SYBASE

Company

Developer Guide: iOS Native Applications

Sybase Unwired Platform 2.1

DOCUMENT ID: DC01217-01-0210-03

LAST REVISED: July 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Guide for iOS.........cccoieiiiiinnnnnn. 1
Documentation Roadmap for Unwired Platform............. 1
Device Application Development............ccccovvviiviiiinnnenn. 2

Development Task FIOWSouuviiiiiiiiiiiiiiiiiiiiieeee e 3
Task Flow for Xcode IDE Development..............ccoeeeeeeee 3
Using Object API to Develop a Device Application......... 4

Generating Objective-C Object API Code.............. 4
Generated Code Location and Contents............... 8
Validating Generated Codecccccevvvviiiieeeeennnne. 9
Importing Libraries and Code in the Xcode IDE.............. 9
Developing Applications in the Xcode IDE 13

Generating HeaderDoc from Generated Code....13
Configuring an Application to Synchronize and

Retrieve MBO Dataccccvvvviiiiiieeeeeeiieeiinns 13
Managing the Background Statec......... 15
Referencing the iOS Client Object API 17
Localizing an iOS Applicationcceeevviennnnns 25
Preparing Applications for Deployment to the

ENLEIPriSeuuiiiiiiiiiiii 26
Apple Push Notification Service Configuration....27

REfEIENCE . 31
IOS Client ObjeCt APlcoovviiiiieeeeee e, 31
ConNection APIS ... 31
Message-Based Synchronization APIs 33

QUETY APIS ... 36
Operations APISooeviiiiiiiiiiei e 42

Local Business ODjectcccovvviiiiiieiiiiiiiiiiiiiiins 46
Personalization APISccccoiiiiiiiiiiiiiines a7

Object State APIScovviiiiiiiiiiieiee e 48

SeCUrity APIS ...oveeii e 55

Developer Guide: iOS Native Applications iii

Contents

Installing and Testing X.509 Certificates on iOS

ClIENTS e 66
Single Sign-On With X.509 Certificate Related
ODJECt APl . 70
ULIlIEY APIS .., 72
Complex Attribute TYPeScceeevvvvvieiiiieeeeeeeiieennn, 82
EXCEPLIONS ... 85
MetaData and Object Manager API 89
Messaging Client APl ... 90
Best Practices for Developing Applications.................... 92
Constructing Synchronization Parameters.......... 92
.. 93

Sybase Unwired Platform

Introduction to Developer Guide for iOS

Introduction to Developer Guide for iOS

This developer guide provides information about using advanced Sybase® Unwired Platform
features to create applications for Apple iOS devices, including iPhone and iPad. The
audience is advanced developers who are familiar working with APIs, but who may be new to
Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object APl documentation.

Companion guides include:

o Sybase Unwired WorkSpace — Mobile Business Object Development
e Tutorial: i0OS Application Development

» Troubleshooting for Sybase Unwired Platform

e Supported Hardware and Software

HeaderDoc provides a complete reference to the APIs:

e The Framework Library HeaderDoc is installed to
<Unwi redPl atform Instal |l Dir>\d i ent APl \ api doc\ Obj ecti veC.
For example, C: \ Sybase\ Unwi redPl at f orml O i ent API \ api doc
\ Obj ect i veC.

* You can generate HeaderDoc from the generated Objective-C code. See Generating
HeaderDoc from Generated Code on page 13.

See Fundamentalsfor high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Documentation Roadmap for Unwired Platform

Learn more about Sybase® Unwired Platform documentation.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on Production Documentation.

Check the Sybase Product Documentation Web site regularly for updates: access Attp.//
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Developer Guide: iOS Native Applications 1

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Introduction to Developer Guide for iOS

Device Application Development

A device application includes business logic, and device-resident presentation and logic.

Mobile business objects help form the business logic for mobile applications. A mobile
business object (MBO) is derived from a data source (such as a database server, Web service,
or SAP® server). When grouped in projects, MBOs allow mobile applications to be deployed
to an Unwired Server and referenced in mobile devices (clients).

Once you have developed MBOs and deployed them to Unwired Server, you add device-
resident presentation and logic to the device application. You build a native client in the Xcode
IDE using Objective-C and Generated Object API code, and by programmatically binding to
the iOS Client Object API.

2 Sybase Unwired Platform

Development Task Flows

Development Task Flows

This section describes the overall development task flow, and provides information and
procedures for setting up the development environment, and developing device applications.

Task Flow for Xcode IDE Development

Follow this task flow to develop a device application.

Prerequisites
Before developing a device application, the developer must:

In the Eclipse development environment, create a mobile application project and create

mobile business objects as required for your application.

See the following topics in Sybase Unwired WorkSpace — Mobile Business Object

Developmentfor instructions on developing mobile business objects, and configuring the

mobile business object attributes, as well as synchronization and personalization

parameters:

» Sybase Unwired WorkSpace — Mobile Business Object Development > Develop >
Developing a Mobile Business Object

o Sybase Unwired WorkSpace — Mobile Business Object Development > Develop >
Working with Mobile Business Objects

Note: Ensure that you enter a package name for the mobile application project that is
appropriate as a prefix for the mobile business object generated files. In the examples that
follow, the package name is SampleApp.

Verify the supported device platforms and code generation tools for your device
application. See Planning Your Sybase Unwired Platform Installation > Supported Device
Platforms and Databases in the Sybase Unwired Platform Installation Guide

Task

1

Create mobile business object generated code. See Generating Objective-C Object AP/
Code.

Import libraries and code into the Xcode IDE. See /mporting Libraries and Code in the
Xcode IDE.

Develop a device application in the Xcode IDE.

a) Create HTML reference information for the methods in your generated code. This will
help you to programmatically bind to the Client Object API. See Generating
HeaderDoc from Generated Code.

Developer Guide: iOS Native Applications 3

Development Task Flows

b) Configure your application to synchronize and retrieve data from a mobile business
object. See Configuring an Application to Synchronize and Retrieve MBO Data.

c) Reference your application to the Client Object API code that you generated for your
mobile application project. See Referencing the iOS Client Object API.

4. Prepare your applications for deployment to the enterprise. See Preparing Applications for
Deployment to the Enterprise.

Using Object API to Develop a Device Application

Generate object API code on which to build your application.

Unwired Platform provides the Code Generation wizard for generating object API code. Code
generation creates the business logic, attributes, and operations for your Mobile Business
Object. You can generate code for these platforms:

+ i0S
See the guidelines for generating code for each platform type.

Generating Objective-C Object APl Code
Generate Objective-C code for applications that will run on Apple devices.

1. Launch the Code Gener ation wizard.

From Action

The Mobile Right-click within the Mobile Application Diagram and
Application Diagram | select Gener ate Code.

WorkSpace Right-click the Mobile Application project folder that
Navigator contains the mobile objects for which you are generating API

code, and select Generate Code.

2. (Optional) Enter the information for these options:

Note: This page of the code generation wizard is seen only if you are using the Advanced
developer profile.

4 Sybase Unwired Platform

Development Task Flows

Option

Description

Select code genera-
tion configuration

Select either an existing configuration that contains code generation set-

tings, or generate device client code without using a configuration:

» Continue without a configuration —select this option to generate device
code without using a configuration.

» Select an existing configuration — select this option to either select an
existing configuration from which you generate device client code, or
create a new configuration. Selecting this option enables:

» Select code generation configuration — lists any existing configu-
rations, from which you can select and use for this session. You can
also delete any and all existing saved configurations.

» Create new configuration — enter the Name of the new configura-
tion and click Createto save the configuration for future sessions.
Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

3. Click Next.

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Note: Code generation fails if the server-side (run-time) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

5. Click Next.

6. Enter the information for these configuration options:
Option Enter
Language Objective-C
Platform i0S

Unwired Server

Specify an Unwired Server connection profile
to which the generated code connects at run-
time.

Developer Guide: iOS Native Applications 5

Development Task Flows

7.

8.

Option Enter

Server domain Choose the domain to which the generated code
will connect. If you specified an Unwired Serv-
er to which you previously connected success-
fully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an Un-
wired Server is selected.

Page size Not enabled for Objective-C.
Name Prefix Enter a name prefix for Objective C.
Destination Specify the destination of the generated device

client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location.

Select Clean up destination before code gen-

eration to clean up the destination folder before
generating the device client files.

Replication-based This option is not available for iOS.

Message-based Selected by default.

Select Gener ate metadata classesto generate metadata for the attributes and operations
of each generated client object.

Select Gener ate metadata and object manager classesto generate both the metadata for
the attributes and operations of each generated client object and an object manager for the
generated metadata.

The object manager allows you to retrieve the metadata of packages, MBOs, attributes,
operations, and parameters during runtime using the name instead of the object instance.

Click Finish.

By default, the MBO source code and supporting documentation are generated in the
project's Gener at ed Code folder. The generated files are located in the
<MBO_pr oj ect _name> folder under the i ncl udes and sr ¢ folders. The

i ncl udes folder contains the header (*.h) files and the sr ¢ folder contains the
implementation (*.m) files.

Because there is no namespace concept in Objective-C, all generated code is prefixed with
packagename_. For example, "SampleApp_".

Sybase Unwired Platform

Development Task Flows

& Mobile Development - Samplefpp - Mobile Application Diagram -

File Edit Diagram Mawigate Search Project Run Window Help

[ETRL NN PR R
“Tahuma jl? j | - -
et aviator 2L ~ U

h ool s T

mpleapp [iersi -]

[Mobile Business Objacts
@ Data Source References
7% Cache Groups
-[#% Personalization Keys
b B Roles
B Synchronization Groups
#[Z> Filers
E-[2= Generated Code

E-E= includes

{ - common

i E-E= Sampledpp

B stc

E-E= common

== SampleApp

- = sampleapp_Customer_pull_pg.m
| SampleApp_Customer.m
| SampleApp_CustomerSynchronizationParameters.m
| Sampleapp_fevizenerator.m
= Sampledpp_KeyGeneratorPE.m
=| sampledpp_KeyPackagehame.m
=] Sampledpp_LocalkeyGenerator.m
=| SampleApp_LocalkeyzeneratorPE.m
Samplespp_LoggerImpl.m
Sampleapp_LogRecordImpl.m
| SampleApp_OFflineduthentication.m
| Sampleapp_OperationReplay.m
=| Sampledpp_OperationReplayException.m
=| sampleApp_PersonalizationParameters.m
\=| Sampledspp_Sales_aorder.m
=| sampleApp_sampledppDE.m
= SampleApp_ServerPersonalization.m
= SampleApp_SessionPersonalization.m

- || SampleApp_subscription3katus. m bl |
Kl L
(ﬁ Enterprise Explorer &4 EE Outline} = EW
|
= i
J | 1= Sampledpp

The frequently used Objective-C files in this project, described in code samples include:

Developer Guide: iOS Native Applications 7

Development Task Flows

Generated Code Location and Contents

Table 1. Source Code File Descriptions

Objective-C File

Description

MBO class (for example, Sanpl eApp_Cus-
t orer . h, Sanpl eApp_Cust oner. m

Include all the attributes, operations, object
queries, and so on, defined in this MBO.

synchronization parameter class (for example,
Sanpl eApp_Cust oner Synchr oni za-
ti onPar anet er. h, Sanpl eApp_Cus-
t omer Synchroni zat i onPar ane-

ter.m

Include any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, Sam
pl eApp_KeyGener at or . h, Sam
pl eApp_KeyGener at or. n)

Include generation of surrogate keys used to
identify and track MBO instances and data.

Personalization parameter classes (for example,
Sanpl eApp_Personal i zati onPar a-
nmet er s. h, Sanpl eApp_Per sonal i -
zati onParaneters. m

Include any defined personalization keys.

Note: Do not modify generated MBO API generated code directly. For MBO generated
code, create a layer on top of the MBOs using patterns native to the mobile operating
system development to extend and add functionality.

Generated object API code is stored in the project's Generated Code sub-folder by default, for
example, C: \ Document s and Setti ngs\adm ni strator\workspace
\<Unwi red Pl atform project nane>\ Gener at ed Code\ src. Language,

platform, and whether or not you select the Generate metadata classes option determines the
class files generated in this folder.

Assuming you generate code in the default location, you can access it from WorkSpace
Navigator by expanding the Mobile Application project folder for which the code is

generated, and expand the Generated Code folder.

The contents of the folder is determined by the options you selected from the Generate Code
wizard, and include generated class (.h, .m) files that contain:

MBO - the business logic of your MBO.

Synchronization parameters - any synchronization parameters for the MBOs.
Personalization - personalization and personalization synchronization parameters used by

the MBOs.

Metadata - if you selected Gener ate metadata classes, the metadata classes which allow
you to use code completion and compile-time checking to ensure that run-time references

to the metadata are correct.

Sybase Unwired Platform

Development Task Flows

Validating Generated Code

Validation rules are enforced when generating client code for C# and Java. Define prefix
names in the Mobile Business Object Preferences page to correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for key word
conflicts in generated Java and C# code. For example, by displaying error messages in the

Properties view or in the wizard. Other than the known name conversion rules (converting .' to
' ', removing white space from names, and so on), there is no other language specific name

conversion. For example, cust_id is not changed to custld.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand Sybase, Inc > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are auto-generated. For example, when you drag-and-drop a data source onto
the Mobile Application Diagram.

Importing Libraries and Code in the Xcode IDE

Import the generated MBO code and associated libraries into the iOS development
environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: Attp.//
developer.apple.com/tools/Xcode/.

1. Start Xcode and select Create a new Xcode project.

2. SelectiOS Application and Window-based Application as the project template, and
then click Next.

3. Enter <Pr oj ect Nane> as the Product Name, My Cor p as the Company I dentifier,
select Univer sal as the Device Family product, and then click Next.

4. Select the Architecturestab, and set Base SDK for All Configurationstoi OS 4. 3.

Developer Guide: iOS Native Applications 9

http://developer.apple.com/tools/Xcode/
http://developer.apple.com/tools/Xcode/

Development Task Flows

| Breso R NN Combined IR -
o Sewing LT

A
‘Addiional SDKs

A testx

testxTests
Architectures Standard (armv6 armv?)
Base SDK. Latest i0S (105 4.3) &
Build Active Architecture Only Not

Supported Platforms iphonesimulator iphoneos

armvé armv?

Intermediate Build Files Path
v Per-configuration Build Products Path
Debug
Release
Per-configuration Intermediate Build Fi... <Mult
Debug

d/Debug-iphoneos
Release build /testx. build/Release-iphoneos

Precompiled Headers Cache Path fvarffolders| IR/ IRBAKF NQFyWBVEjte76 7Rlc -+ + TI/ -Caches /com apple Xcode 501 /SharedPrecompiledHeaders

8uild Options

Build Variants normal

Debug Information Format DWARF with dSYM File 5

Enable OpenMP Support No:

Generate profiling Code No:

Precompiled Header Uses Files From 8. Yes

Run Static Analyzer Not

Scan All Source Files for Includes No &

Validate Built Product Not

Code Signing

Code Signing Entitlements

Code Signing Identity Don't Code Sign &
Debug Don't Code Sign

Any 05 SDK ¢ iPhone Developer

Release Don't Code Sign

Any i0S SDK ; iPhone Developer
Code Signing Resource Rules Path

Other Code Signing Flags

Com,

5. Select the Deployment tab and set the iOS Deployment Targettoi OS 4. 3ori CS 4. 2,
as appropriate for the device version where you will deploy. Earlier SDKs and deployment
targets are not supported.

6. Select the Valid architecture as ar mv6 ar mv7 and the Targeted device family as
i Phone/ i Pad. This ensures that the build of the application can run on either iPhone or
iPad.

Note: When you migrate an existing project from an older version of Xcode to Xcode 4,
you may see a build error: No archi tectures to conpile for

(ARCHS=i 386, VALI D _ARCHS=ar mv6, ar nv7) . You can resolve this Xcode 4
issue by manually editing "Valid Architectures™ under Targets, to add i 386.

10

Sybase Unwired Platform

Development Task Flows

w | < b | [Mssowscertmbo 4@ >

PROJECT Summary info | Build Settings | Build Phases Build Rules
[ssowscertmbo P W combinea)

Levels

TARGETS ‘Sening o ssowscertmbo
. ¥ Architectures

Additional SDKs

Architectures Standard (armv6 armv?) &
Base SDK 0543 ¢

Build Active Architecture Only No:

Supported Platforms iphonesimulator iphoneos

¥ Valid Architectures <Multiple values>

Any SDK % armv6 armv?
Any iOS Simulator SDK & 386
Release armv armv?

v Build Locations

g
3
H
H

Build Products Path build
Intermediate Build Files Path build
¥ Per-configuration Build Products Path <Multiple values>
Debug build/Debug-iphoneos
Release build/Release-iphoneos
¥ Per-cenfiguration Intermediate Build Fi... <Multiple values>
Debug build/ssowscertmbo.build {Debug-iphoneos

Release build/ssowscertmbo build/Release-iphoneos
Precompiled Headers Cache Path Jvar{folders [IR IRB4KFHQFyWBVE]te767Rk-+ ++T1/-Caches-/. le Xcode.501/Share
v Build Options
Build Variants normal
Debug Information Format DWARF with dSYM File ;
Enable OpenMP Support No:
Generate Profiling Code No:

Precompiled Header Uses Files From B... Yes 3

Run Static Analyzer No:
Scan All Source Files for Includes No
¥ Validate Built Product <Multiple values> 3
Debug No:
Release Yes §
¥ Code Signing
Code Signing Entitlements
¥ Code Signing Identity Don't Code Sign 4
Debug Don't Code Sign §
Any 105 SDK & 1Phone Developer (currently matches ‘iPhone Developer: Shaji Kuruvilla (SPLEMMPBT?)' in "MyDevices') +
Release Don't Code Sign &
Any 105 SDK & 1Phone Developer (currently matches ‘Phone Developer: Shoji Kuruvilla (SPLEMMPBT?)' in 'MyDevices) &
Code Signing Resource Rules Path 2
Other Code Sianina Flac:
EiY an

7. Select a location to save the project and click Createto open it.

Xcode creates a folder,<Pr oj ect Nanme>, to contain the project file,
<Pr oj ect Nanme>. xcodepr o and another <Pr oj ect Nane> folder, which
contains a number of automatically generated files.

Copy the files from your Windows machine in to the <ProjectName> folder that Xcode
created to contain the generated source code.

8. Connect to the Microsoft Windows machine where Sybase Unwired Platform is installed:
a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, snb: / / <machi ne DNS
name>orsnb: // <l P Addr ess>.
You see the shared directory.

9. Navigate to the \ Unwi r edPl at f orml Cl i ent API \ MBS\ Obj ect i veCdirectory
in the Unwired Platform installation directory, and copy thei ncl udes andl i bs folders
to the <Pr oj ect Name>/ <Pr oj ect Nane> directory on your Mac.

10. Navigate to the mobile application project (for example, C: \ Docunent s and
Set ti ngs\ adm ni st rator\workspace\ <Proj ect Nane>), and copy the
Cener at ed Code folder to the <Pr oj ect Nane>/ <Pr oj ect Name> directory on
your Mac.

Developer Guide: iOS Native Applications 11

Development Task Flows

11. In the Xcode Project Navigator, right-click the <Pr oj ect Nane> folder under the
project, select Add Filesto " <ProjectName>", select the Gener at ed Code folder,
unselect Copy itemsinto destination group'sfolder (if needed), and click Add.

The Gener at ed Code folder is added to the project in the Project Navigator.

12. Right-click the <Pr oj ect Nane> folder under the project, select Add Filesto
" <ProjectName>", navigate to the <Pr oj ect Nane/ Pr oj ect Nanme>/ | i bs/
Debug- i phonesi nul at or directory, selectthe l i bclientrt. a,
I i bSUPQhj . a,and | i bMO. a libraries, unselect Copy itemsinto destination group's
folder (if needed), and click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. For example,
if you are building for a debug version of the simulator, navigate to | i bs/ Debug-
i phonesi mul at or/ to add the libraries.

13. Right-click the project root, select New Group, and then rename it to Resour ces.

14. Right-click the Resour ces folder, select Add Filesto " <ProjectName>" , navigate to
thei ncl udes directory, selectthe Set t i ngs. bundl e file, unselect Copy itemsinto
destination group'sfolder (if needed), and click Add.

The bundle Set t i ngs. bundl e is added to the project in the Project Navigator.

This bundle adds resources that lets iOS device client users input information such as
server name, server port, user name and activation code in the Settings application.

15. Click the project root and then, in the middle pane, click the <ProjectName> project.

a) In the right pane click the Build Settings tab, then scroll down to the Sear ch Paths
section.

b) Enter the location of your i ncl udes folder (" $SRCROOT/ <Pr oj ect Nane>/
i ncl udes/ **") inthe Header Search Pathsfield.
$SRCROOT is a macro that expands to the directory where the Xcode project file
resides.

16. Add the following frameworks from the SDK to your project by clicking on the active
target, and selecting Build Phase > Link Binary With Libraries. Click on the + button
and select the following binaries from the list:

* AddressBook.framework
» CoreFoundation.framework
e QuartzCore.framework

e Security.framework

« libicucore.A.dylib
 libstdc++.6.dylib

e libz.1.2.3.dylib

12

Sybase Unwired Platform

Development Task Flows

17. Inthe Build Settings, modify the library search path to remove the st dc path from the list
of search paths.

18. Select Product > Clean and then Product > Build to test the initial set up of the project. If
you have correctly followed this procedure, then you should receive a Build Succeeded
message.

19. Write your application code to reference the generated MBO code. See the Developer
Guide for iOS for information about referencing the iOS Client Object API.

Developing Applications in the Xcode IDE

After you import Unwired WorkSpace projects (mobile application) and associated libraries
into the iOS development environment, use the iOS Client Object API to create or customize
your device applications.

This section describes how to customize device applications in the Xcode IDE using Sybase
provided APIs.

Generating HeaderDoc from Generated Code

Once you have generated Objective-C code for your mobile business objects, you can generate
HeaderDoc (HTML reference information) on the Mac from the generated code. HeaderDoc
provides reference information for the MBOs you have designed. The HeaderDoc will help
you to programmatically bind your device application to the generated code.

1. Navigate to the directory containing the generated code that was copied over from the
Eclipse environment.

2. Run:

>header doc2ht M —o Cener at edDocDi r Gener at edCodeDi r
>gat her header doc Gener at edDocDi r

You can open the file Qut put Di r/ mast er TOC. ht m in a Web browser to see the
interlinked sets of documentation.

Note: You can review complete details on HeaderDoc in the HeaderDoc User Guide, available
from the Mac OS X Reference Library at Attp.//developer.apple.com/mac/library/navigation/
index.html.

Configuring an Application to Synchronize and Retrieve MBO Data

To configure an application to synchronize and retrieve MBO data you must start the client
engine, configure the physical device settings, listen for messages from the server, and
subscribe to a package.

1. Register a callback.

Developer Guide: iOS Native Applications 13

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html

Development Task Flows

The client framework uses a callback mechanism to notify the application when messages
arrive from the server. Some examples of events that are sent include login success or
failure, subscription success or failure, or a change to a MBO.

Register the callback object by executing:

MyCal | backHandl er* theCal | backHandl er = [MyCal | backHandl er newj ;

[Sanpl eApp_Sanpl eAppDB
regi st er Cal | backHandl er: t heCal | backhandl er] ;

Note: See Developer Guide for iOS > Reference > iPhone Client Object APl > Utility
APIs > Callback Handlers for more information on the Callback Handler interface. See
Developer Guide for iOS > Development Task Flows > Developing Applications in the
Xcode IDE > Referencing the iPhone Client Object APffor more information on a sample
application which includes a callback function.

. Make sure the client settings have been entered, and then create the database and call

st art Backgr oundSynchr oni zat i on.

Before performing any action with the Client Object API, make sure the application’s
connection information has been entered for this application in Set t i ngs. app. To do
this, call [SUPMessaged i ent provi si oned] . This method returns YES if the
required information is available, and NO otherwise.

If you can connect, create a local database by calling [Sanpl eApp_Sanpl eAppDB
cr eat eDat abase] . If a local database already exists it will not be overwritten. Next,
call st art Backgr oundSynchr oni zat i on. You must perform these calls before
you call [SUPMessageC i ent start] toconnectto the Unwired Server.

if ([SUPMessageC ient provisioned]) {
[Sanpl eApp_Sanpl eAppDB cr eat eDat abase] ;
[Sanpl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zati on] ;

. Start the Sybase Unwired Platform client engine by connecting to the Unwired Server.

[SUPMessageClient start];
}

If the messaging client is able to connect to the Unwired Server, the callback handler will
receive a notification.

. After receiving notification that the application has successfully connected to the server to

which the application has been deployed, when the application sends a request, the Client
Object API puts the current user name and credentials inside the message for the Unwired
Server to authenticate and authorize. The device application must set the user name and
credential before sending any requests to the Unwired Server. This is done by calling the
begi nOnl i neLogi n APL.

[Sanpl eApp_Sanpl eAppDB begi nOnl i neLogi n: @ supUser "
passwor d: @ s3pUser"];

14

Sybase Unwired Platform

Development Task Flows

If login to the Unwired Server was successful the callback handler will receive a
notification. Any security failure results in a rejection of the request and notification
through the callback handler.

5. After receiving notification that login was successful, subscribe to the database.
[Sanpl eApp_Sanpl eAppDB subscri be] ;

If the subscription request was accepted the callback handler will receive a notification. If
successful, the Unwired Server sends out a push message to the client application
containing the application data. The Unwired Server also sends an acceptance message.
The client receives the push and acceptance messages.

The client framework notifies the application of the result of success through an
onSubscri beSuccess callback, if a callback function is registered. If an error occurs
in the subscription process, the Unwired Server sends out a rejection message for the
subscription. The client receives a subscription request result notification message with
failure from the Unwired Server, and may resubmit the subscription request.

The client framework notifies the application of the result of failure through the
onSubscri beFai | ur e callback, if a callback function is registered.

6. The first time the application launches and successfully connects to the server, an initial
import is done to populate the local database. When an entity is sent to the client the client
framework notifies the application through the onl npor t : notification. When all of the
initial objects have been sent, the client framework notifies the application through the
onl mport Success notification.

On subsequent launches of the application the client must ask the server to send any
updates that happened since the last time the application was run.

Since a subscribe request is only sent out once, no matter how many times the
subscri be method is called on the database, you can take advantage of this in the
onLogi nSuccess callback.
- (voi d) onLogi nSuccess: (NSNot i fi cati on *) obj
if (![Sanpl eApp_Sanpl eAppDB i sSubscri bed]) {
[Sanpl eApp_Sanpl eAppDB subscri be] ;

} else {
[Sanpl eApp_Sanpl eAppDB begi nSynchr oni ze] ;

}

Managing the Background State

To allow your application to continue to safely run when it goes into the background, you must
implement code in its AppDel egat e class to ensure that the connection to the server shuts

Developer Guide: iOS Native Applications 15

Development Task Flows

down gracefully when going into the background, and starts up when the application becomes
active again.

This isimportant because in iOS, when an application goes into the background, it can have its
network sockets invalidated, or the application may be shut down at any time. For correct
behavior of the AppDel egat e connection, the connection needs to be stopped when in
background, and only started again when the application goes back to the foreground.

You must implement two appDel egat e methods:
applicationWI!| Resi gnActiveandapplicati onDi dBeconeActi ve.

Note: Theappl i cati onDi dBeconeAct i ve method is also called when the application
first starts up, where most applications would have code already to register the application and
start the AppDel egat e connection. This example code uses a boolean

wasPr evi ousl yl nBackgr ound so that the appl i cat i onDi dBeconeActi ve
method can detect whether it is called on coming out of the background or is called on a first
startup.

Important: This example code does not work unless you have a patch. Contact the support
organization to obtain the appropriate patch.

BOOL wasPrevi ousl yl nBackground = NO
- (void)applicationWI| ResignActive: (U Application *)application {
/*

Sent when the application is about to nove from active to
inactive state. This can occur for certain types of tenporary
interruptions (such as an i ncom ng phone call or SMS message) or when
the user quits the application and it begins the transition to the
background state.

Use this method to pause ongoi ng tasks, disable tiners, and
throttl e down OpenG ES frame rates. Games should use this nmethod to
pause the gane.

*/

i f ([SUPMessageClient status] != STATUS_NOT_START)
[SUPMessageC i ent stop];

wasPr evi ousl yl nBackground = YES;

}
- (void)applicationDi dBeconeActive: (Ul Application *)application {
/*

Restart any tasks that were paused (or not yet started) while the
application was inactive. If the application was previously in the
background, optionally refresh the user interface.

*/

i f (wasPreviousl yl nBackgr ound)

[SUPMessageCl i ent start];

16

Sybase Unwired Platform

Referencing the iOS Client Object API

Development Task Flows

Here is an example application that references the Client Object API generated for a mobile

application project in the Eclipse environment.

The application uses two mobile business objects based on the Customer and SalesOrder
tables in the sanpl edb Sybase SQL Anywhere® (ASA) database. A one-to-many
relationship exists between the two mobile business objects.

The following figure illustrates the MBO schema that represents the relationship between the

mobile business objects.

Figure 1: MBO Schema for Mobile Business Object Relationship

=R
Attributes (9)
& fname : STRING(15)
&) Iname : STRING(20)
) address : STRING(35)

Device Application Example Code
The example code consists of five files.

ity : STR,
% :::t:t:srmgg < 22> @) fin_code_id : STRING(2)
@) zip : STRING(10) &) region : STRING(7)
{2 phone : STRING(12) customerSalesOrders @ 53!35-1';‘1; {INT
&) company_name : STRING(3S) & +id: L
@ +id: INT Operations (3)
Operations (3) i update()
3 update() g3k delete()
i3 delete() g create()
£ create()

Attributes (6)
) cust_id : INT
&) order_date : DATE

* main.m —sets up settings for the Unwired Server and calls the start method.

» CallbackHandler.h —header file for the callback handler code.

* CallbackHandler.m — Objective-C source file for the callback handler.

* SampleApp.h —header file with method definitions that call the Client Object API.

* SampleApp.m — Objective-C source file.

main.m Example Code
main.m contains this example code.

#import <UKit/UKit.h>
#i mport " Sanpl eApp. h"

int main(int argc, char *argv[]) {

Developer Guide: iOS Native Applications

17

Development Task Flows

NSAut or el easePool *pool = [[NSAutorel easePool alloc] init];

int retVal = U ApplicationMain(argc, argv, nil, nil);
[pool rel ease];
return retVal;

}

CallbackHandler.h Example Code
CallbackHandler.h contains this example code.

#i nport <Foundati on/ Foundati on. h>
#i mport " SUPDef aul t Cal | backHandl er. h"

@nterface Call backHandl er : SUPDef aul t Cal | backHand!| er

- (void)onRepl ayFai | ure: (i d)theQbj ect;
- (void)onRepl aySuccess: (i d)t heObj ect;
- (void)onLogi nFai l ure;

- (void)onLogi nSuccess;

- (void)onSubscri beSuccess;

- (void)onSubscri beFai |l ure;

- (void)onl nport Success;

(voi d) onConnect i onSt at usChange:
(SUPDeV| ceConnecti onSt at us) connSt at us:
(SUPDevi ceConnecti onType) connType: (i nt 32_t) err Code:
(NSString*)errString;

@nd

CallbackHandler.m Example Code
CallbackHandler.m contains this example code.

CallbackHandler.m

#i nmport " Cal | backHandl er. h"
#i mport " Sanpl eApp_Sanpl eAppDB. h"
#i mport " Sanpl eApp. h"

@ npl enent ati on Cal | backHandl er

(voi d) onRepl ayFai | ure: (i d)theObj ect

MBOLog(@ ")
MBOLogError (@ Repl ay Fail ed");
MBOLog(@ ")
}
- (voi d)onRepl aySuccess: (i d)t heObj ect
{
MBOLog(@ ")

MBOLog(@ Repl ay Successful ");

18 Sybase Unwired Platform

Development Task Flows

} NBG_Og(@) ========——=m===—===r=—r—rr")
- (void)onLogi nFai l ure
{
|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLogError (@ Logi n Fail ed");
} NBC]_og(@ :::::::::::::::::::::::::::::") ;
- (void)onLogi nSuccess
{
NBG_Og(@) S========—=m===—===—=—r=—rr") :
MBOLog(@ Logi n Successful ");
NB(]_Og(([@EE=S============= s —="=4) ;

[Sanpl eApp per fornBSel ect or OnMai nThr ead: @el ect or (subscri beToDB)
withObject:nil waitUntil Done: NQ ;

}

- (void)onSubscri beSuccess

{
NBO_Og(@ e e e) ,
MBOLog(@ Subscri be Successful ");
NBG_Og(@ S e o oo o e e o o e oo o) ;

|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLogEr r or (@ Subscri be Fail ed");
NBC]_og((@E=S=S========c===c===c==--==" =4) ;
}
- (void)onl mport Success
{
NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u)
MBOLog(@ | nport Ends Successful | y");
NB(]_Og(([@E=S============== s ="=4) ;

[Sanpl eApp per fornSel ect or OnMai nThr ead: @el ect or (r unAPI Test s)
withObject:nil waitUntil Done: NQ ;
}
- (void)onConnecti onSt at usChange:
(SUPDevi ceConnect i onSt at us) connSt at us:
(SUPDevi ceConnect i onType) connType: (i nt 32_t) err Code:
(NSString*)errString

if (connStatus == CONNECTED _NUM {

|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLogEr ror (@ Message client started");
NBC]_og(@) =============================") ;

[Sanpl eApp per for nSel ect or OnMai nThr ead: @el ect or (begi nLogi n)
withObject:nil waitUntil Done: NJ ;
}

Developer Guide: iOS Native Applications 19

Development Task Flows

}
@nd

SampleApp.h Example Code
SampleApp.h contains this example code.

SampleApp.h

@nterface Sanpl eApp: NSObj ect

{
}

+ (voi d) runAPI Test s;
/*Test functions that call client bject APlIs */

+(voi d) Testfi nd;

+(voi d) Test Synchr oni zati onPar anet ers;
+(voi d) Test Personal i zati onPar anet ers;
+(voi d) Test Cr eat €;

+(voi d) Test Updat e;

+(voi d) Test Del et e;

+(voi d) print Logs;

+(voi d) Pri nt Cust omer Sal esOr der Dat a;

@nd

SampleApp.m Example Code
SampleApp.m contains this example code.

SampleApp.m

#i nport " Sanpl eApp. h"

#i mport " Sanpl eApp_Cust orrer . h"

#i mport " Cal | backHandl er. h"

#i nport " Sanpl eApp_Sanpl eAppDB. h*

#i mport " Sanpl eApp_LogRecor dl npl . h"

#i mport " Sanpl eApp_Sal es_order. h"

#i mport " Sanpl eApp_Local KeyGener at or. h"
#i nport " Sanpl eApp_KeyGener at or. h"

#i mport " SUPMessageC ient.h"

@ npl enent ati on Sanpl eApp
+(voi d) subscri beToDB

[Sanpl eApp_Sanpl eAppDB subscri be] ;

+(voi d) begi nLogi n

i f ([Sanpl eApp_Sanpl eAppDB get Onl i neLogi nStatus].status !=
SUPLogi nSuccess) {
[Sanpl eApp_Sanpl eAppDB begi nOnl i neLogi n: @ supAdm n"
passwor d: @ s3pAdmni n"];

20 Sybase Unwired Platform

Development Task Flows

}

}

+(voi d) runAPI Test s

{
|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLog(@ Test Per sonal i zat i onPar anet ers") ;
NBC]_og((@E=S=S========c===c===c==--==" =4) ;
[Sanpl eApp Test Personal i zati onPar anet er s] ;
NB(]_Og(([@EE=S============= s —="=4) ;
MBOLog(@ Test Synchr oni zat i onPar anmet ers") ;
NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u)
[Sanpl eApp Test Synchroni zat i onPar anet er s] ;
NBC]_og((@E=S=S========c===c===c==--==" =4) ;
MBOLog(@ TestfindAl I ");
|\/BO_og(@ :::::::::::::::::::::::::::::") :
[Sanpl eApp Testfind];
NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u) :
MBOLog(@ Test Create") ;
NB(]_Og(([@EE=S============= s —="=4) ;
[Sanpl eApp Test Create];
|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLog(@ Test Updat e") ;
NBC]_og((@E=S=S========c===c===c==--==" =4) ;
[Sanpl eApp Test Updat e] ;
NB(]_Og(([@EE=S============= s —="=4) ;
MBOLog(@ Test Del ete") ;
NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u) :
[Sanpl eApp Test Del et e] ;
NBC]_og(@) =============================") ;
MBOLog(@ Pri nt Logs");
|\/BO_og(@ :::::::::::::::::::::::::::::") :

[Sanpl eApp printLogs];

[Sanpl eApp_Sanpl eAppDB unsubscri be] ;
}

+(voi d) Pri nt Cust orer Sal esOr der Dat a
{

Sanpl eApp_Cust omrer *onecustoner = nil;
SUPQhj ectList *cl = nil;

MBOLog(@ Cust oner data is:");

cl = [Sanpl eApp_Custoner findAl];
if(cl & [cl lengthl] > 0)

{

int i;
for(i=0; i<[cl length]; i++)
{

onecustomer = [cl itemi];
i f (onecustoner) ({

Developer Guide: iOS Native Applications 21

Development Task Flows

MBOLog(@ %@ %@ %@ %@ %@, onecust oner. fnane,
onecust oner . | nane, onecust oner . addr ess, onecust oner. city,
onecust oner. state);

SUPQhj ect Li st *sl = [onecustoner sal esOrders];

if(sl)

if([sl length] > 0)
MBOLog(@ This custoner's sales orders are");
el se
MBOLog(@ This customer has no sales orders");
for (Sanpl eApp_Sal es_order *so in sl)
MBOLog(@ %@ %@
%", so. order _dat e, so. regi on, so. sal es_rep);
}
}
}
}
}

/***Retrieve data based on the synchronization paraneter val ue.***/
+ (voi d) Test Synchroni zat i onPar anet er s

Sanpl eApp_Cust orrer Synchroni zat i onPar anet er s* sp
= [Sanpl eApp_Cust oner get Synchroni zati onPar anet er s] ;

sp.size = 3;

Sp.user = @userone”;
sp.city = @Ral ei gh";
[sp save];

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 1];
}

[sel f PrintCustonerSal esOrderDat a] ;

[******Retrjeve data based on the personalization paraneter
val ue*****/

+ (void) Test Personal i zati onPar anet er s
Sanpl eApp_Per sonal i zati onParanmeters *pp = nil;
pp = [Sanpl eApp_Sanpl eAppDB get Per sonal i zat i onPar anet er s] ;
pp. PKCty = @New York";
[pp save];
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepForTi nel nterval : 1];

[sel f PrintCustomnerSal esO der Dat a] ;

22 Sybase Unwired Platform

Development Task Flows

[****x***Print | ogs record data from Logrecordl npl *****/
+(void)printLogs

NBO_og(@******* pl’lntLOgS *******");

SUPQuery *query = [SUPQuery getl nstance];

SUPQhj ect Li st *l oglist = [Sanpl eApp_Sanpl eAppDB
get LogRecor ds: query] ;

for(id oin loglist)

Sanpl eApp_LogRecordl npl *1 og = (Sanpl eApp_LogRecordl npl *) o;
MBCOLog(@ Log Record % | u: Operation = %@ Tinmestanp = %@ MBO =
%@ key = %@ message = %@,
| og. messagel d, | og. operati on, [SUPDateTi nelUti |
toString:log.tinestanp], | og. conponent, | og. entityKey, | og. message);

}

/

************************************fi nd***************************
*********/

[***Find all the custonmer records and print the first record to the
consol e*/

+(voi d) Testfind

Sanpl eApp_Cust omer *onecustoner = nil;
SUPChj ect Li st *cl = [Sanpl eApp_Customer findAll];
if(cl & [cl lengthl] > 0)
{
onecustomer = [cl itemO0];
i f (onecustomer)

MBCOLog(@t he full custoner record data is : %@, onecustoner);

}
}

/*****************************O-eate
***********************************/

[*****Create new custonmer and sal es order records in the |ocal
dat abase
and call submtPending to send the changes to the server *****/

+(voi d) Test Creat e
{

| ong keyl = [Sanpl eApp_KeyGener at or generatel d];

| ong key2 = [Sanpl eApp_KeyGener at or generatel d];

[Sanpl eApp_KeyGener at or submi t Pendi ngQper at i ons] ;

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 1];
}
Sanpl eApp_Custonmer *c = [[Sanpl eApp_Custoner alloc] init];

[c autorel ease];
c.id_ = [Sanpl eApp_Local KeyGener at or generatel d];

Developer Guide: iOS Native Applications 23

Development Task Flows

. fnane @ Dorot hi";
. | nanme @ Scranton";
.address = @One Money Street";
.city = @smallVille";
.state = @M";
.zip = @97429";
. phone = @2112222345";
.conpany_nane = @i Anywhere";
c.surrogat eKey = keyl;

SUPOOJ ectList *orderlist = [Sanpl eApp_Sal es_orderLi st
get | nst ance] ;

OO0OO0O0O0O000

Sanpl eApp_SaI es_order *ol = [[Sanpl eApp_Sal es_order alloc] init];

[0l autorel ease];

0l.id_ = [Sanpl eApp_Local KeyGener at or generateld];
0l.order_date = [NSDate date];

ol.fin code id = @rl1";

0l.region = @Eastern”;

0l.sal es_rep = 902;

0l. surrogat eKey = key2;

[ol setCustoner:c];

[orderlist add:ol];

[c setSalesOrders:orderlist];

[c save];

[c refresh];

[c subm t Pending];

assert (c. pendi ng == YES);

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 1];

}
}

/******************************Update
*********************************/

[****Updat e an exi sting custoner and sales record in the device
dat abase
and call subm tPending to send the changes to the server.

**********/

+ (void) Test Updat e
{

SUPQhj ect Li st *cl = [Sanpl eApp_Custoner findAll];
Sanpl eApp_Cust orer *onecustomer = [cl item0];

Sanpl eApp_Sal es_order *order = [onecustomner.salesOrders itemO0];

onecust oner. fname = @ Johnny";

order.region = @ Sout h";

[onecust omer save];

[onecust omer refresh];

[order refresh];

[onecust omer subm t Pendi ng] ;

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 1];

24

Sybase Unwired Platform

Development Task Flows

/***************************** ml ete ***************************/

/*Del ete an existing record fromthe database and call
submi t Pending to send the changes to the server.****/

+ (void) TestDel ete

SUPQhj ect Li st *sl = [Sanpl eApp_Sal es_order findAI];
Sanpl eApp_Sal es_order *order = [sl item0];

[order delete];

[order. customer submitPending];

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 1];

}
}

@nd

Localizing an iOS Application

In i0S, you use Interface Builder, which is part of Xcode, to define and layout controls in a
view of the user interface. These descriptions are stored in Xcode Interface Builder (XIB)
files. Once you have the English version of the layout defined you will need to create an XIB
file for each language you want to support in your user interface.

Localizing Menus and Interfaces
Localize the menus and interfaces for an iOS application by selecting an XIB file to localize,
and a language for localization.

1. Select the Xcode Interface Builder (XIB) file you want to localize in the Project Explorer.

2. Openthe File Inspector by selecting View > Utilities> File I nspector. The File Inspector
appears in a pane of the right of the Xcode window.

3. Inthe Localization section of the File Inspector pane, click the + button at the bottom of the
section.
This step makes the XIB file localizable by moving it into a folder named en. | pr oj .

4. Click the + button again.
A menu appears with a list of languages.

5. Select the language you want to use in localizing the XIB file.

The Localization section of the File Inspector displays the languages to which the file has
been localized (in the example, French and English).

The file's icon in the Project Explorer has a disclosure arrow next to it. Click the arrow to
reveal the contents of the file. The Project Explorer displays one copy of the XIB file for
each language you have chosen.

6. Double-click on each icon to open it in a new tab or new window.

Developer Guide: iOS Native Applications 25

Development Task Flows

7.

Make the required changes to the interface elements in the language-specific XIB file, and

then save the file.

Verify that the localized XIB files are added to the list of files copied into the application's

bundle. If not:

a) Click the project icon in the Project Explorer, and then click the Target icon.

b) Select the Build Phases tab.

c) Expand the Copy Bundle Resources section, and then click the + button.

d) Select the additional XIB files from the <I anguage>. | pr oj folders and click
Add.

Localizing Embedded Strings

Localize embedded strings that are used in alert and dialog windows.

For each user interface string in your code, set the text property to a literal string using the
NSLocal i zedSt ri ng macro.

U_sle;I nterfacelLabel .text = NSLocalizedString(@ Di splay text",

ni ;

Generate the. st ri ngs files from all the NSLocal i zedSt ri ng references in your
application. by using the genst ri ngs command line program. See Apple
documentation for command syntax and parameters.

This command processes files in your directory hierarchy and creates. st r i ngs files for
themin the en. | pr oj directory.

Provide your translator a copy of the . st ri ngs file. The translator should translate the
right side of each of the . st ri ngs file entries.

Validating Localization Changes

Test that your changes appear in your application.

4.

Launch the iOS simulator then launch Settings.app.
Select General > International > Language.

Select the language you want to test.
The simulator restarts in the new language.

Launch your application and verify that it is localized.

Preparing Applications for Deployment to the Enterprise

After you have created your client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

Note: Developers can review complete details in the iPhone OS Enterprise Deployment Guide
at http.//manuals.info.apple.com/en US/Enterprise_Deployment Guide.pdf.

26

Sybase Unwired Platform

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

© 0k~ WD

Development Task Flows

Sign up for the iOS Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

Create a certificate request on your Mac through Keychain.

Log in to the Developer Connection portal.

Upload your certificate request.

Download the certificate to your Mac. Use this certificate to sign your application.
Create an ApplD.

Verify that your i nf 0. pl i st file has the correct ApplID and application name. Also, in

Xcode, right-click Targets> <your_app_target>and select Get I nfoto verify the AppID
and App name.

Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

Create an Xcode project ensuring the bundle identifier corresponds to the bundle identifier
in the specified App ID. Ensure you are informed of the "Product Name" used in this
project.

Apple Push Notification Service Configuration

The Apple Push Notification Service (APNS) notifies users when information on a server is
ready to be downloaded.

Apple Push Notification Service (APNS) allows users to receive notifications. APNS:

Must be set up and configured by an administrator on the server.
Must be enabled by the user on the device.

Can be used with any device that supports APNS. Some older Apple devices may not
support APNS.

Cannot be used on a simulator.

Preparing an Application for Apple Push Notification Service

There are several development steps to perform before the administrator can configure the
Apple Push Notification Service (APNS).

Note: Review complete details in the /Phone OS Enterprise Deployment Guide at http.//
manuals.info.apple.com/en US/Enterprise_Deployment Guide.pdf.

1

2.

Sign up for the iOS Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

Configure your application to make use of Keychain as persistent storage for the database
encryption key.

Developer Guide: iOS Native Applications 27

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

Development Task Flows

3. Create an App ID and ensure that it is configured to use Apple Push Notification Service

(APNS).
Do not use wildcard characters in App IDs for iPhone applications that use APNS.

Verify thatyouri nf o. pl i st file has the correct App ID and application name. Also, in
Xcode, right-click Targets > <your_app_target> and select Get I nfo to verify the App
ID and App name.

. Create and download an enterprise APNS certificate that uses Keychain Access in the Mac

OS. The information in the certificate request must use a different common name than the
development certificate that may already exist. The reason for this naming requirement is
that the enterprise certificate creates a private key, which must be distinct from the
development key. Import the certificate as a login Keychain, not as a system Keychain.
Validate that the certificate is associated with the key in the Keychain Access application.
Get a copy of this certificate.

. Create an enterprise provisioning profile and include the required device IDs with the

enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

. Create the Xcode project, ensuring the bundle identifier corresponds to the bundle

identifier in the specified App ID.

. To enable the APNS protocol, you must implement several methods in the application by

adding the code below:

Note: The location of these methods in the code depends on the application; see the APNS
documentation for the correct location.

[/ Enabl e APNS
[[Ul Appl i cation sharedApplication]
regi st er For Renot eNot i fi cati onTypes:
(Ul Renot eNoti fi cati onTypeBadge |
U Renot eNot i fi cati onTypeSound |
U Renot eNoti ficati onTypeAlert)];

* Cal | back by the systemwhere the token is provided to the client
application so that this

can be passed on to the provider. In this case,

“devi ceTokenFor Push” and “set upFor Push”

are APls provided by SUP to enabl e APNS and pass the token to SUP
Server

- (void)application: (U Application *)app
di dRegi st er For Renot eNot i fi cati onsW t hDevi ceToken:
(NSDat a *) devToken

MBOLogl nfo(@In did register for Renote Notifications",
devToken) ;

[SUPPushNot i fi cati on setupFor Push: app] ;

[SUPPushNot i fi cati on devi ceTokenFor Push: app
devi ceToken: devToken] ;

}

28

Sybase Unwired Platform

Development Task Flows

* Call back by the systemif registering for renote notification
fail ed.

- (void)application: (U Application *)app
di dFai | ToRegi st er For Renot eNot i fi cati onsWt hError:
(NSError *)err {
MBOLogError (@Error in registration. Error: %@, err);

/1 You can alternately inplenment the pushRegistrationFailed API:

/1 +(void)pushRegi strationFail ed: (U Application*)application
errorinfo: (NSError *)err

* Cal | back when notification is sent.

- (void)application: (U Application *)app
di dRecei veRenpt eNoti fi cati on: (NSDi cti onary *)
user|nfo

MBCOLogl nfo(@ I n did receive Renote Notifications", userlnfo);

You can alternately inplenment the pushNotification API
+(voi d) pushNot i fication: (U Application*)application
noti fyData: (NSDi ctionary *)userlnfo

Provisioning an Application for Apple Push Notification Service

Use Apple Push Notification Service (APNS) to push notifications from Unwired Server to
the iOS application. Notifications can include badges, sounds, or custom text alerts. Device
users can customize which notifications to receive through Settings, or turn them off.

Each application that supports Apple Push Notifications must be listed in Sybase Control
Center with its certificate and application name. You must perform this task for each
application.

1. Confirm that the IT department has opened ports 2195 and 2196, by executing:
t el net gat eway. push. appl e. com 2195
tel net feedback. push. appl e.com 2196

If the ports are open, you can connect to the Apple push gateway and receive feedback
from it.

2. Copy the enterprise certificate (* . p12) to the computer on which Sybase Control Center
has been installed. Save the certificate in Unwi redPl atform I nstal I Di r
\ Ser ver s\ Messagi ngSer ver\ bi n\.

3. In Sybase Control Center, expand the Server sfolder and click Server Configuration for
the primary server in the cluster.

Developer Guide: iOS Native Applications 29

Development Task Flows

4.

In the M essaging tab, select Apple Push Configuration, and:
a) Configure Application name with the same name used to configure the product name
in Xcode. If the certificate does not automatically appear, browse to the directory.

b) Change the push gateway information to match that used in the production
environment.

¢) Restart Unwired Server.
Verify that the server environment is set up correctly:
a) OpenUnwi redPl atform I nstallDir\Servers\Unw redServer
\' | ogs\ APNSPr ovi der .
b) Openthe log file that should now appear in this directory. The log file indicates whether
the connection to the push gateway is successful or not.
Deploy the application and the enterprise distribution provisioning profile to your users’
computers.
Instruct users to use iTunes to install the application and profile, and how to enable
notifications. In particular, device users must:
» Download the Sybase application from the App Store.
* In the iPhone Settings app, slide the Notifications control to On.

Verify that the APNS-enabled iOS device is set up correctly:

a) Click Device Users.

b) Review the Device ID column. The application name should appear correctly at the
end of the hexadecimal string.

c) Select the Device ID and click Properties.

d) Check that the APNS device token has been passed correctly from the application by
verifying that a value is in the row. A device token appears only after the application
runs.

Test the environment by initiating an action that results in a new message being sent to the
client.

If you have verified that both device and server can establish a connection to APNS
gateway, the device will receive notifications and messages from the Unwired Server,
including workflow messages, and any other messages that are meant to be delivered to
that device. Allow a few minutes for the delivery or notification mechanism to take effect
and monitor the pending items in the Device Users data to see that the value increases
appropriately for the applications.

10. To troubleshoot APNS, use the Unwi r edPl atform I nstal | Di r\\ Servers

\ Unwi redSer ver\ | og\ APNSPr ovi der log file. You can increase the trace output
by editing SUP_Hone\ Ser ver s\ Messagi ngSer ver\ Dat a

\ TraceConfi g. xm and configuring the tracing level for the APNSProvider module
to debug for short periods.

30

Sybase Unwired Platform

Reference

Reference

This section describes the iOS Client Object API. Classes are defined and sample code is
provided.

I0S Client Object API

The Sybase Unwired Platform iOS Client Object API consists of generated business object
classes that represent the mobile business object model built and designed in the Unwired
WorkSpace development environment.

The iOS Client Object APl is used by device applications to synchronize and retrieve data and
invoke mobile business object operations. The iOS Client Object API supports only message-
based synchronization.

Connection APIs
The iOS Client Object API contains classes and methods for managing local database
information, and managing connections to the Unwired Server through a synchronization
connection profile.

SUPConnectionProfile
The SUPConnect i onPr of i | e class manages local database information. You can use it
to set the encryption key, which you must do before creating a local database.

SUPConnecti onProfile* cp = [Sanpl eApp_Sanpl eAppDB
get Connecti onProfile];

[cp set EncryptionKey: @ Your key"];

[Sanpl eApp_Sanpl eAppDB cl oseConnecti on] ;

If the encryption key is changed, or set in the connection profile, thecl oseConnecti on()
API should be immediately called.

Improving Device Application Performance with Multiple Database Reader
Threads

The maxDbConnect i ons property improves device application performance by allowing
multiple threads to read data concurrently from the same local database.

Note: Message based synchronization clients do not support a single write thread
concurrently with multiple read threads. That is, when one thread is writing to the database, no
read threads are allowed access at the same time.

Developer Guide: iOS Native Applications 31

Reference

In atypical device application such as Sybase Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry displays, and
loads the details for that entry.

Prior to the implementation of maxDbConnect i ons, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) waits for any previous operation to finish before the next is allowed to proceed.
In the list view to detail view example, when the background thread is loading the entire list,
and a user selects the details of one entry to display, the loading of details for that entry must
wait until the entire list is loaded, which can be a long while, depending on the size of the
list.

You can specify the amount of reader threads using maxDbConnect i ons. The default
value is 4.

Implementing maxDbConnections

The ConnectionProfile class in the persistence package includes the maxDbConnect i ons
property, that you set before performing any operation in the application. The default value
(maximum number of concurrent read threads) is two.

SUPConnecti onProfile *cp = [MyPackage_M/PackageDB
get Connecti onProfile];

To allow 6 concurrent read threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the application.

cp. maxDbConnecti ons = 6;

SynchronizationProfile

Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

SUPConnecti onProfil e* cp = [Sanpl eApp_Sanpl eAppDB

get Synchroni zati onProfile];
[cp set Domai nNane: @defaul t"];

Authentication
The generated package database class provides a valid synchronization connection profile.
You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

» of flineLogi n—authenticates against the most recent successfully authenticated
credentials. Once the client connects for the first time, the server validated username and
password are stored locally. offlineLogin verifies with the client database if those

32

Sybase Unwired Platform

Reference

credentials are valid. The method returns YES if the username and password are correct,
otherwise the method returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the the Unwired Server and you want to access the client application
locally.

* begi nOnl i neLogi n —sends the login request asynchronously (it returns without
waiting for a server response). See Reference: Administration APIs > Reference > iPhone
Client Object API > Synchronization APIS.

Message-Based Synchronization APIs
The message-based synchronization APIs enable a user application to subscribe to a server
package, to remove an existing subscription from the Unwired Server, to suspend or resume
requests to the Unwired Server, and to recover data related to the package from the server.

beginOnlineLogin
Typically, the generated package database class already has a valid synchronization
connection profile. You can login to the Unwired Server with your username and credentials.

* + (void)beginOnlineL ogin:(NSString *)user password:(NSString *)pass—
begi nOnl i neLogi n sends a message to the Unwired Server with the username and
password. The Unwired Server responds with a message to the client with the login
success or failure. This method checks the SUPMessaged i ent status and
immediately fails if the status is not STATUS _START_CONNECTED. Make sure the
connection is active before calling begi nOnl i neLogi n, or implement the
onLogi nFai | ur e callback handler to catch cases where it may fail.

[Sanpl eApp_Sanpl eAppDB begi nOnl i neLogi n: @ supUser "
passwor d: @ s3pUser"];

Setting Synchronization Parameters

Synchronization parameters let an application change the parameters used to retrieve data
from an MBO during a synchronization session. A package may or may not have
synchronization parameters, depending on whether you need to partition data. Change the
synchronization parameter to affect the data that is retrieved.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server; you need not call submi t Pendi ng after the
save. Consider the "Customer" MBO that has a "cityname" synchronization parameter.

This example shows how to retrieve customer data corresponding to Kansas City.

Cust oner Synchroni zati onParaneters *sp = [Custoner
get Synchroni zat i onPar anet er s] ;

sp.size = 3;

sp.user = @testuser";

sp.citynane = @Kansas Gty";

Developer Guide: iOS Native Applications 33

Reference

[sp save];
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepForTi nel nterval : 0. 2] ;

Subscribe Data
The subscribe method allows the application to subscribe to a server package.

+(void) subscribe

The preconditions for the subscribe are that the mobile application is compiled with the client
framework and deployed to a mobile device together with the Sybase Unwired Platform client
process. The device application has already configured Unwired Server connection
information. Authentication credentials must also be set, using either the

begi nOnl i neLogi norof flineLogi n APlIs.

A subscription message is sent to the Unwired Server and the application receives a
subscription request result notification from the Unwired Server.

[Sanpl eApp_Sanpl eAppDB subscri be] ;

Unsubscribe Data
Theunsubscr i be method allows the application to remove the existing subscription from
server. The device application must already have a subscription with the server.

+(void) unsubscribe

On success, an unsubscription message is sent to the Unwired Server and the application
receives a subscription request result notification from the Unwired Server as a natification.
The data on the local database is cleaned.

On failure, the client application receives subscription request result notification from server
as notification with a failure message.

[Sanpl eApp_Sanpl eAppDB unsubscri be] ;

Suspend Subscription
The suspendSubscri pt i on operation allows a device application to send a suspend
request to the Unwired Server. This notifies the server to stop delivering data changes.

+(void) suspendSubscription
[Sanpl eApp_Sanpl eAppDB suspendSubscri ption];

Synchronize Data
The begi nSynchr oni ze methods send a message to the Unwired Server to synchronize
data between the client and the server.

+(void) beginSynchronize

This method is used to synchronize all data.

34

Sybase Unwired Platform

Reference

+(void) beginSynchronize:(SUPObjectList*)synchronizationGroups withContext:
(NSString*)context

This method synchronizes only those MBOs that are part of certain synchronization groups.
The parameter synchr oni zat i onGr oups isalist of SUPSynchr oni zati onG- oup
objects representing the groups to be synchronized. The parameter cont ext is a reference
string that is referred to when the server responds to the synchronization request. See the
discussion of the onSynchr oni ze callback handler method in Developer Guide for iOS >
Reference > iPhone Client Object APl > Ultility APIs > Callback Handlers.

[Sanpl eApp_Sanpl eAppDB begi nSynchr oni ze] ;

Resume Subscription

Ther esunmeSubscri pti on operation allows a device application to send a resume
request to the Unwired Server. This request notifies the Unwired Server to resume sending
data changes since the last suspension.

+(void) resumeSubscription
[Sanpl eApp_Sanpl eAppDB r esuneSubscri ption];

Recover Subscription
Ther ecover operation allows the device application to send a recover request. This notifies
the Unwired Server to send down all the data related to the package.

+(void) recover
[Sanpl eApp_Sanpl eAppDB recover];

Start or Stop Background Synchronization

Message-based synchronization is performed at the package level. The generated package
database class provides methods for starting and stopping the background processing of the
incoming messages.

To start background synchronization:
[Sanpl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zati on] ;

To stop background synchronization:
[Sanpl eApp_Sanpl eAppDB st opBackgr oundSynchr oni zati on] ;

When an incoming message is processed, callbacks are triggered. See Reference:
Administration APIs > iPhone Client Object APIs > Message-Based Synchronization APIs >
Callback Handlers for information on how to register a callback handler.

Developer Guide: iOS Native Applications 35

Reference

Replay Results
The client application can call the hasPendi ngOper at i ons method after a

submi t pendi ng call to the server to wait for replay results. This method returns true if
there are replay pending requests, otherwise, it returns false.

+(void)hasPendingOperations

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepFor Ti nel nterval : 0. 2] ;

The preceding code example waits indefinitely if the client application does not receive a
replay result from the Unwired Server, and if a record has the r epl ayPendi ng flag set. To
exit this loop after a particular time interval has passed, you can add a timer.

BOOL shoul dWait = YES;
| ong sl eepTine = 1;
| ong timeout = 10*60;
whil e (shoul dWait && (sl eepTine < tinmeout))

shoul dWait = [Sanpl eApp_Sanpl eAppDB hasPendi ngQper at i ons] ;
i f (shoul dWit)

{
[NSThread sl eepFor Ti nel nterval : 0. 2] ;
}
if (sleepTime <= timeout)
{
ti meout = tineout - sleepTine;
}

}
if (shoul dWait) ({

MBOLogEr ror (@ Cannot wait , Timeout");
}

Query APIs

The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from an MBO
To retrieve data from a local database use the fi nd, fi ndAl | , or fi ndByPri nar yKey
methods in the MBO class.

The following examples show how to use the f i nd, f i ndAl | , or fi ndByPri mar yKey

methods in the MBO class to retrieve data.

* + (<Name Prefix>_Customer*)find:(int32_t)id_— The f i nd method retrieves a
Customer by the given ID. The parameteri d__is the surrogate key (the primary key used in
the local database). The parameter is of type i nt 32_t in this example, but could be
another type based on the key type. The value "101" in this example is the surrogate key
value (automatically generated from the KeyGenerator). To use this method, the client
application must be able to retrieve the surrogate key.

36

Sybase Unwired Platform

Reference

Sanpl eApp_Cust omer *custoner = [Sanpl eApp_Custoner find: 101];

Note: The Eclipse IDE allows you to specify a value for "name prefix" when generating
the MBO Objective-C code. When a value is specified, all the MBO entity names are
prefixed with that value. When no such prefix is specified, the name prefix is by default the
package name.

e + (SUPODbjectList*)findAll — Call the f i ndAl | method to list all customers:
SUPQhj ect Li st *custoners = [Sanpl eApp_Customer findAll] ;

e +(SUPObijectList*) findAll:(int32_t)skip take: (int32_t)take—To define more than one
fi ndAl | attribute, and return a collection of objects that match the specified search
criteria, use:

SUPQoj ect Li st *customers = [Sanpl eApp_Custoner findAll: 100 take:
5];

Methods Generated if Dynamic Queries are Enabled

e+ (SUPObjectList*)findWithQuery:(SUPQuery*)query; — Returns a collection of
objects that match the result of executing a specific query. The method takes one
parameter, quer y which is an SUPQuer y object representing the actual query to be
executed.

SUPQuery *myquery = [SUPQuery getl nstance];
myquery.testCriteria = [SUPAttri but eTest
mat ch: @f name" : @Erin”];
SUPQoj ect Li st* custoners = [Sanpl eApp_Custoner findWthQuery:
myquery]

* +(int32_t)countWithQuery: (SUPQuery*)query; — Returns a count of the records
returned by the specific query.

int count = [Sanpl eApp_Cust oner count Wt hQuery: myquery];

Object Queries

To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

Consider an object query on a Customer MBO to find customers by last name. You can
construct the query as follows:

Select x.* from Custonmer x where Xx.|nane =: param._| name

where par am | nane is a string parameter that specifies the last name. Assume that the
query above is named findBylname

Developer Guide: iOS Native Applications 37

Reference

This generates the following Client Object API:
(Custoner *)findBylnane : (NSString *)param.| nane;

The above API can then be used just like any other read API. For example:

Sanpl eApp_Cust omrer * t hecustoner = [Sanpl eApp_Cust onmer findByl name:
@Delvin’];

For each object query that returns a list, additional methods are generated that allow the caller
to select and sort the results. For example, consider an object query, findByCity, which
returns a list of customers from the same city. Since the return type is a list ,the following
methods would be generated. The additional methods help the user with ways to specify how
many results rows to skip, and how many subsequent result rows to return.

+ (SUPOhj ectList*) findByCity: (NSString*) city;

+ (SUPObj ectList*) findByCity: (NSString*) city skip;

(int32_t) skip take: (int32_t)take;

Supported Aggregate Functions

You can use aggregate functions including Gr oupBYy in object queries. However, the sum
avg, and greater than (>) aggregate functions are not supported.

select count(x.id), x.id fromAl |l Type x where x. surrogat ekey > : m nSk
group by x.id having

x.id < :maxld order by x.id

Arbitrary Find
The arbitrary find method provides custom device application the ability to dynamically build

queries based on user input. These queries operate on multiple MBOs through the use of
joins.

SUPAttributeTest

In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify a desired ordering of the results and object state criteria. A SUPQuer vy class is
included in one of the client runtime libraries, | i bcl i entrt. a. The SUPQuery class is
the single object passed to the arbitrary search methods and consists of search conditions,
object/row state filter conditions, and data ordering information.

The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 2. SUPQuery and Related Classes

Class Description

SUPQuery Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

38 Sybase Unwired Platform

Referen

ce

Class

Description

SUPAttributeTest

Defines filter conditions for MBO attributes.

SUPCompositeTest

Contains a method to combine test criteria using the

logical operators AND, OR, and NOT to create a
compound filter.

SUPQueryResultSet

Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Define these conditions by setting properties in a query:

» SUPTestCriteria—criteria used to filter returned data.
» SUPSortCriteria—criteria used to order returned data.
» Skip —an integer specifying how many rows to skip. Used for paging.
* Take—an integer specifying the maximum number of rows to return. Used for paging.

SUPTest Criteriacanbean SUPAt tri but eTest ora SUPConposi t eTest.

An SUPAt t ri but eTest defines a filter condition using an MBO attribute, and supports

these conditions:

 IS_NULL

« NOT_NULL
« EQUAL

« NOT_EQUAL
« LIKE

« NOT_LIKE

« LESS_THAN
. LESS_EQUAL
« MATCH

« NOT_MATCH
« GREATER_THAN
.+ GREATER_EQUAL
.« CONTAINS

« STARTS_WITH

« ENDS_WITH

« NOT_START _WITH
« NOT_END_WITH
« NOT_CONTAIN

Developer Guide: iOS Native Applications

39

Reference

SUPCompositeTest
A SUPConposi t eTest combines multiple SUPTest Cri t eri a using the logical
operators AND, OR, and NOT to create a compound filter.

Methods
add: (SUPTest Cri teri a*) operand;

The following example shows a detailed construction of the test criteria and join criteria for a
query:
SUPQuery *query2 = [SUPQuery getl nstance];

[query2 select: @c. fname, c. | nane, s. order _date, s.regi on"];
[query2 from @Custoner": @c"];
/1

/| Conveni ence method for adding a join to the query

Il

//]query2 join: @Sales_order": @s": @s.cust_id":@c.id"];
Il

/| Detailed construction of the join criteria

SUPJoinCriteria *joinCriteria = [SUPJoinCriteria getlnstance];
SUPJoi nCondi ti on* joinCondition = [SUPJoi nCondi ti on getl nstance];
joinCondition.alias = @s";

joinCondition.entity = @ Sal es_order";

joinCondition.leftltem= @s.cust_id";
joinCondition.rightltem= @c.id";

joinCondition.joinType = [SUPJoi nCondition | NNER_JO N];
[joinCriteria add:joi nCondition];

query2.joinCriteria = joinCriteri a;

/1

/'l Conveni ence nethod for adding test criteria
//query2.testCriteria = (SUPTestCriteria*)[[SUPAttributeTest

/1 equal: @c. fname": @ Dougl as"] and:

[SUPAt tri but eTest

/1 equal:@c.lname": @Smth"]];

I/

/1 Detailed construction of the test criteria

SUPConposi teTest *ct = [SUPConpositeTest getlnstance];
ct.operands = [SUPOhj ect Li st getl nstance];

[ct.operands add: [SUPAttri buteTest equal : @c. f nane": @ Dougl as"]];
[ct.operands add: [SUPAttri buteTest equal: @c.|name": @Smth"]];
ct.operator = [SUPConpositeTest AND ;

query2.testCriteria = (SUPTestCriteria*)ct;

SUPQuer yResul t Set* resultSet = [Test CRUD Test CRUDDB

execut eQuery: query?];

Dynamic Query

User can use query to construct a query SQL statement as he wants to query data from local
database. This query may across multiple tables (MBOS).

SUPQuery *query = [SUPQuery getl nstance];

[query select: @c. fnane, c.| nane, s. order_date, s. region"];
[query from @Custoner": @c"];

40 Sybase Unwired Platform

Reference

[query join:@SalesOder": @s": @s.cust_id":@c.id"];
query.testCriteria = [SUPAttri buteTest match: @c. | nane": @Devlin"];
SUPQuer yResul t Set* resultSet = [Sanpl eApp_Sanpl eAppDB

execut eQuery: query];

if(resultSet == nil)

MBCOLog(@ executeQuery Failed !'!");
return;

}
for (SUPDat aVal ueLi st* result in resultSet)

{
MBOLog(@ Fi r st nane, | ast nane, order date, regi on = %@ %@ %@ %@ ,
[SUPDat aVal ue getNul | abl eString:[result itemO]],
[SUPDat aVal ue get Nul | abl eString:[result item1]],
[[SUPDat aVal ue get Nul | abl eDate: [result item 2]] description],
[SUPDat aVal ue get Nul | abl eString:[result item3]]);

}

Note: A wildcard is not allowed inthe sel ect clause. You must use explicit column names.

Paging Data
On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set.

SUPQuery *query = [SUPQuery new nst ance];

[query set Skip: 10];

[query set Take: 2] ;

SUPQhj ect Li st *custonerlist = [Sanmpl eApp_Cust oner
findWthQuery: query];

SUPQueryResultSet
The SUPQuer yResul t Set class provides for querying a result set for the dynamic query
API. SUPQuer yResul t Set is returned as a result of executing a query.

Example

This example shows how to filter a result set and get values by taking data from two mobile
business objects, creating an SUPQuery, filling in the criteria for the query, and filtering the
query results:

SUPQuery *query = [SUPQuery getl nstance];

[query select: @c. fnane, c.| nane, s. order_date, s. region"];

[query from @Custoner": @c"];

[query join:@SalesOder": @s": @s.cust_id":@c.id"];
query.testCriteria = [SUPAttri buteTest match: @c. | name": @Devlin"];
SUPQuer yResul t Set* resultSet = [Sanpl eApp_Sanpl eAppDB

execut eQuery: queryl];

if(resultSet == nil)

MBOLog(@ execut eQuery Failed !'!");
return;

Developer Guide: iOS Native Applications 41

Reference

}
for (SUPDat aVal ueLi st* result in resultSet)

{
MBOLog(@ Fi r st nane, | ast nane, order date, regi on = %@ %@ %@ %@ ,
[SUPDat aVal ue getNul | abl eString:[result itemO]],
[SUPDat aVal ue get Nul | abl eString:[result item1]],
[[SUPDat aVal ue get Nul | abl eDate: [result item 2]] description],
[SUPDat aVal ue get Nul | abl eString:[result item3]]);

}

Retrieving Relationship Data

A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer 1D column. The Orders application is parameterized to return
order information for the customer ID.

Sanpl eApp_Cust omer *onecustomer = [Sanpl eApp_Customer find: 101];
SUPQhj ect Li st *orders = onecustoner. sal esOrders;

Given an order, you can access its customer information.

Sanpl eApp_Sal es_order * order = [Sanpl eApp_Sal es_order *find: 2001];
Sanpl eApp_Cust orer *t hi scust onmer = order. cust oner;

Operations APIs

The create, update, and delete and related operations allow you to perform operations on data
on the local client database, and to propagate that data to the Unwired Server.

Create Operation
The cr eat e operation allows the client to create a new record in the local database. To
propagate the changes to the server, call subm t Pendi ng.

(void)create

Example 1: Supports cr eat e operations on parent entities. The sequence of calls is:

Sanpl eApp_Cust omrer *newcust oner = [[Sanpl eApp_Custoner alloc] init];
newcust onmer . fnane = @ John”;
//Set the required fields for the custoner
[newcust oner create];
[newcust omer subni t Pendi ng] ;
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])
[NSThread sl eepFor Ti nel nterval : 0. 2] ;

Example 2: Supports create operations on child entities.

42

Sybase Unwired Platform

Reference

Sanpl eApp_sal es_order *order = [[Sanpl eApp_sal es_order alloc] init];
order.region = @Eastern";
//Set the other required fields for the order

Sanpl eApp_Cust omrer *custoner = [Sanpl eApp_Custoner find: 1008];
[order setCustoner:customner];
[order create];
[order.custonmer refresh]; //refresh the parent
[order. custonmer submtPending]; //call submtPending on the parent.
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepFor Ti nel nterval : 0. 2] ;

Update Operation
The updat e operation updates a record in the local database on the device. To propagate the
changes to the server, call subni t Pendi ng.

In the following examples, the Customer and SalesOrder MBOs have a parent-child
relationship.

Example 1: Supports updat e operations to parent entities. The sequence of calls is as
follows:

Sanpl eApp_Cust omer *custoner = [Sanpl eApp_Custoner find: 32]
//find by the unique id
custoner.city = @Dublin"; //update any field to a new val ue
[cust oner update];
[cust onmer submit Pendi ng];
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepFor Ti nel nterval : 0. 2] ;

Example 2: Supports updat e operations to child entities. The sequence of calls is:

Sanpl eApp_Sal es_order* order = [Sanpl eApp_Sal es_order find: 1220];
order.region = @SA"; //update any field
[order update]; [/call update on the child record
[order refresh];
[order. custonmer submtPending]; //call subm tPending on the parent
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 0. 2] ;

Example 3: Calling save() on a parent also saves any modifications made to its children:

Sanpl eApp_Cust omrer *custoner = [Sanpl eApp_Custoner find: 32]
SUPQhj ect Li st* orderlist = customer.orders;
Sanpl eApp_sal es_order* order = [orderlist itemO];
order.sales _rep = @Rant;
customer.state = @M" ;
[cust oner save];
[cust oner submi t Pendi ng] ;
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])
[NSThread sl eepFor Ti nel nterval : 0.5];

Developer Guide: iOS Native Applications 43

Reference

Delete Operation
The del et e operation allows the client to delete a new record in the local database. To

propagate the changes to the server, call subm t Pendi ng.

(void)delete
The following examples show how to perform deletes to parent entities and child entities.

Example 1: Supports del et e operations to parent entities. The sequence of calls is:

Sanpl eApp_Cust omer *custoner = [Sanpl eApp_Custoner find: 32]
[custoner delete];
[cust oner submi t Pendi ng] ;
whil e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])
[NSThread sl eepFor Ti nel nterval : 0. 2];

Example 2: Supports del et e operations child entities. The sequence of calls is:

Sanpl eApp_Sal es_order *order = [Sanpl eApp_Sal es_order find: 32]
[order delete];
[order. custonmer submitPending]; //Call subnitPending on the parent.
whil e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 0. 2];

Save Operation

The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the updat e operation. If a record does not exist, the save operation
creates a new record.

(void)save

Sanpl eApp_Cust omer *custoner = [Sanpl eApp_Custoner find: 32]
/I Change sone sttribute of the custoner record

cust oner. f nane= @ New Nane";

[cust oner save];

Other Operation

Operations other than cr eat e, updat e, or del et e operations are called “other”
operations. An Other operation class is generated for each operation in the MBO that is not a
creat e, updat e, or del et e operation.

This is an example of an "other" operation;

Sanpl eApp_Cust omrer O her Operati on *ot her =

[[Sanpl eApp_Cust oner & her Operation alloc] init];
other.P1 = @ soneval ue";

other.P2 = 2;

ot her. P3 = [NSDat e date];

[ot her save];

[ot her subm t Pendi ng];

44

Sybase Unwired Platform

Reference

Multilevel Insert (MLI)

Multilevel insert allows a single synchronization to execute a chain of related insert
operations. This example demonstrates a multilevel insert:

-(void) Test Create
{

I ong keyl = [Sanpl eApp_KeyGener at or generateld];

I ong key2 = [Sanpl eApp_KeyCener at or generateld];

[Sanpl eApp_KeyGener at or subm t Pendi ngQOper ati ons] ;
whil e ([Sanmpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepFor Ti nel nterval : 1] ;

anpl eApp_Custonmer *c = [[Sanpl eApp_Custoner alloc] init];
.id_ = [Sanpl eApp_Local KeyGener at or generateld];
fname = @ Dorot hi";

| nane @ Scr ant on";

.address = @One Money Street";

.city = @smallVille";

.state = @ MA";

.zZip = @97429";

. phone = @2112222345";

. conpany_nane = @i Anywhere";

. surrogat eKey = keyl;

SUPOhj ect Li st *orderlist = [Sanpl eApp_Sal es_order Li st

0000000000 Mm>Y

get | nst ance] ;

Sanpl eApp_Sal es_order *ol = [[Sanpl eApp_Sal es_order all oc]

init];

}

0l.id_ = [Sanpl eApp_Local KeyGener at or generatel d];
0l.order_date = [NSDate date];

ol.fin_code_id = @r1";

ol.region = @Eastern";

ol.sales_rep = 902;

0l. surrogat eKey = key2;

[ol setCustoner:c];

[orderlist add:ol];

[c setSal esOrders:orderlist];

[c save];

[c refresh];

[c subnitPending];

assert (c. pendi ng == YES);

whil e ([Sanmpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 1] ;

Note: The values generated by Local KeyGener at or do not support authentication with
the Unwired Server, but only against a local data store on the device.
Local KeyGener at or is an appropriate method for use with a local business object. See
Developer Guide for iOS > Reference > iOS Client Object APl > Operations APIs > L ocal
Business Object.

Developer Guide: iOS Native Applications

45

Reference

Pending Operation
There are five methods you can use to manage the pending state.

* (voi d) cancel Pendi ng —Cancels a pending record. A pending record is one that has
been updated in the local client database, but not yet sent to the Unwired Server.
[cust oner cancel Pendi ng] ;

e (voi d) cancel Pendi ngOper at i ons — Cancels the pending operations for an
entire entity. This method internally invokes the cancel Pendi ng method.
[Cust oner cancel Pendi ngQper ati ons] ;

e (voi d) subni t Pendi ng—Submitsa pending record to the Unwired Server. For MBS,
a replay request is sent directly to the Unwired Server.
[cust oner subnit Pendi ng];

e +(voi d)submni t Pendi ngOper at i ons —Submits all data for all pending records to
the Unwired Server. This method internally invokes the subm t Pendi ng method.
[Cust oner submit Pendi ngOper ati ons];

e +(void)subn t Pendi ngOper ati ons:
(NSStri ng*)synchroni zat i onG oup — Submits all data for pending records
from MBOs in this synchronization group to the Unwired Server. This method internally
invokes the subm t Pendi ng method.
[Sanpl eApp_Sanpl eAppDB subni t Pendi ngOper ati ons: @defaul t”];

Sanpl eApp_Cust omrer *custonmer = [Sanpl eApp_Cust ormer find: 101];
/I Make some changes to the customer record.
/] Save t he changes

//1f the user w shes to cancel the changes, a call to cancel pending
will revert to the old val ues.

[cust oner cancel Pendi ng];

/1 The user can subnit the changes to the server as foll ows:
[cust onmer submit Pendi ng];

Local Business Object

Defined in Unwired WorkSpace, local business objects are not bound to EIS data sources, so
cannot be synchronized. Instead, they are objects that are used as local data store on device.
Local business objects do not call subni t Pendi ng, or perform a replay or import from the
Unwired Server.

The following code example creates a row for a local business object called "clientObj", saves
it, and finds it in the database.

//Create a client only MO ..");
ClientOj *o = [dientCbj getlnstance];

o.attributel = @This";
o.attribute2 = @is";
o.attribute3 = @a";

46

Sybase Unwired Platform

Reference

o.attributed = @I ocal business object";
[0 save];

// Read fromthe created | ocal business object");

SUPQoj ectList *objlist = [CientQj findAll];

MBOLogError(@dC ientCbj has % d rows",[objlist size]);
for(CientChj *o in objlist)

MBOLogError ([[o json:0] toString]);

Personalization APIs
Personalization keys allow the mobile user to define (personalize) certain input field values
within the mobile application. The Per sonal i zat i onPar anet er s class is generated
automatically for managing personalization keys. Personalization parameters provide default
values for synchronization parameters when the synchronization key of the object is mapped
to the personalization key while developing a mobile business object.

Type of Personalization Keys

There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Getting and Setting Personalization Key Values

Consider a personalization key "pkcity" that is associated with the synchronization parameter
"cityname". When a personalization parameter value is changed, the call to save
automatically propagates the change to the server; you need not call subni t Pendi ng after
the save.

The following example shows how to get and set personalization key values:

/1 get personalization key val ues

Sanpl eApp_Per sonal i zati onParanmeters *pp = [Sanpl eApp_Sanpl eAppDB
get Personal i zat i onpar anet er s] ;

MBOLogl nf o(@ Per sonal i zati on Paraneter for City = %@, pp.PKGCty);

/] Set personalization key val ues

pp. PKCGty = @Hul |l ”;

[pp. save]; [//save the new pk val ue.

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepForTi nel nterval : 0. 2] ;

Note: You are not required to call subni t Pendi ng after save, as is the case with
synchronization parameters.

Developer Guide: iOS Native Applications 47

Reference

Passing Arrays of Values, Objects

An operation can have a parameter that is one of the SUP list types (such as SUPIntList,
SUPStringList, or SUPObjectList). For example, consider a method for an entity Cust oner
with signature AnCper at i on:

SUPIntList *intlist = [SUPIntList getlnstance];
[intlist add:1];
[intlist add:2];

Custoner *thecustoner = [Custoner find:101];
[thecustomer AnQperation:intlist];

Object State APIs

The object state APIs include status indicator APIs for returning information about entities in
the database, and a method to refresh the MBO entity in the local database.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Objective-C | Description
Type
isNew BOOL Returns true if this entity is new (but has not been created in

the client database).

isCreated BOOL Returns true if this entity has been newly created in the client
database, and one the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» Theentity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

isDirty BOOL Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted BOOL Returns true if this entity was loaded from the database and
was subsequently deleted.

48

Sybase Unwired Platform

Reference

Name

Objective-C
Type

Description

isUpdated

BOOL

Returns true if this entity has been updated or changed in the
database, and one of the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

pending

BOOL

Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange

char

If pending is true, then 'C' (create), 'U' (update), ‘D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

replayCounter

long

Returns a long value that is updated each time a row is created
or modified by the client. This value is derived from the time
in seconds since an epoch, and increases each time a row is
changed.

int64_t result = [custoner replayCount-
er];

replayPending

long

Returns a long value. When a pending row is submitted to the
server, the value of r epl ayCount er is copiedto r e-
pl ayPendi ng. This allows the client code to detect if a
row has been changed since it was submitted to the server
(that is, if the value ofr epl ayCount er is greater than

r epl ayPendi ng).

int]64_t result = [custoner replayPend-
ingl;

Developer Guide: iOS Native Applications 49

Reference

Name Objective-C | Description
Type
replayFailure long Returns a long value. When the server responds withar e-

pl ayFai | ur e message for a row that was submitted to
the server, the value of r epl ayCount er is copied to
repl ayFai | ure,andr epl ayPendi ng is set to 0.

int64_t result = [customer replayFai -
lure];

Entity State Example

This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear
in bold.

Note the following entity behaviors:

e Thei sDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

e Therepl ayCount er value that gets sent to the Unwired Server is the value in the
database before you call submi t Pendi ng. After a successful replay, that value is
imported from the Unwired Server.

» The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Description Flags/Values

After reading from the database, before any changes | isNew=false
are made. isCreated=false
isDirty=false
isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

50

Sybase Unwired Platform

Reference

Description

Flags/Values

One or more attributes are changed, but changes not
saved.

isNew=false
isCreated=false
isDirty=true
isDeleted=false
isUpdated=false
pending=false
pendingChange='N'
replayCounter=33422977
replayPending=0

replayFailure=0

After[entity save] or[entity up-
dat e] iscalled.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="U'
replayCounter=33424979
replayPending=0

replayFailure=0

Developer Guide: iOS Native Applications

51

Reference

Description Flags/Values

After[entity subm t Pendi ng] iscalled | isNew=false
to submit the MBO to the server isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=33424981

replayFailure=0

Possible result: the Unwired Server accepts the up- | isNew=false
date, sends animportandar epl ayResul t for

the entity, and the refreshes the entity from the da-
tabase. isDirty=false

isCreated=false

isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

52 Sybase Unwired Platform

Reference

Description Flags/Values

Possible result: The Unwired Server rejects the up- | isNew=false
date, sends ar epl ayFai | ur e for the entity,
and refreshes the entity from the database

isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=0
replayFailure=33424981

Pending State Pattern

When a create, update, delete, or save operation is called on an entity in a message-based
synchronization application, the requested change becomes pending. To apply the pending
change, call subm t Pendi ng on the entity, or subni t Pendi ngQOper at i ons on the
mobile business object (MBO) class:

Custoner *e = [Custoner getlnstance];

e.nane = @Fred";

e.address = @123 Four St.";

[e create]; // create as pending

/1 Then do this....

[e subnmitPending]; // submt to server

[l ... or this.

[Cust oner submi t Pendi ngOperations]; // submt all pending Custoner
rows to server

subni t Pendi ngOper at i ons submits all the pending records for the entity to the
Unwired Server. This method internally invokes the subm t Pendi ng method on each of
the pending records.

The call to submi t Pendi ng causes a JSON message to be sent to the Unwired Server with
the r epl ay method, containing the data for the rows to be created, updated, or deleted. The
Unwired Server processes the message and responds with a JSON message with the

r epl ayResul t method (the Unwired Server accepts the requested operation) or the
repl ayFai | ur e method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more i npor t
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the r epl ay request. These changes are written
to the client database and marked as rows that are not pending. When the r epl ayResul t

Developer Guide: iOS Native Applications 53

Reference

message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful

operation.

If the Unwired Server rejects the requested change, the client receives ar epl ayFai | ed
message, and the entity remains in the pending state, with itsr epl ayFai | ed attribute setto
indicate that the change was rejected.

If the Unwired Server rejects the requested change, it also sends one or more log record
messages to the client. The SUPLogRecor d interface has the following getter methods to
access information about the log record:

Method Objective-C | Description
Name Type
component NSString* Name of the MBO for the row for which this log record was
written.
entityKey NSString* String representation of the primary key of the row for which
this log record was written.
code int32_t One of several possible HTTP error codes:
e 200 indicates success.
* 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.
« 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).
» 404 indicates that the client tried to access a nonexistent
package or MBO.
e 405 indicates that there is no valid license to check out for
the client.
« 500 to indicate an unexpected (unspecified) server fail-
ure.
message NSString* Descriptive message from the server with the reason for the
log record.
operation NSString* The operation (create, update, or delete) that caused the log
record to be written.
requestld NSString* The id of the replay message sent by the client that caused this
log record to be written.
timestamp NSDate* Date and time of the log record.

54

Sybase Unwired Platform

Reference

If a rejection is received, the application can use the entity method get LogRecor ds to
access the log records and get the reason:

SUPQhj ectLi st* 1 ogs = [e get LogRecords];
for (i d<SUPLogRecord> | og in | ogs)

MBOLogError (@entity has a | og record: \n\
code = %d,\n\
conponent = %@\ n\
entityKey = %@\ n\
level = 9%d,\n\
nmessage = %@\ n\
operation = %@\ n\

requestld = %@\ n\
timestanp = %@,
[l og code],

[l og conponent],

[log entityKey],

[log level],

[l og message],

[l og operation],

[l og requestld],

[log tinestanp]);
}

cancel Pendi ngQper at i ons cancels all the pending records for an entity. This method
internally invokes the cancel Pendi ng method on each of the pending records.

Refresh
The r ef r esh method allows the client to refresh the MBO entity from the local database.

(void)refresh
[order refresh];

where or der is an instance of the MBO entity.

Clear Relationship Objects

The cl ear Rel ati onshi pQbj ect s method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

(void)clearRelationshipObjects

Security APIs
Unwired Server supports encryption of client data and the database.

Developer Guide: iOS Native Applications 55

Reference

Encryption of Client Data
The iOS Sybase Unwired Platform client libraries internally encrypt data before sending it
over the wire, using its own encryption layer. Communication is performed over HTTP.

Encrypt the Database
The following methods set or change encryption keys for the database.

-(void)setEncryptionKey:(SUPString)value

Sets the encryption key for the database in SUPConnect i onPr of i | e. Call this method
before any database operations.
[cp setEncryptionKey: @test”];

+(void)changeEncryptionKey:(SUPtring*) newKey

Changes the encryption key to the newKey value and saves the newKey value to the
connection profile. Call this method after the call to cr eat eDat abase.

[Sanpl eApp_Sanpl eAppDB changeEncrypti onKey: @ newkey" 1];
(SUPString)encryptionKey

Retrieves the current encryption key from the SUPConnect i onProfil e.
[cp encryptionKey];

SUPDataVault

The SUPDat aVaul t class provides encrypted storage of occasionally used, small pieces of
data. All exceptions thrown by SUPDat aVaul t methods are of type

SUPDat aVaul t Excepti on.

You can use the SUPDat aVaul t class for on-device persistent storage of certificates,
database encryption keys, passwords, and other sensitive items. Use this class to:

» Create a vault

e Setavault's properties

« Store objects in a vault

« Retrieve objects from a vault

« Change the password used to access a vault

» Control access for a vault that is shared by multiple iOS applications

The contents of the data vault are strongly encrypted using AES-256. The SUPDat aVaul t
class allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is

56

Sybase Unwired Platform

Reference

deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the SUPDat aVaul t would be to implement an application login screen.

Upon application start, the user is prompted for a password, which is then used to unlock the
vault. If the unlock attempt is successful, the user is allowed into the rest of the application.
User credentials needed for synchronization can also be extracted from the vault so the user is
not repeatedly prompted to re-enter passwords.

createVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a
vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Syntax
+ (SUPDat aVaul t *) creat eVaul t: (NSStri ng*) name wi t hPasswor d:
(NSString*)password withSalt: (NSString*)salt;

Parameters

* name— The vault name.
* password — The password.
» salt — The encryption salt value.

Returns
createVault creates a SUPDat aVaul t instance.

If a vault already exists with the same name, a SUPDat aVaul t Except i on is thrown this
with the reason kDat aVaul t Except i onReasonAl r eadyExi st s.

Examples
* CreateaData Vault — Creates a new data vault called myVaul t .
@ry
i f(![SUPDat aVault vaul t Exi sts: @nyVault"])

oVault = [SUPDat aVault createVault: @nyVaul t”
wi t hPasswor d: @ goodPasswor d"
withSalt: @goodSalt"];
}

}
@atch (NSException *e)
{

Developer Guide: iOS Native Applications 57

Reference

NSLog(@ SUPDat aVaul t Excepti on: %@ ,[e description]);

vaultExists
Tests whether the specified vault exists.

Syntax
+ (BOQL) vaul t Exi sts: (NSSt ri ng*) nane;

Parameters

¢ name- The vault name.

Returns

vaultExists can return the following values:

Returns Indicates

YES The vault exists.

NO The vault does not exist.
Examples

* Check if a Data Vault Exists— Checks if a data vault called myVaul t exists, and if so,
deletes it.

i f ([SUPDataVault vaul t Exists: @nyVault"])

[SUPDat aVaul t del eteVault: @nyVaul t"];
}

getVault
Retrieves a vault.

Syntax
+ (SUPDat aVaul t *) get Vaul t : (NSSt ri ng*) nane;

Parameters

¢ name- The vault name.

Returns

getVault returns a SUPDat aVaul t instance.

58

Sybase Unwired Platform

Reference

If the vault does not exist, a SUPDat aVaul t Except i on is thrown.
deleteVault
Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
+ (void)del eteVaul t: (NSString*)nane;
Parameters

* name- The vault name.

Examples
» Deletea Data Vault — Deletes a data vault called myVaul t .
@ry
i f([SUPDat aVault vaul t Exi sts: @nyVaul t"])

[SUPDat aVaul t del eteVault: @nyVaul t"];

}
@atch (NSException *e)
NSLog(@ SUPDat aVaul t Excepti on: %@ ,[e description]);

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
- (void)l ock;

Examples

* Locksthedata vault. —Prevents changing the vaults properties or stored content.
[oVaul t | ock];

Developer Guide: iOS Native Applications 59

Reference

isLocked
Tests whether the vault is locked.

Syntax

- (BOQL)i sLocked;

Returns

isLocked can return the following values:
Returns Indicates
YES The vault is locked.
NO The vault is unlocked.

unlock

Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

Syntax
- (void)unl ock: (NSString*)password withSalt: (NSString*)salt;

Parameters

* password — The password.
» salt — The encryption salt value.

Returns

If the incorrect password or salt is used, a SUPDat aVaul t Except i on is thrown this with
the reason kDat aVaul t Except i onReasonl nval i dPasswor d.

Examples

* Unlocksthedatavault. —Once the vault is unlocked you can change the its properties and
stored content.

P
[oVaul t unl ock: @ password" withSalt: @salt"];

}
@at ch(SUPDat aVaul t Excepti on *e)
{

60 Sybase Unwired Platform

Reference

NSLog(@ Exception will be thrown for bad password");

setLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
- (void)setLockTi meout: (i nt32_t)tineout;

Parameters

e timeout — The number of seconds before the lock times out.

Examples

¢ Set theLock Timeout — Sets the lock timeout to 1 hour.
[oVaul t set LockTi neout : 3600] ;

getLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
- (int32_t)getLockTineout;

Returns

getLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before itautomatically locks. The default value, 0, indicates that the lock never times
out.

Examples

¢ Set theLock Timeout — Retrieves the lock timeout in seconds.
ti meout = [oVault getLockTi nmeout];

setRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an

Developer Guide: iOS Native Applications 61

Reference

unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Syntax
- (void)setRetryLimt: (int32_t)limt;

Parameters

* limit — The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

e Set the Retry Limit — Sets the retry limit to 5 attempts.
[oVault setRetryLimt:5];

getRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
- (int32_t)getRetryLimt;

Returns

getRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Examples

* SettheRetry Limit —Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.

int retrylimt = [oVault getRetryLimt];
setString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax
- (void)setString: (NSString*)nanme wi thVal ue: (NSStri ng*) val ue;

62

Sybase Unwired Platform

Reference

Parameters

* name- The name associated with the string object to be stored.
* value—The string object to store in the vault.

Examples

e Set a String Value — Creates a test string, unlocks the vault, and sets a string value
associated with the name "t est St ri ng" inthe vault. The fi nal | y clause in the
t ry/ cat ch block ensure that the vault ends in a secure state even if an exception occurs.

NSString *teststring = @ ABCDEFabcdef";

@ry {
[oVaul t unl ock: @ goodPassword" withSalt: @goodSalt"];
[oVault setString: @testString" withVal ue:teststring];

}
@atch (NSException *e) {
NSLog(@ Exception: %@,[e description]);

}@inally {
[oVaul t | ock];
}

getString
Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Syntax
- (NSString*)getString: (NSString*)nane;
Parameters

* name-The name associated with the string object to be retrieved.

Returns

getString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get a String Value — Unlocks the vault and retrieves a string value associated with the
name "t est String" inthe vault. Thefi nal | y clause inthe t r y/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.

NSString *retrievedstring = nil;

Qry {

Developer Guide: iOS Native Applications 63

Reference

[oVaul t unl ock: @ goodPassword" withSalt: @goodSalt"];
retrievedstring = [oVault getString: @testString"];

}
@at ch (NSException *e) {
NSLog(@ Exception: %@,[e description]);

}
@inally {
[oVaul t | ock];

setValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax
- (void)setVal ue: (NSString*)nane withVal ue: (NSDat a*) val ue;

Parameters

* name-The name associated with the binary object to be stored.
* value—The binary object to store in the vault.

Examples

* SetaBinary Value—Unlocks the vault and stores a binary value associated with the name
"t est Val ue" inthevault. Thefi nal | y clause inthet ry/ cat ch block ensure that
the vault ends in a secure state even if an exception occurs.

@ry {
[oVaul t unl ock: @ goodPassword" withSalt: @goodSalt"];
[oVaul t setVal ue: @t est Val ue" withVal ue:testval ue];

}
@at ch (NSException *e) {
NSLog(@ Exception: %@, [e description]);

}@inally {
[oVault | ock];
}

getValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
- (NSDat a*) get Val ue: (NSSt ri ng*) nane;

64

Sybase Unwired Platform

Reference

Parameters

* name- The name associated with the binary object to be retrieved.

Returns

getValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get aBinary Value— Unlocks the vault and retrieves a binary value associated with the
name "t est Val ue" inthe vault. The f i nal | y clause inthet ry/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.

NSDat a *retri evedval ue = nil;

@ry {
[oVaul t unl ock: @ goodPassword" withSalt: @goodSalt"];
retrievedval ue = [oVault getVal ue: @t est Val ue"];

}
@at ch (NSException *e) {
NSLog(@ Exception: %@, [e description]);

}@inally {
[oVault | ock];
}

changePassword
Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax
- (voi d)changePassword: (NSSt ri ng*) newPassword wi t hSal t:
(NSString*)newsal t;

Parameters

* newPassword — The new password.
* newsSalt — The new encryption salt value.

Examples

* Changethe Password for a Data Vault — Changes the password to " newPasswor d" .
Thefinal | yclauseinthet ry/ cat ch block ensure that the vault ends in a secure state
even if an exception occurs.

@ry
{

Developer Guide: iOS Native Applications 65

Reference

[oVaul t unl ock: @ goodPassword" withSalt: @goodSalt"];
[oVaul t changePassword: @ newPassword"” withSalt: @newSalt"];

}
@at ch (NSException *e) {
NSLog(@ Exception: %@,[e description]);

-
@inally

[oVaul t | ock];
}

setAccessGroup
Sets the access group if multiple application share a data vault.

This method is used only for iOS applications, and must be called before accessing any
Dat aVaul t methods. The access group must be set only if a vault is shared by multiple
iPhone applications. If the vault is used only by one application, do not set the access group.
The access group is listed in the keychai n- access- gr oups property of the

entit| ement s plist file. The recommended format is

".com your conpany. Dat avaul t".

Syntax
+ (void)set AccessGoup: (NSString *)accessG oup;

Parameters

 accessGroup — The access group name.

Examples

» Setsthe Access Group Name — Sets the access group name so that multiple iOS
applications can access the data vault.

[oVaul t
set AccessG oup: @ accessG oupNane. com your conpany. Dat aVaul t "] ;

Installing and Testing X.509 Certificates on iOS Clients

Install generated X.509 certificates and test them in your iOS clients.

Importing an X.509 Certificate to an iOS Client from the Unwired Server
Log in to Unwired Server and authenticate a client using a generated X.509 certificate instead
of a user name and password combination.

1. Copy the X.509 certificate used for authentication into a directory on the same host as
Unwired Server. For example, c: \ certs.

66

Sybase Unwired Platform

Reference

2. Create a registry string value on Unwired Server at HKLM Sof t war e\ Sybase
\ Sybase Messagi ng Server\CertificatelLocati on and populate it with
the path. For example, c: \ certs.

3. Name the X.509 certificate file as domai n_user . p12, where domainis the Unwired
Server domain and useris the certificate user. The user must have read permission
for. p12 file.

4, The system administrator must ensure the specified domain\user has “logon as batch job”
permission on the Windows machine on which Unwired Server runs:
a) Double-click Control Panel > Administrative Tools > Local Security Policies.
b) Expand Local Policiesand select User Rights Assignment.
c) Right-click Log on asa batch job and select Properties.
d) Select Add User or Group and add the domain\user.

5. The account under which Unwired Server runs must have adequate permissions to
impersonate the domain\user. For example, the Administrator account for the domain.

6. Replace the begi nOnl i neLogi n call, which passes a username and password, with
code that imports the certificate from Unwired Server, sets up the login credentials for the
package, then logs in with this begi nOnl i neLogi n API that takes no parameters.

/1 Inport certificate fromserver

SUPLogi nCertificate *Ic = [cs

get Si gnedCerti fi cat eFronfSer ver: @ <Ser ver Nane>\ \ ssot est "

wi t hServer Password: @ s1s203T4" withCertPassword: @ password”] ;
[[Logl nfo sharedl nstance]

t est Passed: @ SAPSSCCert Test" : @Get CertificateFronServer"];
NSLog(@ | mported certificate fromserver: subjectCN =

%, | c. subj ect CN) ;

Il Attach certificate to sync profile
sp.certificate = Ic;
[lc rel ease];

/1 |If package requires login first, use begi nOnlineLogin API
/1 which takes no paraneters

whi | e([SUPMessageC i ent status] != STATUS START_CONNECTED)

[NSThread sl eepFor Ti nel nterval : 0. 2] ;

[CrnDat abase begi nOnl i neLogi n] ;

iOS Sample Code
This sample code illustrates importing the certificate and setting up login credentials, as well
as other APIs related to certificate handling:

/11l SSO certificate APls
Qry

{

SUPConnecti onProfile *sp = [SAPSSCCert Test _SAPSSOCert Test DB
get Synchroni zati onProfile];

[sp set Domai nNanme: @ ssocert"];

/1 Get handle to the certificate store

SUPCertificateStore *cs = [SUPCertificateStore getDefault];

Developer Guide: iOS Native Applications 67

Reference

/1 Cetting certificate froma file bundled with the app

NSString *certPath = [[NSBundl e mai nBundl e]

pat hFor Resour ce: @ sybasel101"

of Type: @pl2"];

SUPLogi nCertificate *lc_resource = [cs

get Si gnedCertificateFronfFile:certPath wi thPassword: @ password"];
NSLog(@ Got certificate fromresource file, subjectCN =

%@, | c_resource. subj ectCN) ;

[[Logl nfo sharedl nstance]

t est Passed: @ SAPSSCCert Test" : @ CGet Certifi cat eFronResourceFile"];

[l Cetting certificate fromfile in Docunents directory

NSArray *arrayPat hs =

NSSear chPat hFor Di r ect ori esl nDomai ns(NSDocunent Di r ect ory,

NSUser Donai nMask,

YES) ;

NSString *docDir = [arrayPat hs object Atl ndex: 0] ;

certPath = [NSString stringWthFormat: @%@ sybasel01. p12", docDir];
SUPLogi nCertificate *lIc_doc = [cs

get Si gnedCertificateFronFile:certPath wi thPassword: @ password”] ;
NSLog(@ Got certificate fromdocunents directory file, subjectCN =
%, | c_doc. subj ect CN) ;

[[Logl nfo sharedl nstance]

t est Passed: @ SAPSSCOCert Test" : @ CGet Certifi cat eFromDocunentsFile"];

/] Distingui shed name property
NSLog(@ Test di sti ngui shed name property, should be null: DN =
%@, | c_doc. di sti ngui shedNane) ;

/Il Inmport certificate from server

SUPLogi nCertificate *Ic = [cs

get Si gnedCerti fi cat eFronfSer ver: @ <Ser ver Nane>\ \ ssot est "

wi t hServer Password: @ s1s203T4" withCertPassword: @ password"];
[[Logl nfo sharedl nstance]

t est Passed: @ SAPSSCCert Test" : @ CGet Certificat eFronServer"];
NSLog(@ | mported certificate fromserver: subjectCN =

%@, | c. subj ect CN);

[/l Storage and retrieval of certificate

i f(![SUPDataVault vault Exists: @vaul t Test"])

vault = [SUPDat aVault createVault: @vaul t Test"

wi t hPasswor d: @ vaul t Password” withSalt: @vaul tSalt"];

el se

vault = [SUPDat aVault getVault: @vaul t Test"];

[vaul t | ock];

[vaul t unl ock: @vaul t Password" withSalt: @vaultSalt"];

[lc save: @test" withVault:vault];

[vaul t | ock];

[vaul t unl ock: @vaul t Password" withSalt: @vaultSalt"];
NSLog(@ Certificate stored. Now get the cert fromthe data
vault....");

SUPLogi nCertificate *Ic2 = [SUPLogi nCertificate | oad: @test"
wi t hVaul t: vaul t];

[vaul t | ock];

NSLog(@ Certificate retrieved successfully: subjectCN =
%D, | c2. subj ect CN);

68

Sybase Unwired Platform

i f([lc2.subjectCN isEqual ToString:Ic.subjectCN)

[[Logl nfo sharedl nstance]

test Passed: @ SAPSSCCert Test" : @ SaveAndLoadCertificate"];
els

[[Logl nf o sharedl nst ance]

test Fai |l ed: @ SAPSSCCert Test" : @ SaveAndLoadCertificate"];
[lc2 rel ease];

NSLog(@ Test getting a nonexistent certificate fromthe vault,

we get the right exception...");
BOOL noCertificatePass = NO
@ry

Reference

see if

SUPLogi nCertificate *I c_none = [SUPLogi nCertificate |oad: @bogus"

withVaul t:vault];
} @at ch(SUPDat aVaul t Excepti on* e)

noCertificatePass = YES;

NSLog(@ Got excepti on when trying to get nonexi stent cert, exception

is %@ Y%@,[e nane],[e reason]);

i f(noCertificatePass)

[[Logl nfo sharedl nstance]

test Passed: @ SAPSSCCert Test" : @ NonExi stentCertificate"];
els

[[Logl nf o sharedl nst ance]

test Fai |l ed: @ SAPSSCCert Test" : @ NonExi stentCertificate"];

// Delete certificate

BOOL del et ePass = YES;

/[l Try to get the deleted certificate, should get an excepti
SUPLogi nCertificate *Ic3 = nil;

[vaul t unl ock: @vaul t Password” withSalt: @vaultSalt"];

@ry

{

[SUPLogi nCertificate delete: @test” withVault:vault];

| c3 = [SUPLogi nCertificate |oad: @test” wi thVault:vault];
del et ePass = NO

} @at ch(NSExcepti on* e)

{

NSLog(@ Exception getting deleted cert: %@ %®d,[e name],[e
reason]);

del et ePass = YES;

NSLog(@ Retrieve cert that was del eted, should be null: |c3
%D, | c3);

if(lc3 !'=nil) deletePass = NG

i f(del et ePass)

[[Logl nfo sharedl nstance]

t est Passed: @ SAPSSCCert Test" : @Del eteCertificate"];

el se

[[Logl nfo sharedl nstance]

test Fail ed: @ SAPSSCCert Test" : @Del eteCertificate"];

/'l changeVaul t Password for Logi nCertificate
[vaul t | ock];

on:

Developer Guide: iOS Native Applications

69

Reference

[vaul t unl ock: @vaul t Password" withSalt: @vaultSalt"];

[vaul t changePassword: @ newPassword" withSalt: @vaultSalt"];
[vaul t [ock];

[vaul t unl ock: @newPassword” withSalt: @vaultSalt"];

[lc save: @test"” withVault:vault];

[vaul t [ock];

[vaul t unl ock: @ newPassword" withSalt: @vaultSalt"];

SUPLogi nCertificate *lIc4 = [SUPLogi nCertificate |oad: @test”
wi thVaul t:vaul t];

[vaul t [ock];

[vaul t unl ock: @newPassword" withSalt: @vaultSalt"];

/1l Change password back so we can rerun the test

[vaul t changePassword: @vaul t Password" withSalt: @vaultSalt"];
[vault [ock];

if([lc4.subjectCN isEqual ToString:|c.subjectCN)

[[Logl nfo sharedl nstance]

t est Passed: @ SAPSSCOCert Test" : @ ChangeVaul t Password"] ;

el se

[[Logl nfo sharedl nstance]

test Fai | ed: @ SAPSSCOCer t Test" : @ ChangeVaul t Password"] ;

[l c4 rel ease];

/1 Attach certificate to sync profile
sp.certificate = Ic;
[lc rel ease];

}
@at ch(NSExcepti on *e)

MBOLogError (@ Exception in getting certificate");
MBOLogError (@%@ %@, [e nane],[e reason]);

[pool drain];

return;

}

/1 1f package requires login first, use begi nOnlineLogin API
/1 which takes no paraneters

whi | e([SUPMessageC i ent status] != STATUS START_CONNECTED)

[NSThread sl eepFor Ti nel nterval : 0. 2];

[CrnDat abase begi nOnl i neLogi n] ;

Single Sign-On With X.509 Certificate Related Object API

Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

» SUPCertificateStore class - wraps platform-specific key/certificate store class, or file
directory

» SUPLoginCertificate class - wraps platform-specific X.509 distinguished name and
signed certificate

« SUPConnectionProfile class - includes the certificate attribute used for Unwired Server
synchronization.

70

Sybase Unwired Platform

Reference

« SUPDataVault class - provides secure persistent storage on the device for certificates.
Refer to the Javadocs that describe implementation details.
Importing a Certificate Into the Data Vault

Obtain a certificate reference and store it in a password protected data vault to use for X.509
certificate authentication.

/]l Obtain a reference to the certificate store
SUPCertificateStore *certStore = [SUPCertificateStore getDefault];
/1 lnport a certificate fromi Phone keychain (into nenory)
NSString *label = ...; // ask user to select a |abel

NSString *password = ...; // ask the user for a password

SUPLogi nCertificate *cert = [certStore getSignedCertificate:| abel
wi t hPasswor d: passwor d] ;

/1l Aternate code: inport a certificate fromthe server into nenory
(server must be specially configured for this):

NSString *wi ndows_usernane = // Wndows usernanme for fil eshare
on server where the password is stored

NSString *w ndows_password = // Wndows password

NSString *cert_password = // Password to unlock the certificate

SUPLogi nCertificate *cert = [certStore

get Si gnedCerti fi cat eFronfSer ver : wi ndows_user nane
wi t hSer ver Passwor d: wi ndows_passwor d

wi t hCert Password: cert _password] ;

/1 Lookup or create data vault

NSString *vaul t Password = ...; // ask user or fromQ'S protected
st or age

NSString *vaultNane = "..."; // e.g. "SAP.CRM CertificateVault"
NSString *vaultSalt = "..."; // e.g. a hard-coded random GUI D

SUPDat aVaul t *vaul t ;
Qry

/[l Get vault, or create it if it doesn't exist
i f(![SUPDat aVault vaul t Exi sts: vaul t Nane])
vault = [SUPDat aVault createVaul t: vaul t Name
wi t hPasswor d: vaul t Password withSalt: vaultSalt];
el se
vault = [SUPDat aVaul t get Vaul t: vaul t Nane] ;

/| Save certificate into data vault
[vaul t unl ock: vaul t Password withSalt:vaultSalt];
[cert save:label w thVault:vault];

} .

@at ch (NSException *ex)

// Handl e any errors

Developer Guide: iOS Native Applications 71

Reference

L
@inally

// Make sure vault is |ocked even if an error occurs
[vaul t | ock];

}

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

@ry
{

[vaul t unl ock: vaul t Password wi thSal t:vaultSalt];

SUPLogi nCertificate *cert = [SUPLogi nCertificate | oad: @nmyCert"
withVaul t:vault];

SUPConnecti onProfile *syncProfile = [MyPackage_M/PackageDB
get Synchroni zati onProfil e];

syncProfile.certificate = cert;

[cert rel ease];

}
@at ch(NSExcepti on *ex)
// Handl e any errors

L
@inally

/'l Make sure vault is |ocked even if an error occurs
[vaul t [ock];

}

Connecting to Unwired Server With a Certificate
Once the certificate property is set, use the begi nOnl i neLogi n API with no parameters
(do not use the begi nOnl i neLogi n APl with username and password).

[MyPackage_MyPackageDB begi nOnl i neLogi n] ;

/] Handl e | ogin response

[MyPackage_MyPackageDB subscri be];

Utility APIs

The iOS Client Object API provides utility APIs to support a variety of tasks.

* Writing and retrieving log records.
» Configuring log levels for messages reported to the console.

» Enabling the printing of server message headers and message contents, database
exceptions, and SUPLogRecor ds written for each import.

* Viewing detailed trace information on database calls.

« Registering a callback handler to receive callbacks.

« Assigning a unique ID for an application which requires a primary key.
» Managing date/time objects for iOS through defined classes.

72

Sybase Unwired Platform

Reference

< Enabling Apple Push Noatification to allow applications to provide push notifications to
devices.

Using the Log Record APIs

Every package has a LogRecor dl npl table in its own database. The Unwired Server can
send import messages with LogRecor dI npl records as part of its response to replay
requests (success or failure).

The Unwired Server can embed a "log" JSON array into the header of a server message; the
array is written to the LogRecor dI npl table by the client. The client application can also
write its own records. Each entity has a method called newlL.ogRecor d, which allows the
entity to write its own log record. The LogRecor dI npl table has "component™ and
"entityKey" columns that associate the log record entry with a particular MBO and primary
key value.

SUPQhj ect Li st *sal esorders = [Sanpl eApp_Sal es_order findAll];
i f([sal esorders size] > 0)

Sanpl eApp_Sal es_order * so = [sal esorders itemO0];
Sanpl eApp_LogRecordl npl *Ir = [so newLogRecord:
[SUPLogLevel INFQ w thMessage: @testing
record"];
MBOLogError (@Log record is: %@,Ir);

/] submtting | og records
[Sanpl eApp_Sanpl eAppDB submi t LogRecor ds] ;
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepFor Ti nel nterval : 0. 2] ;

}

You can use the get LogRecor ds method to return log records from the table.

SUPQuery *query = [SUPQuery getl nstance];
SUPObj ect Li st *1 oglist = [Sanpl eApp_Sanpl eAppDB
get LogRecor ds: query];
for(id oin loglist)

LogRecordl npl *log = (LogRecordl npl *) o;
MBOLogError (@Log Record %1 u: Operation = %@ Tinestanp =
%Q

MBO = %@ key= %@ nessage=%d, | og. messagel d, | og. oper ati on,
[SUPDat eTi nelti |
toString:log.tinestanp], | og. conponent, | 0og. entityKey, | og. nessage);

}
Each mobile business object hasaget LogRecor ds instance method that returns a list of all

the log records that have been recorded for a particular entity row in a mobile business object:

SUPQhj ect Li st *sal esorders = [Sanpl eApp_Sal es_order findAll];
i f([sal esorders size] > 0)

Developer Guide: iOS Native Applications 73

Reference

Sanpl eApp_Sal es_order * so = [sal esorders itemO0];
SUPQhj ect Li st *loglist = [so getLogRecords];
for(id oin loglist)

LogRecordl npl *1 og = (LogRecordl npl *) o;
MBOLogError (@Log Record %1 u: Operation = %@ Ti mestanp = %@

MBO = %@ key= %@ nessage=%d, | og. messagel d, | og. oper ati on,
[SUPDat eTi nelti |
toString:log.tinestanp], | og. conponent, | og. entityKey, | og. mnessage);

}

Mobile business objects that support dynamic queries can be queried using the synthetic
attribute hasLogRecor ds. This attribute generates a subquery that returns true if an entity
row has any log records in the database, otherwise it returns false. The following code example
prints out a list of customers, including first name, last name, and whether the customer row
has log records:

SUPQuery *query = [SUPQuery getl nstance];

[query sel ect: @ x. surrogat eKey, x. f nane, x. | nanme, x. hasLogRecor ds”] ;
[query from @Custonmer”: @x"];

SUPQuer yResul t Set *qrs = [Sanpl eApp_Sanpl eAppDB execut eQuery: query];
MBOLogError (@%@, [grs. col umNanes toString]);

f or (SUPDat aVal ueLi st *row in qrs.array)

MBOLogError (@%@, [row toString]);

If there are a large number of rows in the MBO table, but only a few have log records
associated with them, you may want to keep an in-memory object to track which rows have log
records. You can define a class property as follows:

NSMut abl eArray* cust oner KeysW t hLogRecor ds;

After data is downloaded from the server, initialize the array:

cust oner KeysW t hLogRecords = [[NSMut abl eArray al | oc]

i ni t WthCapacity: 20];

SUPChj ect Li st *al | LogRecords = [Sanpl eApp_Sanpl eAppDB
get LogRecords: nil];

for (i d<SUPLogRecord> Ir in allLogRecords)

if(([lr entityKey] '=nil) & ([[|r conmponent] conpare: @ Cust oner”]
))

}

You do not need database access to determine if a row in the Customer MBO has a log record.
The following expression returns true if a row has a log record:

BOOL hasALogRecord = [custoner KeysWthLogRecords contai nsObj ect:
[cust oner Row keyToString]];

[cust oner KeysWt hLogRecords addObject:[Ir entityKey]];

74

Sybase Unwired Platform

Reference

Viewing Error Codes in Log Records
You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.

2. Performing an initial synchronization.

3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader

{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": " 111#M/1: 1", "ppni:
"eyJilc2Vybntt ZSI 61 nNLcEFkbW ul i wi cGFzc3dven) G JzMBBBZGLpbi J9", "p
id:"noca://

Erul at or 17128142", " et hod": "repl ay", "pbi ": "true", "upa": " c3VWQNRt a
WI6cz NWQNRE aWA=", "nbo": "Bi ", "app": "My1: 1", "pkg":"inot1: 1. 0"}

JsonCont ent
{"c2":null,"c1":1,"createCalled":true," _op":"C'}

The Unwired Server returns a response. The code is included in the ResponseHeader .

ResponseHeader
{"id":"684chel6f 6b740eb930d08f d626e1551", "ci d": "111#My1: 1", "| ogi nFa
iled":fal se, "nethod": "repl ayFail ed", "1l 0g":

[{"nmessage": "com sybase. j dbc3. j dbc. SybSQLExcepti on: SQL Anywher e
Error -193: Prinmary key for table '"bi' is not unique : Primary key
value ('1')","repl ayPendi ng":

0, "ei sCode":"", "conponent":"Bi","entityKey":"0", "code":

500, "pendi ng": fal se, "di sabl eSubnit": fal se,"?":"inotl. server. LogReco
rdlnpl ", "timestanp":"2010-08-26

14: 05: 32. 97", "request 1 d": " 684cbel6f 6b740eb930d08f d626e1551", " oper at
ion":"create"," _op":"N',"repl ayFail ure":

0, "l evel ":"ERROR', "pendi ngChange": "N', "nmessagel d": 200001, " _rc":
0}],"nmbo":"Bi ", "app":"My1l: 1", "pkg":"inot1l:1.0"}

ResponseCont ent
{"id":100001}

Log Levels and Tracing APIs
The MBOLogger class enables the client to add log levels to messages reported to the
console.The application can set the log level using the set LogLevel method.

In ascending order of detail (or descending order of severity), the log levels defined are
LOG_OFF (no logging), LOG_FATAL, LOG_ERROR, LOG_WARN, LOG_| NFQ, and
LOG _DEBUG

Macros such as MBOLogEr r or , MBOLogWar n, and MBOLog! nf o allow application code
to write console messages at different log levels. You can use the method set LoglLevel to
determine which messages get written to the console. For example, if the application sets the

Developer Guide: iOS Native Applications 75

Reference

log level to LOG_WARN, calls to MBOLogl nf o and MBOLogDebug do not write anything to
the console.

[MBOLogger setLoglLevel : LOG | NFQ ;

MBOLogl nfo(@ This | og message will print to the console”);

[MBOLogger setLoglLevel : LOG WARN] ;

MBOLogl nfo(@ This | og nessage will not print to the console");
MBOLogError (@ This | og nessage will print to the console");

Server Log Messages

The generated code for a package contains an MBODebugLogger source and header file and
an MBODebugSet ti ngs. h file. The MBODebugLogger class contains methods that
enable printing of server message headers and message contents, database exceptions and
SUPLogRecor ds written for each import.

The client application can turn on printing of the desired messages by modifying the
MBODebugSet t i ngs. h. In the default configuration, setting "#define _ DEBUG__ " to
true prints out the server message headers and database exception messages, but does not print
the full contents of server messages.

Note: For more information, examine the MBOLogger . h and MBCLogl nt er f ace. h
header files in the i ncl udes directory.

Tracing APIs
To see detailed trace information on database calls, including actual SQL statements sent to

SQL.ite, a Debug build of your application can turn on or off the following macros in
MBODebugSet ti ngs. h:

* LOGRECORD_ON_IMPORT —creates a log record in the database for each import of
server data for an MBO.

* PRINT_PERSISTENCE_MESSAGES — prints to the console the database exception
messages.

* PRINT_SERVER_MESSAGES - prints to the console the JSON headers of messages
going to and from the Unwired Server. This allows you to see while debugging that an
application is subscribing successfully to the Unwired Server, and that imports are being
sent from the Unwired Server. When this macro is defined, the contents of client-initiated
“replay” messages are also printed to the console.

* PRINT_SERVER_MESSAGE_CONTENT - prints to the console the full contents of
messages from the Unwired Server to the client. The messages include all the data being
imported from the Unwired Server, and usually result in a large amount of printing.
Developers may find it useful to print all the data during detailed debugging; doing so
allows them detailed debugging to see the data coming from the Unwired Server. In
general, do not turn this macro on, as doing so considerably slows the data import process.

76 Sybase Unwired Platform

Reference

Printing Log Messages

The following code example retrieves log messages resulting from login failures where the
Unwired Server writes the failure record into the LogRecor dl npl table. You can
implement the onLogi nFai | ur e callback to print out the server message.

SUPQuery * query = [SUPQuery new nstanceget | nstance] ;
Sanpl eApp_LogRecordl npl List* loglist =
(Sanpl eApp_LogRecor dl npl Li st *) [Sanpl eApp _ Sanpl eAppDB
get LogRecor ds: query];

for (Sanpl eApp_LogRecordlnpl* log in |oglist)

MBOLogError (@Log Record %1 u: Operation = %@ Conponent = %@
message = %@, |og.nmessageld, |og.operation,
| og. conponent, | og. nessage) ;

generateGuid
You can use the gener at eGui d method (in the LocalKeyGenerator class) to generate an ID

when creating a new object for which you require a primary key. This generates a unique ID
for the package on the local device.

+ (NSString*)generat eGui d;

Callback Handlers

A callback handler provides message notifications and success or failure messages related to
message-based synchronization. To receive callbacks, register your own handler with a
database, an entity, or both. You can use SUPDef aul t Cal | backHandl er as the base
class. In your handler, override the particular callback you want to use (for example,

onl nport).

Because both the database and entity handler can be registered, your handler may get called
twice for amobile business object import activity. The callback is executed in the thread that is
performing the action. For example, onl npor t is always called from a thread other than the
main application thread.

When you receive the callback, the particular activity is already complete.
The SUPCal | backHandl er protocol consists of these callbacks:

* onlmport:(id)entityObject; —invoked whenani npor t is received. If Unwired Server
accepts a requested change, it sends one or more i npor t messages to the client,
containing data for any created, updated, or deleted row that has changed on the Unwired
Server as a result of the r epl ay request.

* onReplayFailure:(id)entityObject; —invoked when a replay failure is received from the
Unwired Server, whenever a particular device sends a create, update, or delete operation
and the operation fails (Unwired Server rejects the requested operation).

Developer Guide: iOS Native Applications 77

Reference

onReplaySuccess: (id)entityObject; — invoked when a replay success is received from
the Unwired Server, whenever a particular device sends a create, update, or delete
operation and the operation succeeds (Unwired Server accepts the requested operation).
onLoginFailure; — invoked when a login failure message is received from the Unwired
Server.

onL oginSuccess; — called when a login result is received by the client.
onSubscribeFailure; —invoked when a subscribe failure message is received from the
Unwired Server, whenever an object in a subscribed entity changes.
onSubscribeSuccess; — invoked when a subscribe success message is received from the
Unwired Server, whenever an object in a subscribed entity changes.

- (int32_t)onSynchronize: (SUPODbjectList*)syncGroupList withContext:
(SUPSynchronizationContext*)context; — invoked when the synchronization status
changes. This method is called by the database class begi nSynchr oni ze methods
when the client initiates a synchronization, and is called again when the server responds to
the client that synchronization has finished, or that synchronization failed.

The SUPSynchr oni zat i onCont ext object passed into this method has a “status”
attribute that contains the current synchronization status. The possible statuses are defined
in the SUPSynchr oni zat i onSt at usType enum, and include:

e SUPSynchronizationStatusSTARTING —passed in when begi nSynchr oni ze
is called.

* SUPSynchronizationStatusUPL OADING —synchronization status upload in
progress.

e SUPSynchronizationStatusDOWNL OADING —synchronization status download
in progress.

* SUPSynchronizationStatusFI NI SHING —synchronization completed successfully.

* SUPSynchronizationStatusERROR — synchronization failed.

This callback handler returns SUPSynchr oni zat i onAct i onCONTI NUE, unless the
user cancels synchronization, in which case it returns

SUPSynchr oni zat i onAct i onCANCEL. This code example prints out the groups in
a synchronization status change:

MBOLogl nf o(@ Synchr oni zati on response");

MBOLogl nf o(@ "y
f or (i d<SUPSynchroni zati onG oup> sg in syncG oupLi st)

MBCOLogl nfo(@ group = %@, sg. hane) ;
}

MBCLogl nf o(@ ");

if(context '=nil)

{

78

Sybase Unwired Platform

Reference

MBOLogl nfo(@ context: %d,
%ad , cont ext . st at us, cont ext . user Cont ext) ;
} else {
MBOLogl nfo(@ context is null™);
}

MBCLogl nf o(@ ")

return SUPSynchroni zati onAct i onCONTI NUE;
}
* onSuspendSubscriptionFailure; — invoked when a call to suspend fails.

» onSuspendSubscriptionSuccess; — invoked when a suspend call is successful.

* onResumeSubscriptionFailure; —invoked when a resume call fails.

* onResumeSubscriptionSuccess; — invoked when a resume call is successful.

» onUnsubscribeFailure; —invoked when an unsubscribe call fails.

* onUnsubscribeSuccess; — invoked when an unsubscribe call is successful.

e onlmportSuccess; —invoked when onl nport succeeds.

* onMessageException: (NSException*e); — invoked when an exception occurs during
message processing. Other callbacks in this interface (whose names begin with "on™) are
invoked inside a database transaction. If the transaction is rolled back due to an unexpected
exception, this operation is called with the exception (before the rollback occurs).

* onTransactionCommit; —invoked on transaction commit.

» onTransactionRollback; —invoked on transaction rollback.

» onResetSuccess; — invoked when reset is successful.

e onSubscriptionEnd; —invoked on subscription end. OnSubscr i pt i onEnd can occur
when the device is registered, unlike OnUnsubscr i beSuccess.

* onStorageSpacel ow; — invoked when storage space is low.

* onStorageSpaceRecovered; —invoked when storage space is recovered.

* onConnectionStatusChange: (SUPDeviceConnectionStatus)connStatus:
(SUPDeviceConnectionType)connType: (int32_t)err Code: (NSString*)err String; —
the application should call the register callback handler with a database class, and
implement the onConnect i onSt at usChange method in the callback handler. The
API allows the device application to see what the error is in cases where the client cannot
connect to the Unwired Server. SUPDevi ceConnect i onSt at us and
SUPDevi ceConnect i onType are defined in SUPConnectionUtil . h:

typedef enum {
WRONG_STATUS_NUM = 0,
/'] device connected
CONNECTED_NUM = 1,
/1 device not connected
DI SCONNECTED_NUM = 2,
/1 device not connected because of flight node
DEVI CEl NFLI GHTMODE_NUM = 3,
/1 device not connected because no network coverage
DEVI CEOUTOFNETWORKCOVERAGE_NUM = 4,
/] device not connected and waiting to retry a connection

Developer Guide: iOS Native Applications 79

Reference

VAI TI NGTOCONNECT_NUM = 5,
/1 device not connected becauseroam ng was set to false
/1 and device is roanng
DEVI CEROAM NG_NUM = 6,
/'l device not connected because of |ow space.
DEVI CELOABTORAGE_NUM = 7
} SUPDevi ceConnecti onSt at us;

typedef enum {
VWRONG_TYPE_NUM = 0,
/1 1Phone has only one connection type
ALVWAYS_ON _NUM = 1

} SUPDevi ceConnecti onType;

This code example shows how to register a handler to receive a callback:

DBCal | backHandl er* handl er = [DBCal | backHandl er newHandl er] ;
[i PhoneSMrest DB r egi st er Cal | backHandl er: handl er] ;
[handl er rel ease];

MBQCal | backHandl er* nmboHandl er = [MBOCal | backHandl er newHandl er];
[Product registerCall backHandl er: nboHandl er] ;
[mboHandl er rel ease];

Date/Time
Classes that support managing date/time objects.

e SUPDat eVal ue. h —manages an object of datatype Dat e.

e SUPTI nmeVal ue. h —manages an object of datatype Ti rre.

* SUPDat eTi neVal ue. h —manages an object of datatype Dat eTi ne.

e SUPDat eLi st. h —manages a list of Dat e objects (the objects cannot be null).

e SUPTI neLi st. h —manages a list of Ti e objects (the objects cannot be null).

e SUPDat eTi neLi st . h —manages a list of Dat eTi e objects (the objects cannot be
null).

e SUPNul | abl eDat eLi st . h—managesalistof Dat e objects (the objects can be null).

e SUPNul | abl eTi neLi st. h—managesalistof Ti me objects (the objects can be null).

e SUPNul | abl eDat eTi neLi st . h—managesa list of Dat eTi ne objects (the objects
can be null).

Example 1: To get a Dat e value from a query result set:

SUPQueryResul t Set* resultSet = [Test CRUD_Test CRUDDB
execut eQuery: query];
f or (SUPDat aVal ueLi st* result in resultSet)
[[SUPDat aVal ue get Nul | abl eDate: [result item 2]]
description];

Example 2: A method takes Dat e as a parameter:

- (voi d) set Modi fi edOr der Dat e: (SUPDat eVal ue*) thedat e;
SUPDat eVal ue *t hedat eval ue = [SUPDat eVal ue newl nst ance] ;
[thedat eval ue set Val ue: [NSDate date]];

[custoner set Mbdi fi edOr der Dat e: t hedat eval ue] ;

80

Sybase Unwired Platform

Reference

Apple Push Notification API

The Apple Push Notification API allows applications to provide various types of push
notifications to devices, such as sounds (audible alerts), alerts (displaying an alert on the
screen), and badges (displaying an image or number on the application icon). Push
notifications require network connectivity.

The client library | i bcl i ent rt wraps the Apple Push Notification API in the file
SUPPushNot i fi cati on. h.

In addition to using the Apple Push Notification APIs in a client application, you must
configure the push configuration on the server. This is performed under Server
Configuration > Messaging > Apple Push Configuration in Sybase Control Center. You
must configure the device application name (for push), the device certificate (for push), the
Apple gateway, and the gateway port.

The following APl methods abstract the Unwired Server, resolve the push-related settings,
and register with an Apple Push server, if required. You can call these methods in the
"applicationDidFinishLaunching" function of the client application:

@nterface SUPPushNotification : NSObj ect
{

}

+(voi d) set upFor Push: (Ul Appl i cati on*) applicati on;

+(voi d) devi ceTokenFor Push: (Ul Appl i cati on*)application devi ceToken:
(NSDat a

*)devToken;

+(voi d) pushRegi strationFail ed: (U Application*)application
errorlnfo: (NSError *)err;

+(voi d) pushNot i fication: (U Application*)application

noti fyData: (NSDi cti onary *)userlnfo;

+(voi d) set upFor Push: (Ul Appl i cati on*)application

After a device successfully registers for push notifications through Apple Push Notification
Service, i0S calls the

di dRegi st er For Renpt eNot i fi cati onW t hDevi ceToken method in the client
application. iOS passes the registered device token to this function, and the functions calls the
devi ceTokenFor Push API to pass the device token to Unwired Server:

+(voi d) devi ceTokenFor Push: (Ul Appl i cati on*)applicati on devi ceToken:

(NSDat a
*)devToken

If for any reason the registration with Apple Push Notification Service fails, iOS calls
di dFai | ToRegi st er For Renot eNot i fi cati onsW t hEr r or in the client
application which calls the following API:

+(voi d) pushRegi strationFail ed: (U Application*)application
errorinfo: (NSError *)err

Developer Guide: iOS Native Applications 81

Reference

When iOS receives a notification from Apple Push Notification Service for an application, it
calls di dRecei veRenot eNot i fi cati on in the client application. This calls the
pushNoti fi cati on API:

+(voi d) pushNot i fication: (U Application*)application
noti fyData: (NSDi ctionary *)userlnfo

Complex Attribute Types

The MBO examples previously described have attributes that are primitive types (such as

i nt,long,string), and make use of the basic database operations (create, update, and

delete). To support interactions with certain back-end datasources, such as SAP® and Web

services, an MBO may have more complex attributes: an integer or string list, a class or MBO
object, or a list of objects. Some back-end datasources require complex types to be passed in as
input parameters. The input parameters can be any of the allowed attribute types, including
primitive lists, objects, and object lists.

In the following example, a Sybase Unwired Platform project is created to interact with a
RESTful Web service back-end. The project includes two MBOs,
Hel pDesk_Query_Servi ce and Hel pDesk_QueryLi st _Servi ce.

Note: Each project will have different requirements because each back-end datasource
requires a different configuration for parameters to be sent to successfully execute a database
operation.

82

Sybase Unwired Platform

ﬁ}mmcmv Tierl : STRING
) dosure_Prockst_Category_Tier2 : STRING
) dosue_Product_Category_| Tm3 STRING

@) priceity : STRING

{30 priceity_Weight : INT

@) procuct_Categorization_Tier_) - STRING
§2) peoduct_Categorization_Tier_Z : STRING
@ product_Categorization_Tier_3 : STRING
) product_Model_Version : STRING

) product_Name : STRING

B regon : STRING

{E) reported_Source : STRING

B resobition : STRING

£2) reschaion_Camgory : STRING

{20 resabation_Catwgory _Tier_Z : STRING
{5) reschtion_Category_Tier 3 | STRING
&) service_Type : STRING

) e : STRING

@) e _Group t STRING

&) shabus : STRING

) shatus_Reason : STRING

&) urpency | STRING

&) VIP : STRING

@) serviceCl : STRING

) serviceCl_ReconiD @ STRING

&) HPD_C1 - STRING

§E) hPD_CT_RsconlD ; STRING

{5 hPD_C1_Formbiame : STRING

) TI0_CI_FormiName : STRING

(3) abtribuke] = STRING

Cpsrations (1)

o heipDesk_Subma_Sesvice()

M

Reference

) cabegonzation_Tier_3 1 STRING

) chy : STRING

@) chosire Marfactures | STRENG

(@) closure_Product_Cakegary_Tierl - STRING
) chosure_Product_Category_Tierd = STRING
(@) chosure_Product_Category_Tier3 : STRING
18 chomre_Product_Model_Versicn : STRING
(@) chosure_Product_Name : STRING

f8) comparry : STRING

@) cortact_Comparry : STRING

@) conkact_Sensiivity : STRING

) country : STRING

ey _Weight : INT

8 product_Categorization_Ther_1 @ STRENG
(@ product_Categoeization_Tier 2 : STRING
) product_Categorization_Teer_3 | STRING
@) product_Madel_Version : STRING

£ product_Name - STRING

@ rogeon : STRING

) reported_Source : STRING

{8 reschution : STRING

) reschution_Category @ STRENG

) reschubion_Cakegory_The_2 - STRING
) resohution_Category_Tiew_3 : STRING
() sarvice_Type : STRING

@ HeD_CL: STRING

@) hPD_CI_RevonD ; STRING
@) WPD_CI_Foetailame : STRING
@) 210 _C1_FormMlame | STRING

Oper Stiond {0)

Developer Guide: iOS Native Applications

83

Reference

You can determine from viewing the properties of the create operation,

hel pdesk_Submit _Servi ce(), that the operation requires parameters to be passed in.
The first parameter, HEADER , is an instance of the Aut hent i cat i onl nf o class, and
the second parameter, assi gned_Gr oup, is a list of strings.

fsd YT) Eafreat ?lc'.,n.: | S Figrm |

Defriten Farameters Data Source
Parameters e Batabype Fiuladde Ut abde Eeguod Parparuleation ey Fill froem Attrdate Aegurnnd Bt abypa Pk

s Grogp S
amuged Spport, G a
snicred_Support 0. Axeyred_Sup .. SHRING
miper Avuge STRING
Ealayxiativn . STAING
eatoperizarion_Tee 3 Calecerizatior . STAING
eategorizaton T 3 Categorzation... STRING

ET P SERING
clegps Marefachrer Osure Mars,., STRING
ogg Procud_Cab... Oodure Produ. STRING

=
g

AT T T A
3
¥
B
3

When you generate iOS code for this project, the generated code includes the

RESTf ul CU_Aut hent i cati onl nf o class, in addition to the MBO classes

RESTf ul CU_Hel pDesk_Query_Servi ce and

RESTf ul CU_Hel pDesk_QueryLi st _Servi ce. The Aut henti cati onl nfo
class holds information that must be passed to the Unwired Server to authenticate database
operations.

The project includes the create operation hel pdesk_Submni t _Ser vi ce. Call this
method instead of using the iOS MBO create method directly. The

hel pdesk_Subm t _Ser vi ce method is defined in

RESTf ul CU_Hel pDesk_Query_Servi ce. h:

- (void)hel pDesk_Subm t _Servi ce:

(RESTf ul CU_Aut hent i cat i onl nf o*) _HEADER

wi t hAssi gned_Gr oup: (SUPNuI | abl eStri nglLi st *)assi gned_Gr oup
wi t hCl _Nane: (NSStri ng*)cl _Nane

wi t hLookup_Keywor d: (NSStri ng*) | ookup_Keyword

wi t hResol uti on_Category_Tier_1:
(NSString*)resolution_Category _Tier_1

wi t hAction: (NSString*)action

wi t hCr eat e_Request : (NSStri ng*) creat e_Request

wi t hWor k_I nfo_Sunmary: (NSStri ng*)wor k_I nf o_Sunmary

wi t hWor k_I nf o_Not es: (NSStrlng)wor k_| nf o_Not es

wi t hWor k_I nfo_Type: (NSSt ri ng*) wor k_I nfo_Type

wi t hWor k_| nf o_Dat e: (NSDat e*) wor k_I nf o_Dat e

wi t hWor kI nf o_Sour ce: (NSStri ng*)wor k_I nf o_Sour ce

wi t hWor k_I nf o_Locked: (NSSt ri ng*)Work I nfo_Locked

wi t hWor k_I nfo_Vi ew Access: (NSStri ng*)wor k_I nf o_Vi ew Access
withM ddl e_Initial:(SUPNullableStringList*)nmddle_Initial
wi t hDi rect _Contact _First_Nane: (NSString*)direct_Contact_First_Nane
withDirect_Contact_Mddle Initial:

(NSSt ri ng* Ydi rect_Contact_Mddle_lnitial

wi thDirect Contact Last Name: (NSString*)direct Contact Last Name
wi t hTenpl atel D: (NSSt ri ng*)tenpl at el D;

84

Sybase Unwired Platform

Reference

The following code example initializes a RESTful instance of the

Hel pDesk_Query_Servi ce MBO on the device, creates the instance in the client
database, and submits it to the Unwired Server. The example shows how to initialize the
Aut hori zat i onl nf o class instance and the assi gned_Gr oup string list, and pass
them as parameters into the create operation.

RESTf ul CU_Aut henti cati onl nf o* aut hi nf o;
int64_t key= O;
aut hi nfo = [RESTful CU_Aut henti cationl nfo getlnstance];
aut hi nf 0. user Nane=@ Fr anci e";
aut hi nf 0. passwor d=@ passwor d";
aut hi nf 0. aut henti cati on=nil;
aut hi nfo.l ocal e=ni | ;
aut hi nf o. ti neZone=ni | ;

SUPNul | abl eStri ngLi st *assi gnedgrp = [SUPNul | abl eStri ngLi st
get | nst ance] ;
[assi gnedgrp add: @ Front of fi ce Support"];

RESTf ul CU_Hel pDesk_Query_Service *cr =
[[RESTf ul CU_Hel pDesk_Query_Service alloc] init];

cr.conpany = @Cal bro Services";

[cr hel pDesk_Submit_Service: aut hi nfo
wi t hAssi gned_Gr oup: assi gnedgr p
wi t hCl _Nane: ni |
wi t hLookup_Keywor d: ni |
wi t hResol uti on_Cat egory_Tier_1:nil
wi t hActi on: @ CREATE"
wi t hCr eat e_Request: @ YES"
wit hWork_I nfo_Sunmary: [NSString stringWthFormat: @create %@,
[NSDat e dat e]]
wi t hwork | nf o_Not es: ni |
wi t hWork_I nfo_Type: nil
wi t hWork_I nfo_Date: nil
wi t hWor k_I nf o_Sour ce: ni |
wi t hwork I nfo_Locked: ni |
wi t hWwork_I nfo_Vi ew_Access: ni |
withMddle_lnitial:nil
wi t hDi rect _Cont act _Fi rst _Name: ni |
withDirect Contact _Mddle Initial:nil
wi t hDi rect _Contact _Last _Name: ni |
withTenplatel D:nil];

[cr submitPending];

/'l wait for response from server

whi | e([RESTf ul CU_RESTf ul CUDB hasPendi ngQOper at i ons])
[NSThread sl eepFor Ti nel nterval :1.0];

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Developer Guide: iOS Native Applications 85

Reference

Handling Exceptions
The iOS Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions

A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace appearing in the server log, and a log record
(LogRecor dl npl) being imported to the client with information on the problem. The client
receives both the log record and ar epl ayFai | ed message.

HTTP Error Codes

Unwired Server examines the EIS code received in a server response message and maps ittoa
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 3. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS down or the connection is terminated.

Table 4. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.

403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).

404 Resource (table/webservice/BA- | Restore the EIS configuration.
P1) not found on Backend EIS.

405 Invalid license for the client (ap- | N/A

plicable only for MBS).

86

Sybase Unwired Platform

Reference

Error Code Probable Cause Manual Recovery Action

412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.

500 SUP internal error in modifying | N/A
the CDB cache.

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThr owCr edent i al Request On401Er r or context
variable is set to true (which is the default), error code 401 throws a

Credenti al Request Except i on, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the

SupThr owCr edent i al Request On401Er r or context variable in Sybase Control
Center. If SupThr owCr edent i al Request On401Er r or is set to false, error code 401
is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP® error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 5. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net- | 503
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

JCO_ERROR_RESOURCE Indicates that JCO has run | 503
out of resources such as
connections in a connec-
tion pool

JCO_ERROR_STATE_BUSY The remote SAP system is | 503
busy. Try again later

Client-Side Exceptions
The HeaderDoc for the iOS Client Object API lists the possible exceptions for the client.

Developer Guide: iOS Native Applications 87

Reference

Attribute Datatype Conversion

When a non-nullable attribute's datatype is converted to a non-primitive datatype (such as
class NSNumber, NSDate, and so on), you must verify that the corresponding property for the
MBO instance is assigned a non-nil value, otherwise the application may receive a runtime
exception when creating a new MBO instance.

A typical scenario is when an attribute exists in ASE's identity column with a numeric
datatype. For example, for a non-nullable attribute with a decimal datatype, the corresponding
datatype in the generated Objective-C MBO code is NSNunber . When creating a new MBO
instance, ensure that you assign this property a non-nil value.

Operation Name Conflicts
Operation names that conflict with special field types are not handled.

For example, if an MBO has attributes named id and description, those attributes are stored
with the name i d_ descri pti on_. If you create an operation called "description™ and
generated Object-C code, you see an error during compilation because of conflicting methods
in the classes.

Exception Classes
The iOS Client Object API supports exception classes for queries and for the messaging
client.

Query Exception Classes

Exceptions thrown by SUPSt at enent Bui | der when building an SUPQuery, or by
SUPQuer yResul t Set during processing of the results. These exceptions occur if the
query called for an entity or attribute that does not exist, or tried to access results with the
wrong datatype.

* SUPAbstractClassException.h —thrown when the query specifies an abstract class.

e SUPInvalidDataTypeException.h —thrown when the query tries to access results with
an invalid datatype.

¢ SUPNoSuchAttributeException.h —thrown when the query calls for an attribute that
does not exist.

* SUPNoSuchClassException.h —thrown when the query calls for a class that does not
exist.

* SUPNoSuchParameter Exception.h —thrown when the query calls for a parameter that
does not exist.

* SUPNoSuchOper ationException.h —thrown when the query calls for an operation that
does not exist.

* SUPWrongDataTypeException.h —thrown when the query tries to access results with
an incorrect datatype definition.

88

Sybase Unwired Platform

Reference

Messaging Client APl Exception Classes
Exceptions in the messaging client (cl i ent r t) library.

* SUPODbjectNotFoundException.h —thrown by the | oad: method for entities if the
passed-in primary key is not found in the entity table.

* SUPPersistenceException.h —may be thrown by methods that access the database. This
may occur when application codes attempts to:

e Insert a new row in an MBO table using a duplicate key value.
» Execute a dynamic query that selects for attribute (column) names that do not exist in
an MBO.

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

SUPDatabaseMetaData
You can use the SUPDat abaseMet aDat a class to retrieve information about all the classes
and entities for which metadata has been generated.

Any entity for which "allow dynamic queries” is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

SUPClassMetaData
The SUPCI assMet aDat a class holds metadata for the MBO, including attributes and

operations.

SUPAttributeMetaData
The SUPAL t r i but eMet aDat a class holds metadata for attributes such as attribute name,
column name, type, and maxlength.

Code Example for Accessing Metadata
The following code example for a package named "SampleApp" shows how to access
metadata for database, classes, entities, attributes, operations, and parameters.

NSLog(@ Li st cl asses that have netadata....");

SUPDat abaseMet aDat a *drrd = [Sanpl eApp_ Sarrpl eAppDB net aDat a] ;
SUPQhj ect Li st *cl asses = dnd. cl assLi st;

for(SUPCl assMet aData *cnd in cl asses)

NSLog(@ C ass nane = %@", cnd. nane) ;

NSLog(@ Li st entities that have netadata, and their attributes
and operations....");

Developer Guide: iOS Native Applications 89

Reference

SUPQhj ectList *entities = dnd. entitylist;
for(SUPEntityMetaData *end in entities)
{
NSLog(@ Entity name = %@ database table nane =
%@ ", end. nane, end. t abl e) ;
SUPQhj ectLi st *attributes = end. attri butes;
for(SUPAttri buteMetabData *and in attributes)
NSLog(@ Attribute: name = %@@ , and. nane,
(and. colum ? [NSString stringWthFormat: @,
dat abase colum = %@, and. colum] : @"));
SUPQhj ect Li st *operations = end. oper ati ons;
f or (SUPOper at i onMet aData *ond i n operations)

NSLog(@ Operation: name = %@, ond. nane) ;
SUPQhj ect Li st *paraneters = ond. par anet ers;
f or (SUPPar anet er Met aData *pnd i n paranet ers)
NSLog(@ Paraneter: name = %@ type = %@,
prmd. nane, [pnd. dataType nane]);
}
}

Messaging Client API

The Sybase Unwired Platform messaging client (SUPMessaged i ent) APl is part of the
I'ibclientrt library. The messaging client is responsible for setting up a connection
between the user application and the server, as well as sending client messages up to the
Unwired Server and receiving the import messages sent down to the client.

The Messaging Client API consists of the following methods:
+(void)setAssertionState:(BOOL)hideAssertions;

Determines whether assertions should appear or not.
+(NSinteger)start

Starts the messaging client and connects to the Unwired Server. You must use the settings
application to enter the Sybase Unwired Platform user preferences information, including
server name, port, user name, and activation code.

The parameters server name, user name, serverport, companylD and activation correspond to
the Unwired Server name, the user name registered with the Unwired Server, the port the
Unwired Server is listening to, the company ID, and activation code, respectively. If a Relay
Server is used, ‘companyID’ corresponds to the farm ID of the Relay Server.

To ensure that messages are routed to the correct client application, the messaging client code
sends the application executable name (specifically, the first 16 characters of the

CFBundl eExecut abl e value from the application’s | nf o. pl i st) to the Unwired
Server. The Unwired Server requires that each application on a device (or simulator) connect
to the Unwired Server with a different user name.

This call returns one of the following values as defined in SUPMessageClient.h.

» kSUPMessageClientSuccess

90

Sybase Unwired Platform

Reference

e kSUPMessageClientFailure
» kSUPMessageClientKeyNotAvailable
* kSUPMessageClientNoSettings

Note: Ensure that the package database exists (either from a previous run, or a call to
[Sanmpl eApp_Sanpl eAppDB cr eat eDat abase]) and that

[Sanpl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zat i on] is called
before calling [SUPMessageCl i ent start].

The following code example shows the st art method:

NSl nt eger result = [SUPMessageClient start];

if (result == kSUPMessageC i ent Success)

/1 Continue with your application
At this point, if the result is a NO then the client
application can decide to quit or throw a nmessage al erting

/
/
/ the user that the connection to the server was
/ unsuccessful .

~ — — ~—

+(NSinteger)stop

Stops the messaging client.
[SUPMessageCl i ent stop];

+(NSinteger)restart

Restarts the messaging client. Returns YES when successful, otherwise, if the required
preferences are not set, or an error occurred when restarting the client, returns NO.

NSI nt eger result = [SUPMessageClient restart];
+(BOOL)provisioned

Checks if all the required provisioning information is set. Returns NO when required
preferences are not set, and YE£S when all the required information is set.

BOOL result = [SUPMessaged i ent provisioned];
+(int)status
Returns the last status received from messaging client, as one of the following values:

¢ 0-—not started
e 1 -started, not connected
e 2 —started, connected

int result = [SUPMessaged i ent status];

Developer Guide: iOS Native Applications 91

Reference

Best Practices for Developing Applications

Observe best practices to help improve the success of software development for Sybase
Unwired Platform.

« Setup your development environment and develop your application using the procedures
in the Developer Guide for iOS.

» Avoid making calls on the "main” thread on the device as this provides a poor response.
Instead, use loading screens and activity spinners while doing the work in a background
thread or operation queue. Do this while submitting and saving operations, and doing
imports that update the tables displayed.

» Usean operation queue if you are trying to process imports and show them as they come in
aUl Tabl eVi ewCont r ol | er . The operation callback will overwhelm the Ul if you do
one at a time. Instead, use an operation queue and process in groups.

* When testing for memory leaks, ignore the one-time startup leaks reported for the
Messaging Server service.

Constructing Synchronization Parameters

When constructing synchronization parameters to filter rows to be download to a device, if the
SQL statement involves two mobile business objects, you must use an "in" clause rather than a
"join" clause. Otherwise, when there is a joined SQL statement, all rows of the subsequent
mobile business object are filtered out.

For example, you would change this statement:

Select x.* from So_conpany X , So_user y where x.conpany_id =
y.conpany_id and y.unane='test'

To:

Sel ect x.* from So_conmpany x where x.conpany_id in (select
y.conpany_id from So_user y where y.unane='test')

92

Sybase Unwired Platform

Index
A

APNS 27
Apple gateway 81
Apple Push Notification API 81
Apple Push Notification Service 27
application provisioning

with iPhone mechanisms 27
arrays 48
AttributeMetaData 89
AttributeTest 38

B

beginOnlineLogin 33
beginSynchronize 34

C

callback handlers 77
ClassMetaData 89
common APIs 53
complex attribute type 82
CompositeTest 40
ConnectionProfile 31
create operation 42

D

data vault 58
access group 66
change password 65
creating 57
deleting 59
exists 58
lock timeout 61
locked 60
locking 59
retrieve string 63
retrieve value 64
retry limit 61, 62
set string 62
set value 64
unlocking 60
DatabaseMetaData 89

DEBUG__ define 76
delete operation 44
documentation roadmap 1

E

EIS error codes 86, 87

entity states 48, 50

error codes
EIS 86, 87
HTTP 86, 87
mapping of SAP error codes 87
non-recoverable 86
recoverable 86

G

generated code contents 8
generated code, location 8
generating code using the API 4
getLogRecords 73, 75

H

hasPendingOperations 36
HeaderDoc 13
HTTP error codes 86, 87

ID generation 77
infrastructure provisioning
with iPhone mechanisms 27
iPhone
iTunes provisioning 29
provisioning 27

L

local business object 46
localization 25, 26
LOGRECORD_ON_IMPORT 76
LogRecordImpl 73, 75, 77

Index

Developer Guide: iOS Native Applications

93

Index

M

maxDbConnections 31
MBODebugLogger 76
MBODebugSettings.h 76
MBOLogger 75
messaging client AP1 90

N

newLogRecord 73, 75

O

Object API code
location of generated 8
OfflineLogin 32

P

pending operation 46
personalization keys 47

types 47
PRINT_PERSISTENCE_MESSAGES 76
PRINT_SERVER_MESSAGE_CONTENT 76
PRINT_SERVER_MESSAGES 76
provisioning

employee iPhone applications 29
provisioning devices

with iPhone mechanisms 27
push notifications 81

Q

QueryResultSet 41

R

Read API 36
relationship data, retrieving 42
replay pending requests 36

replay results 36
resumeSubscription 35

S

save operation 44

server log messages 76
sleepForTimelnterval 36

status methods 48, 50
submitLogRecords 73, 75

subscribe data 34
SUPADbstractClassException.h 88
SUPDataVault 56
SUPDataVaultException 56
SUPInvalidDataTypeException.h 88
SUPLogRecords 76
SUPNoSuchAttributeException.h 88
SUPNoSuchClassException.h 88
SUPNoSuchOperationException.h 88
SUPNoSuchParameterException.h 88
SUPObjectNotFoundException.h 89
SUPPersistenceException.h 89
SUPWrongDataTypeException.h 838
suspendSubscription 34
synchronization 33
SynchronizationProfile 32
synchronize data 34

synchronizing and retrieving MBO data 13

T

timer 36

U

unsubscribe data 34
update operation 43

X
Xcode 9

94

Sybase Unwired Platform

	Developer Guide: iOS Native Applications
	Contents
	Introduction to Developer Guide for iOS
	Documentation Roadmap for Unwired Platform
	Device Application Development

	Development Task Flows
	Task Flow for Xcode IDE Development
	Using Object API to Develop a Device Application
	Generating Objective-C Object API Code
	Generated Code Location and Contents
	Validating Generated Code

	Importing Libraries and Code in the Xcode IDE
	Developing Applications in the Xcode IDE
	Generating HeaderDoc from Generated Code
	Configuring an Application to Synchronize and Retrieve MBO Data
	Managing the Background State
	Referencing the iOS Client Object API
	Device Application Example Code
	main.m Example Code
	CallbackHandler.h Example Code
	CallbackHandler.m Example Code
	SampleApp.h Example Code
	SampleApp.m Example Code

	Localizing an iOS Application
	Localizing Menus and Interfaces
	Localizing Embedded Strings
	Validating Localization Changes

	Preparing Applications for Deployment to the Enterprise
	Apple Push Notification Service Configuration
	Preparing an Application for Apple Push Notification Service
	Provisioning an Application for Apple Push Notification Service

	Reference
	iOS Client Object API
	Connection APIs
	SUPConnectionProfile
	Improving Device Application Performance with Multiple Database Reader Threads
	SynchronizationProfile
	Authentication

	Message-Based Synchronization APIs
	beginOnlineLogin
	Setting Synchronization Parameters
	Subscribe Data
	Unsubscribe Data
	Suspend Subscription
	Synchronize Data
	Resume Subscription
	Recover Subscription
	Start or Stop Background Synchronization
	Replay Results

	Query APIs
	Retrieving Data from an MBO
	Object Queries
	Arbitrary Find
	SUPAttributeTest
	SUPCompositeTest
	Dynamic Query
	Paging Data

	SUPQueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert (MLI)
	Pending Operation

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values
	Passing Arrays of Values, Objects

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Refresh
	Clear Relationship Objects

	Security APIs
	Encryption of Client Data
	Encrypt the Database
	SUPDataVault
	createVault
	vaultExists
	getVault
	deleteVault
	lock
	isLocked
	unlock
	setLockTimeout
	getLockTimeout
	setRetryLimit
	getRetryLimit
	setString
	getString
	setValue
	getValue
	changePassword
	setAccessGroup

	Installing and Testing X.509 Certificates on iOS Clients
	Importing an X.509 Certificate to an iOS Client from the Unwired Server
	iOS Sample Code

	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate Into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server With a Certificate

	Utility APIs
	Using the Log Record APIs
	Viewing Error Codes in Log Records

	Log Levels and Tracing APIs
	Server Log Messages
	Tracing APIs
	Printing Log Messages

	generateGuid
	Callback Handlers
	Date/Time
	Apple Push Notification API

	Complex Attribute Types
	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions
	Attribute Datatype Conversion
	Operation Name Conflicts

	Exception Classes
	Query Exception Classes
	Messaging Client API Exception Classes

	MetaData and Object Manager API
	SUPDatabaseMetaData
	SUPClassMetaData
	SUPAttributeMetaData
	Code Example for Accessing Metadata

	Messaging Client API

	Best Practices for Developing Applications
	Constructing Synchronization Parameters

	Index

