
Developer Reference for iPhone

Sybase Unwired Platform 1.5.3

DOCUMENT ID: DC01217-01-0153-01
LAST REVISED: September 2010
Copyright © 2010 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Reference for iPhone1
Documentation Road Map for Unwired Platform2
Device Application Development5

Development Task Flows ..7
Task Flow for Xcode IDE Development7
Mobile Business Object Code8

Generating Mobile Application Project Code for
iPhone ..8

Importing Libraries and Code into the Xcode IDE11
Developing Applications in the Xcode IDE14

Generating HeaderDoc from Generated Code . . .14
Configuring an Application to Synchronize and

Retrieve MBO Data15
Referencing the iPhone Client Object API17

Deploying Applications to iPhone Devices29
Device Registration29
Deploying iPhone Applications to the Enterprise

...31
Apple Push Notification Service Configuration

...32
Reference ..37

iPhone Client Object API37
Connection APIs37
Synchronization APIs38
Query APIs ...39
Operations APIs45
Local Business Object49
Personalization APIs49
Object State APIs50
Security APIs ..58
Utility APIs ...59

Developer Reference for iPhone iii

Complex Attribute Types68
Exceptions ...71
MetaData and Object Manager API73
Message-Based Synchronization APIs74
Messaging Client API77

Index ..79

Contents

 iv Sybase Unwired Platform

Introduction to Developer Reference for
iPhone

This developer reference provides information about using advanced Sybase® Unwired
Platform features to create applications for Apple iPhone devices. The audience is advanced
developers who are familiar working with APIs, but who may be new to Sybase Unwired
Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object API documentation.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object
• Tutorial: iPhone Device Application Development (Custom Development)
• Troubleshooting for Sybase Unwired Platform

HeaderDoc provides a complete reference to the APIs:

• The Framework Library HeaderDoc is installed to
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\apidoc\ObjectiveC.

• You can generate HeaderDoc from the generated Objective-C code. See Generating
HeaderDoc from Generated Code on page 14.

See Fundamentals for high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Introduction to Developer Reference for iPhone

Developer Reference for iPhone 1

Documentation Road Map for Unwired Platform
Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document Description

Sybase Unwired Platform Installation Guide Describes how to install or upgrade Sybase Un-
wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.

Fundamentals Describes basic mobility concepts and how Syb-
ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Introduction to Developer Reference for iPhone

 2 Sybase Unwired Platform

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat-
form

Describes how to use the Sybase Control Center
administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase > Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Introduction to Developer Reference for iPhone

Developer Reference for iPhone 3

Document Description

Getting started tutorials Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

• Learn mobile business object (MBO) basics,
and create a mobile device application:
• Tutorial: Mobile Business Object Devel-

opment
• Tutorial: BlackBerry Application Devel-

opment using Device Application De-
signer

• Tutorial: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer

• Create native mobile device applications:
• Tutorial: BlackBerry Application Devel-

opment using Custom Development
• Tutorial: iPhone Application Develop-

ment using Custom Development
• Tutorial: Windows Mobile Application

Development using Custom Develop-
ment

• Create a mobile workflow package:
• Tutorial: Mobile Workflow Package De-

velopment

Sybase Unwired WorkSpace – Mobile Business
Object Development

Online help for developing MBOs.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace – Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Introduction to Developer Reference for iPhone

 4 Sybase Unwired Platform

Document Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

• Developer Reference for BlackBerry
• Developer Reference for iPhone
• Developer Reference for Mobile Workflow

Packages
• Developer Reference for Windows and Win-

dows Mobile

Developer reference for Unwired Server side
customization – Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentals and Syb-
ase Unwired WorkSpace – Mobile Business Ob-
ject Development.

Developer reference for system administration
customization – Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentals and Sys-
tem Administration.

Device Application Development
A device application includes business logic, and device-resident presentation and logic.

Mobile business objects help form the business logic for mobile applications. A mobile
business object (MBO) is derived from a data source (such as a database server, Web service,
or SAP® server). When grouped in projects, MBOs allow mobile applications to be deployed
to an Unwired Server and referenced in mobile devices (clients).

Once you have developed MBOs and deployed them to Unwired Server, you add device-
resident presentation and logic to the device application. You build a native client in the Xcode

Introduction to Developer Reference for iPhone

Developer Reference for iPhone 5

IDE using Objective-C and Generated Object API code, and by programmatically binding to
the iPhone Client Object API.

Introduction to Developer Reference for iPhone

 6 Sybase Unwired Platform

Development Task Flows

This section describes the overall development task flow, and provides information and
procedures for setting up the development environment, and developing device applications.

Task Flow for Xcode IDE Development
Follow this task flow to develop a device application for iPhone.

Prerequisites
Before developing a device application, the developer must:

• In the Eclipse development environment, create a mobile application project and create
mobile business objects as required for your application. See Sybase Unwired WorkSpace
– Mobile Business Object Development.

• Verify the supported device platforms and code generation tools for your device
application. See Planning Your Sybase Unwired Platform Installation > Supported Device
Platforms and Databases in the Sybase Unwired Platform Installation Guide

Task

1. Create mobile business object code. See Mobile Business Object Code on page 8.

2. Import libraries and code into the Xcode IDE. See Importing Libraries and Code into the
Xcode IDE on page 11.

3. Develop a device application in the Xcode IDE.

a) Create HTML reference information for the methods in your generated code. This will
help you to programmatically bind to the iPhone Client Object API. See Generating
HeaderDoc from Generated Code on page 14

b) Configure your application to synchronize and retrieve data from a mobile business
object. See Configuring an Application to Synchronize and Retrieve MBO Data on
page 15.

c) Reference your application to the Client Object API code that you generated for your
mobile application project. SeeReferencing the iPhone Client Object API on page
17.

4. Deploy your device application to devices in your enterprise. See Deploying Applications
to Devices on page 29.

Development Task Flows

Developer Reference for iPhone 7

Mobile Business Object Code
Develop a device application directly from mobile business object (MBO) generated code.

Generating Mobile Application Project Code for iPhone
After developing the mobile business objects (MBOs), generate the files that implement the
business logic and are required for Xcode IDE development.

Use this procedure if you are developing iPhone device applications using the Xcode IDE.

1. From Unwired WorkSpace, right-click in the Mobile Application Diagram of the project
for which you are generating code and select Generate Code.

2. Follow the Code Generation wizard instructions to generate code appropriate for the
Xcode IDE environment, by selecting Objective C as the language, iPhone as the
platform, and Message-based.

Development Task Flows

 8 Sybase Unwired Platform

Other selections affect generated output as well.

3. Click Finish.

The class files include all methods required to create connections, synchronize deployed
MBOs with the device, query objects, and so on, as defined in your MBOs.

By default, the MBO source code and supporting documentation are generated in the
project's Generated Code folder. The generated files are located in the
<MBO_project_name> folder under the includes and src folders. The
includes folder contains the header (*.h) files and the src folder contains the
implementation (*.m) files.

Development Task Flows

Developer Reference for iPhone 9

Because there is no namespace concept in Objective-C, all generated code is prefixed with
packagename_. For example, "SampleApp_".

Development Task Flows

 10 Sybase Unwired Platform

The frequently used Objective-C files in this project, described in code samples include:

Table 2. Source Code File Descriptions

Objective-C File Description

MBO class (for example, SampleApp_Cus-
tomer.h, SampleApp_Customer.m)

Include all the attributes, operations, object
queries, and so on, defined in this MBO.

synchronization parameter class (for example,
SampleApp_CustomerSynchroniza-
tionParameter.h, SampleApp_Cus-
tomerSynchronizationParame-
ter.m)

Include any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, Sam-
pleApp_KeyGenerator.h, Sam-
pleApp_KeyGenerator.m)

Include generation of surrogate keys used to
identify and track MBO instances and data.

Personalization parameter classes (for example,
SampleApp_PersonalizationPara-
meters.h, SampleApp_Personali-
zationParameters.m)

Include any defined personalization keys.

Note: Do not modify generated MBO API generated code directly. For MBO generated
code, create a layer on top of the MBOs using patterns native to the mobile operating
system development to extend and add functionality.

Importing Libraries and Code into the Xcode IDE
Import the generated MBO code and associated libraries into the iPhone development
environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: http://
developer.apple.com/tools/Xcode/.

1. In the Xcode IDE, create a new Xcode project.

2. In the project settings, set the base SDK configuration for an iPhone simulator or device to
iPhone OS 4.0. If your code needs to run on a device with an earlier version of the OS (3.2
for iPad, or 3.1.3 for iPhone), this can be changed by setting the “iPhone OS Deployment
Target”.

Development Task Flows

Developer Reference for iPhone 11

3. Copy the generated code from your Microsoft Windows environment to a location on your
Mac (for example, your Home directory).

4. Copy over the include files from <unwired server install>\ClientAPI
\ObjectiveC\includes and the libraries from <unwired server install>
\ClientAPI\ObjectiveC\libs to a directory on your Mac (for example, your
Home directory). There are two library directories: the libs directory (for iPhone), and
the libs.iPad directory (for iPad). If building for iPad simulator or device, you must
use the libraries in libs.iPad.

a) After copying the directories into a local directory on your Mac, open Finder and
locate the <unwired server install>\ClientAPI\ObjectiveC
\includes folder.

b) Drag the <unwired server install>\ClientAPI\ObjectiveC
\includes\internal and <unwired server install>\ClientAPI
\ObjectiveC\includes\public subfolders into Groups & Files, under the
project name.

c) If prompted to copy existing items into the destination group’s folder, ensure Copy
items into destination group’s folder (if needed) is selected and then click Add to
copy the include\internal and include\public directories into your
project’s folder.

5. Add the generated *.h and *.m files to the project:

a) In the Xcode Groups & Files pane, right-click <Project Name>, and create a new
group in your project.

Development Task Flows

 12 Sybase Unwired Platform

b) Import the generated code into the new group by selecting Add, then Existing
Files.

c) Navigate to the directory that contains the generated code.
d) Select both the includes and src folders for the generated code. Click Add.

e) If prompted to copy existing items into the destination group’s folder, ensure Copy
items into destination group’s folder (if needed) is selected and then click Add to
copy the Generated Code folder into your project’s folder. This step ensures that
all .h and .m files are added to the project’s search path.

6. Add libclientrt.a, libSUPObj.a, and libMO.a to your project.

a) In the Xcode Groups & Files pane, select and right-click <Project Name> and select
Add, then Existing Files.

b) Navigate to the directory where you copied the libraries.
c) Select the libclientrt.a, libSUPObj.a, and libMO.a libraries in Finder.

Drag the libraries into Xcode under your project's name.
d) Select Copy items into destination group’s folder (if needed), then click Add.

Note: The library version should correspond to the configuration you are building. For
example, if you are building for a debug version of the simulator, navigate to libs/
Debug-iphonesimulator/ to add the libraries.

7. Add Settings.bundle to the Xcode project:

a) Select and right-click <Resources>, and select Add, then Existing Files.
b) Navigate to the includes directory, select Settings.bundle, and add it.

c) Select Copy items into destination group’s folder (if needed), then click Add.

Note: This allows the iPhone device client user to use the Settings application to input their
user preference information, such as server name, server port, user name, and activation
code.

8. Add the following frameworks from the SDK to the project by selecting Project > Edit
Active Target <ProjectName> > General.

• Security.framework
• AddressBook.framework
• QuartzCore.framework
• CoreFoundation.framework
• libicucore.A.dylib
• libz.1.2.3.dylib
• libstdc++.dylib

Development Task Flows

Developer Reference for iPhone 13

9. Edit the Xcode project Library Search Paths by selecting Project > Edit Active Target
<ProjectName> > Build > Search Paths > Library Search Paths. Specify the path to the
location where you copied the libraries. Remove any libstdc++ paths (such as usr/lib/
arm-apple-darwin10/4.2.1) from the library search path.

a) Edit the Header Search Paths to include the include\internal and include
\public directories.

10. For debug builds, check Build Active Architecture Only.

11. Write your application code to reference the generated MBO code. See Referencing the
iPhone Client Object API on page 17.

Developing Applications in the Xcode IDE
After you import Unwired WorkSpace projects (mobile application) and associated libraries
into the iPhone development environment, use the iPhone Client Object API to create or
customize your device applications.

This section describes how to customize iPhone device applications in the Xcode IDE using
Sybase provided APIs.

Generating HeaderDoc from Generated Code
Once you have generated Objective-C code for your mobile business objects, you can generate
HeaderDoc (HTML reference information) on the Mac from the generated code. HeaderDoc

Development Task Flows

 14 Sybase Unwired Platform

provides reference information for the MBOs you have designed. The HeaderDoc will help
you to programmatically bind your device application to the generated code.

1. Navigate to the directory containing the generated code that was copied over from the
Eclipse environment.

2. Run:

>headerdoc2html –o GeneratedDocDir GeneratedCodeDir
>gatherheaderdoc GeneratedDocDir

You can open the file OutputDir/masterTOC.html in a Web browser to see the
interlinked sets of documentation.

Note: You can review complete details on HeaderDoc in the HeaderDoc User Guide, available
from the Mac OS X Reference Library at http://developer.apple.com/mac/library/navigation/
index.html.

Configuring an Application to Synchronize and Retrieve MBO Data
To configure an application to synchronize and retrieve MBO data you must create a
synchronization profile, start the client engine and configure the physical device settings, and
subscribe to a package.

1. Create a synchronization profile by executing:
SUPConnectionProfile* cp = [SampleApp_SampleAppDB
getSynchronizationProfile];
[cp setDomainName:@”default”];

2. Register a callback (if required).

If the application requires a callback (for example, to allow the client framework to provide
notification of subscription request results, or results of failure), register the callback
function after setting up the connection profile, by executing:
MyCallbackHandler* theCallbackHandler = [MyCallbackHandler
getInstance];
 [SampleApp_SampleAppDB
registerCallbackHandler:theCallbackhandler];

Note: See Reference: Administration APIs > Reference > iPhone Client Object API >
Utility APIs > Callback Handlers for more information on the Callback Handler interface.
See Reference: Administration APIs > Development Task Flows > Developing
Applications in the Xcode IDE > Referencing the iPhone Client Object APIfor more
information on a sample iPhone application which includes a callback function.

3. Create the database and call startBackgroundSynchronization.

Create a new database or make sure that the package database exists (either from a
previous run, or a call to [SampleApp_SampleAppDB createDatabase]) and call
startBackgroundSynchronization. You must perform these calls before you
call [SUPMessageClient start] to connect to the Unwired Server.

Development Task Flows

Developer Reference for iPhone 15

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html

[SampleApp_SampleAppDB createDatabase];
[SampleApp_SampleAppDB startBackgroundSynchronization];

When a mobile application is compiled with the client framework and deployed to a
mobile device, the device must be activated before it can communicate with the Unwired
Server.

To register with the Unwired Server, an iPhone application requires a user name and a
unique device ID. In a typical scenario, the user receives an e-mail message from the
Unwired Server with the application activation information. The user then enters the
information using the iPhone Settings application, then runs the application to establish a
connection to the Unwired Server. On success, the application connects with the Unwired
Server. If the user name and activation code do not match, the application receives an error
from the Unwired Server.

4. Register the iPhone device with the Unwired Server through Sybase Control Center. See
Developer Reference for iPhone > Development Task Flows > Deploying Applications to
iPhone > Registering the iPhone Device in Sybase Control Center.

5. Configure iPhone Settings information on the physical device to complete device
registration. See Developer Reference for iPhone > Development Task Flows > Deploying
Applications to iPhone > Configuring Physical Device Settings.

You must authenticate the application with the Unwired Server to allow you to subscribe to
a server package. Unwired Server can provide success or failure results if you have a
registered callback.

6. Start the Sybase Unwired Platform client engine by connecting to the Unwired Server:
NSInteger stat = [SUPMessageClient start];

7. Subscribe to a server package, by executing:
[SampleApp_SampleAppDB
asyncOnlineLogin:@"supUser"password:@"s3pUser"];
while ([theCallbackHandler loginSuccessCount] == 0)
 [NSThread sleepForTimeInterval:0.2];
[SampleApp_SampleAppDB subscribe];

After a successful connection is established with the server to which the application has
been deployed, when the application sends a request, the Client Object API puts the
current user name and credentials inside the message for the Unwired Server to
authenticate and authorize. The device application must set the user name and credential
before sending any requests to the Unwired Server. This is done by calling the
asyncOnlineLogin API.

The device application sends a request to the server which processes the request. Any
security failure results in a reject of the request. The user application then subscribes to a
server package. If successful, the Unwired Server sends out a push message to the client
application containing the application data. The Unwired Server also sends an acceptance
message. The client receives the push and acceptance messages.

Development Task Flows

 16 Sybase Unwired Platform

The client framework notifies the application of the result of success through an
onSubscribeSuccess callback, if a callback function is registered. If an error occurs
in the subscription process, the Unwired Server sends out a reject message for the
subscription. The client receives a subscription request result notification message with
failure from the Unwired Server, and may resubmit the subscription request. The client
framework notifies the application of the the result of failure through the
OnSubscribeFailure callback, if a callback function is registered.

8. Unsubscribe from the server.

The client application must send an unsubscribe request to remove the subscription from
the Unwired Server:
[SampleApp_SampleAppDB unsubscribe];

Referencing the iPhone Client Object API
Example code that references the Client Object API generated for a mobile application project
in the Eclipse environment.

The application uses two mobile business objects based on the Customer and SalesOrder
tables in the sampledb Sybase SQL Anywhere® (ASA) database. A one-to-many
relationship exists between the two mobile business objects.

The following figure illustrates the MBO schema that represents the relationship between the
mobile business objects.

Figure 1: MBO Schema for Mobile Business Object Relationship

Development Task Flows

Developer Reference for iPhone 17

iPhone Device Application Example Code
The example code consists of five files.

main.m

• main.m – sets up settings for the Unwired Server and calls the start method.
• CallbackHandler.h – header file for the callback handler code.
• CallbackHandler.m – Objective-C source file for the callback handler.
• SampleApp.h – header file with method definitions that call the Client Object API.
• SampleApp.m – Objective-C source file.

#import <UIKit/UIKit.h>
#import "SampleApp.h"

int main(int argc, char *argv[]) {

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 SampleApp *app = [SampleApp getInstance];
 [app run];

 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

CallbackHandler.h
#import <Foundation/Foundation.h>
#import "SUPDefaultCallbackHandler.h"

@interface CallbackHandler : SUPDefaultCallbackHandler
{
 SUPInt field_importCount;
 SUPInt field_replaySuccessCount;
 SUPInt field_replayFailureCount;
 SUPInt field_loginSuccessCount;
 SUPInt field_importSuccessCount;
}

+ (CallbackHandler*)getInstance;
- (CallbackHandler*)init;
- (SUPInt)importCount;
- (void)setImportCount:(SUPInt)_importCount;
@property(assign) SUPInt importCount;
- (SUPInt)replaySuccessCount;
- (void)setReplaySuccessCount:(SUPInt)_replaySuccessCount;
@property(assign) SUPInt replaySuccessCount;
- (SUPInt)replayFailureCount;
- (void)setReplayFailureCount:(SUPInt)_replayFailureCount;
@property(assign) SUPInt replayFailureCount;

Development Task Flows

 18 Sybase Unwired Platform

- (SUPInt)loginSuccessCount;
- (void)setLoginSuccessCount:(SUPInt)_loginSuccessCount;
@property(assign) SUPInt loginSuccessCount;
- (SUPInt)importSuccessCount;
- (void)setImportSuccessCount:(SUPInt)_importSuccessCount;
@property(assign) SUPInt importSuccessCount;

- (void)onImport:(id)theObject;
- (void)onReplayFailure:(id)theObject;
- (void)onReplaySuccess:(id)theObject;
- (void)onLoginFailure;
- (void)onLoginSuccess;
- (void)onSubscribeSuccess;
- (void)onSubscribeFailure;
- (void)onImportSuccess;
- (CallbackHandler*)finishInit;
- (void)initFields;
+ (void)staticInit;
- (void)dealloc;

@end

CallbackHandler.m
#import "CallbackHandler.h"

@implementation CallbackHandler
+ (CallbackHandler*)getInstance
{
 CallbackHandler* _me_1 = [[CallbackHandler alloc] init];
 [_me_1 autorelease];
 return _me_1;
}

- (CallbackHandler*)init
{
 [CallbackHandler staticInit];
 [self initFields];
 return self;
}

- (SUPInt)importCount
{
 return field_importCount;
}

- (void)setImportCount:(SUPInt)_importCount
{
 field_importCount = _importCount;
}

- (SUPInt)replaySuccessCount
{
 return field_replaySuccessCount;
}

Development Task Flows

Developer Reference for iPhone 19

- (void)setReplaySuccessCount:(SUPInt)_replaySuccessCount
{
 field_replaySuccessCount = _replaySuccessCount;
}

- (SUPInt)replayFailureCount
{
 return field_replayFailureCount;
}

- (void)setReplayFailureCount:(SUPInt)_replayFailureCount
{
 field_replayFailureCount = _replayFailureCount;
}

- (SUPInt)loginSuccessCount
{
 return field_loginSuccessCount;
}

- (void)setLoginSuccessCount:(SUPInt)_loginSuccessCount
{
 field_loginSuccessCount = _loginSuccessCount;
}

- (SUPInt)importSuccessCount
{
 return field_importSuccessCount;
}

- (void)setImportSuccessCount:(SUPInt)_importSuccessCount
{
 Field_importSuccessCount = _importSuccessCount;
}

- (void)onImport:(id)theObject
{
 self.importCount = self.importCount + 1;
}

- (void)onReplayFailure:(id)theObject
{
 self.replayFailureCount = self.replayFailureCount + 1;
 MBOLog(@"=============================");
 MBOLogError(@"Replay Failed");
 MBOLog(@"=============================");
}

- (void)onReplaySuccess:(id)theObject
{
 self.replaySuccessCount = self.replaySuccessCount + 1;
 MBOLog(@"=============================");
 MBOLog(@"Replay Successful");
 MBOLog(@"=============================");

Development Task Flows

 20 Sybase Unwired Platform

}

- (void)onLoginFailure
{
 MBOLog(@"=============================");
 MBOLogError(@"Login Failed");
 MBOLog(@"=============================");
}

- (void)onLoginSuccess
{
 MBOLog(@"=============================");
 MBOLog(@"Login Successful");
 MBOLog(@"=============================");
 self.loginSuccessCount++;
}

- (void)onSubscribeSuccess
{
 MBOLog(@"=============================");
 MBOLog(@"Subscribe Successful");
 MBOLog(@"=============================");

}
-(void)onSubscribeFailure
{
 MBOLog(@"=============================");
 MBOLogError(@"Subscribe Failed");
 MBOLog(@"=============================");
}

- (void)onImportSuccess
{
 MBOLog(@"=============================");
 MBOLog(@"Import Ends Successfully");
 MBOLog(@"=============================");
 self.importSuccessCount++;
}

- (CallbackHandler*)finishInit
{
 return self;
}

- (void)initFields
{
}

+ (void)staticInit
{
}

- (void)dealloc
{
 [super dealloc];

Development Task Flows

Developer Reference for iPhone 21

}

@end

SampleApp.h
@interface SampleApp: NSObject
{
}

+ (SampleApp*)getInstance;
- (SampleApp*)init;
- (void)run;
- (SampleApp*)finishInit;
- (void)initFields;
+ (void)staticInit;
- (void)dealloc;
-(void)runAPITests;

/*Test functions that call Client Object APIs */

-(void)Testfind;
-(void)TestSynchronizationParameters;
-(void)TestPersonalizationParameters;
-(void)TestCreate;
-(void)TestUpdate;
-(void)TestDelete;
-(void)printLogs;
-(void)PrintCustomerSalesOrderData;

@end

SampleApp.m
#import "SampleApp.h"
#import "SampleApp_Customer.h"
#import "CallbackHandler.h"
#import "SampleApp_SampleAppDB.h"
#import "SampleApp_LogRecordImpl.h"
#import "SampleApp_Sales_order.h"
#import "SampleApp_LocalKeyGenerator.h";
#import "SampleApp_KeyGenerator.h"
#import "SUPMessageClient.h"

@implementation SampleApp

+ (SampleApp*)getInstance
{
 SampleApp* _me_1 = [[SampleApp alloc] init];
 [_me_1 autorelease];
 return _me_1;
}

- (SampleApp*)init
{

Development Task Flows

 22 Sybase Unwired Platform

 [SampleApp staticInit];
 [self initFields];
 return self;
}

- (void)run
{
 NSInteger connectionResult ;

 // Set log level
 [MBOLogger setLogLevel:LOG_INFO];

 //Delete the old database and create a new one.
 if([SampleApp_SampleAppDB databaseExists])
 [SampleApp_SampleAppDB deleteDatabase];
 [SampleApp_SampleAppDB createDatabase];

// Set up synchronization profile .
 SUPConnectionProfile* cp = [SampleApp_SampleAppDB
getSynchronizationProfile];
 [cp setDomainName:@"default"];

 //Register a callback handler.
 CallbackHandler* databaseCH = [CallbackHandler getInstance];
 [SampleApp_SampleAppDB registerCallbackHandler:databaseCH];

 //Start backgroundsynchronization.
 [SampleApp_SampleAppDB startBackgroundSynchronization];
 //Connect to the server
 connectionResult = [SUPMessageClient start];

 if(connectionResult == kSUPMessageClientSuccess)
 {
 [SampleApp_SampleAppDB asyncOnlineLogin:@"supuser"
password:@"s3pUser"];
 while ([databaseCH loginSuccessCount]==0)
 [NSThread sleepForTimeInterval:0.2];

 //Subscribe to the package.
 [SampleApp_SampleAppDB subscribe];
 // Wait for imports to come back from server
 while([databaseCH importSuccessCount] < 1)
 [NSThread sleepForTimeInterval:0.2];

 //Call the functions that execute the client APIs for
synchronization
 //parameters, personalization keys read, create, update and
delete
 [self runAPITests];
 // Unsubscribe
 [SampleApp_SampleAppDB unsubscribe];
 //Disconnect from server.
 [SUPMessageClient stop];

 }

Development Task Flows

Developer Reference for iPhone 23

}

- (SampleApp*)finishInit
{
 return self;
}

- (void)initFields
{
}

+ (void)staticInit
{
}

- (void)dealloc
{
 [super dealloc];
}

-(void)runAPITests
{
 MBOLog(@"=============================");
 MBOLog(@"TestPersonalizationParameters");
 MBOLog(@"=============================");
 [self TestPersonalizationParameters];

 MBOLog(@"=============================");
 MBOLog(@"TestSynchronizationParameters");
 MBOLog(@"=============================");
 [self TestSynchronizationParameters];

 MBOLog(@"=============================");
 MBOLog(@"TestfindAll");
 MBOLog(@"=============================");
 [self Testfind];

 MBOLog(@"=============================");
 MBOLog(@"TestCreate");
 MBOLog(@"=============================");
 [self TestCreate];

 MBOLog(@"=============================");
 MBOLog(@"TestUpdate");
 MBOLog(@"=============================");
 [self TestUpdate];

 MBOLog(@"=============================");
 MBOLog(@"TestDelete");
 MBOLog(@"=============================");
 [self TestDelete];

 MBOLog(@"=============================");
 MBOLog(@"Print Logs");
 MBOLog(@"=============================");

Development Task Flows

 24 Sybase Unwired Platform

 [self printLogs];

}

-(void)PrintCustomerSalesOrderData
{
 SampleApp_Customer *onecustomer = nil;
 SUPObjectList *cl = nil;
 MBOLog(@"Customer data is:");
 cl = [SampleApp_Customer findAll];
 [cl autorelease];
 if(cl && [cl length] > 0)
 {
 int i;
 for(i=0; i<[cl length]; i++)
 {
 onecustomer = [cl item:i];
 if (onecustomer) {
 MBOLog(@"%@ %@, %@, %@, %@",onecustomer.fname,
 onecustomer.lname,onecustomer.address,onecustomer.city,
 onecustomer.state);
 SampleApp_Sales_orderList* sl =
onecustomer.customerSalesOrders;
 if(onecustomer.customerSalesOrders)
 {
 if([onecustomer.customerSalesOrders size] > 0)
 MBOLog(@" This customer's sales orders are");
 else
 MBOLog(@" This customer has no sales orders");
 for(SampleApp_Sales_order *so in sl)
 MBOLog(@"%@ %@,%d",so.order_date,so.region,so.sales_rep);
 }
 }
 }
 [onecustomer release];
 }
}

/***Retrieve data based on the synchronization parameter value.***/

- (void)TestSynchronizationParameters
{
 SampleApp_CustomerSynchronizationParameters* sp
 = [SampleApp_Customer getSynchronizationParameters];
 [sp autorelease];
 sp.size = 3;
 sp.user = @"userone";
 sp.param_city = @"Raleigh";
 [sp save];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }

 [self PrintCustomerSalesOrderData];

Development Task Flows

Developer Reference for iPhone 25

}

/******Retrieve data based on the personalization parameter
value*****/

- (void)TestPersonalizationParameters
{

 SampleApp_PersonalizationParameters *pp = nil;
 pp = [SampleApp_SampleAppDB getPersonalizationParameters];
 [pp autorelease];
 pp.PKCity = @"New York";
 [pp save];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
 [self PrintCustomerSalesOrderData];
}

/*******Print logs record data from LogrecordImpl*****/
-(void)printLogs
{
 MBOLog(@"******* printLogs *******");
 SUPQuery *query = [SUPQuery getInstance];
 SUPObjectList *loglist = [SampleApp_SampleAppDB
getLogRecords:query];
 [loglist autorelease];
 for(id o in loglist)
 {
 SampleApp_LogRecordImpl *log = (SampleApp_LogRecordImpl*)o;
 MBOLog(@"Log Record %llu: Operation = %@, Timestamp = %@, MBO =
%@,
 key = %@, message = %@",log.messageId,log.operation,
 [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
 }
}

/
************************************find***************************
*********/
/***Find all the customer records and print the first record to the
console*/

-(void)Testfind
{
 SampleApp_Customer *onecustomer = nil;
 SUPObjectList *cl = [SampleApp_Customer findAll];
 if(cl && [cl length] > 0)
 {
 onecustomer = [cl item:0];
 if (onecustomer)
 {

Development Task Flows

 26 Sybase Unwired Platform

 MBOLog(@"the full customer record data is : %@", onecustomer);
 }
 }
 [cl release];
 [onecustomer release];
}

/*****************************Create
***********************************/
/*****Create new customer and sales order records in the local
database
 and call submitPending to send the changes to the server
*****/

-(void)TestCreate
{
 long key1 = [SampleApp_KeyGenerator generateId];
 long key2 = [SampleApp_KeyGenerator generateId];
 [SampleApp_KeyGenerator submitPendingOperations];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
 SampleApp_Customer *c = [[SampleApp_Customer alloc] init];
 [c autorelease];
 c.id_ = [SampleApp_LocalKeyGenerator generateId];
 c.fname = @"Dorothi";
 c.lname = @"Scranton";
 c.address = @"One Money Street";
 c.city = @"smallVille";
 c.state = @"MA";
 c.zip = @"97429";
 c.phone = @"2112222345";
 c.company_name = @"iAnywhere";
 c.surrogateKey = key1;
 SUPObjectList *orderlist = [SampleApp_Sales_orderList
getInstance];
 SampleApp_Sales_order *o1 = [[SampleApp_Sales_order alloc] init];
 [o1 autorelease];
 o1.id_ = [SampleApp_LocalKeyGenerator generateId];
 o1.order_date = [NSDate date];
 o1.fin_code_id = @"r1";
 o1.region = @"Eastern";
 o1.sales_rep = 902;
 o1.surrogateKey = key2;
 [o1 setCustomer:c];
 [orderlist add:o1];
 [c setCustomerSalesOrders:orderlist];
 [c save];
 [c refresh];
 [c submitPending];
 assert(c.pending == YES);
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }

Development Task Flows

Developer Reference for iPhone 27

}

/******************************Update
*********************************/
/****Update an existing customer and sales record in the device
database
 and call submitPending to send the changes to the server.
**********/

- (void)TestUpdate
{
 SUPObjectList *cl = [SampleApp_Customer findAll];
 SampleApp_Customer *onecustomer = [cl item:0];
 SampleApp_Sales_order *order = [onecustomer.customerSalesOrders
item:0];
 [order autorelease];
 onecustomer.fname = @"Johnny";
 order.region = @"South";
 [onecustomer save];
 [onecustomer refresh];
 [order refresh];
 [onecustomer submitPending];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }

 [onecustomer release];
 [cl release];

}

/***************************** Delete ***************************/
/*Delete an existing record from the database and call
 submitPending to send the changes to the server.****/

-(void) TestDelete
{
 SUPObjectList *sl = [SampleApp_Sales_order findAll];
 SampleApp_Sales_order *order = [sl item:0];
 [order delete];
 [order.customer submitPending];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:1];
 }
 [order release];
 [sl release];

}

@end

Development Task Flows

 28 Sybase Unwired Platform

Deploying Applications to iPhone Devices
Deploy mobile applications to devices and register the devices with Unwired Server.

Device Registration
Messaging devices contain applications that send and receive data through messaging. An
administrator must configure the device activation template properties for message-based
synchronization (MBS) devices. Device activation requires user registration. Upon successful
registration, the device is activated and set up with the template the administrator has selected.

Device registration pairs a user and a device once the user supplies the correct activation code.
This information is stored in the messaging database, which contains extensive information
about users and their corresponding mobile devices.

See System Administration > System Administration > Device and User Management >
Messaging Devices > Device Registration and Activation and > System Administration >
Device and User Management > Messaging Devices > Device Provisioning.

Registering the iPhone Device in Sybase Control Center
Register the iPhone device in Sybase Control Center.

1. Log in to Sybase Control Center using the supAdmin/s3pAdmin user name and password.

2. In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

3. Expand the Servers folder in the left pane, and select Device Users.

4. In the right pane, click Devices.

5. Click Register.

6. In the Register Device window, enter the required information:

• User name
• Server name
• Port

Development Task Flows

Developer Reference for iPhone 29

Note: "localhost" should be the actual name of your machine.

Configuring Physical Device Settings
Access the iPhone Settings information on the physical device to complete device registration.

1. On your iPhone device, select Settings and select the name of your application, such as
SampleApp.

2. In the Connection Info screen, enter the server name, user name, server port, company ID,
and activation code. These entries must correspond to the Unwired Server name, the user
name registered with the Unwired Server, the port the Unwired Server is listening to, the
company ID, and the device activation code, respectively.

If you are using a Relay Server, "Company ID" maps to the farm ID configured for
messaging-based requests on the Relay Server, and the "Server Name" and "Server Port"
map to the Relay Server name and port.

Development Task Flows

 30 Sybase Unwired Platform

Deploying iPhone Applications to the Enterprise
After you have created your iPhone client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

Note: Developers can review complete details in the iPhone OS Enterprise Deployment Guide
at http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf.

Development Task Flows

Developer Reference for iPhone 31

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

1. Sign up for the iPhone Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Configure the application to use make use of Keychain as persistent storage for the
database encryption key. See Configuring Application Security Using Key Chains. on
page 58

3. Create a certificate request on your Mac through Keychain.

4. Log in to the Developer Connection portal.

5. Upload your certificate request.

6. Download the certificate to your Mac. Use this certificate to sign your application.

7. Create an AppID.

Verify that your info.plist file has the correct AppID and application name. Also, in
Xcode, right-click Targets < <your_app_target> and select Get Info to verify the AppID
and App name.

8. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

9. Create an Xcode project ensuring the bundle identifier corresponds to the bundle identifier
in the specified App ID. Ensure you are informed of the "Product Name" used in this
project.

Apple Push Notification Service Configuration

Administrators can configure Apple Push Notification Service (APNS) for an iPhone
application. You cannot use APNS on a simulator in a test environment, nor can you use it with
iPod touch or iPad.

Preparing an Application for Apple Push Notification Service
There are several development steps to perform before the administrator can configure the
Apple Push Notification Service (APNS).

Note: Review complete details in the iPhone OS Enterprise Deployment Guide at http://
manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf.

1. Sign up for the iPhone Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Configure your application to use make use of Keychain as persistent storage for the
database encryption key. See Developer Reference for iPhone > Reference > iPhone Client
Object APIs > Security APIs > Configuring Application Security Using Keychain.

3. Create an App ID and ensure that it is configured to use Apple Push Notification Service
(APNS).

Development Task Flows

 32 Sybase Unwired Platform

http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

Do not use wildcard characters in App IDs for iPhone applications that use APNS.

Verify that your info.plist file has the correct App ID and application name. Also, in
Xcode, right-click Targets < <your_app_target> and select Get Info to verify the App
ID and App name.

4. Create and download an enterprise APNS certificate that uses Keychain Access in the Mac
OS. The information in the certificate request must use a different common name than the
development certificate that may already exist. The reason for this naming requirement is
that the enterprise certificate creates a private key, which must be distinct from the
development key. Import the certificate as a login Keychain, not as a system Keychain.
Validate that the certificate is associated with the key in the Keychain Access application.
Get a copy of this certificate.

5. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

6. Create the Xcode project, ensuring the bundle identifier corresponds to the bundle
identifier in the specified App ID.

7. To enable the APNS protocol, you must implement several methods in the application by
adding the code below:

Note: The location of these methods in the code depends on the application; see the APNS
documentation for the correct location.

//Enable APNS
[[UIApplication sharedApplication]
registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound |
 UIRemoteNotificationTypeAlert)];

* Callback by the system where the token is provided to the client
application so that this
 can be passed on to the provider. In this case,
“deviceTokenForPush” and “setupForPush”
are APIs provided by SUP to enable APNS and pass the token to SUP
Server

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:
 (NSData *)devToken
{
 MBOLogInfo(@"In did register for Remote Notifications",
devToken);
 [SUPPushNotification setupForPush:app];
 [SUPPushNotification deviceTokenForPush:app
deviceToken:devToken];
}

* Callback by the system if registering for remote notification
failed.

Development Task Flows

Developer Reference for iPhone 33

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:
 (NSError *)err {
 MBOLogError(@"Error in registration. Error: %@", err);
 }

// You can alternately implement the pushRegistrationFailed API:

// +(void)pushRegistrationFailed:(UIApplication*)application
errorInfo: (NSError *)err

* Callback when notification is sent.

- (void)application:(UIApplication *)app
didReceiveRemoteNotification:(NSDictionary *)
 userInfo
{
 MBOLogInfo(@"In did receive Remote Notifications", userInfo);
}

You can alternately implement the pushNotification API
+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo

Provisioning an Application for Apple Push Notification Service
If your internal users do not have an App Store account, use iTunes as an alternative method of
provisioning the Sybase-packaged iPhone application. You can also use this method if you are
building your own iPhone application.

Apple Push Notifications are iPhone-specific. Each application that supports Apple Push
Notifications must be listed in Sybase Control Center with its certificate and application name.
You must perform this task for each application.

1. Confirm that the IT department has opened ports 2195 and 2196, by executing:

telnet gateway.push.apple.com 2195

telnet feedback.push.apple.com 2196

If the ports are open, you can connect to the Apple push gateway and receive feedback
from it.

2. Copy the enterprise certificate (*.p12) to the computer on which Sybase Control Center
has been installed. Save the certificate in <SUP_Home>\Servers
\MessagingServer\bin\.

3. In Sybase Control Center, expand the Servers folder and click Server Configuration for
the primary server in the cluster.

4. In the Messaging tab, select Apple Push Configuration, and:

Development Task Flows

 34 Sybase Unwired Platform

a) Configure Application name with the same name used to configure the product name
in Xcode. If the certificate does not automatically appear, browse to the directory.

b) Change the push gateway information to match that used in the production
environment.

c) Restart Unwired Server.

5. Verify that the server environment is set up correctly:

a) Open <SUP_Home>\Servers\UnwiredServer\logs\APNSProvider.

b) Open the log file that should now appear in this directory. The log file indicates whether
the connection to the push gateway is successful or not.

6. Deploy the application and the enterprise distribution provisioning profile to your users’
computers.

7. Instruct users to use iTunes to install the application and profile, and how to enable
notifications. In particular, device users must:

• Download the Sybase application from the App Store.
• In the iPhone Settings app, slide the Notifications control to On.

8. Verify that the APNS-enabled iPhone is set up correctly:

a) Click Device Users.
b) Review the Device ID column. The application name should appear correctly at the

end of the hexidecimal string.
c) Select the Device ID and click Properties.
d) Check that the APNS device token has been passed correctly from the application by

verifying that a value is in the row. A device token appears only after the application
runs.

9. Test the environment by initiating an action that results in a new message being sent to the
client.

If you have verified that both device and server can establish a connection to APNS
gateway, the device will receive notifications and messages from the Unwired Server,
including workflow messages, and any other messages that are meant to be delivered to
that device. Allow a few minutes for the delivery or notification mechanism to take effect
and monitor the pending items in the Device Users data to see that the value increases
appropriately for the applications.

10. To troubleshoot APNS, use the <SUP_Home>\Servers\Unwired Server\log
\trace\APNSProvider log file. You can increase the trace output by editing
<SUP_Home>\Servers\MessagingServer\Data\TraceConfig.xml and
configuring the tracing level for the APNSProvider module to debug for short periods.

Development Task Flows

Developer Reference for iPhone 35

Development Task Flows

 36 Sybase Unwired Platform

Reference

This section describes the Client Object API. Classes are defined and sample code is provided.

iPhone Client Object API
The Sybase Unwired Platform iPhone Client Object API consists of generated business object
classes that represent the mobile business object model built and designed in the Unwired
WorkSpace development environment.

The iPhone Client Object API is used by device applications to synchronize and retrieve data
and invoke mobile business object operations. The iPhone Client Object API supports only
message-based synchronization.

Connection APIs
The iPhone Client Object API contains classes and methods for managing local database
information, and managing connections to the Unwired Server through a synchronization
connection profile.

ConnectionProfile
The ConnectionProfile class manages local database information. You can use it to set
the encryption key, which you must do before creating a local database.

SUPConnectionProfile* cp = [SampleApp_SampleAppDB
getConnectionProfile];
[cp setEncryptionKey:@"Your key"];

SynchronizationProfile
Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

SUPConnectionProfile* cp = [SampleApp_SampleAppDB
getSynchronizationProfile];
[cp setDomainName:@”default”];

Authentication
The generated package database class provides a valid synchronization connection profile.
You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

• onlineLogin – authenticates credentials against the Unwired Server.

Reference

Developer Reference for iPhone 37

• offlineLogin – authenticates against the most recent successfully authenticated
credentials. Once the client connects for the first time, the server validated username and
password are stored locally. offlineLogin verifies with the client database if those
credentials are valid. The method returns YES if the username and password are correct,
otherwise the method returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the the Unwired Server and you want to access the client application
locally.

• loginToSync – tries offlineLogin first. offlineLogin authenticates against
the last successfully authenticated credential. There is no communication with the
Unwired Server in this method. If offlineLogin fails, this method tries
onlineLogin.

• beginOnlineLogin – sends the login request asynchronously (it returns without
waiting for a server response). See Reference: Administration APIs > Reference > iPhone
Client Object API > Synchronization APIs.

Synchronization APIs
Typically, the generated package database class already has a valid synchronization
connection profile. You can login to the Unwired Server with your username and credentials.

• + (void)loginToSync:(NSString *)user password:(NSString *)pass – loginToSync
synchronizes the KeyGenerator from the Unwired Server with the client. The
KeyGenerator is an MBO for storing key values that are known to both the server and the
client. On loginToSync from the client, the server sends a value that the client can use
when creating new records (by using the method [KeyGenerator generateId] to
create key values that the server accepts).

The KeyGenerator value increments each time the generateId method is called. A
periodic call to submitPending by the KeyGenerator generateId MBO sends
the most recently used value to the Unwired Server, to let the Unwired Server know what
keys have been used on the client side. Place this call within a try/catch block and ensure
that the client application does not attempt to send any more messages to the server if
loginToSync throws an exception.

• + (void)beginOnlineLogin:(NSString *)user password:(NSString *)pass –
beginOnlineLogin is the recommended login method. It functions similarly to
loginToSync, except it sends the login request asynchronously (it returns without
waiting for a server response). This method checks the SUPMessageClient status and
immediately fails if the status is not STATUS_START_CONNECTED. Make sure the
connection is active before calling beginOnlineLogin, or implement the
onLoginFailure callback handler to catch cases where it may fail.

[SampleApp_SampleAppDB beginOnlineLogin:@"supuser"
password:@"s3pUser"];

Reference

 38 Sybase Unwired Platform

Setting Synchronization Parameters
Synchronization parameters let an application change the parameters used to retrieve data
from an MBO during a synchronization session. The primary purpose is to partition data.
Change the synchronization parameter to affect the data that is retrieved.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server; you need not call submitPending after the
save. Consider the "Customer" MBO that has a "cityname" synchronization parameter.

This example shows how to retrieve customer data corresponding to Kansas City.
CustomerSynchronizationParameters *sp = [Customer
getSynchronizationParameters];
sp.size = 3;
sp.user = @"testuser";
sp.cityname = @"Kansas City";
[sp save];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Query APIs
The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from an MBO
To retrieve data from a local database use the find, findAll, or findByPrimaryKey
methods in the MBO class.

The following examples show how to use the find, findAll, or findByPrimaryKey
methods in the MBO class to retrieve data.

• + (<Name Prefix>_Customer*)find:(int32_t)id_ – The find method retrieves a
Customer by the given ID. The parameter id_ is the surrogate key (the primary key used in
the local database). The parameter is of type int32_t in this example, but could be
another type based on the key type. The value "101" in this example is the surrogate key
value (automatically generated from the KeyGenerator). To use this method, the client
application must be able to retrieve the surrogate key.
SampleApp_Customer *customer = [SampleApp_Customer find:101];

Note: The Eclipse IDE allows you to specify a value for "name prefix" when generating
the MBO Objective-C code. When a value is specified, all the MBO entity names are
prefixed with that value. When no such prefix is specified, the name prefix is by default the
package name.

• + (SUPObjectList*)findAll – Call the findAll method to list all customers:

SUPObjectList *customers = [SampleApp_Customer findAll] ;

Reference

Developer Reference for iPhone 39

• +(SUPObjectList*) findAll:(int32_t)skip take:(int32_t)take – To define more than
one findAll attribute, and return a collection of objects that match the specified search
criteria, use:
SUPObjectList *customers = [SampleApp_Customer findAll: 100 take:
5];

Methods Generated if Dynamic Queries are Enabled
• + (SUPObjectList*)findWithQuery:(SUPQuery*)query; – Returns a collection of

objects that match the result of executing a specific query. The method takes one
parameter, query which is an SUPQuery object representing the actual query to be
executed.
SUPQuery *myquery = [SUPQuery getInstance];
myquery.testCriteria = [SUPAttributeTest
match:@"fname" :@”Erin”];
SUPObjectList* customers = [SampleApp_Customer findWithQuery:
myquery]

• + (int32_t)countWithQuery:(SUPQuery*)query; – Returns a count of the records
returned by the specific query.
int count = [SampleApp_Customer countWithQuery:myquery];

Object Queries
To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

Consider an object query on a Customer MBO to find customers by last name. You can
construct the query as follows:
Select x.* from Customer x where x.lname =:param_lname

where param_lname is a string parameter that specifies the last name. Assume that the
query above is named findBylname

This generates the following Client Object API:
(Customer *)findBylname : (NSString *)param_lname;

The above API can then be used just like any other read API. For example:
SampleApp_Customer * thecustomer = [SampleApp_Customer findBylname:
@”Delvin”];

For each object query that returns a list, additional methods are generated that allow the caller
to select and sort the results. For example, consider an object query, findByCity, which

Reference

 40 Sybase Unwired Platform

returns a list of customers from the same city. Since the return type is a list ,the following
methods would be generated. The additional methods help the user with ways to specify how
many results rows to skip, and how many subsequent result rows to return.
+ (SUPObjectList*)findByCity:(NSString*)param_city;
+ (SUPObjectList*)findByCity:(NSString*)param_city skip:
(int32_t)skip take:(int32_t)take;

Supported Aggregate Functions
You can use aggregate functions including GroupBy in object queries. However, the sum,
avg, and greater than (>) aggregate functions are not supported.

select count(x.id), x.id from AllType x where x.surrogatekey > :minSk
group by x.id having
x.id < :maxId order by x.id

Arbitrary Find
The arbitrary find method provides custom device application the ability to dynamically build
queries based on user input. These queries operate on multiple MBOs through the use of
joins.

SUPAttributeTest
In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify a desired ordering of the results and object state criteria. A SUPQuery class is
included in one of the client runtime libraries, libclientrt.a. The SUPQuery class is
the single object passed to the arbitrary search methods and consists of search conditions,
object/row state filter conditions, and data ordering information.

The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 3. SUPQuery and Related Classes

Class Description

SUPQuery Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

SUPAttributeTest Defines filter conditions for MBO attributes.

SUPCompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

SUPQueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Reference

Developer Reference for iPhone 41

Define these conditions by setting properties in a query:

• SUPTestCriteria – criteria used to filter returned data.
• SUPSortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

SUPTestCriteria can be an SUPAttributeTest or a SUPCompositeTest.

An SUPAttributeTest defines a filter condition using an MBO attribute, and supports
these conditions:

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE
• LESS_THAN
• LESS_EQUAL
• MATCH
• NOT_MATCH
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• NOT_START_WITH
• NOT_END_WITH
• NOT_CONTAIN

SUPCompositeTest
A SUPCompositeTest combines multiple SUPTestCriteria using the logical
operators AND, OR, and NOT to create a compound filter.

Methods
add:(SUPTestCriteria*)operand;

Example

The following example shows a detailed construction of the test criteria and join criteria for a
query:
SUPQuery *query2 = [SUPQuery getInstance];
[query2 select:@"c.fname,c.lname,s.order_date,s.region"];
[query2 from:@"Customer":@"c"];

Reference

 42 Sybase Unwired Platform

//
// Convenience method for adding a join to the query
//
//[query2 join:@"Sales_order":@"s":@"s.cust_id":@"c.id"];
//
// Detailed construction of the join criteria
SUPJoinCriteria *joinCriteria = [SUPJoinCriteria getInstance];
SUPJoinCondition* joinCondition = [SUPJoinCondition getInstance];
joinCondition.alias = @"s";
joinCondition.entity = @"Sales_order";
joinCondition.leftItem = @"s.cust_id";
joinCondition.rightItem = @"c.id";
joinCondition.joinType = [SUPJoinCondition INNER_JOIN];
[joinCriteria add:joinCondition];
query2.joinCriteria = joinCriteria;
//
// Convenience method for adding test criteria
//query2.testCriteria = (SUPTestCriteria*)[[SUPAttributeTest
// equal:@"c.fname":@"Douglas"] and:
[SUPAttributeTest
// equal:@"c.lname":@"Smith"]];
//
// Detailed construction of the test criteria
SUPCompositeTest *ct = [SUPCompositeTest getInstance];
ct.operands = [SUPObjectList getInstance];
[ct.operands add:[SUPAttributeTest equal:@"c.fname":@"Douglas"]];
[ct.operands add:[SUPAttributeTest equal:@"c.lname":@"Smith"]];
ct.operator = [SUPCompositeTest AND];
query2.testCriteria = (SUPTestCriteria*)ct;
SUPQueryResultSet* resultSet = [TestCRUD_TestCRUDDB
executeQuery:query2];

Dynamic Query
User can use query to construct a query SQL statement as he wants to query data from local
database. This query may across multiple tables (MBOs).

SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest match:@"c.lname":@"Devlin"];
SUPQueryResultSet* resultSet = [SampleApp_SampleAppDB
executeQuery:query];
if(resultSet == nil)
 {
 MBOLog(@"executeQuery Failed !!");
 return;
 }
for(SUPDataValueList* result in resultSet)
{
 MBOLog(@"Firstname,lastname,order date,region = %@ %@ %@ %@",
 [SUPDataValue getNullableString:[result item:0]],
 [SUPDataValue getNullableString:[result item:1]],
 [[SUPDataValue getNullableDate:[result item:2]] description],
 [SUPDataValue getNullableString:[result item:3]]);

Reference

Developer Reference for iPhone 43

}

Paging Data
On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set.
SUPQuery *query = [SUPQuery newInstance];
[query setSkip:10];
[query setTake:2];
SUPObjectList *customerlist = [SampleApp_Customer
findWithQuery:query];

SUPQueryResultSet
The SUPQueryResultSet class provides for querying a result set for the dynamic query
API. SUPQueryResultSet is returned as a result of executing a query.

Example
This example shows how to filter a result set and get values by taking data from two mobile
business objects, creating an SUPQuery, filling in the criteria for the query, and filtering the
query results:
SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest match:@"c.lname":@"Devlin"];
SUPQueryResultSet* resultSet = [SampleApp_SampleAppDB
executeQuery:query];
if(resultSet == nil)
 {
 MBOLog(@"executeQuery Failed !!");
 return;
 }
for(SUPDataValueList* result in resultSet)
{
 MBOLog(@"Firstname,lastname,order date,region = %@ %@ %@ %@",
 [SUPDataValue getNullableString:[result item:0]],
 [SUPDataValue getNullableString:[result item:1]],
 [[SUPDataValue getNullableDate:[result item:2]] description],
 [SUPDataValue getNullableString:[result item:3]]);
}

Reference

 44 Sybase Unwired Platform

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer ID column. The Orders application is parameterized to return
order information for the customer ID.
SampleApp_Customer *onecustomer = [SampleApp_Customer find:101];
SUPObjectList *orders = onecustomer.customerSalesOrders;

Given an order, you can access its customer information.
SampleApp_Sales_order * order = [SampleApp_Sales_order *find: 2001];
SampleApp_Customer *thiscustomer = order.customer;

Operations APIs
The create, update, and delete and related operations allow you to perform operations on data
on the local client database, and to propagate that data to the Unwired Server.

Create Operation
The create operation allows the client to create a new record in the local database. To
propagate the changes to the server, call submitPending.

(void)create

Example 1: Supports create operations on parent entities. The sequence of calls is:

SampleApp_Customer *newcustomer = [[SampleApp_Customer alloc] init];
newcustomer.fname = @”John”;
... //Set the required fields for the customer
[newcustomer create];
[newcustomer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 2: Supports create operations on child entities.
SampleApp_sales_order *order = [[SampleApp_sales_order alloc] init];
[order autorelease];
order.region = @"Eastern";
... //Set the other required fields for the order

SampleApp_Customer *customer = [SampleApp_Customer find:1008];
[order setCustomer:customer];
[order create];
[order.customer refresh]; //refresh the parent
[order.customer submitPending]; //call submitPending on the parent.

Reference

Developer Reference for iPhone 45

while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Update Operation
The update operation updates a record in the local database on the device. To propagate the
changes to the server, call submitPending.

In the following examples, the Customer and SalesOrder MBOs have a parent-child
relationship.

Example 1: Supports update operations to parent entities. The sequence of calls is as
follows:
SampleApp_Customer *customer = [SampleApp_Customer find: 32]
 //find by the unique id
customer.city = @"Dublin"; //update any field to a new value
[customer update];
[customer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 2: Supports update operations to child entities. The sequence of calls is:

SampleApp_Sales_order* order = [SampleApp_Sales_order find: 1220];
order.region = @"SA"; //update any field
[order update]; //call update on the child record
[order refresh];
[order.customer submitPending]; //call submitPending on the parent
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 3: Calling save() on a parent also saves any modifications made to its children:

SampleApp_Customer *customer = [SampleApp_Customer find: 32]
SUPObjectList* orderlist = customer.orders;
SampleApp_sales_order* order = [orderlist item:0];
order.sales_rep = @"Ram";
customer.state = @"MA" ;
[customer save];
[customer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.5];

Delete Operation
The delete operation allows the client to delete a new record in the local database. To
propagate the changes to the server, call submitPending.

(void)delete

The following examples show how to perform deletes to parent entities and child entities.

Example 1: Supports delete operations to parent entities. The sequence of calls is:

SampleApp_Customer *customer = [SampleApp_Customer find: 32]
[customer delete];

Reference

 46 Sybase Unwired Platform

[customer submitPending];
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Example 2: Supports delete operations child entities. The sequence of calls is:

SampleApp_Sales_order *order = [SampleApp_Sales_order find: 32]
[order delete];
[order.customer submitPending]; //Call submitPending on the parent.
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Save Operation
The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the update operation. If a record does not exist, the save operation
creates a new record.

(void)save
SampleApp_Customer *customer = [SampleApp_Customer find: 32]
//Change some sttribute of the customer record
customer.fname= @"New Name";
[customer save];

Other Operation
Operations other than create, update, or delete operations are called “other”
operations.

This is an example of an "other" operation:
SampleApp_CustomerOtherOperation *other =
[[SampleApp_CustomerOtherOperation alloc] init];
[other autorelease];
other.P1 = @"somevalue";
other.P2 = 2;
other.P3 = [NSDate date];
[other save];
[other submitPending];

Multilevel Insert (MLI)
Multilevel insert allows a single synchronization to execute a chain of related insert
operations. This example demonstrates a multilevel insert:

-(void)TestCreate
{
 long key1 = [SampleApp_KeyGenerator generateId];
 long key2 = [SampleApp_KeyGenerator generateId];
 [SampleApp_KeyGenerator submitPendingOperations];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];
 SampleApp_Customer *c = [[SampleApp_Customer alloc] init];
 [c autorelease];
 c.id_ = [SampleApp_LocalKeyGenerator generateId];

Reference

Developer Reference for iPhone 47

 c.fname = @"Dorothi";
 c.lname = @"Scranton";
 c.address = @"One Money Street";
 c.city = @"smallVille";
 c.state = @"MA";
 c.zip = @"97429";
 c.phone = @"2112222345";
 c.company_name = @"iAnywhere";
 c.surrogateKey = key1;
 SUPObjectList *orderlist = [SampleApp_Sales_orderList
newInstance];
 SampleApp_Sales_order *o1 = [[SampleApp_Sales_order alloc] init];
 [o1 autorelease];
 o1.id_ = [SampleApp_LocalKeyGenerator generateId];
 o1.order_date = [NSDate date];
 o1.fin_code_id = @"r1";
 o1.region = @"Eastern";
 o1.sales_rep = 902;
 o1.surrogateKey = key2;
 [o1 setCustomer:c];
 [orderlist add:o1];
 [c setCustomerSalesOrders:orderlist];
 [c save];
 [c refresh];
 [c submitPending];
 assert(c.pending == YES);
 while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

}

Pending Operation
There are five methods you can use to manage the pending state.

• (void)cancelPending – Cancels a pending record. A pending record is one that has
been updated in the local client database, but not yet sent to the Unwired Server.
[customer cancelPending];

• (void)cancelPendingOperations – Cancels the pending operations for an
entire entity. This method internally invokes the cancelPending method.

[Customer cancelPendingOperations];

• (void)submitPending – Submits a pending record to the Unwired Server. For
MBS, a replay request is sent directly to the Unwired Server.
[customer submitPending];

• +(void)submitPendingOperations – Submits all data for all pending records to
the Unwired Server. This method internally invokes the submitPending method.

[Customer submitPendingOperations];

• +(void)submitPendingOperations:
(NSString*)synchronizationGroup – Submits all data for pending records
from MBOs in this synchronization group to the Unwired Server. This method internally
invokes the submitPending method.

Reference

 48 Sybase Unwired Platform

[SampleApp_SampleAppDB submitPendingOperations:@”default”];

SampleApp_Customer *customer = [SampleApp_Customer find:101];
//Make some changes to the customer record.
//Save the changes

//If the user wishes to cancel the changes, a call to cancel pending
will revert to the old values.

[customer cancelPending];

// The user can submit the changes to the server as follows:
[customer submitPending];

Local Business Object
A business object can be either local or mobile. A local business object is a client-only object.
Unlike a mobile business object, a local business object cannot be synchronized with the
Unwired Server. Local business objects do not call submitPending, or perform a replay or
import from the Unwired Server.

The following code example creates a row for a local business object called "clientObj", saves
it, and finds it in the database.
//Create a client only MBO...");
ClientObj *o = [ClientObj getInstance];
 o.attribute1 = @"This";
 o.attribute2 = @"is";
 o.attribute3 = @"a";
 o.attribute4 = @"client only mbo";
[o save];

//Read from the created MBO");
SUPObjectList *objlist = [ClientObj findAll];
MBOLogError(@"ClientObj MBO has %ld rows",[objlist size]);
 for(ClientObj *o in objlist)
MBOLogError([[o json:0] toString]);

Personalization APIs
Personalization keys allow the mobile user to define (personalize) certain input field values
within the mobile application. The PersonalizationParameters class is generated
automatically for managing personalization keys. Personalization parameters provide default
values for synchronization parameters when the synchronization key of the object is mapped
to the personalization key while developing a mobile business object.

Type of Personalization Keys
There are three types of personalization keys: client, server, and session. Client
personalization keys are persisted in the local database. Server personalization keys are

Reference

Developer Reference for iPhone 49

persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Getting and Setting Personalization Key Values
Consider a personalization key "pkcity" that is associated with the synchronization parameter
"cityname". When a personalization parameter value is changed, the call to save
automatically propagates the change to the server; you need not call submitPending after
the save.

The following example shows how to get and set personalization key values:
//get personalization key values
SampleApp_PersonalizationParameters *pp = [SampleApp_SampleAppDB
getPersonalizationparameters];
MBOLogInfo(@”Personalization Parameter for City = %@”, pp.PKCity);

//Set personalization key values
pp.PKCity = @”Hull”;
[pp.save]; //save the new pk value.
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

Note: You are not required to call submitPending after save, as is the case with
synchronization parameters.

Passing Arrays of Values, Objects
An operation can have a parameter that is one of the SUP list types (such as SUPIntList,
SUPStringList, or SUPObjectList). For example, consider a method for an entity Customer
with signature AnOperation:

(SUPIntList*) thelist
SUPIntList *intlist = [SUPIntList initWithCapacity:2];
[intlist add:1];
[intlist add:2];

Customer *thecustomer = [Customer find:101];
[thecustomer AnOperation:intlist]

Object State APIs
The object state APIs include status indicator APIs for returning information about entities in
the database, and a method to refresh the MBO entity in the local database.

Reference

 50 Sybase Unwired Platform

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Objective-C
Type

Description

isNew BOOL Returns true if this entity is new (but has not been created in
the client database).

isCreated BOOL Returns true if this entity has been newly created in the client
database, and one the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

isDirty BOOL Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted BOOL Returns true if this entity was loaded from the database and
was subsequently deleted.

isUpdated BOOL Returns true if this entity has been updated or changed in the
database, and one of the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

pending BOOL Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

Reference

Developer Reference for iPhone 51

Name Objective-C
Type

Description

replayCounter long Returns a long value that is updated each time a row is created
or modified by the client. This value is derived from the time
in seconds since an epoch, and increases each time a row is
changed.

int64_t result = [customer replayCount-
er];

replayPending long Returns a long value. When a pending row is submitted to the
server, the value of replayCounter is copied to re-
playPending. This allows the client code to detect if a

row has been changed since it was submitted to the server
(that is, if the value ofreplayCounter is greater than

replayPending).

int64_t result = [customer replayPend-
ing];

replayFailure long Returns a long value. When the server responds with a re-
playFailure message for a row that was submitted to

the server, the value of replayCounter is copied to

replayFailure, and replayPending is set to 0.

int64_t result = [customer replayFai-
lure];

Entity State Example
This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear
in bold.

Note the following entity behaviors:

• The isDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

• The replayCounter value that gets sent to the Unwired Server is the value in the
database before you call submitPending. After a successful replay, that value is
imported from the Unwired Server.

• The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Reference

 52 Sybase Unwired Platform

Description Flags/Values

After reading from the database, before any changes
are made.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

One or more attributes are changed, but changes not
saved.

isNew=false

isCreated=false

isDirty=true

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Reference

Developer Reference for iPhone 53

Description Flags/Values

After [entity save] or [entity up-
date] is called.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424979

replayPending=0

replayFailure=0

After [entity submitPending] is called

to submit the MBO to the server

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=33424981

replayFailure=0

Reference

 54 Sybase Unwired Platform

Description Flags/Values

Possible result: the Unwired Server accepts the up-
date, sends an import and a replayResult for

the entity, and the refreshes the entity from the da-
tabase.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Possible result: The Unwired Server rejects the up-
date, sends a replayFailure for the entity,

and refreshes the entity from the database

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=0

replayFailure=33424981

Pending State Pattern
When a create, update, delete, or save operation is called on an entity in a message-based
synchronization application, the requested change becomes pending. To apply the pending
change, call submitPending on the entity, or submitPendingOperations on the
mobile business object (MBO) class:

Customer *e = [Customer getInstance];
e.name = @"Fred";
e.address = @"123 Four St.";
[e create]; // create as pending
// Then do this....
[e submitPending]; // submit to server
// ... or this.

Reference

Developer Reference for iPhone 55

[Customer submitPendingOperations]; // submit all pending Customer
rows to server

submitPendingOperations submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submitPending method on each of
the pending records.

The call to submitPending causes a JSON message to be sent to the Unwired Server with
the replay method, containing the data for the rows to be created, updated, or deleted. The
Unwired Server processes the message and responds with a JSON message with the
replayResult method (the Unwired Server accepts the requested operation) or the
replayFailure method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more import
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the replay request. These changes are written
to the client database and marked as rows that are not pending. When the replayResult
message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful
operation.

If the Unwired Server rejects the requested change, the client receives a replayFailed
message, and the entity remains in the pending state, with its replayFailed attribute set to
indicate that the change was rejected.

If the Unwired Server rejects the requested change, it also sends one or more log record
messages to the client. The SUPLogRecord interface has the following getter methods to
access information about the log record:

Method
Name

Objective-C
Type

Description

component NSString* Name of the MBO for the row for which this log record was
written.

entityKey NSString* String representation of the primary key of the row for which
this log record was written.

Reference

 56 Sybase Unwired Platform

Method
Name

Objective-C
Type

Description

code int32_t One of several possible HTTP error codes:

• 200 indicates success.

• 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

• 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

• 404 indicates that the client tried to access a nonexistent
package or MBO.

• 405 indicates that there is no valid license to check out for
the client.

• 500 to indicate an unexpected (unspecified) server fail-
ure.

message NSString* Descriptive message from the server with the reason for the
log record.

operation NSString* The operation (create, update, or delete) that caused the log
record to be written.

requestId NSString* The id of the replay message sent by the client that caused this
log record to be written.

timestamp NSDate* Date and time of the log record.

If a rejection is received, the application can use the entity method getLogRecords to
access the log records and get the reason:
SUPObjectList* logs = [e getLogRecords];
for(id<SUPLogRecord> log in logs)
{
 MBOLogError(@"entity has a log record:\n\
 code = %ld,\n\
 component = %@,\n\
 entityKey = %@,\n\
 level = %ld,\n\
 message = %@,\n\
 operation = %@,\n\
 requestId = %@,\n\
 timestamp = %@",
 [log code],
 [log component],
 [log entityKey],
 [log level],
 [log message],
 [log operation],

Reference

Developer Reference for iPhone 57

 [log requestId],
 [log timestamp]);
}

cancelPendingOperations cancels all the pending records for an entity. This method
internally invokes the cancelPending method on each of the pending records.

Refresh
The refresh method allows the client to refresh the MBO entity from the local database.

(void)refresh
[order refresh];

where order is an instance of the MBO entity.

Security APIs
Unwired Server supports encryption of client data and the database.

Encryption of Client Data
The iPhone Sybase Unwired Platform client libraries internally encrypt data before sending it
over the wire, using its own encryption layer. Communication is performed over HTTP.

Encryption of the Database
The following methods set or change encryption keys for the database.

-(void)setEncryptionKey:(SUPString)value

Sets the encryption key for the database in SUPConnectionProfile. Call this method
before any database operations.
[cp setEncryptionKey:@”test”];

+(void)changeEncryptionKey:(NSString*) newKey

Changes the encryption key to the newKey value and saves the newKey value to the
connection profile. Call this method after the call to createDatabase.

[SampleApp_SampleAppDB changeEncryptionKey:@"newkey"];

Configuring Application Security Using Keychain
An application can make use of security features that use Keychain as persistent storage for a
database encryption key by using the SUPKeyVault APIs defined by the SUPKeyVault
class.

The SUPKeyVault class controls setting a key to the keychain, retrieving a key from the
keychain, encrypting/decrypting a key with an application PIN, locking/unlocking a key vault
with a PIN, and PIN management. An application explicitly retrieves and saves a database

Reference

 58 Sybase Unwired Platform

encryption key using the SUPKeyVault APIs, then sets the retrieved encryption key to
SUPConnectionProfile.

1. Modify the application to use SUPKeyVault to retrieve the database encryption key
from Keychain at start-up:
SUPKeyVault * keyvault = [SUPKeyVault
getSUPKeyVault:MESSAGING_VAULT_ID];

// keyVault must be unlocked by the application before the
connection to server.

if ([keyVault isLocked])
{
 // Get the PIN from user through ENTER PIN dialog

 // Now unlock the KeyVault with the PIN
 result = [keyVault unlock: pin];
 if (result == error)
 {
 // Take necessary actions
 }
}
NSData *dbKey = [keyVault key];

// start up Sybase messaging client after the keyVault is
unlocked.
NSInteger result = [SUPMessageClient start];
if (result == kSUPMessageClientSuccess)
{
...
}

2. Modify the application to set an encryption key to the current
SUPConnectionProfile, to allow database operations to use this encryption key.
Call these methods before performing any database operations:
SUPConnectionProfile *cp = [SampleApp_SampleAppDB
connectionProfile];
[cp setEncryptionKey:dbKey];

3. Modify the application to save the database encryption key to the Keychain by calling
these methods:
if (![keyVault isLocked])
{
 [keyVault setKey:dbKey];
}

Utility APIs
The iPhone Client Object API provides utility APIs to support a variety of tasks.

• Writing and retrieving log records.
• Configuring log levels for messages reported to the console.

Reference

Developer Reference for iPhone 59

• Enabling the printing of server message headers and message contents, database
exceptions, and SUPLogRecords written for each import.

• Viewing detailed trace information on database calls.
• Registering a callback handler to receive callbacks.
• Assigning a unique ID for an application which requires a primary key.
• Managing date/time objects for iPhone through defined classes.
• Enabling Apple Push Notification to allow applications to provide push notifications to

devices.

Using the Log Record APIs
Every package has a LogRecordImpl table in its own database. The Unwired Server can
send import messages with LogRecordImpl records as part of its response to replay
requests (success or failure).

The Unwired Server can embed a "log" JSON array into the header of a server message; the
array is written to the LogRecordImpl table by the client. The client application can also
write its own records. Each entity has a method called newLogRecord, which allows the
entity to write its own log record. The LogRecordImpl table has "component" and
"entityKey" columns that associate the log record entry with a particular MBO and primary
key value.
SUPObjectList *salesorders = [SampleApp_Sales_order findAll];
 if([salesorders size] > 0)
 {
 SampleApp_Sales_order * so = [salesorders item:0];
 SampleApp_LogRecordImpl *lr = [so newLogRecord:
 [SUPLogLevel INFO] withMessage:@"testing
record"];
 MBOLogError(@"Log record is: %@",lr);

 // submitting log records
 [SampleApp_SampleAppDB submitLogRecords];
 while ([SampleApp_SampleAppDB hasPendingOperations])
 {
 [NSThread sleepForTimeInterval:0.2];
 }
 }

You can use the getLogRecords method to return log records from the table.

SUPQuery *query = [SUPQuery getInstance];
 SUPObjectList *loglist = [SampleApp_SampleAppDB
getLogRecords:query];
 for(id o in loglist)
 {
 LogRecordImpl *log = (LogRecordImpl*)o;
 MBOLogError(@"Log Record %llu: Operation = %@, Timestamp =
%@,

MBO = %@, key= %@,message=%@",log.messageId,log.operation,
 [SUPDateTimeUtil

Reference

 60 Sybase Unwired Platform

toString:log.timestamp],log.component,log.entityKey,log.message);
}

Each mobile business object has a getLogRecords instance method that returns a list of all
the log records that have been recorded for a particular entity row in a mobile business object:
SUPObjectList *salesorders = [SampleApp_Sales_order findAll];
if([salesorders size] > 0)
{
 SampleApp_Sales_order * so = [salesorders item:0];
 SUPObjectList *loglist = [so getLogRecords];
for(id o in loglist)
{
 LogRecordImpl *log = (LogRecordImpl*)o;
 MBOLogError(@"Log Record %llu: Operation = %@, Timestamp = %@,

MBO = %@, key= %@,message=%@",log.messageId,log.operation,
 [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
}

Mobile business objects that support dynamic queries can be queried using the synthetic
attribute hasLogRecords. This attribute generates a subquery that returns true if an entity
row has any log records in the database, otherwise it returns false. The following code example
prints out a list of customers, including first name, last name, and whether the customer row
has log records:
SUPQuery *query = [SUPQuery getInstance];
[query select:@”x.surrogateKey,x.fname,x.lname,x.hasLogRecords”];
[query from:@”Customer”:@”x”];
SUPQueryResultSet *qrs = [SampleApp_SampleAppDB executeQuery:query];
MBOLogError(@”%@”,[qrs.columnNames toString]);
for(SUPDataValueList *row in qrs.array)
{
 MBOLogError(@”%@”,[row toString]);
}

If there are a large number of rows in the MBO table, but only a few have log records
associated with them, you may want to keep an in-memory object to track which rows have log
records. You can define a class property as follows:
NSMutableArray* customerKeysWithLogRecords;

After data is downloaded from the server, initialize the array:
customerKeysWithLogRecords = [[NSMutableArray alloc]
initWithCapacity:20];
SUPObjectList *allLogRecords = [SampleApp_SampleAppDB
getLogRecords:nil];
for(id<SUPLogRecord> lr in allLogRecords)
{
 if(([lr entityKey] != nil) && ([[lr component] compare:@”Customer”]
== 0))
 [customerKeysWithLogRecords addObject:[lr entityKey]];
}

Reference

Developer Reference for iPhone 61

You do not need database access to determine if a row in the Customer MBO has a log record.
The following expression returns true if a row has a log record:
BOOL hasALogRecord = [customerKeysWithLogRecords containsObject:
 [customerRow keyToString]];

Log Levels and Tracing APIs
The MBOLogger class enables the client to add log levels to messages reported to the
console.The application can set the log level using the setLogLevel method.

In ascending order of detail (or descending order of severity), the log levels defined are
LOG_OFF (no logging), LOG_FATAL, LOG_ERROR, LOG_WARN, LOG_INFO, and
LOG_DEBUG.

Macros such as MBOLogError, MBOLogWarn, and MBOLogInfo allow application code
to write console messages at different log levels. You can use the method setLogLevel to
determine which messages get written to the console. For example, if the application sets the
log level to LOG_WARN, calls to MBOLogInfo and MBOLogDebug do not write anything to
the console.
[MBOLogger setLogLevel:LOG_INFO];
MBOLogInfo(@"This log message will print to the console”);
[MBOLogger setLogLevel:LOG_WARN];
MBOLogInfo(@"This log message will not print to the console");
MBOLogError(@"This log message will print to the console");

Server Log Messages
The generated code for a package contains an MBODebugLogger source and header file and
an MBODebugSettings.h file. The MBODebugLogger class contains methods that
enable printing of server message headers and message contents, database exceptions and
SUPLogRecords written for each import.

The client application can turn on printing of the desired messages by modifying the
MBODebugSettings.h. In the default configuration, setting "#define __DEBUG__" to
true prints out the server message headers and database exception messages, but does not print
the full contents of server messages.

Note: For more information, examine the MBOLogger.h and MBOLogInterface.h
header files in the includes directory.

Tracing APIs
To see detailed trace information on database calls, including actual SQL statements sent to
SQLite, a Debug build of your application can turn on or off the following macros in
MBODebugSettings.h:

• LOGRECORD_ON_IMPORT – creates a log record in the database for each import of
server data for an MBO.

Reference

 62 Sybase Unwired Platform

• PRINT_PERSISTENCE_MESSAGES – prints to the console the database exception
messages.

• PRINT_SERVER_MESSAGES – prints to the console the JSON headers of messages
going to and from the Unwired Server. This allows you to see while debugging that an
application is subscribing successfully to the Unwired Server, and that imports are being
sent from the Unwired Server. When this macro is defined, the contents of client-initiated
“replay” messages are also printed to the console.

• PRINT_SERVER_MESSAGE_CONTENT – prints to the console the full contents of
messages from the Unwired Server to the client. The messages include all the data being
imported from the Unwired Server, and usually result in a large amount of printing.
Developers may find it useful to print all the data during detailed debugging; doing so
allows them detailed debugging to see the data coming from the Unwired Server. In
general, do not turn this macro on, as doing so considerably slows the data import process.

Printing Log Messages
The following code example retrieves log messages resulting from login failures where the
Unwired Server writes the failure record into the LogRecordImpl table. You can
implement the onLoginFailure callback to print out the server message.

SUPQuery * query = [SUPQuery newInstancegetInstance];
SampleApp_LogRecordImplList* loglist =
(SampleApp_LogRecordImplList*)[SampleApp _ SampleAppDB
getLogRecords:query];
 for(SampleApp_LogRecordImpl* log in loglist)
 {
 MBOLogError(@"Log Record %llu: Operation = %@, Component = %@,
message = %@", log.messageId, log.operation,
log.component,log.message);
 }

generateGuid
You can use the generateGuid method (in the LocalKeyGenerator class) to generate an ID
when creating a new object for which you require a primary key. This generates a unique ID
for the package on the local device.

+ (NSString*)generateGuid;

Callback Handlers
A callback handler provides message notifications and success or failure messages related to
message-based synchronization. To receive callbacks, register your own handler with a
database, an entity, or both. You can use SUPDefaultCallbackHandler as the base
class. In your handler, you override the particular callback that you are interested in (for
example, onImport).

Because both the database and entity handler can be registered, your handler may get called
twice for a mobile business object import activity. The callback is executed in the thread that is

Reference

Developer Reference for iPhone 63

performing the action (for example, import). When you receive the callback, the particular
activity is already complete.

The SUPCallbackHandler protocol consists of the following callbacks:

• onImport:(id)entityObject; – invoked when an import is received.
• onReplayFailure:(id)entityObject; – invoked when a replay failure is received from the

Unwired Server.
• onReplaySuccess:(id)entityObject; – invoked when a replay success is received from

the Unwired Server.
• onLoginFailure; – invoked when a login failure message is received from the Unwired

Server.
• onLoginSuccess; – called when a login result is received by the client.
• onSubscribeFailure; – invoked when a subscribe failure message is received from the

Unwired Server.
• onSubscribeSuccess; – invoked when a subscribe success message is received from the

Unwired Server.
• - (int32_t)onSynchronize:(SUPObjectList*)syncGroupList withContext:

(SUPSynchronizationContext*)context; – invoked when the synchronization status
changes. This method is called by the database class beginSynchronize methods
when the client initiates a synchronization, and is called again when the server responds to
the client that synchronization has finished, or that synchronization failed.

The SUPSynchronizationContext object passed into this method has a “status”
attribute that contains the current synchronization status. The possible statuses are:

• [SUPSynchronizationContextStatus STARTING] – passed in when
beginSynchronize is called.

• [SUPSynchronizationStatusContext UPLOADING] – synchronization status
upload in progress.

• [SUPSynchronizationStatusContext DOWNLOADING] – synchronization status
download in progress.

• [SUPSynchronizationStatusnContext FINISHING] – synchronization completed
successfully.

• [SUPSynchronizationStatusContext ERROR] – synchronization failed.

This callback handler returns [SUPSynchronizationAction CONTINUE],
unless the user wishes to cancel synchronization, in which case it returns
[SUPSynchronizationAction CANCEL]. The following code example prints out
the groups in a synchronization status change:
- (int32_t)onSynchronize:(SUPObjectList *)syncGroupList
withContext :(SUPSynchronizationContext *)context
{
 MBOLogInfo(@"Synchronization response");

MBOLogInfo(@"===");

Reference

 64 Sybase Unwired Platform

 for(id<SUPSynchronizationGroup> sg in syncGroupList)
 {
 MBOLogInfo(@"group = %@",sg.name);
 }

MBOLogInfo(@"===");
 MBOLogInfo(@"context: %ld,
%@",context.status,context.userContext);

MBOLogInfo(@"===");
 return [SUPSynchronizationAction CONTINUE];
}

• onSuspendSubscriptionFailure; – invoked when a call to suspend fails.
• onSuspendSubscriptionSuccess; – invoked when a suspend call is successful.
• onResumeSubscriptionFailure; – invoked when a resume call fails.
• onResumeSubscriptionSuccess; – invoked when a resume call is successful.
• onUnsubscribeFailure; – invoked when an unsubscribe call fails.
• onUnsubscribeSuccess; – This method is invoked when an unsubscribe call is

successful.
• onImportSuccess; – invoked when onImport succeeds.

• onTransactionCommit; – invoked on transaction commit.
• onTransactionRollback; – invoked on transaction rollback.
• onResetSuccess; – invoked when reset is successful.
• onSubscriptionEnd; – invoked on subscription end.
• onStorageSpaceLow; – invoked when storage space is low.
• onStorageSpaceRecovered; – invoked when storage space is recovered.
• onConnectionStatusChange:(ConnectionStatus)connStatus:

(ConnectionType)connType – the application should call the register callback handler
with a database class, and implement the onConnectionStatusChange method in
the callback handler. ConnectionStatus and ConnectionType are defined in
SUPConnectionUtil.h:

typedef enum {
 WRONG_STATUS_NUM = 0,
 // device connected
 CONNECTED_NUM = 1,
 // device not connected
 DISCONNECTED_NUM = 2,
 // device not connected because of flight mode
 DEVICEINFLIGHTMODE_NUM = 3,
 // device not connected because no network coverage
 DEVICEOUTOFNETWORKCOVERAGE_NUM = 4,
 // device not connected and waiting to retry a connection
 WAITINGTOCONNECT_NUM = 5,
 // device not connected becauseroaming was set to false
 // and device is roaming
 DEVICEROAMING_NUM = 6,
 // device not connected because of low space.
 DEVICELOWSTORAGE_NUM = 7

Reference

Developer Reference for iPhone 65

} ConnectionStatus;

typedef enum {
 WRONG_TYPE_NUM = 0,
 // iPhone has only one connection type
 ALWAYS_ON_NUM = 1
} ConnectionType;

The following code example shows how to register a handler to receive a callback.
DBCallbackHandler* handler = [DBCallbackHandler newHandler];
[iPhoneSMTestDB registerCallbackHandler:handler];
[handler release];

MBOCallbackHandler* mboHandler = [MBOCallbackHandler newHandler];
[Product registerCallbackHandler:mboHandler];
[mboHandler release];

Date/Time
Classes that support managing date/time objects for iPhone.

• SUPDateValue.h – manages an object of datatype Date.

• SUPTimeValue.h – manages an object of datatype Time.

• SUPDateTimeValue.h – manages an object of datatype DateTime.

• SUPDateList.h – manages a list of Date objects (the objects cannot be null).

• SUPTimeList.h – manages a list of Time objects (the objects cannot be null).

• SUPDateTimeList.h – manages a list of DateTime objects (the objects cannot be
null).

• SUPNullableDateList.h – manages a list of Date objects (the objects can be
null).

• SUPNullableTimeList.h – manages a list of Time objects (the objects can be
null).

• SUPNullableDateTimeList.h – manages a list of DateTime objects (the objects
can be null).

Example 1: To get a Date value from a query result set:

SUPQueryResultSet* resultSet = [TestCRUD_TestCRUDDB
executeQuery:query];
 for(SUPDataValueList* result in resultSet)
 [[SUPDataValue getNullableDate:[result item:2]]
description];

Example 2: A method takes Date as a parameter:

-(void)setModifiedOrderDate:(SUPDateValue*) thedate;
SUPDateValue *thedatevalue = [SUPDateValue newInstance];
[thedatevalue setValue:[NSDate date]];
[customer setModifiedOrderDate:thedatevalue];

Reference

 66 Sybase Unwired Platform

Apple Push Notification API
The Apple Push Notification API allows applications to provide various types of push
notifications to devices, such as sounds (audible alerts), alerts (displaying an alert on the
screen), and badges (displaying an image or number on the application icon).

Note: This API works only on iPhone devices, and does not work on iPod, iPod Touch, or a
simulator.

The client library libclientrt wraps the Apple Push Notification API in the file
SUPPushNotification.h.

In addition to using the Apple Push Notification APIs in a client application, you must
configure the push configuration on the server. This is performed under Server
Configuration > Messaging > Apple Push Configuration in Sybase Control Center. You
must configure the device application name (for push), the device certificate (for push), the
Apple gateway, and the gateway port.

The following API methods abstract the Unwired Server, resolve the push-related settings,
and register with an Apple Push server, if required. You can call these methods in the
"applicationDidFinishLaunching" function of the client application:
@interface SUPPushNotification : NSObject
{

}
+(void)setupForPush:(UIApplication*)application;
+(void)deviceTokenForPush:(UIApplication*)application deviceToken:
(NSData
*)devToken;
+(void)pushRegistrationFailed:(UIApplication*)application
errorInfo:(NSError *)err;
+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo;

+(void)setupForPush:(UIApplication*)application

After a device successfully registers for push notifications through Apple Push Notification
Service, the iPhone OS calls the
didRegisterForRemoteNotificationWithDeviceToken method in the client
application. The iPhone OS passes the registered device token to this function, and the
functions calls the deviceTokenForPush API to pass the device token to Unwired
Server:
+(void)deviceTokenForPush:(UIApplication*)application deviceToken:
(NSData
*)devToken

If for any reason the registration with Apple Push Notification Service fails, the iPhone OS
calls didFailToRegisterForRemoteNotificationsWithError in the client
application which calls the following API:

Reference

Developer Reference for iPhone 67

+(void)pushRegistrationFailed:(UIApplication*)application
errorInfo: (NSError *)err

When the iPhone OS receives a notification from Apple Push Notification Service for an
application, it calls didReceiveRemoteNotification in the client application. This
calls the pushNotification API:

+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo

Complex Attribute Types
The MBO examples previously described have attributes that are primitive types (such as
int, long, string), and make use of the basic database operations (create, update, and
delete). To support interactions with certain back-end datasources, such as SAP® and Web
services, an MBO may have more complex attributes: an integer or string list, a class or MBO
object, or a list of objects. Some back-end datasources require complex types to be passed in as
input parameters. The input parameters can be any of the allowed attribute types, including
primitive lists, objects, and object lists.

In the following example, a Sybase Unwired Platform project is created to interact with a
Remedy Web service back-end. The project includes two MBOs,
HelpDesk_Query_Service and HelpDesk_QueryList_Service.

Note: Each project will have different requirements because each back-end datasource
requires a different configuration for parameters to be sent to successfully execute a database
operation.

Reference

 68 Sybase Unwired Platform

Reference

Developer Reference for iPhone 69

You can determine from viewing the properties of the create operation,
helpdesk_Submit_Service(), that the operation requires parameters to be passed in.
The first parameter, _HEADER_, is an instance of the AuthenticationInfo class, and
the second parameter, assigned_Group, is a list of strings.

When you generate iPhone code for this project, the generated code includes the
RemedyCU_AuthenticationInfo class, in addition to the MBO classes
RemedyCU_HelpDesk_Query_Service and
RemedyCU_HelpDesk_QueryList_Service. The AuthenticationInfo class
holds information that must be passed to the Unwired Server to authenticate database
operations.

The project includes the create operation helpdesk_Submit_Service. Call this
method instead of using the iPhone MBO create method directly. The
helpdesk_Submit_Service method is defined in
RemedyCU_HelpDesk_Query_Service.h:

- (void)helpDesk_Submit_Service:
(RemedyCU_AuthenticationInfo*)_HEADER_
withAssigned_Group:(SUPNullableStringList*)assigned_Group
withCI_Name:(NSString*)cI_Name
withLookup_Keyword:(NSString*)lookup_Keyword
withResolution_Category_Tier_1:
(NSString*)resolution_Category_Tier_1
withAction:(NSString*)action
withCreate_Request:(NSString*)create_Request
withWork_Info_Summary:(NSString*)work_Info_Summary
withWork_Info_Notes:(NSString*)work_Info_Notes
withWork_Info_Type:(NSString*)work_Info_Type
withWork_Info_Date:(NSDate*)work_Info_Date
withWork_Info_Source:(NSString*)work_Info_Source
withWork_Info_Locked:(NSString*)work_Info_Locked
withWork_Info_View_Access:(NSString*)work_Info_View_Access
withMiddle_Initial:(SUPNullableStringList*)middle_Initial
withDirect_Contact_First_Name:(NSString*)direct_Contact_First_Name
withDirect_Contact_Middle_Initial:
(NSString*)direct_Contact_Middle_Initial
withDirect_Contact_Last_Name:(NSString*)direct_Contact_Last_Name
withTemplateID:(NSString*)templateID;

Reference

 70 Sybase Unwired Platform

The following code example initializes a Remedy instance of the
HelpDesk_Query_Service MBO on the iPhone, creates the instance in the iPhone
client database, and submits it to the Unwired Server. The example shows how to initialize the
AuthorizationInfo class instance and the assigned_Group string list, and pass
them as parameters into the create operation.
RemedyCU_AuthenticationInfo* authinfo;
 int64_t key= 0;
 authinfo = [RemedyCU_AuthenticationInfo getInstance];
 authinfo.userName=@"Francie";
 authinfo.password=@"password";
 authinfo.authentication=nil;
 authinfo.locale=nil;
 authinfo.timeZone=nil;

 SUPNullableStringList *assignedgrp = [SUPNullableStringList
getInstance];
 [assignedgrp add:@"Frontoffice Support"];

 RemedyCU_HelpDesk_Query_Service *cr =
[[RemedyCU_HelpDesk_Query_Service alloc] init];

cr.company = @"Calbro Services";

[cr helpDesk_Submit_Service:authinfo
 withAssigned_Group:assignedgrp
 withCI_Name:nil
 withLookup_Keyword:nil
 withResolution_Category_Tier_1:nil
 withAction:@"CREATE"
 withCreate_Request:@"YES"
 withWork_Info_Summary:[NSString stringWithFormat:@"create %@",
[NSDate date]]
 withWork_Info_Notes:nil
 withWork_Info_Type:nil
 withWork_Info_Date:nil
 withWork_Info_Source:nil
 withWork_Info_Locked:nil
 withWork_Info_View_Access:nil
 withMiddle_Initial:nil
 withDirect_Contact_First_Name:nil
 withDirect_Contact_Middle_Initial:nil
 withDirect_Contact_Last_Name:nil
 withTemplateID:nil];

[cr submitPending];
// wait for response from server
while([RemedyCU_RemedyCUDB hasPendingOperations])
 [NSThread sleepForTimeInterval:1.0];

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Reference

Developer Reference for iPhone 71

Handling Exceptions
The iPhone Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace appearing in the server log, and a log record
(LogRecordImpl) being imported to the client with information on the problem. The client
receives both the log record and a replayFailed message.

Client-Side Exceptions
The HeaderDoc for the Client Object API lists the possible exceptions for the iPhone client.

Attribute Datatype Conversion
When a non-nullable attribute's datatype is converted to a non-primitive datatype (such as
class NSNumber, NSDate, and so on), you must verify that the the corresponding property for
the MBO instance is assigned a non-nil value, otherwise the application may receive a runtime
exception when creating a new MBO instance.

A typical scenario is when an attribute exists in ASE's identity column with a numeric
datatype. For example, for a non-nullable attribute with a decimal datatype, the corresponding
datatype in the generated Objective-C MBO code is NSNumber. When creating a new MBO
instance, ensure that you assign this property a non-nil value.

Operation Name Conflicts
Operation names that conflict with special field types are not handled.

For example, if an MBO has attributes named id and description, those attributes are stored
with the name id_ description_. If you create an operation called "description" and
generated Object-C code, you see an error during compilation because of conflicting methods
in the classes.

Exception Classes
The iPhone Client Object API supports exception classes for queries and for the messaging
client.

Query Exception Classes
Exceptions thrown by SUPStatementBuilder when building an SUPQuery, or by
SUPQueryResultSet during processing of the results. These exceptions occur if the

Reference

 72 Sybase Unwired Platform

query called for an entity or attribute that does not exist, or tried to access results with the
wrong datatype.

• SUPAbstractClassException.h – thrown when the query specifies an abstract class.
• SUPInvalidDataTypeException.h – thrown when the query tries to access results with

an invalid datatype.
• SUPNoSuchAttributeException.h – thrown when the query calls for an atttribute that

does not exist.
• SUPNoSuchClassException.h – thrown when the query calls for a class that does not

exist.
• SUPNoSuchParameterException.h – thrown when the query calls for a parameter that

does not exist.
• SUPNoSuchOperationException.h – thrown when the query calls for an operation that

does not exist.
• SUPWrongDataTypeException.h – thrown when the query tries to access results with

an incorrect datatype definition.

Messaging Client API Exception Classes
Exceptions in the iPhone messaging client (clientrt) library.

• SUPObjectNotFoundException.h – thrown by the load: method for entities if the
passed-in primary key is not found in the entity table.

• SUPPersistenceException.h – may be thrown by methods that access the database. This
may occur when application codes attempts to:

• Insert a new row in an MBO table using a duplicate key value.
• Execute a dynamic query that selects for attribute (column) names that do not exist in

an MBO.

MetaData and Object Manager API
The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

SUPDatabaseMetaData
You can use the SUPDatabaseMetaData class to retrieve information about all the classes
and entities for which metadata has been generated.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

SUPClassMetaData
The SUPClassMetaData class holds metadata for the MBO, including attributes and
operations.

Reference

Developer Reference for iPhone 73

SUPAttributeMetaData
The SUPAttributeMetaData class holds metadata for attributes such as attribute name,
column name, type, and maxlength.

Code Example for Accessing Metadata
The following code example for a package named "SampleApp" shows how to access
metadata for database, classes, entities, attributes, operations, and parameters.

NSLog(@"List classes that have metadata....");
SUPDatabaseMetaData *dmd = [SampleApp_ SampleAppDB metaData];
SUPObjectList *classes = dmd.classList;
for(SUPClassMetaData *cmd in classes)
{
 NSLog(@" Class name = %@:",cmd.name);
}
NSLog(@"List entities that have metadata, and their attributes
and operations....");
SUPObjectList *entities = dmd.entityList;
for(SUPEntityMetaData *emd in entities)
{
 NSLog(@" Entity name = %@, database table name =
 %@:",emd.name,emd.table);
 SUPObjectList *attributes = emd.attributes;
 for(SUPAttributeMetaData *amd in attributes)
 NSLog(@" Attribute: name = %@%@",amd.name,
 (amd.column ? [NSString stringWithFormat:@",
 database column = %@",amd.column] : @""));
 SUPObjectList *operations = emd.operations;
 for(SUPOperationMetaData *omd in operations)
 {
 NSLog(@" Operation: name = %@",omd.name);
 SUPObjectList *parameters = omd.parameters;
 for(SUPParameterMetaData *pmd in parameters)
 NSLog(@" Parameter: name = %@, type = %@",
 pmd.name, [pmd.dataType name]);
 }
}

Message-Based Synchronization APIs
The message-based synchronization APIs enable a user application to subscribe to a server
package, to remove an existing subscription from the Unwired Server, to suspend or resume
requests to the Unwired Server, and to recover data related to the package from the server.

Subscribe Data
The subscribe method allows the application to subscribe to a server package.

+(void) subscribe

Reference

 74 Sybase Unwired Platform

The preconditions for the subscribe are that the mobile application is compiled with the client
framework and deployed to a mobile device together with the Sybase Unwired Platform client
process. The device application has already configured Unwired Server connection
information.

A subscription message is sent to the Unwired Server and the application receives a
subscription request result notification from the Unwired Server .
[SampleApp_SampleAppDB subscribe];

Unsubscribe Data
The unsubscribe method allows the application to remove the existing subscription from
server. The device application must already have a subscription with the server.

+(void) unsubscribe

On success, an unsubscription message is sent to the Unwired Server and the application
receives a subscription request result notification from the Unwired Server as a notification.
The data on the local database is cleaned.

On failure, the client application receives subscription request result notification from server
as notification with a failure message.
[SampleApp_SampleAppDB unsubscribe];

Suspend Subscription
The suspendSubscription operation allows a device application to send a suspend
request to the Unwired Server. This notifies the server to stop delivering data changes.

+(void) suspendSubscription
[SampleApp_SampleAppDB suspendSubscription];

Synchronize Data
The beginSynchronize methods send a message to the Unwired Server to synchronize
data between the client and the server.

+(void) beginSynchronize

This method is used to synchronize all data.

+(void) beginSynchronize:(NSString*)synchronizationGroups:
(NSString*)context

This method synchronizes only those MBOs that are part of certain synchronization groups.
The parameter synchronizationGroups is a string containing a comma separated list
of groups to be synchronized. The parameter context is a reference string that is referred to
when the server responds to the synchronization request. See the discussion of the
onSynchronize callback handler method in Reference: Administration APIs > Reference
> iPhone Client Object API > Utility APIs > Callback Handlers.
[SampleApp_SampleAppDB beginSynchronize];

Reference

Developer Reference for iPhone 75

Resume Subscription
The resumeSubscription operation allows a device application to send a resume
request to the Unwired Server. This request notifies the Unwired Server to resume sending
data changes since the last suspension.

+(void) resumeSubscription
[SampleApp_SampleAppDB resumeSubscription];

Recover Subscription
The recover operation allows the device application to send a recover request. This notifies
the Unwired Server to send down all the data related to the package.

+(void) recover
[SampleApp_SampleAppDB recover];

Start or Stop Background Synchronization
Message-based synchronization is performed at the package level. The generated package
database class provides methods for starting and stopping the background processing of the
incoming messages.

To start background synchronization:
[SampleApp_SampleAppDB startBackgroundSynchronization];

To stop background synchronization:
[SampleApp_SampleAppDB stopBackgroundSynchronization];

When an incoming message is processed, callbacks are triggered. See Reference:
Administration APIs > iPhone Client Object APIs > Message-Based Synchronization APIs >
Callback Handlers for information on how to register a callback handler.

Replay Results
The client application can call the hasPendingOperations method after a
submitpending call to the server to wait for replay results. This method returns true if
there are replay pending requests, otherwise, it returns false.

+(void)hasPendingOperations
while ([SampleApp_SampleAppDB hasPendingOperations])
 [NSThread sleepForTimeInterval:0.2];

The preceding code example waits indefinitely if the client application does not receive a
replay result from the Unwired Server, and if a record has the replayPending flag set. To
exit this loop after a particular time interval has passed, you can add a timer.
BOOL shouldWait = YES;
 long sleepTime = 1;
 long timeout = 10*60;
 while (shouldWait && (sleepTime < timeout))

Reference

 76 Sybase Unwired Platform

 {
 shouldWait = [SampleApp_SampleAppDB hasPendingOperations];
 if (shouldWait)
 {
 [NSThread sleepForTimeInterval:0.2];
 }
 if (sleepTime <= timeout)
 {
 timeout = timeout - sleepTime;
 }
 }
 if (shouldWait) {
 MBOLogError(@"Cannot wait , Timeout");
 }

Messaging Client API
The Sybase Unwired Platform messaging client (SUPMessageClient) API is part of the
libclientrt library. The messaging client is responsible for setting up a connection
between the user application and the server, as well as sending client messages up to the
Unwired Server and receiving the import messages sent down to the client.

The Messaging Client API consists of the following methods:

+(void)setAssertionState:(BOOL)hideAssertions;

Determines whether assertions should appear or not.

+(NSInteger)start

Starts the messaging client and connects to the Unwired Server. You must use the settings
application to enter the Sybase Unwired Platform user preferences information, including
server name, port, user name, and activation code.

The parameters server name, user name, serverport, companyID and activation correspond to
the Unwired Server name, the user name registered with the Unwired Server, the port the
Unwired Server is listening to, the company ID, and activation code, respectively. If a Relay
Server is used, ‘companyID’ corresponds to the farm ID of the Relay Server.

To ensure that messages are routed to the correct client application, the messaging client code
sends the application executable name (specifically, the first 16 characters of the
CFBundleExecutable value from the application’s Info.plist) to the Unwired
Server. The Unwired Server requires that each application on a device (or simulator) connect
to the Unwired Server with a different user name.

This call returns one of the following values as defined in SUPMessageClient.h.
• kSUPMessageClientSuccess
• kSUPMessageClientFailure
• kSUPMessageClientKeyNotAvailable
• kSUPMessageClientNoSettings

Note: Ensure that the package database exists (either from a previous run, or a call to
[SampleApp_SampleAppDB createDatabase]) and that

Reference

Developer Reference for iPhone 77

[SampleApp_SampleAppDB startBackgroundSynchronization] is called
before calling [SUPMessageClient start].

The following code example shows the start method:

NSInteger result = [SUPMessageClient start];

if (result == kSUPMessageClientSuccess)
{
 //Continue with your application
}
// At this point, if the result is a NO, then the client
// application can decide to quit or throw a message alerting
// the user that the connection to the server was
// unsuccessful.

+(NSInteger)stop

Stops the messaging client.
[SUPMessageClient stop];

+(NSInteger)restart

Restarts the messaging client. Returns YES when successful, otherwise, if the required
preferences are not set, or an error occurred when restarting the client, returns NO.
NSInteger result = [SUPMessageClient restart];

+(BOOL)provisioned

Checks if all the required provisioning information is set. Returns NO when required
preferences are not set, andYES when all the required information is set.
BOOL result = [SUPMessageClient provisioned];

+(int)status

Returns the last status received from messaging client, as one of the following values:

• 0 – not started
• 1 – started, not connected
• 2 – started, connected

int result = [SUPMessageClient status];

Reference

 78 Sybase Unwired Platform

Index
A
APNS 32
Apple gateway 67
Apple Push Notification API 67
Apple Push Notification Service 32
application provisioning

with iPhone mechanisms 32
arrays 50
AttributeMetaData 74
AttributeTest 41

B
beginSynchronize 75

C
callback handlers 63
ClassMetaData 73
common APIs 55
complex attribute type 68
CompositeTest 42
ConnectionProfile 37
create operation 45

D
DatabaseMetaData 73
DEBUG__ define 62
delete operation 46
documentation roadmap

document descriptions 2

E
entity states 51, 52

G
getLogRecords 60

H
hasPendingOperations 76

HeaderDoc 14

I
ID generation 63
infrastructure provisioning

with iPhone mechanisms 32
iPhone

iTunes provisioning 34
provisioning 32

K
Keychain 58

L
local business object 49
LOGRECORD_ON_IMPORT 62
LogRecordImpl 60, 63

M
MBODebugLogger 62
MBODebugSettings.h 62
MBOLogger 62
messaging client API 77

N
newLogRecord 60

O
OfflineLogin 37

P
pending operation 48
personalization keys 50

types 49
PRINT_PERSISTENCE_MESSAGES 62
PRINT_SERVER_MESSAGE_CONTENT 62
PRINT_SERVER_MESSAGES 62

Index

Developer Reference for iPhone 79

provisioning
employee iPhone applications 34

provisioning devices
with iPhone mechanisms 32

push notifications 67

Q
QueryResultSet 44

R
Read API 39
relationship data, retrieving 45
replay pending requests 76
replay results 76
resumeSubscription 76

S
save operation 47
server log messages 62
sleepForTimeInterval 76
status methods 51, 52
submitLogRecords 60
subscribe data 74
SUPAbstractClassException.h 72
SUPInvalidDataTypeException.h 72

SUPKeyVault 58
SUPLogRecords 62
SUPNoSuchAttributeException.h 72
SUPNoSuchClassException.h 72
SUPNoSuchOperationException.h 72
SUPNoSuchParameterException.h 72
SUPObjectNotFoundException.h 73
SUPPersistenceException.h 73
SUPWrongDataTypeException.h 72
suspendSubscription 75
synchronization 38
SynchronizationProfile 37
synchronize data 75
synchronizing and retrieving MBO data 15

T
timer 76

U
unsubscribe data 75
update operation 46

X
Xcode 11

Index

 80 Sybase Unwired Platform

	Developer Reference for iPhone
	Contents
	Introduction to Developer Reference for iPhone
	Documentation Road Map for Unwired Platform
	Device Application Development

	Development Task Flows
	Task Flow for Xcode IDE Development
	Mobile Business Object Code
	Generating Mobile Application Project Code for iPhone

	Importing Libraries and Code into the Xcode IDE
	Developing Applications in the Xcode IDE
	Generating HeaderDoc from Generated Code
	Configuring an Application to Synchronize and Retrieve MBO Data
	Referencing the iPhone Client Object API
	iPhone Device Application Example Code

	Deploying Applications to iPhone Devices
	Device Registration
	Registering the iPhone Device in Sybase Control Center
	Configuring Physical Device Settings

	Deploying iPhone Applications to the Enterprise
	Apple Push Notification Service Configuration
	Preparing an Application for Apple Push Notification Service
	Provisioning an Application for Apple Push Notification Service

	Reference
	iPhone Client Object API
	Connection APIs
	ConnectionProfile
	SynchronizationProfile
	Authentication

	Synchronization APIs
	Setting Synchronization Parameters

	Query APIs
	Retrieving Data from an MBO
	Object Queries
	Arbitrary Find
	SUPAttributeTest
	SUPCompositeTest
	Dynamic Query
	Paging Data

	SUPQueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert (MLI)
	Pending Operation

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values
	Passing Arrays of Values, Objects

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Refresh

	Security APIs
	Encryption of Client Data
	Encryption of the Database
	Configuring Application Security Using Keychain

	Utility APIs
	Using the Log Record APIs
	Log Levels and Tracing APIs
	Server Log Messages
	Tracing APIs
	Printing Log Messages

	generateGuid
	Callback Handlers
	Date/Time
	Apple Push Notification API

	Complex Attribute Types
	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	Client-Side Exceptions
	Attribute Datatype Conversion
	Operation Name Conflicts

	Exception Classes
	Query Exception Classes
	Messaging Client API Exception Classes

	MetaData and Object Manager API
	SUPDatabaseMetaData
	SUPClassMetaData
	SUPAttributeMetaData
	Code Example for Accessing Metadata

	Message-Based Synchronization APIs
	Subscribe Data
	Unsubscribe Data
	Suspend Subscription
	Synchronize Data
	Resume Subscription
	Recover Subscription
	Start or Stop Background Synchronization
	Replay Results

	Messaging Client API

	Index

