriptions are stored in Xcode Interface Builder (XIB)
files. Once you have the English version of the layout defined you will need to create an XIB
file for each language you want to support in your user interface.

Localizing Menus and Interfaces
Localize the menus and interfaces for an iOS application by selecting an XIB file to localize,
and a language for localization.

1. Select the Xcode Interface Builder (XIB) file you want to localize in the Project Explorer.

2. Open the File Inspector by selecting View > Utilities > File Inspector. The File Inspector
appears in a pane of the right of the Xcode window.

3. In the Localization section of the File Inspector pane, click the + button at the bottom of the
section.
This step makes the XIB file localizable by moving it into a folder named en.lproj.

4. Click the + button again.
A menu appears with a list of languages.

5. Select the language you want to use in localizing the XIB file.

The Localization section of the File Inspector displays the languages to which the file has
been localized (in the example, French and English).

The file's icon in the Project Explorer has a disclosure arrow next to it. Click the arrow to
reveal the contents of the file. The Project Explorer displays one copy of the XIB file for
each language you have chosen.

6. Double-click on each icon to open it in a new tab or new window.

Development Task Flows

Developer Guide: iOS Native Applications 25

7. Make the required changes to the interface elements in the language-specific XIB file, and
then save the file.

8. Verify that the localized XIB files are added to the list of files copied into the application's
bundle. If not:

a) Click the project icon in the Project Explorer, and then click the Target icon.
b) Select the Build Phases tab.
c) Expand the Copy Bundle Resources section, and then click the + button.
d) Select the additional XIB files from the <language>.lproj folders and click

Add.

Localizing Embedded Strings
Localize embedded strings that are used in alert and dialog windows.

1. For each user interface string in your code, set the text property to a literal string using the
NSLocalizedString macro.

UserInterfaceLabel.text = NSLocalizedString(@"Display text",
nil);

2. Generate the.strings files from all the NSLocalizedString references in your
application. by using the genstrings command line program. See Apple
documentation for command syntax and parameters.
This command processes files in your directory hierarchy and creates .strings files for
them in the en.lproj directory.

3. Provide your translator a copy of the .strings file. The translator should translate the
right side of each of the .strings file entries.

Validating Localization Changes
Test that your changes appear in your application.

1. Launch the iOS simulator then launch Settings.app.

2. Select General > International > Language.

3. Select the language you want to test.
The simulator restarts in the new language.

4. Launch your application and verify that it is localized.

Preparing Applications for Deployment to the Enterprise
After you have created your client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

Note: Developers can review complete details in the iPhone OS Enterprise Deployment Guide
at http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf.

Development Task Flows

26 Sybase Unwired Platform

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

1. Sign up for the iOS Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Create a certificate request on your Mac through Keychain.

3. Log in to the Developer Connection portal.

4. Upload your certificate request.

5. Download the certificate to your Mac. Use this certificate to sign your application.

6. Create an AppID.

Verify that your info.plist file has the correct AppID and application name. Also, in
Xcode, right-click Targets > <your_app_target> and select Get Info to verify the AppID
and App name.

7. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

8. Create an Xcode project ensuring the bundle identifier corresponds to the bundle identifier
in the specified App ID. Ensure you are informed of the "Product Name" used in this
project.

Apple Push Notification Service Configuration
The Apple Push Notification Service (APNS) notifies users when information on a server is
ready to be downloaded.

Apple Push Notification Service (APNS) allows users to receive notifications. APNS:

• Must be set up and configured by an administrator on the server.
• Must be enabled by the user on the device.
• Can be used with any device that supports APNS. Some older Apple devices may not

support APNS.
• Cannot be used on a simulator.

Preparing an Application for Apple Push Notification Service
There are several development steps to perform before the administrator can configure the
Apple Push Notification Service (APNS).

Note: Review complete details in the iPhone OS Enterprise Deployment Guide at http://
manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf.

1. Sign up for the iOS Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Configure your application to make use of Keychain as persistent storage for the database
encryption key.

Development Task Flows

Developer Guide: iOS Native Applications 27

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

3. Create an App ID and ensure that it is configured to use Apple Push Notification Service
(APNS).

Do not use wildcard characters in App IDs for iPhone applications that use APNS.

Verify that your info.plist file has the correct App ID and application name. Also, in
Xcode, right-click Targets > <your_app_target> and select Get Info to verify the App
ID and App name.

4. Create and download an enterprise APNS certificate that uses Keychain Access in the Mac
OS. The information in the certificate request must use a different common name than the
development certificate that may already exist. The reason for this naming requirement is
that the enterprise certificate creates a private key, which must be distinct from the
development key. Import the certificate as a login Keychain, not as a system Keychain.
Validate that the certificate is associated with the key in the Keychain Access application.
Get a copy of this certificate.

5. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

6. Create the Xcode project, ensuring the bundle identifier corresponds to the bundle
identifier in the specified App ID.

7. To enable the APNS protocol, you must implement several methods in the application by
adding the code below:

Note: The location of these methods in the code depends on the application; see the APNS
documentation for the correct location.

//Enable APNS
[[UIApplication sharedApplication]
registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound |
 UIRemoteNotificationTypeAlert)];

* Callback by the system where the token is provided to the client
application so that this
 can be passed on to the provider. In this case,
“deviceTokenForPush” and “setupForPush”
are APIs provided by SUP to enable APNS and pass the token to SUP
Server

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:
 (NSData *)devToken
{
 MBOLogInfo(@"In did register for Remote Notifications",
devToken);
 [SUPPushNotification setupForPush:app];
 [SUPPushNotification deviceTokenForPush:app
deviceToken:devToken];
}

Development Task Flows

28 Sybase Unwired Platform

* Callback by the system if registering for remote notification
failed.

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:
 (NSError *)err {
 MBOLogError(@"Error in registration. Error: %@", err);
 }

// You can alternately implement the pushRegistrationFailed API:

// +(void)pushRegistrationFailed:(UIApplication*)application
errorInfo: (NSError *)err

* Callback when notification is sent.

- (void)application:(UIApplication *)app
didReceiveRemoteNotification:(NSDictionary *)
 userInfo
{
 MBOLogInfo(@"In did receive Remote Notifications", userInfo);
}

You can alternately implement the pushNotification API
+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo

Provisioning an Application for Apple Push Notification Service
Use Apple Push Notification Service (APNS) to push notifications from Unwired Server to
the iOS application. Notifications can include badges, sounds, or custom text alerts. Device
users can customize which notifications to receive through Settings, or turn them off.

Each application that supports Apple Push Notifications must be listed in Sybase Control
Center with its certificate and application name. You must perform this task for each
application.

1. Confirm that the IT department has opened ports 2195 and 2196, by executing:

telnet gateway.push.apple.com 2195

telnet feedback.push.apple.com 2196

If the ports are open, you can connect to the Apple push gateway and receive feedback
from it.

2. Copy the enterprise certificate (*.p12) to the computer on which Sybase Control Center
has been installed. Save the certificate in UnwiredPlatform_InstallDir
\Servers\MessagingServer\bin\.

3. In Sybase Control Center, expand the Servers folder and click Server Configuration for
the primary server in the cluster.

Development Task Flows

Developer Guide: iOS Native Applications 29

4. In the Messaging tab, select Apple Push Configuration, and:

a) Configure Application name with the same name used to configure the product name
in Xcode. If the certificate does not automatically appear, browse to the directory.

b) Change the push gateway information to match that used in the production
environment.

c) Restart Unwired Server.

5. Verify that the server environment is set up correctly:

a) Open UnwiredPlatform_InstallDir\Servers\UnwiredServer
\logs\APNSProvider.

b) Open the log file that should now appear in this directory. The log file indicates whether
the connection to the push gateway is successful or not.

6. Deploy the application and the enterprise distribution provisioning profile to your users’
computers.

7. Instruct users to use iTunes to install the application and profile, and how to enable
notifications. In particular, device users must:

• Download the Sybase application from the App Store.
• In the iPhone Settings app, slide the Notifications control to On.

8. Verify that the APNS-enabled iOS device is set up correctly:

a) Click Device Users.
b) Review the Device ID column. The application name should appear correctly at the

end of the hexadecimal string.
c) Select the Device ID and click Properties.
d) Check that the APNS device token has been passed correctly from the application by

verifying that a value is in the row. A device token appears only after the application
runs.

9. Test the environment by initiating an action that results in a new message being sent to the
client.

If you have verified that both device and server can establish a connection to APNS
gateway, the device will receive notifications and messages from the Unwired Server,
including workflow messages, and any other messages that are meant to be delivered to
that device. Allow a few minutes for the delivery or notification mechanism to take effect
and monitor the pending items in the Device Users data to see that the value increases
appropriately for the applications.

10. To troubleshoot APNS, use the UnwiredPlatform_InstallDir\\Servers
\UnwiredServer\log\APNSProvider log file. You can increase the trace output
by editing SUP_Home\Servers\MessagingServer\Data
\TraceConfig.xml and configuring the tracing level for the APNSProvider module
to debug for short periods.

Development Task Flows

30 Sybase Unwired Platform

Reference

This section describes the iOS Client Object API. Classes are defined and sample code is
provided.

iOS Client Object API
The Sybase Unwired Platform iOS Client Object API consists of generated business object
classes that represent the mobile business object model built and designed in the Unwired
WorkSpace development environment.

The iOS Client Object API is used by device applications to synchronize and retrieve data and
invoke mobile business object operations. The iOS Client Object API supports only message-
based synchronization.

Connection APIs
The iOS Client Object API contains classes and methods for managing local database
information, and managing connections to the Unwired Server through a synchronization
connection profile.

SUPConnectionProfile
The SUPConnectionProfile class manages local database information. You can use it
to set the encryption key, which you must do before creating a local database.

SUPConnectionProfile* cp = [SampleApp_SampleAppDB
getConnectionProfile];
[cp setEncryptionKey:@"Your key"];
[SampleApp_SampleAppDB closeConnection];

If the encryption key is changed, or set in the connection profile, the closeConnection()
API should be immediately called.

Improving Device Application Performance with Multiple Database Reader
Threads
The maxDbConnections property improves device application performance by allowing
multiple threads to read data concurrently from the same local database.

Note: Message based synchronization clients do not support a single write thread
concurrently with multiple read threads. That is, when one thread is writing to the database, no
read threads are allowed access at the same time.

Reference

Developer Guide: iOS Native Applications 31

In a typical device application such as Sybase Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry displays, and
loads the details for that entry.

Prior to the implementation of maxDbConnections, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) waits for any previous operation to finish before the next is allowed to proceed.
In the list view to detail view example, when the background thread is loading the entire list,
and a user selects the details of one entry to display, the loading of details for that entry must
wait until the entire list is loaded, which can be a long while, depending on the size of the
list.

You can specify the amount of reader threads using maxDbConnections. The default
value is 4.

Implementing maxDbConnections
The ConnectionProfile class in the persistence package includes the maxDbConnections
property, that you set before performing any operation in the application. The default value
(maximum number of concurrent read threads) is two.

SUPConnectionProfile *cp = [MyPackage_MyPackageDB
getConnectionProfile];

To allow 6 concurrent read threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the application.
cp.maxDbConnections = 6;

SynchronizationProfile
Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

SUPConnectionProfile* cp = [SampleApp_SampleAppDB
getSynchronizationProfile];
[cp setDomainName:@"default"];

Authentication
The generated package database class provides a valid synchronization connection profile.
You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

• offlineLogin – authenticates against the most recent successfully authenticated
credentials. Once the client connects for the first time, the server validated username and
password are stored locally. offlineLogin verifies with the client database if those

Reference

32 Sybase Unwired Platform

credentials are valid. The method returns YES if the username and password are correct,
otherwise the method returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the the Unwired Server and you want to access the client application
locally.

• beginOnlineLogin – sends the login request asynchronously (it returns without
waiting for a server response). See Reference: Administration APIs > Reference > iPhone
Client Object API > Synchronization APIs.

Message-Based Synchronization APIs
The message-based synchronization APIs enable a user application to subscribe to a server
package, to remove an existing subscription from the Unwired Server, to suspend or resume
requests to the Unwired Server, and to recover data related to the package from the server.

beginOnlineLogin
Typically, the generated package database class already has a valid synchronization
connection profile. You can login to the Unwired Server with your username and credentials.

• + (void)beginOnlineLogin:(NSString *)user password:(NSString *)pass –
beginOnlineLogin sends a message to the Unwired Server with the username and
password. The Unwired Server responds with a message to the client with the login
success or failure. This method checks the SUPMessageClient status and
immediately fails if the status is not STATUS_START_CONNECTED. Make sure the
connection is active before calling beginOnlineLogin, or implement the
onLoginFailure callback handler to catch cases where it may fail.

[SampleApp_SampleAppDB beginOnlineLogin:@"supUser"
password:@"s3pUser"];

Setting Synchronization Parameters
Synchronization parameters let an application change the parameters used to retrieve data
from an MBO during a synchronization session. A package may or may not have
synchronization parameters, depending on whether you need to partition data. Change the
synchronization parameter to affect the data that is retrieved.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server; you need not call submitPending after the
save. Consider the "Customer" MBO that has a "cityname" synchronization parameter.

This example shows how to retrieve customer data corresponding to Kansas City.
CustomerSynchronizationParameters *sp = [Customer
getSynchronizationParameters];
sp.size = 3;
sp.user = @"testuser";
sp.cityname = @"Kansas City";

Reference

Developer Guide: iOS Native Applications 33

[sp save];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Subscribe Data
The subscribe method allows the application to subscribe to a server package.

+(void) subscribe

The preconditions for the subscribe are that the mobile application is compiled with the client
framework and deployed to a mobile device together with the Sybase Unwired Platform client
process. The device application has already configured Unwired Server connection
information. Authentication credentials must also be set, using either the
beginOnlineLogin or offlineLogin APIs.

A subscription message is sent to the Unwired Server and the application receives a
subscription request result notification from the Unwired Server.
[SampleApp_SampleAppDB subscribe];

Unsubscribe Data
The unsubscribe method allows the application to remove the existing subscription from
server. The device application must already have a subscription with the server.

+(void) unsubscribe

On success, an unsubscription message is sent to the Unwired Server and the application
receives a subscription request result notification from the Unwired Server as a notification.
The data on the local database is cleaned.

On failure, the client application receives subscription request result notification from server
as notification with a failure message.
[SampleApp_SampleAppDB unsubscribe];

Suspend Subscription
The suspendSubscription operation allows a device application to send a suspend
request to the Unwired Server. This notifies the server to stop delivering data changes.

+(void) suspendSubscription

[SampleApp_SampleAppDB suspendSubscription];

Synchronize Data
The beginSynchronize methods send a message to the Unwired Server to synchronize
data between the client and the server.

+(void) beginSynchronize

This method is used to synchronize all data.

Reference

34 Sybase Unwired Platform

+(void) beginSynchronize:(SUPObjectList*)synchronizationGroups withContext:
(NSString*)context

This method synchronizes only those MBOs that are part of certain synchronization groups.
The parameter synchronizationGroups is a list of SUPSynchronizationGroup
objects representing the groups to be synchronized. The parameter context is a reference
string that is referred to when the server responds to the synchronization request. See the
discussion of the onSynchronize callback handler method in Developer Guide for iOS >
Reference > iPhone Client Object API > Utility APIs > Callback Handlers.
[SampleApp_SampleAppDB beginSynchronize];

Resume Subscription
The resumeSubscription operation allows a device application to send a resume
request to the Unwired Server. This request notifies the Unwired Server to resume sending
data changes since the last suspension.

+(void) resumeSubscription

[SampleApp_SampleAppDB resumeSubscription];

Recover Subscription
The recover operation allows the device application to send a recover request. This notifies
the Unwired Server to send down all the data related to the package.

+(void) recover

[SampleApp_SampleAppDB recover];

Start or Stop Background Synchronization
Message-based synchronization is performed at the package level. The generated package
database class provides methods for starting and stopping the background processing of the
incoming messages.

To start background synchronization:
[SampleApp_SampleAppDB startBackgroundSynchronization];

To stop background synchronization:
[SampleApp_SampleAppDB stopBackgroundSynchronization];

When an incoming message is processed, callbacks are triggered. See Reference:
Administration APIs > iPhone Client Object APIs > Message-Based Synchronization APIs >
Callback Handlers for information on how to register a callback handler.

Reference

Developer Guide: iOS Native Applications 35

Replay Results
The client application can call the hasPendingOperations method after a
submitpending call to the server to wait for replay results. This method returns true if
there are replay pending requests, otherwise, it returns false.

+(void)hasPendingOperations

while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

The preceding code example waits indefinitely if the client application does not receive a
replay result from the Unwired Server, and if a record has the replayPending flag set. To
exit this loop after a particular time interval has passed, you can add a timer.
BOOL shouldWait = YES;
 long sleepTime = 1;
 long timeout = 10*60;
 while (shouldWait && (sleepTime < timeout))
 {
 shouldWait = [SampleApp_SampleAppDB hasPendingOperations];
 if (shouldWait)
 {
 [NSThread sleepForTimeInterval:0.2];
 }
 if (sleepTime <= timeout)
 {
 timeout = timeout - sleepTime;
 }
 }
 if (shouldWait) {
 MBOLogError(@"Cannot wait , Timeout");
 }

Query APIs
The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from an MBO
To retrieve data from a local database use the find, findAll, or findByPrimaryKey
methods in the MBO class.

The following examples show how to use the find, findAll, or findByPrimaryKey
methods in the MBO class to retrieve data.
• + (<Name Prefix>_Customer*)find:(int32_t)id_ – The find method retrieves a

Customer by the given ID. The parameter id_ is the surrogate key (the primary key used in
the local database). The parameter is of type int32_t in this example, but could be
another type based on the key type. The value "101" in this example is the surrogate key
value (automatically generated from the KeyGenerator). To use this method, the client
application must be able to retrieve the surrogate key.

Reference

36 Sybase Unwired Platform

SampleApp_Customer *customer = [SampleApp_Customer find:101];

Note: The Eclipse IDE allows you to specify a value for "name prefix" when generating
the MBO Objective-C code. When a value is specified, all the MBO entity names are
prefixed with that value. When no such prefix is specified, the name prefix is by default the
package name.

• + (SUPObjectList*)findAll – Call the findAll method to list all customers:

SUPObjectList *customers = [SampleApp_Customer findAll] ;

• +(SUPObjectList*) findAll:(int32_t)skip take:(int32_t)take – To define more than one
findAll attribute, and return a collection of objects that match the specified search
criteria, use:
SUPObjectList *customers = [SampleApp_Customer findAll: 100 take:
5];

Methods Generated if Dynamic Queries are Enabled

• + (SUPObjectList*)findWithQuery:(SUPQuery*)query; – Returns a collection of
objects that match the result of executing a specific query. The method takes one
parameter, query which is an SUPQuery object representing the actual query to be
executed.
SUPQuery *myquery = [SUPQuery getInstance];
myquery.testCriteria = [SUPAttributeTest
match:@"fname" :@”Erin”];
SUPObjectList* customers = [SampleApp_Customer findWithQuery:
myquery]

• + (int32_t)countWithQuery:(SUPQuery*)query; – Returns a count of the records
returned by the specific query.
int count = [SampleApp_Customer countWithQuery:myquery];

Object Queries
To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

Consider an object query on a Customer MBO to find customers by last name. You can
construct the query as follows:
Select x.* from Customer x where x.lname =:param_lname

where param_lname is a string parameter that specifies the last name. Assume that the
query above is named findBylname

Reference

Developer Guide: iOS Native Applications 37

This generates the following Client Object API:
(Customer *)findBylname : (NSString *)param_lname;

The above API can then be used just like any other read API. For example:
SampleApp_Customer * thecustomer = [SampleApp_Customer findBylname:
@”Delvin”];

For each object query that returns a list, additional methods are generated that allow the caller
to select and sort the results. For example, consider an object query, findByCity, which
returns a list of customers from the same city. Since the return type is a list ,the following
methods would be generated. The additional methods help the user with ways to specify how
many results rows to skip, and how many subsequent result rows to return.
+ (SUPObjectList*) findByCity:(NSString*) city;
+ (SUPObjectList*) findByCity:(NSString*) city skip;
(int32_t) skip take:(int32_t)take;

Supported Aggregate Functions
You can use aggregate functions including GroupBy in object queries. However, the sum,
avg, and greater than (>) aggregate functions are not supported.

select count(x.id), x.id from AllType x where x.surrogatekey > :minSk
group by x.id having
x.id < :maxId order by x.id

Arbitrary Find
The arbitrary find method provides custom device application the ability to dynamically build
queries based on user input. These queries operate on multiple MBOs through the use of
joins.

SUPAttributeTest
In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify a desired ordering of the results and object state criteria. A SUPQuery class is
included in one of the client runtime libraries, libclientrt.a. The SUPQuery class is
the single object passed to the arbitrary search methods and consists of search conditions,
object/row state filter conditions, and data ordering information.

The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 2. SUPQuery and Related Classes

Class Description

SUPQuery Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

Reference

38 Sybase Unwired Platform

Class Description

SUPAttributeTest Defines filter conditions for MBO attributes.

SUPCompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

SUPQueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Define these conditions by setting properties in a query:

• SUPTestCriteria – criteria used to filter returned data.
• SUPSortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

SUPTestCriteria can be an SUPAttributeTest or a SUPCompositeTest.

An SUPAttributeTest defines a filter condition using an MBO attribute, and supports
these conditions:

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE
• LESS_THAN
• LESS_EQUAL
• MATCH
• NOT_MATCH
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• NOT_START_WITH
• NOT_END_WITH
• NOT_CONTAIN

Reference

Developer Guide: iOS Native Applications 39

SUPCompositeTest
A SUPCompositeTest combines multiple SUPTestCriteria using the logical
operators AND, OR, and NOT to create a compound filter.

Methods
add:(SUPTestCriteria*)operand;

The following example shows a detailed construction of the test criteria and join criteria for a
query:
SUPQuery *query2 = [SUPQuery getInstance];
[query2 select:@"c.fname,c.lname,s.order_date,s.region"];
[query2 from:@"Customer":@"c"];
//
// Convenience method for adding a join to the query
//
//[query2 join:@"Sales_order":@"s":@"s.cust_id":@"c.id"];
//
// Detailed construction of the join criteria
SUPJoinCriteria *joinCriteria = [SUPJoinCriteria getInstance];
SUPJoinCondition* joinCondition = [SUPJoinCondition getInstance];
joinCondition.alias = @"s";
joinCondition.entity = @"Sales_order";
joinCondition.leftItem = @"s.cust_id";
joinCondition.rightItem = @"c.id";
joinCondition.joinType = [SUPJoinCondition INNER_JOIN];
[joinCriteria add:joinCondition];
query2.joinCriteria = joinCriteria;
//
// Convenience method for adding test criteria
//query2.testCriteria = (SUPTestCriteria*)[[SUPAttributeTest
// equal:@"c.fname":@"Douglas"] and:
[SUPAttributeTest
// equal:@"c.lname":@"Smith"]];
//
// Detailed construction of the test criteria
SUPCompositeTest *ct = [SUPCompositeTest getInstance];
ct.operands = [SUPObjectList getInstance];
[ct.operands add:[SUPAttributeTest equal:@"c.fname":@"Douglas"]];
[ct.operands add:[SUPAttributeTest equal:@"c.lname":@"Smith"]];
ct.operator = [SUPCompositeTest AND];
query2.testCriteria = (SUPTestCriteria*)ct;
SUPQueryResultSet* resultSet = [TestCRUD_TestCRUDDB
executeQuery:query2];

Dynamic Query
User can use query to construct a query SQL statement as he wants to query data from local
database. This query may across multiple tables (MBOs).

SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];

Reference

40 Sybase Unwired Platform

[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest match:@"c.lname":@"Devlin"];
SUPQueryResultSet* resultSet = [SampleApp_SampleAppDB
executeQuery:query];
if(resultSet == nil)
 {
 MBOLog(@"executeQuery Failed !!");
 return;
 }
for(SUPDataValueList* result in resultSet)
{
 MBOLog(@"Firstname,lastname,order date,region = %@ %@ %@ %@",
 [SUPDataValue getNullableString:[result item:0]],
 [SUPDataValue getNullableString:[result item:1]],
 [[SUPDataValue getNullableDate:[result item:2]] description],
 [SUPDataValue getNullableString:[result item:3]]);
}

Note: A wildcard is not allowed in the select clause. You must use explicit column names.

Paging Data
On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set.
SUPQuery *query = [SUPQuery newInstance];
[query setSkip:10];
[query setTake:2];
SUPObjectList *customerlist = [SampleApp_Customer
findWithQuery:query];

SUPQueryResultSet
The SUPQueryResultSet class provides for querying a result set for the dynamic query
API. SUPQueryResultSet is returned as a result of executing a query.

Example
This example shows how to filter a result set and get values by taking data from two mobile
business objects, creating an SUPQuery, filling in the criteria for the query, and filtering the
query results:
SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest match:@"c.lname":@"Devlin"];
SUPQueryResultSet* resultSet = [SampleApp_SampleAppDB
executeQuery:query];
if(resultSet == nil)
 {
 MBOLog(@"executeQuery Failed !!");
 return;

Reference

Developer Guide: iOS Native Applications 41

 }
for(SUPDataValueList* result in resultSet)
{
 MBOLog(@"Firstname,lastname,order date,region = %@ %@ %@ %@",
 [SUPDataValue getNullableString:[result item:0]],
 [SUPDataValue getNullableString:[result item:1]],
 [[SUPDataValue getNullableDate:[result item:2]] description],
 [SUPDataValue getNullableString:[result item:3]]);
}

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer ID column. The Orders application is parameterized to return
order information for the customer ID.
SampleApp_Customer *onecustomer = [SampleApp_Customer find:101];
SUPObjectList *orders = onecustomer.salesOrders;

Given an order, you can access its customer information.
SampleApp_Sales_order * order = [SampleApp_Sales_order *find: 2001];
SampleApp_Customer *thiscustomer = order.customer;

Operations APIs
The create, update, and delete and related operations allow you to perform operations on data
on the local client database, and to propagate that data to the Unwired Server.

Create Operation
The create operation allows the client to create a new record in the local database. To
propagate the changes to the server, call submitPending.

(void)create

Example 1: Supports create operations on parent entities. The sequence of calls is:

SampleApp_Customer *newcustomer = [[SampleApp_Customer alloc] init];
newcustomer.fname = @”John”;
... //Set the required fields for the customer
[newcustomer create];
[newcustomer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 2: Supports create operations on child entities.

Reference

42 Sybase Unwired Platform

SampleApp_sales_order *order = [[SampleApp_sales_order alloc] init];
order.region = @"Eastern";
... //Set the other required fields for the order

SampleApp_Customer *customer = [SampleApp_Customer find:1008];
[order setCustomer:customer];
[order create];
[order.customer refresh]; //refresh the parent
[order.customer submitPending]; //call submitPending on the parent.
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Update Operation
The update operation updates a record in the local database on the device. To propagate the
changes to the server, call submitPending.

In the following examples, the Customer and SalesOrder MBOs have a parent-child
relationship.

Example 1: Supports update operations to parent entities. The sequence of calls is as
follows:
SampleApp_Customer *customer = [SampleApp_Customer find: 32]
 //find by the unique id
customer.city = @"Dublin"; //update any field to a new value
[customer update];
[customer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 2: Supports update operations to child entities. The sequence of calls is:

SampleApp_Sales_order* order = [SampleApp_Sales_order find: 1220];
order.region = @"SA"; //update any field
[order update]; //call update on the child record
[order refresh];
[order.customer submitPending]; //call submitPending on the parent
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 3: Calling save() on a parent also saves any modifications made to its children:

SampleApp_Customer *customer = [SampleApp_Customer find: 32]
SUPObjectList* orderlist = customer.orders;
SampleApp_sales_order* order = [orderlist item:0];
order.sales_rep = @"Ram";
customer.state = @"MA" ;
[customer save];
[customer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.5];

Reference

Developer Guide: iOS Native Applications 43

Delete Operation
The delete operation allows the client to delete a new record in the local database. To
propagate the changes to the server, call submitPending.

(void)delete

The following examples show how to perform deletes to parent entities and child entities.

Example 1: Supports delete operations to parent entities. The sequence of calls is:

SampleApp_Customer *customer = [SampleApp_Customer find: 32]
[customer delete];
[customer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 2: Supports delete operations child entities. The sequence of calls is:

SampleApp_Sales_order *order = [SampleApp_Sales_order find: 32]
[order delete];
[order.customer submitPending]; //Call submitPending on the parent.
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Save Operation
The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the update operation. If a record does not exist, the save operation
creates a new record.

(void)save

SampleApp_Customer *customer = [SampleApp_Customer find: 32]
//Change some sttribute of the customer record
customer.fname= @"New Name";
[customer save];

Other Operation
Operations other than create, update, or delete operations are called “other”
operations. An Other operation class is generated for each operation in the MBO that is not a
create, update, or delete operation.

This is an example of an "other" operation:
SampleApp_CustomerOtherOperation *other =
[[SampleApp_CustomerOtherOperation alloc] init];
other.P1 = @"somevalue";
other.P2 = 2;
other.P3 = [NSDate date];
[other save];
[other submitPending];

Reference

44 Sybase Unwired Platform

Multilevel Insert (MLI)
Multilevel insert allows a single synchronization to execute a chain of related insert
operations. This example demonstrates a multilevel insert:

-(void)TestCreate
{
 long key1 = [SampleApp_KeyGenerator generateId];
 long key2 = [SampleApp_KeyGenerator generateId];
 [SampleApp_KeyGenerator submitPendingOperations];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
 SampleApp_Customer *c = [[SampleApp_Customer alloc] init];
 c.id_ = [SampleApp_LocalKeyGenerator generateId];
 c.fname = @"Dorothi";
 c.lname = @"Scranton";
 c.address = @"One Money Street";
 c.city = @"smallVille";
 c.state = @"MA";
 c.zip = @"97429";
 c.phone = @"2112222345";
 c.company_name = @"iAnywhere";
 c.surrogateKey = key1;
 SUPObjectList *orderlist = [SampleApp_Sales_orderList
getInstance];
 SampleApp_Sales_order *o1 = [[SampleApp_Sales_order alloc]
init];
 o1.id_ = [SampleApp_LocalKeyGenerator generateId];
 o1.order_date = [NSDate date];
 o1.fin_code_id = @"r1";
 o1.region = @"Eastern";
 o1.sales_rep = 902;
 o1.surrogateKey = key2;
 [o1 setCustomer:c];
 [orderlist add:o1];
 [c setSalesOrders:orderlist];
 [c save];
 [c refresh];
 [c submitPending];
 assert(c.pending == YES);
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
}

Note: The values generated by LocalKeyGenerator do not support authentication with
the Unwired Server, but only against a local data store on the device.
LocalKeyGenerator is an appropriate method for use with a local business object. See
Developer Guide for iOS > Reference > iOS Client Object API > Operations APIs > Local
Business Object.

Reference

Developer Guide: iOS Native Applications 45

Pending Operation
There are five methods you can use to manage the pending state.

• (void)cancelPending – Cancels a pending record. A pending record is one that has
been updated in the local client database, but not yet sent to the Unwired Server.
[customer cancelPending];

• (void)cancelPendingOperations – Cancels the pending operations for an
entire entity. This method internally invokes the cancelPending method.

[Customer cancelPendingOperations];

• (void)submitPending – Submits a pending record to the Unwired Server. For MBS,
a replay request is sent directly to the Unwired Server.
[customer submitPending];

• +(void)submitPendingOperations – Submits all data for all pending records to
the Unwired Server. This method internally invokes the submitPending method.

[Customer submitPendingOperations];

• +(void)submitPendingOperations:
(NSString*)synchronizationGroup – Submits all data for pending records
from MBOs in this synchronization group to the Unwired Server. This method internally
invokes the submitPending method.

[SampleApp_SampleAppDB submitPendingOperations:@”default”];

SampleApp_Customer *customer = [SampleApp_Customer find:101];
//Make some changes to the customer record.
//Save the changes

//If the user wishes to cancel the changes, a call to cancel pending
will revert to the old values.

[customer cancelPending];

// The user can submit the changes to the server as follows:
[customer submitPending];

Local Business Object
Defined in Unwired WorkSpace, local business objects are not bound to EIS data sources, so
cannot be synchronized. Instead, they are objects that are used as local data store on device.
Local business objects do not call submitPending, or perform a replay or import from the
Unwired Server.

The following code example creates a row for a local business object called "clientObj", saves
it, and finds it in the database.
//Create a client only MBO...");
ClientObj *o = [ClientObj getInstance];
 o.attribute1 = @"This";
 o.attribute2 = @"is";
 o.attribute3 = @"a";

Reference

46 Sybase Unwired Platform

 o.attribute4 = @"local business object";
[o save];

//Read from the created local business object");
SUPObjectList *objlist = [ClientObj findAll];
MBOLogError(@"ClientObj has %ld rows",[objlist size]);
 for(ClientObj *o in objlist)
MBOLogError([[o json:0] toString]);

Personalization APIs
Personalization keys allow the mobile user to define (personalize) certain input field values
within the mobile application. The PersonalizationParameters class is generated
automatically for managing personalization keys. Personalization parameters provide default
values for synchronization parameters when the synchronization key of the object is mapped
to the personalization key while developing a mobile business object.

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Getting and Setting Personalization Key Values
Consider a personalization key "pkcity" that is associated with the synchronization parameter
"cityname". When a personalization parameter value is changed, the call to save
automatically propagates the change to the server; you need not call submitPending after
the save.

The following example shows how to get and set personalization key values:
//get personalization key values
SampleApp_PersonalizationParameters *pp = [SampleApp_SampleAppDB
getPersonalizationparameters];
MBOLogInfo(@”Personalization Parameter for City = %@”, pp.PKCity);

//Set personalization key values
pp.PKCity = @”Hull”;
[pp.save]; //save the new pk value.
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Note: You are not required to call submitPending after save, as is the case with
synchronization parameters.

Reference

Developer Guide: iOS Native Applications 47

Passing Arrays of Values, Objects
An operation can have a parameter that is one of the SUP list types (such as SUPIntList,
SUPStringList, or SUPObjectList). For example, consider a method for an entity Customer
with signature AnOperation:

SUPIntList *intlist = [SUPIntList getInstance];
[intlist add:1];
[intlist add:2];

Customer *thecustomer = [Customer find:101];
[thecustomer AnOperation:intlist];

Object State APIs
The object state APIs include status indicator APIs for returning information about entities in
the database, and a method to refresh the MBO entity in the local database.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Objective-C
Type

Description

isNew BOOL Returns true if this entity is new (but has not been created in
the client database).

isCreated BOOL Returns true if this entity has been newly created in the client
database, and one the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

isDirty BOOL Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted BOOL Returns true if this entity was loaded from the database and
was subsequently deleted.

Reference

48 Sybase Unwired Platform

Name Objective-C
Type

Description

isUpdated BOOL Returns true if this entity has been updated or changed in the
database, and one of the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

pending BOOL Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

replayCounter long Returns a long value that is updated each time a row is created
or modified by the client. This value is derived from the time
in seconds since an epoch, and increases each time a row is
changed.

int64_t result = [customer replayCount-
er];

replayPending long Returns a long value. When a pending row is submitted to the
server, the value of replayCounter is copied to re-
playPending. This allows the client code to detect if a

row has been changed since it was submitted to the server
(that is, if the value ofreplayCounter is greater than

replayPending).

int64_t result = [customer replayPend-
ing];

Reference

Developer Guide: iOS Native Applications 49

Name Objective-C
Type

Description

replayFailure long Returns a long value. When the server responds with a re-
playFailure message for a row that was submitted to

the server, the value of replayCounter is copied to

replayFailure, and replayPending is set to 0.

int64_t result = [customer replayFai-
lure];

Entity State Example
This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear
in bold.

Note the following entity behaviors:

• The isDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

• The replayCounter value that gets sent to the Unwired Server is the value in the
database before you call submitPending. After a successful replay, that value is
imported from the Unwired Server.

• The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Description Flags/Values

After reading from the database, before any changes
are made.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Reference

50 Sybase Unwired Platform

Description Flags/Values

One or more attributes are changed, but changes not
saved.

isNew=false

isCreated=false

isDirty=true

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

After [entity save] or [entity up-
date] is called.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424979

replayPending=0

replayFailure=0

Reference

Developer Guide: iOS Native Applications 51

Description Flags/Values

After [entity submitPending] is called

to submit the MBO to the server

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=33424981

replayFailure=0

Possible result: the Unwired Server accepts the up-
date, sends an import and a replayResult for

the entity, and the refreshes the entity from the da-
tabase.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Reference

52 Sybase Unwired Platform

Description Flags/Values

Possible result: The Unwired Server rejects the up-
date, sends a replayFailure for the entity,

and refreshes the entity from the database

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=0

replayFailure=33424981

Pending State Pattern
When a create, update, delete, or save operation is called on an entity in a message-based
synchronization application, the requested change becomes pending. To apply the pending
change, call submitPending on the entity, or submitPendingOperations on the
mobile business object (MBO) class:

Customer *e = [Customer getInstance];
e.name = @"Fred";
e.address = @"123 Four St.";
[e create]; // create as pending
// Then do this....
[e submitPending]; // submit to server
// ... or this.
[Customer submitPendingOperations]; // submit all pending Customer
rows to server

submitPendingOperations submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submitPending method on each of
the pending records.

The call to submitPending causes a JSON message to be sent to the Unwired Server with
the replay method, containing the data for the rows to be created, updated, or deleted. The
Unwired Server processes the message and responds with a JSON message with the
replayResult method (the Unwired Server accepts the requested operation) or the
replayFailure method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more import
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the replay request. These changes are written
to the client database and marked as rows that are not pending. When the replayResult

Reference

Developer Guide: iOS Native Applications 53

message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful
operation.

If the Unwired Server rejects the requested change, the client receives a replayFailed
message, and the entity remains in the pending state, with its replayFailed attribute set to
indicate that the change was rejected.

If the Unwired Server rejects the requested change, it also sends one or more log record
messages to the client. The SUPLogRecord interface has the following getter methods to
access information about the log record:

Method
Name

Objective-C
Type

Description

component NSString* Name of the MBO for the row for which this log record was
written.

entityKey NSString* String representation of the primary key of the row for which
this log record was written.

code int32_t One of several possible HTTP error codes:

• 200 indicates success.

• 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

• 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

• 404 indicates that the client tried to access a nonexistent
package or MBO.

• 405 indicates that there is no valid license to check out for
the client.

• 500 to indicate an unexpected (unspecified) server fail-
ure.

message NSString* Descriptive message from the server with the reason for the
log record.

operation NSString* The operation (create, update, or delete) that caused the log
record to be written.

requestId NSString* The id of the replay message sent by the client that caused this
log record to be written.

timestamp NSDate* Date and time of the log record.

Reference

54 Sybase Unwired Platform

If a rejection is received, the application can use the entity method getLogRecords to
access the log records and get the reason:
SUPObjectList* logs = [e getLogRecords];
for(id<SUPLogRecord> log in logs)
{
 MBOLogError(@"entity has a log record:\n\
 code = %ld,\n\
 component = %@,\n\
 entityKey = %@,\n\
 level = %ld,\n\
 message = %@,\n\
 operation = %@,\n\
 requestId = %@,\n\
 timestamp = %@",
 [log code],
 [log component],
 [log entityKey],
 [log level],
 [log message],
 [log operation],
 [log requestId],
 [log timestamp]);
}

cancelPendingOperations cancels all the pending records for an entity. This method
internally invokes the cancelPending method on each of the pending records.

Refresh
The refresh method allows the client to refresh the MBO entity from the local database.

(void)refresh

[order refresh];

where order is an instance of the MBO entity.

Clear Relationship Objects
The clearRelationshipObjects method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

(void)clearRelationshipObjects

Security APIs
Unwired Server supports encryption of client data and the database.

Reference

Developer Guide: iOS Native Applications 55

Encryption of Client Data
The iOS Sybase Unwired Platform client libraries internally encrypt data before sending it
over the wire, using its own encryption layer. Communication is performed over HTTP.

Encrypt the Database
The following methods set or change encryption keys for the database.

-(void)setEncryptionKey:(SUPString)value

Sets the encryption key for the database in SUPConnectionProfile. Call this method
before any database operations.
[cp setEncryptionKey:@”test”];

+(void)changeEncryptionKey:(SUPtring*) newKey

Changes the encryption key to the newKey value and saves the newKey value to the
connection profile. Call this method after the call to createDatabase.

[SampleApp_SampleAppDB changeEncryptionKey:@"newkey"];

(SUPString)encryptionKey

Retrieves the current encryption key from the SUPConnectionProfile.

[cp encryptionKey];

SUPDataVault
The SUPDataVault class provides encrypted storage of occasionally used, small pieces of
data. All exceptions thrown by SUPDataVault methods are of type
SUPDataVaultException.

You can use the SUPDataVault class for on-device persistent storage of certificates,
database encryption keys, passwords, and other sensitive items. Use this class to:

• Create a vault
• Set a vault's properties
• Store objects in a vault
• Retrieve objects from a vault
• Change the password used to access a vault
• Control access for a vault that is shared by multiple iOS applications

The contents of the data vault are strongly encrypted using AES-256. The SUPDataVault
class allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is

Reference

56 Sybase Unwired Platform

deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the SUPDataVault would be to implement an application login screen.
Upon application start, the user is prompted for a password, which is then used to unlock the
vault. If the unlock attempt is successful, the user is allowed into the rest of the application.
User credentials needed for synchronization can also be extracted from the vault so the user is
not repeatedly prompted to re-enter passwords.

createVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a
vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Syntax
+ (SUPDataVault*)createVault:(NSString*)name withPassword:
(NSString*)password withSalt:(NSString*)salt;

Parameters

• name – The vault name.
• password – The password.
• salt – The encryption salt value.

Returns

createVault creates a SUPDataVault instance.

If a vault already exists with the same name, a SUPDataVaultException is thrown this
with the reason kDataVaultExceptionReasonAlreadyExists.

Examples

• Create a Data Vault – Creates a new data vault called myVault.

@try
{
 if(![SUPDataVault vaultExists:@"myVault"])
 {
 oVault = [SUPDataVault createVault:@"myVault"
 withPassword:@"goodPassword"
 withSalt:@"goodSalt"];
 }
}
@catch (NSException *e)
{

Reference

Developer Guide: iOS Native Applications 57

 NSLog(@"SUPDataVaultException: %@",[e description]);
}

vaultExists
Tests whether the specified vault exists.

Syntax
+ (BOOL)vaultExists:(NSString*)name;

Parameters

• name – The vault name.

Returns

vaultExists can return the following values:

Returns Indicates

YES The vault exists.

NO The vault does not exist.

Examples

• Check if a Data Vault Exists – Checks if a data vault called myVault exists, and if so,
deletes it.

if ([SUPDataVault vaultExists:@"myVault"])
{
 [SUPDataVault deleteVault:@"myVault"];
}

getVault
Retrieves a vault.

Syntax
+ (SUPDataVault*)getVault:(NSString*)name;

Parameters

• name – The vault name.

Returns

getVault returns a SUPDataVault instance.

Reference

58 Sybase Unwired Platform

If the vault does not exist, a SUPDataVaultException is thrown.

deleteVault
Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
+ (void)deleteVault:(NSString*)name;

Parameters

• name – The vault name.

Examples

• Delete a Data Vault – Deletes a data vault called myVault.

@try
{
 if([SUPDataVault vaultExists:@"myVault"])
 {
 [SUPDataVault deleteVault:@"myVault"];
 }
}
@catch (NSException *e)
{
 NSLog(@"SUPDataVaultException: %@",[e description]);
}

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
- (void)lock;

Examples

• Locks the data vault. – Prevents changing the vaults properties or stored content.
[oVault lock];

Reference

Developer Guide: iOS Native Applications 59

isLocked
Tests whether the vault is locked.

Syntax
- (BOOL)isLocked;

Returns

isLocked can return the following values:

Returns Indicates

YES The vault is locked.

NO The vault is unlocked.

unlock
Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

Syntax
- (void)unlock:(NSString*)password withSalt:(NSString*)salt;

Parameters

• password – The password.
• salt – The encryption salt value.

Returns

If the incorrect password or salt is used, a SUPDataVaultException is thrown this with
the reason kDataVaultExceptionReasonInvalidPassword.

Examples

• Unlocks the data vault. – Once the vault is unlocked you can change the its properties and
stored content.
@try
{
 [oVault unlock:@"password" withSalt:@"salt"];
}
@catch(SUPDataVaultException *e)
{

Reference

60 Sybase Unwired Platform

 NSLog(@"Exception will be thrown for bad password");
}

setLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
- (void)setLockTimeout:(int32_t)timeout;

Parameters

• timeout – The number of seconds before the lock times out.

Examples

• Set the Lock Timeout – Sets the lock timeout to 1 hour.
[oVault setLockTimeout:3600];

getLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
- (int32_t)getLockTimeout;

Returns

getLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before it automatically locks. The default value, 0, indicates that the lock never times
out.

Examples

• Set the Lock Timeout – Retrieves the lock timeout in seconds.
timeout = [oVault getLockTimeout];

setRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an

Reference

Developer Guide: iOS Native Applications 61

unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Syntax
- (void)setRetryLimit:(int32_t)limit;

Parameters

• limit – The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

• Set the Retry Limit – Sets the retry limit to 5 attempts.
[oVault setRetryLimit:5];

getRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
- (int32_t)getRetryLimit;

Returns

getRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Examples

• Set the Retry Limit – Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.
int retrylimit = [oVault getRetryLimit];

setString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax
- (void)setString:(NSString*)name withValue:(NSString*)value;

Reference

62 Sybase Unwired Platform

Parameters

• name – The name associated with the string object to be stored.
• value – The string object to store in the vault.

Examples

• Set a String Value – Creates a test string, unlocks the vault, and sets a string value
associated with the name "testString" in the vault. The finally clause in the
try/catch block ensure that the vault ends in a secure state even if an exception occurs.

NSString *teststring = @"ABCDEFabcdef";
@try {
 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 [oVault setString:@"testString" withValue:teststring];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

getString
Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Syntax
- (NSString*)getString:(NSString*)name;

Parameters

• name – The name associated with the string object to be retrieved.

Returns

getString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

• Get a String Value – Unlocks the vault and retrieves a string value associated with the
name "testString" in the vault. The finally clause in the try/catch block
ensure that the vault ends in a secure state even if an exception occurs.
NSString *retrievedstring = nil;

@try {

Reference

Developer Guide: iOS Native Applications 63

 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 retrievedstring = [oVault getString:@"testString"];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

setValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax
- (void)setValue:(NSString*)name withValue:(NSData*)value;

Parameters

• name – The name associated with the binary object to be stored.
• value – The binary object to store in the vault.

Examples

• Set a Binary Value – Unlocks the vault and stores a binary value associated with the name
"testValue" in the vault. The finally clause in the try/catch block ensure that
the vault ends in a secure state even if an exception occurs.

@try {
 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 [oVault setValue:@"testValue" withValue:testvalue];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

getValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
- (NSData*)getValue:(NSString*)name;

Reference

64 Sybase Unwired Platform

Parameters

• name – The name associated with the binary object to be retrieved.

Returns

getValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

• Get a Binary Value – Unlocks the vault and retrieves a binary value associated with the
name "testValue" in the vault. The finally clause in the try/catch block
ensure that the vault ends in a secure state even if an exception occurs.
NSData *retrievedvalue = nil;

@try {
 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 retrievedvalue = [oVault getValue:@"testValue"];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

changePassword
Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax
- (void)changePassword:(NSString*)newPassword withSalt:
(NSString*)newSalt;

Parameters

• newPassword – The new password.
• newSalt – The new encryption salt value.

Examples

• Change the Password for a Data Vault – Changes the password to "newPassword".
The finally clause in the try/catch block ensure that the vault ends in a secure state
even if an exception occurs.
@try
{

Reference

Developer Guide: iOS Native Applications 65

 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 [oVault changePassword:@"newPassword" withSalt:@"newSalt"];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally
{
 [oVault lock];
}

setAccessGroup
Sets the access group if multiple application share a data vault.

This method is used only for iOS applications, and must be called before accessing any
DataVault methods. The access group must be set only if a vault is shared by multiple
iPhone applications. If the vault is used only by one application, do not set the access group.
The access group is listed in the keychain-access-groups property of the
entitlements plist file. The recommended format is
".com.yourcompany.DataVault".

Syntax
+ (void)setAccessGroup:(NSString *)accessGroup;

Parameters

• accessGroup – The access group name.

Examples

• Sets the Access Group Name – Sets the access group name so that multiple iOS
applications can access the data vault.
[oVault
setAccessGroup:@"accessGroupName.com.yourcompany.DataVault"];

Installing and Testing X.509 Certificates on iOS Clients
Install generated X.509 certificates and test them in your iOS clients.

Importing an X.509 Certificate to an iOS Client from the Unwired Server
Log in to Unwired Server and authenticate a client using a generated X.509 certificate instead
of a user name and password combination.

1. Copy the X.509 certificate used for authentication into a directory on the same host as
Unwired Server. For example, c:\certs.

Reference

66 Sybase Unwired Platform

2. Create a registry string value on Unwired Server at HKLM\Software\Sybase
\Sybase Messaging Server\CertificateLocation and populate it with
the path. For example, c:\certs.

3. Name the X.509 certificate file as domain_user.p12, where domain is the Unwired
Server domain and user is the certificate user. The user must have read permission
for .p12 file.

4. The system administrator must ensure the specified domain\user has “logon as batch job”
permission on the Windows machine on which Unwired Server runs:
a) Double-click Control Panel > Administrative Tools > Local Security Policies.
b) Expand Local Policies and select User Rights Assignment.
c) Right-click Log on as a batch job and select Properties.
d) Select Add User or Group and add the domain\user.

5. The account under which Unwired Server runs must have adequate permissions to
impersonate the domain\user. For example, the Administrator account for the domain.

6. Replace the beginOnlineLogin call, which passes a username and password, with
code that imports the certificate from Unwired Server, sets up the login credentials for the
package, then logs in with this beginOnlineLogin API that takes no parameters.

// Import certificate from server
SUPLoginCertificate *lc = [cs
getSignedCertificateFromServer:@"<ServerName>\\ssotest"
withServerPassword:@"s1s2o3T4" withCertPassword:@"password"];
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromServer"];
NSLog(@"Imported certificate from server: subjectCN =
%@",lc.subjectCN);

// Attach certificate to sync profile
sp.certificate = lc;
[lc release];

// If package requires login first, use beginOnlineLogin API
// which takes no parameters
while([SUPMessageClient status] != STATUS_START_CONNECTED)
[NSThread sleepForTimeInterval:0.2];
[CrmDatabase beginOnlineLogin];

iOS Sample Code
This sample code illustrates importing the certificate and setting up login credentials, as well
as other APIs related to certificate handling:

//// SSO certificate APIs
@try
{
SUPConnectionProfile *sp = [SAPSSOCertTest_SAPSSOCertTestDB
getSynchronizationProfile];
[sp setDomainName:@"ssocert"];
// Get handle to the certificate store
SUPCertificateStore *cs = [SUPCertificateStore getDefault];

Reference

Developer Guide: iOS Native Applications 67

// Getting certificate from a file bundled with the app
NSString *certPath = [[NSBundle mainBundle]
pathForResource:@"sybase101"
ofType:@"p12"];
SUPLoginCertificate *lc_resource = [cs
getSignedCertificateFromFile:certPath withPassword:@"password"];
NSLog(@"Got certificate from resource file, subjectCN =
%@",lc_resource.subjectCN);
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromResourceFile"];

// Getting certificate from file in Documents directory
NSArray *arrayPaths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask,
YES);
NSString *docDir = [arrayPaths objectAtIndex:0];
certPath = [NSString stringWithFormat:@"%@/sybase101.p12",docDir];
SUPLoginCertificate *lc_doc = [cs
getSignedCertificateFromFile:certPath withPassword:@"password"];
NSLog(@"Got certificate from documents directory file, subjectCN =
%@",lc_doc.subjectCN);
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromDocumentsFile"];

// Distinguished name property
NSLog(@"Test distinguished name property, should be null: DN =
%@",lc_doc.distinguishedName);

// Import certificate from server
SUPLoginCertificate *lc = [cs
getSignedCertificateFromServer:@"<ServerName>\\ssotest"
withServerPassword:@"s1s2o3T4" withCertPassword:@"password"];
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromServer"];
NSLog(@"Imported certificate from server: subjectCN =
%@",lc.subjectCN);

// Storage and retrieval of certificate
if(![SUPDataVault vaultExists:@"vaultTest"])
vault = [SUPDataVault createVault:@"vaultTest"
withPassword:@"vaultPassword" withSalt:@"vaultSalt"];
else
vault = [SUPDataVault getVault:@"vaultTest"];
[vault lock];
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
[lc save:@"test" withVault:vault];
[vault lock];
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
NSLog(@"Certificate stored. Now get the cert from the data
vault....");
SUPLoginCertificate *lc2 = [SUPLoginCertificate load:@"test"
withVault:vault];
[vault lock];
NSLog(@"Certificate retrieved successfully: subjectCN =
%@",lc2.subjectCN);

Reference

68 Sybase Unwired Platform

if([lc2.subjectCN isEqualToString:lc.subjectCN])
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"SaveAndLoadCertificate"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"SaveAndLoadCertificate"];
[lc2 release];
NSLog(@"Test getting a nonexistent certificate from the vault, see if
we get the right exception...");
BOOL noCertificatePass = NO;
@try
{
SUPLoginCertificate *lc_none = [SUPLoginCertificate load:@"bogus"
withVault:vault];
} @catch(SUPDataVaultException* e)
{
noCertificatePass = YES;
NSLog(@"Got exception when trying to get nonexistent cert, exception
is %@: %@",[e name],[e reason]);
}
if(noCertificatePass)
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"NonExistentCertificate"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"NonExistentCertificate"];

// Delete certificate
BOOL deletePass = YES;
// Try to get the deleted certificate, should get an exception:
SUPLoginCertificate *lc3 = nil;
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
@try
{
[SUPLoginCertificate delete:@"test" withVault:vault];
lc3 = [SUPLoginCertificate load:@"test" withVault:vault];
deletePass = NO;
} @catch(NSException* e)
{
NSLog(@"Exception getting deleted cert: %@: %@",[e name],[e
reason]);
deletePass = YES;
}
NSLog(@"Retrieve cert that was deleted, should be null: lc3 =
%@",lc3);
if(lc3 != nil) deletePass = NO;
if(deletePass)
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"DeleteCertificate"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"DeleteCertificate"];

// changeVaultPassword for LoginCertificate
[vault lock];

Reference

Developer Guide: iOS Native Applications 69

[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
[vault changePassword:@"newPassword" withSalt:@"vaultSalt"];
[vault lock];
[vault unlock:@"newPassword" withSalt:@"vaultSalt"];
[lc save:@"test" withVault:vault];
[vault lock];
[vault unlock:@"newPassword" withSalt:@"vaultSalt"];
SUPLoginCertificate *lc4 = [SUPLoginCertificate load:@"test"
withVault:vault];
[vault lock];
[vault unlock:@"newPassword" withSalt:@"vaultSalt"];

// Change password back so we can rerun the test
[vault changePassword:@"vaultPassword" withSalt:@"vaultSalt"];
[vault lock];
if([lc4.subjectCN isEqualToString:lc.subjectCN])
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"ChangeVaultPassword"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"ChangeVaultPassword"];
[lc4 release];

// Attach certificate to sync profile
sp.certificate = lc;
[lc release];
}
@catch(NSException *e)
{
MBOLogError(@"Exception in getting certificate");
MBOLogError(@"%@: %@",[e name],[e reason]);
[pool drain];
return;
}

// If package requires login first, use beginOnlineLogin API
// which takes no parameters
while([SUPMessageClient status] != STATUS_START_CONNECTED)
[NSThread sleepForTimeInterval:0.2];
[CrmDatabase beginOnlineLogin];

Single Sign-On With X.509 Certificate Related Object API
Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

• SUPCertificateStore class - wraps platform-specific key/certificate store class, or file
directory

• SUPLoginCertificate class - wraps platform-specific X.509 distinguished name and
signed certificate

• SUPConnectionProfile class - includes the certificate attribute used for Unwired Server
synchronization.

Reference

70 Sybase Unwired Platform

• SUPDataVault class - provides secure persistent storage on the device for certificates.

Refer to the Javadocs that describe implementation details.

Importing a Certificate Into the Data Vault
Obtain a certificate reference and store it in a password protected data vault to use for X.509
certificate authentication.

// Obtain a reference to the certificate store

SUPCertificateStore *certStore = [SUPCertificateStore getDefault];

// Import a certificate from iPhone keychain (into memory)

NSString *label = ...; // ask user to select a label
NSString *password = ...; // ask the user for a password
SUPLoginCertificate *cert = [certStore getSignedCertificate:label
withPassword:password];

// Alternate code: import a certificate from the server into memory
(server must be specially configured for this):

NSString *windows_username = // Windows username for fileshare
on server where the password is stored
NSString *windows_password = // Windows password
NSString *cert_password = // Password to unlock the certificate
SUPLoginCertificate *cert = [certStore
getSignedCertificateFromServer:windows_username
withServerPassword:windows_password
withCertPassword:cert_password];

// Lookup or create data vault
NSString *vaultPassword = ...; // ask user or from O/S protected
storage
NSString *vaultName = "..."; // e.g. "SAP.CRM.CertificateVault"
NSString *vaultSalt = "..."; // e.g. a hard-coded random GUID
SUPDataVault *vault;
@try
{
// Get vault, or create it if it doesn't exist
 if(![SUPDataVault vaultExists:vaultName])
 vault = [SUPDataVault createVault:vaultName
withPassword:vaultPassword withSalt:vaultSalt];
 else
 vault = [SUPDataVault getVault:vaultName];

// Save certificate into data vault

 [vault unlock:vaultPassword withSalt:vaultSalt];
 [cert save:label withVault:vault];

}
@catch (NSException *ex)
{
 // Handle any errors

Reference

Developer Guide: iOS Native Applications 71

}
@finally
{
 // Make sure vault is locked even if an error occurs
 [vault lock];
}

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

@try
{
 [vault unlock:vaultPassword withSalt:vaultSalt];
 SUPLoginCertificate *cert = [SUPLoginCertificate load:@"myCert"
withVault:vault];
 SUPConnectionProfile *syncProfile = [MyPackage_MyPackageDB
getSynchronizationProfile];
 syncProfile.certificate = cert;
 [cert release];
}
@catch(NSException *ex)
 // Handle any errors
}
@finally
{
 // Make sure vault is locked even if an error occurs
 [vault lock];
}

Connecting to Unwired Server With a Certificate
Once the certificate property is set, use the beginOnlineLogin API with no parameters
(do not use the beginOnlineLogin API with username and password).

[MyPackage_MyPackageDB beginOnlineLogin];

// Handle login response

[MyPackage_MyPackageDB subscribe];

Utility APIs
The iOS Client Object API provides utility APIs to support a variety of tasks.

• Writing and retrieving log records.
• Configuring log levels for messages reported to the console.
• Enabling the printing of server message headers and message contents, database

exceptions, and SUPLogRecords written for each import.

• Viewing detailed trace information on database calls.
• Registering a callback handler to receive callbacks.
• Assigning a unique ID for an application which requires a primary key.
• Managing date/time objects for iOS through defined classes.

Reference

72 Sybase Unwired Platform

• Enabling Apple Push Notification to allow applications to provide push notifications to
devices.

Using the Log Record APIs
Every package has a LogRecordImpl table in its own database. The Unwired Server can
send import messages with LogRecordImpl records as part of its response to replay
requests (success or failure).

The Unwired Server can embed a "log" JSON array into the header of a server message; the
array is written to the LogRecordImpl table by the client. The client application can also
write its own records. Each entity has a method called newLogRecord, which allows the
entity to write its own log record. The LogRecordImpl table has "component" and
"entityKey" columns that associate the log record entry with a particular MBO and primary
key value.
SUPObjectList *salesorders = [SampleApp_Sales_order findAll];
 if([salesorders size] > 0)
 {
 SampleApp_Sales_order * so = [salesorders item:0];
 SampleApp_LogRecordImpl *lr = [so newLogRecord:
 [SUPLogLevel INFO] withMessage:@"testing
record"];
 MBOLogError(@"Log record is: %@",lr);

 // submitting log records
 [SampleApp_SampleAppDB submitLogRecords];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:0.2];
 }
 }

You can use the getLogRecords method to return log records from the table.

SUPQuery *query = [SUPQuery getInstance];
 SUPObjectList *loglist = [SampleApp_SampleAppDB
getLogRecords:query];
 for(id o in loglist)
 {
 LogRecordImpl *log = (LogRecordImpl*)o;
 MBOLogError(@"Log Record %llu: Operation = %@, Timestamp =
%@,

MBO = %@, key= %@,message=%@",log.messageId,log.operation,
 [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
}

Each mobile business object has a getLogRecords instance method that returns a list of all
the log records that have been recorded for a particular entity row in a mobile business object:
SUPObjectList *salesorders = [SampleApp_Sales_order findAll];
if([salesorders size] > 0)
{

Reference

Developer Guide: iOS Native Applications 73

 SampleApp_Sales_order * so = [salesorders item:0];
 SUPObjectList *loglist = [so getLogRecords];
for(id o in loglist)
{
 LogRecordImpl *log = (LogRecordImpl*)o;
 MBOLogError(@"Log Record %llu: Operation = %@, Timestamp = %@,

MBO = %@, key= %@,message=%@",log.messageId,log.operation,
 [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
}

Mobile business objects that support dynamic queries can be queried using the synthetic
attribute hasLogRecords. This attribute generates a subquery that returns true if an entity
row has any log records in the database, otherwise it returns false. The following code example
prints out a list of customers, including first name, last name, and whether the customer row
has log records:
SUPQuery *query = [SUPQuery getInstance];
[query select:@”x.surrogateKey,x.fname,x.lname,x.hasLogRecords”];
[query from:@”Customer”:@”x”];
SUPQueryResultSet *qrs = [SampleApp_SampleAppDB executeQuery:query];
MBOLogError(@”%@”,[qrs.columnNames toString]);
for(SUPDataValueList *row in qrs.array)
{
 MBOLogError(@”%@”,[row toString]);
}

If there are a large number of rows in the MBO table, but only a few have log records
associated with them, you may want to keep an in-memory object to track which rows have log
records. You can define a class property as follows:
NSMutableArray* customerKeysWithLogRecords;

After data is downloaded from the server, initialize the array:
customerKeysWithLogRecords = [[NSMutableArray alloc]
initWithCapacity:20];
SUPObjectList *allLogRecords = [SampleApp_SampleAppDB
getLogRecords:nil];
for(id<SUPLogRecord> lr in allLogRecords)
{
 if(([lr entityKey] != nil) && ([[lr component] compare:@”Customer”]
== 0))
 [customerKeysWithLogRecords addObject:[lr entityKey]];
}

You do not need database access to determine if a row in the Customer MBO has a log record.
The following expression returns true if a row has a log record:
BOOL hasALogRecord = [customerKeysWithLogRecords containsObject:
 [customerRow keyToString]];

Reference

74 Sybase Unwired Platform

Viewing Error Codes in Log Records
You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.
2. Performing an initial synchronization.
3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","ppm":
"eyJ1c2VybmFtZSI6InN1cEFkbWluIiwicGFzc3dvcmQiOiJzM3BBZG1pbiJ9","p
id":"moca://
Emulator17128142","method":"replay","pbi":"true","upa":"c3VwQWRta
W46czNwQWRtaW4=","mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

JsonContent
{"c2":null,"c1":1,"createCalled":true,"_op":"C"}

The Unwired Server returns a response. The code is included in the ResponseHeader.

ResponseHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","loginFa
iled":false,"method":"replayFailed","log":
[{"message":"com.sybase.jdbc3.jdbc.SybSQLException:SQL Anywhere
Error -193: Primary key for table 'bi' is not unique : Primary key
value ('1')","replayPending":
0,"eisCode":"","component":"Bi","entityKey":"0","code":
500,"pending":false,"disableSubmit":false,"?":"imot1.server.LogReco
rdImpl","timestamp":"2010-08-26
14:05:32.97","requestId":"684cbe16f6b740eb930d08fd626e1551","operat
ion":"create","_op":"N","replayFailure":
0,"level":"ERROR","pendingChange":"N","messageId":200001,"_rc":
0}],"mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

ResponseContent
{"id":100001}

Log Levels and Tracing APIs
The MBOLogger class enables the client to add log levels to messages reported to the
console.The application can set the log level using the setLogLevel method.

In ascending order of detail (or descending order of severity), the log levels defined are
LOG_OFF (no logging), LOG_FATAL, LOG_ERROR, LOG_WARN, LOG_INFO, and
LOG_DEBUG.

Macros such as MBOLogError, MBOLogWarn, and MBOLogInfo allow application code
to write console messages at different log levels. You can use the method setLogLevel to
determine which messages get written to the console. For example, if the application sets the

Reference

Developer Guide: iOS Native Applications 75

log level to LOG_WARN, calls to MBOLogInfo and MBOLogDebug do not write anything to
the console.
[MBOLogger setLogLevel:LOG_INFO];
MBOLogInfo(@"This log message will print to the console”);
[MBOLogger setLogLevel:LOG_WARN];
MBOLogInfo(@"This log message will not print to the console");
MBOLogError(@"This log message will print to the console");

Server Log Messages
The generated code for a package contains an MBODebugLogger source and header file and
an MBODebugSettings.h file. The MBODebugLogger class contains methods that
enable printing of server message headers and message contents, database exceptions and
SUPLogRecords written for each import.

The client application can turn on printing of the desired messages by modifying the
MBODebugSettings.h. In the default configuration, setting "#define __DEBUG__" to
true prints out the server message headers and database exception messages, but does not print
the full contents of server messages.

Note: For more information, examine the MBOLogger.h and MBOLogInterface.h
header files in the includes directory.

Tracing APIs
To see detailed trace information on database calls, including actual SQL statements sent to
SQLite, a Debug build of your application can turn on or off the following macros in
MBODebugSettings.h:

• LOGRECORD_ON_IMPORT – creates a log record in the database for each import of
server data for an MBO.

• PRINT_PERSISTENCE_MESSAGES – prints to the console the database exception
messages.

• PRINT_SERVER_MESSAGES – prints to the console the JSON headers of messages
going to and from the Unwired Server. This allows you to see while debugging that an
application is subscribing successfully to the Unwired Server, and that imports are being
sent from the Unwired Server. When this macro is defined, the contents of client-initiated
“replay” messages are also printed to the console.

• PRINT_SERVER_MESSAGE_CONTENT – prints to the console the full contents of
messages from the Unwired Server to the client. The messages include all the data being
imported from the Unwired Server, and usually result in a large amount of printing.
Developers may find it useful to print all the data during detailed debugging; doing so
allows them detailed debugging to see the data coming from the Unwired Server. In
general, do not turn this macro on, as doing so considerably slows the data import process.

Reference

76 Sybase Unwired Platform

Printing Log Messages
The following code example retrieves log messages resulting from login failures where the
Unwired Server writes the failure record into the LogRecordImpl table. You can
implement the onLoginFailure callback to print out the server message.

SUPQuery * query = [SUPQuery newInstancegetInstance];
SampleApp_LogRecordImplList* loglist =
(SampleApp_LogRecordImplList*)[SampleApp _ SampleAppDB
getLogRecords:query];
 for(SampleApp_LogRecordImpl* log in loglist)
 {
 MBOLogError(@"Log Record %llu: Operation = %@, Component = %@,
message = %@", log.messageId, log.operation,
log.component,log.message);
 }

generateGuid
You can use the generateGuid method (in the LocalKeyGenerator class) to generate an ID
when creating a new object for which you require a primary key. This generates a unique ID
for the package on the local device.

+ (NSString*)generateGuid;

Callback Handlers
A callback handler provides message notifications and success or failure messages related to
message-based synchronization. To receive callbacks, register your own handler with a
database, an entity, or both. You can use SUPDefaultCallbackHandler as the base
class. In your handler, override the particular callback you want to use (for example,
onImport).

Because both the database and entity handler can be registered, your handler may get called
twice for a mobile business object import activity. The callback is executed in the thread that is
performing the action. For example, onImport is always called from a thread other than the
main application thread.

When you receive the callback, the particular activity is already complete.

The SUPCallbackHandler protocol consists of these callbacks:

• onImport:(id)entityObject; – invoked when an import is received. If Unwired Server
accepts a requested change, it sends one or more import messages to the client,
containing data for any created, updated, or deleted row that has changed on the Unwired
Server as a result of the replay request.

• onReplayFailure:(id)entityObject; – invoked when a replay failure is received from the
Unwired Server, whenever a particular device sends a create, update, or delete operation
and the operation fails (Unwired Server rejects the requested operation).

Reference

Developer Guide: iOS Native Applications 77

• onReplaySuccess:(id)entityObject; – invoked when a replay success is received from
the Unwired Server, whenever a particular device sends a create, update, or delete
operation and the operation succeeds (Unwired Server accepts the requested operation).

• onLoginFailure; – invoked when a login failure message is received from the Unwired
Server.

• onLoginSuccess; – called when a login result is received by the client.
• onSubscribeFailure; – invoked when a subscribe failure message is received from the

Unwired Server, whenever an object in a subscribed entity changes.
• onSubscribeSuccess; – invoked when a subscribe success message is received from the

Unwired Server, whenever an object in a subscribed entity changes.
• - (int32_t)onSynchronize:(SUPObjectList*)syncGroupList withContext:

(SUPSynchronizationContext*)context; – invoked when the synchronization status
changes. This method is called by the database class beginSynchronize methods
when the client initiates a synchronization, and is called again when the server responds to
the client that synchronization has finished, or that synchronization failed.

The SUPSynchronizationContext object passed into this method has a “status”
attribute that contains the current synchronization status. The possible statuses are defined
in the SUPSynchronizationStatusType enum, and include:

• SUPSynchronizationStatusSTARTING – passed in when beginSynchronize
is called.

• SUPSynchronizationStatusUPLOADING – synchronization status upload in
progress.

• SUPSynchronizationStatusDOWNLOADING – synchronization status download
in progress.

• SUPSynchronizationStatusFINISHING – synchronization completed successfully.
• SUPSynchronizationStatusERROR – synchronization failed.

This callback handler returns SUPSynchronizationActionCONTINUE, unless the
user cancels synchronization, in which case it returns
SUPSynchronizationActionCANCEL. This code example prints out the groups in
a synchronization status change:
{
 MBOLogInfo(@"Synchronization response");

MBOLogInfo(@"===");

 for(id<SUPSynchronizationGroup> sg in syncGroupList)
 {
 MBOLogInfo(@"group = %@",sg.name);
 }

MBOLogInfo(@"===");

 if(context != nil)
 {

Reference

78 Sybase Unwired Platform

 MBOLogInfo(@"context: %ld,
%@",context.status,context.userContext);
 } else {
 MBOLogInfo(@"context is null");
 }

MBOLogInfo(@"===");

 return SUPSynchronizationActionCONTINUE;
}

• onSuspendSubscriptionFailure; – invoked when a call to suspend fails.
• onSuspendSubscriptionSuccess; – invoked when a suspend call is successful.
• onResumeSubscriptionFailure; – invoked when a resume call fails.
• onResumeSubscriptionSuccess; – invoked when a resume call is successful.
• onUnsubscribeFailure; – invoked when an unsubscribe call fails.
• onUnsubscribeSuccess; – invoked when an unsubscribe call is successful.
• onImportSuccess; – invoked when onImport succeeds.

• onMessageException:(NSException*e); – invoked when an exception occurs during
message processing. Other callbacks in this interface (whose names begin with "on") are
invoked inside a database transaction. If the transaction is rolled back due to an unexpected
exception, this operation is called with the exception (before the rollback occurs).

• onTransactionCommit; – invoked on transaction commit.
• onTransactionRollback; – invoked on transaction rollback.
• onResetSuccess; – invoked when reset is successful.
• onSubscriptionEnd; – invoked on subscription end. OnSubscriptionEnd can occur

when the device is registered, unlike OnUnsubscribeSuccess.

• onStorageSpaceLow; – invoked when storage space is low.
• onStorageSpaceRecovered; – invoked when storage space is recovered.
• onConnectionStatusChange:(SUPDeviceConnectionStatus)connStatus:

(SUPDeviceConnectionType)connType:(int32_t)errCode:(NSString*)errString; –
the application should call the register callback handler with a database class, and
implement the onConnectionStatusChange method in the callback handler. The
API allows the device application to see what the error is in cases where the client cannot
connect to the Unwired Server. SUPDeviceConnectionStatus and
SUPDeviceConnectionType are defined in SUPConnectionUtil.h:

typedef enum {
 WRONG_STATUS_NUM = 0,
 // device connected
 CONNECTED_NUM = 1,
 // device not connected
 DISCONNECTED_NUM = 2,
 // device not connected because of flight mode
 DEVICEINFLIGHTMODE_NUM = 3,
 // device not connected because no network coverage
 DEVICEOUTOFNETWORKCOVERAGE_NUM = 4,
 // device not connected and waiting to retry a connection

Reference

Developer Guide: iOS Native Applications 79

 WAITINGTOCONNECT_NUM = 5,
 // device not connected becauseroaming was set to false
 // and device is roaming
 DEVICEROAMING_NUM = 6,
 // device not connected because of low space.
 DEVICELOWSTORAGE_NUM = 7
} SUPDeviceConnectionStatus;

typedef enum {
 WRONG_TYPE_NUM = 0,
 // iPhone has only one connection type
 ALWAYS_ON_NUM = 1
} SUPDeviceConnectionType;

This code example shows how to register a handler to receive a callback:
DBCallbackHandler* handler = [DBCallbackHandler newHandler];
[iPhoneSMTestDB registerCallbackHandler:handler];
[handler release];

MBOCallbackHandler* mboHandler = [MBOCallbackHandler newHandler];
[Product registerCallbackHandler:mboHandler];
[mboHandler release];

Date/Time
Classes that support managing date/time objects.

• SUPDateValue.h – manages an object of datatype Date.
• SUPTimeValue.h – manages an object of datatype Time.
• SUPDateTimeValue.h – manages an object of datatype DateTime.
• SUPDateList.h – manages a list of Date objects (the objects cannot be null).
• SUPTimeList.h – manages a list of Time objects (the objects cannot be null).
• SUPDateTimeList.h – manages a list of DateTime objects (the objects cannot be

null).
• SUPNullableDateList.h – manages a list of Date objects (the objects can be null).
• SUPNullableTimeList.h – manages a list of Time objects (the objects can be null).
• SUPNullableDateTimeList.h – manages a list of DateTime objects (the objects

can be null).

Example 1: To get a Date value from a query result set:

SUPQueryResultSet* resultSet = [TestCRUD_TestCRUDDB
executeQuery:query];
 for(SUPDataValueList* result in resultSet)
 [[SUPDataValue getNullableDate:[result item:2]]
description];

Example 2: A method takes Date as a parameter:

-(void)setModifiedOrderDate:(SUPDateValue*) thedate;
SUPDateValue *thedatevalue = [SUPDateValue newInstance];
[thedatevalue setValue:[NSDate date]];
[customer setModifiedOrderDate:thedatevalue];

Reference

80 Sybase Unwired Platform

Apple Push Notification API
The Apple Push Notification API allows applications to provide various types of push
notifications to devices, such as sounds (audible alerts), alerts (displaying an alert on the
screen), and badges (displaying an image or number on the application icon). Push
notifications require network connectivity.

The client library libclientrt wraps the Apple Push Notification API in the file
SUPPushNotification.h.

In addition to using the Apple Push Notification APIs in a client application, you must
configure the push configuration on the server. This is performed under Server
Configuration > Messaging > Apple Push Configuration in Sybase Control Center. You
must configure the device application name (for push), the device certificate (for push), the
Apple gateway, and the gateway port.

The following API methods abstract the Unwired Server, resolve the push-related settings,
and register with an Apple Push server, if required. You can call these methods in the
"applicationDidFinishLaunching" function of the client application:
@interface SUPPushNotification : NSObject
{

}
+(void)setupForPush:(UIApplication*)application;
+(void)deviceTokenForPush:(UIApplication*)application deviceToken:
(NSData
*)devToken;
+(void)pushRegistrationFailed:(UIApplication*)application
errorInfo:(NSError *)err;
+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo;

+(void)setupForPush:(UIApplication*)application

After a device successfully registers for push notifications through Apple Push Notification
Service, iOS calls the
didRegisterForRemoteNotificationWithDeviceToken method in the client
application. iOS passes the registered device token to this function, and the functions calls the
deviceTokenForPush API to pass the device token to Unwired Server:

+(void)deviceTokenForPush:(UIApplication*)application deviceToken:
(NSData
*)devToken

If for any reason the registration with Apple Push Notification Service fails, iOS calls
didFailToRegisterForRemoteNotificationsWithError in the client
application which calls the following API:
+(void)pushRegistrationFailed:(UIApplication*)application
errorInfo: (NSError *)err

Reference

Developer Guide: iOS Native Applications 81

When iOS receives a notification from Apple Push Notification Service for an application, it
calls didReceiveRemoteNotification in the client application. This calls the
pushNotification API:

+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo

Complex Attribute Types
The MBO examples previously described have attributes that are primitive types (such as
int, long, string), and make use of the basic database operations (create, update, and
delete). To support interactions with certain back-end datasources, such as SAP® and Web
services, an MBO may have more complex attributes: an integer or string list, a class or MBO
object, or a list of objects. Some back-end datasources require complex types to be passed in as
input parameters. The input parameters can be any of the allowed attribute types, including
primitive lists, objects, and object lists.

In the following example, a Sybase Unwired Platform project is created to interact with a
RESTful Web service back-end. The project includes two MBOs,
HelpDesk_Query_Service and HelpDesk_QueryList_Service.

Note: Each project will have different requirements because each back-end datasource
requires a different configuration for parameters to be sent to successfully execute a database
operation.

Reference

82 Sybase Unwired Platform

Reference

Developer Guide: iOS Native Applications 83

You can determine from viewing the properties of the create operation,
helpdesk_Submit_Service(), that the operation requires parameters to be passed in.
The first parameter, _HEADER_, is an instance of the AuthenticationInfo class, and
the second parameter, assigned_Group, is a list of strings.

When you generate iOS code for this project, the generated code includes the
RESTfulCU_AuthenticationInfo class, in addition to the MBO classes
RESTfulCU_HelpDesk_Query_Service and
RESTfulCU_HelpDesk_QueryList_Service. The AuthenticationInfo
class holds information that must be passed to the Unwired Server to authenticate database
operations.

The project includes the create operation helpdesk_Submit_Service. Call this
method instead of using the iOS MBO create method directly. The
helpdesk_Submit_Service method is defined in
RESTfulCU_HelpDesk_Query_Service.h:

- (void)helpDesk_Submit_Service:
(RESTfulCU_AuthenticationInfo*)_HEADER_
withAssigned_Group:(SUPNullableStringList*)assigned_Group
withCI_Name:(NSString*)cI_Name
withLookup_Keyword:(NSString*)lookup_Keyword
withResolution_Category_Tier_1:
(NSString*)resolution_Category_Tier_1
withAction:(NSString*)action
withCreate_Request:(NSString*)create_Request
withWork_Info_Summary:(NSString*)work_Info_Summary
withWork_Info_Notes:(NSString*)work_Info_Notes
withWork_Info_Type:(NSString*)work_Info_Type
withWork_Info_Date:(NSDate*)work_Info_Date
withWork_Info_Source:(NSString*)work_Info_Source
withWork_Info_Locked:(NSString*)work_Info_Locked
withWork_Info_View_Access:(NSString*)work_Info_View_Access
withMiddle_Initial:(SUPNullableStringList*)middle_Initial
withDirect_Contact_First_Name:(NSString*)direct_Contact_First_Name
withDirect_Contact_Middle_Initial:
(NSString*)direct_Contact_Middle_Initial
withDirect_Contact_Last_Name:(NSString*)direct_Contact_Last_Name
withTemplateID:(NSString*)templateID;

Reference

84 Sybase Unwired Platform

The following code example initializes a RESTful instance of the
HelpDesk_Query_Service MBO on the device, creates the instance in the client
database, and submits it to the Unwired Server. The example shows how to initialize the
AuthorizationInfo class instance and the assigned_Group string list, and pass
them as parameters into the create operation.
RESTfulCU_AuthenticationInfo* authinfo;
 int64_t key= 0;
 authinfo = [RESTfulCU_AuthenticationInfo getInstance];
 authinfo.userName=@"Francie";
 authinfo.password=@"password";
 authinfo.authentication=nil;
 authinfo.locale=nil;
 authinfo.timeZone=nil;

 SUPNullableStringList *assignedgrp = [SUPNullableStringList
getInstance];
 [assignedgrp add:@"Frontoffice Support"];

 RESTfulCU_HelpDesk_Query_Service *cr =
[[RESTfulCU_HelpDesk_Query_Service alloc] init];

cr.company = @"Calbro Services";

[cr helpDesk_Submit_Service:authinfo
 withAssigned_Group:assignedgrp
 withCI_Name:nil
 withLookup_Keyword:nil
 withResolution_Category_Tier_1:nil
 withAction:@"CREATE"
 withCreate_Request:@"YES"
 withWork_Info_Summary:[NSString stringWithFormat:@"create %@",
[NSDate date]]
 withWork_Info_Notes:nil
 withWork_Info_Type:nil
 withWork_Info_Date:nil
 withWork_Info_Source:nil
 withWork_Info_Locked:nil
 withWork_Info_View_Access:nil
 withMiddle_Initial:nil
 withDirect_Contact_First_Name:nil
 withDirect_Contact_Middle_Initial:nil
 withDirect_Contact_Last_Name:nil
 withTemplateID:nil];

[cr submitPending];
// wait for response from server
while([RESTfulCU_RESTfulCUDB hasPendingOperations])
 [NSThread sleepForTimeInterval:1.0];

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Reference

Developer Guide: iOS Native Applications 85

Handling Exceptions
The iOS Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace appearing in the server log, and a log record
(LogRecordImpl) being imported to the client with information on the problem. The client
receives both the log record and a replayFailed message.

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps it to a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 3. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS down or the connection is terminated.

Table 4. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/webservice/BA-
PI) not found on Backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

Reference

86 Sybase Unwired Platform

Error Code Probable Cause Manual Recovery Action

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SUP internal error in modifying
the CDB cache.

N/A

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThrowCredentialRequestOn401Error context
variable is set to true (which is the default), error code 401 throws a
CredentialRequestException, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the
SupThrowCredentialRequestOn401Error context variable in Sybase Control
Center. If SupThrowCredentialRequestOn401Error is set to false, error code 401
is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP® error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 5. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later

503

Client-Side Exceptions
The HeaderDoc for the iOS Client Object API lists the possible exceptions for the client.

Reference

Developer Guide: iOS Native Applications 87

Attribute Datatype Conversion
When a non-nullable attribute's datatype is converted to a non-primitive datatype (such as
class NSNumber, NSDate, and so on), you must verify that the corresponding property for the
MBO instance is assigned a non-nil value, otherwise the application may receive a runtime
exception when creating a new MBO instance.

A typical scenario is when an attribute exists in ASE's identity column with a numeric
datatype. For example, for a non-nullable attribute with a decimal datatype, the corresponding
datatype in the generated Objective-C MBO code is NSNumber. When creating a new MBO
instance, ensure that you assign this property a non-nil value.

Operation Name Conflicts
Operation names that conflict with special field types are not handled.

For example, if an MBO has attributes named id and description, those attributes are stored
with the name id_ description_. If you create an operation called "description" and
generated Object-C code, you see an error during compilation because of conflicting methods
in the classes.

Exception Classes
The iOS Client Object API supports exception classes for queries and for the messaging
client.

Query Exception Classes
Exceptions thrown by SUPStatementBuilder when building an SUPQuery, or by
SUPQueryResultSet during processing of the results. These exceptions occur if the
query called for an entity or attribute that does not exist, or tried to access results with the
wrong datatype.

• SUPAbstractClassException.h – thrown when the query specifies an abstract class.
• SUPInvalidDataTypeException.h – thrown when the query tries to access results with

an invalid datatype.
• SUPNoSuchAttributeException.h – thrown when the query calls for an attribute that

does not exist.
• SUPNoSuchClassException.h – thrown when the query calls for a class that does not

exist.
• SUPNoSuchParameterException.h – thrown when the query calls for a parameter that

does not exist.
• SUPNoSuchOperationException.h – thrown when the query calls for an operation that

does not exist.
• SUPWrongDataTypeException.h – thrown when the query tries to access results with

an incorrect datatype definition.

Reference

88 Sybase Unwired Platform

Messaging Client API Exception Classes
Exceptions in the messaging client (clientrt) library.

• SUPObjectNotFoundException.h – thrown by the load: method for entities if the
passed-in primary key is not found in the entity table.

• SUPPersistenceException.h – may be thrown by methods that access the database. This
may occur when application codes attempts to:

• Insert a new row in an MBO table using a duplicate key value.
• Execute a dynamic query that selects for attribute (column) names that do not exist in

an MBO.

MetaData and Object Manager API
The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

SUPDatabaseMetaData
You can use the SUPDatabaseMetaData class to retrieve information about all the classes
and entities for which metadata has been generated.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

SUPClassMetaData
The SUPClassMetaData class holds metadata for the MBO, including attributes and
operations.

SUPAttributeMetaData
The SUPAttributeMetaData class holds metadata for attributes such as attribute name,
column name, type, and maxlength.

Code Example for Accessing Metadata
The following code example for a package named "SampleApp" shows how to access
metadata for database, classes, entities, attributes, operations, and parameters.

NSLog(@"List classes that have metadata....");
SUPDatabaseMetaData *dmd = [SampleApp_ SampleAppDB metaData];
SUPObjectList *classes = dmd.classList;
for(SUPClassMetaData *cmd in classes)
{
 NSLog(@" Class name = %@:",cmd.name);
}
NSLog(@"List entities that have metadata, and their attributes
and operations....");

Reference

Developer Guide: iOS Native Applications 89

SUPObjectList *entities = dmd.entityList;
for(SUPEntityMetaData *emd in entities)
{
 NSLog(@" Entity name = %@, database table name =
 %@:",emd.name,emd.table);
 SUPObjectList *attributes = emd.attributes;
 for(SUPAttributeMetaData *amd in attributes)
 NSLog(@" Attribute: name = %@%@",amd.name,
 (amd.column ? [NSString stringWithFormat:@",
 database column = %@",amd.column] : @""));
 SUPObjectList *operations = emd.operations;
 for(SUPOperationMetaData *omd in operations)
 {
 NSLog(@" Operation: name = %@",omd.name);
 SUPObjectList *parameters = omd.parameters;
 for(SUPParameterMetaData *pmd in parameters)
 NSLog(@" Parameter: name = %@, type = %@",
 pmd.name, [pmd.dataType name]);
 }
}

Messaging Client API
The Sybase Unwired Platform messaging client (SUPMessageClient) API is part of the
libclientrt library. The messaging client is responsible for setting up a connection
between the user application and the server, as well as sending client messages up to the
Unwired Server and receiving the import messages sent down to the client.

The Messaging Client API consists of the following methods:

+(void)setAssertionState:(BOOL)hideAssertions;

Determines whether assertions should appear or not.

+(NSInteger)start

Starts the messaging client and connects to the Unwired Server. You must use the settings
application to enter the Sybase Unwired Platform user preferences information, including
server name, port, user name, and activation code.

The parameters server name, user name, serverport, companyID and activation correspond to
the Unwired Server name, the user name registered with the Unwired Server, the port the
Unwired Server is listening to, the company ID, and activation code, respectively. If a Relay
Server is used, ‘companyID’ corresponds to the farm ID of the Relay Server.

To ensure that messages are routed to the correct client application, the messaging client code
sends the application executable name (specifically, the first 16 characters of the
CFBundleExecutable value from the application’s Info.plist) to the Unwired
Server. The Unwired Server requires that each application on a device (or simulator) connect
to the Unwired Server with a different user name.

This call returns one of the following values as defined in SUPMessageClient.h.

• kSUPMessageClientSuccess

Reference

90 Sybase Unwired Platform

• kSUPMessageClientFailure
• kSUPMessageClientKeyNotAvailable
• kSUPMessageClientNoSettings

Note: Ensure that the package database exists (either from a previous run, or a call to
[SampleApp_SampleAppDB createDatabase]) and that
[SampleApp_SampleAppDB startBackgroundSynchronization] is called
before calling [SUPMessageClient start].

The following code example shows the start method:

NSInteger result = [SUPMessageClient start];

if (result == kSUPMessageClientSuccess)
{
 //Continue with your application
}
// At this point, if the result is a NO, then the client
// application can decide to quit or throw a message alerting
// the user that the connection to the server was
// unsuccessful.

+(NSInteger)stop

Stops the messaging client.
[SUPMessageClient stop];

+(NSInteger)restart

Restarts the messaging client. Returns YES when successful, otherwise, if the required
preferences are not set, or an error occurred when restarting the client, returns NO.
NSInteger result = [SUPMessageClient restart];

+(BOOL)provisioned

Checks if all the required provisioning information is set. Returns NO when required
preferences are not set, andYES when all the required information is set.
BOOL result = [SUPMessageClient provisioned];

+(int)status

Returns the last status received from messaging client, as one of the following values:

• 0 – not started
• 1 – started, not connected
• 2 – started, connected

int result = [SUPMessageClient status];

Reference

Developer Guide: iOS Native Applications 91

Best Practices for Developing Applications
Observe best practices to help improve the success of software development for Sybase
Unwired Platform.

• Set up your development environment and develop your application using the procedures
in the Developer Guide for iOS.

• Avoid making calls on the "main" thread on the device as this provides a poor response.
Instead, use loading screens and activity spinners while doing the work in a background
thread or operation queue. Do this while submitting and saving operations, and doing
imports that update the tables displayed.

• Use an operation queue if you are trying to process imports and show them as they come in
a UITableViewController. The operation callback will overwhelm the UI if you do
one at a time. Instead, use an operation queue and process in groups.

• When testing for memory leaks, ignore the one-time startup leaks reported for the
Messaging Server service.

Constructing Synchronization Parameters
When constructing synchronization parameters to filter rows to be download to a device, if the
SQL statement involves two mobile business objects, you must use an "in" clause rather than a
"join" clause. Otherwise, when there is a joined SQL statement, all rows of the subsequent
mobile business object are filtered out.

For example, you would change this statement:
Select x.* from So_company x ,So_user y where x.company_id =
y.company_id and y.uname='test'

To:
Select x.* from So_company x where x.company_id in (select
y.company_id from So_user y where y.uname='test')

Reference

92 Sybase Unwired Platform

Index
A
APNS 27
Apple gateway 81
Apple Push Notification API 81
Apple Push Notification Service 27
application provisioning

with iPhone mechanisms 27
arrays 48
AttributeMetaData 89
AttributeTest 38

B
beginOnlineLogin 33
beginSynchronize 34

C
callback handlers 77
ClassMetaData 89
common APIs 53
complex attribute type 82
CompositeTest 40
ConnectionProfile 31
create operation 42

D
data vault 58

access group 66
change password 65
creating 57
deleting 59
exists 58
lock timeout 61
locked 60
locking 59
retrieve string 63
retrieve value 64
retry limit 61, 62
set string 62
set value 64
unlocking 60

DatabaseMetaData 89

DEBUG__ define 76
delete operation 44
documentation roadmap 1

E

EIS error codes 86, 87
entity states 48, 50
error codes

EIS 86, 87
HTTP 86, 87
mapping of SAP error codes 87
non-recoverable 86
recoverable 86

G

generated code contents 8
generated code, location 8
generating code using the API 4
getLogRecords 73, 75

H

hasPendingOperations 36
HeaderDoc 13
HTTP error codes 86, 87

I

ID generation 77
infrastructure provisioning

with iPhone mechanisms 27
iPhone

iTunes provisioning 29
provisioning 27

L

local business object 46
localization 25, 26
LOGRECORD_ON_IMPORT 76
LogRecordImpl 73, 75, 77

Index

Developer Guide: iOS Native Applications 93

M

maxDbConnections 31
MBODebugLogger 76
MBODebugSettings.h 76
MBOLogger 75
messaging client API 90

N

newLogRecord 73, 75

O

Object API code
location of generated 8

OfflineLogin 32

P

pending operation 46
personalization keys 47

types 47
PRINT_PERSISTENCE_MESSAGES 76
PRINT_SERVER_MESSAGE_CONTENT 76
PRINT_SERVER_MESSAGES 76
provisioning

employee iPhone applications 29
provisioning devices

with iPhone mechanisms 27
push notifications 81

Q

QueryResultSet 41

R

Read API 36
relationship data, retrieving 42
replay pending requests 36

replay results 36
resumeSubscription 35

S

save operation 44
server log messages 76
sleepForTimeInterval 36
status methods 48, 50
submitLogRecords 73, 75
subscribe data 34
SUPAbstractClassException.h 88
SUPDataVault 56
SUPDataVaultException 56
SUPInvalidDataTypeException.h 88
SUPLogRecords 76
SUPNoSuchAttributeException.h 88
SUPNoSuchClassException.h 88
SUPNoSuchOperationException.h 88
SUPNoSuchParameterException.h 88
SUPObjectNotFoundException.h 89
SUPPersistenceException.h 89
SUPWrongDataTypeException.h 88
suspendSubscription 34
synchronization 33
SynchronizationProfile 32
synchronize data 34
synchronizing and retrieving MBO data 13

T

timer 36

U

unsubscribe data 34
update operation 43

X

Xcode 9

Index

94 Sybase Unwired Platform

	Developer Guide: iOS Native Applications
	Contents
	Introduction to Developer Guide for iOS
	Documentation Roadmap for Unwired Platform
	Device Application Development

	Development Task Flows
	Task Flow for Xcode IDE Development
	Using Object API to Develop a Device Application
	Generating Objective-C Object API Code
	Generated Code Location and Contents
	Validating Generated Code

	Importing Libraries and Code in the Xcode IDE
	Developing Applications in the Xcode IDE
	Generating HeaderDoc from Generated Code
	Configuring an Application to Synchronize and Retrieve MBO Data
	Managing the Background State
	Referencing the iOS Client Object API
	Device Application Example Code
	main.m Example Code
	CallbackHandler.h Example Code
	CallbackHandler.m Example Code
	SampleApp.h Example Code
	SampleApp.m Example Code

	Localizing an iOS Application
	Localizing Menus and Interfaces
	Localizing Embedded Strings
	Validating Localization Changes

	Preparing Applications for Deployment to the Enterprise
	Apple Push Notification Service Configuration
	Preparing an Application for Apple Push Notification Service
	Provisioning an Application for Apple Push Notification Service

	Reference
	iOS Client Object API
	Connection APIs
	SUPConnectionProfile
	Improving Device Application Performance with Multiple Database Reader Threads
	SynchronizationProfile
	Authentication

	Message-Based Synchronization APIs
	beginOnlineLogin
	Setting Synchronization Parameters
	Subscribe Data
	Unsubscribe Data
	Suspend Subscription
	Synchronize Data
	Resume Subscription
	Recover Subscription
	Start or Stop Background Synchronization
	Replay Results

	Query APIs
	Retrieving Data from an MBO
	Object Queries
	Arbitrary Find
	SUPAttributeTest
	SUPCompositeTest
	Dynamic Query
	Paging Data

	SUPQueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert (MLI)
	Pending Operation

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values
	Passing Arrays of Values, Objects

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Refresh
	Clear Relationship Objects

	Security APIs
	Encryption of Client Data
	Encrypt the Database
	SUPDataVault
	createVault
	vaultExists
	getVault
	deleteVault
	lock
	isLocked
	unlock
	setLockTimeout
	getLockTimeout
	setRetryLimit
	getRetryLimit
	setString
	getString
	setValue
	getValue
	changePassword
	setAccessGroup

	Installing and Testing X.509 Certificates on iOS Clients
	Importing an X.509 Certificate to an iOS Client from the Unwired Server
	iOS Sample Code

	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate Into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server With a Certificate

	Utility APIs
	Using the Log Record APIs
	Viewing Error Codes in Log Records

	Log Levels and Tracing APIs
	Server Log Messages
	Tracing APIs
	Printing Log Messages

	generateGuid
	Callback Handlers
	Date/Time
	Apple Push Notification API

	Complex Attribute Types
	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions
	Attribute Datatype Conversion
	Operation Name Conflicts

	Exception Classes
	Query Exception Classes
	Messaging Client API Exception Classes

	MetaData and Object Manager API
	SUPDatabaseMetaData
	SUPClassMetaData
	SUPAttributeMetaData
	Code Example for Accessing Metadata

	Messaging Client API

	Best Practices for Developing Applications
	Constructing Synchronization Parameters

	Index

