
Developer Reference for Windows and
Windows Mobile

Sybase Unwired Platform 1.5.5

DOCUMENT ID: DC01216-01-0155-02
LAST REVISED: February 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Reference for Windows and
Windows Mobile ..1

Documentation Road Map for Unwired Platform2
Introduction to Developing Device Applications with

Sybase Unwired Platform ...5
Development Task Flows ..7

Task Flow for C# Development7
Task Flow for Device Application Designer and C#

Development ..8
Configuring Your Windows Mobile Environment8

Configuring Connection Settings for the
Synchronization Software8

Installing Required Components10
Client API Dependencies11

Mobile Business Object Code or Device Application
Designer Code ...11

Generating Windows or Windows Mobile
Application Project Code12

Generating Windows Mobile Device Application
Code from the Device Application Designer17

Developing a Windows Mobile Device Application
Using Visual Studio ..25

Project Setup ...25
Windows Mobile Libraries26
Windows Mobile Development26
Implementing SyncNow for MBS Applications30

Application Deployment to Devices32
Deploying Replication-Based Applications32
Deploying Message-Based Applications to an

Emulator or Device ..32
Reference ...37

Developer Reference for Windows and Windows Mobile iii

Generated API Help ..37
Windows Mobile Client Object API37

Connection APIs ..37
Synchronization APIs ...40
Query APIs ..41
Operations APIs ...46
Local Business Object ...51
Personalization APIs ..51
Object State APIs ..52
Utility APIs ...61
Exceptions ...67
MetaData and Object Manager API70
Replication-Based Synchronization APIs71
Message-Based Synchronization APIs75

Windows Mobile Device Framework API77
Add Controls Manually to a Screen77
Customize Controller ...78
Customize Widget Event Code79
Add Validators ..80
Perform UI Binding to an MBO80
Access Pending Operations and Operation Logs

...80
Connect to Unwired Server81
Add or Modify Navigation81
Add or Modify Actions ..81
Create and Assign Variables81
Assign PIM Actions to Controls81
Change Default Layout ..82

Windows Mobile Device Framework Assemblies82
Sybase.UnwiredPlatform.Windows82
Sybase.UnwiredPlatform.Windows.Forms86
Sybase.UnwiredPlatform.Windows.StockScree

ns ...93
Index ..99

Contents

 iv Sybase Unwired Platform

Introduction to Developer Reference for
Windows and Windows Mobile

This developer reference provides information about using advanced Sybase® Unwired
Platform features to create applications for Microsoft Windows and Windows Mobile devices.
The audience is advanced developers who are familiar working with APIs, but who may be
new to Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the client object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and client object API documentation.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object
• Sybase Unwired WorkSpace – Device Application Development
• Tutorial: Windows Mobile Application Development (Device Application Designer)
• Tutorial: Windows Mobile Device Application Development (Custom Development)
• Troubleshooting for Sybase Unwired Platform
• C# documentation, which provides a complete reference to the APIs:

• Compiled help for the Device Framework API is installed to
<UnwiredPlatform_InstallDir>\Unwired_WorkSpace
\VisualStudio\ComponentLibrary\help.

• You can integrate help for generated code from mobile business objects (MBOs) into
your Visual Studio project. See Integrating Help into a Project on page 27.

See Fundamentals for high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Introduction to Developer Reference for Windows and Windows Mobile

Developer Reference for Windows and Windows Mobile 1

Documentation Road Map for Unwired Platform
Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document Description

Sybase Unwired Platform Installation Guide Describes how to install or upgrade Sybase Un-
wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.

Fundamentals Describes basic mobility concepts and how Syb-
ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Introduction to Developer Reference for Windows and Windows Mobile

 2 Sybase Unwired Platform

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat-
form

Describes how to use the Sybase Control Center
administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase > Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Introduction to Developer Reference for Windows and Windows Mobile

Developer Reference for Windows and Windows Mobile 3

Document Description

Getting started tutorials Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

• Learn mobile business object (MBO) basics,
and create a mobile device application:
• Tutorial: Mobile Business Object Devel-

opment
• Tutorial: BlackBerry Application Devel-

opment using Device Application De-
signer

• Tutorial: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer

• Create native mobile device applications:
• Tutorial: BlackBerry Application Devel-

opment using Custom Development
• Tutorial: iPhone Application Develop-

ment using Custom Development
• Tutorial: Windows Mobile Application

Development using Custom Develop-
ment

• Create a mobile workflow package:
• Tutorial: Mobile Workflow Package De-

velopment

Sybase Unwired WorkSpace – Mobile Business
Object Development

Online help for developing MBOs.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace – Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Introduction to Developer Reference for Windows and Windows Mobile

 4 Sybase Unwired Platform

Document Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

• Developer Reference for BlackBerry
• Developer Reference for iOS
• Developer Reference for Mobile Workflow

Packages
• Developer Reference for Windows and Win-

dows Mobile

Developer reference for Unwired Server side
customization – Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentals and Syb-
ase Unwired WorkSpace – Mobile Business Ob-
ject Development.

Developer reference for system administration
customization – Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentals and Sys-
tem Administration.

Introduction to Developing Device Applications with
Sybase Unwired Platform

A device application includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of mobile
application development:
• The data aspects of the mobile application are called mobile business objects (MBO), and

“MBO development” refers to defining object data models with back-end enterprise
information system (EIS) connections, attributes, operations, and relationships that allow

Introduction to Developer Reference for Windows and Windows Mobile

Developer Reference for Windows and Windows Mobile 5

segmented data sets to be synchronized to the device. Applications can reference one or
more MBOs and can include synchronization keys, load parameters, personalization, and
error handling.

• Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your device application by generating code to use as a
base in a native IDE. Follow an API approach that uses your native IDE's Client Object
API and Device Framework API. Unwired WorkSpace provides MBO code generation
options targeted for specific development environments, for example, BlackBerry JDE for
BlackBerry device applications, or Visual Studio for Windows Mobile device
applications.
The Client Object API uses the data persistence library to access and store object data in
the database on the device. Code generation takes place in Unwired WorkSpace. You can
generate code manually, or by using scripts. The code generation engine applies the
correct templates based on options and the MBO model, and outputs client objects.

Note: You can use Device Application Designer to create prototype device application
code, then add custom coding for end-to-end prototyping. This guide provides some
reference material for prototyping.

Note: See Sybase Unwired WorkSpace – Mobile Business Object Development for
procedures and information about creating and deploying MBOs. See Sybase Unwired
WorkSpace - Device Application Development for information about device application
features and appearance.

Introduction to Developer Reference for Windows and Windows Mobile

 6 Sybase Unwired Platform

Development Task Flows

This section describes the overall development task flows, and provides information and
procedures for setting up the development environment, and developing device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding, as
shown on the left. This is how you create device applications with sophisticated UI interaction,
validation, business logic, and performance.

Optionally you can use Device Application Designer to create prototype device applications,
as shown on the right.

Task Flow for C# Development
This describes a typical task flow for creating a device application using Visual Studio and
C#.

Highlevel steps:

1. Configuring Your Windows Mobile Environment on page 8.
2. Generating Windows or Windows Mobile Application Project Code on page 12.
3. Developing a Windows Mobile Device Application Using Visual Studio on page 25.
4. Deploying applications:

a. Deploying replication-based applications on page 32.
b. Deploying message-based applications on page 32.

Development Task Flows

Developer Reference for Windows and Windows Mobile 7

Task Flow for Device Application Designer and C#
Development

This describes a typical task flow for creating a device application prototype using the Device
Application Designer with Visual Studio and C#.

Highlevel prototyping steps:

1. Configuring Your Windows Mobile Environment on page 8.
2. Generating Windows Mobile Device Application Code from the Device Application

Designer. on page 17.
3. Developing a Windows Mobile Device Application Using Visual Studio on page 25.
4. Deploying applications:

• Deploying Replication-Based Applications on page 32.
• Deploying Message-Based Applications to an Emulator or Device on page 32.

Configuring Your Windows Mobile Environment
This section describes how to set up your Visual Studio development environment, and
provides the location of required DLL files and client object APIs.

Configuring Connection Settings for the Synchronization Software
Install and configure Microsoft ActiveSync so you can deploy and run device applications on
an emulator. If you install Visual Studio 2008, the Windows Mobile Device Emulators
(Windows Mobile 5) and Device Emulator Manager are already installed.

Note: Microsoft ActiveSync is for Windows XP. If you are using Windows Vista or Windows
2008, you must install Virtual PC 2007 SP1 and Windows Mobile Device Center to manage
synchronization settings. You can download the Windows Mobile Device Center from http://
www.microsoft.com/windowsmobile/en-us/downloads/microsoft/device-center-
download.mspx.

1. Install both the Windows Mobile 6 Standard SDK and the Windows Mobile 6 Professional
SDK. You can download them from http://www.microsoft.com/downloads/details.aspx?
familyid=06111A3A-
A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo.

2. Download Microsoft ActiveSync from the http://www.microsoft.com/windowsmobile/
en-us/help/synchronize/device-synch.mspx. Save it to your local machine. Windows XP
requires version 4.5.

3. In Windows Explorer, double-click setup.msi to run the ActiveSync installer.

Development Task Flows

 8 Sybase Unwired Platform

http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx

4. Follow the steps in the ActiveSync installer to complete the installation.

5. When installation is complete, restart your machine.

ActiveSync starts automatically, and its icon appears in the Windows toolbar.

6. Double-click the ActiveSync icon.

7. Select File > Connection Settings.

8. In the Connection Settings dialog, select all the check boxes.

9. Under "Allow connections to one of the following", select DMA.

10. Under "This computer is connected to", select Work Network.

11. Click OK.

Configuring Windows Mobile Device Center
Before using the Windows Mobile Device Emulator, you need to change the settings of
Windows Mobile Device Center.

1. Open Windows Mobile Device Center.

2. Click Mobile Device Settings.

3. Click Connection Settings.

4. Click on the Allow connections to one of the following checkbox.

5. Select DMA in the combobox.

Development Task Flows

Developer Reference for Windows and Windows Mobile 9

6. On the This computer is connected to combobox, select The Internet if you want to
allow the Windows Mobile device to access the Internet using Pocket IE.

7. Star the Windows Mobile Device Emulator.

Enabling Network Access from the Windows Mobile Device Emulator
When the Windows Mobile Device Emulator is started, you don’t have network access by
default on the device, so you must enable it.

You can start the Windows Mobile Device Emulator from Visual Studio or from the Device
Emulator Manager.

1. To start the Emulator from Visual Studio 2008:

a) Select Tools > Device Emulator Manager.

2. If a Device Emulator is not yet connected:

a) Select a Device Emulator from the list and select Connect.

3. If you are using this Device Emulator for the first time:

a) In the Emulator, select File > Configure.
b) Click the Network tab.
c) Check the Enable NE2000 PCMCIA network adapter and bind to checkbox.
d) Select Connected network card from the list.

4. On the Emulator, configure the connection settings:

a) In the Emulator, select Start > Settings.
b) Select the Connections tab.
c) Click Connections.
d) Select the Advanced tab.
e) Click on Select Networks.
f) In the Settings window, select My Work Network in the first combobox.
g) Select File > Save State and Exit.
h) Restart the Emulator.

5. Right-click the current Emulator in Device Emulator Manager and select Cradle.

ActiveSync starts. Once the connection is established, you should be able to access your
PC and the Web from the Device Emulator.

Installing Required Components
During Sybase Unwired Platform installation, select Windows Mobile .NET Components
to install the required files that allow you to customize the generated C# API object code.

Files include:

• Online help for Windows Mobile Client Object API and Windows Mobile Framework.
• Toolbox registration for Windows Mobile controls.

Development Task Flows

 10 Sybase Unwired Platform

Client API Dependencies
The client API assembly DLL dependencies are installed under the
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer\ClientAPI directory.

The contents of the Client API directory are:

• Ultralite – .NET Data Persistence Library and client database (UltraLite®)
assemblies. This is used for replication-based synchronization client applications on
Windows Mobile or Windows.

• UltraliteJ – Client assemblies for UltraliteJ.

• dotnet – Binaries of the framework classes for .NET.

• ce: files for use on Windows CE based systems such as Windows Mobile 5+.
• win32: files for use on full Windows based systems like Windows XP.

• java – The framework classes that are used by the generated classes (Java ME, J2se and
RIM).

• MoMessaging – Files for installing client mobile messaging for message-based
synchronization client applications.

• SQLite – Client assemblies for SQLite. These are used for message-based
synchronization client applications.

• ServerSync – Used in replication-based synchronization applications for push
notification synchronization support.

• DeviceID – Used for replication-based synchronization applications.

The .NET assemblies listed above support Compact Framework 3.5+ on Visual Studio 2008.
These project types are supported:

• Full .NET Framework 3.5+ Application
• Windows CE .NET CF 3.5+ Application
• Pocket PC .NET CF 3.5+ Application
• Smartphone .NET CF 3.5+ Application

Mobile Business Object Code or Device Application
Designer Code

Determine whether to develop a device application directly from mobile business object
(MBO) generated code, or from Device Application Designer generated code, then generate
the code according to your decision.

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,

Development Task Flows

Developer Reference for Windows and Windows Mobile 11

create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

To avoid errors or inconsistent behavior, client applications must be regenerated whenever a
mobile application package has been redeployed.

Generating Windows or Windows Mobile Application Project Code
After developing the mobile business objects (MBOs), generate the *.cs files that
implement the business logic and are required for Windows and Windows Mobile
development.

Prerequisites
You must be connected to Unwired Server and the server-side (run-time) enterprise
information system (EIS) data sources referenced by the MBOs in the deployed project before
you generate object API code.

Task

1. From Unwired WorkSpace, right-click in the Mobile Application Diagram of the project
for which you are generating code and select Generate Code.

2. (Optional) Enter the information for these options:

Note: This page of the code generation wizard is seen only if you are using the Advanced
developer profile.

Option Description

Select code genera-
tion configuration

Select either an existing configuration that contains code generation set-
tings, or generate device client code without using a configuration:

• Continue without a configuration – select this option to generate device
code without using a configuration.

• Select an existing configuration – select this option to either select an
existing configuration from which you generate device client code, or
create a new configuration. Selecting this option enables:

• Select code generation configuration – lists any existing configu-
rations, from which you can select and use for this session. You can
also delete any and all existing saved configurations.

• Create new configuration – enter the Name of the new configura-
tion and click Create to save the configuration for future sessions.

Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

3. Click Next.

Development Task Flows

 12 Sybase Unwired Platform

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Note: Code generation fails if the server-side (run-time) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

5. Click Next.

6. Enter the information for these configuration options:

Option Description

Language Select C#.

Platform Select the platform (target device) from the
drop-down list for which the device client code
is intended.

• .NET Framework for Windows

• .NET Compact Framework 3.5 for Win-
dows and Windows Mobile

Unwired Server Specify a default Unwired Server connection
profile to which the generated code connects at
runtime.

Server domain Choose the domain to which the generated code
will connect. If you specified an Unwired Serv-
er to which you previously connected success-
fully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an Un-
wired Server is selected.

Development Task Flows

Developer Reference for Windows and Windows Mobile 13

Option Description

Page size Optionally, select the page size for the gener-
ated client code. If the page size is not set, the
default page size is 16KB at runtime. The de-
fault is a proposed page size based on the se-
lected MBO's attributes.

The page size should be larger than the sum of
all attribute lengths for any MBO that is inclu-
ded with all the MBOs selected, and must be
valid for the database. If the page size is
changed, but does not meet these guidelines,
object queries that use string or binary attrib-
utes with a WHERE clause may fail.

Note: This field is only enabled when an Un-
wired Server is selected. The page size option is
not enabled for message-based applications.

Namespace Enter a namespace for C#.

Note: The namespace name should follow
naming conventions for C#. Do not use ".com"
in the namespace.

Destination Specify the destination of the generated device
client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location. Select
Clean up destination before code generation
to clean up the destination folder before gener-
ating the device client files.

Replication-based Select to use replication-based synchroniza-
tion.

Message-based Select to use message-based synchronization.

Backward compatible Select so the generated code is compatible with
the SUP 1.2 release.

7. (Optional) Select Generate metadata classes to generate metadata for the attributes and
operations of each generated client object.

8. (Optional) Select Generate metadata and object manager classes to generate both the
metadata for the attributes and operations of each generated client object and an object
manager for the generated metadata.

Development Task Flows

 14 Sybase Unwired Platform

The object manager allows you to retrieve the metadata of packages, MBOs, attributes,
operations, and parameters during runtime using the name instead of the object instance.

9. Click Finish when done.

The class files include all methods required to create connections, synchronize deployed
MBOs with the device, query objects, and so on, as defined in your MBOs.

By default, the MBO source code is generated in the project's Generated Code folder.

The Dlls folder contains all the referenced libraries.

If present, the doc folder contains generated code documentation.

The src folder contains generated *.cs files. In this example, code was generated for the
Customer MBO:

Development Task Flows

Developer Reference for Windows and Windows Mobile 15

The frequently used files in this project, which you can view by double-clicking the file,
include:

Table 2. Source Code File Descriptions

.cs File Description

Project file, in the format projectName.csproj The project file of the generated code, for ex-
ample, SUP101.csproj.

Development Task Flows

 16 Sybase Unwired Platform

.cs File Description

MBO class (for example, Customer.
cs)

Includes all the attributes, operations, object
queries, and so on, defined in the MBO.

Metadata class (for example, Customer-
MetaData.cs)

Includes attribute and operation metadata.

Synchronization parameter class (for example,
CustomerSynchronization-
Parameters.cs)

Includes any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, Key-
Generator.cs)

Includes surrogate key generator used to iden-
tify and track MBO instances and data.

Personalization parameter classes (for exam-
ple, PersonalizationParame-
ters.cs)

Includes any defined personalization keys.

Connection and synchronization classes (for
example, SUP_101DB.cs)

Includes the Unwired Server connection infor-
mation and synchronization methods

Generating Windows Mobile Device Application Code from the Device
Application Designer

After developing the mobile business objects (MBOs), begin device application development
using the Device Application Designer, then use the Generate Device Application wizard to
generate the device application code required for further development in Visual Studio.

Use this procedure if you are developing Windows Mobile device applications using both the
Device Application Designer and Visual Studio.

1. From Unwired WorkSpace, select File > New > Device Application Designer.

2. Follow the Device Application Designer wizard instructions to create a Device
Application Designer project based on the developed mobile business objects (MBOs)
appropriate for the type of Windows Mobile device application you are developing, and
click Finish:

3. Develop as much of the device application as you want using the Device Application
Designer.

See the Device Application Designer documentation.

4. Generate the code for a Windows Mobile Device application, then extend and debug the
code in Visual Studio.

Development Task Flows

Developer Reference for Windows and Windows Mobile 17

Generating Code For a Windows Mobile Device Application
Use the Generate Device Application wizard to generate code for a Windows Mobile device
application.

1. Click the Verify icon on the toolbar to verify the device application has no errors.

2. Click the code generation icon on the toolbar.

3. In the Generate Device Application wizard, select Windows Mobile and, optionally,
select:

Option Description

Locale Expand this section to see a list of available
locales from which you can select.

Advanced Expand this section for advanced options:
• Check mobile business object on Sybase

Unwired Platform Server – select to verify
that the mobile business objects that are
used in the device application exist on the
corresponding Unwired Server.

• Mobile Business Object Group – the mo-
bile business object group that contains the
mobile business objects you want to verify.
To generate code for the Mobile Applica-
tion Project, click Generate Code.Use the
wizard to generate the metadata classes for
the selected mobile business objects.

4. Click Next.

5. Enter the information for the device application code generation options:

Option Description

Favorite Configurations Select a configuration.

Device • Target device – select the device.

Development Task Flows

 18 Sybase Unwired Platform

Option Description

Code Generation • Visual Studio solutions folder – accept the
default or click Browse to enter the location
for the Visual Studio Solutions folder.

Note: A .cab file is generated and placed in
the Visual Studio solutions folder.

• Solution name – enter the name of the Vis-
ual Studio solution.

• Delete solution folder prior to generation –
remove existing source folders before re-
generating the Visual Studio solution.

• Generate replication based application –
select if the application has replication
based synchronization.

• Generate messaging based application –
select if the application has message based
synchronization.

Development Task Flows

Developer Reference for Windows and Windows Mobile 19

Option Description

Advanced When the device application code is generated,
two projects are created—the client project,
which contains the user interface screens, and
the mobile application project, which contains
the mobile business objects that are used to ac-
cess and update the data.
• Client project name – enter the name of the

project that contains the user interface.
• Client project namespace – enter the name-

space to use for the generated UI classes.
• Client project assembly name – the name of

the generated .exe file for the project.
This is the name that appears on the mobile
device.

• Mobile application project name – the
name of the Mobile Application Project
that contains the mobile business objects
used in the device application.

• Mobile application project assembly name
– accept the default or enter the name for
the .dll of the mobile application project.

• Client project icon – click Browse to select
an icon with which to associate the gener-
ated .exe file. This is the icon that ap-
pears on the mobile device.

• Generate source codes for Sybase Win-
dows frameworks – select to generate sour-
ces for Sybase Unwired Platform Windows
frameworks, including stock screens and
actions.

• Deploy to an ActiveSync connected device
or emulator – select this option to deploy
the generated code to a Windows Mobile
device or emulator. ActiveSync enables the
transferring and installation of the applica-
tion on the mobile device.

Note: ActiveSync is for Windows XP. Win-
dows Vista, Windows 7, and Windows 2008
uses Windows Mobile Device Center.

• Create a shortcut in Programs – select to
create a shortcut in the Programs folder on
the device.

• Shortcut name – enter a name for the short-
cut.

Development Task Flows

 20 Sybase Unwired Platform

Option Description

• Deployment timeout (minutes) – the max-
imum time to wait for deployment to the
device.

• Perform silent install – use this option only
when you are deploying to the emulator
(not the device itself). This enables deploy-
ment to proceed with no user input.

6. (Optional) Click Start Device Emulator Manager if the Device Emulator Manager is not
already running and you want to deploy the application to an emulator.

7. Click Finish.

Device Application Designer Generated Solution Files and Projects
The Device Application Designer generated code consists of a solution file and several
projects, including the UI project, MBO project, Settings project, and settingProxy project.

Table 3. Solution file and projects

Name Source Model Description

Solution File Solution name from the generation op-
tion.

Visual Studio solution file to man-
age all the generated projects. For
example, Customer.sln.

Mobile Business Ob-
ject (MBO) project

The MBO domain project is generated
from the MBO domain model defini-
tion. The project name is defined in the
project generation options.

This project contains the generated
Client API code (for example, Cus-
tomer_MBO.csproj).

Windows Mobile UI
project

The Windows Mobile application
project is generated from the Device
Application Designer definition. The
Project name and namespace are de-
fined in the Windows Mobile applica-
tion generation Client project name
option.

This project contains all the UI-re-
lated application code. The name
depends on the mobile business ob-
ject project (for example, Custom-
er_UI.csproj).

Sybase.UnwiredPlat-
form.Windows.Stock-
Screen project

The Windows Mobile Device Frame-
work, including UI framework, and a
framework that approximates the De-
vice Application Designer.

This framework can be generated as
source or as a .dll, and is generated
only if the Generate source codes
for Sybase windows frameworks
option is selected.

Development Task Flows

Developer Reference for Windows and Windows Mobile 21

Name Source Model Description

Settings Project The setting screen definitions in the
Device Application Designer.

This project is generated when
there are settings screens in the De-
vice Application Designer, and if
you use one of the Settings stock
screens in DAD.

The generated project provides a
Settings application that allows
users to configure various setting
options of the application.

SettingProxy project An addin to the setting screen defini-
tions in the Device Application De-
signer.

This project is generated when
there are settings screens in the De-
vice Application Designer, and if
you use one of the Settings stock
screens in DAD.

The addin allows users to invoke the
Settings application directly from
the Windows Mobile Settings fold-
er.

Generation Gap Pattern Support
To allow developers to extend generated code and keep modifications, Sybase supports a
generation gap pattern. This pattern makes use of a C# partial classes to provide
customization. For certain logic-related classes, a “protected virtual” method lets you override
the method with your own implementation.

An application consists of both generated code and customized code.

Development Task Flows

 22 Sybase Unwired Platform

Following is an example of the FormCreateCustomerController class:

/// <summary>
/// The Base class of FormCreateCustomerController
/// </summary>
internal abstract class FormCreateCustomerControllerBase :
 ControllerBase
{
 public FormCreateCustomerControllerBase(IFormPart form)
 : base(form)
 {
 }
 // button (Submit) click event handler
 internal virtual void
 SubmitButton_Handler(FormsManagerDataObject dataObject)
 {

 }
}

/// <summary>
/// The Controller class of Form FormCreateCustomer
/// </summary>
internal partial class FormCreateCustomerController :
 FormCreateCustomerControllerBase
{
 public FormCreateCustomerController(IFormPart form)

Development Task Flows

Developer Reference for Windows and Windows Mobile 23

 : base(form)
 {
 }
}

You may want to customize the business logic. For example, if you want to customize the
Submit action, you could do the following:

• Create a MyFormCreateCustomerController.cs class in the CustomizedCode
folder

• Change the default code to:

internal partial class FormCreateCustomerController
{
 internal override void
SubmitButton_Handler(Sybase.UnwiredPlatform.Windows.Forms.FormsMana
gerDataObject dataObject)
 {
 // Add your custom actions here
 MessageBox.Show("Before Submit!");

 // Perform the default action
 base.SubmitButton_Handler(dataObject);
 }
}

Windows Mobile UI Project
The Windows Mobile UI project contains these classes and files:

Table 4. Classes and Files in the Windows Mobile UI Project

Class Description

Program.cs The main entry of the application.

ApplicationInit.cs Code to initialize the application.

GlobalResource All the localized text used by stock screen.

Generated Code\Form*.cs The Generated Form class extends FormBase. It
is generated from the Device Application De-
signer screen; the UI definition is generated in
this screen.

Generated Code\Form*Controller.cs The Controller class contains the data access and
event handler code of the forms.

Generated Code\DataStore*DataStore.cs The DataStore class wraps the access of the MBO
object and keeps the context of the MBO.

Properties\DataSources*.datasource The data sources for data binding.

Development Task Flows

 24 Sybase Unwired Platform

Developing a Windows Mobile Device Application Using
Visual Studio

After you import Unwired WorkSpace projects (mobile application or Device Application
Designer) and associated libraries into the development environment, use the Client
Object API, Windows Device Framework, and native APIs to create or customize your
device applications.

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,
create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

Project Setup
You can create Visual Studio projects in three ways.

• Create the project from Visual Studio.
• Create the project from a Sybase Unwired Platform Device Application Designer

generated project.
• Create the project from a Sybase Unwired Platfrom generated object API project.

Creating a Mobile Application Project
This describes how to set up a project in Visual Studio. You must add the required libraries as
references in the Visual Studio project. The libraries needed depend on client application
platform and synchronization method (replication-based or message-based).

You can use this method to create replication-based and message-based synchronization client
projects.

1. Add the following libraries as references in the Visual Studio project:

Replication-based synchronization:
• sup-client.dll – from <UnwiredPlatform_InstallDir>\Servers

\UnwiredServer\ClientAPI\dotnet\<platform>.
• iAnywhere.Data.UltraLite.dll – from

<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\Ultralite\<platform>\Assembly\V2.

• iAnywhere.Data.UltraLite.resources.dll (several languages are
supported) – from <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\ClientAPI\Ultralite\<platform>\Assembly
\V2\<language>.

Message-based synchronization:

Development Task Flows

Developer Reference for Windows and Windows Mobile 25

• sup-client.dll – from <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\ClientAPI\dotnet\<platform>.

• For Windows 64-bit, System.Data.SQLite.DLL – from
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\SQLite\x64.

• For Windows 32-bit, System.Data.SQLite.DLL – from
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\SQLite

2. For replication-based synchronization, add the following libraries as items in the Visual
Studio project. Set "Build Action" to "Content" and "Copy to Output Directory" to Copy
always.

• ulnet11.dll – from <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\ClientAPI\Ultralite\<platform>.

• mlcrsa11.dll (if HTTPS protocol is used) – from
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\Ultralite\<platform>.

• PUtilTRU.dll - from <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\ClientAPI\DeviceID\<platform>.

3. (Optional) This step is required only for Pocket PC and Smartphone clients. For message-
based synchronization, add the following libraries as items in the Visual Studio project and
set "Build Action" to "Content" and "Copy to Output Directory" to Copy always.

• SQLite.Interop.065.DLL – from <UnwiredPlatform_InstallDir>
\UnwiredPlatform\Servers\UnwiredServer\ClientAPI\SQLite
\CompactFramework.

Windows Mobile Libraries
These Sybase Unwired Platform Windows Mobile Framework DLLs must be located in
Unwired_WorkSpace\VisualStudio\ComponentLibrary:

• Sybase.UnwiredPlatform.Windows.dll

• Sybase.UnwiredPlatform.Windows.Forms.dll

• Sybase.UnwiredPlatform.Windows.StockScreens.dll

Windows Mobile Development
Develop a Windows Mobile application by generating the Visual Studio 2008 projects in C#,
and running the application in the device or on a simulator to test.

1. Either generate an application using the Device Application Designer, or generate Mobile
Business Objects (MBOs), then create a new Visual Studio project, the import generated
MBOs, and create the user interface.

Development Task Flows

 26 Sybase Unwired Platform

2. Add business logic to the generated code through the Windows Mobile Client Object API.
See Developer Reference for Windows and Windows Mobile > Reference > Client Object
API.

3. Change the default user interface through the Windows Mobile Device Framework. See
Developer Reference for Windows and Windows Mobile > Reference > Windows Mobile
Device Framework API.

4. Run the application in the device or on a simulator.

Integrating Help into a Project
When you generate MBOs or client applications for Windows Mobile from Unwired
WorkSpace, an XML file is generated for the MBOs. The generated Visual Studio project for
the forms can also generate a XML file. When you compile a project, an XML file is
generated. You can use these XML files to generate online help.

To generate online help for Visual Studio 2008, you can use Sandcastle and Sandcastle Help
File Builder. You can download and install Sandcastle and Sandcastle Help File Builder from
these locations:

• http://sandcastle.codeplex.com/Wikipage
• http://shfb.codeplex.com/releases

To integrate help into your project build:

1. Add the /doc option in your project build, so that it can generate an XML file from the
comments. You can also configure this option in the Visual Studio project properties. On
the Build tab, select XML documentation and provide a file name.

2. Create a SandCastle Help File Builder project (.shfb file). Specify the assemblies and the
XML file generated from the comments as input. You can also specify other help
properties.

3. Use the .shfb project file in a script to build the document. For example:

<Target Name="Documentation">
 <Exec Command="$(SandCastleHelpBuilderPath) <shfb project
file>.shfb" />
</Target>

Debugging Windows and Windows Mobile Device Development
Device client and Unwired Server troubleshooting tools for diagnosing Microsoft Windows
and Windows Mobile development problems.

Client-Side Debugging
Problems on the device client side that may cause client application problems:

• Unwired Server connection failed.
• Data does not appear on the client device.
• Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

Development Task Flows

Developer Reference for Windows and Windows Mobile 27

• If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging and review the debugging information. See Developer
Reference for Windows and Windows Mobile about using the MBOLogger class to add
log levels to messages reported to the console.

• Check the log record on the device. Use the
DatabaseClass.GetLogRecord(Sybase.Persistence.Query) or
Entity.GetLogRecords methods.

This is the log format
level,code,eisCode,message,component,entityKey,operation,requestI
d,timestamp

This log format generates output similar to:
level code eisCode message component entityKey operation requestId
timestamp
 5,500,'','java.lang.SecurityException:Authorization failed:
Domain = default Package = end2end.rdb:1.0 mboName =
simpleCustomer action =
delete','simpleCustomer','100001','delete','100014','2010-05-11
14:45:59.710'

• level – the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

• code – Unwired Server administration codes.

• Replication-based synchronization codes:
• 200 – success.
• 500 – failure.

• Message-based synchronization codes:
• 401 – the client request included invalid credentials, or authentication failed for

some other reason.
• 403 – the client request included valid credentials, but the user does not have

permission to access the requested resource (package, mobile business object
—MBO, or operation).

• 404 – the client attempted to access a nonexistent package or mobile business
object.

• 405 – there is no valid license to check out for the client.
• 409 – back-end EIS is deadlocked.
• 412 – back-end EIS threw a constraint exception.
• 500 – an unexpected (unspecified) server failure.
• 503 – back-end EIS is not responding or the connection is terminated.

• eisCode – maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).

• message – the message content.

• component – MBO name.

Development Task Flows

 28 Sybase Unwired Platform

• entityKey – MBO surrogate key, used to identify and track MBO instances and
data.

• operation – operation name.

• requestId – operation replay request ID or messaging-based synchronization
message request ID.

• timestamp – message logged time, or operation execution time.

• If you have implemented onConnectionStatusChange for message-based
synchronization in Callback Handler, the connection status between Unwired
Server and the device is reported on the device. See the Developer Reference for Windows
and Windows Mobile for Callback Handler information. The device connection
status, device connection type, and connection error message are reported on the device:
• 1 – current device connection status.
• 2 – current device connection type.
• 3 – connection error message.

Server-Side Debugging
Problems on the Unwired Server side that may cause device client problems:

• The domain or package does not exist. If you create a new domain, whose default status is
disabled, it is unavailable until enabled.

• Authentication failed for the synchronizing user.
• The operation role check failed for the synchronizing user.
• Back-end authentication failed.
• An operation failed on the remote, replication database back end, for example, a table or

foreign key does not exist.
• An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the Unwired Server side:

• Check the Unwired Server log files.
• For message-based synchronization mode, you can set the log level to DEBUG to obtain

detailed information in the log files:
1. Check the global SUP MSG log level in <serrver_install_folder>

\UnwiredPlatform\Servers\UnwiredServer\Repository
\logging-configuration.xml to ensure the Log level of <Entity
EntityTypeId="MSG"> is set to DEBUG.

2. Modify the log level for the module SUPBridge and JmsBridge in
<server_install_folder>\UnwiredPlatform\Servers
\MessagingServer\Data\TraceConfig.xml to DEBUG.

3. Check the SUPBridge and JMSBridge logs, for detailed information.

Note: It is important to return to INFO mode as soon as possible, since DEBUG mode can
effect system performance.

Development Task Flows

Developer Reference for Windows and Windows Mobile 29

• You can also obtain DEBUG information for a specific device:
• View information through the SCC administration console:

1. Set the DEBUG level to a higher value for a specified device through SCC
administration console.

2. Set the TRACE file size to be more than 50KB.
3. View the trace file through SCC.

• Check the <server_install_folder>\UnwiredPlatform\Servers
\MessagingServer\Data directory to see the mobile device client log files for
information about a specific device.

Note: It is important to return to INFO mode as soon as possible, since DEBUG mode can
effect system performance.

Implementing SyncNow for MBS Applications
You can implement SyncNow for message-based synchronization applications for Windows
or Windows Mobile using the Sybase.Persistence.CallbackHandler. The
onConnectionStatus methods provide the implementation.

1. In Mobile Application Diagram, generate Windows Mobile code. Select Message-
based as one of the configuration parameters.

2. In the generated code, call the client API and implement Callback
OnSynchronize() to implement the SyncNow functionality. See Developer
Reference for Windows and Windows Mobile > Reference > Windows Mobile Client
Object API > Utility APIs > Callback Handlers.

A sample SyncNow method looks like:

public void SyncNow()
{
 int connStatus =
Sybase.Persistence.MessagingClient.ConnectionStatus;
 int MAX_WAIT_TIME_OUT = 300; // 5 minutes
 int timeout = 0;
 while (connStatus != DeviceConnectionStatus.CONNECTED)
 {
 timeout++;
 Thread.Sleep(1000);
 if (timeout >= MAX_WAIT_TIME_OUT)
 {
 throw new
Sybase.Persistence.PersistenceException("Waiting timeout: " +
MAX_WAIT_TIME_OUT + " seconds");
 }
 connStatus =
Sybase.Persistence.MessagingClient.ConnectionStatus;
 }

 if (!DsTestDB.IsSubscribed())
 {

Development Task Flows

 30 Sybase Unwired Platform

 DsTestDB.LoginToSync("test", "test123");
 DsTestDB.Subscribe();
 }
 DsTestDB.BeginSynchronize();
 int MAX_SYNC_TIMEOUT = 3600; // one hour ?
 timeout = 0;
 while (!TestMain.syncFinished)
 {
 timeout++;
 Thread.Sleep(1000);
 if (timeout >= MAX_SYNC_TIMEOUT)
 {
 throw new
Sybase.Persistence.PersistenceException("Waiting SYNC timeout: "
+ MAX_SYNC_TIMEOUT + "seconds");
 }
 }
}

3. To determine whether all data is successfully downloaded or uploaded, the client
application can send a synchronize message to the server, and should receive a callback.
(The client must subscribe to the package as shown above). A sample callback looks
similar to:
public class TextResponseHandler : DefaultCallbackHandler
{
 public override void OnConnectionStatusChange(int connStatus,
int connType, int errorCode, string errorMessage)
 {
 Console.WriteLine("Device Connection status changed to :
" + connStatus);
 if (errorMessage != null && errorMessage.Length > 0)
 {
 Console.WriteLine("Connection error: " +
errorMessage);
 }
 }

 public override SynchronizationAction
OnSynchronize(Sybase.Collections.GenericList<ISynchronizationGrou
p> groups, Sybase.Persistence.SynchronizationContext context)
 {
 Console.WriteLine("synchronize request processed
returned. ");
 SynchronizationStatus status = context.Status;
 if (status == SynchronizationStatus.FINISHING)
 {
 Console.WriteLine("synchronizeResult");
 }
 else if (status == SynchronizationStatus.ERROR)
 {
 Console.WriteLine("synchronizeFailed");
 }
 lock (typeof(TestMain))
 {
 TestMain.syncFinished = true;

Development Task Flows

Developer Reference for Windows and Windows Mobile 31

 }
 return SynchronizationAction.CONTINUE;
 }

}

4. On the device, two options are available to view error messages related to connection
status:

• Using the callback, the connection error messages appear on the device:
public override void OnConnectionStatusChange(int connStatus,
int connType, int errorCode, string errorMessage)
{
 Console.WriteLine("Device Connection status changed to : "
+ connStatus);
 if (errorMessage != null && errorMessage.Length > 0)
 {
 Console.WriteLine("Connection error: " +
errorMessage);
 }
}

• The user can access Sybase Settings > Show Log to see the detail device status.

Application Deployment to Devices
Deploy mobile applications to devices and register the devices with Unwired Server.

Deploying Replication-Based Applications
Deploy replication-based applications to a Device Emulator or connected device.

1. To deploy a replication-based application from Visual Studio, compile the project and
deploy the application to the emulator or the real device.

2. If you are using a Device Emulator, define a shared folder and copy the file in that folder
from your machine so the Emulator can access it.

3. Using Windows and a connected device, use the Virtual folder on your machine to copy the
application's .cab file to the device or memory card.

Deploying Message-Based Applications to an Emulator or Device
The Sybase Messaging Client requires a .cab file. Pocket PCs require
SUPMessaging_Pro.cab, and Smartphones require SUPMessaging_Std.cab.

Note: ActiveSync is for Windows XP. Windows Vista, Windows 7, and Windows 2008 uses
Windows Mobile Device Center.

1. In Visual Studio, select Tools > Emulator Manager to deploy to an Emulator, or Connect
to Device to deploy to a connected device.

Development Task Flows

 32 Sybase Unwired Platform

2. From the list of devices, right-click the emulator to which to deploy the application and
select Connect.

3. Right-click on the same emulator and select Cradle.
Microsoft ActiveSync appears.

4. If the Microsoft ActiveSync configuration window appears, click Cancel.

5. In Microsoft ActiveSync, click Explore.

6. In the Mobile Device window, double-click My Windows Mobile-based Device.
The device's file system root folder opens.

7. Navigate to <UnwiredPlatform_InstallDir>\UnwiredPlatform
\Servers\UnwiredServer\ClientAPI\MoMessaging\wm and copy the
SUPMessaging_Pro.cab file (for Pocket PC) or the SUPMessaging_Std.cab
file (for Smartphone) to the device's root folder.

8. Use File Explorer on the device emulator to browse to where you placed the .cab file.

9. Click on .cab once to start the installation.

Message-based Synchronization Overview
The message-based synchronization model:
• Uses an asynchronous messaging protocol.
• Provides reliable messaging between the device and the server.
• Provides fine-grained synchronization (synchronization is provided at the data level—

each process communicates only with the process it depends on).
• Best for always available mode.

Development Task Flows

Developer Reference for Windows and Windows Mobile 33

Device Registration
Messaging devices contain applications that send and receive data through messaging. An
administrator must configure the device activation template properties for message-based
synchronization (MBS) devices. Device activation requires user registration. Upon successful
registration, the device is activated and set up with the template the administrator has selected.

Device registration pairs a user and a device once the user supplies the correct activation code.
This information is stored in the messaging database, which contains extensive information
about users and their corresponding mobile devices.

Users who are registered but who have not yet installed the software are listed in the window as
registered, and their e-mail messages and PIM items are queued by Unwired Server for later
delivery. Typically, device registration occurs when the user initially attempts to connect to
Unwired Server. However, an administrator can force a user to reregister if there is data
corruption on the device, or if the user is assigned a new device. This reestablishes the
relationship between the user and the device, and refreshes the entire data set on the device

Note: For more information on device registration, see Sybase Unwired Platform System
Administration > Device and User Management > Messaging Devices, Sybase Unwired
Platform System Administration > Device and User Management > Messaging Devices >
Device Registration and Activation, and Sybase Unwired Platform System Administration >
Device and User Management > Device Provisioning.

Device registration requires user registration from the physical device.

1. Locate the device registration program in \Program Files\SybaseSettings.

2. Double-click the program, then click the Next Connection icon.
You see the Connection window.

3. Enter the information for your Sybase Messaging Server configuration and account:

• Server Name – The Unwired Server servername.
• Server Port – The port on which the Unwired Server is listening.
• Farm ID – The company ID. In cases where a relay server is used, this parameter

corresponds to the farm ID of the relay server.
• User Name – The username registered with the Unwired Server.
• Activation Code – The activation code.

Development Task Flows

 34 Sybase Unwired Platform

Development Task Flows

Developer Reference for Windows and Windows Mobile 35

Development Task Flows

 36 Sybase Unwired Platform

Reference

This section describes the Client Object API and Device Framework API. Classes are defined
and sample code is provided.

Generated API Help
Generated API help is included in the Sybase Unwired Platform installation directory.

C# documentation, which provides a complete reference to the APIs:
• Compiled help for the Device Framework API is installed to

<UnwiredPlatform_InstallDir>\Unwired_WorkSpace
\VisualStudio\ComponentLibrary\help.

• You can integrate help for generated code from mobile business objects (MBOs) into your
Visual Studio project. See Integrating Help into a Project.

Windows Mobile Client Object API
Describes solutions and examples for tasks and uses of the Sybase Unwired Platform
Windows Mobile Client Object API. The Client Object API enables you to customize mobile
business object data flow and handling for the Windows Mobile device application.

Connection APIs
The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server and authenticating.

ConnectionProfile
The ConnectionProfile class manages local database information. You can use it to set
the encryption key, which you must do before creating a local database.

ConnectionProfile cp = SampleAppDB.GetConnectionProfile();
cp.SetEncryptionKey("Your key");
cp.Save();

SynchronizationProfile
Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

ConnectionProfile cp = SampleAppDB.GetSynchronizationProfile();
cp.DomainName = "default";

Reference

Developer Reference for Windows and Windows Mobile 37

This example is to call relay server for replication-based synchronization:
ConnectionProfile cp = SampleAppDB.GetSynchronizationProfile();
 cp.ServerName = "Relay_Server";
 cp.PortNumber = 80;
 cp.NetworkStreamParams = "url_suffix=ias_relay_server/client/
rs_client.dll/Ryan.SUPFarm";
 cp.Save();

You can set certificate information in SynchronizationProfile.
ConnectionProfile profile = MyDatabase.GetSynchronizationProfile();
profile.DomainName = "default";
profile.ServerName = "host-name";
profile.PortNumber = 2481;
profile.NetworkProtocol = "https";
profile.NetworkStreamParams =
"trusted_certificates=rsa_public_cert.crt";

Authentication
The generated package database class provides a default synchronization connection profile
according to the Unwired Server connection profile and Server Domain selected during code
generation. You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

OnlineLogin authenticates credentials against the Unwired Server.

OfflineLogin authenticates against the last successfully authenticated credentials. There
is no communication with Unwired Server in this method.

LoginToSync synchronizes the KeyGenerator from the Unwired Server with the client.
The KeyGenerator is an MBO for storing key values that are known to both the server and the
client. On LoginToSync from the client, the server sends down a value that the client can
use when creating new records (by using the method KeyGenerator.generateId() to
create key values that the server will accept).

The KeyGenerator value increments each time the GenerateId method is called. A
periodic call to SubmitPending by the KeyGenerator MBO sends the most recently used
value to the Unwired Server, to let the Unwired Server know what keys have been used on the
client side. Place this call in a try/catch block in the client application and ensure that the client
application does not attempt to send more messages to the Unwired Server if LoginToSync
throws an exception.
void LoginToSync(string user, string password);

AsyncOnlineLogin is available only for message-based synchronization, and it is the
recommended login method for message-based synchronization. It functions similarly to
LoginToSync, except that it sends the login request asynchronously (it returns without
waiting for a server response). Check for OnLoginSuccess or OnLoginFailure to be
called in the callback handler.

Reference

 38 Sybase Unwired Platform

void AsyncOnlineLogin(string user, string password);

Connect Using a Certificate
You can set certificate information in ConnectionProfile.

ConnectionProfile profile = MyDatabase.GetSynchronizationProfile();
profile.DomainName = "default";
profile.ServerName = "host-name";
profile.PortNumber = 2481;
profile.NetworkProtocol = "https";
profile.NetworkStreamParams =
"trusted_certificates=rsa_public_cert.crt";

Encrypt the Database
You can use ConnectionProfile.EncryptionKey to set the encryption key of a
local database. Set the key during application initialization, and before creating or accessing
the client database.

ConnectionProfile profile = MyDatabase.GetConnectionProfile();
profile.SetEncryptionKey("Your key");

Set Database File Property
You can use setProperty to specify the database file name on the device, such as the
directory of the running program, a specific directory path, or a secure digital (SD) card.

ConnectionProfile cp = MyDatabaseClass.getConnectionProfile();
cp.setProperty("databaseFile", "databaseFile");
cp.save();

Examples
If you specify the databaseFile name only, with no path, the databaseFile is created in the path
where the program is running:
/mydb.udb

The databaseFile is created in the /Temp directory of the Windows Mobile device:

/Temp/mydb.udb

The databaseFile is created on an SD card:
/Storage Card/mydb.sqlite

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example /smartcard/supprj.udb.

Usage

• Be sure to call this API before the database is created:
• Replication-based synchronization (RBS) – call this before calling

LoginToSync().

Reference

Developer Reference for Windows and Windows Mobile 39

• Message-based synchronization (MBS) – call this before calling
StartBackgroundSynchronization().

Otherwise, the application would have to be restarted, and the user would need to login and
resubscribe from the server each time, as though the application was a new application
without any previous data.

• If you use replication-based synchronization, the database is UltraLite; use a database file
name like mydb.udb.

• If you use message-based synchronization, the database is SQLite; use a database file
name like mydb.sqlite.

• For message-based applications, specifying a full path and file name or storage card can
only be tested on a physical device, not on an emulator.

• If the device client user changes the file name, the device user must make sure the input file
name is a valid name and path on the client side.

Synchronization APIs
The client object API allows you to change synchronization parameters and perform mobile
business object synchronization.

Changing Synchronization Parameters
Synchronization parameters determine the manner in which data is retrieved from the
consolidated database during a synchronization session.

The primary purpose of synchronization parameters is to partition data. By changing the
synchronization parameters, you affect the data you are working with, including searches, and
synchronization.
CustomerSynchronizationParameters sp =
Customer.SynchronizationParameters;
 sp.State = "CA";
 sp.Save();

Performing Mobile Business Object Synchronization
To perform mobile business object (MBO) synchronization, you must save a Connection
object. Additionally, you may want to set synchronization parameters.

For replication-based synchronization, this code synchronizes an MBO package using a
specified connection:
SampleAppDB.Synchronize (string synchronizationGroup)

For message-based replication, before you can synchronize MBO changes with the server,
you must subscribe the mobile application package deployed on server by calling
SampleAppDB.subscribe(). This also downloads certain data to devices for those that
have default values. You can use the OnImportSuccess method in the defined
CallbackHandler to check if data download has been completed.

Reference

 40 Sybase Unwired Platform

Then you can call the SubmitPendingOperations(string synchronizationGroup) operation
through the publication as this example illustrates:

 Product product_new = new Product();
 product_new.Color="Yellow";
 product_new.Description="";
 product_new.Id=888;
 product_new.Name = "ChildrenPants";
 product_new.Prod_size = "M";
 product_new.Quantity = 200;
 product_new.Unit_price = (decimal)188.00;
 product_new.Create();
 SampleAppDB.SubmitPendingOperations("default");
 while(SampleAppDB.HasPendingOperations())
 {
 System.Console.Write(" . ");
 System.Threading.Thread.Sleep(1000);
 }

You can use a publication mechanism, which allows as many as 32 simultaneous
synchronizations. However, performing simultaneous synchronizations on several very large
Unwired Server applications can impact server performance, and possibly affect other remote
users. The following code samples demonstrate how to simultaneously synchronize multiple
MBOs.

For message-based synchronization, synchronize multiple MBOs using:
SampleAppDB.SubmitPendingOperations();

Or you can use:
SampleAppDB.SubmitPendingOperations("my-pub");

where "my-pub" is the synchronization group defined.

For replication-based synchronization, synchronize multiple MBOs using:
SampleAppDB.Synchronize();

You can also use:
SampleAppDB.Synchronize("my-pub");

Query APIs
The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from the local database
You can retrieve data from the local database through a variety of queries, including object
queries, arbitrary find, and through filtering query result sets.

Reference

Developer Reference for Windows and Windows Mobile 41

Object Queries
To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:
public static Sybase.Collections.GenericList<Customer> FindAll()

Sybase.Collections.GenericList<Customer> customers =
Customer.FindAll();

This method retrieves all customers in a certain page:
public static Sybase.Collections.GenericList<Customer> FindAll(int
skip, int take)

Sybase.Collections.GenericList<Customer> customers =
Customer.FindAll(10, 5);

Suppose the modeler defined the following Object Query for the Customer MBO in Sybase
Unwired Workspace:

• name – findByFirstName
• parameter – String firstName
• query definition – SELECT x.* FROM Customer x WHERE x.fname = :firstName
• return type – Sybase.Collections.GenericList

The preceding Object Query results in two generated methods in Customer.cs:

public static Sybase.Collections.GenericList<Customer>
FindByFirstName(string firstName)

Arbitrary Find
The arbitrary find method provides custom device applications the ability to dynamically
build queries based on user input.

AttributeTest
In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify a desired ordering of the results and object state criteria. A Query class is included in
the client object API’s core assembly sup-client.dll Sybase.Persistence namespace. The
Query class is the single object passed to the arbitrary search methods and consists of search
conditions, object/row state filter conditions, and data ordering information.

Reference

 42 Sybase Unwired Platform

In MBO Customer.cs:

public static Sybase.Collections.GenericList<sample.Customer>
FindWithQuery(Sybase.Persistence.Query query)

In Database class SampleAppDB.cs:

public static Sybase.Persistence.QueryResultSet
ExecuteQuery(Sybase.Persistence.Query query)

The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 5. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Define these conditions by setting properties in a query:

• TestCriteria – criteria used to filter returned data.
• SortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

TestCriteria can be an AttributeTest or a CompositeTest.

An AttributeTest defines a filter condition using an MBO attribute, and supports these
conditions:

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE

Reference

Developer Reference for Windows and Windows Mobile 43

• LESS_THAN
• LESS_EQUAL
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• DOES_NOT_START_WITH
• DOES_NOT_END_WITH
• DOES_NOT_CONTAIN

User can use query to construct a query SQL statement as he wants to query data from local
database. This query may across multiple tables (MBOs).
Query query2 = new Query();
query2.Select("c.fname,c.lname,s.order_date,s.region");
query2.From("Customer", "c");
//
// Convenience method for adding a join to the query
// Detailed construction of the join criteria
query2.Join("Sales_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();
ts.Attribute = ("fname");
ts.TestValue = "Beth";
query2.Where(ts);
QueryResultSet resultSet = SampleAppDB.ExecuteQuery(query2);

On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set:
Query props = new Query();
props.Skip =10;
props.Take = 5;

CustomerList customers = Customer.FindWithQuery(props);

A CompositeTest combines multiple TestCriteria using the logical operators AND,
OR and NOT to create a compound filter.

SortCriteria defines a SortOrder, which contains an attribute name and an order type
(ASCENDING or DESCENDING).

For example, to locate all customer objects based on this criteria:

• FirstName = John AND LastName = Doe AND (State = CA or State = NY)
• Customer is New or Updated
• Ordered by LastName ASC, FirstName ASC, Credit DESC
• Skip the first 10 and take 5

This code demonstrate the usage of CompositeTest, SortCriteria and Query:

Reference

 44 Sybase Unwired Platform

Query props = new Query();
 //define the attribute based conditions
 //Users can pass in a string if they know the attribute
name. R1 column name = attribute name.
 CompositeTest innerCompTest = new CompositeTest();
 innerCompTest.Operator = CompositeTest.OR;
 innerCompTest.Add(new AttributeTest("state", "CA",
AttributeTest.EQUAL));
 innerCompTest.Add(new AttributeTest("state", "NY",
AttributeTest.EQUAL));
 CompositeTest outerCompTest = new CompositeTest();
 outerCompTest.Operator = CompositeTest.OR;
 outerCompTest.Add(new AttributeTest("fname", "Jane",
AttributeTest.EQUAL));
 outerCompTest.Add(new AttributeTest("lname", "Doe",
AttributeTest.EQUAL));
 outerCompTest.Add(innerCompTest);
 //define the ordering
 SortCriteria sort = new SortCriteria();

 sort.Add("fname", SortOrder.ASCENDING);
 sort.Add("lname", SortOrder.ASCENDING);
 //set the Query object
 props.TestCriteria = outerCompTest;
 props.SortCriteria = sort;
 props.Skip = 10;
 props.Take = 5;
 Sybase.Collections.GenericList<Customer> customers2 =
Customer.FindWithQuery(props);

QueryResultSet
The QueryResultSet class provides for querying a result set for the dynamic query API.
QueryResultSet is returned as a result of executing a query.

Example
The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Query, filling in the criteria for the query, and filtering the
query results:
Sybase.Persistence.Query query = new Sybase.Persistence.Query();
 query.Select("c.fname,c.lname,s.order_date,s.region");
 query.From("Customer ", "c");
 query.Join("SalesOrder ", "s", " s.cust_id ", "c.id");
 AttributeTest at = new AttributeTest();
 at.Attribute = "lname";
 at.TestValue = "Devlin";
 query.TestCriteria = at;
 QueryResultSet qrs = SampleAppDB.ExecuteQuery(query);
 while(qrs.Next())
 {
 Console.Write(qrs.GetString(1));
 Console.Write(",");
 Console.WriteLine(qrs.GetStringByName("c.fname"));

Reference

Developer Reference for Windows and Windows Mobile 45

 Console.Write(qrs.GetString(2));
 Console.Write(",");
 Console.WriteLine(qrs.GetStringByName("c.lname"));

 Console.Write(qrs.GetString(3));
 Console.Write(",");

Console.WriteLine(qrs.GetStringByName("s.order_date"));

 Console.Write(qrs.GetString(4));
 Console.Write(",");
 Console.WriteLine(qrs.GetStringByName("s.region"));
 }

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer ID column. The Orders application is parameterized to return
order information for the customer ID.
Customer customer = Customer.FindByPrimaryKey(101);
 Sybase.Collections.GenericList<SalesOrder> orders =
customer.Orders;

You can also use the Query class to filter the return MBO list data.
Query props = new Query();
… // set query parameters
Sybase.Collections.GenericList<SalesOrder> orders =
customer.GetOrdersFilterBy(props);

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create instances (non-
static) of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the Client Object API, and are not exposed. Any
parameters not mapped to the object’s attributes are left as parameters in the Generated Object
API.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In

Reference

 46 Sybase Unwired Platform

other situations, where there are multiple instances of create or update operations, it is not
possible to automatically generate such a Save method.

Create Operation
To execute a create operation on an MBO, create a new MBO instance, set the MBO attributes,
then call the Save() or Create() operation.

Customer cust = new Customer();
cust.Fname = "supAdmin" ;
cust.Company_name = "Sybase";
cust.Phone = "777-8888";
cust.Create();// or cust.Save();
cust.SubmitPending();

Update Operation
To execute update operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call either the Save() or Update() operations.

Customer cust = Customer.FindByPrimaryKey(101);
cust.Fname = "supAdmin";
cust.Company_name = "Sybase";
cust.Phone = "777-8888";
cust.Update();// or cust.Save();
cust.SubmitPending();

Delete Operation
To execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the Delete() operation.

Customer cust = Customer.FindByPrimaryKey(101);
cust.Delete();

Other Operation
Operations that are not create, update, or delete operations are called “Other” operations.

Suppose the Customer MBO has an Other operation “other”, with parameters “p1” (string),
“p2” (int) and “p3” (date). This results in a CustomerOtherOperation class being
generated, with “p1”, “p2” and “p3” as its attributes.

To invoke the Other operation, create an instance of CustomerOtherOperation, and set
the correct operation parameters for its attributes. This code provides an example:
CustomerOtherOperation other = new CustomerOtherOperation();
other.P1 = “somevalue”;
other.P2 = 2;
other.P3 = System.DateTime.Now;
other.Save(); // or other.Create()
other.SubmitPending();

Reference

Developer Reference for Windows and Windows Mobile 47

Cascade Operations
Composite relationships are cascaded. Cascade operations allow a single synchronization to
execute a chain of related CUD operations. Multi-level insert is a special case for cascade
operations. It allows parent and children objects to be created in one round without having to
synchronize multiple times.

Refer to Unwired WorkSpace documentation (Relationship Guidelines and Multi-level insert
operations) for information about defining relationships that support cascading (composite)
operations.

Consider creating a Customer and a new SalesOrder at the same time on the client side, where
the SalesOrder has a reference to the new Customer identifier. The following example
demonstrates a multilevel insert:
Customer customer = new Customer();
customer.Fname = “firstName”;
customer.Lname = “lastName”;
customer.Phone = “777-8888”;
customer.Save();
SalesOrder order = new SalesOrder();
order.Customer = customer;
order.Order_date = DateTime.Now;
order.Region = "Eastern";
order.Sales_rep = 102;
customer.Orders.Add(order);
//Only the parent MBO needs to call Save()
customer.Save();
//Must submit parent
customer.SubmitPending();

To insert an order for an existing customer, first find the customer, then create a sales order
with the customer ID retrieved:
Customer customer = Customer.FindByPrimaryKey(102);
SalesOrder order = new SalesOrder();
order.Customer = customer;
order.Order_date = DateTime.UtcNow;
order.Region = "Eastern";
order.Sales_rep = 102;
customer.Orders.Add(order);
order.Save();
customer.SubmitPending();

To update MBOs in composite relationships, perform updates on every MBO to change and
call SubmitPending on the parent MBO:

Customer cust = Customer.FindByPrimaryKey(101);
Sybase.Collections.GenericList<SalesOrder> orders = cust.Orders;
SalesOrder order = orders[0];
order.Order_date = DateTime.Now;
order.Save();
cust.SubmitPending();

Reference

 48 Sybase Unwired Platform

To delete a single child in a composite relationship, call the child's Delete method, and the
parent MBO's SubmitPending.

Customer cust = Customer.FindByPrimaryKey(101);
Sybase.Collections.GenericList<SalesOrder> orders = cust.Orders;
SalesOrder order = orders[0];
order.Delete();
cust.SubmitPending();

To delete all MBOs in a composite relationship, call Delete and SubmitPending on the
parent MBO:
Customer cust = Customer.FindByPrimaryKey(101);
cust.Delete();
cust.SubmitPending();

Note: For non-composite relationships, SubmitPending must be called on each and every
MBO.

See the Sybase Unwired Platform online documentation for specific multilevel insert
requirements.

Pending Operation
You can manage pending operations using these methods:

• CancelPending – cancels the previous create, update, or delete operations on the MBO. It
cannot cancel submitted operations.

• SubmitPending – submits the operation so that it can be replayed on the Unwired Server.
For message-based synchronization, a replay request is sent directly to the Unwired
Server. For replication-based synchronization, a request is sent to the Unwired Server
during a synchronization.

• SubmitPendingOperations – submits all the pending records for the entity to the
Unwired Server. This method internally invokes the SubmitPending method on each
of the pending records.

• CancelPendingOperations – cancels all the pending records for the entity. This method
internally invokes the CancelPending method on each of the pending records.

Customer customer = Customer.FindByPrimaryKey(101);
if(errorHappened)
{
 Customer.CancelPending();
}
else
{
 customer.SubmitPending();
}

Passing Structures to Operations
Structures hold complex datatypes (for example a string list, class or MBO object, or a list of
objects) that enhance interactions with certain enterprise information systems (EIS) data

Reference

Developer Reference for Windows and Windows Mobile 49

sources, such as SAP and Web services, where the mobile business object (MBO) requires
complex operation parameters.

An Unwired WorkSpace project includes an example MBO that is bound to a Remedy Web
service data source that includes a create operation that takes a structure as an operation
parameter. MBOs differ depending on the data source, configuration, and so on, but the
principles are similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including a parameter named _HEADER_ that is a structure datatype named
AuthenticationInfo, defined as:
AuthenticationInfo
 userName: String
 password: String
 authentication: String
 locale: String
 timeZone: String

Structures are implemented as classes, so the parameter _HEADER_ is an instance of the
AuthenticationInfo class. The generated Java code for the create operation is:
public void Create(Authentication _HEADER_,string escalated,string
hotlist,
string orig_Submitter,string pending,string workLog);

This example demonstrates how to initialize the AuthenticationInfo class instance and pass
them, along with the other operation parameters, to the create operation:
AuthenticationInfo authen = new AuthenticationInfo();
 authen.UserName = "Demo";

 SimpleCaseList newCase = new SimpleCaseList();
 newCase.Case_Type = "Incident";
 newCase.Category = "Networking";
 newCase.Department = "Marketing";
 newCase.Description = "A new help desk case.";
 newCase.Item = "Configuration";
 newCase.Office = "#3 Sybase Drive";
 newCase.Submitted_By = "Demo";
 newCase.Phone_Number = "#0861023242526";
 newCase.Priority = "High";
 newCase.Region = "USA";
 newCase.Request_Urgency = "High";
 newCase.Requester_Login_Name = "Demo";
 newCase.Requester_Name = "Demo";
 newCase.Site = "25 Bay St, Mountain View, CA";
 newCase.Source = "Requester";
 newCase.Status = "Assigned";
 newCase.Summary = "MarkHellous was here Fix it.";
 newCase.Type = "Access to Files/Drives";
 newCase.Create_Time = System.DateTime.Now;

 newCase.Create (authen, “Other”, “Other”, “false”, “work

Reference

 50 Sybase Unwired Platform

log”);
 newCase.SubmitPending();

Local Business Object
A business object can be either local or mobile. A Local Business Object (LBO) is a client-
only object. LBOs are useful to persist an application’s local data without updating the
backend. The difference between a LBO and an MBO is that an MBO’s operations are sent to
the backend. LBO’s operations are updated only to the local state do not affect the backend.
For example, an LBO would be well suited to store some bookkeeping information on an
application device.

An example of a Local Business Object:
LoginStatus status= new LoginStatus ();
 status.Id = 123;
 status.Time = DateTime.Now;
 status.Success = true;
 status.Create();

 long savedId = 123;
 LoginStatus status = LoginStatus.Find(savedId);
 status.Success = false;
 status.Update();

 long savedId = 123;
 LoginStatus status = LoginStatus.Find(savedId);
 status.Delete();

Personalization APIs
Personalization keys allow the application to define certain input parameter values that differ
(are personalized) from each mobile user. The Personalization APIs allow you to manage
personalization keys, and get and set personalization key values.

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Reference

Developer Reference for Windows and Windows Mobile 51

Get or Set Personalization Key Values
The PersonalizationParameters class is generated automatically for managing
personalization keys.

The following code provides an example on how to set a personalization key, and pass an array
of values and array of objects:
PersonalizationParameters pp =
SampleAppDB.GetPersonalizationParameters();
pp.MyIntPK = 10002;
pp.Save();
Sybase.Collections.IntList il = new Sybase.Collections.IntList();
il.Add(10001);
il.Add(10002);
pp.MyIntListPK = il;
pp.Save();
Sybase.Collections.GenericList<MyData> dl = new
Sybase.Collections.GenericList<MyData>(); //MyData is a structure
type defined in tooling
MyData md = new MyData();
md.IntMember = 123;
md.StringMember = "abc";
dl.Add(md);
pp.MyDataListPK = dl;
pp.Save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Note: For detailed description on personalization key usage, see the Sybase Unwired Platform
online help.

Object State APIs
The object state APIs provide methods for returning information about the state of an entity.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name C# Type Description

IsNew bool Returns true if this entity is new (but has not been created in
the client database).

Reference

 52 Sybase Unwired Platform

Name C# Type Description

IsCreated bool Returns true if this entity has been newly created in the client
database, and one the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

IsDirty bool Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

IsDeleted bool Returns true if this entity was loaded from the database and
was subsequently deleted.

IsUpdated bool Returns true if this entity has been updated or changed in the
database, and one of the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

Pending bool Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

PendingChange char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

ReplayCounter long Returns a long value which is updated each time a row is
created or modified by the client. This value is derived from
the time in seconds since an epoch, and increases each time a
row is changed.

Reference

Developer Reference for Windows and Windows Mobile 53

Name C# Type Description

ReplayPending long Returns a long value. When a pending row is submitted to the
server, the value of ReplayCounter is copied to Re-
playPending. This allows the client code to detect if a

row has been changed since it was submitted to the server
(that is, if the value ofReplayCounter is greater than

ReplayPending).

ReplayFailure long Returns a long value. When the server responds with a Re-
playFailure message for a row that was submitted to

the server, the value of ReplayCounter is copied to

ReplayFailure, and ReplayPending is set to 0.

Entity State Example
This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear
in bold.

Note the following entity behaviors:

• The IsDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

• The ReplayCounter value that gets sent to the Unwired Server is the value in the
database before you call SubmitPending. After a successful replay, that value is
imported from the Unwired Server.

• The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Reference

 54 Sybase Unwired Platform

Description Flags/Values

After reading from the database, before any changes
are made.

IsNew=false

IsCreated=false

IsDirty=false

IsDeleted=false

IsUpdated=false

Pending=false

PendingChange='N'

ReplayCounter=33422977

ReplayPending=0

ReplayFailure=0

One or more attributes are changed, but changes not
saved.

IsNew=false

IsCreated=false

IsDirty=true

IsDeleted=false

IsUpdated=false

Pending=false

PendingChange='N'

ReplayCounter=33422977

ReplayPending=0

ReplayFailure=0

Reference

Developer Reference for Windows and Windows Mobile 55

Description Flags/Values

After entity.Save() or entity.Up-
date() is called.

IsNew=false

IsCreated=false

IsDirty=false

IsDeleted=false

IsUpdated=true

Pending=true

PendingChange='U'

ReplayCounter=33424979

ReplayPending=0

ReplayFailure=0

After entity.SubmitPending() is

called to submit the MBO to the server

IsNew=false

IsCreated=false

IsDirty=false

IsDeleted=false

IsUpdated=true

Pending=true

PendingChange='U'

ReplayCounter=33424981

ReplayPending=33424981

ReplayFailure=0

Reference

 56 Sybase Unwired Platform

Description Flags/Values

Possible result: the Unwired Server accepts the up-
date, sends an import and a ReplayResult for

the entity, and the refreshes the entity from the da-
tabase.

IsNew=false

IsCreated=false

IsDirty=false

IsDeleted=false

IsUpdated=false

Pending=false

PendingChange='N'

ReplayCounter=33422977

replayPending=0

ReplayFailure=0

Possible result: The Unwired Server rejects the up-
date, sends a ReplayFailure for the entity,

and refreshes the entity from the database

IsNew=false

IsCreated=false

IsDirty=false

IsDeleted=false

IsUpdated=true

Pending=true

PendingChange='U'

ReplayCounter=33424981

ReplayPending=0

ReplayFailure=33424981

Pending State Pattern
When a create, update, delete, or save operation is called on an entity, the requested change
becomes pending. To apply the pending change, call SubmitPending on the entity, or
SubmitPendingOperations on the MBO class:

Customer e = new Customer();
e.Name = "Fred";
e.Address = "123 Four St.";
e.Create(); // create as pending
e.SubmitPending(); // submit to server

Customer.SubmitPendingOperations(); // submit all pending Customer
rows to server

Reference

Developer Reference for Windows and Windows Mobile 57

SubmitPendingOperations submits all the pending records for the entity to the
Unwired Server. This method internally invokes the SubmitPending method on each of
the pending records.

For message-based sychronization, the call to SubmitPending causes a JSON message to
be sent to the Unwired Server with the Replay method, containing the data for the rows to be
created, updated, or deleted. The Unwired Server processes the message and responds with a
JSON message with the ReplayResult method (the Unwired Server accepts the requested
operation) or the ReplayFailure method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more Import
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the Replay request. These changes are written
to the client database and marked as rows that are not pending. When the ReplayResult
message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful
operation.

If the Unwired Server rejects the requested change, the client receives a ReplayFailed
message, and the entity remains in the pending state, with its ReplayFailed attribute set to
indicate that the change was rejected.

For replication-based synchronization, the call to SubmitPending creates a replay record
in local database. When the DBClass.Synchronize() method is called, the replay
records are uploaded to Unwired Server. Unwired Server processes the replay records one by
one and either accepts or rejects it.

At the end of the synchronization, the replay results are downloaded to client along with any
created, updated or deleted rows that have changed on the Unwired Server as a result of the
Replay requests. These changes are written to the client database and marked as rows that are
not pending.

When the operation is successful, the pending row is removed, and the row remaining in the
client database now contains data that has been imported from and validated by the Unwired
Server. If the Unwired Server rejects the requested change, the entity remains in the pending
state, with its ReplayFailed attribute set to indicate that the change was rejected. The Unwired
Server may optionally send a log record to the client.

The LogRecord interface for both message-based synchronization and replication-based
synchronization has the following getter methods to access information about the log record:

Method
Name

C# Type Description

Component string Name of the MBO for the row for which this log record was
written.

Reference

 58 Sybase Unwired Platform

Method
Name

C# Type Description

EntityKey string String representation of the primary key of the row for which
this log record was written.

Code int One of several possible HTTP error codes:

• 200 indicates success.

• 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

• 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

• 404 indicates that the client tried to access a nonexistent
package or MBO.

• 405 indicates that there is no valid license to check out for
the client.

• 500 to indicate an unexpected (unspecified) server fail-
ure.

Message string Descriptive message from the server with the reason for the
log record.

Operation string The operation (create, update, or delete) that caused the log
record to be written.

RequestId string The id of the replay message sent by the client that caused this
log record to be written.

Timestamp System.Date-
Time?

Date and time of the log record.

If a rejection is received, the application can use the entity method GetLogRecords or the
database class method SampleDB.GetLogRecords(query) to access the log records
and get the reason:
Sybase.Collections.GenericList<Sybase.Persistence.ILogRecord> logs =
e.GetLogRecords();
for(int i=0; i<logs.Size(); i++)
{
Console.WriteLine("Entity has a log record:");
Console.WriteLine("Code = {0}",logs[i].Code);
Console.WriteLine("Component = {0}",logs[i].Component);
Console.WriteLine("EntityKey = {0}",logs[i].EntityKey);
Console.WriteLine("Level = {0}",logs[i].Level);
Console.WriteLine("Message = {0}",logs[i].Message);
Console.WriteLine("Operation = {0}",logs[i].Operation);
Console.WriteLine("RequestId = {0}",logs[i].RequestId);

Reference

Developer Reference for Windows and Windows Mobile 59

Console.WriteLine("Timestamp = {0}",logs[i].Timestamp);
}

CancelPendingOperations cancels all the pending records for an entity. This method
internally invokes the CancelPending method on each of the pending records.

Mobile Business Object States
A mobile business object can be in one of three states:

• Original state, the state before any create, update, or delete operation.
• Downloaded state, the state downloaded from the Unwired Server.
• Current state, the state after any create, update, or delete operation.

The mobile business object class provides properties or methods for querying the original
state and the downloaded state:
public sample.Customer GetOriginalState()
public Customer DownloadState;

The original state is valid only before the application synchronizes with the Unwired Server.
After synchronization has completed successfully, the original state is cleared and set to null.
Customer cust = Customer.FindByPrimaryKey(101); // state 1
cust.Fname = "supAdmin";
cust.Company_name = "Sybase";
cust.Phone = "777-8888";
cust.Save(); // state 2
Customer org = cust.GetOriginalState(); // state 1
//suppose there is new download for Customer 101 here
Customer download = cust.DownloadState; // state 3
cust.CancelPending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

The following code provides an example:
Customer cust = Customer.FindByPrimaryKey(101);
cust.Fname = “newName”;
cust.Refresh();// newName is discarded

Clear Relationship Objects
The ClearRelationshipObjects method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

ClearRelationshipObjects

Reference

 60 Sybase Unwired Platform

Utility APIs
The Utility APIs allow you to customize aspects of logging, callback handling, and generated
code.

Using the Logger and LogRecord APIs
LogRecord is used to store two types of logs.

• Operation logs on the Unwired Server. These logs can be downloaded to the device.
• Client logs. These logs can be uploaded to the Unwired Server.

DBClass.GetLogger – gets the log API. The client can write its own records using the log
API. For example:
ILogger logger = SampleAppDB.GetLogger();
 logger.Debug(“Write this string to the log records table");
 SampleAppDB. SubmitLogRecords();

DBClass.GetLogRecords – gets the log records received from the server. For example:

Query query = new Query();
query.TestCriteria =
Sybase.Persistence.AttributeTest.Equal("component", “Customer”);
Sybase.Persistence.SortCriteria sortCriteria = new
Sybase.Persistence.SortCriteria();
sortCriteria.Add("requestId",
Sybase.Persistence.SortOrder.DESCENDING);
query.SortCriteria = sortCriteria;

GenericList<ILogRecord> loglist = SampleAppDB.GetLogRecords(query);

Viewing Error Codes in Log Records
You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.
2. Performing an initial synchronization.
3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","ppm":
"eyJ1c2VybmFtZSI6InN1cEFkbWluIiwicGFzc3dvcmQiOiJzM3BBZG1pbiJ9","p
id":"moca://
Emulator17128142","method":"replay","pbi":"true","upa":"c3VwQWRta
W46czNwQWRtaW4=","mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

Reference

Developer Reference for Windows and Windows Mobile 61

JsonContent
{"c2":null,"c1":1,"createCalled":true,"_op":"C"}

The Unwired Server returns a response. The code is included in the ResponseHeader.

ResponseHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","loginFa
iled":false,"method":"replayFailed","log":
[{"message":"com.sybase.jdbc3.jdbc.SybSQLException:SQL Anywhere
Error -193: Primary key for table 'bi' is not unique : Primary key
value ('1')","replayPending":
0,"eisCode":"","component":"Bi","entityKey":"0","code":
500,"pending":false,"disableSubmit":false,"?":"imot1.server.LogReco
rdImpl","timestamp":"2010-08-26
14:05:32.97","requestId":"684cbe16f6b740eb930d08fd626e1551","operat
ion":"create","_op":"N","replayFailure":
0,"level":"ERROR","pendingChange":"N","messageId":200001,"_rc":
0}],"mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

ResponseContent
{"id":100001}

GenerateId
You can use the GenerateId method in the LocalKeyGenerator or KeyGenerator
classes to generate an ID when creating a new object for which you require a primary key or
surrogate key.

This method in the LocalKeyGenerator class generates a unique ID for the package on
the local device:
public static long GenerateId()

This method in the KeyGenerator class generates a unique ID for the same package across
all devices:
public static long GenerateId()

Callback Handlers
To receive callbacks, you must register a CallBackHandler with the generated database
class, the entity class, or both. You can create a handler by extending the
DefaultCallbackHandler class, or by implementing the interface, ICallbackHandler.

In your handler, override the particular callback you want to use (for example, OnImport).
The callback is executed in the thread that is performing the action (for example, import).
When you receive the callback, the particular activity is already complete.

Note: Message-based synchronization and replication-based synchronization share the same
CallbackHandler interface. Some of the callbacks are applicable to message-based
synchronization only or to replication-based synchronization only, while others are shared by
both.

Callbacks in the CallbackHandler interface include:

Reference

 62 Sybase Unwired Platform

namespace Sybase.Persistence
{
 /// <summary>
 /// Call back interface which would get called based on event.
 /// </summary>
 /// <remarks>
 /// MBS and RBS share the same CallbackHandler interface.
 /// Some of the callbacks are applicable to MBS only or RBS only,
others are common.
 /// Please see the method comments for the details.
 /// </remarks>
 public interface ICallbackHandler
 {
 /// <summary>
 /// Called when a import message successfully applies to
databases.
 /// <param name="mbo">The Mobile Business Object was just
imported.</param>
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnImport(object o);

 /// <summary>
 /// Called when login fails.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnLoginFailure();

 /// <summary>
 /// Called when login succeeds.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnLoginSuccess();

 /// <summary>
 /// Called when a replay request fails
 /// <param name="mbo">The Mobile Business Object to replay.</
param>
 /// </summary>
 void OnReplayFailure(object o);

 /// <summary>
 /// Called when a replay request succeeds
 /// <param name="mbo">The Mobile Business Object to replay.</
param>
 /// </summary>
 void OnReplaySuccess(object o);

 /// <summary>
 /// Called when a backend search fails
 /// <param name="mbo">The backend search object</param>
 /// </summary>
 void OnSearchFailure(object o);

 /// <summary>
 /// Called when a backend search succeeds

Reference

Developer Reference for Windows and Windows Mobile 63

 /// <param name="mbo">The backend search object</param>
 /// </summary>
 void OnSearchSuccess(object o);

 /// <summary>
 /// Called when subscribe succeeds
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnSubscribeSuccess();

 /// <summary>
 /// Called when subscribe fails
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnSubscribeFailure();

 /// <summary>
 /// Called when last import message has already been processed
successfully regarding subscribe\resume\recover request.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnImportSuccess();

 /// <summary>
 /// Called when unsubscribe succeeds.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnUnsubscribeSuccess();

 /// <summary>
 /// Called when unsubscribe fails.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnUnsubscribeFailure();

 /// <summary>
 /// Called when suspend subscription succeeds.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnSuspendSubscriptionSuccess();

 /// <summary>
 /// Called when suspend subscription fails.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnSuspendSubscriptionFailure();

 /// <summary>
 /// Called when resume subscription succeeds.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnResumeSubscriptionSuccess();

 /// <summary>
 /// Called when resume subscription fails.
 /// </summary>

Reference

 64 Sybase Unwired Platform

 /// <remarks>MBS only</remarks>
 void OnResumeSubscriptionFailure();

 /// <summary>
 /// Called when recover succeeds.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnRecoverSuccess();

 /// <summary>
 /// Called when recover fails.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnRecoverFailure();

 /// <summary>
 /// Called when reset succeeds.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnResetSuccess();

 /// <summary>
 /// Called at the specified status of the synchronization.
 /// <param name="groups">a list of synchronization groups.</
param>
 /// <param name="context">synchronization context.</param>
 /// </summary>
 /// <remarks>RBS only</remarks>
 SynchronizationAction
OnSynchronize(Sybase.Collections.GenericList<Sybase.Persistence.ISy
nchronizationGroup> groups, SynchronizationContext context);

 /// <summary>
 /// Called if the synchronization failed.
 /// </summary>
 /// <param name="groups">a list of synchronization groups.</
param>
 /// <remarks>RBS only</remarks>
 void
OnSynchronizeFailure(Sybase.Collections.GenericList<Sybase.Persiste
nce.ISynchronizationGroup> groups);

 /// <summary>
 /// Called if synchronization succeed.
 /// </summary>
 /// <param name="groups">a list of synchronization groups.</
param>
 /// <remarks>RBS only</remarks>
 void
OnSynchronizeSuccess(Sybase.Collections.GenericList<Sybase.Persiste
nce.ISynchronizationGroup> groups);

 /// <summary>
 /// Called when subscription end.
 /// </summary>
 /// <remarks>MBS only</remarks>

Reference

Developer Reference for Windows and Windows Mobile 65

 void OnSubscriptionEnd();

 /// <summary>
 /// Other callbacks in this interface (whose names begin with
"on") are invoked inside a database transaction. If the transaction
will be rolled back due to an unexpected exception, then this
operation will be called with the exception (before rollback occurs).
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnMessageException(System.Exception ex);

 /// <summary>
 /// Other callbacks in this interface (whose names begin with
"on") are invoked inside a database transaction. If the transaction
is successfully committed, then this operation will be invoked after
commit.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnTransactionCommit();

 /// <summary>
 /// Other callbacks in this interface (whose names begin with
"on") are invoked inside a database transaction. If the transaction
is rolled back, then this operation will be invoked after rollback.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnTransactionRollback();

 /// <summary>
 /// Called before applying an import message to database.
 /// <param name="mbo">The Mobile Business Object to be
imported.</param>
 /// </summary>
 /// <remarks>MBS only</remarks>
 void BeforeImport(object o);

 /// <summary>
 /// Called when device storage is critically low
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnStorageSpaceLow();

 /// <summary>
 /// Called when device storage becomes sufficient again.
 /// </summary>
 /// <remarks>MBS only</remarks>
 void OnStorageSpaceRecovered();

 /// <summary>
 /// This method will be invoked when the device status has
changed
 /// </summary>
 /// <param name="status_1">The current device connection
status</param>

Reference

 66 Sybase Unwired Platform

 /// <param name="type_2">The current device connection type</
param>
 /// <param name="errorCode">The connection error code</param>
 /// <param name="errorMessage">The connection error message</
param>
 void OnConnectionStatusChange(int status_1, int type_2, int
errorCode, string errorMessage);
 }
}

This code example shows how to create and register a handler to receive callbacks:
public class MyCallbackHandler : DefaultCallbackHandler
{
 // implementation
}

CallbackHandler handler = new MyCallbackHandler();
MyDatabase.RegisterCallbackHandler(handler);
//or Customer.RegisterCallbackHandler(handler);

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void CreateDatabase()
public static void DeleteDatabase()

Typically, CreateDatabase does not need to be called since it will be called internally
when necessary. An application may use DeleteDatabase when the client database
contains corrupted data and needs to be cleared.

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
Exceptions thrown on the Unwired Server are logged in both the server log and in
LogRecord. For LogRecord, the exception gets downloaded to the device automatically
during synchronization (replication-based synchronization) or when importing a message
(message-based synchronization).

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps it to a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,

Reference

Developer Reference for Windows and Windows Mobile 67

the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 6. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS down or the connection is terminated.

Table 7. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/webservice/BA-
PI) not found on Backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SUP internal error in modifying
the CDB cache.

N/A

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThrowCredentialRequestOn401Error context
variable is set to true (which is the default), error code 401 throws a
CredentialRequestException, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the
SupThrowCredentialRequestOn401Error context variable in Sybase Control
Center. If SupThrowCredentialRequestOn401Error is set to false, error code 401
is treated as a normal recoverable exception.

Reference

 68 Sybase Unwired Platform

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 8. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later

503

Client-Side Exceptions
Device applications are responsible to catch and handle exceptions thrown by the client object
API.

For message-based synchronization, you can catch exceptions for background thread message
processing by creating a callback handler and implementing OnMessageException
methods.

Note: Refer to Callback Handlers on page 62 for more information.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

• SynchronizeException – this exception is thrown when an error occurs during
synchronization.

• PersistenceException – this exception is thrown when trying to load an MBO that is
inside the local database.

• SystemException – this exception is thrown for uncategorized errors, and is typically
unrecoverable.

Reference

Developer Reference for Windows and Windows Mobile 69

• ObjectNotFoundException – this exception is thrown when trying to load an MBO that
is not inside the local database.

• NoSuchOperationException – this exception is thrown when trying to call a method
(using the Object Manager API) but the method is not defined for the MBO.

• NoSuchAttributeException – this exception is thrown when trying to access an attribute
(using the Object Manager API) but the attribute is not defined for the MBO.

MetaData and Object Manager API
The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API
Some applications or frameworks may wish to operate against MBOs in a generic manner by
invoking MBO operations without prior knowledge of MBO classes. This can be achieved by
using the MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the –md code generation option. You can use the –rm
option to generate the object manager class.

You can also generate metadata classes by selecting the option "Generate metadata classes" or
"Generate metadata and object manager classes" option in the code generation wizard in the
mobile application project.

ObjectManager
The ObjectManager class allows an application to call the Object API in a reflection style.

IObjectManager rm = new MyDatabase_RM();
ClassMetaData customer = MyDatabase.Metadata.GetClass(“Customer”);
AttributeMetaData lname = customer.GetAttribute(“lname”);
OperationMetaData save = customer.GetOperation(“save”);
object myMBO = rm.NewObject(customer);
rm.SetValue(myMBO, lname, “Steve”);
rm.Invoke(myMBO, save, new ObjectList());

DatabaseMetaData
The DatabaseMetaData class holds package level metadata. You can use it to retrieve
data such as synchronization groups, default database file, and MBO metadata .

DatabaseMetaData dmd = SampleAppDB.Metadata;
 foreach (String syncGroup in dmd.SynchronizationGroups)
 {
 Console.WriteLine(syncGroup);
 }

Reference

 70 Sybase Unwired Platform

EntityMetaData
The EntityMetaData class holds metadata for the MBO, including attributes and
operations.

EntityMetaData customerMetaData = Customer.GetMetaData();
 AttributeMetaData lname =
customerMetaData.GetAttribute("lname");
 OperationMetaData save = customerMetaData.GetOperation("save");

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name, column
name, type, and maxlength.

Console.WriteLine(lname.Name);
Console.WriteLine(lname.Column);
Console.WriteLine(lname.MaxLength);

Replication-Based Synchronization APIs
The following operations are available when performing replication-based synchronization.

IsSynchronized() and GetLastSynchronizationTime
For replication-based synchronization applications, the package database class provides the
following two methods for querying the synchronized state and the last synchronization time
of a certain synchronization group:

/// Returns if the synchronizationGroup was synchronized
public static bool IsSynchronized(string synchronizationGroup)

/// Returns the last synchronization time of the synchronizationGroup
public static System.DateTime GetLastSynchronizationTime(string
synchronizationGroup)

Push Configuration APIs
The push configuration APIs provide methods for configuring push through lightweight
polling (LWP).

Note: To use the push notification API in the Object API, the Sybase Server Sync Tool must be
installed on the device. You can get the installer from
\<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\ServerSync\ce\Installer*.CAB.

LWPPush
The following APIs support registering or unregistering for push notification in the generated
database class:

MyDatabase.RegisterCallbackHandler(new PushListener());
MyDatabase.GetSynchronizationProfile().SISAppname = "TestSIS"

Reference

Developer Reference for Windows and Windows Mobile 71

MyDatabase.GetSynchronizationProfile().SISIntervalMS = 10000
MyDatabase.GetSynchronizationProfile().SISNotificationFilePath =
ServerSyncRegistry.NewInstance().FilePath;
MyDatabase.StartBackgroundSynchronization();
MyDatabase.StopBackgroundSynchronization();

The client should set the SIS push configuration using SynchronizationGroup.

Sybase.Persistence.ISynchronizationGroup
GetSynchronizationGroup(string syncGroup)

ISynchronizationGroup sg = End2EndDB.GetSynchronizationGroup("ofs");
sg.EnableSIS = true;
sg.Interval = 0;
sg.Save();
Sybase.Persistence.SynchronizationManager.Instance.RegisterServerSy
ncConfiguration();

Creating a Replication-based Push Application
The device application must meet these requirements to utilize the replication-based Push
Synchronization APIs described in this section.

You can develop the push application directly from generated mobile business object (MBO)
code, or from the Device Application Designer.

1. Properly configure and deploy the mobile business objects (MBOs).

a) Create a Cache Group and set the cache policy to Scheduled and set some value for the
Cache interval, 30 seconds for example.

b) Create a Synchronization Group and set some value for the Change detection level,
one minute for example.

c) Place all Mobile Application project MBOs in the same Cache Group and
Synchronization Group.

d) Deploy the Mobile Application Project as Replication-based in the Deployment
wizard.

2. Configure the Emulator or device:

a) Copy the server synchronization tool SybaseServerSync.v35.CAB from
ClientAPI\ServerSync\ce\installer to the Emulator or device.

b) Click on the CAB file to install it on the Emulator or device.

3. Develop the application in Device Application Designer.

4. Add the Push Settings and Synchronization stock screens.

5. Generate the device application code.

6. Run the application in the Emulator or device.

7. In the Push Settings screen, define the polling interval and notification file path.

Reference

 72 Sybase Unwired Platform

8. In the Synchronization screen, select the Enable push checkbox, choose a push
notification mode, and click Save.

Reference

Developer Reference for Windows and Windows Mobile 73

9. Start the Server Synchronization Tool on the device.

a) On the device, make sure the sybaseserversync.v35.cab file is installed as
described above.

Note: Sybase recommends that you use the sybaseserversync.cab file that has
the same .NET CF version as the application. If two applications with different
versions are on the same device, for example one is version 2.0 and the other version
3.5, then use the lower version, such as sybaseserversync.v20.cab.

b) Navigate to the Sever Sync tool included with the program: {device_root}
\Programs \Server sync\supsis.exe.

c) Click supsis.exe.

This enables push synchronization between Unwired Server and devices.

Setting Up Lightweight Polling for a Single Client
If you do not want to set the lightweight polling configuration on Unwired Server for multiple
device clients, use the client-side program for a single client.

The poll_every unit should be set to seconds (not minutes, hours, or a combination of the two).
The lightweight poller listener on the client can be turned on/off if you do not want to receive
notifications during a specific period; do not just change the interval.

Reference

 74 Sybase Unwired Platform

1. In your program, look for where you specify the polling option right
after: ...;poll_notifier=UALIGHTWEIGHT;poll_key....

2. Change the polling option, for
example:;poll_notifier=UALIGHTWEIGHT;poll_every=180;poll
_key=.....

Note: Do not set the client poll_every value to a shorter time interval than the server value.
This does not result in receiving push notifications any faster, and can cause the client to
see the same notification multiple times, causing multiple useless synchronizations. Only
set this value on the client if for some reason you do not want to see notifications as
frequently as the server checks for pending notifications.

Notification Handling APIs
The notification handling APIs provide method for configuring notifications through
lightweight polling (LWP).

LWPPush
To register to receive push messages through lightweight polling, the client should use these
methods:

RegisterCallbackHandler(Sybase.Persistence.ICallbackHandler
_handler)

End2EndDB.RegisterCallbackHandler(new MyCallbackHandler(this))

Message-Based Synchronization APIs
Message-based synchronization uses the publish/subscribe model. During a subscription, the
subscriber indicates the data to be received from the publisher. When a subscription is
established, the publisher must send all relevant data to the subscriber (to maintain the data
state on the client).

The following operations are available when performing message based synchronization.

Subscribe Data
The following example shows how to notify the server of your subscription to a specific
package.

SampleAppDB.Subscribe();

Unsubscribe Data
If the client does not require the subscribed data, it can send an unsubscribe request to remove
it. The following example shows how to notify the server to remove a subscription so it does
not have to push to the application/device any longer.

SampleAppDB.Unsubscribe()

Calling to CleanAllData() also cleans up all data on the local database.

Reference

Developer Reference for Windows and Windows Mobile 75

SampleAppDB.CleanAllData();

Suspend Operation
This operation is used if the device is going offline or user has no need to receive updates for a
significant amount of time. The following example shows how to notify the server to stop
delivering data change notifications for a specific package.

MyPackageDB.Suspend();

Resume Operation
The Resume operation notifies the server to resume sending the data change notifications
from the last suspension. All modified data since suspension is pushed the application/device.

MyPackageDB.Resume();

Recover Operation
If data on the device is corrupted or a Resume request is rejected, you can use this operation to
recover the data.

MyPackageDB.Recover();

Start Background Synchronization
This operation starts background synchronization for the database class.

MyPackageDB.StartBackgroundSynchronization();

Stop Background Synchronization
This operation stops background synchronization for the database class.

MyPackageDB.StopBackgroundSynchronization();

HasPendingOperations Operation
The HasPendingOperation operation returns false if there are some requests that have
not yet been processed by server. The following code shows how to wait until the replay
operation is processed by the server.

Customer c = new Customer();
c.Id = 900;
c.Address = "Beijing";
c.Create();
c.SubmitPending();

//use this code to wait for the replay operation result:

while (MyPackageDB.HasPendingOperations())
 {
 Thread.Sleep(1000);
 }

Reference

 76 Sybase Unwired Platform

Windows Mobile Device Framework API
Describes solutions and examples for tasks and uses of the Sybase Unwired Platform Device
Application Designer API, which allows you to customize the Windows Mobile device user
interface.

Add Controls Manually to a Screen
You can add controls manually to a screen by using the Visual Studio Form Designer, or by
editing the Form*.designer.cs file.

To add controls from the designer, open the form in Visual Studio Form Designer, and drag and
drop controls from the toolbox to the form.

Another method for adding controls is to open and edit Form*.designer.cs.

//
// myEditBox
//
this.myEditBox.Anchor = ((System.Windows.Forms.AnchorStyles)
(System.Windows.Forms.AnchorStyles.None |
System.Windows.Forms.AnchorStyles.Top |
System.Windows.Forms.AnchorStyles.Left |
System.Windows.Forms.AnchorStyles.Right)) ;
this.myEditBox.BackColor = System.Drawing.Color.FromArgb(
 0xFF,0xFF,0xFF);
this.myEditBox.Font =
 new System.Drawing.Font("Tahoma", 9F ,
 ((System.Drawing.FontStyle)
 (System.Drawing.FontStyle.Regular)));
this.myEditBox.ForeColor =
 System.Drawing.Color.FromArgb(0x00,0x00,0x00);
this.myEditBox.LogicalType =
 Sybase.UnwiredPlatform.Windows.Forms.LogicalType.Phone;
this.myEditBox.Size = new System.Drawing.Size(150,20);
this.myEditBox.TabIndex = 16;
this.myEditBox.Tag = "16";
this.myEditBox.Text = "";
this.myEditBox.BorderStyle =
 Sybase.UnwiredPlatform.Windows.Forms.BorderStyle.BottomLine;
this.myEditBox.Location = new System.Drawing.Point(87,180);
this.myEditBox.Name = "myEditBox";
this.displayMainPanel.SetColumn(this.myEditBox, 1);
this.displayMainPanel.SetRow(this.myEditBox, 7);
this.displayMainPanel.SetRowSpan(this.myEditBox, 1);
this.displayMainPanel.SetColumnSpan(this.myEditBox, 1);
this.displayMainPanel.SetCellAnchorStyles(this.myEditBox,
 ((System.Windows.Forms.AnchorStyles)
 (System.Windows.Forms.AnchorStyles.None |
 System.Windows.Forms.AnchorStyles.Top |
 System.Windows.Forms.AnchorStyles.Left |

Reference

Developer Reference for Windows and Windows Mobile 77

 System.Windows.Forms.AnchorStyles.Right)));
this.displayMainPanel.Controls.Add(this.myEditBox);

private Sybase.UnwiredPlatform.Windows.Forms.TextBox myEditBox;

Customize Controller
In the CustomizedCode folder, you can add new classes to customize a controller.

This is an example of the FormCreateCustomerController code
/// <summary>
/// The Base class of FormCreateCustomerController
/// </summary>
internal abstract class FormCreateCustomerControllerBase :
ControllerBase
{
 public FormCreateCustomerControllerBase(IFormPart form)
 : base(form)
 {
 }

 // button (Submit) click event handler
 internal virtual void SubmitButton_Handler(FormsManagerDataObject
dataObject)
 {
 // Generated code
 }
}

/// <summary>
/// The Controller class of Form FormCreateCustomer
/// </summary>
internal partial class FormCreateCustomerController :
FormCreateCustomerControllerBase
{
 public FormCreateCustomerController(IFormPart form)
 : base(form)
 {
 }
}

The following code example and illustration describe a partial class where you can override
the virtual methods defined in FormCreateCustomerControllerBase and provide
your own business logic.
 internal partial class FormCreateCustomerController
 {
 internal override void
SubmitButton_Handler(Sybase.UnwiredPlatform.Windows.Forms.FormsMana
gerDataObject dataObject)
 {
 // Add your custom actions here
 MessageBox.Show("Before Submit!");

 // Perform the default action

Reference

 78 Sybase Unwired Platform

 base.SubmitButton_Handler(dataObject);
 }
 }

Customize Widget Event Code
You can customize widget event code in the Device Application Designer. Define the widget
event in control's Actions|Coding tab.

After code generation, a widget event handler method is generated in the controller class. For
example:
// button (Button Events) click event handler
 internal virtual void
ButtonEventsButton_ClickHandler(FormsManagerDataObject dataObject)
 {
 // actions
 try
 {
 }
 catch (Exception __ex__)
 {
 if (__ex__.InnerException != null)
 {
 MessageBox.Show(__ex__.Message + " [" +
__ex__.InnerException.Message + "]", "Error",
System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Exclamation,
System.Windows.Forms.MessageBoxDefaultButton.Button1);
 }
 else
 {
 MessageBox.Show(__ex__.Message, "Error",
System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Exclamation,

Reference

Developer Reference for Windows and Windows Mobile 79

System.Windows.Forms.MessageBoxDefaultButton.Button1);
 }

Sybase.UnwiredPlatform.Windows.Util.Logger.Instance.Log(__ex__);
 }
 }

You can add your action code in this method or define the action code in a partial class so your
code will not be overridden during the next generation. For example:
/// <summary>
 /// The Controller class of Form FormCreateCustomerController
 /// </summary>
 internal partial class FormCreateCustomerController
 {
 internal override void
ButtonEventsButton_ClickHandler(FormsManagerDataObject dataObject)
 {
 // Add your event handler code here

 // Call base method
 base.ButtonEventsButton_ClickHandler(dataObject);
 }
 }

Add Validators
A validator defines a set of standard classes for performing common data validation checks,
for example, a phone number input field must be numbers. A component can have one or more
validators.

this.editbox.Validating += new
System.ComponentModel.CancelEventHandler
(editbox_Validating);

Perform UI Binding to an MBO
You can perform UI binding to an MBO through the DataBindings method.

this.editbox.DataBindings.Add(new
System.Windows.Forms.Binding("Text",
this.CustomerBindingSource, "Id", true,
System.Windows.Forms.DataSourceUpdateMode.Never));

Access Pending Operations and Operation Logs
You can access pending operations directly from the MBO.

public static
Sybase.Collections.GenericList<OrdersManagment.Customer>
GetPendingObjects()
public
Sybase.Collections.GenericList<Sybase.Persistence.ILogRecord>
GetLogRecords()

Reference

 80 Sybase Unwired Platform

Connect to Unwired Server
You can call PackageDB.LoginToSync(username,password) to connect to the
Unwired Server.

Add or Modify Navigation
The Form Manager implements the navigation of forms. You can add or modify the navigation
by using a connection action.

Sybase.UnwiredPlatform.Windows.Action.Action
connectionAction1_From_FormCustomer_To_FormCustomerDetails =
 Sybase.UnwiredPlatform.Windows.Action.ActionFactory
 .CreateScreenAction(typeof(FormCustomerDetails),
 (this.Form as FormBase),dataObject);
connectionAction1_From_FormCustomer_To_FormCustomerDetails
 .Execute();

You can also call the Form Manager directly.
FormBase.FormsManager.ShowForm(…)

Add or Modify Actions
To add or modify actions, you can create a partial class for the controller and override the event
handler or you can modify the event handler code directly.

Create and Assign Variables
Variables are managed by the VariableManager.

To create a variable:
Sybase.UnwiredPlatform.Windows.Variable.VariableManager
 .Instance.UserVaraibles
 .AddVariable("test", null);

To read a variable:
Sybase.UnwiredPlatform.Windows.Variable.VariableManager
 .Instance.GetVariableValue(
 Sybase.UnwiredPlatform.Windows.Variable.VariableType.User,
 "test")

Assign PIM Actions to Controls
You can add a PIM action to a control to integrate the control with a Windows Mobile PIM
application.

To add a PIM attribute to a control:
[Sybase.UnwiredPlatform.Windows.Forms.CustomAttributes.PIMLogicalTy
peAttribute
("Contact","FirstName")]

Reference

Developer Reference for Windows and Windows Mobile 81

private Sybase.UnwiredPlatform.Windows.Forms.TextBox editbox4;
[Sybase.UnwiredPlatform.Windows.Forms.CustomAttributes.PIMLogicalTy
peAttribute
("Contact","LastName")]
private Sybase.UnwiredPlatform.Windows.Forms.TextBox editbox6;

To add a PIM action in the control event handler:
Sybase.UnwiredPlatform.Windows.Action.Action action0 =
new Sybase.UnwiredPlatform.Windows.Action.PimAction
((this.Form as FormBase),"Contact",true,"Display");
action0.Execute();

Change Default Layout
In Windows Mobile, the default layout in the generated application is TableLayout. To change
the layout, you can open the form in the Visual Studio Form Designer, and manually change
the layout.

Windows Mobile Device Framework Assemblies
The Windows Mobile Device Framework consists of the following three assemblies, which
provide device component integration, custom controls, and Device Application Designer
actions:

Table 9. Sybase Windows Device Framework Assemblies

Name Function

Sybase.UnwiredPlatform.Windows Provides drawing improvement and device component inte-
gration. For example, integration with the device's phone, e-
mail, or camera functionalities.

Sybase.UnwiredPlatform.Win-
dows.Forms

Provides customized control, MVP pattern, action frame-
work, and validation framework.

Sybase.UnwiredPlatform.Win-
dows.StockScreens

Provides Device Application Designer specific features. For
example, stock screens, prepared stock actions, and varia-
bles.

Sybase.UnwiredPlatform.Windows
The Sybase.UnwiredPlatform.Windows assembly provides nonvisual components.

Table 10. Sybase.UnwiredPlatform.Windows Non-visual Components

Component Description

PictureCamera Allows developers to use the device camera to take pictures.

Reference

 82 Sybase Unwired Platform

Component Description

VideoCamera Allows developers to use the device camera to shoot videos.

Email Allows developers to send e-mail messages.

SMS Allows developers to send SMS messages.

Phone Allows developers to make phone calls.

GPS Allows developers to interact with the GPS.

PictureCamera Component
Because of the many types of devices that exist, a developer must check whether a device has a
picture camera, and must display a message if the device lacks a camera. The PictureCamera
component simplifies developing an application that can work correctly on all devices, by
allowing the use of the PictureCamera component without writing a lot of code.

The PictureCamera supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

VideoCamera Component
Because of the many types of devices that exist, a developer must check whether a device has a
video camera, and must display a message if the device lacks a camera. The VideoCamera
component simplifies developing an application that can work correctly on all devices, by
allowing the use of the VideoCamera component without writing a lot of code.

Using the VideoCamera Component
How to use the VideoCamera component.

To use the VideoCamera component:

• Add the Sybase.UnwiredPlatform.Windows assembly.
• Open a form.
• Drag and drop the VideoCamera component from toolbox to the form, or manually add

VideoCamera in the form’s designer.cs file.
• Set the VideoCamera object properties if required.
• Add an event handler in your form (for example, when clicking on button) to capture a

video using the VideoCamera object.

Example of code generated by the form designer:
private Sybase.UnwiredPlatform.Windows.Device.VideoCamera
videoCamera1;
this.videoCamera1 = new
Sybase.UnwiredPlatform.Windows.Device.VideoCamera();

The following sample code for the event handler includes two buttons on the form: the first
button captures a video and returns the video file name. The second button plays the video.

Reference

Developer Reference for Windows and Windows Mobile 83

private void button1_Click(object sender, EventArgs e)
{
 This.FileName = this.videoCamera1.CaptureVideoFile(this);
 this.button2.Enabled = !String.IsNullOrEmpty(this.FileName);
}

private void button2_Click(object sender, EventArgs e)
{

Sybase.UnwiredPlatform.Windows.Device.Process.OpenFile(this.FileNam
e);
}

Email Component
The e-mail component allows a device application to set e-mail properties and to compose or
send an e-mail message using an e-mail object.

The e-mail component supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

Using the E-mail Component
To use the E-mail component:

• Add the Sybase.UnwiredPlatform.Windows assembly.
• Open a form.
• Drag and drop the e-mail component from toolbox to the form, or manually add e-mail in

the form’s designer.cs file.

• Set the e-mail object properties if required.
• Add an event handler in your form (for example, when clicking a button) to compose or

send an e-mail message using the Email object.

Example of code generated by the form designer:
private Sybase.UnwiredPlatform.Windows.Device.Email email1;
this.email1 = new Sybase.UnwiredPlatform.Windows.Device.Email();

The following sample code for the event handler uses the ComposeEmailForm() method
to send an e-mail message. The user can review the e-mail message before sending it. The
addressBox1 TextBox control defines the e-mail address, the subjectBox2 TextBox control
defines the e-mail subject, the emailBox3 TextBox control defines the e-mail text.
private void button1_Click(object sender, EventArgs e)
{
 // You can always try to open the send email form or send an email
 this.email1.ComposeEmailForm(this.addressBox1.Text,
this.subjectBox2.Text, this.emailBox3.Text, null);
}

Reference

 84 Sybase Unwired Platform

SMS Component
The SMS component allows a device application to set SMS properties and to compose or
send an SMS message.

The SMS component supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

Using the SMS Component

To use the SMS component, you must:

• Add the Sybase.UnwiredPlatform.Windows assembly.
• Open a form.
• Drag and drop the SMS component from toolbox to the form, or manually add SMS in the

form’s designer.cs file.

• Set the SMS object properties if required.
• Add an event handler in your form (for example, when clicking a button) to compose or

send an SMS message using the SMS object.

Example of code generated by the form designer:
private Sybase.UnwiredPlatform.Windows.Device.SMS sms1;
this.sms1 = new Sybase.UnwiredPlatform.Windows.Device.SMS();

The following sample code for the event handler uses the ComposeSmsForm() method to
send a SMS. The user can review the message before sending it. The phoneBox1 TextBox
control defines the SMS phone number, the smsBox2 TextBox control defines the SMS text.
private void button1_Click(object sender, EventArgs e)
{
 // You can always try to open the send SMS form or send a SMS
 this.sms1.ComposeSmsForm(this.phoneBox1.Text, this.smsBox2.Text);
}

Phone Component
The phone component .

The phone component supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

Using the Phone Component

To use the phone component:

• Add the Sybase.UnwiredPlatform.Windows assembly.
• Open a form.
• Drag and drop the Phone component from toolbox to the form, or manually add the Phone

component in the form’s designer.cs file.

Reference

Developer Reference for Windows and Windows Mobile 85

• Set the Phone object properties if required.
• Add an event handler in your form (for example, when clicking a button) to make a phone

call using the Phone object.

Example of code generated by the form designer:
private Sybase.UnwiredPlatform.Windows.Device.Phone phone1;
this.phone1 = new Sybase.UnwiredPlatform.Windows.Device.Phone();

The following sample code for the event handler uses the Call() method to make a phone
call. The phoneBox1 TextBox control defines the phone number.
private void button1_Click(object sender, EventArgs e)
{
 // You can always try to call
 this.phone1.Call(this.phoneBox1.Text, false);
}

Sybase.UnwiredPlatform.Windows.Forms
The Sybase.UnwiredPlatform.Forms assembly provides custom controls used in Windows
Mobile and Windows code generation. These controls extend the capability and improve the
look and feel of standard Windows Mobile 6.x controls.

The following controls provide features not available in the standard Windows Mobile 6.x
controls:

• Transparent background
• Gradient-filled background
• Background pictures
• Background transparency level (alpha-channel)
• Border thickness and color
• Rounded corners
• Auto-ellipsis for labels
• Phone, email, and SMS integration for LinkLabel
• Button with gradient, image and text
• CheckBox and RadioButton controls with image and text
• Automatic handling of Undo, Copy, Paste, InputPanel, and zoom for TextBox control
• Watermarker for TextBox and PictureBox controls
• Camera integration in PïctureBox control
• Edit and ReadOnly modes

The following provide controls that do not exist in Windows Mobile 6.x:

• ImageButton
• Masked TextBox
• Signature
• FlowLayoutPanel

Reference

 86 Sybase Unwired Platform

• TableLayoutPanel
• PowerList
• FreeFormView
• Separator
• Touch screen optimized toolbar
• Title bar
• TabControl for Windows Mobile Standard
• RadioButton for Windows Mobile Standard

There are several versions of this assembly for different targets:

• Windows Mobile Professional/PocketPC
• Windows Mobile Standard/Smartphone
• Windows

Table 11. Sybase.UnwiredPlatform.Windows.Form Custom Controls

Component Description

FormBase Extends the standard Windows Mobile Form.

Button Extends the standard Windows Mobile Button control.

CheckBox Extends the standard Windows Mobile CheckBox control.

DateTimePicker Extends the standard Windows Mobile DateTimePicker
control.

FlowLayoutPanel Similar to the FlowLayoutPanel control for Windows. Win-
dows Mobile does not have such a control.

FreeFormView Provides similar Form features as a control. It also supports
paging feature if you have many controls and need to put
controls on different pages.

ImageButton A push button with image, text, or both.

Label Extends the standard Windows Mobile Label control.

LinkLabel Extends the standard Windows Mobile LinkLabel control.

Maps Shows the map using Goolge Maps.

MaskedTextBox Similar to the MaskedTextBox control for Windows. Win-
dows Mobile does not have such a control.

Notification Extends the standard Windows Mobile Notification control.
It also supports Windows Mobile Standard and Windows.

Reference

Developer Reference for Windows and Windows Mobile 87

Component Description

Panel Extends the standard Windows Mobile Panel control.

PictureBox Extends the standard Windows Mobile PictureBox control.

PowerList The PowerList control is a powerful list control that is opti-
mized for touch screens.

ProgressBar Shows the progress of a task.

RadioButton Extends the standard Windows Mobile RadioButton control.
It also supports Windows Mobile Standard.

Separator Draws a horizontal or vertical separator.

Signature Allows the user to add signature capture.

TabControl Extends the standard Windows Mobile TabControl control.

TabPage Extends the standard Windows Mobile TabPage control.

TableLayoutPanel Similar to the TableLayoutPanel control for Windows. Win-
dows Mobile does not have such a control.

TextBox Extends the standard Windows Mobile TextBox control.

Toolbar Provides a touch screen optimized Toolbar control.

TitleBar Provides an easier to use TitleBar control for forms or panels.

FormBase
The FormBase is a base form class that provides common form management functions. It
supports the following features:

• Gradient filled background
• Background picture
• Form navigation support

Button Control
The Button control is similar to the Windows Mobile Button control, but improves the look
and feel of the standard control.

The Button control provides the following additional features:

• Gradient fill styles
• Rounded corner
• PushButton, CheckBox, ImageButton styles
• Image

Reference

 88 Sybase Unwired Platform

• Image and text alignments
• Pushed font, code, image

CheckBox Control
The CheckBox control is similar to the Windows Mobile CheckBox control, but improves the
look and feel of the standard control.

The CheckBox control provides the following additional features:

• Image
• Image and text alignments
• Pushed font, code, image
• Transparent background

DateTimePicker Control
The DateTimePicker control is similar to the Windows Mobile DateTimePicker control.

The DateTimePicker control provides the following additional features:

• Border style
• Text alignment
• Edit and ReadOnly modes
• Transparent background

FlowLayoutPanel Control
The FlowLayoutPanel control is similar to the Windows version, but provides additional
features that are useful for developing Windows Mobile applications.

The FlowLayoutPanel control provides the following additional features:

• Stack layout, wrap layout, and uniform layout
• Border thickness and color
• Rounded corner
• Gradient fill
• Background image
• Transparency level

FreeFormView Control
The FreeFormView control provides similar Form features as a control. It also supports a
paging feature, if you have many controls that must be placed on different pages.

ImageButton Control
The ImageButton control is identical to the Button control with the ImageButton style.

Reference

Developer Reference for Windows and Windows Mobile 89

Label Control
The Label control is similar to the Windows Mobile Label control.

The Label control provides the following additional features:

• Auto ellipsis
• Text alignment
• Transparent background

LinkLabel Control
The Label control is similar to the Windows Mobile LinkLabel control.

The LinkLabel control provides the following additional features:

• Auto ellipsis
• Text alignment
• Transparent background
• Phone, e-mail, SMS, Web URL, and file path integration

Maps Control
The Maps control shows a map using the Google Maps service.

It provides the following features:

• Show map view
• Show satellite view
• Go to the current location of the GPS
• Show an address on the map
• Show a geolocation on the map
• Convert geolocation to an address
• Zoom In and Zoom Out
• Scroll

MaskedTextBox Control
The MaskedTextBox control is similar to the Windows version of MaskedTextBox. This
control is a subclass of TextBox.

Note: Windows Mobile does not support the Windows version of MaskedTextBox.

The MaskedTextBox control provides the following additional features:

• Edit and ReadOnly modes
• Border style
• Watermark text
• Phone, email, SMS, Web URL, and file path integration

Reference

 90 Sybase Unwired Platform

Notification Control
The Notification control is an extension of the Windows Mobile Notification control.

It supports the following additional features:

• Support for default icons
• Support for HTML text
• Return parsed action defined in HTML text
• Support for Windows

Notification Event
If HTML text is used and the user selects a button or hyperlink, a ResponseSubmitted event
handler is called with the event argument Notification.ResponseSubmittedEventArgs. The
notification event contains the following parsed information:

• Response – The original response.
• Action – Action defined in the HTML text. Allowable values are "notify", "hyperlink" or

"unknown."
• Arguments – Notify arguments (lstbx=1&chkbx=on) or hyperlink name.
• NameValues – The name values map.

Panel Control
The Panel control extends the Windows Mobile standard Panel control.

It provides the following additional features.

• Border thickness and color
• Rounded corners
• Gradient fill
• Background image
• Transparent background
• Transparency level

PictureBox Control
The PictureBox control extends the Windows Mobile standard Panel control.

The PictureBox control provides the following features:

• Border
• Transparent background
• Watermark
• Camera integration
• Browse pictures
• Rotate pictures

Reference

Developer Reference for Windows and Windows Mobile 91

• Load and save pictures
• Limit picture size

PowerList Control
The PowerList control is a powerful list control that is optimized for touch screens.

The PowerList control provides the following features:

• Allows the use of a different layout for selected and unselected items.
• Touch scrolling
• Grouping items by category
• Sorting
• Search support

RadioButton Control
The Panel control extends the Windows Mobile standard RadioButton control, and provides
the following additional features.

• Enhanced radio button bitmap
• Rounded corners
• Auto ellipsis
• Support picture
• Support picture and text alignments
• Transparent background

Separator Control
The Separator control draws a line horizontally or vertically.

Signature Control
The Signature control is a subclass of PictureBox that allows users to sign their signature.

Because Signature is a subclass of PictureBox, all PictureBox properties can be used.

TabControl Control
The TabControl is similar to the Windows Mobile TabControl, but also supports smartphone.

TabPage Control
The TabPage control is similar to the Windows Mobile TabPage control, but also supports
smartphone.

TableLayoutPanel Control
The TableLayoutPanel control is similar to the Windows Mobile TableLayoutPanel control,
but also supports Pocket PC and Smartphone.

Reference

 92 Sybase Unwired Platform

TextBox Control
The TextBox control is similar to the Windows Mobile TextBox control, but provides the
following additional features:

• Edit and ReadOnly modes
• Border style
• Transparent background
• Phone, email, SMS, Web URL and file path support
• Watermark
• Built-in input panel support
• Built-in undo/cut/copy/paste support
• Zoom window for multiline text

Toolbar Control
The Toolbar control provides a Toolbar control optimized for touch screen or Smartphone.

TitleBar Control
The TitleBar control provides a more usable TitleBar control for forms or panels, and provides
the following features:

• Icon
• Capture
• Left button
• Right button

Sybase.UnwiredPlatform.Windows.StockScreens
Provides Device Application Designer specific features. For example, variables, prepared
stock actions, and stock screens.

Variables
Variables are key-values. There are three types of variables: user-defined variables, table
context variables, and system variables.

A system variable is a predefined variable to retrieve system information such as device date
and time, RAM, flash memory, and other parameters, and information about the Unwired
Server.

The table context variable is related to the MBO used in the current context (for example,
operation).

Reference

Developer Reference for Windows and Windows Mobile 93

Table 12. Variables

Variable Name Variable Constant Description

Device Date DEVICE_DATE The date set on the device.

Device Time DEVICE_TIME The time set on the device.

OS version DEVICE_OS The OS version running on the device.

Package Name PACKAGE_NAME The package name used for the logged-
in user.

Password LOGIN_PASSWORD The password used to log in to Sybase
Unwired Platform.

User Name LOGIN_USER_NAME The user name used to log in to Sybase
Unwired Platform.

Server Name SERVER_NAME The name of the Unwired Server where
the user logged in.

Unique ID GUID A 32-bit unique ID.

Unwired Server URL SERVER_URL The URL used for connecting to the
Sybase Unwired Server.

The following sample code shows how to access the system variable "Package Name."
String packageName =
Sybase.UnwiredPlatform.Windows.Variable.VariableManager.Instance.

GetVariableValue(Sybase.UnwiredPlatform.Windows.Variable.VariableTy
pe.System, "PACKAGE_NAME");

Actions
You can implement ActionFactory to create different types of actions that are predefined in the
Device Application Designer.

Table 13. Creating Predefined Actions Using ActionFactory

Action Type Description

Alert Shows a message to alert the user.

Connection An action for navigating to another screen.

Navigation Back An action for navigating to the previous screen.

Exit Exits the client application.

Logout Logs out the user, and clears the user name and password.
The user will be required to enter login credentials during the
next login attempt.

Reference

 94 Sybase Unwired Platform

Action Type Description

Operation An action for performing a mobile object operation.

Persist Persists local variables assigned to this screen.

Refresh Refreshes the current screen.

Synchronize Synchronizes the MBO in the current screen.

Object Query An action for performing an object query of a mobile busi-
ness object

Alert
The following sample code for the Alert action causes an error message box to appear:

string description = “Hello world”;
Sybase.UnwiredPlatform.Windows.Action.Action alertAction =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateAlertActi
on(description,"ERROR");
alertAction.Execute();

Connection
The following sample code for the Connection action navigates from the current screen to the
FormUpdateProduct screen:

Sybase.UnwiredPlatform.Windows.Action.Action connectionAction =

Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateScreenAct
ion(typeof(FormUpdateProduct),
 (this.Form as FormBase), dataObject);
connectionAction.Execute();

Navigation Back
The following sample code for the Navigation Back action is an InlineAction that instructs the
FormsManager to close the current screen and navigate to the previous screen:

Sybase.UnwiredPlatform.Windows.Action.Action action0 =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateInlineAct
ion(
 delegate(Object[] args,out string message)
 {
 FormBase.FormsManager.CloseForm();
 message = "";
 return false;
 }
);
 action0.Execute();

Reference

Developer Reference for Windows and Windows Mobile 95

Exit
The following is sample code for the Exit action:

Sybase.UnwiredPlatform.Windows.Action.Action exitAction =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateExitActio
n();
exitAction.Execute();

Logout
The following is sample code for the Logout action:

Sybase.UnwiredPlatform.Windows.Action.Action logoutAction =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateLogoutAct
ion(this.Form as Form);
 logoutAction.Execute();

Operation
The following sample code for the Operation action calls the Create method of the mobile
business object "newProduct," and creates a new instance of Product:

List<Object> createParameterList = new List<object>();
List<Type> createParameterTypeList = new List<Type>();
//create
Product newProduct = new Product();
newProduct.Id=100;
newProduct.Name = “SUP”;

//Call Product.Create()
Sybase.UnwiredPlatform.Windows.Action.Action operationAction =

Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateOperation
Action(
 typeof(Product), newProduct,"Create",

createParameterList.ToArray(),createParameterTypeList.ToArray());
 operationAction.Execute();

Persist
The following sample code for the Persist action persists the user variable named "UserVar":

String variable1Value = “Hello”;
Sybase.UnwiredPlatform.Windows.Action.Action persistAction =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreatePersistAc
tion(
�������
Sybase.UnwiredPlatform.Windows.Variable.VariableType.User,"UserVar"
,variable1Value);
 persistAction.Execute();

Reference

 96 Sybase Unwired Platform

Refresh
The following sample code for the Refresh action refreshes the current screen:

Sybase.UnwiredPlatform.Windows.Action.Action refreshAction =

Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateRefreshAc
tion((this.Form as FormBase));
refreshAction.Execute();

Synchronize
The following sample code for the Synchronize action starts synchronization of the
synchronization group where the "Product" mobile business object is a member:

Sybase.UnwiredPlatform.Windows.Action.Action syncAction =

Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateSynchroni
zationAction(
 Product.GetMetaData().GetPublication(),
"Product");
syncAction.Execute();

Object Query
An Object Query action can perform an object query of a mobile business object by using the
FreeMethodAction method to delegate to the object query operations of the mobile
business object, as shown in the following sample code for the Object Query action:

Sybase.UnwiredPlatform.Windows.Action.Action namedQueryAction =

Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateFreeMetho
dAction(
 delegate(Object[] args,out string message)
 {
 System.Int32 p_Id = Convert.ToInt32(@"100");
 IList<Customer> findById_List =
CustomerDataStore.Instance.FindByPrimaryKey(p_Id);

 this.SetTable1Datasource(findById_List);
 message = "";
 return false;
 }
);
 namedQueryAction.Execute();

Stock Screens
The following stock screens are available in the Windows Mobile UI framework.

Table 14. Stock Screens

Screen Type Description

Login The Login screen allows entering a user name and password.

Reference

Developer Reference for Windows and Windows Mobile 97

Screen Type Description

Logs The Logs screen shows the operation logs in the device.

Pending Operations The Pending Operation screen shows the MBO’s pending
operations, and allows you to submit or delete them.

Personalization The Personalization screen allows modifying the values of
Personalization keys defined in the specific package.

Search The Search screen allows a search on specific MBOs.

Synchronize The Synchronize screen lets you manually synchronize the
specific synchronization group and its included MBOs.

Login
The following sample code creates a Login screen:

FormsManagerDataObject FormLoginDataObject = new
FormsManagerDataObject();
Form loginScreen= FormBase.FormsManager.GetForm(typeof(FormLogin));
FormBase.FormsManager.FirstForm = loginScreen;
Application.Run(loginScreen);

Search
The following sample code creates a Search screen to search the Customer mobile business
object:

FormsManagerDataObject dataObject = new FormsManagerDataObject();
dataObject ["ContextMBOType"] = typeof(Customer);
Sybase.UnwiredPlatform.Windows.Action.Action screenAction =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateScreenAct
ion(typeof(FormSearch), (this.Form as FormBase), dataObject);
screenAction.Execute();

Synchronize
The following sample code creates a Synchronize screen.

FormsManagerDataObject dataObject = new FormsManagerDataObject();
Sybase.UnwiredPlatform.Windows.Action.Action screenAction =
Sybase.UnwiredPlatform.Windows.Action.ActionFactory.CreateScreenAct
ion(typeof(FormSynchronization), (this.Form as FormBase),
dataObject);
screenAction.Execute();

To enable the Synchronize screen, call this registration method:
MBOInformationRegistry.Instance.DatabaseClassType =
typeof(MyDatabase);

Reference

 98 Sybase Unwired Platform

Index
A

actions 97
alert 95
connection 95
exit 96
logout 96
navigation back 95
operation 96
persist 96
synchronize 97

ActiveSync, installing and configuring 8
alert action 95
arbitrary find method 42
AttributeMetadata 71
AttributeTest 42

C

callback handler 62
certificates 39
ClassMetadata 71
client database 67
client object API 37
code, generating 12
common APIs 57
CompositeTest 42
connection action 95
ConnectionProfile 37, 39
ConnectionProfile.EncryptionKey 39
controls:adding to a screen 77
CreateDatabase 67
customization:of a controller 78

D

database:client 67
DatabaseMetadata 70
debugging 27
Delete operation 47
DeleteDatabase 67
dependencies 11
deploying

configuring ActiveSync for 8

message-based applications 32
Device Application Designer

generated solution files and projects 21
DLL dependencies 11
documentation roadmap

document descriptions 2

E

EIS error codes 67, 69
entity states 52, 54
error codes

EIS 67, 69
HTTP 67, 69
mapping of SAP error codes 69
non-recoverable 67
recoverable 67

exceptions
server-side 67, 69

exit action 96

G

generated API help 1, 37
GenerateId 62
generating code 12
generation gap pattern 22
GetLastSynchronizedTime() 71
getLogRecords 61

H

HasPendingOperations operation 76
HTTP error codes 67, 69

I

installing
Microsoft ActiveSync 8
synchronization software 8

IsSynchronized() 71

Index

Developer Reference for Windows and Windows Mobile 99

K

KeyGenerator 62

L

layout 82
libraries 25
local business object 51
LocalKeyGenerator 62
LoginToSync 38, 81
logout action 96
LogRecord API 61
LogRecordImpl 61
LWPPush 71

M

Maps control 90
MetaData API 70
Microsoft ActiveSync, installing and configuring 8
mobile business object states 60
MyPackageDB.CleanAllData(); 75

N

navigation 81
navigation back action 95
newLogRecord 61

O

Object Manager API 70
object query 42, 97
Object query action 97
ObjectManager 70
OfflineLogin 38
OnImportSuccess 40
OnLineLogin 38
operation actions 96
Other operation 47

P

paging data 42
pending operation 49

accessing 80
persist action 96

personalization keys 52
types 51

PersonalizationParameters 52
PIM actions 81
push synchronization 72

Q

Query object 42
QueryResultSet 45

R

recover operation 76
Refresh operation 60
relationship data, retrieving 46
resume operation 76

S

SampleAppDB.subscribe() 40
setting the database file location on the device 39
setting the databaseFile location 39
simultaneous synchronization 40
Skip 42
SortCriteria 42
start background synchronization 76
status methods 52, 54
Stop Background Synchronization 76
submitLogRecords 61
subscribe data 75
SUPMessaging_Pro.cab 32
SUPMessaging_Std.cab 32
suspend operation 76
Sybase.UnwiredPlatform.Windows 82
Sybase.UnwiredPlatform.Windows assembly 82
Sybase.UnwiredPlatform.Windows.Forms 82
Sybase.UnwiredPlatform.Windows.StockScreens

82
SybaseServerSync 71
synchronization

MBO package 40
of MBOs 40
replication-based 40
simultaneous 40

synchronization software
installing 8

SynchronizationProfile 37
synchronize action 97

Index

 100 Sybase Unwired Platform

T
task flow 7
TestCriteria 42

U
unsubscribe data 75
Update operation 47

V

validators 80

W

widget events 79
Windows Mobile Device Center 9

Index

Developer Reference for Windows and Windows Mobile 101

Index

 102 Sybase Unwired Platform

	Developer Reference for Windows and Windows Mobile
	Contents
	Introduction to Developer Reference for Windows and Windows Mobile
	Documentation Road Map for Unwired Platform
	Introduction to Developing Device Applications with Sybase Unwired Platform

	Development Task Flows
	Task Flow for C# Development
	Task Flow for Device Application Designer and C# Development
	Configuring Your Windows Mobile Environment
	Configuring Connection Settings for the Synchronization Software
	Configuring Windows Mobile Device Center
	Enabling Network Access from the Windows Mobile Device Emulator

	Installing Required Components
	Client API Dependencies

	Mobile Business Object Code or Device Application Designer Code
	Generating Windows or Windows Mobile Application Project Code
	Generating Windows Mobile Device Application Code from the Device Application Designer
	Generating Code For a Windows Mobile Device Application
	Device Application Designer Generated Solution Files and Projects
	Generation Gap Pattern Support
	Windows Mobile UI Project

	Developing a Windows Mobile Device Application Using Visual Studio
	Project Setup
	Creating a Mobile Application Project

	Windows Mobile Libraries
	Windows Mobile Development
	Integrating Help into a Project
	Debugging Windows and Windows Mobile Device Development

	Implementing SyncNow for MBS Applications

	Application Deployment to Devices
	Deploying Replication-Based Applications
	Deploying Message-Based Applications to an Emulator or Device
	Message-based Synchronization Overview
	Device Registration

	Reference
	Generated API Help
	Windows Mobile Client Object API
	Connection APIs
	ConnectionProfile
	SynchronizationProfile
	Authentication
	Connect Using a Certificate
	Encrypt the Database
	Set Database File Property

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization

	Query APIs
	Retrieving Data from the local database
	Object Queries
	Arbitrary Find
	QueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Other Operation
	Cascade Operations
	Pending Operation
	Passing Structures to Operations

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Get or Set Personalization Key Values

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Mobile Business Object States
	Refresh Operation
	Clear Relationship Objects

	Utility APIs
	Using the Logger and LogRecord APIs
	Viewing Error Codes in Log Records

	GenerateId
	Callback Handlers
	Client Database APIs

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	EntityMetaData
	AttributeMetaData

	Replication-Based Synchronization APIs
	IsSynchronized() and GetLastSynchronizationTime
	Push Configuration APIs
	LWPPush
	Creating a Replication-based Push Application
	Setting Up Lightweight Polling for a Single Client

	Notification Handling APIs
	LWPPush

	Message-Based Synchronization APIs
	Subscribe Data
	Unsubscribe Data
	Suspend Operation
	Resume Operation
	Recover Operation
	Start Background Synchronization
	Stop Background Synchronization
	HasPendingOperations Operation

	Windows Mobile Device Framework API
	Add Controls Manually to a Screen
	Customize Controller
	Customize Widget Event Code
	Add Validators
	Perform UI Binding to an MBO
	Access Pending Operations and Operation Logs
	Connect to Unwired Server
	Add or Modify Navigation
	Add or Modify Actions
	Create and Assign Variables
	Assign PIM Actions to Controls
	Change Default Layout

	Windows Mobile Device Framework Assemblies
	Sybase.UnwiredPlatform.Windows
	PictureCamera Component
	VideoCamera Component
	Using the VideoCamera Component

	Email Component
	Using the E-mail Component

	SMS Component
	Using the SMS Component

	Phone Component
	Using the Phone Component

	Sybase.UnwiredPlatform.Windows.Forms
	FormBase
	Button Control
	CheckBox Control
	DateTimePicker Control
	FlowLayoutPanel Control
	FreeFormView Control
	ImageButton Control
	Label Control
	LinkLabel Control
	Maps Control
	MaskedTextBox Control
	Notification Control
	Notification Event

	Panel Control
	PictureBox Control
	PowerList Control
	RadioButton Control
	Separator Control
	Signature Control
	TabControl Control
	TabPage Control
	TableLayoutPanel Control
	TextBox Control
	Toolbar Control
	TitleBar Control

	Sybase.UnwiredPlatform.Windows.StockScreens
	Variables
	Actions
	Alert
	Connection
	Navigation Back
	Exit
	Logout
	Operation
	Persist
	Refresh
	Synchronize
	Object Query

	Stock Screens
	Login
	Search
	Synchronize

	Index

