SYBASE

Cmpy

Developer Reference for iOS

Sybase Unwired Platform 1.5.5

DOCUMENT ID: DC01217-01-0155-01

LAST REVISED: December 2010

Copyright © 2010 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Reference for iOS...................... 1
Documentation Road Map for Unwired Platform............ 2
Device Application Development............ccccovvviiviiiinnnenn. 5

Development Task FIOWSouuviiiiiiiiiiiiiiiiiiiiieeee e 7
Task Flow for Xcode IDE Development..............ccoeeeeeeee 7
Mobile Business Object Codecceeevvvviivveiiiiiiinnn, 8

Generating Mobile Application Project Code.......... 8
Importing Libraries and Code into the Xcode IDE........ 11
Developing Applications in the Xcode IDE 14

Generating HeaderDoc from Generated Code....14
Configuring an Application to Synchronize and

Retrieve MBO Dataccccvvvviiiiiieeeeeeiieeiinns 15
Referencing the iOS Client Object API 17
Deploying Applications to Devices.........cccceeeeeeeevevvvnnnnnn. 29
Device Registrationcoooeeeieeiiiiiiee 29
Deploying Applications to the Enterprise.............. 32
Apple Push Notification Service Configuration....33
REFEIENCE .o 39
I0OS Client ObJeCt APl ..o 39
(@d0] 8] g [T ox (o] g AN o K TP 39
Synchronization APIS ... 40
QUETY APIS e 41
Operations APIS ..., a7
Local Business ObjecCtcccuuevieeeeiiiiiiiiieennens 51
Personalization APIScccoooiiiiiiiiiiiiiiieeeeeeeeeeeaes 51
Object State APIScoiieeiiiieeeeeeeee e, 52
Security APIS ... 60
ULIHEY APIS oo 62
Complex Attribute Typescovvvvviiiiiiviiiiiiiiiiiiens 71
Dot =T o] 1[0 1 SN 74
MetaData and Object Manager API 78

Developer Reference for iOS

Contents

Message-Based Synchronization APIs 79
Messaging Client APlcoooiiiiiiiie e 82
.. 85

Sybase Unwired Platform

Introduction to Developer Reference for iOS

Introduction to Developer Reference for i0OS

This developer reference provides information about using advanced Sybase® Unwired
Platform features to create applications for Apple iOS devices, including iPhone and iPad.
The audience is advanced developers who are familiar working with APIs, but who may be
new to Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object APl documentation.

Companion guides include:

o Sybase Unwired WorkSpace — Mobile Business Object
» Tutorial: iPhone Device Application Development (Custom Development)
» Troubleshooting for Sybase Unwired Platform

HeaderDoc provides a complete reference to the APIs:

e The Framework Library HeaderDoc is installed to
<Unwi redPl atform I nstall Dir>\Servers\ Unw redServer
\ Cl i ent API\ api doc\ Obj ecti veC.

* You can generate HeaderDoc from the generated Objective-C code. See Generating
HeaderDoc from Generated Code on page 14.

See Fundamentalsfor high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Developer Reference for iOS 1

Introduction to Developer Reference for iOS

Documentation Road Map for Unwired Platform

Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document

Description

Sybase Unwired Platform Installation Guide

Describes how to install or upgrade Sybase Un-

wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin

Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.
Fundamentals Describes basic mobility concepts and how Syb-

ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Sybase Unwired Platform

Introduction to Developer Reference for iOS

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat- | Describes how to use the Sybase Control Center
form administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase> Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Developer Reference for iOS 3

Introduction to Developer Reference for iOS

Document

Description

Getting started tutorials

Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

¢ Learn mobile business object (MBO) basics,
and create a mobile device application:
e Tutorial: Mobile Business Object Devel-
opment
e Tutorial: BlackBerry Application Devel-
opment using Device Application De-
signer
e Tutorfal: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer
< Create native mobile device applications:
e Tutorial: BlackBerry Application Devel-
opment using Custom Development
e Tutorial: iPhone Application Develop-
ment using Custom Development
e Tutorfal: Windows Mobile Application
Development using Custom Develop-
ment
¢ Create a mobile workflow package:
e Tutorial: Mobile Workflow Package De-
velopment

Sybase Unwired WorkSpace — Mobile Business
Object Development

Online help for developing MBOs.
Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace — Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired Platform

Introduction to Developer Reference for iOS

Document

Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

e Developer Reference for BlackBerry

e Developer Reference for iOS

e Developer Reference for Mobile Workflow
Packages

e Developer Reference for Windows and Win-
aows Mobile

Developer reference for Unwired Server side
customization — Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentalsand Syb-
ase Unwired WorkSpace — Mobile Business Ob-
Ject Development.

Developer reference for system administration
customization — Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentalsand Sys-
tem Administration.

Device Application Development

A device application includes business logic, and device-resident presentation and logic.

Mobile business objects help form the business logic for mobile applications. A mobile
business object (MBO) is derived from a data source (such as a database server, Web service,
or SAP® server). When grouped in projects, MBOs allow mobile applications to be deployed
to an Unwired Server and referenced in mobile devices (clients).

Once you have developed MBOs and deployed them to Unwired Server, you add device-
resident presentation and logic to the device application. You build a native client in the Xcode

Developer Reference for iOS

Introduction to Developer Reference for iOS

IDE using Objective-C and Generated Object API code, and by programmatically binding to
the iOS Client Object API.

6 Sybase Unwired Platform

Development Task Flows

Development Task Flows

This section describes the overall development task flow, and provides information and
procedures for setting up the development environment, and developing device applications.

Task Flow for Xcode IDE Development

Follow this task flow to develop a device application.

Prerequisites
Before developing a device application, the developer must:

* In the Eclipse development environment, create a mobile application project and create

mobile business objects as required for your application.

See the following topics in Sybase Unwired WorkSpace — Mobile Business Object

Developmentfor instructions on developing mobile business objects, and configuring the

mobile business object attributes, as well as synchronization and personalization

parameters:

» Sybase Unwired WorkSpace — Mobile Business Object Development > Develop >
Developing a Mobile Business Object

o Sybase Unwired WorkSpace — Mobile Business Object Development > Develop >
Working with Mobile Business Objects

Note: Ensure that you enter a package name for the mobile application project that is
appropriate as a prefix for the mobile business object generated files. In the examples that
follow, the package name is SampleApp.

» Verify the supported device platforms and code generation tools for your device
application. See Planning Your Sybase Unwired Platform Installation > Supported Device
Platforms and Databases in the Sybase Unwired Platform Installation Guide

Task

1. Create mobile business object generated code. See Mobile Business Object Code on page
8.
2. Import libraries and code into the Xcode IDE. See /mporting Libraries and Code into the
Xcode IDE on page 11.
3. Develop a device application in the Xcode IDE.
a) Create HTML reference information for the methods in your generated code. This will
help you to programmatically bind to the Client Object API. See Generating
HeaderDoc from Generated Code on page 14

Developer Reference for iOS 7

Development Task Flows

b) Configure your application to synchronize and retrieve data from a mobile business
object. See Configuring an Application to Synchronize and Retrieve MBO Data on
page 15.

c) Reference your application to the Client Object API code that you generated for your
mobile application project. See Referencing the iOS Client Object AP/ on page 17.

4. Deploy your device application to devices in your enterprise. See Deploying Applications
to Devices on page 29.

Mobile Business Object Code

Develop a device application directly from mobile business object (MBO) generated code.

Generating Mobile Application Project Code

After developing the mobile business objects (MBOs), generate the files that implement the
business logic and are required for Xcode IDE development.

Use this procedure if you are developing device applications using the Xcode IDE.

1. From Unwired WorkSpace, right-click in the Mobile Application Diagram of the project
for which you are generating code and select Gener ate Code.

2. Follow the Code Generation wizard instructions to generate code appropriate for the
Xcode IDE environment, by selecting Objective C as the language, iOS as the platform,
and M essage-based.

8 Sybase Unwired Platform

Development Task Flows

iGeneratefode Sl

Configure options

Configure options For code generation

—Zode generation options

Language: IOI::jEn:tive Z

FlatForm: IiOS

rwired server; Iwinserver

Server domain: I

U— Ll L el e l

Page size: |

Mame prefix;: I

~ Destination
' Project path: |'\Sample.ﬁ.pp'l,Generated Caode Browse. .,
" File system path: | Erowse.,
¥ Clean up destination before code generation

" Replication-based {* Message-based

[T EBackwardicompatible

@ = Back I Mext = I Firish Cancel

Other selections affect generated output as well.
3. Click Finish.

The class files include all methods required to create connections, synchronize deployed
MBOs with the device, query objects, and so on, as defined in your MBOs.

By default, the MBO source code and supporting documentation are generated in the
project's Gener at ed Code folder. The generated files are located in the

<MBO _pr oj ect _name> folder under the i ncl udes and sr c folders. The

i ncl udes folder contains the header (*.h) files and the sr ¢ folder contains the
implementation (*.m) files.

Developer Reference for iOS 9

Development Task Flows

Because there is no namespace concept in Objective-C, all generated code is prefixed with
packagename_. For example, "SampleApp_".

& Mobile Development - Samplespp - Mobile Application Diagram -

File Edit Diagram Mavigate Search Project Run Window Help
| £ - [e -
“Tahuma jlg j | T e
- Workspace Navigstor 23 — 0
- |BEE
Sampledpp [4 -]

KN

B Mobile Business Objects
2 Data Source References
F-E% Cache Groups
E]@ Personalization Keys
B Roles
(8o Synchronization Groups
== Filkers
(= Generated Code

E-E= includes

¢ B common

: F-(= Sampledpp

B stc

F-(= common

E-E= Samplespp

-| Sampledpp_Customer_pull_pa.m
= SampleApp_Customer.m

SampleApp_KeyGenerator.m

=| SampleApp_KeyGeneratorPE.m

= Sampledpp_KeyPackagehame.m

= sampleppp_LocalkeyGenerator.m

= Samplespp_LocalkeyGeneratarPE.m

=| SampleApp_LoggerImpl.m

= Samplespp_LogRecordImpl.m

| Sampleapp_offlineAuthentication.m

| Sampledpp_OperationReplay.m

=| SampleApp_CperationReplayException.m
= Sampledpp_PersonalizationParameters.m
= sampleppp_sales_order.m

= Samplespp_SampleAppDE.m

= Samplespp_ServerPersonalization.m

=| SampleApp_SessionPersonalization. m

| SampleApp_SubscriptionSkatus.m

Sampleapp_CustomersynchronizationParameters. m

o

(ﬁ Enterprise Explorer &3 EE Outline}

= EH

Iy

=+ Sampledpp

10

Sybase Unwired Platform

Development Task Flows

The frequently used Objective-C files in this project, described in code samples include:

Table 2. Source Code File Descriptions

Objective-C File Description

MBO class (for example, Sanpl eApp_Cus- | Include all the attributes, operations, object
t oner. h, Sanpl eApp_Cust oner. m queries, and so on, defined in this MBO.

synchronization parameter class (for example, Include any synchronization parameters de-
Sanpl eApp_Cust oner Synchr oni za- | fined in this MBO.

ti onPar anet er. h, Sanpl eApp_Cus-
t orer Synchr oni zat i onPar ane-

ter.m
Key generator classes (for example, Sam: Include generation of surrogate keys used to
pl eApp_KeyGener at or . h, Sam identify and track MBO instances and data.

pl eApp_KeyGener at or. n)

Personalization parameter classes (for example, Include any defined personalization keys.
Sanpl eApp_Per sonal i zati onPar a-
nmet er s. h, Sanpl eApp_Per sonal i -
zati onParaneters. m

Note: Do not modify generated MBO API generated code directly. For MBO generated
code, create a layer on top of the MBOs using patterns native to the mobile operating
system development to extend and add functionality.

Importing Libraries and Code into the Xcode IDE

Import the generated MBO code and associated libraries into the iOS development
environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: http://
developer.apple.com/tools/Xcode/.

1. Inthe Xcode IDE, create a new Xcode project.

2. Inthe project settings, set the base SDK configuration for an iPhone simulator or device to
iOS Device 4.1. If your code needs to run on a device with an earlier version of the OS (3.2
for iPad, or 3.1.3 for iPhone), this can be changed by setting the “iPhone OS Deployment
Target”.

Developer Reference for iOS 11

Development Task Flows

(o T) Project "SampleApp” Info

[General

Name: SampleApp

Path: (Users/tina/Desktop/SampleApp/SampleApp

Roots: <Project File Directory>

i'Conﬁgure Roots & SCM...)

Project Format: | Xcede i.l—compatible

Place Build Products In:

® Default build products location
() Custom location

fUsers/tina/Desktop/5S
Place Intermediate Build Files In:

® Default intermediates location
() Build products location
O Custom location

{Users/tina/Desktop/Sa

1 Build independent targets in parallel

Choose...

hoosa..

Organization Name: | _ MyCompanyh

Base SDK for All Configurations: i0S Device 4.1

Rebuild Code Sense Index)

@

Copy the generated code from your Microsoft Windows environment to a location on your

Mac (for example, your Home directory).
Copy over the include files from <unwi r ed server

install>\CientAPI|

\ Obj ecti veCQ\ i ncl udes andthe libraries from <unwi red server install>
\Client API\ Obj ectiveC I i bs toadirectory on your Mac (for example, your

Home directory). There are two library directories: the | i bs directory (for iPhone), and
the | i bs. i Pad directory (for iPad). If building for iPad simulator or device, you must

use the librariesin| i bs. i Pad.

a) After copying the directories into a local directory on your Mac, open Finder and
locate the <unwi red server install>\CientAPI\bjectiveC

\'i ncl udes folder.

b) Dragthe <unwired server install>\dientAPlI\bjectiveC

\i ncl udes\i nternal and <unwi red server

install >\ CientAPI

\ Obj ectiveCQ i ncl udes\ publ i c subfolders into Groups & Files, under the

project name.

c) If prompted to copy existing items into the destination group’s folder, ensure Copy
itemsinto destination group’sfolder (if needed) is selected and then click Add to

12

Sybase Unwired Platform

Development Task Flows

copy the i ncl ude\i nternal andi ncl ude\ publ i c directories into your
project’s folder.
5. Add the generated *.h and *.m files to the project:

a) Inthe Xcode Groups & Files pane, right-click <Project Name>, and create a new
group in your project.

b) Import the generated code into the new group by selecting Add, then Existing
Files.

¢) Navigate to the directory that contains the generated code.

d) Select both thei ncl udes and sr ¢ folders for the generated code. Click Add.

e) If prompted to copy existing items into the destination group’s folder, ensure Copy
itemsinto destination group’sfolder (if needed) is selected and then click Add to
copy the Gener at ed Code folder into your project’s folder. This step ensures that
all .h and .m files are added to the project’s search path.

6. Addlibclientrt.a,li bSUPObj. a,and!| i bMO. a to your project.

a) Inthe Xcode Groups & Files pane, select and right-click <Project Name> and select
Add, then Existing Files.

b) Navigate to the directory where you copied the libraries.

c) Selectthelibclientrt.a,libSUPQhj. a,and! i bMO a libraries in Finder.
Drag the libraries into Xcode under your project's name.

d) Select Copy itemsinto destination group’sfolder (if needed), then click Add.

Note: The library version should correspond to the configuration you are building. For
example, if you are building for a debug version of the simulator, navigate to | i bs/
Debug- i phonesi nul at or/ to add the libraries.

7. Add Settings. bundl e to the Xcode project:

a) Select and right-click <Resources>, and select Add, then Existing Files.
b) Navigate to thei ncl udes directory, select Set t i ngs. bundl e, and add it.
c) Select Copy itemsinto destination group’sfolder (if needed), then click Add.

Note: This allows the device client user to use the Settings application to input their user
preference information, such as server name, server port, user name, and activation code.

8. Add the following frameworks from the SDK to the project by selecting Project > Edit
Active Target <ProjectName> > General.
e Security.framework
» AddressBook.framework
¢ QuartzCore.framework
« CoreFoundation.framework
« libicucore.A.dylib
e libz.1.2.3.dylib
 libstdc++.dylib

Developer Reference for iOS 13

Development Task Flows

m| SampleApp.m - SampleApp
SUOICNES Target “SampleApn” Info
G = | L

Name
L e ¥Simulator = iFfione 05 3.0 SDK
Tyoe: Application AVFaundation. framework I \

Accelerate framewark RampleApn/build/De <

AddressBook framemwork .
AddressBookUl. framevark
Applicationsenvices. framework

Direct Dependencies

| SemrErEn

i SamsleAps Serverpersal || _igE ,,m"g't“““. T —
4| SamgleApp_ServerRunt et Lot i
u| SampleApp_SessionPers| s
- | e D A 2
5 MOIPAssert il s MBOLogg 3
] MOIPASSerLmm i

Build succeeded (1 waming) @Succeeded L1

Edit the Xcode project Library Search Paths by selecting Project > Edit Active Target
<ProjectName> > Build > Search Paths> Library Sear ch Paths. Specify the path to the
location where you copied the libraries in step 6. Remove any libstdc++ paths (such as
usr/li b/ arm appl e-darw n10/ 4. 2. 1) from the library search path.

a) Edit the Header Search Paths to include the i ncl ude\i nt ernal andi ncl ude
\ publ i c directories.

10. For debug builds, check Build Active Architecture Only, and make sure that the armv6

architecture is selected.

11. Write your application code to reference the generated MBO code. See Referencing the

10S Client Object APl on page 17.

Developing Applications in the Xcode IDE

After you import Unwired WorkSpace projects (mobile application) and associated libraries
into the iOS development environment, use the iOS Client Object API to create or customize

your device applications.

This section describes how to customize device applications in the Xcode IDE using Sybase

provided APlIs.

Generating HeaderDoc from Generated Code

Once you have generated Objective-C code for your mobile business objects, you can generate
HeaderDoc (HTML reference information) on the Mac from the generated code. HeaderDoc

14

Sybase Unwired Platform

Development Task Flows

provides reference information for the MBOs you have designed. The HeaderDoc will help
you to programmatically bind your device application to the generated code.

1. Navigate to the directory containing the generated code that was copied over from the
Eclipse environment.

2. Run:

>header doc2ht M —o Gener at edDocDi r Gener at edCodeDi r
>gat her header doc Gener at edDocDi r

You can open the file Qut put Di r/ nast er TOC. ht m in a Web browser to see the
interlinked sets of documentation.

Note: You can review complete details on HeaderDoc in the HeaderDoc User Guide, available
from the Mac OS X Reference Library at Attp.//developer.apple.com/mac/library/navigation/
index.html.

Configuring an Application to Synchronize and Retrieve MBO Data
To configure an application to synchronize and retrieve MBO data you must create a
synchronization profile, start the client engine and configure the physical device settings, and
subscribe to a package.

1. Create a synchronization profile by executing:

SUPConnecti onProfile* cp = [Sanpl eApp_Sanpl eAppDB
get Synchroni zati onProfil e];
[cp set Domai nNane: @defaul t”];

2. Register a callback (if required).

If the application requires a callback (for example, to allow the client framework to provide
notification of subscription request results, or results of failure), register the callback
function after setting up the connection profile, by executing:

MyCal | backHandl er* theCal | backHandl er = [MyCal | backHandl er
get | nst ance] ;

[Sanpl eApp_Sanpl eAppDB
regi sterCal | backHandl er: t heCal | backhandl er];

Note: See Reference. Administration APIs > Reference > iPhone Client Object APl >
Utility APIs > Callback Handlersfor more information on the Callback Handler interface.
See Reference.: Administration APIs > Development Task Flows > Developing
Applications in the Xcode IDE > Referencing the iPhone Client Object APffor more
information on a sample application which includes a callback function.

3. Create the database and call st ar t Backgr oundSynchr oni zat i on.

Create a new database or make sure that the package database exists (either from a
previousrun, oracallto [Sanpl eApp_Sanpl eAppDB cr eat eDat abase])and call
st art Backgr oundSynchr oni zat i on. You must perform these calls before you
call [SUPMessaged i ent st art] to connect to the Unwired Server.

Developer Reference for iOS 15

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html

Development Task Flows

[Sanpl eApp_Sanpl eAppDB cr eat eDat abase] ;
[Sanpl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zati on] ;

When a mobile application is compiled with the client framework and deployed to a
mobile device, the device must be activated before it can communicate with the Unwired
Server.

To register with the Unwired Server, an application requires a user name and a unique
device ID. In a typical scenario, the user receives an e-mail message from the Unwired
Server with the application activation information. The user then enters the information
using the Settings application, then runs the application to establish a connection to the
Unwired Server. On success, the application connects with the Unwired Server. If the user
name and activation code do not match, the application receives an error from the Unwired
Server.

. Register the device with the Unwired Server through Sybase Control Center. See

Developer Reference for iOS > Development Task Flows > Deploying Applications to
Devices > > Device Registration > Registering the Device in Sybase Control Center.

. Configure Settings information on the physical device to complete device registration. See

Developer Reference for iOS > Development Task Flows > Deploying Applications to
Devices > Device Registration > Configuring Physical Device Settings.

You must authenticate the application with the Unwired Server to allow you to subscribe to
a server package. Unwired Server can provide success or failure results if you have a
registered callback.

. Start the Sybase Unwired Platform client engine by connecting to the Unwired Server:

NSI nt eger stat = [SUPMessageCd ient start];

. Subscribe to a server package, by executing:

whi | e([SUPMessageCl i ent status] != STATUS START_CONNECTED)
[NSThread sl eepFor Ti nel nterval : 0. 2] ;
[Sanpl eApp_Sanpl eAppDB begi nOnl i neLogi n: @ supUser "
passwor d: @ s3pUser"];
whi | e([Sanpl eApp_Sanpl eAppDB get Onl i neLogi nSt at us] . st at us
== SUPLogi nPendi ng)

[NSThread sl eepFor Ti nel nterval : 0. 2] ;

/[l After this, the status will be either SUPLogi nSuccess or
SUPLogi nFai | ure
i f([Sanpl eApp_Sanpl eAppDB get Onl i neLogi nSt at us] . status ==
SUPLogi nSuccess)

[Sanpl eApp_Sanpl eAppDB subscri be] ;

This example also ensures the messaging client device is in a connected state. After a
successful connection is established with the server to which the application has been
deployed, when the application sends a request, the Client Object API puts the current user
name and credentials inside the message for the Unwired Server to authenticate and
authorize. The device application must set the user name and credential before sending any
requests to the Unwired Server. This is done by calling the begi nOnl i neLogi n API.

16

Sybase Unwired Platform

Development Task Flows

The device application sends a request to the server which processes the request. Any
security failure results in a reject of the request. The user application then subscribes to a
server package. If successful, the Unwired Server sends out a push message to the client
application containing the application data. The Unwired Server also sends an acceptance
message. The client receives the push and acceptance messages.

The client framework notifies the application of the result of success through an
onSubscri beSuccess callback, if a callback function is registered. If an error occurs
in the subscription process, the Unwired Server sends out a reject message for the
subscription. The client receives a subscription request result notification message with
failure from the Unwired Server, and may resubmit the subscription request. The client
framework notifies the application of the result of failure through the

OnSubscri beFai | ur e callback, if a callback function is registered.

8. Unsubscribe from the server.

The client application must send an unsubscribe request to remove the subscription from
the Unwired Server:

[Sanpl eApp_Sanpl eAppDB unsubscri be] ;

Referencing the iOS Client Object API

Example code that references the Client Object API generated for amobile application project
in the Eclipse environment.

The application uses two mobile business objects based on the Customer and SalesOrder
tables in the sanpl edb Sybase SQL Anywhere® (ASA) database. A one-to-many
relationship exists between the two mobile business objects.

The following figure illustrates the MBO schema that represents the relationship between the
mobile business objects.

Developer Reference for iOS 17

Development Task Flows

Figure 1: MBO Schema for Mobile Business Object Relationship

g éc

Attributes (9) ﬂ
) frame : STRING(1S)
@ Iname : STRING(20) ® w;“g’_‘;‘:: ®
&) address : STRING({35) % nrde; d-aate DATE
) city : STRING(20) -~ . S
&) state : STRING(2) - &) fin_code_id : STRING(Z)
) zip : STRING(10) &) region : STRING(7)
&) phone : STRING(12) customerSalesOrders @ sa!zs-lr;? ¢ INT
&) company_name : STRING(3S) @ +id: .
@ +id : INT Operations (3)

Operations (3) &t update()
& update() g3k delete()
& delete() g createQ)
g3 create()

Device Application Example Code
The example code consists of five files.

main.m

* main.m —sets up settings for the Unwired Server and calls the start method.

« CallbackHandler.h —header file for the callback handler code.

* CallbackHandler.m — Objective-C source file for the callback handler.

* SampleApp.h —header file with method definitions that call the Client Object API.
e SampleApp.m — Objective-C source file.

#inmport <UIKit/UKit.h>
#i mport " Sanpl eApp. h"

int main(int argc, char *argv[]) {

NSAut or el easePool *pool = [[NSAutorel easePool alloc] init];

Sanpl eApp *app = [Sanpl eApp get | nst ance];
[app run];

int retVal = U ApplicationMin(argc, argv, nil, nil);
[pool rel ease];
return retVal;

}

#i mport <Foundati on/ Foundati on. h>
#i nport " SUPDef aul t Cal | backHandl er. h"

@nterface Cal |l backHandl er : SUPDef aul t Cal | backHandl er

18 Sybase Unwired Platform

Development Task Flows

{
SUPI nt fiel d_inport Count;
SUPI nt field_repl aySuccessCount;
SUPI nt field_replayFail ureCount;
SUPI nt fiel d_I ogi nSuccessCount;
SUPI nt fiel d_I oginFail ureCount;
SUPI nt field_inportSuccessCount;

}

+ (Cal | backHandl er *) get | nst ance;

(Cal | backHandl er*)init;

(SUPI nt) i mport Count ;

(void)setlnport Count: (SUPI nt) _inport Count;

@r operty(assign) SUPInt inportCount;

- (SUPInt)repl aySuccessCount ;

- (void)set Repl aySuccessCount: (SUPI nt) repl aySuccessCount ;
@r operty(assign) SUPInt replaySuccessCount;

- (SUPInt)repl ayFai | ur eCount ;

- (void)set Repl ayFai | ureCount : (SUPI nt) _repl ayFai | ur eCount ;
@roperty(assign) SUPInt replayFail ureCount;

- (SUPInt) Il ogi nSuccessCount ;

- (void)setLogi nSuccessCount: (SUPI nt) | ogi nSuccessCount ;
@r operty(assign) SUPInt | oginSuccessCount;

- (SUPI nt) I ogi nFai | ur eCount ;

- (void)setLoginFail ureCount: (SUPI nt) _I| ogi nFai | ureCount ;
@r operty(assign) SUPInt | oginFail ureCount;

- (SUPInt)i nmport SuccessCount ;

- (void)setlnportSuccessCount: (SUPInt) i nmport SuccessCount ;
@roperty(assign) SUPInt inportSuccessCount;

- (void)onlnport: (id)theObject;

- (void)onRepl ayFai | ure: (i d)theObj ect;
- (void)onRepl aySuccess: (i d)t heObj ect;
- (void)onLogi nFai | ure;

- (void)onLogi nSuccess;

- (void)onSubscri beSuccess;

- (void)onSubscri beFai |l ure;

- (wvoid)onl mport Success;

- (Cal |l backHandl er*) finishlnit;

- (void)initFields;

+ (void)staticlnit;

- (void)deall oc;

@nd
#i nport "Cal | backHandl er. h"

@ npl enent ati on Cal | backHandl er
+ (Cal | backHandl er *) get | nst ance

Cal | backHandl er* _me_1 = [[Cal | backHandl er alloc] init];
[_me_1 autorel ease];
return _me_1,

}

Developer Reference for iOS 19

Development Task Flows

(Cal | backHandl er*)i nit
[Cal | backHandl er staticlnit];

[self initFields];
return self

(SUPI nt) i mpor t Count

return field_inportCount;

(void)set !l nport Count: (SUPI nt) i nport Count

field_inmportCount = _inportCount;

(SUPI nt) r epl aySuccessCount

return field_replaySuccessCount;

(voi d) set Repl aySuccessCount : (SUPI nt) _repl aySuccessCount

field_replaySuccessCount = _repl aySuccessCount;

(SUPI nt) r epl ayFai | ur eCount

return field_replayFail ureCount;

(voi d) set Repl ayFai | ureCount: (SUPI nt) _repl ayFai | ur eCount

field_replayFail ureCount = _replayFail ureCount;

(SUPI nt) | ogi nSuccessCount

return field_| ogi nSuccessCount;

(voi d) set Logi nSuccessCount : (SUPI nt) _| ogi nSuccessCount

field_|l ogi nSuccessCount = _| ogi nSuccessCount;

(SUPI nt) | ogi nFai | ur eCount

return field_|oginFailureCount;

(voi d) set Logi nFai | ureCount : (SUPI nt) _| ogi nFai | ur eCount

field_|l ogi nFail ureCount = _|ogi nFail ureCount;

20

Sybase Unwired Platform

Development Task Flows

(SUPI nt) i mpor t SuccessCount

return field_inportSuccessCount;
}
- (SUPInt)i nmport SuccessCount
{
return field_inportSuccessCount;
}
- (void)setlnport SuccessCount: (SUPI nt) _i nport SuccessCount
{
Fi el d_i nport SuccessCount = _i nport SuccessCount;
}
- (void)onlnport: (id)theChject
{
sel f.inportCount = self.inportCount + 1;
}
- (void)onRepl ayFai |l ure: (i d)theObj ect
{
sel f.repl ayFai | ureCount = self.replayFail ureCount + 1;
|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLogError (@ Repl ay Fail ed");
NBC]_og(@ e e e e) ;
}
- (void)onRepl aySuccess: (i d)t heObj ect
{
sel f.repl aySuccessCount = self.replaySuccessCount + 1;
|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLog(@ Repl ay Successful");
NBC]_og(@ e e e e) ;
}
- (void)onLogi nFai |l ure
{
NBG_Og(@ ::::::::-:::::.::::::::::::::::") :
MBOLogError (@ Logi n Fail ed");
NB(]_Og(@ === === —===——=-4) ;
sel f. | ogi nFai | ur eCount ++;
}
- (void)onLogi nSuccess
{
NBG_Og(@ :::.::::::::::::::::::::::::::") :
MBOLog(@ Logi n Successful ");
NB(]_Og(@ === === —===——=-4) ;
sel f. | ogi nSuccessCount ++;
}

(voi d) onSubscri beSuccess

Developer Reference for iOS 21

Development Task Flows

}

NBG_Og(@ el) ;
MBOLog(@ Subscri be Successful ");
NBO_Og(@ e e e) ;

NBC]_Og(@ e e e e e e e e e)
NBO_Og(@ :::::::::::::::::::::::::::::") :

NBO_Og(@ e e e)
MBOLog(@ | nport Ends Successful ly");
NBG_og(@) S========—=m===—===—=—r=—rr")
sel f. i nport SuccessCount ++;

(Cal | backHandl er*) fi ni shl nit

return self;

(void)initFields

(void)staticlnit

(void)deal | oc

[super deall oc];

@nd
@nterface Sanpl eApp: NSObj ect

{
}

+

+

(Sanpl eApp*) get | nst ance;
(Sanpl eApp*)init;

(voi d) run;

(Sanpl eApp*) finishinit;
(void)initFields;
(void)staticlnit;

(voi d)deal | oc;

- (voi d) runAPI Test s;

/*Test functions that call

Client Object APIs */

22

Sybase Unwired Platform

Development Task Flows

-(voi d) Testfind;

- (voi d) Test Synchr oni zat i onPar anet er s;
- (voi d) Test Per sonal i zat i onPar anet er s;
-(voi d) Test Cr eat €;

- (voi d) Test Updat e;

-(voi d) Test Del et e;

-(voi d) printLogs;

-(voi d) Print Cust oner Sal esOr der Dat a;

@nd

#i nmpor t
#i mpor t
#i mpor t
#i mpor t
#i nmpor t
#i mpor t
#i mpor t
#i mpor t
#i nmpor t

" Sampl eApp. h"

" Sanmpl eApp_Cust oner. h"

"Cal | backHandl er. h"

" Sampl eApp_Sanpl eAppDB. h"

" Sampl eApp_LogRecor dl npl . h"

" Sanmpl eApp_Sal es_order. h"

" Sanmpl eApp_Local KeyGenerat or. h";
" Sampl eApp_KeyGener at or . h"

" SUPMessageC i ent. h"

@ npl enent ati on Sanpl eApp

+ (Sanpl eApp*) get | nst ance

{

Sanpl eApp* _ne_1 = [[Sanpl eApp alloc] init];
[_me_1 autorel ease];
return _nme_1;

}

- (Sanpl eApp*)init

{
[Sanpl eApp staticlnit];
[self initFields];
return self;

}

- (void)run

{

NSI nt eger connecti onResul t

/1 Set log |evel

[MBOLogger setLoglLevel : LOG | NFQ ;

//Delete the ol d database and create a new one.
i f ([Sanpl eApp_Sanpl eAppDB dat abaseExi sts])

[Sanpl eApp_Sanpl eAppDB del et eDat abase] ;

[Sanpl eApp_Sanpl eAppDB cr eat eDat abase] ;

/1 Set up synchronization profile .

SUPConnecti onProfile* cp = [Sanpl eApp_Sanpl eAppDB
get Synchroni zati onProfil e];

[cp set Dormai nNanme: @defaul t"];

Developer Reference for iOS 23

Development Task Flows

/| Regi ster a call back handl er.
Cal | backHandl er* dat abaseCH = [Cal | backHandl er get | nstance] ;
[Sanpl eApp_Sanpl eAppDB regi st er Cal | backHandl er : dat abaseCH] ;

[/ Start backgroundsynchroni zati on.

[Sanpl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zati on] ;
/I Connect to the server

connecti onResult = [SUPMessageC ient start];

i f(connectionResult == kSUPMessaged i ent Success)
{ .
NSLog(@ Cannot start SUPMessagedient");
exit(0);
}
whi | e([SUPMessageCl i ent status] != STATUS START_CONNECTED)

[NSThread sl eepFor Ti nel nterval : 0. 2] ;
[Sanpl eApp_Sanpl eAppDB begi nOnl i neLogi n: @ supUser "
password: @s3pUser"];

whi | e([Sanpl eApp_Sanpl eAppDB get Onl i neLogi nSt at us] . status ==
SUPLogi nPendi ng)

[NSThread sl eepFor Ti nel nterval : 0. 2] ;
i f (dat abaseCH. | ogi nFai | ureCount > 0)

NSLog(@ Sanpl eApp_Sanpl eAppDB | ogin failed.");
exit(0);

}

/1 Subscribe to the package.
[Sanpl eApp_Sanpl eAppDB subscri be] ;

/1l Wait for inports to conme back from server
whi | e([dat abaseCH i nport SuccessCount] < 1)
[NSThread sl eepFor Ti nel nterval : 0. 2] ;

//Call the functions that execute the client APls for
synchroni zat i on

[/ paranmeters, personalization keys read, create, update and
del ete

[sel f runAPI Test s];

/1 Unsubscri be

[Sanpl eApp_Sanpl eAppDB unsubscri be] ;

/1 Di sconnect from server.

[SUPMessageC i ent stop];

(Sanpl eApp*) fini shlnit

return self;

- (void)initFields

24 Sybase Unwired Platform

Development Task Flows

{
}

+ (void)staticlnit

}

(void)deal | oc

[super deall oc];

- (voi d) runAPI Test s

NBC]_og((@E=S=S========c===c===c==--==" =4) ;
MBOLog(@ Test Per sonal i zat i onPar amet ers") ;
|\/BO_og(@) ===========================r—=) :
[sel f TestPersonalizati onParaneters];
NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u)
MBOLog(@ Test Synchr oni zat i onPar anet er s") ;
VMBOLO (@) ===========================r"x) ;
[sel f Test Synchroni zati onPar anmet er s] ;
|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLog(@ Test findAll");

NBC]_og((@E=S=S========c===c===c==--==" =4) ;
[sel f Testfind];

NB(]_Og(([@EE=S============= s —="=4) ;
MBOLog(@ Test Create") ;

NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u) :
[sel f TestCreate];

NBC]_og(@) =============================") ;
MBOLog(@ Test Updat e") ;

|\/BO_og(@ :::::::::::::::::::::::::::::") :
[sel f TestUpdate];

NBG_Og(@ === —=c—c—c—c—c———————c————c—c—c——u) :
MBOLog(@ Test Del et e") ;

NB(]_Og(([@EE=S============ s s ==""=1) ;
[sel f TestDel ete];

|\/BO_og(@ :::::::::::::::::::::::::::::") :
MBOLog(@Print Logs");

NBC]_og(@) =============================") ;

[sel f printlLogs];
}
-(voi d) Pri nt Cust onmer Sal esOr der Dat a

Sanpl eApp_Cust omer *onecustoner = nil;
SUPQj ectList *cl = nil;

Developer Reference for iOS 25

Development Task Flows

MBOLog(@ Cust oner data is:");
cl = [Sanpl eApp_Custoner findAl];

if(cl & [cl length] > 0)
{
int i;
for(i=0; i<[cl length]; i++)

onecustonmer = [cl itemi];
i f (onecustoner)
MBOLog(@ %@ %@ %@ %@ %@, onecustoner. fnane,
onecust oner . | nanme, onecust oner . addr ess, onecust onmer. city,
onecust oner. state);
SUPQj ect Li st *sl = [onecustoner sal esOrders];
if(sl)

if([sl length] > 0)
MBOLog(@ This custoner's sales orders are");
el se
MBOLog(@ Thi s custonmer has no sal es orders");
for(Sanpl eApp_Sal es_order *so in sl)
MBCOLog(@ %@ %@ %", so. or der _dat e, so. r egi on, so. sal es_rep);

[***Retrieve data based on the synchronization paraneter val ue.***/
- (void) Test Synchroni zati onPar anet er s

Sanpl eApp_Cust orrer Synchr oni zat i onPar anet er s* sp
= [Sanpl eApp_Cust omer get Synchroni zati onPar anet er s] ;

sp.size = 3;

Sp. user @ user one";
sp.paramcity = @Ral ei gh";
[sp save];

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 1];

[sel f PrintCustonerSal esOr der Dat a] ;
}

[******Retrjeve data based on the personalization paraneter
val ue*****/

(voi d) Test Personal i zat i onPar anet er s

26 Sybase Unwired Platform

Development Task Flows

Sanpl eApp_Per sonal i zati onParaneters *pp = nil;
pp = [Sanpl eApp_Sanpl eAppDB get Per sonal i zat i onPar anet er s] ;

pp. PKCity = @ New York";
[pp save];
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 1];

}
[sel f PrintCustonerSal esOr der Dat a] ;
}

[****x***Print | ogs record data from Logrecordl npl *****/
-(voi d) printLogs

'\/Ba_og(@******* pl’lntLOgS *******")’

SUPQuery *query = [SUPQuery getl nstance];

SUPQhj ect Li st *l oglist = [Sanpl eApp_Sanpl eAppDB
get LogRecor ds: query];

for(id oin loglist)

Sanpl eApp_LogRecordl npl *1 og = (Sanpl eApp_LogRecor dl npl *) o;
MBCOLog(@ Log Record % | u: Operation = %@ Tinestanp = %@ MBO =

EL@)
key = %@ nessage = %@, | og. nessagel d, | og. operati on,
[SUPDat eTi melti |
toString:log.tinestanp], | og. conponent, | 0og. entityKey, | og. mnessage) ;

}

/

************************************fi nd***************************
*********/

/[***Find all the custoner records and print the first record to the
consol e*/

-(void) Testfind
{
Sanpl eApp_Cust omrer *onecustonmer = nil;
SUPQhj ect Li st *cl = [Sanpl eApp_Custoner findAll];
if(cl & [cl length] > 0)
{

onecustomer = [cl itemO0];
i f (onecustomer)

MBCOLog(@the full custoner record data is : %@, onecustoner);

/*****************************Qeate

Developer Reference for iOS 27

Development Task Flows

***********************************/

[*****Create new custoner and sal es order records in the | ocal
dat abase

and call subm tPending to send the changes to the server
*****/

-(void) TestCreate

| ong keyl = [Sanpl eApp_KeyGener at or generatel d];
| ong key2 = [Sanpl eApp_KeyGener at or generatel d] ;

[Sanpl eApp_KeyGener at or submi t Pendi ngQper at i ons] ;

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 1];
}
Sanpl eApp_Custonmer *c = [[Sanpl eApp_Custoner alloc] init];

_ = [Sanpl eApp_Local KeyGener at or generatel d];
.fname = @Dorothi";
.l name = @ Scr ant on";
.address = @ One Money Street";
.city = @smallVille";
.State = @MA";
.zip = @97429";
. phone = @2112222345";
.conpany_nane = @i Anywhere";
c.surrogat eKey = keyl;

SUPQhj ect Li st *orderlist = [Sanpl eApp_Sal es_or der Li st
get | nst ance] ;

Sanpl eApp_SaI es_order *o0l = [[Sanpl eApp_Sal es_order alloc] init];

O0O0OO0O0O0O0O000

0l.id_ = [Sanpl eApp_Local KeyGener at or generateld];
0l.order_date = [NSDate date];
ol.fin_code_id = @r1";

ol.region = @Eastern";

ol.sales_rep = 902;

ol. surrogat eKey = key2;

[ol setCustoner:c];

[orderlist add:ol];

[c setSal esOrders:orderlist];

[c save];

[c refresh];

[c subnit Pending];

assert (c. pendi ng == YES);

whil e ([Sanmpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepFor Ti nel nterval : 1] ;

/******************************Update
*********************************/

[****pdat e an existing custoner and sales record in the device
dat abase
and call submitPending to send the changes to the server.

28 Sybase Unwired Platform

Development Task Flows

**********/

(voi d) Test Updat e

SUPQj ect Li st *cl = [Sanpl eApp_Custoner findAll];
Sanpl eApp_Cust orer *onecustomer = [cl item0];
Sanpl eApp_Sal es_order *order = [onecustoner.salesOrders itemO0];

onecust oner. fname = @ Johnny";

order.region = @ Sout h";

[onecust omer save];

[onecust omer refresh];

[order refresh];

[onecust omer subni t Pendi ng] ;

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 1];
}

}

/***************************** ml ete ***************************/

/*Del ete an existing record fromthe database and cal l
subm t Pendi ng to send the changes to the server.****/

-(void) TestDel ete
{
SUPQhj ect Li st *sl = [Sanpl eApp_Sal es_order findAI];
Sanpl eApp_Sal es_order *order = [sl item0];
[order delete];
[order. custonmer subm t Pending];
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 1];

@nd

Deploying Applications to Devices

Deploy mobile applications to devices and register the devices with Unwired Server.

Device Registration

Messaging devices contain applications that send and receive data through messaging. An
administrator must configure the device activation template properties for message-based
synchronization (MBS) devices. Device activation requires user registration. Upon successful
registration, the device is activated and set up with the template the administrator has selected.

Developer Reference for iOS 29

Development Task Flows

Device registration pairs a user and a device once the user supplies the correct activation code.
This information is stored in the messaging database, which contains extensive information
about users and their corresponding mobile devices.

See System Administration > System Administration > Device and User Management >
Messaging Devices > Device Registration and Activation and > System Administration >
Device and User Management > Messaging Devices > Device Provisioning.

Registering the Device in Sybase Control Center
Register the device in Sybase Control Center.

=

Log in to Sybase Control Center using the supAdmin/s3pAdmin user name and password.
In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

Expand the Serversfolder in the left pane, and select Device Users.

In the right pane, click Devices.

Select MBS to display only MBS devices.

Click Register.

In the Register Device window, enter the required information:

e User name
e Server name
e Port

N

N o ok w

30 Sybase Unwired Platform

Development Task Flows

Register Device

Select the activation user name and template for the device registration.

Select the activation user narme and ternplate for the device registration.

Activation user narme: Username

Template: Default v

Custormize the following activation fields:

Server name: sUpserver
FPort: Sool
Farm IC: 1

Activation code length:

Activation expiration (hours): 7z

IL(I Specify activation code: 123

| OK J | Cancel |

B - - - - -

Note: "localhost" should be the actual name of your machine.

Configuring Physical Device Settings
Access the Settings information on the physical device to complete device registration.

1. On your device, select Settings and select the name of your application, such as
SampleApp.

2. Inthe Connection Info screen, enter the server name, user name, server port, company ID,
and activation code. These entries must correspond to the Unwired Server name, the user
name registered with the Unwired Server, the port the Unwired Server is listening to, the
company ID, and the device activation code, respectively.

If you are using a Relay Server, "Company ID" maps to the farm ID configured for
messaging-based requests on the Relay Server, and the "Server Name" and "Server Port"
map to the Relay Server name and port.

Developer Reference for iOS 31

Development Task Flows

il Carrier =

Connection Info

ServerNameSetting supserver
ServerPortSetting 5001

CompanylDSetting 1

UserNameSetting username

ActivationCodeSetting eee

URL Prefix /tm/?cid=%cid

Deploying Applications to the Enterprise

After you have created your client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

Note: Developers can review complete details in the /Phone OS Enterprise Deployment Guide
at http.//manuals.info.apple.com/en US/Enterprise_Deployment Guide.pdf.

32 Sybase Unwired Platform

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

Development Task Flows

1. Sign up for the iPhone Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Configure the application to use make use of Keychain as persistent storage for the
database encryption key. See Configuring Application Security Using Key Chains. on
page 61

Create a certificate request on your Mac through Keychain.

Log in to the Developer Connection portal.

Upload your certificate request.

Download the certificate to your Mac. Use this certificate to sign your application.
Create an ApplID.

N o g s~

Verify that youri nf o. pl i st file has the correct ApplID and application name. Also, in
Xcode, right-click Targets< <your_app_target>and select Get I nfoto verify the AppID
and App name.

8. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

9. Create an Xcode project ensuring the bundle identifier corresponds to the bundle identifier
in the specified App ID. Ensure you are informed of the "Product Name™ used in this
project.

Apple Push Notification Service Configuration

The Apple Push Notification Service (APNS) notifies users when information on a server is
ready to be downloaded.

Apple Push Notification Service (APNS) allows users to receive notifications on iPhones.
APNS:

« Works only with iPhone physical devices

« Is not required for any iOS application

e Cannot be used on a on an iPhone simulator

« Cannot be used with iPod touch or iPad devices

e Must be set up and configured by an administrator on the server
e Must be enabled by the user on the device

Preparing an Application for Apple Push Notification Service
There are several development steps to perform before the administrator can configure the
Apple Push Notification Service (APNS).

Note: Review complete details in the /Phone OS Enterprise Deployment Guide at http.//
manuals.info.apple.com/en US/Enterprise_Deployment Guide.pdf.

Developer Reference for iOS 33

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

Development Task Flows

. Sign up for the iPhone Developer Program, which gives you access to the Developer

Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

. Configure your application to use make use of Keychain as persistent storage for the

database encryption key. See Developer Reference for iOS > Reference > iOS Client
Object API > Security APIs > Configuring Application Security Using Keychain.

. Create an App ID and ensure that it is configured to use Apple Push Notification Service

(APNS).
Do not use wildcard characters in App IDs for iPhone applications that use APNS.

Verify thatyouri nf o. pl i st file has the correct App ID and application name. Also, in
Xcode, right-click Targets < <your_app_target> and select Get I nfo to verify the App
ID and App name.

. Create and download an enterprise APNS certificate that uses Keychain Access in the Mac

OS. The information in the certificate request must use a different common name than the
development certificate that may already exist. The reason for this naming requirement is
that the enterprise certificate creates a private key, which must be distinct from the
development key. Import the certificate as a login Keychain, not as a system Keychain.
Validate that the certificate is associated with the key in the Keychain Access application.
Get a copy of this certificate.

. Create an enterprise provisioning profile and include the required device IDs with the

enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

. Create the Xcode project, ensuring the bundle identifier corresponds to the bundle

identifier in the specified App ID.

. To enable the APNS protocol, you must implement several methods in the application by

adding the code below:

Note: The location of these methods in the code depends on the application; see the APNS
documentation for the correct location.

[/ Enabl e APNS
[[Ul Appl i cation sharedApplication]
regi st er For Renot eNot i fi cati onTypes:
(Ul Renot eNoti fi cati onTypeBadge |
U Renot eNot i fi cati onTypeSound |
U Renot eNot i ficati onTypeAlert)];

* Cal | back by the systemwhere the token is provided to the client
application so that this

can be passed on to the provider. In this case,

“devi ceTokenFor Push” and “set upFor Push”

are APls provided by SUP to enabl e APNS and pass the token to SUP
Server

- (void)application: (U Application *)app
di dRegi st er For Renot eNot i fi cati onsW t hDevi ceToken:

34

Sybase Unwired Platform

Development Task Flows

(NSDat a *) devToken

MBOLogl nfo(@In did register for Renbte Notifications",
devToken) ;

[SUPPushNot i fi cati on setupFor Push: app] ;

[SUPPushNot i fi cati on devi ceTokenFor Push: app
devi ceToken: devToken] ;

}

* Call back by the systemif registering for renote notification
fail ed.

- (void)application: (U Application *)app
di dFai | ToRegi st er For Renot eNot i fi cati onsWt hError:
(NSError *)err {
MBOLogError (@Error in registration. Error: %@, err);

/1 You can alternately inplenment the pushRegistrationFailed API:

/1 +(voi d)pushRegi strationFail ed: (U Application*)application
errorinfo: (NSError *)err

* Cal | back when notification is sent.

- (void)application: (U Application *)app
di dRecei veRenpt eNoti fi cati on: (NSDi cti onary *)
userlnfo

MBCOLogl nfo(@ I n did receive Renote Notifications", userlnfo);

You can alternately inplenment the pushNotification API
+(voi d) pushNot i fication: (U Application*)application
noti fyData: (NSDi ctionary *)userlnfo

Provisioning an Application for Apple Push Notification Service

If your internal users do not have an App Store account, use iTunes as an alternative method of
provisioning the Sybase-packaged iPhone application. You can also use this method if you are
building your own iPhone application.

Apple Push Notifications are iPhone-specific. Each application that supports Apple Push
Notifications must be listed in Sybase Control Center with its certificate and application name.
You must perform this task for each application.

1. Confirm that the IT department has opened ports 2195 and 2196, by executing:
tel net gat eway. push. appl e. com 2195
tel net feedback. push. appl e.com 2196

If the ports are open, you can connect to the Apple push gateway and receive feedback
from it.

Developer Reference for iOS 35

Development Task Flows

2.

Copy the enterprise certificate (* . p12) to the computer on which Sybase Control Center

has been installed. Save the certificate in <SUP_Home>\ Ser vers

\ Messagi ngServer\ bi n\.

In Sybase Control Center, expand the Serversfolder and click Server Configuration for

the primary server in the cluster.

In the M essaging tab, select Apple Push Configuration, and:

a) Configure Application name with the same name used to configure the product name
in Xcode. If the certificate does not automatically appear, browse to the directory.

b) Change the push gateway information to match that used in the production
environment.

¢) Restart Unwired Server.

Verify that the server environment is set up correctly:

a) Open <SUP_Hone>\ Server s\ Unwi r edSer ver\ | ogs\ APNSPr ovi der .

b) Openthe log file that should now appear in this directory. The log file indicates whether
the connection to the push gateway is successful or not.

Deploy the application and the enterprise distribution provisioning profile to your users’

computers.

Instruct users to use iTunes to install the application and profile, and how to enable

notifications. In particular, device users must:

» Download the Sybase application from the App Store.

* In the iPhone Settings app, slide the Notifications control to On.

Verify that the APNS-enabled iPhone is set up correctly:

a) Click Device Users.

b) Review the Device ID column. The application name should appear correctly at the
end of the hexadecimal string.

c) Select the Device ID and click Properties.

d) Check that the APNS device token has been passed correctly from the application by
verifying that a value is in the row. A device token appears only after the application
runs.

Test the environment by initiating an action that results in a new message being sent to the
client.

If you have verified that both device and server can establish a connection to APNS
gateway, the device will receive notifications and messages from the Unwired Server,
including workflow messages, and any other messages that are meant to be delivered to
that device. Allow a few minutes for the delivery or notification mechanism to take effect
and monitor the pending items in the Device Users data to see that the value increases
appropriately for the applications.

10. To troubleshoot APNS, use the <SUP_Hone>\ Ser ver s\ Unwi red Server\l og

\'t race\ APNSPr ovi der log file. You can increase the trace output by editing

36

Sybase Unwired Platform

Development Task Flows

<SUP_Home>\ Ser ver s\ Messagi ngSer ver\ Dat a\ Tr aceConfi g. xm and
configuring the tracing level for the APNSProvider module to debug for short periods.

Developer Reference for iOS 37

Development Task Flows

38 Sybase Unwired Platform

Reference

Reference

This section describes the iOS Client Object API. Classes are defined and sample code is
provided.

I0S Client Object API

The Sybase Unwired Platform iOS Client Object API consists of generated business object
classes that represent the mobile business object model built and designed in the Unwired
WorkSpace development environment.

The iOS Client Object APl is used by device applications to synchronize and retrieve data and
invoke mobile business object operations. The iOS Client Object API supports only message-
based synchronization.

Connection APIs
The iOS Client Object API contains classes and methods for managing local database
information, and managing connections to the Unwired Server through a synchronization
connection profile.

ConnectionProfile

The Connect i onPr of i | e class manages local database information. You can use it to set
the encryption key, which you must do before creating a local database.

SUPConnecti onProfile* cp = [Sanpl eApp_Sanpl eAppDB

get Connecti onProfile];
[cp setEncryptionKey: @ Your key"];

SynchronizationProfile

Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

SUPConnecti onProfil e* cp = [Sanpl eApp_Sanpl eAppDB

get Synchroni zati onProfil e];
[cp set Dormai nNanme: @defaul t”];

Authentication
The generated package database class provides a valid synchronization connection profile.
You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

Developer Reference for iOS 39

Reference

onl i neLogi n — authenticates credentials against the Unwired Server.

of f 1 i neLogi n —authenticates against the most recent successfully authenticated
credentials. Once the client connects for the first time, the server validated username and
password are stored locally. offlineLogin verifies with the client database if those
credentials are valid. The method returns YES if the username and password are correct,
otherwise the method returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the the Unwired Server and you want to access the client application
locally.

| ogi nToSync — tries of f| i neLogi n first. of f | i neLogi n authenticates against
the last successfully authenticated credential. There is no communication with the
Unwired Server in this method. If of f | i neLogi n fails, this method tries

onl i neLogi n.

begi nOnl i neLogi n —sends the login request asynchronously (it returns without

waiting for a server response). See Reference: Administration APIs > Reference > iPhone
Client Object APl > Synchronization APIs.

Synchronization APIs

Typically, the generated package database class already has a valid synchronization
connection profile. You can login to the Unwired Server with your username and credentials.

+ (void)loginToSync: (NSString *)user password: (NSString*)pass—I| ogi nToSync
synchronizes the KeyGenerator from the Unwired Server with the client. The
KeyGenerator is an MBO for storing key values that are known to both the server and the
client. Onl ogi nToSync from the client, the server sends a value that the client can use
when creating new records (by using the method [KeyGener at or gener at el d] to
create key values that the server accepts).

The KeyGenerator value increments each time the gener at el d method is called. A
periodic call to submi t Pendi ng by the KeyGener at or gener at el d MBO sends
the most recently used value to the Unwired Server, to let the Unwired Server know what
keys have been used on the client side. Place this call within a try/catch block and ensure
that the client application does not attempt to send any more messages to the server if

| ogi nToSync throws an exception.

+ (void)beginOnlinel ogin: (NSString *)user password:(NSString *)pass —

begi nOnl i neLogi n is the recommended login method. It functions similarly to

| ogi nToSync, except it sends the login request asynchronously (it returns without
waiting for a server response). This method checks the SUPMessaged i ent status and
immediately fails if the status is not STATUS _START_CONNECTED. Make sure the
connection is active before calling begi nOnl i neLogi n, or implement the

onLogi nFai | ur e callback handler to catch cases where it may fail.

40

Sybase Unwired Platform

Reference

[Sanpl eApp_Sanpl eAppDB begi nOnl i neLogi n: @ supUser "
passwor d: @ s3pUser"];

Setting Synchronization Parameters

Synchronization parameters let an application change the parameters used to retrieve data
from an MBO during a synchronization session. The primary purpose is to partition data.
Change the synchronization parameter to affect the data that is retrieved.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server; you need not call submi t Pendi ng after the
save. Consider the "Customer” MBO that has a "cityname™ synchronization parameter.

This example shows how to retrieve customer data corresponding to Kansas City.

Cust oner Synchr oni zat i onParaneters *sp = [Cust oner

get Synchroni zati onPar anet er s] ;

sp.size = 3;

sp.user = @testuser";

sp.citynane = @Kansas Gty";

[sp save];

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepForTi nel nterval : 0. 2] ;

Query APls

The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from an MBO
To retrieve data from a local database use the f i nd, f i ndAl | , or fi ndByPri mar yKey

methods in the MBO class.

The following examples show how to use the fi nd, fi ndAl | , or fi ndByPri nar yKey
methods in the MBO class to retrieve data.

* + (<Name Prefix>_Customer*)find:(int32_t)id_— The f i nd method retrieves a
Customer by the given ID. The parameteri d__is the surrogate key (the primary key used in
the local database). The parameter is of type i nt 32_t in this example, but could be
another type based on the key type. The value "101" in this example is the surrogate key
value (automatically generated from the KeyGenerator). To use this method, the client
application must be able to retrieve the surrogate key.

Sanpl eApp_Cust omer *custonmer = [Sanpl eApp_Custonmer find: 101];

Note: The Eclipse IDE allows you to specify a value for "name prefix" when generating
the MBO Obijective-C code. When a value is specified, all the MBO entity names are
prefixed with that value. When no such prefix is specified, the name prefix is by default the
package name.

* + (SUPODbjectList*)findAll — Call the f i ndAl | method to list all customers:

Developer Reference for iOS 41

Reference

SUPQj ect Li st *custoners = [Sanpl eApp_Custoner findAll]

e +(SUPObjectList*) findAll:(int32_t)skip take: (int32_t)take—To define more than one
fi ndAl | attribute, and return a collection of objects that match the specified search
criteria, use:

SUPQhj ect Li st *customers = [Sanpl eApp_Customer findAll: 100 take:
51;

Methods Generated if Dynamic Queries are Enabled

e+ (SUPODbjectList*)findWithQuery:(SUPQuery*)query; — Returns a collection of
objects that match the result of executing a specific query. The method takes one
parameter, quer y which is an SUPQuer y object representing the actual query to be
executed.

SUPQuery *myquery = [SUPQuery getl nstance];
nyquery.testCriteria = [SUPAttri buteTest
mat ch: @f name" : @Erin"];
SUPQhj ect Li st* custoners = [Sanpl eApp_Custoner findWthQuery:
nyquery]

e+ (int32_t)countWithQuery:(SUPQuery*)query; — Returns a count of the records
returned by the specific query.

int count = [Sanpl eApp_Custoner count WthQuery: myquery];

Object Queries

To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

Consider an object query on a Customer MBO to find customers by last name. You can
construct the query as follows:

Select x.* from Customer x where X.| name =: param_| name

where par am | nane is a string parameter that specifies the last name. Assume that the
query above is named findBylname

This generates the following Client Object API:
(Custoner *)findBylnane : (NSString *)param.| nane;

The above API can then be used just like any other read API. For example:

Sanpl eApp_Cust omer * t hecustonmer = [Sanpl eApp_Cust onmer findByl name:
@Delvin"];

42

Sybase Unwired Platform

Reference

For each object query that returns a list, additional methods are generated that allow the caller
to select and sort the results. For example, consider an object query, findByCity, which
returns a list of customers from the same city. Since the return type is a list ,the following
methods would be generated. The additional methods help the user with ways to specify how
many results rows to skip, and how many subsequent result rows to return.

+ (SUPObj ectList*) findByCity: (NSString*) city;

+ (SUPObj ectList*) findByCity: (NSString*) city skip;

(int32_t) skip take: (int32_t)take;

Supported Aggregate Functions

You can use aggregate functions including Gr oupBY in object queries. However, the sum
avg, and greater than (>) aggregate functions are not supported.

sel ect count(x.id), x.id fromAl|l Type x where x.surrogatekey > : m nSk
group by x.id having

x.id < :maxld order by x.id

Arbitrary Find
The arbitrary find method provides custom device application the ability to dynamically build

queries based on user input. These queries operate on multiple MBOs through the use of
joins.

SUPAttributeTest

In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify a desired ordering of the results and object state criteria. A SUPQuer y class is
included in one of the client runtime libraries, | i bcl i entrt. a. The SUPQuery class is
the single object passed to the arbitrary search methods and consists of search conditions,
object/row state filter conditions, and data ordering information.

The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 3. SUPQuery and Related Classes

Class Description

SUPQuery Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

SUPAttributeTest Defines filter conditions for MBO attributes.

SUPCompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

Developer Reference for iOS 43

Reference

Class Description
SUPQueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.
Define these conditions by setting properties in a query:

* SUPTestCriteria— criteria used to filter returned data.

* SUPSortCriteria—criteria used to order returned data.

» Skip —an integer specifying how many rows to skip. Used for paging.

* Take—an integer specifying the maximum number of rows to return. Used for paging.

SUPTest Criteriacanbean SUPAttri but eTest ora SUPConposi t eTest .

An SUPAt t ri but eTest defines a filter condition using an MBO attribute, and supports
these conditions:

« IS_NULL
« NOT_NULL

« EQUAL

« NOT_EQUAL

+ LIKE

« NOT_LIKE

« LESS THAN

.+ LESS_EQUAL

« MATCH

« NOT_MATCH

« GREATER_THAN
« GREATER_EQUAL
.« CONTAINS

« STARTS_WITH

« ENDS_WITH

« NOT_START _WITH
« NOT_END_WITH
« NOT_CONTAIN

SUPCompositeTest
A SUPConposi t eTest combines multiple SUPTest Cri t eri a using the logical
operators AND, OR, and NOT to create a compound filter.

Methods
add: (SUPTest Cri teri a*) oper and;

44

Sybase Unwired Platform

Reference

The following example shows a detailed construction of the test criteria and join criteria for a
query:
SUPQuery *query2 = [SUPQuery getl nstance];

[query2 select: @c.fnane, c.| name, s. order_date, s.region"];
[query2 from @Custoner": @c"];

I

/'l Conveni ence nethod for adding a join to the query

I/

[1[query2 join: @Sal es_order": @s": @s.cust_id": @c.id"];
I

/1 Detailed construction of the join criteria

SUPJoinCriteria *joinCriteria = [SUPJoinCriteria getlnstance];
SUPJoi nCondi ti on* joinCondition = [SUPJoi nCondi ti on getl nstance];
joinCondition.alias = @s";

joinCondition.entity = @ Sal es_order";

joinCondition.leftltem= @s.cust_id";
joinCondition.rightltem= @c.id";

joinCondi tion.joinType = [SUPJoi nConditi on | NNER_JO N ;
[joinCriteria add:joi nCondition];

query2.joinCriteria = joinCriteria;

I/

/'l Conveni ence nethod for adding test criteria
/lquery2.testCriteria = (SUPTestCriteria*)[[SUPAttri buteTest

/] equal : @c. fnane": @ Dougl as"] and:

[SUPAt tri but eTest

/1 equal: @c.|lname": @Smth"]];

Il

/] Detailed construction of the test criteria

SUPConposi t eTest *ct = [SUPConpositeTest getlnstance];
ct.operands = [SUPOhj ect Li st getl nstance];

[ct.operands add: [SUPAttri buteTest equal : @c. fnanme": @ Dougl as"]];
[ct.operands add: [SUPAttri buteTest equal: @c. | name": @Smth"]];
ct.operator = [SUPConpositeTest AND;

query2.testCriteria = (SUPTestCriteria*)ct;

SUPQuer yResul t Set* resultSet = [Test CRUD Test CRUDDB

execut eQuery: query?];

Dynamic Query
User can use query to construct a query SQL statement as he wants to query data from local
database. This query may across multiple tables (MBOSs).

SUPQuery *query = [SUPQuery getl nstance];

[query select: @c. fnane, c. | name, s. order _date, s.regi on"];

[query from @Custoner": @c"];

[query join:@SalesOder": @s": @s.cust_id":@c.id"];
query.testCriteria = [SUPAttri buteTest match: @c. | nane": @Devlin"];
SUPQuer yResul t Set * resultSet = [Sanpl eApp_Sanpl eAppDB

execut eQuery: query];

if(resultSet == nil)

MBOLog(@ executeQuery Failed !'!");
return;

}
for (SUPDat aVal ueLi st* result in resultSet)

Developer Reference for iOS 45

Reference

{
MBOLog(@ Fi r st nane, | ast nane, order date, regi on = %@ %@ %@ %@ ,
[SUPDat aVal ue getNul | abl eString:[result itemO]],
[SUPDat aVal ue get Nul | abl eString:[result item1]],
[[SUPDat aVal ue get Nul | abl eDate:[result item 2]] description],
[SUPDat aVal ue get Nul | abl eString:[result item3]]);

}

Paging Data

On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set.

SUPQuery *query = [SUPQuery new nstance];

[query set Skip: 10];

[query set Take: 2] ;

SUPQhj ect Li st *custonerlist = [Sanmpl eApp_Cust oner
findWthQuery: query];

SUPQueryResultSet
The SUPQuer yResul t Set class provides for querying a result set for the dynamic query
API. SUPQuer yResul t Set is returned as a result of executing a query.

Example

This example shows how to filter a result set and get values by taking data from two mobile
business objects, creating an SUPQuery, filling in the criteria for the query, and filtering the
query results:

SUPQuery *query = [SUPQuery getl nstance];

[query select: @c. fnane, c.| nane, s. order_date, s. region"];

[query from @Custoner": @c"];

[query join:@SalesOder": @s": @s.cust_id": @c.id"];
query.testCriteria = [SUPAttri buteTest match: @c. | nane": @Devlin"];
SUPQueryResul t Set * resultSet = [Sanpl eApp_Sanpl eAppDB

execut eQuery: queryl];

if(resultSet == nil)

MBOLog(@ execut eQuery Failed !!");
return;

}
for(SUPDat aVal ueLi st* result in resultSet)

{
MBOLog(@ Fi r st nane, | ast nane, order date, regi on = %@ %@ %@ %@ ,
[SUPDat aVal ue getNul | abl eString:[result itemO0]],
[SUPDat aVal ue get Nul |l abl eString:[result item1]],
[[SUPDat aVal ue get Nul | abl eDate:[result item 2]] description],
[SUPDat aVal ue get Nul | abl eString:[result item3]]);

}

46

Sybase Unwired Platform

Reference

Retrieving Relationship Data

A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer 1D column. The Orders application is parameterized to return
order information for the customer ID.

Sanpl eApp_Cust omrer *onecust omer = [Sanpl eApp_Custoner find: 101];
SUPQhj ect Li st *orders = onecustoner. sal esOrders;
Given an order, you can access its customer information.

Sanpl eApp_Sal es_order * order = [Sanpl eApp_Sal es_order *find: 2001];
Sanpl eApp_Cust omer *thi scust omer = order. cust oner;

Operations APIs

The create, update, and delete and related operations allow you to perform operations on data
on the local client database, and to propagate that data to the Unwired Server.

Create Operation
The cr eat e operation allows the client to create a new record in the local database. To
propagate the changes to the server, call subm t Pendi ng.

(void)create

Example 1: Supports cr eat e operations on parent entities. The sequence of calls is:

Sanpl eApp_Cust omer *newcust oner = [[Sanpl eApp_Custoner alloc] init];
newcust oner. fnane = @ John”;
/1Set the required fields for the custoner
[newcust oner create];
[newcust omer subm t Pendi ng] ;
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepFor Ti nel nterval : 0. 2] ;

Example 2: Supports create operations on child entities.

Sanpl eApp_sal es_order *order = [[Sanpl eApp_sal es_order alloc] init];
order.region = @Eastern";
/1 Set the other required fields for the order

Sanpl eApp_Cust omer *customer = [Sanpl eApp_Custoner find: 1008];

[order set Custoner:custoner];

[order create];

[order.custonmer refresh]; //refresh the parent

[order. customer subnitPending]; //call submitPending on the parent.

Developer Reference for iOS 47

Reference

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])
[NSThread sl eepForTi nel nterval : 0. 2] ;

Update Operation
The updat e operation updates a record in the local database on the device. To propagate the

changes to the server, call subm t Pendi ng.

In the following examples, the Customer and SalesOrder MBOs have a parent-child
relationship.

Example 1: Supports updat e operations to parent entities. The sequence of calls is as
follows:

Sanpl eApp_Cust omer *customer = [Sanpl eApp_Custoner find: 32]
/[/find by the unique id
custoner.city = @Dublin"; //update any field to a new val ue
[cust oner update];
[cust oner submi t Pendi ng] ;
whil e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])
[NSThread sl eepFor Ti nel nterval : 0. 2];

Example 2: Supports updat e operations to child entities. The sequence of calls is:

Sanpl eApp_Sal es_order* order = [Sanpl eApp_Sal es_order find: 1220];
order.region = @SA"; //update any field
[order update]; //call update on the child record
[order refresh];
[order. custonmer submitPending]; //call subnitPending on the parent
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepFor Ti nel nterval : 0. 2] ;

Example 3: Calling save() on a parent also saves any modifications made to its children:

Sanpl eApp_Cust omer *custoner = [Sanpl eApp_Custoner find: 32]
SUPQoj ect Li st* orderlist = custoner.orders;
Sanpl eApp_sal es_order* order = [orderlist itemO];
order.sales_rep = @Rant;
custoner.state = @M" ;
[cust oner save];
[cust oner submit Pendi ng] ;
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])
[NSThread sl eepFor Ti nel nterval : 0.5];

Delete Operation
The del et e operation allows the client to delete a new record in the local database. To
propagate the changes to the server, call submi t Pendi ng.

(void)delete
The following examples show how to perform deletes to parent entities and child entities.

Example 1: Supports del et e operations to parent entities. The sequence of calls is:

Sanpl eApp_Cust orer *custoner = [Sanpl eApp_Custoner find: 32]
[custoner delete];

48

Sybase Unwired Platform

Reference

[cust oner submit Pendi ng];
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepForTi nel nterval : 0. 2] ;

Example 2: Supports del et e operations child entities. The sequence of calls is:

Sanpl eApp_Sal es_order *order = [Sanpl eApp_Sal es_order find: 32]
[order delete];
[order. custonmer submtPending]; //Call submtPending on the parent.
whil e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepFor Ti nel nterval : 0. 2];

Save Operation

The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the updat e operation. If a record does not exist, the save operation
creates a new record.

(void)save

Sanpl eApp_Cust omer *custoner = [Sanpl eApp_Custoner find: 32]
/I Change sone sttribute of the custoner record

cust orrer . f name= @ New Nanme";

[cust oner save];

Other Operation
Operations other than cr eat e, updat e, or del et e operations are called “other
operations.

This is an example of an "other™ operation:

Sanpl eApp_Cust orer O her Operati on *ot her =

[[Sanmpl eApp_Cust omer & her Operation alloc] init];
other.P1 = @ soneval ue";

other.P2 = 2;

ot her. P3 = [NSDat e date];

[ot her save];

[ot her subm t Pendi ng];

Multilevel Insert (MLI)
Multilevel insert allows a single synchronization to execute a chain of related insert
operations. This example demonstrates a multilevel insert:

-(void) TestCreate
{

I ong keyl = [Sanpl eApp_KeyGCener at or generateld];

| ong key2 = [Sanpl eApp_KeyCener at or generateld];

[Sanpl eApp_KeyGener at or submni t Pendi ngOper at i ons] ;
whil e ([Sanmpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepFor Ti nel nterval : 1] ;

{
} .
Sanpl eApp_Custonmer *c = [[Sanpl eApp_Custoner alloc] init];
c.id_ = [Sanpl eApp_Local KeyGener at or generateld];

Developer Reference for iOS 49

Reference

fname = @ Dor ot hi "

| name = @ Scrant on";

.address = @One Money Street";

city = @smallVille";

.Sstate = @M";

zZip = @97429";

. phone = @2112222345";

.conpany nane = @i Anywhere";

c.surrogat eKey = keyl;

SUPG)J ectList *orderlist = [Sanpl eApp_Sal es_orderLi st

000000000

get | nst ance] ;

Sanpl eApp_SaI es_order *o0l = [[Sanpl eApp_Sal es_order all oc]

init];

}

ol.id_ = [Sanpl eApp_Local KeyGener at or generateld];
0l.order_date = [NSDate date];

ol.fin code id = @r1";

ol.region = @Eastern";

ol.sales_rep = 902;

0l. surrogat eKey = key2;

[ol setCustoner:c];

[orderlist add:ol];

[c setSal esOrders:orderlist];

[c save];

[c refresh];

[c subnit Pending];

assert (c. pendi ng == YES);

whil e ([Sanmpl eApp_Sanpl eAppDB hasPendi ngOper ati ons])

[NSThread sl eepForTi nel nterval : 1];

Pending Operation

There are five methods you can use to manage the pending state.

(voi d) cancel Pendi ng —Cancels apending record. A pending record is one that has
been updated in the local client database, but not yet sent to the Unwired Server.

[cust oner cancel Pendi ng];

(voi d) cancel Pendi ngQper at i ons — Cancels the pending operations for an
entire entity. This method internally invokes the cancel Pendi ng method.

[Cust oner cancel Pendi ngQper ati ons] ;

(voi d) submi t Pendi ng—Submits a pending record to the Unwired Server. For MBS,
a replay request is sent directly to the Unwired Server.

[cust oner submi t Pendi ng] ;

+(voi d) submi t Pendi ngOper at i ons —Submits all data for all pending records to
the Unwired Server. This method internally invokes the submi t Pendi ng method.

[Cust oner submi t Pendi ngQper ati ons] ;

+(voi d) submi t Pendi ngQper ati ons:

(NSString*)synchroni zat i onG oup — Submits all data for pending records

50

Sybase Unwired Platform

Reference

from MBOs in this synchronization group to the Unwired Server. This method internally
invokes the submi t Pendi ng method.

[Sanpl eApp_Sanpl eAppDB submni t Pendi ngOper ati ons: @default”];
Sanpl eApp_Cust omer *customer = [Sanpl eApp_Cust ormer find: 101];

[/ Make some changes to the custoner record.
/] Save t he changes

[/1f the user wi shes to cancel the changes, a call to cancel pending
will revert to the old val ues.

[cust oner cancel Pendi ng];

/!l The user can submt the changes to the server as foll ows:
[cust oner submi t Pendi ng];

Local Business Object
A business object can be either local or mobile. A local business object is a client-only object.
Unlike a mobile business object, a local business object cannot be synchronized with the
Unwired Server. Local business objects do not call submi t Pendi ng, or performareplay or
import from the Unwired Server.

The following code example creates a row for a local business object called “clientObj", saves
it, and finds it in the database.

//Create a client only MO ..");
ClientOj *o = [OientCbj getlnstance];

o.attributel = @This";

o.attribute2 @is";

o.attribute3 @a";

o.attri bute4 @client only nbo";
[o save];

// Read fromthe created MBO');

SUPQhj ectList *objlist = [CientChj findAll];

MBOLogError (@d i ent Cbj MBO has % d rows",[objlist size]);
for(CientQj *o in objlist)

MBOLogError ([[o json:0] toString]);

Personalization APIs
Personalization keys allow the mobile user to define (personalize) certain input field values
within the mobile application. The Per sonal i zat i onPar anet er s class is generated
automatically for managing personalization keys. Personalization parameters provide default
values for synchronization parameters when the synchronization key of the object is mapped
to the personalization key while developing a mobile business object.

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are

Developer Reference for iOS 51

Reference

persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Getting and Setting Personalization Key Values

Consider a personalization key "pkcity" that is associated with the synchronization parameter
"cityname". When a personalization parameter value is changed, the call to save
automatically propagates the change to the server; you need not call subni t Pendi ng after
the save.

The following example shows how to get and set personalization key values:

[/ get personalization key val ues

Sanpl eApp_Per sonal i zati onParanmeters *pp = [Sanpl eApp_Sanpl eAppDB
get Personal i zat i onpar anet er s] ;

MBOLogl nf o(@ Per sonal i zati on Paraneter for City = %@, pp.PKGty);

/] Set personalization key val ues

pp. PKCty = @Hul |l ”;

[pp. save]; [//save the new pk val ue.

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepFor Ti nel nterval : 0. 2] ;

Note: You are not required to call submni t Pendi ng after save, as is the case with
synchronization parameters.

Passing Arrays of Values, Objects

An operation can have a parameter that is one of the SUP list types (such as SUPIntList,
SUPStringList, or SUPObjectL.ist). For example, consider a method for an entity Cust oner
with signature AnQCper at i on:

SUPIntList *intlist = [SUPIntList getlnstance];

[intlist add:1];
[intlist add:2];

Custoner *thecustoner = [Custoner find:101];
[thecustomer AnQperation:intlist];

Object State APIs

The object state APIs include status indicator APIs for returning information about entities in
the database, and a method to refresh the MBO entity in the local database.

52

Sybase Unwired Platform

Reference

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Objective-C | Description
Type
isNew BOOL Returns true if this entity is new (but has not been created in

the client database).

isCreated BOOL Returns true if this entity has been newly created in the client
database, and one the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» Theentity has been submitted to the server, but the server
has not finished processing the request.

» The server rejected the replay request (replayFailure
message received).

isDirty BOOL Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted BOOL Returns true if this entity was loaded from the database and
was subsequently deleted.

isUpdated BOOL Returns true if this entity has been updated or changed in the
database, and one of the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

» The server rejected the replay request (replayFailure
message received).

pending BOOL Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange | char If pending is true, then 'C' (create), 'U' (update), ‘D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

Developer Reference for iOS 53

Reference

Name Objective-C | Description
Type
replayCounter long Returns a long value that is updated each time a row is created

or modified by the client. This value is derived from the time
in seconds since an epoch, and increases each time a row is

changed.
int64_t result = [custoner replayCount-
er];

replayPending long Returns a long value. When a pending row is submitted to the

server, the value of r epl ayCount er is copied to r e-
pl ayPendi ng. This allows the client code to detect if a
row has been changed since it was submitted to the server
(that is, if the value ofr epl ayCount er is greater than
r epl ayPendi ng).

!nt]64_t result = [custoner replayPend-

i ng];

replayFailure long Returns a long value. When the server responds withar e-
pl ayFai | ur e message for a row that was submitted to
the server, the value of r epl ayCount er is copied to

repl ayFai | ure,andr epl ayPendi ng is setto 0.

int64_t result = [customer replayFai -
lure];

Entity State Example

This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear
in bold.

Note the following entity behaviors:

e Thei sDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

e Therepl ayCount er value that gets sent to the Unwired Server is the value in the
database before you call submi t Pendi ng. After a successful replay, that value is
imported from the Unwired Server.

» The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

54

Sybase Unwired Platform

Reference

Description

Flags/Values

After reading from the database, before any changes
are made.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

One or more attributes are changed, but changes not
saved.

isNew=false
isCreated=false
isDirty=true
isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

Developer Reference for iOS

55

Reference

Description Flags/Values

After[entity save] or[entity up- [isNew=false
dat] is called. isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="U’
replayCounter=33424979
replayPending=0

replayFailure=0

After[entity subm t Pendi ng] iscalled | isNew=false
to submit the MBO to the server isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=33424981

replayFailure=0

56 Sybase Unwired Platform

Reference

Description Flags/Values

Possible result: the Unwired Server accepts the up- | isNew=false
date, sends an importandar epl ayResul t for
the entity, and the refreshes the entity from the da-
tabase. isDirty=false

isDeleted=false

isCreated=false

isUpdated=false
pending=false
pendingChange="N’
replayCounter=33422977
replayPending=0

replayFailure=0

Possible result: The Unwired Server rejects the up- | isNew=false
date, sends a r epl ayFai | ur e for the entity,
and refreshes the entity from the database

isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=0
replayFailure=33424981

Pending State Pattern

When a create, update, delete, or save operation is called on an entity in a message-based
synchronization application, the requested change becomes pending. To apply the pending
change, call subni t Pendi ng on the entity, or subni t Pendi ngOper at i ons on the
mobile business object (MBO) class:

Custoner *e = [Custoner getlnstance];
e.nane = @Fred";

e.address = @123 Four St.";

[e create]; // create as pending

/1 Then do this....

[e subnmitPending]; // submt to server
[l ... or this.

Developer Reference for iOS 57

Reference

[Cust oner submitPendi ngQperations]; // submt all pending Custoner
rows to server

submi t Pendi ngQper at i ons submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submi t Pendi ng method on each of
the pending records.

The call to submi t Pendi ng causes a JSON message to be sent to the Unwired Server with
the r epl ay method, containing the data for the rows to be created, updated, or deleted. The
Unwired Server processes the message and responds with a JSON message with the

r epl ayResul t method (the Unwired Server accepts the requested operation) or the
repl ayFai | ur e method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more i npor t
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the r epl ay request. These changes are written
to the client database and marked as rows that are not pending. When the r epl ayResul t
message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful
operation.

If the Unwired Server rejects the requested change, the client receives ar epl ayFai | ed
message, and the entity remains in the pending state, with itsr epl ayFai | ed attribute setto
indicate that the change was rejected.

If the Unwired Server rejects the requested change, it also sends one or more log record
messages to the client. The SUPLogRecor d interface has the following getter methods to
access information about the log record:

Method Objective-C | Description

Name Type

component NSString* Name of the MBO for the row for which this log record was
written.

entityKey NSString* String representation of the primary key of the row for which
this log record was written.

58

Sybase Unwired Platform

Reference

Method Objective-C | Description
Name Type
code int32_t One of several possible HTTP error codes:

e 200 indicates success.

» 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

« 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

e 404 indicates that the client tried to access a nonexistent
package or MBO.

e 405 indicates that there is no valid license to check out for
the client.

» 500 to indicate an unexpected (unspecified) server fail-

ure.

message NSString* Descriptive message from the server with the reason for the
log record.

operation NSString* The operation (create, update, or delete) that caused the log

record to be written.

requestld NSString* The id of the replay message sent by the client that caused this
log record to be written.

timestamp NSDate* Date and time of the log record.

If a rejection is received, the application can use the entity method get LogRecor ds to
access the log records and get the reason:

SUPQhj ectLi st* logs = [e get LogRecords];
for (i d<SUPLogRecord> log in | ogs)

MBOLogError (@entity has a | og record: \n\
code = %d,\n\
conponent = %@\ n\
entityKey = %@\ n\
| evel = %d,\n\
message = %@\ n\
operation = %@\ n\
requestld = %@\ n\
ti mestanp =
[l og code],
[l og conponent],
[log entityKey],
[log level],
[l og nessage],
[l og operation],

Developer Reference for iOS 59

Reference

[l og requestid],
[1og tinmestanp]);
}

cancel Pendi ngQper at i ons cancels all the pending records for an entity. This method
internally invokes the cancel Pendi ng method on each of the pending records.

Refresh
The r ef r esh method allows the client to refresh the MBO entity from the local database.

(void)refresh
[order refresh];

where or der is an instance of the MBO entity.

Clear Relationship Objects

The cl ear Rel ati onshi pObj ect s method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

(void)clearRelationshipObjects

Security APIs

Unwired Server supports encryption of client data and the database.

Encryption of Client Data
The iOS Sybase Unwired Platform client libraries internally encrypt data before sending it
over the wire, using its own encryption layer. Communication is performed over HTTP.

Encryption of the Database
The following methods set or change encryption keys for the database.

-(void)setEncryptionKey:(SUPString)value

Sets the encryption key for the database in SUPConnect i onPr of i | e. Call this method
before any database operations.
[cp setEncryptionKey: @test”];

+(void)changeEncryptionKey:(NSString*) newKey

Changes the encryption key to the newKey value and saves the newKey value to the
connection profile. Call this method after the call to cr eat eDat abase.

[Sanpl eApp_Sanpl eAppDB changeEncrypti onKey: @ newkey" 1];

60

Sybase Unwired Platform

Reference

Configuring Application Security Using Keychain

An application can make use of security features that use Keychain as persistent storage for a
database encryption key by using the SUPKeyVaul t APIs defined by the SUPKeyVaul t
class.

The SUPKeyVaul t class controls setting a key to the keychain, retrieving a key from the
keychain, encrypting/decrypting a key with an application PIN, locking/unlocking a key vault
with a PIN, and PIN management. An application explicitly retrieves and saves a database
encryption key using the SUPKeyVaul t APIs, then sets the retrieved encryption key to
SUPConnecti onProfil e.

1. Modify the application to use SUPKeyVaul t to retrieve the database encryption key
from Keychain at start-up:

SUPKeyVaul t * keyvault = [SUPKeyVaul t
get SUPKeyVaul t : MESSAG NG VAULT | D] ;

/1 keyVault nmust be unl ocked by the application before the
connection to server.

if ([keyVault isLocked])

{
/] Get the PIN fromuser through ENTER PI N di al og
// Now unl ock the KeyVault with the PIN
result = [keyVault unlock: pin];

if (result == error)

/| Take necessary actions

}
}
NSDat a *dbKey = [keyVault key];

[l start up Sybase nessaging client after the keyVault is

unl ocked.

NSI nt eger result = [SUPMessageC ient start];
if (result == kSUPMessageC i ent Success)

{

}

2. Modify the application to set an encryption key to the current
SUPConnect i onProf i | e, to allow database operations to use this encryption key.
Call these methods before performing any database operations:

SUPConnecti onProfile *cp = [Sanpl eApp_Sanpl eAppDB
connectionProfile];
[cp set EncryptionKey: dbKey] ;

3. Modify the application to save the database encryption key to the Keychain by calling
these methods:

if (!'[keyVault islLocked])
{

Developer Reference for iOS 61

Reference

[keyVaul t set Key: dbKey] ;

Utility APIs

The iOS Client Object API provides utility APIs to support a variety of tasks.

e Writing and retrieving log records.

« Configuring log levels for messages reported to the console.

« Enabling the printing of server message headers and message contents, database
exceptions, and SUPLogRecor ds written for each import.

« Viewing detailed trace information on database calls.

« Registering a callback handler to receive callbacks.

« Assigning a unique ID for an application which requires a primary key.

« Managing date/time objects for iOS through defined classes.

« Enabling Apple Push Notification to allow applications to provide push notifications to
devices.

Using the Log Record APIs

Every package has a LogRecor dI npl table in its own database. The Unwired Server can
send import messages with LogRecor dI npl records as part of its response to replay
requests (success or failure).

The Unwired Server can embed a "log" JSON array into the header of a server message; the
array is written to the LogRecor dI npl table by the client. The client application can also
write its own records. Each entity has a method called newl.ogRecor d, which allows the
entity to write its own log record. The LogRecor dl npl table has "component™ and
"entityKey" columns that associate the log record entry with a particular MBO and primary
key value.

SUPQhj ect Li st *sal esorders = [Sanpl eApp_Sal es_order findAll];
i f([sal esorders size] > 0)

Sanpl eApp_Sal es_order * so = [sal esorders itemO0];
Sanpl eApp_LogRecordl npl *Ir = [so newLogRecord:
[SUPLogLevel INFQ w thMessage: @testing
record"];
MBOLogError (@Log record is: %@,Ir);

/1 submitting | og records
[Sanpl eApp_Sanpl eAppDB submi t LogRecor ds] ;
whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])

[NSThread sl eepForTi nel nterval : 0. 2];
}

You can use the get LogRecor ds method to return log records from the table.

SUPQuery *query = [SUPQuery getl nstance];
SUPhj ect Li st *loglist = [Sanpl eApp_Sanpl eAppDB

62

Sybase Unwired Platform

Reference

get LogRecor ds: query];
for(id oin loglist)

LogRecordl npl *log = (LogRecordl npl *) o;
MBOLogError (@Log Record %1 u: Operation = %@ Tinestanp =
EL@)

MBO = %@ key= %@ nessage=%d, | og. messagel d, | og. oper ati on,
[SUPDat eTi nelti |
toString:log.tinestanp], | og. conponent, | og. entityKey, | og. mnessage);

}

Each mobile business objecthasaget LogRecor ds instance method that returns a list of all
the log records that have been recorded for a particular entity row in a mobile business object:

SUPChj ect Li st *sal esorders = [Sanpl eApp_Sal es_order findAlI];
i f([sal esorders size] > 0)

Sanpl eApp_Sal es_order * so = [sal esorders itemO0];
SUPQhj ect Li st *loglist = [so getLogRecords];
for(id oin loglist)

LogRecordl npl *log = (LogRecordl npl *) o;
MBOLogError (@Log Record % | u: Operation = %@ Timestanp = %@

MBO = %@ key= %@ nessage=%d, | og. messagel d, | og. oper ati on,
[SUPDat eTi nelti |
toString:log.tinestanp], | og. conponent, | 0og. entityKey, | og. nessage);

}

Mobile business objects that support dynamic queries can be queried using the synthetic
attribute hasLogRecor ds. This attribute generates a subquery that returns true if an entity
row has any log records in the database, otherwise it returns false. The following code example
prints out a list of customers, including first name, last name, and whether the customer row
has log records:

SUPQuery *query = [SUPQuery getl nstance];

[query sel ect: @ x. surrogat eKey, x. f nane, x. | nane, x. hasLogRecor ds”] ;
[query from @Customer”: @x”"];

SUPQuer yResul t Set *qrs = [Sanpl eApp_Sanpl eAppDB execut eQuery: query];
MBOLogError (@%@, [grs. col umNanes toString]);

f or (SUPDat aVal ueLi st *row in qrs.array)

MBOLogError (@%@, [row toString]);

If there are a large number of rows in the MBO table, but only a few have log records
associated with them, you may want to keep an in-memory object to track which rows have log
records. You can define a class property as follows:

NSMut abl eArray* cust oner KeysW t hLogRecor ds;

After data is downloaded from the server, initialize the array:

cust oner KeysW t hLogRecords = [[NSMut abl eArray al | oc]
initWthCapacity: 20];

Developer Reference for iOS 63

Reference

SUPQhj ect Li st *al | LogRecords = [Sanpl eApp_Sanpl eAppDB
get LogRecords: nil];
for (i d<SUPLogRecord> Ir in allLogRecords)

if(([lr entityKey] '=nil) & ([[Ir conmponent] conpare: @ Cust oner”]
== O))
[cust oner KeysW t hLogRecords addObject:[Ir entityKey]];
}

You do not need database access to determine if a row in the Customer MBO has a log record.
The following expression returns true if a row has a log record:

BOOL hasALogRecord = [custoner KeysWthLogRecords contai nsObj ect:
[cust oner Row keyToString]];

Viewing Error Codes in Log Records
You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.

2. Performing an initial synchronization.

3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader

{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": " 111#My/1: 1", "ppni:
"eyJilc2VWybntt ZSI 61 nNLcEFkbW ul i wi cGFzc3dven) G JzMBBBZGLpbi J9", "p
id":"nmoca://

Erul at or 17128142", " et hod": "repl ay", "pbi ": "true", "upa": " c3VWQNRt a
WI6cz NWQNRE aW=", "nbo": "Bi ", "app": "My1: 1", "pkg":"inot1: 1. 0"}

JsonCont ent
{"c2":null,"c1":1,"createCalled":true," _op":"C'}

The Unwired Server returns a response. The code is included in the ResponseHeader .

ResponseHeader
{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": "111#M/1: 1", "| ogi nFa
iled":fal se,"nethod": "repl ayFail ed", "l 0g":

[{"nmessage": "com sybase. j dbc3. j dbc. SybSQLExcepti on: SQ. Anywher e
Error -193: Prinmary key for table '"bi' is not unique : Primary key
value ('1')", "repl ayPendi ng":

0, "ei sCode":"","conponent":"Bi","entityKey":"0", "code":

500, "pendi ng": fal se, "di sabl eSubnmi t":fal se,"?":"inotl. server. LogReco
rdlnpl ", "timestanp":"2010-08-26

14: 05: 32. 97", "request 1 d": "684cbel6f 6b740eb930d08f d626e1551", " oper at
ion":"create","_op":"N',"replayFailure":

0, "l evel ": "ERROR", "pendi ngChange": "N', "nmessagel d": 200001, " _rc":
0}],"nbo":"Bi ", "app":"M1: 1", "pkg":"inot1l:1.0"}

ResponseCont ent
{"id":100001}

64

Sybase Unwired Platform

Reference

Log Levels and Tracing APIs
The MBOLogger class enables the client to add log levels to messages reported to the
console.The application can set the log level using the set LogLevel method.

In ascending order of detail (or descending order of severity), the log levels defined are
LOG_OFF (no logging), LOG_FATAL, LOG_ERROR, LOG_WARN, LOG_| NFQ, and
LOG DEBUG

Macros such as MBOLogEr r or , MBOLogWar n, and MBOLogl nf o allow application code
to write console messages at different log levels. You can use the method set LoglLevel to
determine which messages get written to the console. For example, if the application sets the
log level to LOG_WARN, calls to MBOLogl nf o and MBOLogDebug do not write anything to
the console.

[MBOLogger setLoglLevel : LOG | NFQ ;

MBOLogl nfo(@ This | og message will print to the console”);

[MBOLogger setLoglLevel : LOG WARN] ;

MBOLogl nfo(@ This | og message will not print to the console");
MBOLogError (@ This | og message will print to the console");

Server Log Messages

The generated code for a package contains an MBODebugLogger source and header file and
an MBODebugSet ti ngs. h file. The MBODebugLogger class contains methods that
enable printing of server message headers and message contents, database exceptions and
SUPLogRecor ds written for each import.

The client application can turn on printing of the desired messages by modifying the
MBODebugSet t i ngs. h. In the default configuration, setting "#define _ DEBUG__ " to
true prints out the server message headers and database exception messages, but does not print
the full contents of server messages.

Note: For more information, examine the MBOLogger . h and MBCLogl nt erface. h
header files in the i ncl udes directory.

Tracing APIs
To see detailed trace information on database calls, including actual SQL statements sent to

SQLite, a Debug build of your application can turn on or off the following macros in
MBODebugSet ti ngs. h:

* LOGRECORD_ON_IMPORT —creates a log record in the database for each import of
server data for an MBO.

* PRINT_PERSISTENCE_MESSAGES — prints to the console the database exception
messages.

* PRINT_SERVER_MESSAGES - prints to the console the JSON headers of messages
going to and from the Unwired Server. This allows you to see while debugging that an
application is subscribing successfully to the Unwired Server, and that imports are being

Developer Reference for iOS 65

Reference

sent from the Unwired Server. When this macro is defined, the contents of client-initiated
“replay” messages are also printed to the console.

* PRINT_SERVER_MESSAGE_CONTENT - prints to the console the full contents of
messages from the Unwired Server to the client. The messages include all the data being
imported from the Unwired Server, and usually result in a large amount of printing.
Developers may find it useful to print all the data during detailed debugging; doing so
allows them detailed debugging to see the data coming from the Unwired Server. In
general, do not turn this macro on, as doing so considerably slows the data import process.

Printing Log Messages

The following code example retrieves log messages resulting from login failures where the
Unwired Server writes the failure record into the LogRecor dI npl table. You can
implement the onLogi nFai | ur e callback to print out the server message.

SUPQuery * query = [SUPQuery new nst anceget | nstance] ;
Sanpl eApp_LogRecordl npl List* loglist =

(Sanpl eApp_LogRecor dl npl Li st *) [Sanpl eApp _ Sanpl eAppDB
get LogRecor ds: query];
for (Sanpl eApp_LogRecordlnpl* log in |oglist)

MBOLogError (@Log Record %1 u: Operation = %@ Conponent = %@
message = %@, |og.nmessageld, |og.operation,
| og. conponent, | og. nessage) ;

}

generateGuid
You can use the gener at eGui d method (in the LocalKeyGenerator class) to generate an ID

when creating a new object for which you require a primary key. This generates a unique ID
for the package on the local device.

+ (NSString*)generat eGui d;

Callback Handlers

A callback handler provides message notifications and success or failure messages related to
message-based synchronization. To receive callbacks, register your own handler with a
database, an entity, or both. You can use SUPDef aul t Cal | backHandl er as the base
class. In your handler, override the particular callback you want to use (for example,

onl nport).

Because both the database and entity handler can be registered, your handler may get called
twice for amobile business object import activity. The callback is executed in the thread that is
performing the action (for example, import). When you receive the callback, the particular
activity is already complete.

The SUPCal | backHandl er protocol consists of these callbacks:

» onlmport:(id)entityObject; — invoked when an import is received.

66

Sybase Unwired Platform

Reference

» onReplayFailure:(id)entityObject; —invoked when a replay failure is received from the
Unwired Server.

* onReplaySuccess: (id)entityObject; — invoked when a replay success is received from
the Unwired Server.

* onLoginFailure; — invoked when a login failure message is received from the Unwired
Server.

* onLoginSuccess; — called when a login result is received by the client.

» onSubscribeFailure; —invoked when a subscribe failure message is received from the
Unwired Server.

* onSubscribeSuccess; —invoked when a subscribe success message is received from the
Unwired Server.

e - (int32_t)onSynchronize: (SUPODbjectList*)syncGroupList withContext:
(SUPSynchronizationContext*)context; — invoked when the synchronization status
changes. This method is called by the database class begi nSynchr oni ze methods
when the client initiates a synchronization, and is called again when the server responds to
the client that synchronization has finished, or that synchronization failed.

The SUPSynchr oni zat i onCont ext object passed into this method has a “status”
attribute that contains the current synchronization status. The possible statuses are defined
in the SUPSynchr oni zat i onSt at usType enum, and include:

* SUPSynchronizationStatusSTARTING — passed in when begi nSynchr oni ze

is called.

* SUPSynchronizationStatusUPL OADING — synchronization status upload in
progress.

¢ SUPSynchronizationStatusDOWNL OADING - synchronization status download
in progress.

* SUPSynchronizationStatusFI NI SHING —synchronization completed successfully.
* SUPSynchronizationStatusERROR — synchronization failed.

This callback handler returns SUPSynchr oni zat i onAct i onCONTI NUE, unless the
user cancels synchronization, in which case it returns

SUPSynchr oni zat i onAct i onCANCEL. This code example prints out the groups in
a synchronization status change:

MBCLogl nf o(@ Synchr oni zati on response");

MBCOLogl nf o(@ ");

f or (i d<SUPSynchr oni zati onG oup> sg in syncG oupLi st)

MBOLogl nfo(@ group = %@, sg. nane) ;
}

MBOLogl nf o(@ "y

if(context = nil)

Developer Reference for iOS 67

Reference

MBOLogl nfo(@ context: 9%d,
%@ , cont ext . st at us, cont ext . user Cont ext) ;
} else {
MBOLogl nfo(@ context is null");
}

MBCLogl nf o(@ ")

| return SUPSynchroni zati onAct i onCONTI NUE;
* onSuspendSubscriptionFailure; — invoked when a call to suspend fails.
* onSuspendSubscriptionSuccess; — invoked when a suspend call is successful.
* onResumeSubscriptionFailure; —invoked when a resume call fails.
* onResumeSubscriptionSuccess; — invoked when a resume call is successful.
* onUnsubscribeFailure; —invoked when an unsubscribe call fails.
* onUnsubscribeSuccess; — invoked when an unsubscribe call is successful.
* onlmportSuccess; —invoked when onl nport succeeds.

* onMessageException: (NSException*e); — invoked when an exception occurs during
message processing. Other callbacks in this interface (whose names begin with "on™) are
invoked inside a database transaction. If the transaction is rolled back due to an unexpected
exception, this operation is called with the exception (before the rollback occurs).

» onTransactionCommit; —invoked on transaction commit.

* onTransactionRollback; — invoked on transaction rollback.

* onResetSuccess; — invoked when reset is successful.

e onSubscriptionEnd; —invoked on subscription end.

» onStorageSpacel ow; — invoked when storage space is low.

* onStorageSpaceRecovered; —invoked when storage space is recovered.

» onConnectionStatusChange: (SUPDeviceConnectionStatus)connStatus:
(SUPDeviceConnectionType)connType: (int32_t)err Code: (NSString*)err String; —
the application should call the register callback handler with a database class, and
implement the onConnect i onSt at usChange method in the callback handler. The
API allows the device application to see what the error is in cases where the client cannot
connect to the Unwired Server. SUPDevi ceConnect i onSt at us and
SUPDevi ceConnect i onType are defined in SUPConnectionUtil . h:

typedef enum {

VWRONG_STATUS_NUM = 0,

/'l device connected

CONNECTED _NUM = 1,

/1 device not connected

DI SCONNECTED_NUM = 2,

/1 device not connected because of flight node

DEVI CEl NFLI GATMODE_NUM = 3,

/1 device not connected because no network coverage
DEVI CEOUTOFNETWORKCOVERACGE_NUM = 4,

/1 device not connected and waiting to retry a connection
VAl TI NGTOCONNECT_NUM = 5,

68

Sybase Unwired Platform

Reference

/1 device not connected becauseroam ng was set to fal se
// and device is roamn ng
DEVI CEROAM NG_NUM = 6,
/1 device not connected because of |ow space.
DEVI CELOASTORAGE_NUM = 7
} SUPDevi ceConnecti onSt at us;

typedef enum {
VWRONG_TYPE_NUM = 0,
/1 1 Phone has only one connection type
ALVAYS ON NUM = 1

} SUPDevi ceConnecti onType;

This code example shows how to register a handler to receive a callback:

DBCal | backHandl er* handl er = [DBCal | backHandl er newHandl er];
[i PhoneSMIest DB r egi st er Cal | backHandl er: handl er] ;
[handl er rel ease];

MBQCal | backHandl er* nboHandl er = [MBOCal | backHandl er newHandl er];
[Product registerCall backHandl er: nboHandl er] ;
[mboHandl er rel ease];

Date/Time
Classes that support managing date/time objects.

e SUPDat eVal ue. h —manages an object of datatype Dat e.

e SUPTI neVal ue. h —manages an object of datatype Ti rre.

e SUPDat eTi neVal ue. h —manages an object of datatype Dat eTi ne.

e SUPDat eLi st. h —manages a list of Dat e objects (the objects cannot be null).

e SUPTI neLi st . h —manages a list of Ti e objects (the objects cannot be null).

» SUPDat eTi neLi st. h —manages a list of Dat eTi e objects (the objects cannot be
null).

e SUPNul | abl eDat eLi st . h—managesa listof Dat e objects (the objects can be null).

* SUPNul | abl eTi nmeLi st . h—managesalistof Ti ne objects (the objects can be null).

e SUPNul | abl eDat eTi neLi st . h—managesa list of Dat eTi ne objects (the objects
can be null).

Example 1: To get a Dat e value from a query result set:

SUPQuer yResul t Set * resultSet = [Test CRUD Test CRUDDB
execut eQuery: query];
f or (SUPDat aVal ueLi st* result in resultSet)
[[SUPDat aVal ue get Nul | abl eDate:[result item 2]]
description];

Example 2: A method takes Dat e as a parameter:

- (voi d) set Modi fi edOr der Dat e: (SUPDat eVal ue*) thedat e;
SUPDat eVal ue *t hedat eval ue = [SUPDat eVal ue newl nst ance] ;
[thedat eval ue setVal ue: [NSDate date]];

[custoner set Mobdi fi edOr der Dat e: t hedat eval ue] ;

Developer Reference for iOS 69

Reference

Apple Push Notification API

The Apple Push Notification API allows applications to provide various types of push
notifications to devices, such as sounds (audible alerts), alerts (displaying an alert on the
screen), and badges (displaying an image or number on the application icon).

Note: This API works only on iPhone devices, and does not work on iPod, iPod Touch, or a
simulator.

The client library | i bcl i ent rt wraps the Apple Push Notification API in the file
SUPPushNot i fi cation. h.

In addition to using the Apple Push Notification APIs in a client application, you must
configure the push configuration on the server. This is performed under Server
Configuration > Messaging > Apple Push Configuration in Sybase Control Center. You
must configure the device application name (for push), the device certificate (for push), the
Apple gateway, and the gateway port.

The following APl methods abstract the Unwired Server, resolve the push-related settings,
and register with an Apple Push server, if required. You can call these methods in the
"applicationDidFinishLaunching" function of the client application:

@nterface SUPPushNotification : NSObject
{

}

+(voi d) set upFor Push: (Ul Appl i cati on*) applicati on;

+(voi d) devi ceTokenFor Push: (Ul Appl i cati on*)application devi ceToken:
(NSDat a

*) devToken;

+(voi d) pushRegi strationFail ed: (U Application*)application
errorinfo: (NSError *)err;

+(voi d) pushNot i fication: (U Application*)application

noti fyData: (NSDi cti onary *)userlnfo;

+(voi d) set upFor Push: (Ul Appl i cati on*)application

After a device successfully registers for push notifications through Apple Push Notification
Service, i0S calls the

di dRegi st er For Renpt eNot i fi cati onW t hDevi ceToken method in the client
application. iOS passes the registered device token to this function, and the functions calls the
devi ceTokenFor Push API to pass the device token to Unwired Server:

+(voi d) devi ceTokenFor Push: (Ul Appl i cati on*)application devi ceToken:

(NSDat a
*)devToken

If for any reason the registration with Apple Push Notification Service fails, iOS calls
di dFai | ToRegi st er For Renot eNot i fi cati onsW t hEr r or in the client
application which calls the following API:

70

Sybase Unwired Platform

Reference

+(voi d) pushRegi strationFail ed: (U Application*)application
errorinfo: (NSError *)err

When iOS receives a notification from Apple Push Notification Service for an application, it
calls di dRecei veRenpt eNot i fi cati on in the client application. This calls the
pushNoti ficati on API:

+(voi d) pushNot i fication: (U Application*)application
noti fyData: (NSDi ctionary *)userlnfo

Complex Attribute Types

The MBO examples previously described have attributes that are primitive types (such as

i nt, 1 ong,string), and make use of the basic database operations (create, update, and

delete). To support interactions with certain back-end datasources, such as SAP® and Web

services, an MBO may have more complex attributes: an integer or string list, a class or MBO
object, or a list of objects. Some back-end datasources require complex types to be passed in as
input parameters. The input parameters can be any of the allowed attribute types, including
primitive lists, objects, and object lists.

In the following example, a Sybase Unwired Platform project is created to interact with a
Remedy Web service back-end. The project includes two MBOs,
Hel pDesk_Query_Servi ce and Hel pDesk_QueryLi st _Servi ce.

Note: Each project will have different requirements because each back-end datasource
requires a different configuration for parameters to be sent to successfully execute a database
operation.

Developer Reference for iOS 71

Reference

@‘mmw Tierl : STRING
) dosure_Prockst_Category_Tier2 : STRING
) dosue_Product_Category_| Tm3 STRING

@) priceity : STRING

{30 priceity_Weight : INT

@) procuct_Categorization_Tier_) - STRING
) procuct_Categorization_Tier_Z : STRING
@ product_Categorization_Tier_3 : STRING
) product_Model_Version : STRING

) product_Name : STRING

£3) region : STRING

) reported_Source : STRING

£8) reschion : STRING

£2) reschaion_Camgory : STRING

{20 resabation_Catwgory _Tier_Z : STRING
{3) resohtion_Category_Tier_% | STRING
B service_Type 2 STRING

) e : STRING

@) e _Group t STRING

&) shabus : STRING

) shatus_Reason : STRING

&) urpency | STRING

&) WIP | STRING

@) serviceCl : STRING

) serviceCl_ReconiD @ STRING

&) HPD_C1 - STRING

B WPD_CT_ResconD ; STRING

{5 hPD_C1_Formbiame : STRING

) TI0_CI_FormiName : STRING

(3) abtribuke] = STRING

Cpsrations (1)

o heipDesk_Subma_Sesvice()

M

) cabegonzation_Tier_3 1 STRING

) chy : STRING

@) chosire Marfactures | STRENG

(@) closure_Product_Cakegary_Tierl - STRING
) chosure_Product_Category_Tierd = STRING
(@) chosure_Product_Category_Tier3 : STRING
18 chomre_Product_Model_Versicn : STRING
(@) chosure_Product_Name : STRING

f8) comparry : STRING

@) cortact_Comparry : STRING

@) conkact_Sensiivity : STRING

) country : STRING

ey _Weight : INT

() product_Categoeization_Tier_I : STRING
(@ product_Categoeization_Tr_Z ; STRENG
) product_Categorization_Teer_3 | STRING
(B pmoduct_Model_Versior : STRING

) product_Name - STRING

@ rogeon : STRING

@ reported_Source : STRING

{8 reschution : STRING

) reschution_Category @ STRENG

) reschubion_Cakegory_The_2 - STRING
{3) resakution_Category_Tier_3 : STRING
(@) arvice_Type : STRING

@ HeD_CL: STRING

@) hPD_CI_RevonD ; STRING
@) WPD_CI_Foetailame : STRING
@) 210 _C1_FormMlame | STRING

Oper Stiond {0)

72

Sybase Unwired Platform

Reference

You can determine from viewing the properties of the create operation,

hel pdesk_Submit _Servi ce(), that the operation requires parameters to be passed in.
The first parameter, HEADER , is an instance of the Aut hent i cat i onl nf o class, and
the second parameter, assi gned_Gr oup, is a list of strings.

fsd YT) Eafreat ?lc'.,n.: | S Figrm |

Defriten Farameters Data Source
Parameters e Batabype Fiuladde Ut abde Eeguod Parparuleation ey Fill froem Attrdate Aegurnnd Bt abypa Pk

s Grogp S
amuged Spport, G a
snicred_Support 0. Axeyred_Sup .. SHRING
miper Avuge STRING
Ealayxiativn . STAING
eatoperizarion_Tee 3 Calecerizatior . STAING
eategorizaton T 3 Categorzation... STRING

ET P SERING
clegps Marefachrer Osure Mars,., STRING
ogg Procud_Cab... Oodure Produ. STRING

=
g

AT T T A
3
¥
B
3

When you generate iOS code for this project, the generated code includes the
RenmedyCU_Aut hent i cat i onl nf o class, in addition to the MBO classes
RemedyCU_Hel pDesk_Query_Servi ce and

RemedyCU_Hel pDesk_QueryLi st _Servi ce. The Aut hent i cat i onl nf o class
holds information that must be passed to the Unwired Server to authenticate database
operations.

The project includes the create operation hel pdesk_Submni t _Ser vi ce. Call this
method instead of using the iOS MBO create method directly. The

hel pdesk_Subm t _Ser vi ce method is defined in

RenmedyCU Hel pDesk_Query_Servi ce. h:

- (void)hel pDesk_Subm t _Servi ce:

(RemedyCU_Aut hent i cat i onl nf o*) _HEADER

wi t hAssi gned_Gr oup: (SUPNuI | abl eStri ngLi st *) assi gned_Gr oup
wi t hCl _Nane: (NSStri ng*)cl _Nane

wi t hLookup_Keywor d: (NSStri ng*) | ookup_Keyword

wi t hResol uti on_Category_Tier_1:
(NSString*)resolution_Category _Tier_1

wi t hAction: (NSString*)action

wi t hCr eat e_Request : (NSStri ng*) creat e_Request

wi t hWor k_I nfo_Sunmary: (NSStri ng*)wor k_I nf o_Sunmary

wi t hWor k_I nf o_Not es: (NSStrlng)wor k_| nf o_Not es

wi t hWor k_I nfo_Type: (NSSt ri ng*) wor k_I nfo_Type

wi t hWor k_| nf o_Dat e: (NSDat e*) wor k_I nf o_Dat e

wi t hWor kI nf o_Sour ce: (NSStri ng*)wor k_I nf o_Sour ce

wi t hWor k_I nf o_Locked: (NSSt ri ng*)Work I nfo_Locked

wi t hWor k_I nfo_Vi ew Access: (NSStri ng*)wor k_I nf o_Vi ew Access
withM ddl e_Initial:(SUPNullableStringList*)nmddle_Initial
wi t hDi rect _Contact _First_Nane: (NSString*)direct_Contact_First_Nane
withDirect_Contact_Mddle Initial:

(NSSt ri ng* Ydi rect_Contact_Mddle_lnitial

wi thDirect Contact Last Name: (NSString*)direct Contact Last Name
wi t hTenpl atel D: (NSSt ri ng*)tenpl at el D;

Developer Reference for iOS 73

Reference

The following code example initializes a Remedy instance of the

Hel pDesk_Query_Servi ce MBO on the device, creates the instance in the client
database, and submits it to the Unwired Server. The example shows how to initialize the
Aut hori zat i onl nf o class instance and the assi gned_Gr oup string list, and pass
them as parameters into the create operation.

RenmedyCU_Aut hent i cati onl nf o* aut hi nf o;
int64_t key= O;
aut hinfo = [RemedyCU_Aut hent i cati onl nfo getl nstance];
aut hi nf 0. user Nane=@ Fr anci e";
aut hi nf 0. passwor d=@ passwor d";
aut hi nf 0. aut henti cati on=nil;
aut hi nfo.l ocal e=ni | ;
aut hi nf o. ti neZone=ni | ;

SUPNul | abl eStri ngLi st *assi gnedgrp = [SUPNul | abl eStri ngLi st
get | nst ance] ;
[assi gnedgrp add: @ Front of fi ce Support"];

RenedyCU _Hel pDesk_Query_Service *cr =
[[RemedyCU_Hel pDesk_Query_Service alloc] init];

cr.conpany = @Cal bro Services";

[cr hel pDesk_Submit_Service: aut hi nfo
wi t hAssi gned_Gr oup: assi gnedgr p
wi t hCl _Nane: ni |
wi t hLookup_Keywor d: ni |
wi t hResol uti on_Cat egory_Tier_1:nil
wi t hActi on: @ CREATE"
wi t hCr eat e_Request: @ YES"
wit hWork_I nfo_Sunmary: [NSString stringWthFormat: @create %@,
[NSDat e dat e]]
wi t hwork | nf o_Not es: ni |
wi t hWork_I nfo_Type: nil
wi t hWork_I nfo_Date: nil
wi t hWor k_I nf o_Sour ce: ni |
wi t hwork I nfo_Locked: ni |
wi t hWwork_I nfo_Vi ew_Access: ni |
withMddle_lnitial:nil
wi t hDi rect _Cont act _Fi rst _Name: ni |
withDirect Contact _Mddle Initial:nil
wi t hDi rect _Contact _Last _Name: ni |
withTenplatel D:nil];

[cr submitPending];

/'l wait for response from server

whi | e([RemedyCU_RenedyCUDB hasPendi ngOper ati ons])
[NSThread sl eepFor Ti nel nterval :1.0];

Exceptions

Reviewing exceptions allows you to identify where an error has occurred during application
execution.

74

Sybase Unwired Platform

Reference

Handling Exceptions
The iOS Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace appearing in the server log, and a log record
(LogRecor dl npl) being imported to the client with information on the problem. The client
receives both the log record and ar epl ayFai | ed message.

HTTP Error Codes

Unwired Server examines the EIS code received in a server response message and maps ittoa
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 4. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS down or the connection is terminated.

Table 5. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.

403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).

404 Resource (table/webservice/BA- | Restore the EIS configuration.
P1) not found on Backend EIS.

405 Invalid license for the client (ap- | N/A
plicable only for MBS).

Developer Reference for iOS 75

Reference

Error Code Probable Cause Manual Recovery Action

412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.

500 SUP internal error in modifying | N/A
the CDB cache.

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThr owCr edent i al Request On401Er r or context
variable is set to true (which is the default), error code 401 throws a

Credenti al Request Except i on, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the

SupThr owCr edent i al Request On401Er r or context variable in Sybase Control
Center. If SupThr owCr edent i al Request On401Er r or is set to false, error code 401
is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 6. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net- | 503
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

JCO_ERROR_RESOURCE Indicates that JCO has run | 503
out of resources such as
connections in a connec-
tion pool

JCO_ERROR_STATE_BUSY The remote SAP system is | 503
busy. Try again later

Client-Side Exceptions
The HeaderDoc for the iOS Client Object API lists the possible exceptions for the client.

76

Sybase Unwired Platform

Reference

Attribute Datatype Conversion

When a non-nullable attribute's datatype is converted to a non-primitive datatype (such as
class NSNumber, NSDate, and so on), you must verify that the the corresponding property for
the MBO instance is assigned a non-nil value, otherwise the application may receive a runtime
exception when creating a new MBO instance.

A typical scenario is when an attribute exists in ASE's identity column with a numeric
datatype. For example, for a non-nullable attribute with a decimal datatype, the corresponding
datatype in the generated Objective-C MBO code is NSNunber . When creating a new MBO
instance, ensure that you assign this property a non-nil value.

Operation Name Conflicts
Operation names that conflict with special field types are not handled.

For example, if an MBO has attributes named id and description, those attributes are stored
with the name i d_ descri pti on_. If you create an operation called "description™ and
generated Object-C code, you see an error during compilation because of conflicting methods
in the classes.

Exception Classes
The iOS Client Object API supports exception classes for queries and for the messaging
client.

Query Exception Classes

Exceptions thrown by SUPSt at enent Bui | der when building an SUPQuery, or by
SUPQuer yResul t Set during processing of the results. These exceptions occur if the
query called for an entity or attribute that does not exist, or tried to access results with the
wrong datatype.

* SUPAbstractClassException.h —thrown when the query specifies an abstract class.

e SUPInvalidDataTypeException.h —thrown when the query tries to access results with
an invalid datatype.

¢ SUPNoSuchAttributeException.h —thrown when the query calls for an atttribute that
does not exist.

* SUPNoSuchClassException.h —thrown when the query calls for a class that does not
exist.

* SUPNoSuchParameter Exception.h —thrown when the query calls for a parameter that
does not exist.

* SUPNoSuchOper ationException.h —thrown when the query calls for an operation that
does not exist.

* SUPWrongDataTypeException.h —thrown when the query tries to access results with
an incorrect datatype definition.

Developer Reference for iOS 77

Reference

Messaging Client APl Exception Classes
Exceptions in the messaging client (cl i ent r t) library.

* SUPODbjectNotFoundException.h —thrown by the | oad: method for entities if the
passed-in primary key is not found in the entity table.

* SUPPersistenceException.h —may be thrown by methods that access the database. This
may occur when application codes attempts to:

e Insert a new row in an MBO table using a duplicate key value.

» Execute a dynamic query that selects for attribute (column) names that do not exist in
an MBO.

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

SUPDatabaseMetaData
You can use the SUPDat abaseMet aDat a class to retrieve information about all the classes
and entities for which metadata has been generated.

Any entity for which "allow dynamic queries” is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

SUPClassMetaData
The SUPCI assMet aDat a class holds metadata for the MBO, including attributes and

operations.

SUPAttributeMetaData
The SUPAL t r i but eMet aDat a class holds metadata for attributes such as attribute name,
column name, type, and maxlength.

Code Example for Accessing Metadata
The following code example for a package named "SampleApp" shows how to access
metadata for database, classes, entities, attributes, operations, and parameters.

NSLog(@ Li st cl asses that have netadata....");

SUPDat abaseMet aDat a *drrd = [Sanpl eApp_ Sarrpl eAppDB net aDat a] ;
SUPQhj ect Li st *cl asses = dnd. cl assLi st;

for(SUPCl assMet aData *cnd in cl asses)

NSLog(@ C ass nane = %@", cnd. nane) ;

NSLog(@ Li st entities that have netadata, and their attributes
and operations....");

78

Sybase Unwired Platform

Reference

SUPQhj ectList *entities = dnd. entitylist;
for(SUPEntityMetaData *end in entities)
{
NSLog(@ Entity name = %@ database table nane =
%@ ", end. nane, end. t abl e) ;
SUPQhj ectLi st *attributes = end. attri butes;
for(SUPAttri buteMetabData *and in attributes)
NSLog(@ Attribute: name = %@@ , and. nane,
(and. colum ? [NSString stringWthFormat: @,
dat abase colum = %@, and. colum] : @"));
SUPQhj ect Li st *operations = end. oper ati ons;
f or (SUPOper at i onMet aData *ond i n operations)

NSLog(@ Operation: name = %@, ond. nane) ;
SUPQhj ect Li st *paraneters = ond. par anet ers;
f or (SUPPar anet er Met aData *pnd i n paranet ers)
NSLog(@ Paraneter: name = %@ type = %@,
prmd. nane, [pnd. dataType nane]);
}
}

Message-Based Synchronization APIs
The message-based synchronization APIs enable a user application to subscribe to a server
package, to remove an existing subscription from the Unwired Server, to suspend or resume
requests to the Unwired Server, and to recover data related to the package from the server.

Subscribe Data
The subscribe method allows the application to subscribe to a server package.

+(void) subscribe

The preconditions for the subscribe are that the mobile application is compiled with the client
framework and deployed to a mobile device together with the Sybase Unwired Platform client
process. The device application has already configured Unwired Server connection
information.

A subscription message is sent to the Unwired Server and the application receives a
subscription request result notification from the Unwired Server .

[Sanpl eApp_Sanpl eAppDB subscri be] ;

Unsubscribe Data
Theunsubscr i be method allows the application to remove the existing subscription from
server. The device application must already have a subscription with the server.

+(void) unsubscribe

On success, an unsubscription message is sent to the Unwired Server and the application
receives a subscription request result notification from the Unwired Server as a notification.
The data on the local database is cleaned.

Developer Reference for iOS 79

Reference

On failure, the client application receives subscription request result notification from server
as notification with a failure message.

[Sanpl eApp_Sanpl eAppDB unsubscri be] ;

Suspend Subscription
The suspendSubscri pt i on operation allows a device application to send a suspend
request to the Unwired Server. This notifies the server to stop delivering data changes.

+(void) suspendSubscription
[Sanpl eApp_Sanpl eAppDB suspendSubscri ption];

Synchronize Data
The begi nSynchr oni ze methods send a message to the Unwired Server to synchronize
data between the client and the server.

+(void) beginSynchronize
This method is used to synchronize all data.

+(void) beginSynchronize:(SUPObjectList*)synchronizationGroups withContext:
(NSString*)context

This method synchronizes only those MBOs that are part of certain synchronization groups.
The parameter synchr oni zat i onGr oups is alist of SUPSynchr oni zat i onG- oup
objects representing the groups to be synchronized. The parameter cont ext is a reference
string that is referred to when the server responds to the synchronization request. See the
discussion of the onSynchr oni ze callback handler method in Developer Reference for
10S > Reference > iPhone Client Object API > Utility APIs > Callback Handlers.

[Sanpl eApp_Sanpl eAppDB begi nSynchr oni ze] ;

Resume Subscription

TheresunmeSubscri pti on operation allows a device application to send a resume
request to the Unwired Server. This request notifies the Unwired Server to resume sending
data changes since the last suspension.

+(void) resumeSubscription
[Sanpl eApp_Sanpl eAppDB resunmeSubscri ption] ;

Recover Subscription
Ther ecover operation allows the device application to send a recover request. This notifies
the Unwired Server to send down all the data related to the package.

+(void) recover
[Sanpl eApp_Sanpl eAppDB recover];

80

Sybase Unwired Platform

Reference

Start or Stop Background Synchronization

Message-based synchronization is performed at the package level. The generated package
database class provides methods for starting and stopping the background processing of the
incoming messages.

To start background synchronization:
[Sanpl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zati on] ;

To stop background synchronization:
[Sanpl eApp_Sanpl eAppDB st opBackgr oundSynchr oni zati on] ;

When an incoming message is processed, callbacks are triggered. See Reference:
Administration APIs > iPhone Client Object APIs > Message-Based Synchronization APIs >
Callback Handlers for information on how to register a callback handler.

Replay Results
The client application can call the hasPendi ngOper at i ons method after a

submi t pendi ng call to the server to wait for replay results. This method returns true if
there are replay pending requests, otherwise, it returns false.

+(void)hasPendingOperations

whi | e ([Sanpl eApp_Sanpl eAppDB hasPendi ngOper at i ons])
[NSThread sl eepFor Ti nel nt erval : 0. 2] ;

The preceding code example waits indefinitely if the client application does not receive a
replay result from the Unwired Server, and if a record has the r epl ayPendi ng flag set. To
exit this loop after a particular time interval has passed, you can add a timer.
BOOL shoul dWait = YES;

| ong sl eepTinme = 1;

| ong timeout = 10*60;

whil e (shoul dWait && (sl eepTine < tineout))

{
shoul dWait = [Sanpl eApp_Sanpl eAppDB hasPendi ngQOper at i ons] ;

if (shoul dvait)

[NSThread sl eepFor Ti nel nterval : 0. 2] ;
}

if (sleepTime <= tinmeout)

—~

ti meout = tineout - sleepTine;

=

}
if (shouldvait) {

MBOLogError (@ Cannot wait , Tineout");
}

Developer Reference for iOS 81

Reference

Messaging Client API

The Sybase Unwired Platform messaging client (SUPMessaged i ent) APl is part of the
I'ibclientrt library. The messaging client is responsible for setting up a connection
between the user application and the server, as well as sending client messages up to the
Unwired Server and receiving the import messages sent down to the client.

The Messaging Client API consists of the following methods:
+(void)setAssertionState:(BOOL)hideAssertions;

Determines whether assertions should appear or not.
+(NSinteger)start

Starts the messaging client and connects to the Unwired Server. You must use the settings
application to enter the Sybase Unwired Platform user preferences information, including
server name, port, user name, and activation code.

The parameters server name, user name, serverport, companylD and activation correspond to
the Unwired Server name, the user name registered with the Unwired Server, the port the
Unwired Server is listening to, the company ID, and activation code, respectively. If a Relay
Server is used, ‘companyID’ corresponds to the farm ID of the Relay Server.

To ensure that messages are routed to the correct client application, the messaging client code
sends the application executable name (specifically, the first 16 characters of the

CFBundl eExecut abl e value from the application’s | nf o. pl i st) to the Unwired
Server. The Unwired Server requires that each application on a device (or simulator) connect
to the Unwired Server with a different user name.

This call returns one of the following values as defined in SUPMessageClient.h.

» kSUPMessageClientSuccess

* kSUPMessageClientFailure

* kSUPMessageClientKeyNotAvailable
» kSUPMessageClientNoSettings

Note: Ensure that the package database exists (either from a previous run, or a call to
[Sampl eApp_Sanpl eAppDB cr eat eDat abase]) and that

[Sampl eApp_Sanpl eAppDB st art Backgr oundSynchr oni zat i on] is called
before calling [SUPMessageCl i ent start].

The following code example shows the st art method:
NSI nt eger result = [SUPMessageClient start];

if (result == kSUPMessageCd i ent Success)
[/ Continue with your application

}
/1 At this point, if the result is a NO then the client
/1 application can decide to quit or throw a nessage al erting

82

Sybase Unwired Platform

Reference
// the user that the connection to the server was
/'l unsuccessful .
+(NSinteger)stop

Stops the messaging client.
[SUPMessageC i ent stop];

+(NSinteger)restart

Restarts the messaging client. Returns YES when successful, otherwise, if the required
preferences are not set, or an error occurred when restarting the client, returns NO.

NSI nt eger result = [SUPMessageClient restart];
+(BOOL)provisioned

Checks if all the required provisioning information is set. Returns NO when required
preferences are not set, and YES when all the required information is set.

BOOL result = [SUPMessageC i ent provisioned];
+(int)status
Returns the last status received from messaging client, as one of the following values:

¢ 0-—not started
e 1 —started, not connected
e 2 —started, connected

int result = [SUPMessaged i ent status];

Developer Reference for iOS 83

Reference

84 Sybase Unwired Platform

Index
A

APNS 33
Apple gateway 70
Apple Push Notification API 70
Apple Push Notification Service 33
application provisioning

with iPhone mechanisms 33
arrays 52
AttributeMetaData 78
AttributeTest 43

B
beginSynchronize 80

C

callback handlers 66
ClassMetaData 78
common APIs 57
complex attribute type 71
CompositeTest 44
ConnectionProfile 39
create operation 47

D

DatabaseMetaData 78

DEBUG__ define 65

delete operation 48

documentation roadmap
document descriptions 2

E

EIS error codes 75, 76
entity states 53, 54
error codes
EIS 75, 76
HTTP 75, 76
mapping of SAP error codes 76
non-recoverable 75
recoverable 75

G
getLogRecords 62, 64

Index

H

hasPendingOperations 81
HeaderDoc 14
HTTP error codes 75, 76

ID generation 66
infrastructure provisioning
with iPhone mechanisms 33
iPhone
iTunes provisioning 35
provisioning 33

K

Keychain 61

L

local business object 51
LOGRECORD_ON_IMPORT 65
LogRecordImpl 62, 64, 66

M

MBODebugLogger 65
MBODebugSettings.h 65
MBOLogger 65
messaging client API 82

N

newLogRecord 62, 64

o

OfflineLogin 39

Developer Reference for iOS

85

Index

P

pending operation 50
personalization keys 52

types 51
PRINT_PERSISTENCE_MESSAGES 65
PRINT_SERVER_MESSAGE_CONTENT 65
PRINT_SERVER_MESSAGES 65
provisioning

employee iPhone applications 35
provisioning devices

with iPhone mechanisms 33
push notifications 70

Q

QueryResultSet 46

R

Read API 41

relationship data, retrieving 47
replay pending requests 81
replay results 81
resumeSubscription 80

S

save operation 49

server log messages 65
sleepForTimelnterval 81
status methods 53, 54

submitLogRecords 62, 64

subscribe data 79
SUPADbstractClassException.h 77
SUPInvalidDataTypeException.h 77
SUPKeyVault 61

SUPLogRecords 65
SUPNoSuchAttributeException.h 77
SUPNoSuchClassException.h 77
SUPNoSuchOperationException.h 77
SUPNoSuchParameterException.h 77
SUPObjectNotFoundException.h 78
SUPPersistenceException.h 78
SUPWrongDataTypeException.h 77
suspendSubscription 80
synchronization 40
SynchronizationProfile 39
synchronize data 80

synchronizing and retrieving MBO data 15

T

timer 81

U

unsubscribe data 79
update operation 48

X
Xcode 11

86

Sybase Unwired Platform

	Developer Reference for iOS
	Contents
	Introduction to Developer Reference for iOS
	Documentation Road Map for Unwired Platform
	Device Application Development

	Development Task Flows
	Task Flow for Xcode IDE Development
	Mobile Business Object Code
	Generating Mobile Application Project Code

	Importing Libraries and Code into the Xcode IDE
	Developing Applications in the Xcode IDE
	Generating HeaderDoc from Generated Code
	Configuring an Application to Synchronize and Retrieve MBO Data
	Referencing the iOS Client Object API
	Device Application Example Code

	Deploying Applications to Devices
	Device Registration
	Registering the Device in Sybase Control Center
	Configuring Physical Device Settings

	Deploying Applications to the Enterprise
	Apple Push Notification Service Configuration
	Preparing an Application for Apple Push Notification Service
	Provisioning an Application for Apple Push Notification Service

	Reference
	iOS Client Object API
	Connection APIs
	ConnectionProfile
	SynchronizationProfile
	Authentication

	Synchronization APIs
	Setting Synchronization Parameters

	Query APIs
	Retrieving Data from an MBO
	Object Queries
	Arbitrary Find
	SUPAttributeTest
	SUPCompositeTest
	Dynamic Query
	Paging Data

	SUPQueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert (MLI)
	Pending Operation

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values
	Passing Arrays of Values, Objects

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Refresh
	Clear Relationship Objects

	Security APIs
	Encryption of Client Data
	Encryption of the Database
	Configuring Application Security Using Keychain

	Utility APIs
	Using the Log Record APIs
	Viewing Error Codes in Log Records

	Log Levels and Tracing APIs
	Server Log Messages
	Tracing APIs
	Printing Log Messages

	generateGuid
	Callback Handlers
	Date/Time
	Apple Push Notification API

	Complex Attribute Types
	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions
	Attribute Datatype Conversion
	Operation Name Conflicts

	Exception Classes
	Query Exception Classes
	Messaging Client API Exception Classes

	MetaData and Object Manager API
	SUPDatabaseMetaData
	SUPClassMetaData
	SUPAttributeMetaData
	Code Example for Accessing Metadata

	Message-Based Synchronization APIs
	Subscribe Data
	Unsubscribe Data
	Suspend Subscription
	Synchronize Data
	Resume Subscription
	Recover Subscription
	Start or Stop Background Synchronization
	Replay Results

	Messaging Client API

	Index

