SYBASE

Company

Developer Guide: Windows and Windows
Mobile Native Applications

Sybase Unwired Platform 2.1

DOCUMENT ID: DC01216-01-0210-02

LAST REVISED: November 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Guide: Windows and

Windows Mobile Native Applicationsc..uuvvvvvinnnnnns 1
Documentation Roadmap for Unwired Platform............. 1
Introduction to Developing Device Applications with

Sybase Unwired Platformcccvvvvevieiiiiiiiiiiiiinnee, 1
Development Task FIOWouuviiiiiiiiiiiiiiiiiiiieeeee e 3
Task Flow for C# Development............ccccoovvvivviiiiiiiinnnnnns 3
Configuring Your Windows or Windows Mobile
ENVIFONMENToii e 4
Installing the Windows Mobile Development
ENVIroNmMeNt ..o 4
Client Application Dependencies..........cccccevvvvnnnn.. 6
Using Object API to Develop a Device Application......... 8
Generating C# Object APl Codeccceevvvveneees 8
Generated Code Location and Contents............. 11
Validating Generated Codecccccvvvvvvieeeeeeeennn. 12
Creating @ Projectcevvvvviiiiiviiiiiiiiiiiiiiiiiiiiinens 12
Developing a Windows or Windows Mobile Device
Application Using Visual Studiocccccvvveernnnnns 13
Windows Mobile Development.............cccccceeeennnn. 13
Creating a Mobile Application Project.................. 16
Configuring an Application to Synchronize and
Retrieve MBO Data..........cooveevviiviieeiiiiiiineeees 18
Localizing a Windows Mobile Application............ 19
REfEIENCE . 21
Windows Mobile Client Object APlccccooeeviiiiieeenns 21
ConNection APIS ... 21
Synchronization APISceeiiiiiiiiieeeeeeeeeeeiiiiis 26
QUETY APIS ... 27
Operations APISooovvviiiiiiiiiee e 36
Local Business ODjecCtcccovvviiiiiiiiiiiiiiiiiiiiiins 41

Developer Guide: Windows and Windows Mobile Native Applications iii

Contents

Personalization APISccooooiiiiiiiiiiiiiiiieeeeeeeeeeies 41
Object State APISvceviieiiiiiee e, 42
Security APIS ... 50
ULIHIEY APIS oo 59
Installing X.509 Certificates on Windows Mobile
Devices and Emulators.............oooeeeciiivnnnnee, 63
Single Sign-On With X.509 Certificate Related
ODJECt APl . 64
EXCEPLIONS ... 66
MetaData and Object Manager API 68
Replication-Based Synchronization APIs............ 70
Best Practices for Developing Applications.................... 75
Check Network Connection Before Login............ 75
Check Connection before Synchronization.......... 75
Start a New Thread to Handle Replication-
based Synchronizationccccccceeeieeeriennnnnn. 75
Constructing Synchronization Parameters.......... 76
Clear Synchronization Parameters...................... 76
Clear the Local Databasecccoeeeeeiiiieiennnnnns 76
Turn Off AP LOQQEroiieeieeeeiiee e 76
.. 77

Sybase Unwired Platform

Introduction to Developer Guide: Windows and Windows Mobile Native Applications

Introduction to Developer Guide: Windows
and Windows Mobile Native Applications

This developer guide provides information about using advanced Sybase® Unwired Platform
features to create applications for Microsoft Windows and Windows Mobile devices. The
audience is advanced developers who are familiar working with APIs, but who may be new to
Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the client object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and client object API documentation.

Companion guides include:

e Sybase Unwired WorkSpace — Mobile Business Object
e Tutorial: Windows Mobile Application Development
» Troubleshooting for Sybase Unwired Platform
e C#documentation, which provides a complete reference to the APIs:
« You can integrate help for generated code from mobile business objects (MBOs) into
your Visual Studio project. See /ntegrating Help into a Project on page 13.

See Fundamentalsfor high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Documentation Roadmap for Unwired Platform

Learn more about Sybase® Unwired Platform documentation.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on Production Documentation.

Check the Sybase Product Documentation Web site regularly for updates: access Attp.//
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Introduction to Developing Device Applications with
Sybase Unwired Platform

A device application includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of mobile
application development:

Developer Guide: Windows and Windows Mobile Native Applications 1

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Introduction to Developer Guide: Windows and Windows Mobile Native Applications

The data aspects of the mobile application are called mobile business objects (MBO), and
“MBO development” refers to defining object data models with back-end enterprise
information system (EIS) connections, attributes, operations, and relationships that allow
segmented data sets to be synchronized to the device. Applications can reference one or
more MBOs and can include synchronization keys, load parameters, personalization, and
error handling.

Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your device application by generating code to use as a
base in a native IDE. Follow an API approach that uses your native IDE's Client Object
API. Unwired WorkSpace provides MBO code generation options targeted for specific
development environments, for example, BlackBerry JDE for BlackBerry device
applications, or Visual Studio for Windows Mobile device applications.

The Client Object API uses the data persistence library to access and store object data in
the database on the device. Code generation takes place in Unwired WorkSpace. You can
generate code manually, or by using scripts. The code generation engine applies the
correct templates based on options and the MBO model, and outputs client objects.

Note: See Sybase Unwired WorkSpace — Mobile Business Object Development for
procedures and information about creating and deploying MBOs.

Sybase Unwired Platform

Development Task Flow

Development Task Flow

Describes the overall development task flow, and provides information and procedures for
setting up the development environment, and developing device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated Ul interaction, validation, business
logic, and performance.

Mobile Application

:

Custom
Device
Application

:

Generated Object API Object API Framework

MBO Object API Layer

Mobile 0OS

Persistence Messaging Services

Mobile System Services

Task Flow for C# Development

This describes a typical task flow for creating a device application using Visual Studio and
C#.

Highlevel steps:

1. Configuring Your Windows or Windows Mobile Environment on page 4.
2. Using Object API to Develop a Device Application on page 8

Developer Guide: Windows and Windows Mobile Native Applications 3

Development Task Flow

3.

Developing a Windows or Windows Mobile Device Application Using Visual Studio on
page 13.

Configuring Your Windows or Windows Mobile Environment

This section describes how to set up your Visual Studio development environment, and
provides the location of required DLL files and client object APlIs.

Installing the Windows Mobile Development Environment

Install and configure Microsoft ActiveSync so you can deploy and run device applications on
an emulator. If you install Visual Studio 2008, the Windows Mobile Device Emulators
(Windows Mobile 5) and Device Emulator Manager are already installed.

Note: Microsoft ActiveSync is for Windows XP. If you are using Windows Mobile 5.0, you
must install Virtual PC 2007 SP1 to connect. If you are using Windows Mobile 6.0 or later
using Active Sync to connect on Windows XP, use Windows Mabile Device Center to connect
on Windows Vista and late Windows OS. You can download the Windows Mobile Device
Center from http.//www.microsoft.com/windowsmobile/en-us/downloads/microsoft/device-
center-download.mspx.

1

o

© © N o

Install the Windows Mobile 6 Professional SDK. You can download it from Attp.//
www.microsoft.com/downloads/details.aspx ?familyid=06111A3A-
A651-4745-88EF-3D48091A390B&displaylang=en#Additionallnfo.

Download Microsoft ActiveSync from the Attp.//www.microsoft.com/windowsmobile/
en-us/help/synchronize/device-synch.mspx. Save it to your local machine. Windows XP
requires version 4.5.

In Windows Explorer, double-click setup.msi to run the ActiveSync installer.
Follow the steps in the ActiveSync installer to complete the installation.
When installation is complete, restart your machine.

ActiveSync starts automatically, and its icon appears in the Windows toolbar.
Double-click the ActiveSync icon.

Select File > Connection Settings.

In the Connection Settings dialog, select all the check boxes.

Under "Allow connections to one of the following", select DMA.

10. Under "This computer is connected to", select Work Network.

Sybase Unwired Platform

http://www.microsoft.com/windowsmobile/en-us/downloads/microsoft/device-center-download.mspx
http://www.microsoft.com/windowsmobile/en-us/downloads/microsoft/device-center-download.mspx
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx

Development Task Flow

12 Connection Settings i|

Waiting for device to connect

bl Connect...

[v Show status icon in taskbar

[v Allow USB connections

v Allow connections to one of the following:
\DMaA |

This computer is connected fo:
|W0rk Metwark LJ

v Open ActiveSync when my device connects

|v Allow wireless connection on device when connected to the desktop

Help OK Cancel

11.Click OK.

Configuring Windows Mobile Device Center

Before using the Windows Mobile Device Emulator, you need to change the settings of
Windows Mobile Device Center.

o 0~ w DN

7.

Open Windows Mobile Device Center.

Click Mobile Device Settings.

Click Connection Settings.

Click on the Allow connectionsto one of the following checkbox.
Select DMA in the combobox.

On the This computer is connected to combobox, select The I nternet if you want to
allow the Windows Mobile device to access the Internet using Pocket IE.

Start the Windows Mobile Device Emulator.

Enabling Network Access from the Windows Mobile Device Emulator

Enable network access in the Windows Mobile Device Emulator for Windows Mobile 5.0. For
Windows Mobile 6.0 and later, you are required to perform only step 5.

You can start the Windows Mobile Device Emulator from Visual Studio or from the Device
Emulator Manager.

1

To start the Emulator from Visual Studio 2008:

Developer Guide: Windows and Windows Mobile Native Applications 5

Development Task Flow

a) Select Tools > Device Emulator Manager.

If a Device Emulator is not yet connected:

a) Select a Device Emulator from the list and select Connect.

If you are using this Device Emulator for the first time:

a) Inthe Emulator, select File > Configure.

b) Click the Network tab.

¢) Check the Enable NE2000 PCM CI A networ k adapter and bind to checkbox.
d) Select Connected network card from the list.

On the Emulator, configure the connection settings:

a) Inthe Emulator, select Start > Settings.

b) Select the Connectionstab.

¢) Click Connections.

d) Select the Advanced tab.

e) Click on Select Networks.

f) In the Settings window, select My Work Network in the first combobox.

g) Select File> Save State and Exit.

h) Restart the Emulator.

Right-click the current Emulator in Device Emulator Manager and select Cradle.

ActiveSync starts. Once the connection is established, you should be able to access your
PC and the Web from the Device Emulator.

Client Application Dependencies

To build device clients, some files, which are provided in the Unwired Platform installation,
are required in certain situations, such as when using a secure port for synchronization.

The client API assembly DLL dependencies are installed under the
<Unwi redPl at form I nstal | Di r>\ C i ent API directory. The contents of the
dient API directory are:

RBS\ WM and RBS\ W n32 — Binaries of the framework classes for .NET.

* WAM: files for use on Windows CE based systems such as Windows Mobile 5+.

* Win32: files for use on full Windows based systems like Windows XP.

RBS\WM U tralite and RBS\Wn32\cs\U tralite—.NET Data
Persistence Library and client database (UltraLite®) assemblies. This is used for
replication-based synchronization client applications on Windows Mobile or Windows.

Ser ver Sync —Used in replication-based synchronization applications for push
notification synchronization support.

The .NET assemblies listed above support Compact Framework 3.5+ on Visual Studio 2008.
These project types are supported:

Sybase Unwired Platform

Full NET Framework 3.5+ Application
Windows CE .NET CF 3.5+ Application
Pocket PC .NET CF 3.5+ Application
Smartphone .NET CF 3.5+ Application

Development Task Flow

If required, copy the following . dI | files to the location used for referencing them in the
Visual Studio application source project.

Platform Location Files Notes
Windows Mobile Pro- | , %Sybase% .« sup-cli-
fessional 6.0, 6.1, and \ Unwi r ed- ent . dl |
6.5 .
Pl atform e PUII-
\dient API TRU. dI |
\ RBS\ WM
- YBybase% « ulnetll.dll ;:‘e 1l
\Unwired- |+ morsatt. dl | g ¢ %30
Platform l yloz I:rzejsi':]g Znsgcljre
t SBISf! C\:\AAEII port (HTTPS) for syn-
)) chronization.
tralite
%Sybase% Un- i Anywher e. Da-
wiredPlatform |ta. Utra-
\dient API Lite.dll
\ RBS\ WA Ul -
tralite
%sybase% Un- i Anywher e. Da- | Copy from the respec-
wiredPlatform |ta.Utra- tive locale-specific

\dient API

\ RBS\ WM U -
tralite\<lan-
guage>

Lite. resour-
ces. dl |

folders.

Windows XP, Vista,
Windows 7

%sSybase% Un-
wi redPl atform
\dient API

\ RBS\ W n32\ cs

e sup-cli-
ent.dl |

e pidutil.dll

e PUII-
TRU. dI |

Developer Guide: Windows and Windows Mobile Native Applications

Development Task Flow

« nlcrsall. dl

Platform Location Files Notes
%_Sybase% Un- « ulnet11.dl| | The
wi redPl atf orm m crsall. dl |

\dient API | file is required only if

\ RBS\ W n32\cs you are using a secure

\Utralite port (HTTPS) for syn-
chronization.

¥Sybase% Un- i Anywher e. Da-

wiredPlatform |ta. Utra-

\dient API Lite.dll

\ RBS\ W n32\ cs

\Utralite

%Sybase% Un- i Anywher e. Da- | Copy from the respec-

wiredPlatform |ta. Utra- tive locale-specific

\dient API

\ RBS\ W n32\ cs
\Utralite

\ <l anguage>

Lite. resour-
ces. dl |

folders.

Using Object API to Develop a Device Application

Generate object API code on which to build your application.

Unwired Platform provides the Code Generation wizard for generating object API code. Code
generation creates the business logic, attributes, and operations for your Mobile Business
Object. You can generate code for these platforms:

* Windows Mobile

* Windows

See the guidelines for generating code for each platform type.

Generating C# Object API Code

Generate object API code for applications that will run on Windows Mobile.

1. Launch the Code Generation wizard.

From

Action

The Mobile

Application Diagram

Right-click within the Mobile Application Diagram and select
Generate Code.

Sybase Unwired Platform

Development Task Flow

From

Action

WorkSpace Navigator | Right-click the Mobile Application project folder that contains the

mobile objects for which you are generating APl code, and select
Generate Code.

2. (Optional) Enter the information for these options:

Note: This page of the code generation wizard is seen only if you are using the Advanced

developer profile.

Option

Description

Select code genera-
tion configuration

Select either an existing configuration that contains code generation set-

tings, or generate device client code without using a configuration:

» Continue without a configuration —select this option to generate device
code without using a configuration.

« Select an existing configuration — select this option to either select an
existing configuration from which you generate device client code, or
create a new configuration. Selecting this option enables:

» Select code generation configuration — lists any existing configu-
rations, from which you can select and use for this session. You can
also delete any and all existing saved configurations.

» Create new configuration — enter the Name of the new configura-
tion and click Createto save the configuration for future sessions.
Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

3. Click Next.

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Note: Code generation fails if the server-side (run-time) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

5. Click Next.

6. Enter the information for these configuration options:
Option Description
Language Select C#.

Developer Guide: Windows and Windows Mobile Native Applications 9

Development Task Flow

Option

Description

Platform

Select the platform (target device) from the

drop-down list for which the device client code

is intended.

e NET Framework for Windows

e NET Compact Framework 3.5 for Win-
dows Mobile

Unwired Server

Specify a default Unwired Server connection
profile to which the generated code connects at
runtime.

Server domain

Choose the domain to which the generated code
will connect. If you specified an Unwired Serv-
er to which you previously connected success-
fully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an Un-
wired Server is selected.

Page size

Optionally, select the page size for the gener-

ated client code. If the page size is not set, the
default page size is 16KB at runtime. The de-
fault is a proposed page size based on the se-

lected MBO's attributes.

The page size should be larger than the sum of
all attribute lengths (a binary length greater
than 32767 is converted to a Binary Large Ob-
ject (BLOB), and is not included in the sum; a
string greater than 8191 is converted to a Char-
acter Large Object (CLOB), and is also not in-
cluded) for any MBO that is included with all
the selected MBOs. If an MBO attribute's
length sum is greater than the page size, some
attributes are automatically converted to BLOB
or CLOB, and therefore, these attributes cannot
be put into a wher e clause.

Note: This field is only enabled when an Un-
wired Server is selected. The page size option is
not enabled for message-based applications.

10

Sybase Unwired Platform

Development Task Flow

Option Description

Namespace Enter a namespace for C#.
Note: The namespace name should follow
naming conventions for C#. Do not use ".com"
in the namespace.

Destination Specify the destination of the generated device

client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location. Select
Clean up destination before code gener ation
to clean up the destination folder before gener-
ating the device client files.

Replication-based

Select to use replication-based synchroniza-
tion.

Backward compatible

Select so the generated code is compatible with
the SUP 1.2 release.

7. Select Generate metadata classesto generate metadata for the attributes and operations

of each generated client object.

8. Select Generatemetadataand object manager classesto generate both the metadata for
the attributes and operations of each generated client object and an object manager for the

generated metadata.

The object manager allows you to invoke MBOs using metadata instead of the object

instances.
9. Click Finish.

Generated Code Location and Contents

Generated object API code is stored in the project's Generated Code sub-folder by default, for
example, C: \ Docunents and Settings\adm ni strator\workspace

\ <Unwi red Pl atform project nanme>\ Gener at ed Code\ src. Language,
platform, and whether or not you select the Generate metadata classes option determines the

class files generated in this folder.

Assuming you generate code in the default location, you can access it from WorkSpace
Navigator by expanding the Mobile Application project folder for which the code is
generated, and expand the Generated Code folder.

The contents of the folder is determined by the options you selected from the Generate Code
wizard, and include generated class (.cs) files that contain:

e MBO - the business logic of your MBO.

« Synchronization parameters - any synchronization parameters for the MBOs.

Developer Guide: Windows and Windows Mobile Native Applications 11

Development Task Flow

» Personalization - personalization and personalization synchronization parameters used by
the MBOs.

* Metadata - if you selected Gener ate metadata classes, the metadata classes which allow
you to use code completion and compile-time checking to ensure that run-time references
to the metadata are correct.

Validating Generated Code

Validation rules are enforced when generating client code for C# and Java. Define prefix
names in the Mobile Business Object Preferences page to correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for key word
conflicts in generated Java and C# code. For example, by displaying error messages in the

Properties view or in the wizard. Other than the known name conversion rules (converting .' to
' ', removing white space from names, and so on), there is no other language specific name

conversion. For example, cust_id is not changed to custld.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand Sybase, Inc > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are auto-generated. For example, when you drag-and-drop a data source onto
the Mobile Application Diagram.

Creating a Project

Build a device application that runs on Windows or Windows Mobile platforms.

1. From the Visual Studio main menu select File > New > Project.
2. Select:
e Target platform:
* Windows Mobile 5.0 Professional
* Windows Mobile 6.0, 6.1, and 6.5 Professional
* Windows
e Library version — .NET version 3.5
» Language — the language used in the resource DLLs, to be included in the generated
project.

12

Sybase Unwired Platform

Development Task Flow

Different sets of DLLs are included in the project based on your selections. The project
contains all assemblies and runtime support DLLs required to access the Object API.

Click OK to generate the Visual Studio Project with the dependent Sybase Unwired
Platform .NET assemblies.

Build the Solution. From the Visual Studio main menu select Build > Build Solution.
The DLLs are copied to the target directory and the directory structure is flattened.

Once generated and built, you can write custom mobile applications based on your
selections.

Develop the mobile business objects (MBOSs) that implement the business logic.

See these online help topics:
» Sybase Unwired Platform > Sybase Unwired Workspace — Eclipse Edition > Develop
> Developing a Mobile Business Object

Use the Code Generation wizard to generate the C# Object API code for the mobile
business object.

Add the generated code to the new project you created from the template.
For more information, see the Rebuilding the Generated Solution in Visual Studio.

Developing a Windows or Windows Mobile Device
Application Using Visual Studio

After you import Unwired WorkSpace projects (mobile application) and associated libraries
into the development environment, use the Cl i ent Cbj ect API and native APIs to create
or customize your device applications.

Note: Do not modify generated MBO code directly. Create a layer on top of the MBOs using
patterns native to the mobile operating system development to extend and add functionality.

Windows Mobile Development

Develop a Windows Mobile application by generating the Visual Studio 2008 projects in C#,
and running the application in the device or on a simulator to test.

1

3.

Generate Mobile Business Objects (MBOs), then create a new Visual Studio project, then
import generated MBOs, and create the user interface.

Add business logic to the generated code through the Windows Mobile Client Object API.
See Developer Guide for Windows and Windows Mobile > Reference > Client Object
AP

Run the application in the device or on a simulator.

Integrating Help into a Project

When you generate MBOs or client applications for Windows Mobile from Unwired
WorkSpace, an XML file is generated for the MBOs. The generated Visual Studio project for

Developer Guide: Windows and Windows Mobile Native Applications 13

Development Task Flow

the forms can also generate a XML file. When you compile a project, an XML file is
generated. You can use these XML files to generate online help.

To generate online help for Visual Studio 2008, you can use Sandcastle and Sandcastle Help
File Builder. You can download and install Sandcastle and Sandcastle Help File Builder from
these locations:

o http://sandcastle.codeplex.com/Wikipage
o http.//shib.codeplex.com/releases

To integrate help into your project build:

1. Add the /doc option in your project build, so that it can generate an XML file from the
comments. You can also configure this option in the Visual Studio project properties. On
the Build tab, select XML documentation and provide a file name.

2. Create a SandCastle Help File Builder project (.shfb file). Specify the assemblies and the
XML file generated from the comments as input. You can also specify other help
properties.

3. Usethe . shf b project file in a script to build the document. For example:

<Target Nanme="Docunentation">

<Exec Command="$(SandCast | eHel pBui | der Pat h) <shfb proj ect
file> shfb" />
</ Tar get >

Debugging Windows and Windows Mobile Device Development
Device client and Unwired Server troubleshooting tools for diagnosing Microsoft Windows
and Windows Mobile development problems.

Client-Side Debugging
Problems on the device client side that may cause client application problems:

» Unwired Server connection failed.
« Data does not appear on the client device.
» Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

» If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging and review the debugging information. See Developer
Guide for Windows and Windows Mobile about using the MBOLogger class to add log
levels to messages reported to the console.

« Check the log record on the device. Use the
Dat abaseC ass. Get LogRecor d(Sybase. Per si st ence. Query) or
Entity. Get LogRecor ds methods.

This is the log format

| evel , code, ei sCode, nessage, conponent, enti t yKey, oper ati on, r equest |
d, ti mestanp

14

Sybase Unwired Platform

http://sandcastle.codeplex.com/Wikipage
http://shfb.codeplex.com/releases

Development Task Flow

This log format generates output similar to:

| evel code ei sCode nessage conponent entityKey operation requestid
ti mest anmp

5,500,"'","java.l ang. SecurityException: Aut hori zation fail ed:
Domai n = default Package = end2end.rdb: 1. 0 nboNanme =
si npl eCust oner action =
del ete','sinpleCustoner','100001', " 'delete','100014',"' 2010-05-11
14: 45: 59. 710

| evel —the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.
* code — Unwired Server administration codes.
* Replication-based synchronization codes:
e 200 - success.
» 500 - failure.
* ei sCode —maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).
* nessage - the message content.
e conponent — MBO name.
* entityKey - MBO surrogate key, used to identify and track MBO instances and
data.
e operati on - operation name.
e request | d - operation replay request ID or messaging-based synchronization
message request ID.
e timestanp - message logged time, or operation execution time.
If you have implemented onConnect i onSt at usChange for message-based
synchronization in Cal | backHandl er , the connection status between Unwired Server
and the device is reported on the device. See the Developer Guide for Windows and
Windows Mobile for Cal | backHandl er information. The device connection status,
device connection type, and connection error message are reported on the device:
e 1 - current device connection status.
e 2 —current device connection type.
« 3 -—connection error message.

Server-Side Debugging
Problems on the Unwired Server side that may cause device client problems:

The domain or package does not exist. If you create a new domain, whose default status is
disabled, it is unavailable until enabled.

Authentication failed for the synchronizing user.
The operation role check failed for the synchronizing user.
Back-end authentication failed.

Developer Guide: Windows and Windows Mobile Native Applications 15

Development Task Flow

« An operation failed on the remote, replication database back end, for example, a table or
foreign key does not exist.

» An operation failed on the Web Service, REST, or SAP® back end.
To find out more information on the Unwired Server side:

* Check the Unwired Server log files.
» For message-based synchronization mode, you can set the log level to DEBUG to obtain
detailed information in the log files:
1. Check the global SUP MSG log level in <serrver _i nstal | _fol der>
\ Unwi r edPl at f or ml Server s\ Unwi r edSer ver\ Reposi tory
\ I oggi ng-confi guration.xm toensurethe Log | evel of<Entity
EntityTypel d="MSG' > is set to DEBUG.
2. Modify the log level for the module SUPBr i dge and JnsBr i dge in
<server _install _folder>\UnwredPl atform Servers
\ Messagi ngSer ver\ Dat a\ TraceConfi g. xn to DEBUG.
3. Check the SUPBr i dge and JMSBr i dge logs, for detailed information.

Note: Itis important to return to INFO mode as soon as possible, since DEBUG mode can
effect system performance.
* You can also obtain DEBUG information for a specific device:
¢ View information through the SCC administration console:
1. Set the DEBUG level to a higher value for a specified device through SCC
administration console:
a. On SCC, select a device, then select Properties... > Device Advanced.
b. Set the Debug Trace Level value.
2. Set the TRACE file size to be more than 50KB.
3. View the trace file through SCC.
e Checkthe<server _install _fol der>\Unw redPl atform Servers
\ Messagi ngSer ver\ Dat a\ Cl i ent Tr ace directory to see the mobile device
client log files for information about a specific device.

Note: Itis important to return to INFO mode as soon as possible, since DEBUG mode can
effect system performance.

Creating a Mobile Application Project

This describes how to set up a project in Visual Studio. You must add the required libraries as
references in the Visual Studio project.

You can use this method to create replication-based synchronization client projects.

1. Add the following libraries for the appropriate device platform as references in the Visual
Studio project:

For Windows Mobile:

16

Sybase Unwired Platform

Development Task Flow

e sup-client.dll —from<Unwi redPl atformlInstallDir>
\ d i ent API \ RBS\ WM

e i Anywhere.Data. U traLite.dl | —from
<UnwiredPlatformiInstalIDir>\Client API\RBS\WM U tralite.

e i Anywhere.Data. U tralite.resources. dl| (several languages are
supported) — from <Unwi r edPl atform_ I nstal | Di r >\ Cl i ent APl \ RBS
\WM U tralite\<language>.

For Windows:

e sup-client.dll —from<Unwi redPlatformlInstallDir>
\ Cl i ent API\ RBS\ W n32\ cs.

e i Anywhere.Data. U traLite.dl | —from
<Unwi redPl atform Install Dir>\Cient APl \ RBS\ W n32\ cs
\Utralite.

e i Anywhere.Data. U tralite.resources. dl | (several languages are
supported) — from <Unwi r edPl atform I nstal | Di r >\ Cl i ent AP\ RBS
\Wn32\cs\U tralite\<language>.

2. Add the following libraries for the appropriate device platform as items in the Visual

Studio project. Set "Build Action" to "Content™ and "Copy to Output Directory" to Copy

always.

For Windows Mobile:

e ulnetll.dll —from<Unwi redPl atform InstallDir>\dientAP|
\RBS\WM U tralite.

e mcrsall.dl| (if HTTPS protocol is used) — from
<UnwiredPlatformInstalIDir>\Client API\RBS\WM U tralite.
e PUIilTRU. dII -from<Unw redPl atformInstallDir>\dientAPI

\ RBS\ VM
For Windows:
e ulnetll.dl |l —from<UnwiredPlatformlInstall Dir>\Cient APl

\RBS\Wn32\cs\U tralite.

e mcrsall. dl | (if HTTPS protocol is used) — from
<Unwi redPl atform Instal |l Dir>\Cl i ent APl \ RBS\ W n32\ cs
\Utralite.

e mczlibll.dll (if using compression) - from
<Unwi redPl atform Install Dir>\Cient APl \ RBS\ Wn32\cs
\Utralite.

Developer Guide: Windows and Windows Mobile Native Applications 17

Development Task Flow

Configuring an Application to Synchronize and Retrieve MBO Data

This example illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application froma
Client Object API based device application.

1. Configure a synchronization profile to point to your host and port.

Test DB. Get Synchroni zati onProfil e(). ServerNane = "l ocal host";
Test DB. Get Synchroni zati onProfil e(). Port Nunber = 2480;

2. Log into Unwired Server using a user name and password. This step is required for
application initialization.
Test DB. Logi nToSync("supAdm n", "s3pAdmi n");

3. Subscribe to Unwired Server. Unwired Server creates a subscription for this particular
application.
Test DB. Subscri be();

4, Synchronize with Unwired Server. Synchronization uploads all the local changes and
downloads new data with related subscriptions.

Generi cLi st <l Synchroni zati onG oup> sgs = new
Generi cLi st <l Synchroni zati onG oup>();
sgs. Add(Test DB. Get Synchroni zati onG oup("default"));
Test DB. Begi nSynchroni ze(sgs, "nycontext");
5. Listall customer MBO instances from the local database using an object query. Fi ndAl |
is a pre-defined object query.
Li st <Cust oner > custoners = Custoner. Fi ndAl | ();
foreach (Custoner custoner in custoners)

Consol e. Wi teLi ne("custoner: + customer. Fnane + " " +
custoner.Lnane + " " + customer.ld + customer.City);

}
6. Find and update a particular MBO instance, and save to the local database.

Cust oner cust = Customer. Fi ndByPri maryKey(441);
cust.Address = "1 Sybase Dr.";

cust. Phone = "9252360000";

cust. Save();

7. Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the Unwired Server.

cust. Submi t Pendi ng() ;
8. Upload the pending changes to the Unwired Server and get the replay results and all the
changed MBO instances.
Test DB. Begi nSynchroni ze(sgs, "nycontext");
9. Unsubscribe the device application if the application is no longer used.
Test DB. Unsubscri be();

18

Sybase Unwired Platform

Development Task Flow

Localizing a Windows Mobile Application

Localize a Windows Mobile application by generating resource files, adding a resource file
template and strings, and localizing the application code.

Developer Guide: Windows and Windows Mobile Native Applications 19

Development Task Flow

20

Sybase Unwired Platform

Reference

Reference

This section describes the Client Object API. Classes are defined and sample code is provided.

Windows Mobile Client Object API

The Sybase Unwired Platform Windows Mobile Client Object API consists of generated
business object classes that represent the mobile business object model built and designed in
the Unwired WorkSpace development environment.

The Windows Mobile Client Object API is used by device applications to retrieve data and
invoke mobile business object operations.

Connection APIs

The Client Object API contains classes and methods for managing local database information,
and managing connections to the Unwired Server through a synchronization connection
profile.

ConnectionProfile
The Connect i onPr of i | e class manages local database information. You can use it to set
the encryption key, which you must do before creating a local database.

ConnectionProfile cp = Sanpl eAppDB. Get Connecti onProfil e();
cp. Set Encrypti onKey(" Your key");
cp. Save();

Managing Device Database Connections
Use the OpenConnecti on() and Cl oseConnecti on() methods generated in the
package database class to manage device database connections.

The OpenConnect i on() method checks that the package database exists, creates it if it
does not, and establishes a connection to the database. This method is useful when first starting
the application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the OpenConnect i on() method, after logging in, the connection already exists
and is immediately available to the user.

The d oseConnect i on() method closes the current database connection, and releases it
from the used connection pool.

Developer Guide: Windows and Windows Mobile Native Applications 21

Reference

Improving Device Application Performance with Multiple Database Reader Threads
The maxDbConnect i ons property improves device application performance by allowing
multiple threads to read data concurrently from the same local database.

Note: Message based synchronization clients do not support a single write thread
concurrently with multiple read threads. That is, when one thread is writing to the database, no
read threads are allowed access at the same time. However, replication based synchronization
clients do support a single write thread concurrently with multiple read threads. Both
replication and message-based clients support multiple concurrent read threads.

In atypical device application such as Sybase Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry displays, and
loads the details for that entry.

Prior to the implementation of maxDbConnect i ons, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) waits for any previous operation to finish before the next is allowed to proceed.
In the list view to detail view example, when the background thread is loading the entire list,
and a user selects the details of one entry to display, the loading of details for that entry must
wait until the entire list is loaded, which can be a long while, depending on the size of the
list.

You can specify the amount of reader threads using maxDbConnect i ons. The default
value is 2.

Implementing maxDbConnections

The ConnectionProfile class in the persistence package includes the maxDbConnect i ons
property, that you set before performing any operation in the application. The default value
(maximum number of concurrent read threads) is two.

ConnectionProfile connectionProfile =
MyPackageDB. Get Connecti onProfile();

To allow 6 concurrent read threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the application.

connecti onProfil e. MaxDbConnecti ons = 6;

SynchronizationProfile

Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

ConnectionProfile cp = Sanpl eAppDB. Get Synchroni zati onProfile();
cp. Domai nNane = "defaul t";

22

Sybase Unwired Platform

Reference

You can set certificate information in SynchronizationProfile.

ConnectionProfile profile = MyDat abase. Get Synchroni zati onProfile();
profile. Domai nName = "defaul t";

profile. Server Nane "host - nane" ;

profile.PortNunber = 2481;

profile. NetworkProtocol = "https";

profile. Networ kSt reanfar ans =
"trusted_certificates=rsa_public_cert.crt";

You can allow clients to compress traffic as they communicate with the Unwired Server by
including "compression=zlib" into the sync parameters:

MyDat abase. DB. Get Synchr oni zati onProfil e(). Networ kSt r eanPar ans =
"conpression=zlib;zlib_upl oad_wi ndow_si ze=12; zl i b_downl oad_wi ndow_s
i ze=12";

Connect through a Relay Server
To enable your client application to connect through a Relay Server you must make manual
configuration changes in the object API code to provide the Relay Server properties.

Edit <package-name>DB by modifying the values of the Relay Server properties for your
Relay Server environment.

To update properties for Relay Server installed on Apache on Linux:

get Synchroni zati onProfil e(). set Server Name(" exanpl exp-vmL");
Get Synchroni zati onProfil e().setPort Nunber (2480) ;

Get Synchroni zati onProfil e().set NetworkProtocol ("http");

Get Synchroni zati onProfil e().set Net workSt reanParans("trusted
certificates=;url _suffix=/cli/iarelayserver/<FarnNane>");
Get Synchroni zati onProfil e().set Domai nName("defaul t");

To update properties for Relay Server installed on Internet Information Services (11S) on
Microsoft Windows:

get Synchroni zati onProfil e(). set Server Name(" exanpl exp-vml");

Get Synchroni zati onProfil e().setPort Nunber (2480) ;

Get Synchroni zati onProfil e().set Net workProtocol ("http");

Get Synchroni zati onProfil e().set Net wor kSt reanPar ans("trusted
certificates=;url _suffix=ias_relay_server/client/rs_client.dll/
<Far mNanme>") ;

Get Synchroni zati onProfil e().set Domai nNanme("defaul t");

For more information on Relay Server configuration, see System Administrationand Sybase
Control Center for Unwired Server.

Authentication

The generated package database class provides a default synchronization connection profile
according to the Unwired Server connection profile and Server Domain selected during code
generation. You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

Developer Guide: Windows and Windows Mobile Native Applications 23

Reference

Onl i neLogi n authenticates credentials against the Unwired Server.

O f 1 i neLogi n authenticates against the last successfully authenticated credentials. There
is no communication with Unwired Server in this method.

Logi nToSync synchronizes the KeyGenerator from the Unwired Server with the client.
The KeyGenerator is an MBO for storing key values that are known to both the server and the
client. On Logi nToSync from the client, the server sends down a value that the client can
use when creating new records (by using the method Key Gener at or . gener at el d() to
create key values that the server will accept).

The KeyGenerator value increments each time the Gener at el d method is called. A
periodic call to Subni t Pendi ng by the KeyGenerator MBO sends the most recently used
value to the Unwired Server, to let the Unwired Server know what keys have been used on the
clientside. Place this call inatry/catch block in the client application and ensure that the client
application does not attempt to send more messages to the Unwired Server if Logi nToSync
throws an exception.

voi d Logi nToSync(string user, string password);

Connect Using a Certificate
You can set certificate information in Connecti onProfil e.

ConnectionProfile profile = My/Database. Get Synchroni zati onProfil e();

profile. Domai nName = "defaul t";
profile. Server Name = "host-nane";
profile.PortNunber = 2481;
profile. NetworkProtocol = "https";

profile. NetworkStreanParans =
"trusted_certificates=rsa_public_cert.crt";

Enable End-to-End Encryption (E2EE) Using SSL
Replication synchronization streams can be encrypted end-to-end from the client to Unwired
Server. You can configure the application to make these secure, encrypted connections.

This code example executes only the first time the application runs (Dat aVaul t . exi st's
returns false) as part of application initialization.

The first two statements set up the UltraLite database to be encrypted (with the password
"secret"), and the 4th and 5th statements set up synchronization to use E2EE. Statements 3 and
6 persist the settings. The last statement creates the encrypted database and uses E2EE for
initial synchronization.

The e2ee_publ i c_key isafile containing the server's PEM-encoded public key for end-
to-end encryption.

The e2ee_t ype specifies the asymmetric algorithm to use for key exchange for end-to-end
encryption. The value for e2ee_t ype must be either rsa or ecc, and must match the value
specified on the server.

24

Sybase Unwired Platform

Reference

Sybase. Per si st ence. Connecti onProfile cp
MyDB. CGet ConnectionProfile();

cp. Set Encrypti onKey("secret");

cp. Save();

Sybase. Per si st ence. Connecti onProfile sp
MyDB. CGet Synchroni zati onProfile();

sp. Net wor kSt reanmPar ans="t | s_type=rsa; trusted_certificates=c:\\tnp\
\https_public_cert.crt;e2ee_type=rsa;e2ee_public_key=c:\

\'e22 public. pent;

sp. Save();

MyDB. Logi nToSync(...);

Encrypt the Database

You can use Connect i onProfi |l e. Encrypt i onKey to set the encryption key of a
local database. Set the key during application initialization, and before creating or accessing
the client database.

ConnectionProfile profile = <PkgNane>DB. Get Connecti onProfile();
profile. Set Encrypti onKey(" Your key");

The encryption key must follow the rules applicable to DBKEY in UltraLite:

» Any leading or trailing spaces in parameter values are ignored.
« The value cannot include leading single quotes, leading double quotes, or semicolons.

Set Database File Property
You can use set Pr oper t y to specify the database file name on the device, such as the
directory of the running program, a specific directory path, or a secure digital (SD) card.

ConnectionProfile cp = MyDat abased ass. get Connecti onProfile();
cp. set Property("dat abaseFil e", "databaseFile");
cp. save();

Examples
If you specify the databaseFilename only, with no path, the databaseFileis created in the path
where the program is running:

/ nydb. udb

The databaseFileis created in the / Tenp directory of the Windows Mobile device:
[Tenp/ nydb. udb

The databaseFile is created on an SD card:
/ St or age Card/ nydb. udb

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example / smar t car d/ supprj . udb.

Usage

» Be sure to call this APl before the database is created:

Developer Guide: Windows and Windows Mobile Native Applications 25

Reference

» Call this API before calling Logi nToSync() .
» The database is UltraLite; use a database file name like mydb. udb.

» Ifthe device client user changes the file name, the device user must make sure the input file
name is a valid name and path on the client side.

Synchronization APIs

The client object API allows you to change synchronization parameters and perform mobile
business object synchronization.

Changing Synchronization Parameters
Synchronization parameters determine the manner in which data is retrieved from the
consolidated database during a synchronization session.

The primary purpose of synchronization parameters is to partition data. By changing the
synchronization parameters, you affect the data you are working with, including searches, and
synchronization.
Cust oner Synchr oni zati onParaneters sp =
Cust oner. Synchroni zat i onPar anet er s;

sp. State = "CA";

sp. Save();

Performing Mobile Business Object Synchronization
To perform mobile business object (MBO) synchronization, you must save a Connection
object. Additionally, you may want to set synchronization parameters.

For replication-based synchronization, this code synchronizes an MBO package using a
specified connection:
Sanpl eAppDB. Synchroni ze (string synchroni zati onG oup)

For message-based replication, before you can synchronize MBO changes with the server,
you must subscribe the mobile application package deployed on server by calling

Sanpl eAppDB. subscri be() . This also downloads certain data to devices for those that
have default values. You can use the Onl npor t Success method in the defined

Cal | backHandlI er to check if data download has been completed.

Then you can call the SubmitPendingOperations(string synchronizationGroup) operation
through the publication as this example illustrates:

Product product _new = new Product ();
product _new. Col or="Yel | ow';

product _new. Descri ption="";

product _new. | d=888;

product _new. Nane = " Chi | drenPant s";
product _new. Prod_si ze = "M';

product _new. Quantity = 200;

product _new. Unit_price = (decimal)188. 00;
product _new. Create();

26

Sybase Unwired Platform

Reference

Sanpl eAppDB. Submi t Pendi ngQper ati ons("default");
whi | e(Sanpl eAppDB. HasPendi ngOper ati ons())
{

System Consol e. Wite(" . ");
Syst em Thr eadi ng. Thread. Sl eep(1000) ;

}

You can use a publication mechanism, which allows as many as 32 simultaneous
synchronizations. However, performing simultaneous synchronizations on several very large
Unwired Server applications can impact server performance, and possibly affect other remote
users. The following code samples demonstrate how to simultaneously synchronize multiple
MBOs.

For message-based synchronization, synchronize multiple MBOs using:
Sanpl eAppDB. Submi t Pendi ngQper ati ons();

Or you can use:
Sanpl eAppDB. Submi t Pendi ngQper ati ons(" ny- pub");

where "my-pub" is the synchronization group defined.

For replication-based synchronization, synchronize multiple MBOs using:
Sanpl eAppDB. Synchr oni ze() ;

You can also use:
Sanpl eAppDB. Synchr oni ze(" my- pub") ;

APls

The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from Mobile Business Objects
You can retrieve data from the local database through a variety of queries, including object
queries, arbitrary find, and through filtering query result sets.

Object Queries

To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:

Developer Guide: Windows and Windows Mobile Native Applications 27

Reference

public static Sybase. Col | ections. Generi cLi st <Customer> Fi ndAl | ()

Sybase. Col | ecti ons. Generi cLi st <Cust omer > customers =

Cust oner. Fi ndAl | ();

This method retrieves all customers in a certain page:

public static Sybase. Col |l ections. Generi cLi st <Custoner> Fi ndAl | (int
skip, int take)

Sybase. Col | ecti ons. Generi cLi st <Cust onmer > custonmers =
Cust oner. FindAl | (10, 5);

Suppose the modeler defined the following Object Query for the Customer MBO in Sybase
Unwired Workspace:

* name - findByFirstName

* parameter — String firstName

e query definition — SELECT x.* FROM Customer x WHERE x.fname = :firstName
* return type — Sybase.Collections.GenericList

The preceding Object Query results in two generated methods in Cust oner . cs:

public static Sybase. Col | ections. Generi cLi st <Cust oner >
Fi ndByFi r st Nane(string firstNane)

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 1. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.
Selectltem Defines the entry of a select query. For example,

"select x.attrl from MBO x", where "X.attr1" rep-
resents one Selectltem.

28

Sybase Unwired Platform

Reference

Class Description
Column Used in a subquery to reference the outer query's
attribute.

In addition queries support select, where, and join statements.

Arbitrary Find

The arbitrary find method lets custom device applications dynamically build queries based on
user input. The Query. DI STI NCT property has been added so you can exclude duplicate
entries from the result set.

The arbitrary find method also lets the user specify a desired ordering of the results and object
state criteria. A Quer y classisincluded in the client object API’s core assembly sup-client.dll
Sybase.Persistence namespace. The Quer y class is the single object passed to the arbitrary
search methods and consists of search conditions, object/row state filter conditions, and data
ordering information.

In MBO Cust oner . cs:

public static Sybase.Collections. GenericlLi st<sanpl e. Cust oner >
Fi ndW t hQuer y(Sybase. Persi st ence. Query query)

In Database class Sanpl e AppDB. cs:

public static Sybase. Persistence. QueryResul t Set

Execut eQuer y(Sybase. Persi st ence. Query query)

Define these conditions by setting properties in a query:

» TestCriteria— criteria used to filter returned data.

» SortCriteria— criteria used to order returned data.

» Skip —an integer specifying how many rows to skip. Used for paging.

* Take—an integer specifying the maximum number of rows to return. Used for paging.

Setthe Quer y. DI STI NCT property tot r ue to exclude duplicate entries from the result set.
The default value is f al se for entity types, and its usage is optional for all other types.

Query queryl = new Query();
queryl. DI STINCT = true,

TestCriteriacanbeanAttri but eTest oraConpositeTest.

Dynamic Query
You can construct a query SQL statement to query data from a local database. This query may
across multiple tables (MBOs).

Query query2 = new Query();
query?2. Sel ect ("c. fnane, c. | name, s. order _date, s.region");
query2. From(" Custoner", "c");

Developer Guide: Windows and Windows Mobile Native Applications 29

Reference

11

/| Conveni ence method for adding a join to the query

/1 Detailed construction of the join criteria
query2.Join("Sal es_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();

ts.Attribute = ("fnanme");

ts. Test Val ue = "Beth";

query2. Where(ts);

QueryResul t Set result Set = Sanpl eAppDB. Execut eQuery(query?2);

Note: A wildcard is not allowed in the Sel ect clause. You must use explicit column names.

SortCriteria
Sort CriteriadefinesaSort O der,whichcontains an attribute name and an order type
(ASCENDING or DESCENDING).

Paging Data
On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set:

Query props = new Qery();
props. Ski p =10;
props. Take = 5;

Cust oner Li st custoners = Custoner. Fi ndW t hQuery(props);
AttributeTest

AnAttri but eTest defines a filter condition using an MBO attribute, and supports
multiple conditions.

« IS_NULL
« NOT_NULL
« EQUAL

« NOT_EQUAL
.« LIKE

« NOT_LIKE
+ LESS_THAN

. LESS_EQUAL
« GREATER_THAN

+ GREATER_EQUAL

« CONTAINS

« STARTS WITH

« ENDS_WITH

« DOES_NOT_START WITH

30

Sybase Unwired Platform

Reference

« DOES_NOT_END_WITH
« DOES_NOT_CONTAIN

« IN
« NOT_IN
« EXISTS

* NOT_EXISTS

For example, the C# .NET code shown below is equivalent to this SQL query:
SELECT * from A where id in [1,2, 3]

Query query = new Query();
AttributeTest test = new AttributeTest();
test.Attribute = "id";
Sybase. Col | ecti ons. Cbj ectLi st v = new
Sybase. Col | ecti ons. Obj ectList();
v. Add("1");
v. Add("2");
v. Add("3");

test.Value = v;
test. Set Operator (AttributeTest.IN);
query. Where(test);

When using EXISTS and NOT_EXISTS, the attribute name is not required in the
At tri but eTest . The query can reference an attribute value via its alias in the outer scope.
The C# .NET code shown below is equivalent to this SQL query:

SELECT a.id from Al |l Type a where exists (select b.id fromAll Type b
where b.id = a.id)

Sybase. Per si st ence. Query query = new Sybase. Persi st ence. Query();
query. Sel ect("a.id");

query. From("Al | Type", "a");

Sybase. Persi stence. Attri buteTest test = new

Sybase. Persi stence. Attri buteTest ();

Sybase. Per si st ence. Query exi st Query = new

Sybase. Persi st ence. Query();

exi st Query. Sel ect ("b.id");

exi st Query. From("Al | Type", "b")

Sybase. Persi st ence. Col um cl = ﬁew Sybase. Per si st ence. Col um() ;
cl.Alias = "a";
cl.Attribute = "id"

Sybase. Persi stence. Attri buteTest testl = new

Sybase. Persi stence. Attri buteTest ();

testl. Attribute = "b.id";

testl. Value = cl;

test 1. Set Oper at or (Sybase. Persi stence. Attri but eTest. EQUAL) ;

exi st Query. Where(testl);

test. Val ue = existQery;

test. Set Oper at or (Sybase. Persi st ence. Attri but eTest. EXI STS) ;

query. Where(test);

Sybase. Per si st ence. QueryResul t Set gqs = DsTest DB. Execut eQuery(query);

Developer Guide: Windows and Windows Mobile Native Applications 31

Reference

Aggregate Functions
You can use aggregate functions in dynamic queries.

When using the Query. Sel ect (Stri ng) method, you can use any of these aggregate
functions:

Aggregate Function Supported Datatypes

COUNT integer

MAX string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

M N string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

SUM byte, short, int, long, integer, decimal, float, dou-
ble

AVG byte, short, int, long, integer, decimal, float, dou-
ble

If you use an unsupported type, a Per si st enceExcept i on is thrown.

Query queryl = new Query();
queryl. Sel ect ("MAX(c.id), MN(c.nane) as m nNane");

Grouping Results
Apply grouping criteria to your results.

To group your results according to specific attributes, use the Query. GroupBy(Stri ng
groupByl t em) method. For example, to group your results by ID and name, use:

String groupByltem= ("c.id, c.nane");
Query queryl = new Query();

/'l other code for queryl

queryl. GroupBy(groupByltem;

Filtering Results
Specify test criteria for group queries.

You can specify how your results are filtered by using the
Query. havi ng(com sybase. persi stence. Test Cri teri a) method for
queries using G- oupBy. For example, limit your AllType MBO's results to c. i d attribute
values that are greater than or equal to 0 using:
Query query2 = new Query();

query2. Select("c.id, SUMc.id)");

query2. From("Al | Type", "c");

ts = new AttributeTest();

32

Sybase Unwired Platform

Reference

ts.SetAttribute("c.id");

ts. Set Test Val ue("0");

ts. Set Operator (Attri buteTest. GREATER_EQUAL) ;
query2. Where(ts);

query2. GroupBy("c.id");

ts2 = new AttributeTest();

ts2. SetAttribute("c.id");

ts2. Set Test Val ue("0");

ts2. Set Operator (Attri but eTest. GREATER_EQUAL) ;
query?2. Havi ng(ts2);

Concatenating Queries
Concatenate two queries having the same selected items.

The Quer y class methods for concatenating queries are:

e Uni on(Query)

e UnionAll (Query)
« Except (Query)

« Intersect(Qery)

This example obtains the results from one query except for those results appearing in a second
query:

Query queryl = new Query();
... ... Ilother code for queryl

Query query2 = new Query();
... ... Ilother code for query 2

Query query3 = queryl. Except (query2);
Sanpl eAppDB. Execut eQuer y(query3);

Subqueries
Execute subqueries using clauses, selected items, and attribute test values.

You can execute subqueries usingthe Quer y. from(Query query, String alias)
method. For example, the C# .NET code shown below is equivalent to this SQL query:
SELECT a.id FROM (SELECT b.id FROM Al I Type b) AS a WHERE a.id = 1

Use this C# .NET code:

Query queryl = new Query();

queryl. Sel ect ("b.id");

queryl. From("Al | Type", "b");

Query query2 = new Query();

query2. Sel ect ("a.id");

query2. From(queryl, "a");

AttributeTest ts = new AttributeTest();
ts.Attribute = "a.id";

ts. Value = 1,

query2. Where(ts);

Developer Guide: Windows and Windows Mobile Native Applications 33

Reference

Sybase. Per si st ence. QueryResul t Set qs =
DsTest DB. Execut eQuer y(query2);

You can use a subquery as the selected item of a query. Use the Sel ect | t emto set selected
items directly. For example, the C# .NET code shown below is equivalent to this SQL query:

SELECT (SELECT count(1) FROM Al Type ¢ WHERE c.id >=d.id) AScn, id
FROM Al l Type d

Use this C# .NET code:

Query sel Query = new Query();

sel Query. Sel ect ("count(1)");

sel Query. Fron("Al'l Type", "c");

AttributeTest ttt = new AttributeTest();

ttt. Attribute = "c.id";

ttt. Set Operator (Attri buteTest. GREATER EQUAL) ;

Col um cl = new Col um();
cl.Alias = "d";
cl.Attribute = "id";

ttt.Value = cl;
sel Query. Wiere(ttt);

Sybase. Col | ecti ons. Generi cLi st <Sybase. Per si st ence. Sel ect|ten>
selectltens = new

Sybase. Col | ecti ons. Generi cLi st <Sybase. Persi st ence. Sel ectltenr();
Selectltemitem = new Selectlten();

item Query = sel Query;

item AsAlias = "cn";

selectltens. Add(item;

item = new Sel ectltem);

itemAttribute = "id";

itemAias = "d";

selectltens. Add(item;

Query subQuery2 = new Query();

subQuery2. Sel ectltens = sel ectltens;

subQuery2. Fron(" Al | Type", "d");

Sybase. Per si st ence. QueryResul t Set gqs =

DsTest DB. Execut eQuer y(subQuery?2);

CompositeTest
AConposi t eTest combinesmultiple Test Cri t er i a using the logical operators AND,

OR and NOT to create a compound filter.

Complex Example
This example shows the usage of Conposi t eTest ,Sort Cri t eri aand Quer y tolocate
all customer objects based on particular criteria.

e FirstName = John AND LastName = Doe AND (State = CA or State = NY)
e Customer is New or Updated

e Ordered by LastName ASC, FirstName ASC, Credit DESC

» Skip the first 10 and take 5

34

Sybase Unwired Platform

Reference

Query props = new Qery();

//define the attribute based conditions

//Users can pass in a string if they know the attribute
name. Rl colum nanme = attribute nane.

Conposi t eTest i nner ConpTest = new ConpositeTest();

i nner ConpTest . Operat or = ConpositeTest. OR;

i nner ConpTest . Add(new AttributeTest("state", "CA",
AttributeTest. EQUAL));

i nner ConpTest . Add(new AttributeTest("state", "NY",
AttributeTest. EQUAL));

Conposi t eTest out er CompTest = new ConpositeTest();

out er ConpTest . Oper at or = Conposi teTest. OR;

out er ConpTest . Add(new Attri buteTest ("fnanme", "Jane",
AttributeTest. EQUAL));

out er ConpTest . Add(new Attri buteTest ("l nane", "Doe",
AttributeTest. EQUAL));

out er ConpTest . Add(i nner ConpTest) ;

//define the ordering

SortCriteria sort = new SortCriteria();

sort. Add("fname", SortOrder. ASCENDI NG ;

sort. Add(" | name", Sort Order. ASCENDI NG ;

//set the Query object

props. TestCriteria = outerConpTest;

props. SortCriteria = sort;

props. Skip = 10;

props. Take = 5;

Sybase. Col | ecti ons. Generi cLi st <Cust omer > custoners2 =
Cust oner . Fi ndW t hQuer y(pr ops) ;

QueryResultSet
The Quer yResul t Set class provides for querying a result set for the dynamic query API.
Quer yResul t Set is returned as a result of executing a query.

Example

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Query, filling in the criteria for the query, and filtering the
query results:

Sybase. Per si st ence. Query query = new Sybase. Persi st ence. Query();
query. Sel ect ("c. fnane, c. | nane, s. order _date, s.region");

query. Fron(" Custoner ", "c");

query.Joi n("Sal esOrder ", "s", " s.cust_id ", "c.id");
AttributeTest at = new AttributeTest();

at. Attribute = "l name";

at . Test Val ue = "Devlin";

query.TestCriteria = at;

QueryResul t Set qrs = Sanpl eAppDB. Execut eQuery(query);
whi l e(grs. Next ())

{

Consol e. Wite(grs.GetString(1l));
Console. Wite(",");
Consol e. WiteLine(grs. Get Stri ngByNanme("c. fnanme"));

Developer Guide: Windows and Windows Mobile Native Applications 35

Reference

Console. Wite(grs. GetString(2));
Console. Wite(",");
Consol e. WiteLine(grs. Get Stri ngByNanme("c. | name"));

Console. Wite(grs. GetString(3));
Console. Wite(",");

Consol e. WiteLine(qgrs. Get Stri ngByName("s. order_date"));

Consol e. Wite(grs. GetString(4));
Console. Wite(",");
Consol e. WiteLine(qgrs. Get Stri ngByName("s.region"));

}

Retrieving Relationship Data

A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer ID column. The Orders application is parameterized to return
order information for the customer ID.

Cust oner customer = Custoner.FindByPrimaryKey(101);

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders =
cust onmer . Orders;

You can also use the Query class to filter the return MBO list data.

Query props = new Query();

...l set query paraneters

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders =
cust oner. Get Order sFi |l t er By(props);

Operations APIs

Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create instances (non-
static) of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the Client Object API, and are not exposed. Any
parameters not mapped to the object’s attributes are left as parameters in the Generated Object
API.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In

36

Sybase Unwired Platform

Reference

other situations, where there are multiple instances of create or update operations, it is not
possible to automatically generate such a Save method.

Create Operation
To execute a create operation on an MBO, create a new MBO instance, setthe MBO attributes,
then call the Save() or Create() operation.

Cust oner cust = new Custoner();
cust. Fhame = "supAdm n"

cust. Conpany_nane = " Sybase";
cust. Phone = "777-8888";
cust.Create();// or cust.Save();
cust . Submi t Pendi ng() ;

Update Operation
To execute update operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call either the Save() or Updat e() operations.

Cust oner cust = Customer. Fi ndByPri maryKey(101);
cust. Fnane = "supAdm n";

cust. Conpany_nanme = "Sybase";

cust. Phone = "777-8888";

cust. Update();// or cust. Save();

cust. Subm t Pendi ng() ;

Delete Operation
To execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the Del et e() operation.

Cust oner cust = Customer. Fi ndByPri nmaryKey(101);
cust. Del ete();

Other Operation

Operations that are not create, update, or delete operations are called “Other” operations. An
Other operation class is generated for each operation in the MBO that is not a create, update or
delete operation.

Suppose the Customer MBO has an Other operation “other”, with parameters “p1” (string),
“p2” (int) and “p3” (date). This results in a Cust omer & her Qper at i on class being
generated, with “p1”, “p2” and “p3” as its attributes.

To invoke the Other operation, create an instance of Cust omer Gt her Oper at i on, and set
the correct operation parameters for its attributes. This code provides an example:

Cust oner & her Oper ati on ot her = new Cust omer & her Operation();
ot her.P1 = “soneval ue”;

other.P2 = 2;

ot her. P3 = System Dat eTi ne. Now;

ot her.Save(); // or other.Create()

ot her. Submi t Pendi ng() ;

Developer Guide: Windows and Windows Mobile Native Applications 37

Reference

Cascade Operations

Composite relationships are cascaded. Cascade operations allow a single synchronization to
execute a chain of related CUD operations. Multi-level insert is a special case for cascade
operations. It allows parent and children objects to be created in one round without having to
synchronize multiple times.

Refer to Unwired WorkSpace documentation (Relationship Guidelines and Multi-level insert
operations) for information about defining relationships that support cascading (composite)
operations.

Consider creating a Customer and a new SalesOrder at the same time on the client side, where
the SalesOrder has a reference to the new Customer identifier. The following example
demonstrates a multilevel insert:

Cust oner custonmer = new Custoner();
custoner. Fnane = “firstNane”;

cust omrer . Lnane “| ast Nane”;

cust oner . Phone “777-8888";

cust oner. Save();

Sal esOrder order = new Sal esOrder();
order. Cust omer = custoner;

order. Order _date = DateTi ne. Now;
order. Region = "Eastern";

order. Sal es_rep = 102;

cust oner. Orders. Add(order);

//Only the parent MBO needs to call Save()
cust oner. Save();

[/ Must submit parent

cust oner . Submi t Pendi ng() ;

To insert an order for an existing customer, first find the customer, then create a sales order
with the customer ID retrieved:

Cust oner customer = Custoner. Fi ndByPri maryKey(102);
Sal esOrder order = new Sal esOrder();

order. Cust oner = custoner;

order. Order_date = DateTi me. Ut cNow,

order. Region = "Eastern";

order. Sal es_rep = 102;

custoner. Orders. Add(order);

order. Save();

cust oner . Submi t Pendi ng() ;

To update MBOs in composite relationships, perform updates on every MBO to change and
call Submi t Pendi ng on the parent MBO:

Custoner cust = Custoner.Fi ndByPri maryKey(101);

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders = cust. O ders;
Sal esOrder order = orders[O0];

order. Order_date Dat eTi me. Now;

order. Save();

cust . Submi t Pendi ng() ;

38

Sybase Unwired Platform

Reference

To delete a single child in a composite relationship, call the child's Del et e method, and the
parent MBQO's Submi t Pendi ng.

Custoner cust = Custoner.Fi ndByPri maryKey(101);

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders = cust. O ders;
Sal esOrder order = orders[O0];

order. Del ete();

cust . Subm t Pendi ng() ;

To delete all MBOs in a composite relationship, call Del et e and Submi t Pendi ng on the
parent MBO:
Cust oner cust = Customer. Fi ndByPri maryKey(101);

cust. Del ete();
cust . Subni t Pendi ng() ;

Note: For non-composite relationships, Submi t Pendi ng must be called on each and every
MBO.

See the Sybase Unwired Platform online documentation for specific multilevel insert
requirements.

Pending Operation
You can manage pending operations using these methods:

» CancelPending—cancels the previous create, update, or delete operations on the MBO. It
cannot cancel submitted operations.

* SubmitPending—submits the operation so that it can be replayed on the Unwired Server.
For message-based synchronization, a replay request is sent directly to the Unwired
Server. For replication-based synchronization, a request is sent to the Unwired Server
during a synchronization.

* SubmitPendingOper ations — submits all the pending records for the entity to the
Unwired Server. This method internally invokes the Submi t Pendi ng method on each
of the pending records.

* CancelPendingOper ations— cancels all the pending records for the entity. This method
internally invokes the Cancel Pendi ng method on each of the pending records.

Cust oner customer = Custoner. Fi ndByPrimaryKey(101);
i f(errorHappened)

Cust oner . Cancel Pendi ng() ;
}

el se

cust oner . Submi t Pendi ng() ;

}

Passing Structures to Operations
Structures hold complex datatypes (for example a string list, class or MBO object, or a list of
objects) that enhance interactions with certain enterprise information systems (EIS) data

Developer Guide: Windows and Windows Mobile Native Applications 39

Reference

sources, such as SAP and Web services, where the mobile business object (MBO) requires
complex operation parameters.

An Unwired WorkSpace project includes an example MBO that is bound to a Web service data
source that includes a create operation that takes a structure as an operation parameter. MBOs
differ depending on the data source, configuration, and so on, but the principles are similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including a parameter named HEADER _ that is a structure datatype named
Authenticationlnfo, defined as:

Aut henti cati onl nf o
user Nane: String
password: String
aut hentication: String
| ocale: String
ti meZone: String

Structures are implemented as classes, so the parameter HEADER_ is an instance of the
AuthenticationInfo class. The generated Java code for the create operation is:

public void Create(Authentication HEADER ,string escal ated, string
hotli st,
string orig_Submtter,string pending, string workLog);

This example demonstrates how to initialize the AuthenticationInfo class instance and pass
them, along with the other operation parameters, to the create operation:

Aut henti cationl nfo authen = new Aut henticati onlnfo();
aut hen. User Nane = "Denp";

Si npl eCaseli st newCase = new Si npl eCaseli st ();

newCase. Case_Type = "l ncident";

newCase. Cat egory = "Networ ki ng";

newCase. Depart nent = "Marketing";

newCase. Description = "A new hel p desk case.";
newCase. | tem = "Configuration";

newCase. O fice = "#3 Sybase Drive";

newCase. Subm tted_By = "Denp";

newCase. Phone_Nunber = "#0861023242526";
newCase. Priority = "High";

newCase. Regi on = "USA";

newCase. Request _Urgency = "Hi gh";

newCase. Request er _Logi n_Nanme = "Denp";
newCase. Request er _Nane = "Denp";

newCase. Site = "25 Bay St, Muntain View, CA";
newCase. Sour ce "Requester";

newCase. St at us "Assi gned";

newCase. Sunmary = "MarkHel | ous was here Fix it.";
newCase. Type = "Access to Files/Drives";
newCase. Create_Ti ne = System Dat eTi ne. Now,

newCase. Create (authen, “Cther”, “Oher”, “false”, “work

log”);
newCase. Subni t Pendi ng() ;

40 Sybase Unwired Platform

Reference

Local Business Object

Defined in Unwired WorkSpace, local business objects are not bound to EIS data sources, so
cannot be synchronized. Instead, they are objects that are used as local data store on device.
Local business objects do not call subni t Pendi ng, or perform a replay or import from the
Unwired Server

An example of a local business object:

Logi nStatus status= new Logi nStatus ();
status.ld = 123;
status. Ti ne = Dat eTi ne. Now,
st at us. Success = true;
status. Create();

| ong savedld = 123;

Logi nStatus status = Logi nStatus. Fi nd(savedl d);
st at us. Success = fal se;

status. Update();

| ong savedld = 123;
Logi nSt atus status = Logi nSt at us. Fi nd(savedl d);
status. Del ete();

Personalization APIs

Personalization keys allow the application to define certain input parameter values that differ
(are personalized) from each mobile user. The Personalization APIs allow you to manage
personalization keys, and get and set personalization key values.

Type of Personalization Keys

There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Get or Set Personalization Key Values
The Per sonal i zat i onPar anet er s class is generated automatically for managing
personalization keys.

The following code provides an example on how to set a personalization key, and pass an array
of values and array of objects:

Per sonal i zati onPar aneters pp =

Sanpl eAppDB. Get Per sonal i zat i onPar aneters();

pp. Ml nt PK = 10002;

pp. Save();

Developer Guide: Windows and Windows Mobile Native Applications 41

Reference

Sybase. Col | ections.IntList il = new Sybase. Coll ections.IntList();
i|.Add(10001);

i|.Add(10002);

pp. MIntListPK = il;

pp. Save();

Sybase. Col | ecti ons. Generi cLi st<MyData> dl = new

Sybase. Col | ecti ons. GenericLi st<MyData>(); //MData is a structure
type defined in tooling

MyData nd = new MyData();

nmd. | nt Menber = 123;

md. St ri ngMenber = "abc";

dl . Add(nmd);

pp. MyDat aLi st PK = dI ;

pp. Save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Note: For detailed description on personalization key usage, see the Sybase Unwired Platform
online help.

Object State APIs

The object state APIs provide methods for returning information about the state of an entity.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name C# Type Description

IsNew bool Returns true if this entity is new (but has not been created in
the client database).

IsCreated bool Returns true if this entity has been newly created in the client
database, and one the following is true:

» The entity has not yet been submitted to the server with a
replay request.

* The entity has been submitted to the server, but the server
has not finished processing the request.

» The server rejected the replay request (replayFailure
message received).

IsDirty bool Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

IsDeleted bool Returns true if this entity was loaded from the database and
was subsequently deleted.

42

Sybase Unwired Platform

Reference

Name C# Type Description

IsUpdated bool Returns true if this entity has been updated or changed in the
database, and one of the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

Pending bool Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

PendingChange | char If pending is true, then 'C' (create), 'U' (update), ‘D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

ReplayCounter | long Returns a long value which is updated each time a row is
created or modified by the client. This value is derived from
the time in seconds since an epoch, and increases each time a
row is changed.

ReplayPending | long Returns a long value. When a pending row is submitted to the
server, the value of Repl ay Count er is copied to Re-
pl ayPendi ng. This allows the client code to detect if a
row has been changed since it was submitted to the server
(that is, if the value of Repl ayCount er is greater than
Repl ayPendi ng).

ReplayFailure long Returns a long value. When the server responds with a Re-
pl ayFai | ur e message for a row that was submitted to
the server, the value of Repl ayCount er is copied to

Repl ayFai | ur e, and Repl ayPendi ng is set to 0.

Entity State Example

This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear
in bold.

Note the following entity behaviors:

Developer Guide: Windows and Windows Mobile Native Applications 43

Reference

* Thel sDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

* The Repl ayCount er value that gets sent to the Unwired Server is the value in the
database before you call Submi t Pendi ng. After a successful replay, that value is
imported from the Unwired Server.

« The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Description Flags/Values

After reading from the database, before any changes | IsNew=false
are made. IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=false
Pending=false
PendingChange="N"'
ReplayCounter=33422977
ReplayPending=0
ReplayFailure=0

One or more attributes are changed, but changes not | IsNew=false
saved. IsCreated=false
IsDirty=true
IsDeleted=false
IsUpdated=false
Pending=false
PendingChange="N"'
ReplayCounter=33422977
ReplayPending=0

ReplayFailure=0

44 Sybase Unwired Platform

Reference

Description

Flags/Values

Afterentity. Save() orentity. Up-
dat e() is called.

IsNew=false
IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=true
Pending=true
PendingChange="U"
ReplayCounter=33424979
ReplayPending=0
ReplayFailure=0

Afterent i ty. Subni t Pendi ng() is
called to submit the MBO to the server

IsNew=false
IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=true
Pending=true
PendingChange='U'
ReplayCounter=33424981
ReplayPending=33424981
ReplayFailure=0

Developer Guide: Windows and Windows Mobile Native Applications

45

Reference

Description

Flags/Values

Possible result: the Unwired Server accepts the up-
date, sends an importand a Repl ayResul t for
the entity, and the refreshes the entity from the da-
tabase.

IsNew=false
IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=false
Pending=false
PendingChange="N"
ReplayCounter=33422977
replayPending=0
ReplayFailure=0

Possible result: The Unwired Server rejects the up-
date, sends a Repl ayFai | ur e for the entity,
and refreshes the entity from the database

IsNew=false
IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=true
Pending=true
PendingChange='U'
ReplayCounter=33424981
ReplayPending=0
ReplayFailure=33424981

Pending State Pattern

When a create, update, delete, or save operation is called on an entity, the requested change
becomes pending. To apply the pending change, call Submi t Pendi ng on the entity, or

Submi t Pendi ngQper at i ons on the MBO class:

Custoner e = new Custoner();

e. Name = "Fred";

e. Address = "123 Four St.";
e.Create(); // create as pending

e. Submi t Pending(); // submit to server

Cust oner . Submi t Pendi ngOper ati ons() ;
rows to server

/] submit all pending Custoner

46

Sybase Unwired Platform

Reference

Subni t Pendi ngQper at i ons submits all the pending records for the entity to the
Unwired Server. This method internally invokes the Submi t Pendi ng method on each of
the pending records.

For message-based sychronization, the call to Submi t Pendi ng causes a JSON message to
be sent to the Unwired Server with the Repl ay method, containing the data for the rows to be
created, updated, or deleted. The Unwired Server processes the message and responds with a
JSON message with the Repl ayResul t method (the Unwired Server accepts the requested
operation) or the Repl ayFai | ur e method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more | npor t
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the Repl ay request. These changes are written
to the client database and marked as rows that are not pending. When the Repl ayResul t
message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful
operation.

If the Unwired Server rejects the requested change, the client receives a Repl ayFai | ed
message, and the entity remains in the pending state, with its Repl ayFai | ed attribute setto
indicate that the change was rejected.

For replication-based synchronization, the call to Submi t Pendi ng creates a replay record
in local database. When the DBCl ass. Synchr oni ze() method is called, the replay
records are uploaded to Unwired Server. Unwired Server processes the replay records one by
one and either accepts or rejects it.

At the end of the synchronization, the replay results are downloaded to client along with any
created, updated or deleted rows that have changed on the Unwired Server as a result of the
Replay requests. These changes are written to the client database and marked as rows that are
not pending.

When the operation is successful, the pending row is removed, and the row remaining in the
client database now contains data that has been imported from and validated by the Unwired
Server. If the Unwired Server rejects the requested change, the entity remains in the pending
state, with its ReplayFailed attribute set to indicate that the change was rejected. The Unwired
Server may optionally send a log record to the client.

The LogRecor d interface for both message-based synchronization and replication-based
synchronization has the following getter methods to access information about the log record:

Method C# Type Description

Name

Component string Name of the MBO for the row for which this log record was
written.

Developer Guide: Windows and Windows Mobile Native Applications 47

Reference

Method C# Type Description
Name
EntityKey string String representation of the primary key of the row for which

this log record was written.

Code int One of several possible HTTP error codes:

» 200 indicates success.

» 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

e 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

e 404 indicates that the client tried to access a nonexistent
package or MBO.

» 405 indicates that there is no valid license to check out for
the client.

« 500 to indicate an unexpected (unspecified) server fail-
ure.

Message string Descriptive message from the server with the reason for the
log record.

Operation string The operation (create, update, or delete) that caused the log
record to be written.

Requestld string The id of the replay message sent by the client that caused this
log record to be written.
Timestamp System.Date- Date and time of the log record.
Time?

If a rejection is received, the application can use the entity method Get LogRecor ds or the
database class method Sanpl eDB. Get LogRecor ds(query) to access the log records
and get the reason:

Sybase. Col | ecti ons. Generi cLi st <Sybase. Persi st ence. | LogRecord> | ogs =
e. Get LogRecords();
for(int i=0; i<logs.Size(); i++)
{
Consol e. WiteLine("Entity has a log record:");
Consol e. WiteLine("Code = {0}",lo0gs[i]. Code);
Consol e. Wi t eLi ne(" Conponent {0}", 1 ogs[i].Conponent);
Consol e. Wi teLine("EntityKey {0}",logs[i].EntityKey);
Consol e. WiteLine("Level = {0}",logs[i].Level);
Consol e. Wi teLi ne("Message 0}",logs[i].Message);
{
{

Consol e. Wi telLi ne("Operation 0}",logs[i].Operation);
Consol e. Wi teLi ne("Requestld

[| it | B

0}",logs[i].Requestld);

48 Sybase Unwired Platform

Reference

Consol e. WiteLine("Tinmestanp = {0}", | ogs[i].Ti mestanp);
}

Cancel Pendi ngQper at i ons cancels all the pending records for an entity. This method
internally invokes the Cancel Pendi ng method on each of the pending records.

Mobile Business Object States
A mobile business object can be in one of three states:

« Original state, the state before any create, update, or delete operation.
» Downloaded state, the state downloaded from the Unwired Server.
e Current state, the state after any create, update, or delete operation.

The mobile business object class provides properties or methods for querying the original
state and the downloaded state:

publ i c sanpl e. Customrer Get Ori gi nal St at e()
publ i ¢ Custonmer Downl oadSt at e;

The original state is valid only before the application synchronizes with the Unwired Server.
After synchronization has completed successfully, the original state is cleared and set to null.

Cust oner cust = Custoner.Fi ndByPri maryKey(101); // state 1
cust. Fnane = "supAdm n";

cust. Conpany_nanme = " Sybase";

cust. Phone = "777-8888";

cust.Save(); // state 2

Custoner org = cust.GetOriginal State(); // state 1

[/ suppose there is new downl oad for Custonmer 101 here

Cust omrer downl oad = cust. Downl oadState; // state 3

cust . Cancel Pending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.
Refresh Operation

The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

The following code provides an example:

Custoner cust = Custoner.Fi ndByPri maryKey(101);
cust. Fnanme = “newName”;
cust. Refresh();// newNane is discarded

Clear Relationship Objects

The C ear Rel ati onshi pQbj ect s method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

ClearRelationshipObjects

Developer Guide: Windows and Windows Mobile Native Applications 49

Reference

Security APIs

Unwired Server supports encryption of client data and the database.

DataVault
The Dat aVaul t class provides encrypted storage of occasionally used, small pieces of data.
All exceptions thrown by Dat aVaul t methods are of type Dat aVaul t Except i on.

You can use the Dat aVaul t class for on-device persistent storage of certificates, database
encryption keys, passwords, and other sensitive items. Use this class to:

» Create a vault

« Set a vault's properties

« Store objects in a vault

* Retrieve objects from a vault

« Change the password used to access a vault

The contents of the data vault are strongly encrypted using AES-256. The Dat aVaul t class
allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is
deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the Dat aVaul t would be to implement an application login screen. Upon
application start, the user is prompted for a password, which is then used to unlock the vault. If
the unlock attempt is successful, the user is allowed into the rest of the application. User
credentials needed for synchronization can also be extracted from the vault so the user is not
repeatedly prompted to re-enter passwords.

CreateVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a
vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Syntax

public static DataVault CreateVault(
string sDataVaul t1D,
string sPassword,
string sSalt

)

50

Sybase Unwired Platform

Reference

Parameters

« sDataVaultlD — The vault name.
» sPassword — The password.
« sSalt —The encryption salt value.

Returns
CreateVault creates a Dat aVaul t instance.

If a vault already exists with the same name, a Dat aVaul t Except i on is thrown this with
the reason ALREADY EXI STS.

Examples

* CreateaData Vault — Creates a new data vault called myVaul t .

Dat aVault vault = null;
if (!DataVault.Vaul t Exi sts("nyVault"))

vault = DataVault.CreateVault("nyVault", "password", "salt");
}el se
vault = DataVault.GetVault("myVault");
}
VaultExists

Tests whether the specified vault exists.

Syntax
public static bool VaultExists(string sbDataVaultl D)

Parameters

e sDataVaultl D — The vault name.

Returns

VaultExists can return the following values:
Returns Indicates
true The vault exists.
false The vault does not exist.

Developer Guide: Windows and Windows Mobile Native Applications 51

Reference

Examples

* Check if a Data Vault Exists— Checks if a data vault called myVaul t exists, and if so,
deletes it.

if (DataVault. Vault Exi sts("nyVault"))

Dat aVaul t. Del eteVaul t ("nmyVaul t");
}

GetVault
Retrieves a vault.

Syntax
public static DataVault GetVault(string sbDataVaultlD)
Parameters

¢ sDataVaultl D — The vault name.

Returns

GetVault returns a Dat aVaul t instance.

If the vault does not exist, a Dat aVaul t Except i on is thrown.
DeleteVault

Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
public static void DeleteVault(string sDataVaultl D)
Parameters

e sDataVaultl D — The vault name.

Examples

* Delete a Data Vault — Deletes a data vault called myVaul t .
if (DataVault. Vaul t Exi sts("nyVault"))

Dat aVaul t . Del et eVaul t ("nyVaul t");
}

52 Sybase Unwired Platform

Reference

Lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
public void Lock()

Examples

* Locksthedata vault. — Prevents changing the vaults properties or stored content.
vaul t. Lock();

Islocked
Tests whether the vault is locked.

Syntax

publ i c bool |sLocked()

Returns

IsLocked can return the following values:
Returns Indicates
true The vault is locked.
false The vault is unlocked.

Unlock

Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

Syntax
public void Unlock(string sPassword, string sSalt)
Parameters

» sPassword — The password.
e sSalt —The encryption salt value.

Developer Guide: Windows and Windows Mobile Native Applications 53

Reference

Returns

If the incorrect password or salt is used, a Dat aVaul t Except i on is thrown this with the
reason | NVALI D_PASSWORD.

Examples

* Unlocksthedatavault. —Once the vault is unlocked you can change the its properties and
stored content.

if (vault.lsLocked())

vaul t. Unl ock(" password", "salt");

}

SetLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public void SetLockTi neout (i nt i Period)
Parameters

* iPeriod — The number of seconds before the lock times out.

Examples

e Set thelLock Timeout — Sets the lock timeout to 1 hour.
vaul t . Set LockTi neout (3600);

GetlLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public int GetLockTi neout ()

Returns

GetLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before it automatically locks. The default value, 0, indicates that the lock never times
out.

54

Sybase Unwired Platform

Reference

Examples

e Set theLock Timeout — Retrieves the lock timeout in seconds.
int tinmeout = vault. GetLockTi meout ();

SetRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an
unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Syntax
public void SetRetryLimit(int iLint)
Parameters

e iLimit —The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

e Set the Retry Limit — Sets the retry limit to 5 attempts.
vault.SetRetryLimt(5);

GetRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
public int GetRetryLimt()

Returns

GetRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Examples

* SettheRetry Limit —Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.

Developer Guide: Windows and Windows Mobile Native Applications 55

Reference

int retrylimt = vault.GetRetryLimt();

SetString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax

public void SetString(
string sNane,
string sVal ue

)

Parameters

» sName— The name associated with the string object to be stored.
* sValue— The string object to store in the vault.

Examples

e Set a String Value — Creates a test string, unlocks the vault, and sets a string value
associated with the name "t est St ri ng" inthe vault. The fi nal | y clause in the
t ry/ cat ch block ensure that the vault ends in a secure state even if an exception occurs.

string teststring = "ABCDEFabcdef";
try
{
vaul t . Unl ock(" password", "salt");
vault. SetString("testString", teststring);
}
catch (DataVaul t Exception e)
Consol e. Wi teLine("Exception: " + e.ToString());
}
finally

vaul t . Lock();
}

GetString
Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Syntax
public string GetString(string sNane)

56

Sybase Unwired Platform

Reference

Parameters

* sName- The name associated with the string object to be retrieved.

Returns

GetString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get a String Value— Unlocks the vault and retrieves a string value associated with the
name "t est String" inthe vault. Thefi nal | y clause inthe t ry/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.

try

vaul t. Unl ock(" password", "salt");
String retrievedstring = vault. GetString("testString");

}
catch (DataVaul t Exception e)
Consol e. WiteLine("Exception: " + e.ToString());
}
finally

vaul t . Lock();

}

SetValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax

public void SetVal ue(
string sNang,
byte[] baVal ue

Parameters

« sName- The name associated with the binary object to be stored.
* baValue— The binary object to store in the vault.

Developer Guide: Windows and Windows Mobile Native Applications 57

Reference

Examples

» SetaBinary Value—Unlocks the vault and stores a binary value associated with the name
"t est Val ue" inthevault. Thefi nal | y clauseinthet ry/ cat ch block ensure that
the vault ends in a secure state even if an exception occurs.

try

vaul t . Unl ock(" password", "salt");
vaul t. Set Val ue("testVal ue", new byte[] { 1, 2, 3, 4, 5});

}
catch (DataVaul t Exception e)
Consol e. Wi telLi ne("Exception: " + e.ToString());
}
finally

vaul t. Lock();
}

GetValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
public byte[] GetValue(string sNane)
Parameters

* sName- The name associated with the binary object to be retrieved.

Returns

GetValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get aBinary Value—Unlocks the vault and retrieves a binary value associated with the
name "t est Val ue" inthe vault. The fi nal | y clause inthe t r y/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.

try

vaul t . Unl ock(" password", "salt");
byte[] retrievedval ue = vault. GetVal ue("testVal ue");

catch (DataVaul t Exception e)

58

Sybase Unwired Platform

Reference

{
Consol e. Wi teLine("Exception: " + e.ToString());
}
finally
{
vaul t. Lock();
}

ChangePassword
Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax

public void ChangePasswor d(
string sPassword,
string sSalt

)
Parameters

* sPassword — The new password.
e sSalt — The new encryption salt value.

Examples

* Changethe Password for a Data Vault — Changes the password to " newPasswor d" .
Thefinal | yclauseinthet ry/ cat ch block ensure that the vault ends in a secure state
even if an exception occurs.

try

vaul t . Unl ock(" password", "salt");
vaul t . ChangePasswor d(" newPasswor d", "newSalt");

}
catch (DataVaul t Exception e)
Consol e. Wi teLine("Exception: " + e.ToString());
}
finally

vaul t. Lock();
}

Utility APIs
The Utility APIs allow you to customize aspects of logging, callback handling, and generated
code.

Developer Guide: Windows and Windows Mobile Native Applications 59

Reference

Using the Logger and LogRecord APIs

LogRecor d is used to store two types of logs.

e Operation logs on the Unwired Server. These logs can be downloaded to the device.
« Client logs. These logs can be uploaded to the Unwired Server.

DBC ass. Get Logger —getsthe log API. The client can write its own records using the log
API. For example:

| Logger | ogger = Sampl eAppDB. Get Logger () ;
| ogger. Debug(“Wite this string to the log records table");
Sanpl eAppDB. Submi t LogRecords();

DBC ass. Get LogRecor ds —gets the log records received from the server. For example:
Query query = new Query();

query. TestCriteria =

Sybase. Persi stence. Attri but eTest. Equal (" conponent", “Customner”);
Sybase. Persi stence. SortCriteria sortCriteria = new

Sybase. Persi stence. SortCriteria();

sortCriteria. Add("requestl|d",

Sybase. Per si st ence. Sort Or der . DESCENDI NG) ;

query.SortCriteria = sortCriteria;

Generi cLi st <l LogRecord> | ogli st = Sanpl eAppDB. Get LogRecor ds(query);
Viewing Error Codes in Log Records

You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.

2. Performing an initial synchronization.

3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader

{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": " 111#M/1: 1", "ppni:
"eyJilc2VybnFt ZSI 61 nNLcEFkbW ul i wi cGFzc3dven) G JzMBBBZGLpbi J9", " p
id":"nmoca://

Erul at or 17128142", " et hod": "repl ay", "pbi ": "true", "upa": " c3VWQ\Rt a
WI6cz NWQWRt aWA=", "nmbo": "Bi ", "app": "My1: 1", "pkg":"inot1l:1.0"}

JsonCont ent
{"c2":null,"c1":1,"createCalled":true," _op":"C'}

The Unwired Server returns a response. The code is included in the ResponseHeader .

ResponseHeader
{"id":"684cbel6f 6b740eb930d08f d626€1551", "ci d": "111#M/1: 1", "I ogi nFa
iled":fal se, "nethod": "repl ayFail ed", "l og":

[{"nmessage": "com sybase. j dbc3. j dbc. SybSQ.Excepti on: SQL Anywher e

60

Sybase Unwired Platform

Reference

Error -193: Prinmary key for table "bi' is not unique : Primary key
value ('1')", "repl ayPendi ng":

0, "ei sCode":"","conmponent":"Bi","entityKey":"0", "code":

500, "pendi ng": fal se, "di sabl eSubnmi t":fal se,"?":"inotl. server.LogReco
rdlnpl ™, "timestanp":"2010-08-26

14: 05: 32. 97", "request 1 d": "684cbel6f 6b740eb930d08f d626e1551", " oper at

ion":"create","_op":"N',"replayFail ure":

0, "l evel ": "ERROR", "pendi ngChange": "N', "nmessagel d": 200001, " _rc":
0}],"mbo":"Bi ", "app":"M/1: 1", "pkg":"inotl:1.0"}

ResponseCont ent
{"id":100001}

Generateld

You can use the Gener at el d method inthe Local KeyGener at or or KeyGener at or
classes to generate an ID when creating a new object for which you require a primary key or
surrogate key.

This method in the Local KeyGener at or class generates a unique 1D for the package on
the local device:
public static | ong Generateld()

This method in the KeyGener at or class generates a unique ID for the same package across
all devices:
public static | ong Generatel d()

Callback Handlers

To receive callbacks, you must register a Cal | BackHandl er with the generated database
class, the entity class, or both. You can create a handler by extending the

Def aul t Cal | backHandl er class, or by implementing the interface, ICallbackHandler.

In your handler, override the particular callback you want to use (for example,

OnRepl aySuccess). The callback is executed in the thread that is performing the action
(for example, replay). When you receive the callback, the particular activity is already
complete.

Callbacks in the CallbackHandler interface include:
nanespace Sybase. Persi stence

/] Summary:

I A default inplenentation for the
Sybase. Per si st ence. | Cal | backHandl er interface.

I Application programers should inplenent their own
Cal | backHandl er .

I

/'l Remarks:

/1 Thi s cl ass contains dumy i npl enents, application programrer
shoul d not use

I this default inplenentation.

public class DefaultCall backHandl er : | Call backHandl er

Developer Guide: Windows and Windows Mobile Native Applications 61

Reference

{

publ i ¢ Defaul t Cal | backHandl er () ;

public virtual void Beforel mport(object o0);

/1

/] Summary:

[/ This nmethod will be i nvoked when devi ce connecti on status
i s changi ng Wen

/1 there is connection error, there is a non-zero error code
and the errorMessage

/1 will not be null

/1

/| Paraneters:
/1 connSt at us:

I Connecti on status
/1

I connType:

I Connecti on type
I

I error Code:

I Error code

I

I error Message:

I Error message

public virtual void OnConnecti onSt at usChange(i nt connStatus, int
connType, int errorCode, string errorMessage);

public virtual void Onl nmport (object o0);

public virtual void Onlnport Success();

public virtual void OnLoginFailure();

public virtual void OnLogi nSuccess();

public virtual void OnMessageException(Exception ex);
public virtual void OnRecoverFailure();

public virtual void OnRecover Success();

public virtual void OnRepl ayFail ure(object 0);
public virtual void OnRepl aySuccess(object 0);
public virtual void OnReset Success();

public virtual void OnResuneSubscriptionFailure();
public virtual void OnResunmeSubscri pti onSuccess();
public virtual void OnSearchFail ure(object 0);
public virtual void OnSearchSuccess(object 0);
public virtual void OnStorageSpaceLow);

public virtual void OnStorageSpaceRecovered();
public virtual void OnSubscri beFail ure();

public virtual void OnSubscri beSuccess();

public virtual void OnSubscriptionEnd();

public virtual void OnSuspendSubscriptionFailure();
public virtual void OnSuspendSubscri ptionSuccess();

public virtual SynchronizationAction
OnSynchr oni ze(Generi cLi st <l Synchr oni zati onG- oup> gr oups,
Synchroni zat i onCont ext context);
public virtual void
OnSynchr oni zeFai | ure(Generi cLi st <l Synchroni zati onG oup> groups);
public virtual void
OnSynchr oni zeSuccess(Generi cLi st <l Synchr oni zat i onG oup> gr oups) ;
public virtual void OnTransacti onConmit();
public virtual void OnTransacti onRol | back();

62

Sybase Unwired Platform

Reference

public virtual void OnUnsubscribeFail ure();
public virtual void OnUnsubscribeSuccess();

}
}
This code example shows how to create and register a handler to receive callbacks:
public class MyCal |l backHandl er : Defaul t Cal | backHandl er

/1 1nplenentation

}

Cal | backHandl er handl er = new MyCal | backHandl er () ;
MyPackageDB. Regi st er Cal | backHandl er (handl er) ;
[/ or Custoner. RegisterCall backHandl er (handl er);

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void CreateDatabase()
public static void Del et eDat abase()

Typically, Cr eat eDat abase does not need to be called since it will be called internally
when necessary. An application may use Del et eDat abase when the client database
contains corrupted data and needs to be cleared.

Installing X.509 Certificates on Windows Mobile Devices and
Emulators

Install the *.p12 certificate on a Windows Mobile device or simulator and select it during
authentication.

Launch the simulator or device.

Start the Windows synchronization software and cradle the device.

Use File Explorer to copy the *. p12 certificate to the simulator or device.
Navigate to and double-click the certificate.

Enter the password at the prompt and click Done.
An informational window indicates the certificate installed successfully.

o wbdh e

Windows Mobile Sample Code
This sample code illustrates importing the certificate and setting up login credentials, as well
as other APIs related to certificate handling:

/1l End2EndDB i s a generated RBS cl ass
/l/First install certificates on your enulator, for exanple
"Sybasel01. p12"

[/ Test getting certificate fromcertificate store
CertificateStore nyStore =
CertificateStore. GetDefaul t();

Developer Guide: Windows and Windows Mobile Native Applications 63

Reference

string filterl = "Sybase";
StringList |abels = nyStore. CertificatelLabel s(filterl, null);

string aLabel = labels.Iten(0);
LoginCertificate |c = myStore. Get Si gnedCertificate(aLabel,
"password");

/1 Save the login certificate to your synchronization profile
End2EndDB. Get Synchr oni zati onProfile(). Certificate = |c;

/] Login to Unwired Server w thout username/password
End2EndDB. Logi nToSync() ;

[/ Perform synchroni zati on
End2EndDB. Synchr oni ze() ;

/1 Save the login certificate to your data vault
Dat aVault vault = null;
if (!DataVault.Vaul t Exi sts("nyVault"))

vault = DataVault.CreateVault("myVault", "password", "salt");
LI se

vault = DataVault. GetVault("myVault");
vaul t. Unl ock(" password", "salt");

| c. Save("myLabel ", vault);

[l CGet certificate that was previously | oaded fromthe data vault
Logi nCertificate newc = LoginCertificate. Load("nmyLabel", vault);
Debug. Assert (newLc. Subj ect DN. Equal s(| ¢. Subj ect DN)) ;

/'l Delete the certificate fromthe data vault
Logi nCertificate. Del ete("nmyLabel ", vault);

Single Sign-On With X.509 Certificate Related Object API

Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

» CertificateStore class - wraps platform-specific key/certificate store class, or file directory
» LoginCertificate class - wraps platform-specific X.509 distinguished name and signed
certificate

« ConnectionProfile class - includes the certificate attribute used for Unwired Server
synchronization.

Refer to the Javadocs that describe implementation details.

64 Sybase Unwired Platform

Reference

Importing a Certificate Into the Data Vault
Obtain a certificate reference and store it in a password protected data vault to use for X.509
certificate authentication.

The difference between importing a certificate from a system store or a file directory is
determined by how you obtain the Cer t i fi cat eSt or e object. In either case, only a label
and password are required to import a certificate.

//Cbtain a reference to the certificate store
CertificateStore myStore = CertificateStore. GetDefault();

//List all certificate labels fromthe certificate store
StringList |abels = nyStore. CertificatelLabel s();

/lList the certificate |labels filtered by subject
String filterl = "Sybase";
| abel s = nmyStore. CertificateLabel s(filterl, null);

/1 Get a LoginCertificate fromthe certificate store

string aLabel = ... //ask user to select a |abe

string password = ... //pronpt user for password

Logi nCertificate |c = myStore. Get Si gnedCertificate(aLabel
passwor d) ;

/] Savel/ Load/ Del ete. .. LoginCertificate
[/ Create or |ookup a data vault

Dat aVault vault = null;

if (!DataVault. Vault Exi sts("nyVault"))
{

vault = DataVault.CreateVault("myVault", "password", "salt");
}
el se
{
vault = DataVault. GetVault("myVault");
}

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

//Unl ock the vault before using it

vaul t. Unl ock(" password", "salt");

[/ Save the certificate with specified | abel

| c. Save("myLabel ", vault);

//load the certificate fromdata vault by | abel

Logi nCertificate newlc = LoginCertificate.Load("myLabel", vault);
//Delete the certificate fromthe data vault

Logi nCertificate. Del ete("nyLabel ", vault);

Developer Guide: Windows and Windows Mobile Native Applications 65

Reference

Connecting to Unwired Server With a Certificate
Once the certificate property is set, use the Logi nToSync or Onl i neLogi n API with no
parameters to connect to Unwired Server with the login certificate.

//connect to Unwired Server with the login certificate
MyPackageDB. Get Synchroni zati onProfile().Certificate = Ic;
MyPackageDB. Logi nToSync() ;

Exceptions

Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions

Exceptions thrown on the Unwired Server are logged in both the server log and in
LogRecor d. For LogRecor d, the exception gets downloaded to the device automatically
during synchronization (replication-based synchronization) or when importing a message
(message-based synchronization).

HTTP Error Codes

Unwired Server examines the EIS code received in a server response message and maps itto a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 2. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS down or the connection is terminated.

Table 3. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.

66

Sybase Unwired Platform

Reference

Error Code Probable Cause Manual Recovery Action
403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).
404 Resource (table/webservice/BA- | Restore the EIS configuration.
P1) not found on Backend EIS.
405 Invalid license for the client (ap- | N/A
plicable only for MBS).
412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.
500 SUP internal error in modifying | N/A
the CDB cache.

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThr owCr edent i al Request On401Er r or context
variable is set to true (which is the default), error code 401 throws a

Credenti al Request Except i on, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the

SupThr owCr edent i al Request On401Er r or context variable in Sybase Control
Center. If SupThr owCr edent i al Request On401Er r or is set to false, error code 401
is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP® error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 4. Mapping of SAP error codes to HTTP error codes
HTTP Error Code

Constant Description

JCO_ERROR_COMMUNICATION Exception caused by net- | 503
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote

SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401
ing the logon phase usually
caused by unknown user-

name, wrong password, or

invalid certificates.

Developer Guide: Windows and Windows Mobile Native Applications 67

Reference

Constant Description HTTP Error Code

JCO_ERROR_RESOURCE Indicates that JCO has run | 503

out of resources such as
connections in a connec-
tion pool

JCO_ERROR_STATE_BUSY The remote SAP system is | 503

busy. Try again later

Client-Side Exceptions

Device applications are responsible to catch and handle exceptions thrown by the client object
API.

For message-based synchronization, you can catch exceptions for background thread message
processing by creating a callback handler and implementing OnMessageExcept i on
methods.

Note: Refer to Callback Handlers on page 61 for more information.

Exception Classes

The Client Object API supports exception classes for queries and for the messaging client.

SynchronizeException — this exception is thrown when an error occurs during
synchronization.

Per sistenceException — this exception is thrown when trying to load an MBO that is
inside the local database.

SystemException —this exception is thrown for uncategorized errors, and is typically
unrecoverable.

Obj ectNotFoundException —this exception is thrown when trying to load an MBO that
is not inside the local database.

NoSuchOper ationException — this exception is thrown when trying to call a method
(using the Object Manager API) but the method is not defined for the MBO.
NoSuchAttributeException —this exception is thrown when trying to access an attribute
(using the Object Manager API) but the attribute is not defined for the MBO.

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

68

Sybase Unwired Platform

Reference

MetaData and Object Manager API

Some applications or frameworks may wish to operate against MBOSs in a generic manner by
invoking MBO operations without prior knowledge of MBO classes. This can be achieved by
using the MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the —nd code generation option. You can use the —r m
option to generate the object manager class.

You can also generate metadata classes by selecting the option "Generate metadata classes" or
"Generate metadata and object manager classes™ option in the code generation wizard in the
mobile application project.

ObjectManager
The Obj ect Manager class allows an application to call the Object APl in a reflection style.

| Obj ect Manager rm = new MyDat abase_RM) ;

Cl assMet aDat a cust oner = MyDat abase. Met adat a. Get d ass(“ Custoner”);
AttributeMetabData | name = custoner. Get Attribute(“l nane”);

Oper ati onMet aDat a save = custoner. Get Operati on(“save”);

obj ect myMBO = rm NewObj ect (cust oner) ;

rm Set Val ue(nyMBO, | name, “Steve”);

rm | nvoke(nyMBO, save, new CbjectList());

DatabaseMetaData
The Dat abaseMet aDat a class holds package level metadata. You can use it to retrieve
data such as synchronization groups, default database file, and MBO metadata .

Dat abaseMet aDat a dnd = Sanpl eAppDB. Met adat a;
foreach (String syncGoup in dnd. Synchroni zati onG oups)

Consol e. Wit eLi ne(syncG oup);
}

EntityMetaData
The Ent i t yMet aDat a class holds metadata for the MBO, including attributes and
operations.

EntityMet aDat a cust oner Met aDat a = Cust oner. Get Met aDat a() ;
Attri buteMetaData | name =
cust oner Met aDat a. Get Attri bute("l nane");
Qper ati onMet aDat a save = cust oner Met aDat a. Get Oper ati on("save");

Developer Guide: Windows and Windows Mobile Native Applications 69

Reference

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name, column
name, type, and maxlength.

Consol e. Wi teLi ne(l nane. Nang) ;
Consol e. Wi t eLi ne(l name. Col um) ;
Consol e. Wi t eLi ne(l name. MaxLengt h) ;

Replication-Based Synchronization APIs

Replication-based synchronization (RBS) clients receive device notifications when a data
change is detected for any of the MBOs in the synchronization group to which they are
subscribed.

The following operations are available when performing replication-based synchronization.

IsSynchronized() and GetLastSynchronizationTime

For replication-based synchronization applications, the package database class provides the
following two methods for querying the synchronized state and the last synchronization time
of a certain synchronization group:

I/l Returns if the synchronizati onG oup was synchroni zed
public static bool |sSynchronized(string synchronizati onG oup)

/1] Returns the | ast synchronization tinme of the synchronizati onG oup
public static System DateTi ne GetLast Synchroni zati onTi me(string
synchroni zati onG oup)

Push Configuration APIs
The push configuration APIs provide methods for configuring push through lightweight
polling (LWP).

Note: To use the push notification API in the Object API, the Sybase Server Sync Tool must be
installed on the device. You can get the installer from

\<Unwi redPl atform Install Dir>\Cient APl \ RBS\ WM Ser ver Sync
*.CAB.

LWPPush
The following APIs support push natification in the generated database class.

The Regi st er Ser ver SyncConf i gur ati on() method registers a synchronization
configuration from a connection profile and generates a configuration file for the
SybaseSer ver Sync application, which is required for SIS push notification.

/I Regi ster server sync configuration based on the connection profile
properties.
/1 This generates a configuration file for SybaseServer Sync
appl i cation under \Application Data\
MyDat abase. Regi st er Server SyncConfi guration();

70

Sybase Unwired Platform

Reference

The LaunchSer ver SyncHel per () method starts the SybaseSer ver Sync
application that provides the lightweight polling used for SIS push notification.

/] Starts LWP used for SIS push notification
MyDat abase. LaunchSer ver SyncHel per ()

The client sets the SIS push configuration parameters using Synchr oni zat i onG oup.

Sybase. Per si st ence. | Synchr oni zat i onG oup
Get Synchroni zati onG oup(string syncG oup)

| Synchroni zati onGroup sg =

MyDat abase. Get Synchroni zati onG oup("of s");
sg. Enabl eSI' S = true;

/] sg.EnableSIS = fal se

sg. I nterval = 0;

sg. Save();

The following method registers a callback handler to configure push notifications through
lightweight polling.

/1l Install a user-defined call back handl er
MyDat abase. Regi st er Cal | backHandl er (new MyCal | backHandl er ()) ;

The following method starts a background thread to do synchronization of push notifications.
MyDat abase. St art Backgr oundSynchr oni zati on() ;

The following method stops the background thread performing synchronization on push
notifications.
MyDat abase. St opBackgr oundSynchr oni zati on() ;

The Shut downSer ver SyncHel per () method stops the SybaseSer ver Sync
application.

/1 Stops LWP used for SIS push notification
MyDat abase. Shut downSer ver SyncHel per ()

Creating a Replication-based Push Application
Create a single device application using the Push Synchronization APIs described in this
section.

Develop the push application directly from generated mobile business object (MBO) code.

1. Properly configure and deploy the mobile business objects (MBOS).
a) CreateaCache Group (or use the default) and set the cache policy to Scheduled and set
some value for the Cacheinterval, 30 seconds for example.
b) Create a Synchronization Group and set some value for the Change detection level,
one minute for example.
¢) Place all Mobile Application project MBOs in the same Cache Group and
Synchronization Group.

d) Deploy the Mobile Application Project as Replication-based in the Deployment
wizard.

Developer Guide: Windows and Windows Mobile Native Applications 71

Reference

2. Develop the push application.

a)
b)
c)

d)

Generate the Object API code.

Create a new device application in Visual Studio.

Install SybaseSer ver Sync on your Windows Mobile device. The cab file can be
found in the <Unwi redPl atform I nstal | Di r >\ d i ent APl \ RBS\ WM

\ Ser ver Sync\ folder.

If you have only a single push-enabled application running on the device, write
application code that calls the push APIs.

Note: To run multiple push-enabled applications on a device, see Developer Guide for
Windows and Windows Mobile > Reference < Replication-Based Synchronization
APIs> Push Configuration APIs> Running Multiple Push-Enabled Applications on a
Device.

private void sanpl eEnabl eSI S C i ck(object sender, EventArgs e)

/1 Set synchroni zaton profile properties

S| Ssanpl eDB. Get Synchr oni zati onProfil e(). Server Nane =
"exanpl e- xp2";

S| Ssanpl eDB. Get Synchroni zati onProfil e(). Networ kProtocol =
" htt pll ;

S| Ssanpl eDB. Get Synchr oni zati onProfil e(). Port Nunber = 2480;

/1Set poll interval to 180 seconds.
Sl Ssanpl eDB. Get Synchroni zationProfile().SISInterval M5 =
180000;

/| Regi ster server sync configuration based on the connection
profile properties.

/1 This generates a configuration file for SybaseServer Sync
appl i cati on under \Application Data\

S| Ssanpl eDB. Regi st er Ser ver SyncConfi guration();

/Il Start SybaseServer Sync application. you can also start it
manual | y before running the SIS sanple.

S| Ssanpl eDB. LaunchSer ver SyncHel per () ;

/1 Login to Unwired Server
S| Ssanpl eDB. Logi nToSync("test", "test123");

/1 Synchroni ze the syncgroup.
S| Ssanpl eDB. Synchr oni ze("of s") ;

/1 Enable SIS on the "ofs" synchroni zati on group.
| Synchroni zati onG oup sg =
S| Ssanpl eDB. Get Synchr oni zati onG oup("ofs");
sg. Enabl eSI' S = true;
sg. I nterval = 0;
sg. Save();

/'l Register your callback handler if you want to handl e
notifications.

S| Ssanpl eDB. Regi st er Cal | backHandl er (new
My/Cal | backHandl er ());

72

Sybase Unwired Platform

Reference

/1 Start a background thread to do synchronization on
notifications.
S| Ssanpl eDB. St art Backgr oundSynchr oni zati on() ;

/] Synchroni ze the synchroni zati on group to enable SIS on
server.

S| Ssanpl eDB. Synchr oni ze("of s") ;

sg = Sl Ssanpl eDB. Get Synchroni zati onG oup("ofs");

Syst em Di agnosti cs. Debug. Assert (sg. Enabl edSI S,
" Sl SSubscri ption not created");

}

private void sanpl eExit(object sender, EventArgs e)

S| Ssanpl eDB. St opBackgr oundSynchr oni zati on() ;
S| Ssanpl eDB. Shut downSer ver SyncHel per () ;

}

Running Multiple Push-Enabled Applications on a Device

If you need to run multiple push-enabled applications on a device, you cannot call certain push
configurations APIs in your push-enabled applications. Instead you must manually configure
and launch the server synchronization tool, SybaseSer ver Sync.

You can run multiple push-enabled applications on a single device if the following
requirements are met.

» The push-enabled applications must have same connection information (host, port,
synchronization protocol, stream parameters, login user, password, and domain), because
of the device-level dependency of the SybaseSer ver Sync application.

« The push-enabled applications cannot start, stop, or configure the SybaseSer ver Sync
application in their client code. You must start the SybaseSer ver Sync application
manually before running the push-enabled applications.

To run multiple applications on a device:

1. Develop the applications as described in Developer Guide for Windows and Windows
Mobile > Reference < Replication-Based Synchronization APIs > Push Configuration
APIs> Creating a Replication-based Push Application.

2. Install SybaseSer ver Sync on your Windows Mobile device. The cab file can be
found in the <Unwi redPl atform I nstal | Di r >\ C i ent APl \ RBS\ WM
\ Ser ver Sync\ folder.

3. Configure SybaseSer ver Sync with the host, port, user, and stream parameters.

Developer Guide: Windows and Windows Mobile Native Applications 73

Reference

/R Windows Mabile 6 Classic

File: Flash Help

' | Sybase Server: § 4 Wz 4:48 |ok

MohilLink Host |}{wang2-}{p2

MabiLink Port |24EIEI |

MabiLink User |supadmmin |

Maobilink Strearn Pararmeters

&pplication Folder:

hF'mgram Files'Sybase ServerSync |

[] Launch Client &pp on Matify
[] werbaose Listener

Launch

Configuration | Lightweight Poll Kews

4. Select the Launch tab and click the start Listener button to launch the
SybaseSer ver Sync tool.

5. Create your applications by writing the SIS sample code. Refer to the sample code in
Developer Guide for Windows and Windows Mobile > Reference < Replication-Based
Synchronization APIs > Push Configuration APIs > Creating a Replication-based Push
Application, but ensure that your push-enabled application does not call any of the
following APIs from the generated database class:

« Regi sterServerSyncConfiguration

74

Sybase Unwired Platform

Reference

e LaunchServer SyncHel per
o Shut downSer ver SyncHel per

Best Practices for Developing Applications
Observe best practices to help improve the success of software development for Sybase
Unwired Platform.

« Setup your development environment and develop your application using the procedures
in the Developer Guide for Windows and Windows Mobile.

Check Network Connection Before Login
If a device does not establish a network connection, the login process does not return a result
until after a long timeout occurs. To avoid this delay, check the network connection before
performing a login.

Search for Detect and Verify a Network Connection on the NET Framework Developer
Center at Attp.//msadn.microsoft.com/en-us/netframework for information on verifying
connections to network resources required by an application.

Check Connection before Synchronization
Before starting a synchronization, check the connection to the Unwired Server.

public static void Synchronize()
i f (CheckConnecti onStates())

XXXDB. Synchroni ze() ;
}

/'l else notify user or show error nessage.

}

Start a New Thread to Handle Replication-based Synchronization

The synchronization process in replication-based synchronization may take a long time. To
avoid blocking the user interface, start a new thread to do background work.

public void Synchronize()
i f (CheckConnecti onStates())

Thread thread = new Thread(new ThreadStart (this.
Synchroni zati onCore));
thread. Start();

/1 else notify user or show error message.

}

Private void Synchroni zati onCore()

Developer Guide: Windows and Windows Mobile Native Applications 75

http://msdn.microsoft.com/en-us/netframework

Reference

XXXDB. Synchroni zati on(new MYSyncSt at usLi st ener);
Private class MYSyncSt atusLi stener: SyncStat usLi st ener

/1 get the status and update the Ul
}

Constructing Synchronization Parameters

When constructing synchronization parameters to filter rows to be download to a device, if the
SQL statement involves two mobile business objects, you must use an "in" clause rather than a
"join" clause. Otherwise, when there is a joined SQL statement, all rows of the subsequent
mobile business object are filtered out.

For example, you would change this statement:

SELECT x.* FROM So_conpany X , So_user y where x.conpany_id =
y.conpany_id and y.unane='test"'

To:

SELECT x.* FROM So_conpany x where x.conpany_id in (sel ect
y.conpany_id from So_user y where y.unane='test')

Clear Synchronization Parameters

When using synchronization parameters to retrieve data from an MBO during a
synchronization session, clear the previous synchronization parameter values.

<MBC>Synchr oni zat i onPar anet ers parans =

<MBO>. Synchroni zat i onPar anet er s;

par ans. Del ete();

params = <MBO>. Synchroni zati onParaneters; //nust re-get the sync
par amet er instance

params. Paraml = val uel; //set new sync paraneter val ue

par ans. Par an? val ue2; //set new sync paraneter val ue

par ans. Save() ;

Clear the Local Database

Each time you redeploy a package on the Unwired Server, the client application should clear
the local database. After clearing the database, login again so that the local database is
reconstructed.

XXDB. Del et eDat abase() ;
XXDB. Logi nToSync(); //Don't forget to login again so that the |ocal
dat abase will be re-constructed.

Turn Off API Logger
In production environments, turn off the API logger to improve performance.

XXDB. Get Logger () . Set LogLevel (LogLevel . OFF) ;

76 Sybase Unwired Platform

Index
A

ActiveSync, installing and configuring 4
arbitrary find method 29, 30, 34
AttributeMetadata 70

AttributeTest 29, 30, 34

AVG 32

B

best practices 75

C

callback handler 61
CallbackHandler 14
certificates 24
CheckConnectionStates() 75
ClassMetadata 69

client database 63

client object API 21
CloseConnection 21
common APIs 46
CompositeTest 29, 34
concatenate queries 33
ConnectionProfile 21, 24
ConnectionProfile.EncryptionKey 25
COUNT 32

CreateDatabase 63

D

data vault 52
change password 59
creating 50
deleting 52
exists 51
lock timeout 54
locked 53
locking 53
retrieve string 56
retrieve value 58
retry limit 55
set string 56
set value 57

Index

unlocking 53
database connections

managing 21
database:client 63
DatabaseMetadata 69
DataVault 50
DataVaultException 50
debugging 14
Delete operation 37
DeleteDatabase 63
deploying

configuring ActiveSync for 4
documentation roadmap 1

E

E2EE 24
EIS error codes 66, 67
End-to-End Encryption 24
entity states 42, 43
error codes
EIS 66, 67
HTTP 66, 67
mapping of SAP error codes 67
non-recoverable 66
recoverable 66
EXCEPT 33
exceptions
server-side 66, 68

F

filtering results 32
FROM clause 33

G

generated APl help 1

generated code contents 11
generated code, location 11
Generateld 61

generating code using the AP1 8
GetLastSynchronizedTime() 70
getLogRecords 60

group by 32

Developer Guide: Windows and Windows Mobile Native Applications 77

Index

H
HTTP error codes 66, 67

installing
Microsoft ActiveSync 4
synchronization software 4
INTERSECT 33
IsSynchronized() 70

J
JMSBridge 14

K
KeyGenerator 61

L

libraries 16

local business object 41
localization 19
LocalKeyGenerator 61
LoginToSync 23
LogRecord API 60
LogRecordIimpl 60
LWPPush 70

M

MAX 32

maxDbConnections 22

MBOLogger 14

MetaData API 69

Microsoft ActiveSync, installing and configuring 4
MIN 32

mobile business object states 49

N
newLogRecord 60

@)

Object API code
location of generated 11

Object Manager API 69
object query 27
ObjectManager 69
OfflineLogin 23
OnImportSuccess 26
OnLineLogin 23
OpenConnection 21
Other operation 37

P

paging data 29, 30
pending operation 39
personalization keys 41

types 41
PersonalizationParameters 41
push synchronization 71

Q

Query object 29, 30, 34
QueryResultSet 35

R

Refresh operation 49
relationship data, retrieving 36

S

SampleAppDB.subscribe() 26
Selectltem 33
setting the database file location on the device 25
setting the databaseFile location 25
simultaneous synchronization 26
Skip 29, 34
SortCriteria 29, 30, 34
SSL 24
status methods 42, 43
submitLogRecords 60
subqueries 33
SUM 32
SUPBridge 14
SybaseServerSync 70
synchronization
MBO package 26
of MBOs 26
replication-based 26
simultaneous 26

78

Sybase Unwired Platform

Index

synchronization software UNION_ALL 33
installing 4 Update operation 37
SynchronizationProfile 22, 23
\Y
T
Visual Studio
task flow 3 required DLLs 6
TestCriteria 29, 34
W
U
UNION 33 Windows Mobile Device Center 5

Developer Guide: Windows and Windows Mobile Native Applications 79

Index

80

Sybase Unwired Platform

	Developer Guide: Windows and Windows Mobile Native Applications
	Contents
	Introduction to Developer Guide: Windows and Windows Mobile Native Applications
	Documentation Roadmap for Unwired Platform
	Introduction to Developing Device Applications with Sybase Unwired Platform

	Development Task Flow
	Task Flow for C# Development
	Configuring Your Windows or Windows Mobile Environment
	Installing the Windows Mobile Development Environment
	Configuring Windows Mobile Device Center
	Enabling Network Access from the Windows Mobile Device Emulator

	Client Application Dependencies

	Using Object API to Develop a Device Application
	Generating C# Object API Code
	Generated Code Location and Contents
	Validating Generated Code
	Creating a Project

	Developing a Windows or Windows Mobile Device Application Using Visual Studio
	Windows Mobile Development
	Integrating Help into a Project
	Debugging Windows and Windows Mobile Device Development

	Creating a Mobile Application Project
	Configuring an Application to Synchronize and Retrieve MBO Data
	Localizing a Windows Mobile Application

	Reference
	Windows Mobile Client Object API
	Connection APIs
	ConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with Multiple Database Reader Threads

	SynchronizationProfile
	Connect through a Relay Server
	Authentication
	Connect Using a Certificate
	Enable End-to-End Encryption (E2EE) Using SSL
	Encrypt the Database
	Set Database File Property

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Queries
	Query and Related Classes
	Arbitrary Find
	Dynamic Query
	SortCriteria
	Paging Data

	AttributeTest
	Aggregate Functions
	Grouping Results
	Filtering Results

	Concatenating Queries
	Subqueries
	CompositeTest
	Complex Example
	QueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Other Operation
	Cascade Operations
	Pending Operation
	Passing Structures to Operations

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Get or Set Personalization Key Values

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Mobile Business Object States
	Refresh Operation
	Clear Relationship Objects

	Security APIs
	DataVault
	CreateVault
	VaultExists
	GetVault
	DeleteVault
	Lock
	IsLocked
	Unlock
	SetLockTimeout
	GetLockTimeout
	SetRetryLimit
	GetRetryLimit
	SetString
	GetString
	SetValue
	GetValue
	ChangePassword

	Utility APIs
	Using the Logger and LogRecord APIs
	Viewing Error Codes in Log Records

	GenerateId
	Callback Handlers
	Client Database APIs

	Installing X.509 Certificates on Windows Mobile Devices and Emulators
	Windows Mobile Sample Code

	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate Into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server With a Certificate

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	EntityMetaData
	AttributeMetaData

	Replication-Based Synchronization APIs
	IsSynchronized() and GetLastSynchronizationTime
	Push Configuration APIs
	LWPPush
	Creating a Replication-based Push Application
	Running Multiple Push-Enabled Applications on a Device

	Best Practices for Developing Applications
	Check Network Connection Before Login
	Check Connection before Synchronization
	Start a New Thread to Handle Replication-based Synchronization
	Constructing Synchronization Parameters
	Clear Synchronization Parameters
	Clear the Local Database
	Turn Off API Logger

	Index

