SYBASE

Company

Developer Reference for Windows and
Windows Mobile

Sybase Unwired Platform 1.5.5

DOCUMENT ID: DC01216-01-0155-02

LAST REVISED: February 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Reference for Windows and

WIiNndows MoDBIlecoooiiiiee e 1
Documentation Road Map for Unwired Platform............ 2
Introduction to Developing Device Applications with

Sybase Unwired Platformcccvvvvevieiiiiiiiiiiiiinnee, 5
Development Task FIOWSuuviiiiiiiiiiiiiiiiiiiieeeee e 7
Task Flow for C# Development............ccccoovvvivviiiiiiiinnnnnns 7
Task Flow for Device Application Designer and C#
DevelopmMENt ..o 8
Configuring Your Windows Mobile Environment............. 8
Configuring Connection Settings for the
Synchronization Softwarecc..coeeeevvvviinnnnns 8
Installing Required Componentscccceeeeeene. 10
Client APl Dependencies..........cccceeeeveeeeeeeevennnnnnnn. 11
Mobile Business Object Code or Device Application
Designer COoUeuiiiiviiiiiie e 11
Generating Windows or Windows Mobile
Application Project Codecccoeveeevveiinnnnnnnn. 12

Generating Windows Mobile Device Application
Code from the Device Application Designer....17
Developing a Windows Mobile Device Application

Using Visual Studioccoooevvveviiiiiiieeeeiceie e, 25
Project Setup ... 25
Windows Mobile Libraries...........cccccceeiiiiiiiinnnnnn. 26
Windows Mobile Development............ccccoeviinnee 26
Implementing SyncNow for MBS Applications.....30
Application Deployment to Devices................cccevvernenn. 32
Deploying Replication-Based Applications.......... 32

Deploying Message-Based Applications to an
Emulator or Deviceccccvvvvvviiiiiiiiiiiiiiiinns 32
REfEIENCE .o 37

Developer Reference for Windows and Windows Maobile

Contents

Generated APIHEIP ..ooovvviiiiiee 37
Windows Mobile Client Object APIccccooeevviiiieeene, 37
Connection APISooviiiiiiieee e 37
Synchronization APISceeiiiiiiiiieeeeeereeeeiiiis 40
QUETY APIS ... 41
Operations APISoooeviiiiiiiiiee e 46
Local Business ODjecCtcccovvviiiiiieiiiiiiiiiiiiiinns 51
Personalization APISccccoiiiiiiiiiies 51
Object State APISooovviiiiiiiiiieeee e 52
ULIHEY APIS oo 61
EXCEPLIONS ... 67
MetaData and Object Manager API 70
Replication-Based Synchronization APIs............. 71
Message-Based Synchronization APlIs................. 75
Windows Mobile Device Framework API 77
Add Controls Manually to a Screen..................... 77
Customize Controllercvveiiieiiiiiiiiiieeeeeeiinnn, 78
Customize Widget Event Code.cccceeevevnnnnnn. 79
Add Validatorseciiiiiiieeeeeieeeeeeeii 80
Perform Ul Bindingto an MBOccccevvveies 80
Access Pending Operations and Operation Logs
... 80
Connect to Unwired Server.........ccccceeeveeveeeevnnnnnns 81
Add or Modify Navigationcccceevvvvviciieneeeenn. 81
Add or Modify ACHIONScccvvvviiiiiiiiiiiiiiieeeeeeeeeee 81
Create and Assign Variablesc..c..cccceeveeeenn. 81
Assign PIM Actions to Controls...........cccceeeveeennnn. 81
Change Default Layout............cccooeeevviiiiiiieeeeennnnn. 82
Windows Mobile Device Framework Assemblies.......... 82
Sybase.UnwiredPlatform.Windows....................... 82
Sybase.UnwiredPlatform.Windows.Forms............ 86
Sybase.UnwiredPlatform.Windows.StockScree
D1S ettt eaas 93
I EX oo ————— 99

iv Sybase Unwired Platform

Introduction to Developer Reference for Windows and Windows Mobile

Introduction to Developer Reference for
Windows and Windows Mobile

This developer reference provides information about using advanced Sybase® Unwired
Platform features to create applications for Microsoft Windows and Windows Mobile devices.
The audience is advanced developers who are familiar working with APIs, but who may be
new to Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the client object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and client object API documentation.

Companion guides include:

o Sybase Unwired WorkSpace — Mobile Business Object
o Sybase Unwired WorkSpace — Device Application Development
» Tutorial: Windows Mobile Application Development (Device Application Designer)
» Tutorial: Windows Mobile Device Application Development (Custom Development)
» Troubleshooting for Sybase Unwired Platform
» C#documentation, which provides a complete reference to the APIs:
e Compiled help for the Device Framework API is installed to
<Unwi redPl at f orm_I nstal | Di r >\ Unwi r ed_Wor kSpace
\ Vi sual St udi o\ Conponent Li br ar y\ hel p.
* You can integrate help for generated code from mobile business objects (MBOs) into
your Visual Studio project. See /ntegrating Help into a Project on page 27.

See Fundamentalsfor high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Developer Reference for Windows and Windows Maobile 1

Introduction to Developer Reference for Windows and Windows Mobile

Documentation Road Map for Unwired Platform

Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document

Description

Sybase Unwired Platform Installation Guide

Describes how to install or upgrade Sybase Un-

wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin

Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.
Fundamentals Describes basic mobility concepts and how Syb-

ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Sybase Unwired Platform

Introduction to Developer Reference for Windows and Windows Mobile

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat- | Describes how to use the Sybase Control Center
form administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase> Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Developer Reference for Windows and Windows Mobile 3

Introduction to Developer Reference for Windows and Windows Mobile

Document

Description

Getting started tutorials

Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

¢ Learn mobile business object (MBO) basics,
and create a mobile device application:
e Tutorial: Mobile Business Object Devel-
opment
e Tutorial: BlackBerry Application Devel-
opment using Device Application De-
signer
e Tutorfal: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer
< Create native mobile device applications:
e Tutorial: BlackBerry Application Devel-
opment using Custom Development
e Tutorial: iPhone Application Develop-
ment using Custom Development
e Tutorfal: Windows Mobile Application
Development using Custom Develop-
ment
¢ Create a mobile workflow package:
e Tutorial: Mobile Workflow Package De-
velopment

Sybase Unwired WorkSpace — Mobile Business
Object Development

Online help for developing MBOs.
Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace — Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired Platform

Introduction to Developer Reference for Windows and Windows Mobile

Document

Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

e Developer Reference for BlackBerry

e Developer Reference for iOS

e Developer Reference for Mobile Workflow
Packages

e Developer Reference for Windows and Win-
aows Mobile

Developer reference for Unwired Server side
customization — Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentalsand Syb-
ase Unwired WorkSpace — Mobile Business Ob-
Ject Development.

Developer reference for system administration
customization — Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentalsand Sys-
tem Administration.

Introduction to Developing Device Applications with
Sybase Unwired Platform

A device application includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of mobile

application development:

» The data aspects of the mobile application are called mobile business objects (MBO), and
“MBO development” refers to defining object data models with back-end enterprise
information system (EIS) connections, attributes, operations, and relationships that allow

Developer Reference for Windows and Windows Maobile

Introduction to Developer Reference for Windows and Windows Mobile

segmented data sets to be synchronized to the device. Applications can reference one or
more MBOs and can include synchronization keys, load parameters, personalization, and
error handling.

« Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your device application by generating code to use as a
base in a native IDE. Follow an API approach that uses your native IDE's Client Object
API and Device Framework API. Unwired WorkSpace provides MBO code generation
options targeted for specific development environments, for example, BlackBerry JDE for
BlackBerry device applications, or Visual Studio for Windows Mobile device
applications.

The Client Object API uses the data persistence library to access and store object data in
the database on the device. Code generation takes place in Unwired WorkSpace. You can
generate code manually, or by using scripts. The code generation engine applies the
correct templates based on options and the MBO model, and outputs client objects.

Note: You can use Device Application Designer to create prototype device application
code, then add custom coding for end-to-end prototyping. This guide provides some
reference material for prototyping.

Note: See Sybase Unwired WorkSpace — Mobile Business Object Development for
procedures and information about creating and deploying MBOs. See Sybase Unwired
WorkSpace - Device Application Development for information about device application
features and appearance.

6 Sybase Unwired Platform

Development Task Flows

Development Task Flows

This section describes the overall development task flows, and provides information and
procedures for setting up the development environment, and developing device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding, as
shown on the left. This is how you create device applications with sophisticated Ul interaction,

validation, business logic, and performance.

Optionally you can use Device Application Designer to create prototype device applications,

as shown on the right.

Mabile Application

~ 3

Development path for CLstom
building a production e G:'?!c:dhd ; ul s
mobile application | agplication = amework - Customization

\ Designer Generated Prototype

Generated Object API Object AM Framework

MBO Object API Layer

Persistence Messaging M'ui bile O3

Mobile System Services

Task Flow for C# Development

Generated Ul

Development path for
hu.ld.ng a prototype
mobile application

This describes a typical task flow for creating a device application using Visual Studio and

C#.
Highlevel steps:

1. Configuring Your Windows Mobile Environment on page 8.

2. Generating Windows or Windows Mobile Application Project Code on page 12.
3. Developing a Windows Mobile Device Application Using Visual Studio on page 25.
4

. Deploying applications:
a. Deploying replication-based applications on page 32.
b. Deploying message-based applications on page 32.

Developer Reference for Windows and Windows Mobile

Development Task Flows

Task Flow for Device Application Designer and C#
Development

This describes a typical task flow for creating a device application prototype using the Device
Application Designer with Visual Studio and C#.

Highlevel prototyping steps:

1
2.

3.
4,

Configuring Your Windows Mobile Environment on page 8.

Generating Windows Mobile Device Application Code from the Device Application
Designer. on page 17.

Developing a Windows Mobile Device Application Using Visual Studio on page 25.
Deploying applications:

« Deploying Replication-Based Applications on page 32.

» Deploying Message-Based Applications to an Emulator or Device on page 32.

Configuring Your Windows Mobile Environment

This section describes how to set up your Visual Studio development environment, and
provides the location of required DLL files and client object APIs.

Configuring Connection Settings for the Synchronization Software

Install and configure Microsoft ActiveSync so you can deploy and run device applications on
an emulator. If you install Visual Studio 2008, the Windows Mobile Device Emulators
(Windows Mobile 5) and Device Emulator Manager are already installed.

Note: Microsoft ActiveSync is for Windows XP. If you are using Windows Vista or Windows
2008, you must install Virtual PC 2007 SP1 and Windows Mobile Device Center to manage
synchronization settings. You can download the Windows Mobile Device Center from http.//
www.microsoft.com/windowsmobile/en-us/downloads/microsoft/device-center-
download.mspx.

1

Install both the Windows Mobile 6 Standard SDK and the Windows Mobile 6 Professional
SDK. You can download them from Attp.//www.microsoft.com/downloads/details.aspx?
familyid=06111A3A-
A651-4745-88EF-3D48091A390B&displaylang=en#Additionallnfo.

Download Microsoft ActiveSync from the Atip.//www.microsoft.com/windowsmobile/
en-us/help/synchronize/device-synch.mspx. Save it to your local machine. Windows XP
requires version 4.5.

In Windows Explorer, double-click setup.msi to run the ActiveSync installer.

Sybase Unwired Platform

http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/downloads/details.aspx?familyid=06111A3A-A651-4745-88EF-3D48091A390B&displaylang=en#AdditionalInfo
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx

Development Task Flows

4. Follow the steps in the ActiveSync installer to complete the installation.

5. When installation is complete, restart your machine.
ActiveSync starts automatically, and its icon appears in the Windows toolbar.
6. Double-click the ActiveSync icon.
7. Select File> Connection Settings.
8. In the Connection Settings dialog, select all the check boxes.
9. Under "Allow connections to one of the following", select DMA.

10. Under "This computer is connected to", select Work Network.
12 Connection Settings i|

Waiting for device to connect

bl Connect...

[v Show status icon in taskbar

[v Allow USB connections

v Allow connections to one of the following:
\DMaA |

This computer is connected fo:
|W0rk Metwark LJ

v Open ActiveSync when my device connects

|v Allow wireless connection on device when connected to the desktop

Help OK Cancel

11.Click OK.

Configuring Windows Mobile Device Center
Before using the Windows Mobile Device Emulator, you need to change the settings of
Windows Mobile Device Center.

Open Windows Mobile Device Center.

Click M obile Device Settings.

Click Connection Settings.

Click on the Allow connectionsto one of the following checkbox.
Select DMA in the combobox.

o~ w bR

Developer Reference for Windows and Windows Maobile 9

Development Task Flows

6. On the Thiscomputer isconnected to combobox, select The I nternet if you want to
allow the Windows Mobile device to access the Internet using Pocket IE.

7. Star the Windows Mobile Device Emulator.

Enabling Network Access from the Windows Mobile Device Emulator
When the Windows Mobile Device Emulator is started, you don’t have network access by
default on the device, so you must enable it.

You can start the Windows Mobile Device Emulator from Visual Studio or from the Device
Emulator Manager.

1. To start the Emulator from Visual Studio 2008:
a) Select Tools > Device Emulator Manager.
2. If a Device Emulator is not yet connected:
a) Select a Device Emulator from the list and select Connect.
3. If you are using this Device Emulator for the first time:
a) Inthe Emulator, select File > Configure.
b) Click the Network tab.
c) Check the Enable NE2000 PCM CIA network adapter and bind to checkbox.
d) Select Connected network card from the list.
4. On the Emulator, configure the connection settings:
a) Inthe Emulator, select Start > Settings.
b) Select the Connectionstab.
c) Click Connections.
d) Select the Advanced tab.
e) Click on Select Networks.
f) In the Settings window, select My Work Network in the first combobox.
g) Select File> Save State and Exit.
h) Restart the Emulator.
5. Right-click the current Emulator in Device Emulator Manager and select Cradle.

ActiveSync starts. Once the connection is established, you should be able to access your
PC and the Web from the Device Emulator.

Installing Required Components

During Sybase Unwired Platform installation, select Windows M obile .NET Components
to install the required files that allow you to customize the generated C# API object code.

Files include:

* Online help for Windows Mobile Client Object APl and Windows Maobile Framework.
« Toolbox registration for Windows Mobile controls.

10 Sybase Unwired Platform

Development Task Flows

Client APl Dependencies

The client APl assembly DLL dependencies are installed under the
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer\ClientAPI directory.

The contents of the Cl i ent API directory are:

e Utralite—.NET Data Persistence Library and client database (UltraLite®)
assemblies. This is used for replication-based synchronization client applications on
Windows Mobile or Windows.

e U traliteJd-Client assemblies for UltraliteJ.
* dot net — Binaries of the framework classes for .NET.

« ce: files for use on Windows CE based systems such as Windows Mobile 5+.
« win32: files for use on full Windows based systems like Windows XP.

e j ava— The framework classes that are used by the generated classes (Java ME, J2se and
RIM).

* MoMessagi ng —Files for installing client mobile messaging for message-based
synchronization client applications.

e SQL.it e —Client assemblies for SQL.ite. These are used for message-based
synchronization client applications.

e Server Sync —Used in replication-based synchronization applications for push
notification synchronization support.

» Devi cel D—Used for replication-based synchronization applications.

The .NET assemblies listed above support Compact Framework 3.5+ on Visual Studio 2008.
These project types are supported:

e Full .NET Framework 3.5+ Application
* Windows CE .NET CF 3.5+ Application
* Pocket PC .NET CF 3.5+ Application

» Smartphone .NET CF 3.5+ Application

Mobile Business Object Code or Device Application
Designer Code

Determine whether to develop a device application directly from mobile business object
(MBO) generated code, or from Device Application Designer generated code, then generate
the code according to your decision.

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,

Developer Reference for Windows and Windows Maobile 11

Development Task Flows

create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

To avoid errors or inconsistent behavior, client applications must be regenerated whenever a
mobile application package has been redeployed.

Generating Windows or Windows Mobile Application Project Code

After developing the mobile business objects (MBOs), generate the * . cs files that
implement the business logic and are required for Windows and Windows Mobile
development.

Prerequisites

You must be connected to Unwired Server and the server-side (run-time) enterprise
information system (EIS) data sources referenced by the MBOs in the deployed project before
you generate object API code.

Task

1. From Unwired WorkSpace, right-click in the Mobile Application Diagram of the project
for which you are generating code and select Generate Code.

2. (Optional) Enter the information for these options:

Note: This page of the code generation wizard is seen only if you are using the Advanced
developer profile.

Option Description

Select code genera- | Select either an existing configuration that contains code generation set-

tion configuration | tings, or generate device client code without using a configuration:

» Continue without a configuration—select this option to generate device
code without using a configuration.

» Select an existing configuration — select this option to either select an
existing configuration from which you generate device client code, or
create a new configuration. Selecting this option enables:

» Select code generation configuration — lists any existing configu-
rations, from which you can select and use for this session. You can
also delete any and all existing saved configurations.

» Create new configuration — enter the Name of the new configura-
tion and click Createto save the configuration for future sessions.
Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

3. Click Next.

12

Sybase Unwired Platform

Development Task Flows

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Note: Code generation fails if the server-side (run-time) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

5. Click Next.
6. Enter the information for these configuration options:

Option Description

Language Select C#.

Platform Select the platform (target device) from the
drop-down list for which the device client code
is intended.

¢ .NET Framework for Windows

e .NET Compact Framework 3.5 for Win-
dows and Windows Mobile

Unwired Server Specify a default Unwired Server connection
profile to which the generated code connects at
runtime.

Server domain Choose the domain to which the generated code

will connect. If you specified an Unwired Serv-
er to which you previously connected success-
fully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an Un-
wired Server is selected.

Developer Reference for Windows and Windows Mobile 13

Development Task Flows

Option

Description

Page size

Optionally, select the page size for the gener-

ated client code. If the page size is not set, the
default page size is 16KB at runtime. The de-
fault is a proposed page size based on the se-

lected MBO's attributes.

The page size should be larger than the sum of
all attribute lengths for any MBO that is inclu-
ded with all the MBOs selected, and must be
valid for the database. If the page size is
changed, but does not meet these guidelines,
object queries that use string or binary attrib-
utes with a WHERE clause may fail.

Note: This field is only enabled when an Un-
wired Server is selected. The page size option is
not enabled for message-based applications.

Namespace

Enter a namespace for C#.

Note: The namespace name should follow
naming conventions for C#. Do not use ".com"
in the namespace.

Destination

Specify the destination of the generated device
client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location. Select
Clean up destination before code gener ation
to clean up the destination folder before gener-
ating the device client files.

Replication-based

Select to use replication-based synchroniza-
tion.

Message-based

Select to use message-based synchronization.

Backward compatible

Select so the generated code is compatible with
the SUP 1.2 release.

7. (Optional) Select Generate metadata classesto generate metadata for the attributes and

operations of each generated client object.

8. (Optional) Select Gener ate metadata and object manager classesto generate both the
metadata for the attributes and operations of each generated client object and an object

manager for the generated metadata.

14

Sybase Unwired Platform

Development Task Flows

The object manager allows you to retrieve the metadata of packages, MBOs, attributes,
operations, and parameters during runtime using the name instead of the object instance.

9. Click Finish when done.

The class files include all methods required to create connections, synchronize deployed
MBOs with the device, query objects, and so on, as defined in your MBOs.

By default, the MBO source code is generated in the project's Gener at ed Code folder.

T WorkSpace Mavigator 23 =0

hh o BEEST
[SRESA <1LIP101 [Version 1.0]
#-E% Mobils Business Objects
@ Data Source References
#-E% Cache Groups
""" B Personalization Kevys
, @ Roles
@ Synchronization Groups
[,:‘b Deployrment
""" [=> Filters
=+ Generated Code
E-(= Dlls
[/_:L,' src

The DI | s folder contains all the referenced libraries.
If present, the doc folder contains generated code documentation.

The sr ¢ folder contains generated * . ¢s files. In this example, code was generated for the
Customer MBO:

Developer Reference for Windows and Windows Mobile 15

Development Task Flows

T WorkSpace Navigator 3

[#-E% Mobile Business Objects
-E% Data Source References
-E% Carhe Groups
-2 Personalization Keys
-F% Roles
t [Synchronization Groups
- Deployment
i1= Filters
E-(= Generated Code
== Dlls
B are
= sup101
= intrr
] Customer _rs.cs
-----] CustomerMetaData.cs
-----] LogRecordImpl_rs.cs
-----] LogRecordImplMetaData. cs
-----] OperationReplay.cs
~#] Sales_order_rs.cs
-] Sales_orderMetaData.cs
-] SI5Subscription.cs
-----] sIssubscriptionkey.cs
-----] SUP101DBMetabata.cs
----- Eﬁ Synchronizationizroup.cs
----- #] Customer.cs
----- #] KeyGenerator.cs
..... c:f_:’l KeyGenerakorPK. cs
----- #] KeyPackageMame.cs
----- #] LocalkeyGenerator. s
----- C*_=1 LocalkeyGeneratorPE, cs
..... #] LogRecordImpl.cs
----- #] offineAuthentication.cs
----- #] OperationReplayException.cs
----- C*_=1 PersonalizationParameters,cs
----- #] Sales_order.cs
----- C*_=1 SessionPersonalization.cs
----- #] SISMotificationReader s
----- #] SUP101DE.cs
-4 SUP101.csproj

The frequently used files in this project, which you can view by double-clicking the file,

include:

Table 2. Source Code File Descriptions

.cs File

Description

Project file, in the format projectName.csproj

The project file of the generated code, for ex-
ample, SUP101. csproj .

16

Sybase Unwired Platform

Development Task Flows

.cs File

Description

MBO class (for example, Cust oner .
cs)

Includes all the attributes, operations, object
queries, and so on, defined in the MBO.

Metadata class (for example, Cust oner -
Met aDat a. cs)

Includes attribute and operation metadata.

Synchronization parameter class (for example,
Cust oner Synchr oni zat i on-
Par anet ers. cs)

Includes any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, Key -
CGenerator. cs)

Includes surrogate key generator used to iden-
tify and track MBO instances and data.

Personalization parameter classes (for exam-
ple, Per sonal i zat i onPar ane-
ters.cs)

Includes any defined personalization keys.

Connection and synchronization classes (for
example, SUP_101DB. cs)

Includes the Unwired Server connection infor-
mation and synchronization methods

Generating Windows Mobile Device Application Code from the Device

Application Designer

After developing the mobile business objects (MBOSs), begin device application development
using the Device Application Designer, then use the Generate Device Application wizard to
generate the device application code required for further development in Visual Studio.

Use this procedure if you are developing Windows Mobile device applications using both the

Device Application Designer and Visual Studio.

1
2.

From Unwired WorkSpace, select File > New > Device Application Designer.

Follow the Device Application Designer wizard instructions to create a Device
Application Designer project based on the developed mobile business objects (MBOS)

appropriate for the type of Windows Mobile device application you are developing, and

click Finish:

Develop as much of the device application as you want using the Device Application

Designer.

See the Device Application Designer documentation.
Generate the code for a Windows Mobile Device application, then extend and debug the

code in Visual Studio.

Developer Reference for Windows and Windows Maobile

17

Development Task Flows

Generating Code For a Windows Mobile Device Application

Use the Generate Device Application wizard to generate code for a Windows Mobile device

application.

1. Click the Verify icon & on the toolbar to verify the device application has no errors.

2. Click the code generation icon &2 on the toolbar.
3. Inthe Generate Device Application wizard, select Windows M obile and, optionally,

select:

Option

Description

Locale

Expand this section to see a list of available
locales from which you can select.

Advanced

Expand this section for advanced options:

e Check mobile business object on Sybase
Unwired Platform Server — select to verify
that the mobile business objects that are
used in the device application exist on the
corresponding Unwired Server.

* Mobile Business Object Group — the mo-
bile business object group that contains the
mobile business objects you want to verify.
To generate code for the Mobile Applica-
tion Project, click Gener ate Code.Use the
wizard to generate the metadata classes for
the selected mobile business objects.

4. Click Next.
Enter the information for the device application code generation options:

Option

Description

Favorite Configurations

Select a configuration.

Device

» Target device — select the device.

18

Sybase Unwired Platform

Development Task Flows

Option Description

Code Generation » Visual Studio solutions folder — accept the
default or click Browseto enter the location
for the Visual Studio Solutions folder.

Note: A .cab file is generated and placed in
the Visual Studio solutions folder.

« Solution name — enter the name of the Vis-
ual Studio solution.

» Delete solution folder prior to generation —
remove existing source folders before re-
generating the Visual Studio solution.

» Generate replication based application —
select if the application has replication
based synchronization.

» Generate messaging based application —
select if the application has message based
synchronization.

Developer Reference for Windows and Windows Mobile 19

Development Task Flows

Option Description

Advanced When the device application code is generated,
two projects are created—the client project,
which contains the user interface screens, and
the mobile application project, which contains
the mobile business objects that are used to ac-
cess and update the data.

« Client project name — enter the name of the
project that contains the user interface.

« Client project namespace — enter the name-
space to use for the generated Ul classes.

« Client project assembly name — the name of
the generated . exe file for the project.
This is the name that appears on the mobile
device.

« Mobile application project name — the
name of the Mobile Application Project
that contains the mobile business objects
used in the device application.

* Mobile application project assembly name
— accept the default or enter the name for
the .dll of the mobile application project.

« Client project icon —click Browseto select
an icon with which to associate the gener-
ated . exe file. This is the icon that ap-
pears on the mobile device.

» Generate source codes for Sybase Win-
dows frameworks — select to generate sour-
ces for Sybase Unwired Platform Windows
frameworks, including stock screens and
actions.

» Deploy to an ActiveSync connected device
or emulator — select this option to deploy
the generated code to a Windows Mobile
device or emulator. ActiveSync enables the
transferring and installation of the applica-
tion on the mobile device.

Note: ActiveSync is for Windows XP. Win-
dows Vista, Windows 7, and Windows 2008
uses Windows Mobile Device Center.

» Create a shortcut in Programs — select to
create a shortcut in the Programs folder on
the device.

* Shortcut name — enter a name for the short-
cut.

20 Sybase Unwired Platform

Development Task Flows

Option Description

» Deployment timeout (minutes) — the max-
imum time to wait for deployment to the
device.

e Perform silent install — use this option only
when you are deploying to the emulator
(not the device itself). This enables deploy-
ment to proceed with no user input.

6. (Optional) Click Start DeviceEmulator M anager if the Device Emulator Manager is not
already running and you want to deploy the application to an emulator.

7. Click Finish.

Device Application Designer Generated Solution Files and Projects
The Device Application Designer generated code consists of a solution file and several
projects, including the Ul project, MBO project, Settings project, and settingProxy project.

Table 3. Solution file and projects

Name Source Model Description
Solution File Solution name from the generation op- | Visual Studio solution file to man-
tion. age all the generated projects. For

example, Customer.sin.

Mobile Business Ob- | The MBO domain project is generated | This project contains the generated
ject (MBO) project | from the MBO domain model defini- | Client API code (for example, Cus-
tion. The project name is defined in the | tomer_MBO.csproj).

project generation options.

Windows Mobile Ul | The Windows Mobile application This project contains all the Ul-re-
project project is generated from the Device | lated application code. The name
Application Designer definition. The | depends on the mobile business ob-
Project name and namespace are de- | ject project (for example, Custom-
fined in the Windows Mobile applica- | er_Ul.csproj).

tion generation Client project name
option.

Sybase.UnwiredPlat- | The Windows Mobile Device Frame- | This framework can be generated as
form.Windows.Stock-| work, including Ul framework, and a | source or as a .dll, and is generated
Screen project framework that approximates the De- | only if the Generate source codes
vice Application Designer. for Sybase windows frameworks
option is selected.

Developer Reference for Windows and Windows Mobile 21

Development Task Flows

Name

Source Model

Description

Settings Project

The setting screen definitions in the
Device Application Designer.

This project is generated when
there are settings screens in the De-
vice Application Designer, and if
you use one of the Settings stock
screens in DAD.

The generated project provides a
Settings application that allows
users to configure various setting
options of the application.

SettingProxy project

An addin to the setting screen defini-
tions in the Device Application De-
signer.

This project is generated when
there are settings screens in the De-
vice Application Designer, and if
you use one of the Settings stock
screens in DAD.

The addin allows users to invoke the
Settings application directly from
the Windows Mobile Settings fold-
er.

Generation Gap Pattern Support

To allow developers to extend generated code and keep modifications, Sybase supports a
generation gap pattern. This pattern makes use of a C# partial classes to provide
customization. For certain logic-related classes, a “protected virtual” method lets you override
the method with your own implementation.

An application consists of both generated code and customized code.

22

Sybase Unwired Platform

Development Task Flows

8 Benchmark - Microsoft Visual Studio

fle Edt View FBroject Buld Debug Data ool Test Window Help
[V RREERA= N - NP W= EeY Ll- 5L p Debug ~ Ay CRU
windows Mabile & Classic Emdlator = 812 23 47 ©L _ O | |2 & S| [TF e al | 538

- FormCreateCust...er.designer cs | FormCreateCustomer.cs -~ FormCreateCust...er.cs [Design] = X
~

2| & E

[solution 'Benchmark! (3 projects) A
7 Sybase.Mabils. App

= f}E]Sybase.Mobile.npp.client

=4 Properties
|-l References
[CustarnizedCods

B®

o

koqiPoL ¢ ol ienes g

FormCreateCustamer s
4] FormCreateCustomerController.cs
@[] FormCreakeSales_order.cs

] FormCreatesales_orderCantroller .cs
&[] FormCustomer.cs
FormCustomerControlier.cs
FormCustomerDetails.cs
FormCustomerDetailsController.cs
&[] FormLayout.cs
@ [=] FormLayoutcontainer.cs

4] FormLayoutcontainerContraller.cs

] FormLayoutController.cs
@ =] FormSales_order.cs

4] Formsales_orderContraller.cs
A >3 x @[] Formsales_orderDetalls.cs

_\0Warnings (i) 0 Messages oI FormSasles_orderDetailsController.cs
. v

#- =] FormTahleOfContents.cs

4T customerBindingsource = maintenu

5 : 5
Description File L Column Project |es5]Solutinn, Explorer (3 Class view
Fropetties -1 x
GeneratedCode Folder Properties -
®z: A
El—' =
Folder Name GeneratedCode

Folder Name
Name of this folder

|53 Ervor List [[FgPendng Checkins

Resdy

Following is an example of the For mCr eat eCust oner Cont r ol | er class:

/1] <summary>

I/l The Base cl ass of FornCreat eCustonerController

[l </summary>

i nternal abstract class FornCreat eCust oner Control | er Base
Control | er Base

{
publ i ¢ For nCr eat eCust oner Control | er Base(| FormPart formn

base(form

{

/1 button (Submit) click event handl er
internal virtual void

Submi t But t on_Handl er (For nrs Manager Dat aCbj ect dat aObj ect)
{

}
}

[l <summary>

/1l The Controller class of Form FornCreat eCust ormer

/1l </ summary>

internal partial class FornCreateCustonerController
For nCr eat eCust oner Cont r ol | er Base

publ i c For nCreat eCust oner Control |l er(l FornPart form

Developer Reference for Windows and Windows Maobile 23

Development Task Flows

base(form

}

You may want to customize the business logic. For example, if you want to customize the
Submit action, you could do the following:

« Create a MyFor nCr eat eCust oner Cont r ol | er. cs class in the CustomizedCode
folder
» Change the default code to:

internal partial class FornCreateCustonerController

{

internal override void
Submi t But t on_Handl er (Sybase. Unwi r edPl at f or m W ndows. For ns. For ns Mana
ger Dat aOvj ect dat aObj ect)

/1 Add your custom actions here
MessageBox. Show(" Before Submit!");

/1l Performthe default action
base. Submi t But t on_Handl er (dat aCbj ect) ;

}
}

Windows Mobile Ul Project
The Windows Mobile Ul project contains these classes and files:

Table 4. Classes and Files in the Windows Mobile Ul Project

Class Description

Program.cs The main entry of the application.
ApplicationInit.cs Code to initialize the application.
GlobalResource All the localized text used by stock screen.
Generated Code\Form*.cs The Generated Form class extends FormBase. It

is generated from the Device Application De-
signer screen; the Ul definition is generated in
this screen.

Generated Code\Form*Controller.cs The Controller class contains the data access and
event handler code of the forms.

Generated Code\DataStore*DataStore.cs The DataStore class wraps the access of the MBO
object and keeps the context of the MBO.

Properties\DataSources*.datasource The data sources for data binding.

24

Sybase Unwired Platform

Development Task Flows

Developing a Windows Mobile Device Application Using
Visual Studio

After you import Unwired WorkSpace projects (mobile application or Device Application
Designer) and associated libraries into the development environment, use the Cl i ent
Obj ect API, Windows Device Framework, and native APIs to create or customize your
device applications.

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,
create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

Project Setup
You can create Visual Studio projects in three ways.

« Create the project from Visual Studio.

» Create the project from a Sybase Unwired Platform Device Application Designer
generated project.

« Create the project from a Sybase Unwired Platfrom generated object API project.

Creating a Mobile Application Project

This describes how to set up a project in Visual Studio. You must add the required libraries as
references in the Visual Studio project. The libraries needed depend on client application
platform and synchronization method (replication-based or message-based).

You can use this method to create replication-based and message-based synchronization client
projects.

1. Add the following libraries as references in the Visual Studio project:

Replication-based synchronization:

e sup-client.dll —from<Unwi redPl atformInstall D r>\Servers
\ Unwi redServer\ d i ent APl \ dot net\ <pl at f or n>.

e i Anywhere.Data. U traLite.dl | —from
<Unwi redPl atform I nstal |l Di r>\ Server s\ Unwi redSer ver
\ClientAPI\U tralite\<platforne\ Assenbl y\ V2.

e i Anywhere.Data. U tralite.resources.dl| (several languages are
supported) — from <Unwi redPl at form I nstal | Di r >\ Servers
\Unwi redServer\dientAPI\U tralite\<platforne\Assenbly
\ V2\ <I anguage>.

Message-based synchronization:

Developer Reference for Windows and Windows Maobile 25

Development Task Flows

sup-client.dll —from<Unwi redPl atform Install Dir>\Servers
\ Unwi redServer\ d i ent APl \ dot net\ <pl at f or n>.

For Windows 64-bit, Syst em Dat a. SQLi t e. DLL — from

<Unwi redPl atform I nstal |l Di r>\ Server s\ Unwi redSer ver
\dient API\ SQLit e\ x64.

For Windows 32-bit, Syst em Dat a. SQLi t e. DLL — from

<Unwi redPl at form I nstal | Di r>\ Server s\ Unwi r edSer ver
\dientAPI\SQite

2. For replication-based synchronization, add the following libraries as items in the Visual
Studio project. Set "Build Action" to "Content™ and "Copy to Output Directory" to Copy
always.

ul net 11. dl I —from <Unwi redPl at form I nstal | Di r >\ Servers
\Unwi redServer\ClientAPI\U tralite\<platfornp.

m crsall. dl | (if HTTPS protocol is used) — from

<Unwi redPl atform I nstal |l Di r>\ Server s\ Unwi redSer ver
\ClientAPI\U tralite\<platfornp.

PU T | TRU. dI | -from<Unwi redPl atform I nstall Dir>\Servers
\ Unwi redServer\ d i ent API \ Devi cel D\ <pl at f or np.

3. (Optional) This step is required only for Pocket PC and Smartphone clients. For message-
based synchronization, add the following libraries as items in the Visual Studio projectand
set "Build Action™ to "Content™ and "Copy to Output Directory” to Copy always.

SQLite.Interop. 065. DLL — from <Unwi redPl atform I nstal | Di r>
\ Unwi redPl at f or ml Server s\ Unwi redServer\d ient API\SQLite
\ Conpact Fr anewor k.

Windows Mobile Libraries

These Sybase Unwired Platform Windows Mobile Framework DLLs must be located in
Unwi r ed_Wbr kSpace\ Vi sual St udi o\ Conponent Li brary:

e Sybase. Unwi redPl at f or m W ndows. dl |
e Sybase. Unwi redPl at f or m W ndows. For ns. di |
e Sybase. Unwi redPl at f or m W ndows. St ockScr eens. dl |

Windows Mobile Development

Develop a Windows Mobile application by generating the Visual Studio 2008 projects in C#,
and running the application in the device or on a simulator to test.

1. Either generate an application using the Device Application Designer, or generate Mobile
Business Objects (MBOs), then create a new Visual Studio project, the import generated
MBOs, and create the user interface.

26

Sybase Unwired Platform

Development Task Flows

2. Add business logic to the generated code through the Windows Mobile Client Object API.
See Developer Reference for Windows and Windows Mobile > Reference > Client Object
API.

3. Change the default user interface through the Windows Mobile Device Framework. See
Developer Reference for Windows and Windows Mobile > Reference > Windows Mobile
Device Framework API.

4. Run the application in the device or on a simulator.

Integrating Help into a Project

When you generate MBOs or client applications for Windows Mobile from Unwired
WorkSpace, an XML file is generated for the MBOs. The generated Visual Studio project for
the forms can also generate a XML file. When you compile a project, an XML file is
generated. You can use these XML files to generate online help.

To generate online help for Visual Studio 2008, you can use Sandcastle and Sandcastle Help
File Builder. You can download and install Sandcastle and Sandcastle Help File Builder from
these locations:

« http://sandcastle.codeplex.com/Wikipage
» http://shfb.codeplex.com/releases

To integrate help into your project build:

1. Add the /doc option in your project build, so that it can generate an XML file from the
comments. You can also configure this option in the Visual Studio project properties. On
the Build tab, select XML documentation and provide a file name.

2. Create a SandCastle Help File Builder project (.shfb file). Specify the assemblies and the
XML file generated from the comments as input. You can also specify other help
properties.

3. Usethe. shf b project file in a script to build the document. For example:

<Target Nane="Docunentation">

<Exec Command="$(SandCast | eHel pBui | der Pat h) <shfb proj ect
file> shfb" />
</ Tar get >

Debugging Windows and Windows Mobile Device Development
Device client and Unwired Server troubleshooting tools for diagnosing Microsoft Windows
and Windows Mobile development problems.

Client-Side Debugging
Problems on the device client side that may cause client application problems:

» Unwired Server connection failed.
« Data does not appear on the client device.
« Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

Developer Reference for Windows and Windows Maobile 27

Development Task Flows

If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging and review the debugging information. See Developer
Reference for Windows and Windows Mobile about using the MBOLogger class to add
log levels to messages reported to the console.

Check the log record on the device. Use the

Dat abaseCl ass. Get LogRecor d(Sybase. Per si st ence. Query) or
Entity. Get LogRecor ds methods.

This is the log format

| evel , code, ei sCode, nessage, conmponent, enti t yKey, oper ati on, r equest |
d, ti mestanp

This log format generates output similar to:

| evel code ei sCode nessage conponent entityKey operation requestid
ti mest anmp

5,500,'"',"java.l ang. SecurityException: Aut hori zation fail ed:
Domai n = default Package = end2end.rdb: 1. 0 nboNane =
si npl eCust oner action =
del ete','sinpleCustoner','100001', "' delete','100014',' 2010- 05-11
14: 45: 59. 710

e | evel —thelog level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.
e code - Unwired Server administration codes.
» Replication-based synchronization codes:
e 200 - success.
e 500 - failure.
« Message-based synchronization codes:
e 401-theclientrequest included invalid credentials, or authentication failed for
some other reason.
e 403 - the client request included valid credentials, but the user does not have
permission to access the requested resource (package, mobile business object
—MBO, or operation).
e 404 - the client attempted to access a honexistent package or mobile business
object.
» 405 - there is no valid license to check out for the client.
e 409 - back-end EIS is deadlocked.
e 412 - back-end EIS threw a constraint exception.
e 500 - an unexpected (unspecified) server failure.
« 503 - back-end EIS is not responding or the connection is terminated.
» ei sCode —maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).
e message - the message content.

e conponent — MBO name.

28

Sybase Unwired Platform

Development Task Flows

e entityKey - MBO surrogate key, used to identify and track MBO instances and
data.

e operati on - operation name.

e request | d - operation replay request ID or messaging-based synchronization
message request ID.

« timestanp - message logged time, or operation execution time.

« If you have implemented onConnect i onSt at usChange for message-based
synchronization in Cal | back Handl er, the connection status between Unwired
Server and the device is reported on the device. See the Developer Reference for Windows
and Windows Mobile for Cal | back Handl er information. The device connection
status, device connection type, and connection error message are reported on the device:
e 1 - current device connection status.

e 2 —current device connection type.
« 3 -—connection error message.

Server-Side Debugging
Problems on the Unwired Server side that may cause device client problems:

« The domain or package does not exist. If you create a new domain, whose default status is
disabled, it is unavailable until enabled.

« Authentication failed for the synchronizing user.
The operation role check failed for the synchronizing user.
» Back-end authentication failed.

« An operation failed on the remote, replication database back end, for example, a table or
foreign key does not exist.

« An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the Unwired Server side:

* Check the Unwired Server log files.
« For message-based synchronization mode, you can set the log level to DEBUG to obtain
detailed information in the log files:
1. Check the global SUP MSG log level in <serrver _install _fol der>
\ Unwi redPl at f or Ml Server s\ Unwi r edSer ver\ Reposi tory
\ | oggi ng- confi guration.xn toensuretheLog | evel of<Entity
EntityTypel d="MSG' > is set to DEBUG.
2. Modify the log level for the module SUPBr i dge and JnsBri dge in
<server_install _folder>\Unw redPl atform Servers
\ Messagi ngSer ver\ Dat a\ TraceConfi g. xn to DEBUG.

3. Check the SUPBr i dge and JMSBr i dge logs, for detailed information.

Note: Itis important to return to INFO mode as soon as possible, since DEBUG mode can
effect system performance.

Developer Reference for Windows and Windows Maobile 29

Development Task Flows

* You can also obtain DEBUG information for a specific device:

* View information through the SCC administration console:

1. Set the DEBUG level to a higher value for a specified device through SCC
administration console.

2. Set the TRACE file size to be more than 50KB.
3. View the trace file through SCC.

e Checkthe<server install fol der>\Unw redPl atform Servers
\ Messagi ngSer ver\ Dat a directory to see the mobile device client log files for
information about a specific device.

Note: Itis important to return to INFO mode as soon as possible, since DEBUG mode can
effect system performance.

Implementing SyncNow for MBS Applications

You can implement SyncNow for message-based synchronization applications for Windows
or Windows Mobile using the Sybase. Per si st ence. Cal | backHandl er. The
onConnect i onSt at us methods provide the implementation.

1. In Mobile Application Diagram, generate Windows Mobile code. Select M essage-
based as one of the configuration parameters.

2. Inthe generated code, call the client APl and implement Cal | back
OnSynchr oni ze() to implement the SyncNow functionality. See Developer
Reference for Windows and Windows Mobile > Reference > Windows Mobile Client
Object API > Utility APIs > Callback Handlers.

A sample SyncNow method looks like:
public void SyncNow()

{
int connStatus =
Sybase. Per si st ence. Messagi ngCl i ent . Connect i onSt at us;
int MAX WVAIT_TIME_QUT = 300; // 5 mnutes
int tinmeout = 0;
whil e (connStatus != Devi ceConnecti onSt at us. CONNECTED)

{
ti meout ++;
Thr ead. Sl eep(1000) ;
if (tinmeout >= MAX_VAI T_TI ME_QUT)
t hr ow new
Sybase. Per si st ence. Persi st enceException("Waiting tinmeout: " +

MAX_WAIT_TIME_QUT + " seconds");

connStatus =
Sybase. Per si st ence. Messagi ngCl i ent. Connect i onSt at us;

}

if (!DsTestDB.|sSubscribed())
{

30 Sybase Unwired Platform

Development Task Flows

DsTest DB. Logi nToSync("test", "test123");
DsTest DB. Subscri be();

}
DsTest DB. Begi nSynchr oni ze() ;
int MAX_SYNC TI MEQUT = 3600; // one hour ?
timeout = 0;
whil e (! Test Mai n. syncFi ni shed)
{
ti meout ++;
Thr ead. Sl eep(1000) ;
if (tinmeout >= MAX_SYNC TI MEQUT)

t hr ow new
Sybase. Per si st ence. Per si st enceExcepti on("Waiting SYNC ti neout:
+ MAX_SYNC TI MEQUT + "seconds");

}
}

}

3. To determine whether all data is successfully downloaded or uploaded, the client
application can send a synchronize message to the server, and should receive a callback.
(The client must subscribe to the package as shown above). A sample callback looks

similar to:
public class Text ResponseHandl er : Defaul t Cal | backHandl er
{

public override void OnConnecti onSt at usChange(i nt connSt at us,
i nt connType, int errorCode, string errorMessage)

Consol e. Wi teLi ne("Devi ce Connecti on status changed to :
+ connSt at us) ;
if (errorMessage != null && errorMessage.Length > 0)

{

error Message) ;

}

public override SynchronizationAction
OnSynchr oni ze(Sybase. Col | ecti ons. Generi cLi st <l Synchroni zati onG ou
p> groups, Sybase. Persi stence. Synchroni zati onCont ext context)

Consol e. Wi teLi ne("Connection error: " +

Consol e. Wi teLi ne("synchroni ze request processed
returned. ");

Synchroni zati onStatus status = context. Stat us;

if (status == Synchroni zati onSt at us. FI Nl SHI NG

{ Consol e. Wi teLi ne("synchroni zeResult");

LI se if (status == Synchroni zati onSt at us. ERROR)
{ Consol e. Wi teLi ne("synchroni zeFail ed");
I}ock (typeof (Test Mai n))

Test Mai n. syncFi ni shed = true;

Developer Reference for Windows and Windows Maobile 31

Development Task Flows

}
return Synchroni zati onActi on. CONTI NUE;
}
}
4. On the device, two options are available to view error messages related to connection
status:

« Using the callback, the connection error messages appear on the device:

public override void OnConnecti onSt at usChange(i nt connSt at us,
int connType, int errorCode, string errorMessage)

Consol e. Wi teLi ne("Devi ce Connecti on status changed to :
+ connSt at us) ;
if (errorMessage != null && errorMessage. Length > 0)

{
Consol e. Wi teLi ne("Connection error: " +
error Message) ;

}
» The user can access Sybase Settings > Show L og to see the detail device status.

Application Deployment to Devices

Deploy mobile applications to devices and register the devices with Unwired Server.

Deploying Replication-Based Applications
Deploy replication-based applications to a Device Emulator or connected device.

1. To deploy a replication-based application from Visual Studio, compile the project and
deploy the application to the emulator or the real device.

2. If you are using a Device Emulator, define a shared folder and copy the file in that folder
from your machine so the Emulator can access it.

3. Using Windows and a connected device, use the Virtual folder on your machine to copy the
application's .cab file to the device or memory card.

Deploying Message-Based Applications to an Emulator or Device

The Sybase Messaging Client requires a .cab file. Pocket PCs require
SUPMessagi ng_Pr o. cab, and Smartphones require SUPMessagi ng_St d. cab.

Note: ActiveSync is for Windows XP. Windows Vista, Windows 7, and Windows 2008 uses
Windows Mobile Device Center.

1. InVisual Studio, select Tools> Emulator M anager to deploy to an Emulator, or Connect
to Deviceto deploy to a connected device.

32 Sybase Unwired Platform

Development Task Flows

2. From the list of devices, right-click the emulator to which to deploy the application and
select Connect.

3. Right-click on the same emulator and select Cradle.
Microsoft ActiveSync appears.
4. If the Microsoft ActiveSync configuration window appears, click Cancel.
5. In Microsoft ActiveSync, click Explore.
6. Inthe Mobile Device window, double-click My Windows M obile-based Device.
The device's file system root folder opens.
7. Navigate to <Unwi r edPl at form I nstal | Di r >\ Unwi r edPl at f or m
\ Server s\ Unwi redServer\ C i ent APl \ MoMessagi ng\ wmand copy the
SUPMessagi ng_Pr o. cab file (for Pocket PC) or the SUPMessagi ng_St d. cab
file (for Smartphone) to the device's root folder.
8. Use File Explorer on the device emulator to browse to where you placed the . cab file.
9. Click on. cab once to start the installation.

Message-based Synchronization Overview

The message-based synchronization model:

» Uses an asynchronous messaging protocol.

» Provides reliable messaging between the device and the server.

* Provides fine-grained synchronization (synchronization is provided at the data level—
each process communicates only with the process it depends on).

« Best for always available mode.

Anatomy of New Data Push for Staged Datain 1.5

Execute Push Querizs derivedfrom D ownload
Cursor and Pergstent Queries . Thiswill yield
the st of clientIDsthat needsto be checked for

data push
Folling @)
: . Change Detection Suh=oribe Message

Change Calculation

Subscription Managem ent

Data Services

Y.

rSentI list of client 1
11Ds using MBS that i
Inzed to determine |
1if daa push is I
:requirecl JI

+
1
3
13
|
[]
'
3
1
1}

-

P N,
ICaIc uate the change
Iset by executing
\Download Cursar for
:ea:h cligntID,

Send out me ssagles containing data =
viaMessaging Services to device I
hagting the affected databass 1
{subscription) H

| ——

Developer Reference for Windows and Windows Mobile 33

Development Task Flows

Device Registration

Messaging devices contain applications that send and receive data through messaging. An
administrator must configure the device activation template properties for message-based
synchronization (MBS) devices. Device activation requires user registration. Upon successful
registration, the device is activated and set up with the template the administrator has selected.

Device registration pairs a user and a device once the user supplies the correct activation code.
This information is stored in the messaging database, which contains extensive information
about users and their corresponding mobile devices.

Users who are registered but who have not yet installed the software are listed in the window as
registered, and their e-mail messages and PIM items are queued by Unwired Server for later
delivery. Typically, device registration occurs when the user initially attempts to connect to
Unwired Server. However, an administrator can force a user to reregister if there is data
corruption on the device, or if the user is assigned a new device. This reestablishes the
relationship between the user and the device, and refreshes the entire data set on the device

Note: For more information on device registration, see Sybase Unwired Platform System
Administration > Device and User Management > Messaging Devices, Sybase Unwired
Platform System Administration > Device and User Management > Messaging Devices >
Device Registration and Activation, and Sybase Unwired Platform System Administration >
Device and User Management > Device Provisioning.

Device registration requires user registration from the physical device.

1. Locate the device registration program in\ Pr ogr am Fi | es\ SybaseSetti ngs.
2. Double-click the program, then click the Next Connection icon.

You see the Connection window.
3. Enter the information for your Sybase Messaging Server configuration and account:

* Server Name— The Unwired Server servername.

e Server Port — The port on which the Unwired Server is listening.

e Farm ID —The company ID. In cases where a relay server is used, this parameter
corresponds to the farm ID of the relay server.

e User Name — The username registered with the Unwired Server.
» Activation Code— The activation code.

34

Sybase Unwired Platform

Development Task Flows

= | Sybase Settings

Connection

Server Mame: |test-machine

Server Port: 001

Farm ID: |IZI

lser Mame: |tE:s|:

Activation Code: [123

Developer Reference for Windows and Windows Mobile 35

Development Task Flows

36 Sybase Unwired Platform

Reference

Reference

This section describes the Client Object AP1 and Device Framework API. Classes are defined
and sample code is provided.

Generated API Help

Generated API help is included in the Sybase Unwired Platform installation directory.

C# documentation, which provides a complete reference to the APIs:
e Compiled help for the Device Framework API is installed to
<Unwi redPl at form I nstal | Di r>\ Unwi red_Wor kSpace

\ Vi sual St udi o\ Conponent Li brary\ hel p.
« You can integrate help for generated code from mobile business objects (MBOs) into your
Visual Studio project. See /ntegrating Help into a Profect.

Windows Mobile Client Object API

Describes solutions and examples for tasks and uses of the Sybase Unwired Platform
Windows Mobile Client Object API. The Client Object API enables you to customize mobile
business object data flow and handling for the Windows Mobile device application.

Connection APIs

The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server and authenticating.

ConnectionProfile

The Connect i onPr of i | e class manages local database information. You can use it to set
the encryption key, which you must do before creating a local database.
ConnectionProfile cp = Sanpl eAppDB. Get Connecti onProfile();

cp. Set Encrypti onKey(" Your key");
cp. Save();

SynchronizationProfile

Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed.

ConnectionProfile cp = Sanpl eAppDB. Get Synchroni zati onProfile();
cp. Domai nNane = "defaul t";

Developer Reference for Windows and Windows Maobile 37

Reference

This example is to call relay server for replication-based synchronization:
ConnectionProfile cp = Sanpl eAppDB. Get Synchroni zati onProfile();

cp. ServerNane = "Rel ay_Server";
cp. Port Nunber = 80;
cp. Net wor kSt reanParans = "url _suffix=ias_relay_server/client/
rs_client.dll/Ryan. SUPFarni;
cp. Save();

You can set certificate information in SynchronizationProfile.
ConnectionProfile profile = My/Dat abase. Get Synchroni zati onProfile();

profile. Domai nName = "defaul t";
profile. Server Name = "host-nane";
profile. PortNunber = 2481;
profile. NetworkProtocol = "https";

profile. NetworkStreanParans =
"trusted_certificates=rsa public_cert.crt";

Authentication

The generated package database class provides a default synchronization connection profile
according to the Unwired Server connection profile and Server Domain selected during code
generation. You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:
Onl i neLogi n authenticates credentials against the Unwired Server.

O f 1 i neLogi n authenticates against the last successfully authenticated credentials. There
is no communication with Unwired Server in this method.

Logi nToSync synchronizes the KeyGenerator from the Unwired Server with the client.
The KeyGenerator is an MBO for storing key values that are known to both the server and the
client. On Logi nToSync from the client, the server sends down a value that the client can
use when creating new records (by using the method Key Gener at or . gener at el d() to
create key values that the server will accept).

The KeyGenerator value increments each time the Gener at el d method is called. A
periodic call to Subni t Pendi ng by the KeyGenerator MBO sends the most recently used
value to the Unwired Server, to let the Unwired Server know what keys have been used on the
clientside. Place this call in atry/catch block in the client application and ensure that the client
application does not attempt to send more messages to the Unwired Server if Logi nToSync
throws an exception.

voi d Logi nToSync(string user, string password);

AsyncOnl i neLogi n is available only for message-based synchronization, and it is the
recommended login method for message-based synchronization. It functions similarly to
Logi nToSync, except that it sends the login request asynchronously (it returns without
waiting for a server response). Check for OnLogi nSuccess or OnLogi nFai | ur e to be
called in the callback handler.

38

Sybase Unwired Platform

Reference

voi d AsyncOnli neLogi n(string user, string password);

Connect Using a Certificate
You can set certificate information in Connecti onProfil e.

ConnectionProfile profile = MyDat abase. Get Synchroni zati onProfile();
profil e. Domai nNane "defaul t";

profile. Server Name = "host-nane";

profile. PortNunber = 2481;

profile. NetworkProtocol = "https";

profile. NetworkStreanParans =
"trusted_certificates=rsa_public_cert.crt";

Encrypt the Database

You can use Connect i onProfil e. Encrypti onKey to set the encryption key of a
local database. Set the key during application initialization, and before creating or accessing
the client database.

ConnectionProfile profile = MyDatabase. Get Connecti onProfile();
profile. Set Encrypti onKey(" Your key");

Set Database File Property
You can use set Pr oper t y to specify the database file name on the device, such as the
directory of the running program, a specific directory path, or a secure digital (SD) card.

ConnectionProfile cp = MyDat abased ass. get Connecti onProfile();
cp. set Property("dat abaseFil e", "databaseFile");
cp. save();

Examples
If you specify the databaseFilename only, with no path, the databaseFileis created in the path
where the program is running:

/ nydb. udb

The databaseFileis created in the / Tenp directory of the Windows Mobile device:
[Tenp/ nmydb. udb

The databaseFile is created on an SD card:
/ St orage Card/ nydb.sqglite

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example / smar t car d/ supprj . udb.

Usage

» Be sure to call this API before the database is created:
» Replication-based synchronization (RBS) — call this before calling
Logi nToSync() .

Developer Reference for Windows and Windows Maobile 39

Reference

« Message-based synchronization (MBS) — call this before calling
St art Backgr oundSynchr oni zati on() .

Otherwise, the application would have to be restarted, and the user would need to login and
resubscribe from the server each time, as though the application was a new application
without any previous data.

« Ifyou use replication-based synchronization, the database is UltraL ite; use a database file
name like mydb. udb.

< If you use message-based synchronization, the database is SQL.ite; use a database file
name like nydb. sql i te.

» For message-based applications, specifying a full path and file name or storage card can
only be tested on a physical device, not on an emulator.

« Ifthe device client user changes the file name, the device user must make sure the input file
name is a valid name and path on the client side.

Synchronization APIs

The client object API allows you to change synchronization parameters and perform mobile
business object synchronization.

Changing Synchronization Parameters
Synchronization parameters determine the manner in which data is retrieved from the
consolidated database during a synchronization session.

The primary purpose of synchronization parameters is to partition data. By changing the
synchronization parameters, you affect the data you are working with, including searches, and
synchronization.

Cust oner Synchr oni zat i onParaneters sp =
Cust oner. Synchr oni zat i onPar anet er s;

sp. State = "CA";

sp. Save();

Performing Mobile Business Object Synchronization
To perform mobile business object (MBO) synchronization, you must save a Connection
object. Additionally, you may want to set synchronization parameters.

For replication-based synchronization, this code synchronizes an MBO package using a
specified connection:
Sanpl eAppDB. Synchroni ze (string synchroni zati onG oup)

For message-based replication, before you can synchronize MBO changes with the server,
you must subscribe the mobile application package deployed on server by calling

Sanpl eAppDB. subscri be() . This also downloads certain data to devices for those that
have default values. You can use the Onl nport Success method in the defined

Cal | backHandl er to check if data download has been completed.

40

Sybase Unwired Platform

Reference

Then you can call the SubmitPendingOperations(string synchronizationGroup) operation
through the publication as this example illustrates:

Pr oduct product _new = new Product ();
product _new. Col or="Yel | ow';

product _new. Descri pti on="";

product _new. | d=888;

product _new. Nane = " Chi | drenPants";
product _new. Prod_si ze = "M';

product _new. Quantity = 200;
product _new. Unit_price = (deC| mal) 188. 00;
product _new. Create();

Sanpl eAppDB. Submi t Pendi ngQper ati ons("default");
whi | e(Sanpl eAppDB. HasPendi ngOper ati ons())

{

System Console. Wite(" . ");
Syst em Thr eadi ng. Thread. Sl eep(1000) ;

}

You can use a publication mechanism, which allows as many as 32 simultaneous
synchronizations. However, performing simultaneous synchronizations on several very large
Unwired Server applications can impact server performance, and possibly affect other remote
users. The following code samples demonstrate how to simultaneously synchronize multiple
MBOs.

For message-based synchronization, synchronize multiple MBOs using:
Sanpl eAppDB. Submi t Pendi ngQper ati ons();

Or you can use:
Sanpl eAppDB. Submi t Pendi ngQper ati ons(" ny- pub");

where "my-pub” is the synchronization group defined.

For replication-based synchronization, synchronize multiple MBOSs using:
Sanpl eAppDB. Synchr oni ze() ;

You can also use:
Sanpl eAppDB. Synchr oni ze(" my- pub™) ;

Query APls

The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship data and paging data, and to retrieve and filter a query result set.

Retrieving Data from the local database
You can retrieve data from the local database through a variety of queries, including object
queries, arbitrary find, and through filtering query result sets.

Developer Reference for Windows and Windows Maobile 41

Reference

Object Queries

To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query name, parameters, and return type
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:
public static Sybase. Col | ections. Generi cLi st <Custoner> Fi ndAl | ()

Sybase. Col | ecti ons. Generi cLi st <Cust oner > custoners =
Custoner. Fi ndAl | ();

This method retrieves all customers in a certain page:

public static Sybase. Col |l ections. Generi cLi st <Custoner> Fi ndAl | (int
skip, int take)

Sybase. Col | ecti ons. Generi cLi st <Cust oner > custoners =
Cust oner. FindAl | (10, 5);

Suppose the modeler defined the following Object Query for the Customer MBO in Sybase
Unwired Workspace:

* name - findByFirstName

e parameter — String firstName

e query definition — SELECT x.* FROM Customer x WHERE x.fname = :firstName
* return type — Sybase.Collections.GenericList

The preceding Object Query results in two generated methods in Cust oner . cs:

public static Sybase. Col | ections. Generi cLi st <Cust onmer >
Fi ndByFi r st Nane(string firstNane)

Arbitrary Find
The arbitrary find method provides custom device applications the ability to dynamically

build queries based on user input.

AttributeTest

In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify a desired ordering of the results and object state criteria. A Quer y class is included in
the client object API’s core assembly sup-client.dll Sybase.Persistence namespace. The
Query class is the single object passed to the arbitrary search methods and consists of search
conditions, object/row state filter conditions, and data ordering information.

42

Sybase Unwired Platform

Reference

In MBO Cust oner . cs:

public static Sybase.Coll ections. GenericlLi st<sanpl e. Cust oner >
Fi ndW t hQuer y(Sybase. Persi st ence. Query query)

In Database class Sanpl e AppDB. cs:

public static Sybase. Persistence. QueryResul t Set
Execut eQuer y(Sybase. Persi st ence. Query query)

The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 5. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.
Define these conditions by setting properties in a query:

* TestCriteria— criteria used to filter returned data.

* SortCriteria— criteria used to order returned data.

* Skip —an integer specifying how many rows to skip. Used for paging.

e Take—an integer specifying the maximum number of rows to return. Used for paging.

TestCriteriacanbeanAttri but eTest oraConpositeTest.

AnAttri but eTest defines a filter condition using an MBO attribute, and supports these

conditions:

* IS _NULL

¢ NOT_NULL

« EQUAL

e NOT_EQUAL
 LIKE

« NOT_LIKE

Developer Reference for Windows and Windows Maobile 43

Reference

+ LESS_THAN
. LESS_EQUAL

« GREATER_THAN

« GREATER_EQUAL

.« CONTAINS

« STARTS_WITH

« ENDS_WITH

« DOES_NOT_START WITH
« DOES_NOT_END_WITH
« DOES_NOT_CONTAIN

User can use query to construct a query SQL statement as he wants to query data from local
database. This query may across multiple tables (MBOs).

Query query2 = new Query();

query?2. Sel ect ("c. fnane, c. | name, s. order _date, s. regi on");
query2. From(" Cust onmer"™, "c");

Il

/| Conveni ence nmethod for adding a join to the query

/] Detailed construction of the join criteria
query2.Join("Sal es_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();

ts. Attribute = ("fnanme");

ts. Test Val ue = "Beth";

query2. Where(ts);

QueryResul t Set result Set = Sanpl eAppDB. Execut eQuery(query?2);

On low memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.
Consider using the Query object to limit the result set:

Query props = new Qery();
props. Ski p =10;
props. Take = 5;

Cust oner Li st custoners = Custoner. Fi ndWt hQuery(props);

AConposi t eTest combinesmultiple Test Cri t eri a using the logical operators AND,
OR and NOT to create a compound filter.

Sort CriteriadefinesaSort O der,which contains an attribute name and an order type
(ASCENDING or DESCENDING).

For example, to locate all customer objects based on this criteria:

e FirstName = John AND LastName = Doe AND (State = CA or State = NY)
e Customer is New or Updated

e Ordered by LastName ASC, FirstName ASC, Credit DESC

» Skip the first 10 and take 5

This code demonstrate the usage of Conrposi t eTest, Sort Criteri aand Query:

44

Sybase Unwired Platform

Reference

Query props = new Qery();

//define the attribute based conditions

//Users can pass in a string if they know the attribute
name. Rl colum nanme = attribute nane.

Conposi t eTest i nner ConpTest = new ConpositeTest();

i nner ConpTest . Operat or = ConpositeTest. OR;

i nner ConpTest . Add(new AttributeTest("state", "CA",
AttributeTest. EQUAL));

i nner ConpTest . Add(new AttributeTest("state", "NY",
AttributeTest. EQUAL));

Conposi t eTest out er CompTest = new ConpositeTest();

out er ConpTest . Oper at or = Conposi teTest. OR;

out er ConpTest . Add(new Attri buteTest ("fnanme", "Jane",
AttributeTest. EQUAL));

out er ConpTest . Add(new Attri buteTest ("l nane", "Doe",
AttributeTest. EQUAL));

out er ConpTest . Add(i nner ConpTest) ;

//define the ordering

SortCriteria sort = new SortCriteria();

sort. Add("fname", SortOrder. ASCENDI NG ;

sort. Add(" | name", Sort Order. ASCENDI NG ;

//set the Query object

props. TestCriteria = outerConpTest;

props. SortCriteria = sort;

props. Skip = 10;

props. Take = 5;

Sybase. Col | ecti ons. Generi cLi st <Cust omer > custoners2 =
Cust oner . Fi ndW t hQuer y(pr ops) ;

QueryResultSet
The Quer yResul t Set class provides for querying a result set for the dynamic query API.

Quer yResul t Set is returned as a result of executing a query.

Example

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Query, filling in the criteria for the query, and filtering the
query results:

Sybase. Per si st ence. Query query = new Sybase. Persi st ence. Query();
query. Sel ect ("c. fnane, c. | nane, s. order _date, s.region");

query. Fron(" Custoner ", "c");

query.Joi n("Sal esOrder ", "s", " s.cust_id ", "c.id");
AttributeTest at = new AttributeTest();

at. Attribute = "l name";

at . Test Val ue = "Devlin";

query.TestCriteria = at;

QueryResul t Set qrs = Sanpl eAppDB. Execut eQuery(query);
whi l e(grs. Next ())

{

Consol e. Wite(grs.GetString(1l));
Console. Wite(",");
Consol e. WiteLine(grs. Get Stri ngByNanme("c. fnanme"));

Developer Reference for Windows and Windows Maobile 45

Reference

Console. Wite(grs. GetString(2));
Console. Wite(",");
Consol e. WiteLine(grs. Get Stri ngByNanme("c. | name"));

Console. Wite(grs. GetString(3));
Console. Wite(",");

Consol e. WiteLine(qgrs. Get Stri ngByName("s. order_date"));

Consol e. Wite(grs. GetString(4));

Console. Wite(",");

Consol e. WiteLine(qgrs. Get Stri ngByName("s.region"));
}

Retrieving Relationship Data

A relationship between two MBOs allows the parent MBO to access the associated MBO. If
the relationship is bi-directional, it also allows the child MBO to access the associated parent
MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
SalesOrder on the customer ID column. The Orders application is parameterized to return
order information for the customer ID.

Cust oner customer = Custoner.FindByPrimaryKey(101);

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders =
cust onmer . Orders;

You can also use the Query class to filter the return MBO list data.

Query props = new Query();

...l set query paraneters

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders =
cust oner. Get Order sFi |l t er By(props);

Operations APIs

Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create instances (non-
static) of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the Client Object API, and are not exposed. Any
parameters not mapped to the object’s attributes are left as parameters in the Generated Object
API.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In

46

Sybase Unwired Platform

Reference

other situations, where there are multiple instances of create or update operations, it is not
possible to automatically generate such a Save method.

Create Operation
To execute a create operation on an MBO, create a new MBO instance, setthe MBO attributes,
then call the Save() or Create() operation.

Cust oner cust = new Custoner();
cust. Fhame = "supAdm n"

cust. Conpany_nane = " Sybase";
cust. Phone = "777-8888";
cust.Create();// or cust.Save();
cust . Submi t Pendi ng() ;

Update Operation
To execute update operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call either the Save() or Updat e() operations.

Cust oner cust = Customer. Fi ndByPri maryKey(101);
cust. Fnane = "supAdm n";

cust. Conpany_nanme = "Sybase";

cust. Phone = "777-8888";

cust. Update();// or cust. Save();

cust. Subm t Pendi ng() ;

Delete Operation
To execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the Del et e() operation.

Cust oner cust = Customer. Fi ndByPri nmaryKey(101);
cust. Del ete();

Other Operation
Operations that are not create, update, or delete operations are called “Other” operations.

Suppose the Customer MBO has an Other operation “other”, with parameters “p1” (string),
“p2” (int) and “p3” (date). This results in a Cust omer & her Qper at i on class being
generated, with “p1”, “p2” and “p3” as its attributes.

To invoke the Other operation, create an instance of Cust omer &t her Oper at i on, and set
the correct operation parameters for its attributes. This code provides an example:

Cust oner & her Oper ati on ot her = new Cust omer & her Operation();
ot her.P1 = “soneval ue”;

other.P2 = 2;

ot her. P3 = System Dat eTi ne. Now;

ot her.Save(); // or other.Create()

ot her. Submi t Pendi ng() ;

Developer Reference for Windows and Windows Maobile a7

Reference

Cascade Operations

Composite relationships are cascaded. Cascade operations allow a single synchronization to
execute a chain of related CUD operations. Multi-level insert is a special case for cascade
operations. It allows parent and children objects to be created in one round without having to
synchronize multiple times.

Refer to Unwired WorkSpace documentation (Relationship Guidelines and Multi-level insert
operations) for information about defining relationships that support cascading (composite)
operations.

Consider creating a Customer and a new SalesOrder at the same time on the client side, where
the SalesOrder has a reference to the new Customer identifier. The following example
demonstrates a multilevel insert:

Cust oner custonmer = new Custoner();
custoner. Fnane = “firstNane”;

cust omrer . Lnane “| ast Nane”;

cust oner . Phone “777-8888";

cust oner. Save();

Sal esOrder order = new Sal esOrder();
order. Cust omer = custoner;

order. Order _date = DateTi ne. Now;
order. Region = "Eastern";

order. Sal es_rep = 102;

cust oner. Orders. Add(order);

//Only the parent MBO needs to call Save()
cust oner. Save();

[/ Must submit parent

cust oner . Submi t Pendi ng() ;

To insert an order for an existing customer, first find the customer, then create a sales order
with the customer ID retrieved:

Cust oner customer = Custoner. Fi ndByPri maryKey(102);
Sal esOrder order = new Sal esOrder();

order. Cust oner = custoner;

order. Order_date = DateTi me. Ut cNow,

order. Region = "Eastern";

order. Sal es_rep = 102;

custoner. Orders. Add(order);

order. Save();

cust oner . Submi t Pendi ng() ;

To update MBOs in composite relationships, perform updates on every MBO to change and
call Submi t Pendi ng on the parent MBO:

Custoner cust = Custoner.Fi ndByPri maryKey(101);

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders = cust. O ders;
Sal esOrder order = orders[O0];

order. Order_date Dat eTi me. Now;

order. Save();

cust . Submi t Pendi ng() ;

48

Sybase Unwired Platform

Reference

To delete a single child in a composite relationship, call the child's Del et e method, and the
parent MBQO's Submi t Pendi ng.

Custoner cust = Custoner.Fi ndByPri maryKey(101);

Sybase. Col | ecti ons. Generi cLi st <Sal esOrder> orders = cust. O ders;
Sal esOrder order = orders[O0];

order. Del ete();

cust . Subm t Pendi ng() ;

To delete all MBOs in a composite relationship, call Del et e and Submi t Pendi ng on the
parent MBO:
Cust oner cust = Customer. Fi ndByPri maryKey(101);

cust. Del ete();
cust . Subni t Pendi ng() ;

Note: For non-composite relationships, Submi t Pendi ng must be called on each and every
MBO.

See the Sybase Unwired Platform online documentation for specific multilevel insert
requirements.

Pending Operation
You can manage pending operations using these methods:

» CancelPending—cancels the previous create, update, or delete operations on the MBO. It
cannot cancel submitted operations.

* SubmitPending—submits the operation so that it can be replayed on the Unwired Server.
For message-based synchronization, a replay request is sent directly to the Unwired
Server. For replication-based synchronization, a request is sent to the Unwired Server
during a synchronization.

* SubmitPendingOper ations — submits all the pending records for the entity to the
Unwired Server. This method internally invokes the Submi t Pendi ng method on each
of the pending records.

* CancelPendingOper ations— cancels all the pending records for the entity. This method
internally invokes the Cancel Pendi ng method on each of the pending records.

Cust oner customer = Custoner. Fi ndByPrimaryKey(101);
i f(errorHappened)

Cust oner . Cancel Pendi ng() ;
}

el se

cust oner . Submi t Pendi ng() ;

}

Passing Structures to Operations
Structures hold complex datatypes (for example a string list, class or MBO object, or a list of
objects) that enhance interactions with certain enterprise information systems (EIS) data

Developer Reference for Windows and Windows Maobile 49

Reference

sources, such as SAP and Web services, where the mobile business object (MBO) requires
complex operation parameters.

An Unwired WorkSpace project includes an example MBO that is bound to a Remedy Web
service data source that includes a create operation that takes a structure as an operation
parameter. MBOs differ depending on the data source, configuration, and so on, but the
principles are similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including a parameter named HEADER _ that is a structure datatype named
Authenticationlnfo, defined as:
Aut henti cati onl nfo

user Nane: String

password: String

aut hentication: String

| ocale: String

ti meZone: String

Structures are implemented as classes, so the parameter HEADER_ is an instance of the
AuthenticationInfo class. The generated Java code for the create operation is:

public void Create(Authentication HEADER ,string escal ated, string
hot | i st,
string orig_Submtter,string pending, string workLog);

This example demonstrates how to initialize the AuthenticationInfo class instance and pass
them, along with the other operation parameters, to the create operation:

Aut henti cationl nfo authen = new Aut henticati onlnfo();
aut hen. User Nane = "Denp";

Si npl eCaseli st newCase = new Si npl eCaseli st ();

newCase. Case_Type = "l ncident";

newCase. Cat egory = "Networ ki ng";

newCase. Depart nent = "Marketing";

newCase. Description = "A new hel p desk case.";

newCase. | tem = " Configuration";

newCase. O fice = "#3 Sybase Drive";

newCase. Subm tted_By = "Denp";

newCase. Phone_Nunmber = "#0861023242526";
newCase. Priority = "High";

newCase. Regi on = "USA";

newCase. Request _Urgency = "Hi gh";

newCase. Request er _Logi n_Nanme = "Denp";
newCase. Request er _Nane = "Denp";

newCase. Site = "25 Bay St, Muntain View, CA";
newCase. Sour ce "Requester";

newCase. St at us "Assi gned";

newCase. Sunmary = "MarkHel | ous was here Fix it.";
newCase. Type = "Access to Files/Drives";
newCase. Create_Ti ne = System Dat eTi ne. Now,

newCase. Create (authen, “Cther”, “Oher”, “false”, “work

50

Sybase Unwired Platform

Reference

l0g”);
newCase. Submi t Pendi ng() ;

Local Business Object

A business object can be either local or mobile. A Local Business Object (LBO) is a client-
only object. LBOs are useful to persist an application’s local data without updating the
backend. The difference between a LBO and an MBO is that an MBO’s operations are sent to
the backend. LBO’s operations are updated only to the local state do not affect the backend.
For example, an LBO would be well suited to store some bookkeeping information on an
application device.

An example of a Local Business Object:

Logi nSt at us status= new Logi nStatus ();
status.ld = 123;
status. Ti ne = Dat eTi ne. Now,
st at us. Success = true;
status. Create();

| ong savedld = 123;

Logi nStatus status = Logi nStatus. Fi nd(savedl d);
status. Success = fal se;

status. Update();

| ong savedld = 123;
Logi nStatus status = Logi nStat us. Fi nd(savedl d);
status. Del ete();

Personalization APIs
Personalization keys allow the application to define certain input parameter values that differ
(are personalized) from each mobile user. The Personalization APIs allow you to manage
personalization keys, and get and set personalization key values.

Type of Personalization Keys

There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Developer Reference for Windows and Windows Maobile 51

Reference

Get or Set Personalization Key Values
The Per sonal i zat i onPar amet er s class is generated automatically for managing
personalization keys.

The following code provides an example on how to set a personalization key, and pass an array
of values and array of objects:
Personal i zati onParaneters pp =

Sanpl eAppDB. Get Per sonal i zat i onPar anet ers();
pp. Myl nt PK = 10002;

pp. Save();
Sybase. Col | ections.IntList il = new Sybase. Col | ections.IntList();
i|.Add(10001);

il.Add(10002);

pp. MyIntListPK = il;

pp. Save();

Sybase. Col | ecti ons. Generi cLi st<MyData> dl = new
Sybase. Col | ecti ons. Generi cLi st<MyData>(); //MData is a structure
type defined in tooling

MyData md = new MyData();

md. | nt Menber = 123;

nd. Stri ngMenber = "abc";

dl . Add(nd) ;

pp. MyDat aLi st PK = dl ;

pp. Save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Note: For detailed description on personalization key usage, see the Sybase Unwired Platform
online help.

Object State APIs

The object state APIs provide methods for returning information about the state of an entity.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name C# Type Description

IsNew bool Returns true if this entity is new (but has not been created in

the client database).

52

Sybase Unwired Platform

Reference

Name C# Type Description

IsCreated bool Returns true if this entity has been newly created in the client
database, and one the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

IsDirty bool Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

IsDeleted bool Returns true if this entity was loaded from the database and
was subsequently deleted.

IsUpdated bool Returns true if this entity has been updated or changed in the
database, and one of the following is true:

* The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

Pending bool Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

PendingChange | char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

ReplayCounter | long Returns a long value which is updated each time a row is
created or modified by the client. This value is derived from
the time in seconds since an epoch, and increases each time a
row is changed.

Developer Reference for Windows and Windows Mobile 53

Reference

Name

C# Type

Description

ReplayPending

long

Returns a long value. When a pending row is submitted to the
server, the value of Repl ay Count er is copied to Re-
pl ayPendi ng. This allows the client code to detect if a
row has been changed since it was submitted to the server
(that is, if the value ofRepl ay Count er is greater than
Repl ayPendi ng).

ReplayFailure

long

Returns a long value. When the server responds with a Re-
pl ayFai | ur e message for a row that was submitted to
the server, the value of Repl ayCount er is copied to

Repl ayFai | ur e, and Repl ayPendi ng is set to 0.

Entity State Example

This table shows how the values of the entities that support pending state change at different
stages during the MBO update process. The values that change between different states appear

in bold.

Note the following entity behaviors:

e Thel sDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

* The Repl ayCount er value that gets sent to the Unwired Server is the value in the
database before you call Submi t Pendi ng. After a successful replay, that value is
imported from the Unwired Server.

» The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

54

Sybase Unwired Platform

Reference

Description

Flags/Values

After reading from the database, before any changes
are made.

IsNew=false
IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=false
Pending=false
PendingChange='N"'
ReplayCounter=33422977
ReplayPending=0
ReplayFailure=0

One or more attributes are changed, but changes not
saved.

IsNew=false
IsCreated=false
IsDirty=true
IsDeleted=false
IsUpdated=false
Pending=false
PendingChange="N"'
ReplayCounter=33422977
ReplayPending=0
ReplayFailure=0

Developer Reference for Windows and Windows Mobile

55

Reference

Description Flags/Values

Afterentity. Save() orentity. Up- IsNew=false
dat e() is called. IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=true
Pending=true
PendingChange="U"
ReplayCounter=33424979
ReplayPending=0
ReplayFailure=0

Afterent i ty. Submi t Pendi ng() is IsNew=false
called to submit the MBO to the server IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=true
Pending=true
PendingChange='U'
ReplayCounter=33424981
ReplayPending=33424981

ReplayFailure=0

56 Sybase Unwired Platform

Reference

Description Flags/Values

Possible result: the Unwired Server accepts the up- | IsNew=false
date, sends an importand a Repl ayResul t for
the entity, and the refreshes the entity from the da-
tabase. IsDirty=false

IsDeleted=false

IsCreated=false

IsUpdated=false
Pending=false
PendingChange="N"
ReplayCounter=33422977
replayPending=0
ReplayFailure=0

Possible result: The Unwired Server rejects the up- | IsNew=false
date, sends a Repl ayFai | ur e for the entity,
and refreshes the entity from the database

IsCreated=false
IsDirty=false
IsDeleted=false
IsUpdated=true
Pending=true
PendingChange='U'
ReplayCounter=33424981
ReplayPending=0
ReplayFailure=33424981

Pending State Pattern

When a create, update, delete, or save operation is called on an entity, the requested change
becomes pending. To apply the pending change, call Submi t Pendi ng on the entity, or
Submi t Pendi ngQper at i ons on the MBO class:

Custoner e = new Custoner();

e. Name = "Fred";

e. Address = "123 Four St.";
e.Create(); // create as pending

e. Submi t Pending(); // submit to server

Cust oner . Subni t Pendi ngOperations(); // subnit all pending Custoner
rows to server

Developer Reference for Windows and Windows Mobile 57

Reference

Subni t Pendi ngQper at i ons submits all the pending records for the entity to the
Unwired Server. This method internally invokes the Submi t Pendi ng method on each of
the pending records.

For message-based sychronization, the call to Submi t Pendi ng causes a JSON message to
be sent to the Unwired Server with the Repl ay method, containing the data for the rows to be
created, updated, or deleted. The Unwired Server processes the message and responds with a
JSON message with the Repl ayResul t method (the Unwired Server accepts the requested
operation) or the Repl ayFai | ur e method (the server rejects the requested operation).

If the Unwired Server accepts the requested change, it also sends one or more | npor t
messages to the client, containing data for any created, updated, or deleted row that has
changed on the Unwired Server as a result of the Repl ay request. These changes are written
to the client database and marked as rows that are not pending. When the Repl ayResul t
message is received, the pending row is removed, and the row remaining in the client database
now contains data that has been imported from and validated by the Unwired Server. The
Unwired Server may optionally send a log record to the client indicating a successful
operation.

If the Unwired Server rejects the requested change, the client receives a Repl ayFai | ed
message, and the entity remains in the pending state, with its Repl ayFai | ed attribute setto
indicate that the change was rejected.

For replication-based synchronization, the call to Submi t Pendi ng creates a replay record
in local database. When the DBCl ass. Synchr oni ze() method is called, the replay
records are uploaded to Unwired Server. Unwired Server processes the replay records one by
one and either accepts or rejects it.

At the end of the synchronization, the replay results are downloaded to client along with any
created, updated or deleted rows that have changed on the Unwired Server as a result of the
Replay requests. These changes are written to the client database and marked as rows that are
not pending.

When the operation is successful, the pending row is removed, and the row remaining in the
client database now contains data that has been imported from and validated by the Unwired
Server. If the Unwired Server rejects the requested change, the entity remains in the pending
state, with its ReplayFailed attribute set to indicate that the change was rejected. The Unwired
Server may optionally send a log record to the client.

The LogRecor d interface for both message-based synchronization and replication-based
synchronization has the following getter methods to access information about the log record:

Method C# Type Description

Name

Component string Name of the MBO for the row for which this log record was
written.

58

Sybase Unwired Platform

Reference

Method C# Type Description
Name
EntityKey string String representation of the primary key of the row for which

this log record was written.

Code int One of several possible HTTP error codes:

» 200 indicates success.

» 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

e 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

e 404 indicates that the client tried to access a nonexistent
package or MBO.

» 405 indicates that there is no valid license to check out for
the client.

« 500 to indicate an unexpected (unspecified) server fail-
ure.

Message string Descriptive message from the server with the reason for the
log record.

Operation string The operation (create, update, or delete) that caused the log
record to be written.

Requestld string The id of the replay message sent by the client that caused this
log record to be written.
Timestamp System.Date- Date and time of the log record.
Time?

If a rejection is received, the application can use the entity method Get LogRecor ds or the
database class method Sanpl eDB. Get LogRecor ds(query) to access the log records
and get the reason:

Sybase. Col | ecti ons. Generi cLi st <Sybase. Persi st ence. | LogRecord> | ogs =
e. Get LogRecords();
for(int i=0; i<logs.Size(); i++)
{
Consol e. WiteLine("Entity has a log record:");
Consol e. WiteLine("Code = {0}",lo0gs[i]. Code);
Consol e. Wi t eLi ne(" Conponent {0}", 1 ogs[i].Conponent);
Consol e. Wi teLine("EntityKey {0}",logs[i].EntityKey);
Consol e. WiteLine("Level = {0}",logs[i].Level);
Consol e. Wi teLi ne("Message 0}",logs[i].Message);
{
{

Consol e. Wi telLi ne("Operation 0}",logs[i].Operation);
Consol e. Wi teLi ne("Requestld

[| it | B

0}",logs[i].Requestld);

Developer Reference for Windows and Windows Maobile 59

Reference

Consol e. WiteLine("Tinmestanp = {0}", | ogs[i].Ti mestanp);
}

Cancel Pendi ngQper at i ons cancels all the pending records for an entity. This method
internally invokes the Cancel Pendi ng method on each of the pending records.

Mobile Business Object States
A mobile business object can be in one of three states:

« Original state, the state before any create, update, or delete operation.
» Downloaded state, the state downloaded from the Unwired Server.
e Current state, the state after any create, update, or delete operation.

The mobile business object class provides properties or methods for querying the original
state and the downloaded state:

publ i c sanpl e. Customrer Get Ori gi nal St at e()
publ i ¢ Custonmer Downl oadSt at e;

The original state is valid only before the application synchronizes with the Unwired Server.
After synchronization has completed successfully, the original state is cleared and set to null.

Cust oner cust = Custoner.Fi ndByPri maryKey(101); // state 1
cust. Fnane = "supAdm n";

cust. Conpany_nanme = " Sybase";

cust. Phone = "777-8888";

cust.Save(); // state 2

Custoner org = cust.GetOriginal State(); // state 1

[/ suppose there is new downl oad for Custonmer 101 here

Cust omrer downl oad = cust. Downl oadState; // state 3

cust . Cancel Pending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.
Refresh Operation

The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

The following code provides an example:

Custoner cust = Custoner.Fi ndByPri maryKey(101);
cust. Fnanme = “newName”;
cust. Refresh();// newNane is discarded

Clear Relationship Objects

The C ear Rel ati onshi pQbj ect s method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

ClearRelationshipObjects

60

Sybase Unwired Platform

Reference

Utility APIs

The Utility APIs allow you to customize aspects of logging, callback handling, and generated
code.

Using the Logger and LogRecord APIs
LogRecor d is used to store two types of logs.

e Operation logs on the Unwired Server. These logs can be downloaded to the device.
« Client logs. These logs can be uploaded to the Unwired Server.

DBC ass. Get Logger —getsthe log API. The client can write its own records using the log
API. For example:

| Logger | ogger = Sanpl eAppDB. Get Logger () ;
| ogger. Debug(“Wite this string to the log records table");
Sanpl eAppDB. Submi t LogRecords();

DBCl ass. Get LogRecor ds — gets the log records received from the server. For example:

Query query = new Query();

query. TestCriteria =

Sybase. Persi st ence. Attri but eTest. Equal (" conponent™, “Customer”);
Sybase. Persi stence. SortCriteria sortCriteria = new

Sybase. Persi stence. SortCriteria();

sortCriteria. Add("requestl|d",

Sybase. Per si st ence. Sort Or der . DESCENDI NG) ;

query.SortCriteria = sortCriteria;

GenericLi st <l LogRecord> | ogli st = Sanpl eAppDB. Get LogRecor ds(query);
Viewing Error Codes in Log Records

You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.

2. Performing an initial synchronization.

3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader

{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": " 111#M/1: 1", "ppni:
"eyJilc2Vybntt ZSI 61 nNLcEFkbW ul i wi cGFzc3dven) G JzMBBBZGLpbi J9", "p
id":"nmoca://

Erul at or 17128142", " et hod": "repl ay", "pbi ": "t rue", "upa": " c3VWQ\Rt a
Wi6czNWQWRt aWd=", "nbo": "Bi ", "app": "M/1: 1", "pkg": "inot1: 1. 0"}

Developer Reference for Windows and Windows Maobile 61

Reference

JsonCont ent
{"c2":null,"c1":1,"createCalled":true," _op":"C'}

The Unwired Server returns a response. The code is included in the ResponseHeader .

ResponseHeader
{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": "111#M/1: 1", "| ogi nFa
iled":fal se, "nethod": "repl ayFail ed", "l 0g":

[{"nmessage": "com sybase. j dbc3. j dbc. SybSQ.Excepti on: SQL Anywher e
Error -193: Primary key for table 'bi' is not unique : Primary key
value ('1')","repl ayPendi ng":

0, "ei sCode":"","conponent":"Bi","entityKey":"0", "code":

500, "pendi ng": fal se, "di sabl eSubnit": fal se,"?":"inotl. server.LogReco
rdlnpl ", "timestanp":"2010-08- 26

14: 05: 32. 97", "request 1 d": "684cbel6f 6b740eb930d08f d626e1551", " oper at
ion":"create","_op":"N',"replayFail ure":

0, "l evel ":"ERROR', "pendi ngChange": "N', "messagel d": 200001, " _rc":
0}],"mbo":"Bi ", "app":"MW1l: 1", "pkg":"inpt1l:1. 0"}

ResponseCont ent
{"id":100001}

Generateld

You can use the Gener at el d method inthe Local KeyGener at or or KeyGener at or
classes to generate an ID when creating a new object for which you require a primary key or
surrogate key.

This method in the Local KeyGener at or class generates a unique 1D for the package on
the local device:
public static | ong Generatel d()

This method inthe Key Gener at or class generates a unique ID for the same package across
all devices:
public static |ong CGenerateld()

Callback Handlers

To receive callbacks, you must register a Cal | BackHandl er with the generated database
class, the entity class, or both. You can create a handler by extending the

Def aul t Cal | backHandl er class, or by implementing the interface, ICallbackHandler.

In your handler, override the particular callback you want to use (for example, Onl nport).
The callback is executed in the thread that is performing the action (for example, import).
When you receive the callback, the particular activity is already complete.

Note: Message-based synchronization and replication-based synchronization share the same
Cal | backHandl er interface. Some of the callbacks are applicable to message-based
synchronization only or to replication-based synchronization only, while others are shared by
both.

Callbacks in the CallbackHandler interface include:

62

Sybase Unwired Platform

Reference

nanespace Sybase. Persi stence
{
<summar y>
Call back interface which would get called based on event.
</ sunmmar y>
<r emar ks>
MBS and RBS share the sane Cal | backHandl er interface.
/1l Sonme of the callbacks are applicable to MBS only or RBS only,
ot hers are conmon.
/1l Please see the nethod coments for the details
[l </remarks>
public interface ICall backHandl er
{

— — — — —
~——
— — — — —

/1] <summary>

/1] Called when a inport message successfully applies to
dat abases.

/1] <param nanme="nbo" >The Mbil e Busi ness hject was just
i mpor t ed. </ par an>

/1] <lsummary>

[l <remarks>MBS onl y</renmar ks>

voi d Onl nport (object 0);

/1] <summary>

/1] Called when login fails.

/1] <lsummary>

[/l <remarks>MBS onl y</remar ks>
voi d OnLogi nFail ure();

/1] <summary>

/1] Called when | ogin succeeds
/1] <lsummary>

[l <remarks>MBS onl y</renmar ks>
voi d OnLogi nSuccess();

/1] <summary>

[/l Called when a replay request fails

/1l <param nane="nbo" >The Mobil e Busi ness Object to replay. </
par anme

/1] <lsummary>

voi d OnRepl ayFai | ure(object o);

/1] <summary>

/1] Called when a replay request succeeds

/1l <param name="nbo" >The Mobi | e Busi ness Cbject to replay. </
par ane

/1] <lsummary>

voi d OnRepl aySuccess(obj ect 0)

/1] <summary>

[/l Called when a backend search fails

/1] <param name="nbo" >The backend search obj ect </ paranm>
1] </ summary>

voi d OnSear chFai |l ure(object o)

/1] <summary>
/1] Called when a backend search succeeds

Developer Reference for Windows and Windows Maobile 63

Reference

/1l <param nane="nbo" >The backend search obj ect </ paranm>
/1] <lsummary>
voi d OnSear chSuccess(obj ect 0)

[l <summary>

/1] Called when subscribe succeeds
/1] <lsummary>

1l <remarks>MBS onl y</renmar ks>
voi d OnSubscri beSuccess();

/1] <summary>

/1] Called when subscribe fails
/1] <lsummary>

[/l <remarks>MBS onl y</remar ks>
voi d OnSubscri beFail ure();

/1] <summary>
/1] Called when | ast i nport nessage has al ready been processed
successful ly regardi ng subscribe\resune\recover request.
'] </ summary>
/1l <remarks>MBS onl y</renmar ks>
voi d Onl nport Success();

/1] <summary>

/1] Called when unsubscribe succeeds
/1] <lsummary>

/1] <remarks>MBS onl y</remar ks>
voi d OnUnsubscri beSuccess();

/1] <summary>

/1] Called when unsubscribe fails.
']l </ summary>

/1l <remarks>MBS onl y</renmar ks>
voi d OnUnsubscri beFail ure();

<sunmary>
Cal | ed when suspend subscription succeeds
</ summar y>

/1] <remarks>MBS onl y</renmar ks>

voi d OnSuspendSubscri pti onSuccess();

11
Il
Il

—~— —

/1] <summary>

/1] Called when suspend subscription fails
1] </ summary>

/1] <remarks>MBS onl y</renmar ks>

voi d OnSuspendSubscri ptionFail ure();

<sunmary>
Cal | ed when resune subscription succeeds.
</ summar y>

/1] <remarks>MBS onl y</renmar ks>

voi d OnResuneSubscri pti onSuccess();

/1
Il
Il

—~— —

/1] <summary>
/1] Called when resume subscription fails.
1] </ summary>

64 Sybase Unwired Platform

Reference

/1] <remarks>MBS onl y</renmar ks>
voi d OnResuneSubscri ptionFail ure();

<sunmary>
Cal | ed when recover succeeds.
</ summar y>

/1] <remarks>MBS onl y</renmar ks>
voi d OnRecover Success();

/1
Il
Il

—~— —

[l <summary>

/1] Called when recover fails.
'] </ summary>

/1l <remarks>MBS onl y</renmar ks>
voi d OnRecover Fai l ure();

<sunmary>
Cal | ed when reset succeeds.
</ summar y>

/1] <remarks>MBS onl y</renmar ks>
voi d OnReset Success();

11
Il
Il

—~— -

/1] <summary>

/1] Called at the specified status of the synchronization.

/1l <param name="groups">a |ist of synchronization groups. </
par ane

/1l <param nanme="cont ext " >synchroni zati on cont ext. </ par an>

/1] <lsummary>

[l <remarks>RBS onl y</renmar ks>

Synchroni zati onActi on
OnSynchr oni ze(Sybase. Col | ecti ons. Ceneri cLi st <Sybase. Per si st ence. | Sy
nchroni zati onG oup> groups, Synchroni zati onCont ext context);

/1] <summary>

/1l Called if the synchronization failed

/1] <lsummary>

/1l <param name="groups">a |ist of synchronization groups. </
par ane

[/l <remar ks>RBS onl y</remar ks>

voi d
OnSynchr oni zeFai | ur e(Sybase. Col | ecti ons. Generi cLi st <Sybase. Persi ste
nce. | Synchroni zati onG oup> groups);

/1] <summary>

/1l Called if synchronization succeed

/1l <lsummary>

/1l <param name="groups">a |ist of synchronization groups. </

par ane

[l <remarks>RBS onl y</renmar ks>

voi d
OnSynchr oni zeSuccess(Sybase. Col | ecti ons. Ceneri cLi st <Sybase. Persi ste
nce. | Synchroni zati onG oup> groups) ;

/1] <summary>
[/l Called when subscription end
/1] <lsummary>
/1l <remarks>MBS onl y</renmar ks>

Developer Reference for Windows and Windows Maobile 65

Reference

voi d OnSubscri pti onEnd();

/1] <summary>

/1l Qher callbacks in this interface (whose names begin with
"on") are invoked inside a database transaction. If the transaction
will be rolled back due to an unexpected exception, then this
operation will be called with the exception (before roll back occurs).

/1] <lsummary>

[/l <remarks>MBS onl y</remar ks>

voi d OnMessageExcepti on(System Excepti on ex)

[l <summary>

I/l O her callbacks in this interface (whose names begin with
"on") are invoked inside a database transaction. If the transaction
i s successfully coomitted, then this operation will be invoked after
commi t.

/1] </summary>

/1] <remarks>MBS onl y</renmar ks>

voi d OnTransacti onCommit () ;

/1] <summary>

/1] Qher callbacks in this interface (whose names begin with
"on") are invoked inside a database transaction. If the transaction
is rolled back, then this operation will be invoked after roll back

/1] <lsummary>

/1] <remarks>MBS onl y</renmar ks>

voi d OnTransacti onRol | back();

/1] <summary>
/1] Called before applying an inmport nessage to database
/1l <param name="nmbo" >The Mdbil e Business Cbject to be
i mport ed. </ par an>
/1] <lsummary>
/1] <remarks>MBS onl y</remar ks>
voi d Bef orel nport (object 0);

/1] <summary>

/1] Called when device storage is critically |ow
'] </ summary>

/1l <remarks>MBS onl y</renmar ks>

voi d OnSt or ageSpacelLow() ;

<sunmar y>
Cal | ed when devi ce storage becones sufficient again
</ summar y>

/1] <remarks>MBS onl y</renmar ks>

voi d OnSt or ageSpaceRecover ed()

/1
Il
Il

—~— —

/1] <summary>

/1l This method will be invoked when the device status has
changed

/1] <lsummary>

/1] <param name="status_1">The current devi ce connection
st at us</ par an»>

66

Sybase Unwired Platform

Reference

/1l <param name="type_2">The current devi ce connection type</
par anme

/1l <param nanme="error Code">The connecti on error code</paranp

/1] <param nanme="error Message">The connection error nessage</
par ane

voi d OnConnecti onSt at usChange(int status_1, int type_2, int
error Code, string errorMessage);

}
}
This code example shows how to create and register a handler to receive callbacks:
public class MyCal |l backHandl er : Defaul t Cal | backHandl er
{

[/ inplementation

Cal | backHandl er handl er = new MyCal | backHandl er () ;
MyDat abase. Regi st er Cal | backHandl| er (handl er) ;
/1 or Custoner. Regi sterCall backHandl er (handl er);

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void CreateDatabase()
public static void Del et eDat abase()

Typically, Cr eat eDat abase does not need to be called since it will be called internally
when necessary. An application may use Del et eDat abase when the client database
contains corrupted data and needs to be cleared.

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions

Exceptions thrown on the Unwired Server are logged in both the server log and in
LogRecor d. For LogRecor d, the exception gets downloaded to the device automatically
during synchronization (replication-based synchronization) or when importing a message
(message-based synchronization).

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps itto a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,

Developer Reference for Windows and Windows Maobile 67

Reference

the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 6. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS down or the connection is terminated.
Table 7. Non-recoverable Error Codes
Error Code Probable Cause Manual Recovery Action
401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.
403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).
404 Resource (table/webservice/BA- | Restore the EIS configuration.
PI1) not found on Backend EIS.
405 Invalid license for the client (ap- | N/A
plicable only for MBS).
412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.
500 SUP internal error in modifying | N/A
the CDB cache.

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThr owCr edent i al Request On401Er r or context
variable is set to true (which is the default), error code 401 throws a

Credenti al Request Except i on, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the

SupThr owCr edent i al Request On401Er r or context variable in Sybase Control
Center. If SupThr owCr edent i al Request On401Er r or is set to false, error code 401
is treated as a normal recoverable exception.

68

Sybase Unwired Platform

Reference

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 8. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net- | 503
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

JCO_ERROR_RESOURCE Indicates that JCO has run | 503
out of resources such as

connections in a connec-
tion pool

JCO_ERROR_STATE_BUSY The remote SAP system is | 503
busy. Try again later

Client-Side Exceptions
Device applications are responsible to catch and handle exceptions thrown by the client object
API.

For message-based synchronization, you can catch exceptions for background thread message
processing by creating a callback handler and implementing OnMessageExcept i on
methods.

Note: Refer to Callback Handlers on page 62 for more information.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

» SynchronizeException —this exception is thrown when an error occurs during
synchronization.

* PersistenceException — this exception is thrown when trying to load an MBO that is
inside the local database.

» SystemException —this exception is thrown for uncategorized errors, and is typically
unrecoverable.

Developer Reference for Windows and Windows Mobile 69

Reference

* ObjectNotFoundException —this exception is thrown when trying to load an MBO that
is not inside the local database.

* NoSuchOperationException — this exception is thrown when trying to call a method
(using the Object Manager API) but the method is not defined for the MBO.

* NoSuchAttributeException —this exception is thrown when trying to access an attribute
(using the Object Manager API) but the attribute is not defined for the MBO.

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API

Some applications or frameworks may wish to operate against MBOs in a generic manner by
invoking MBO operations without prior knowledge of MBO classes. This can be achieved by
using the MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the —nd code generation option. You can use the—r m
option to generate the object manager class.

You can also generate metadata classes by selecting the option "Generate metadata classes" or
"Generate metadata and object manager classes™ option in the code generation wizard in the
mobile application project.

ObjectManager
The Obj ect Manager class allows an application to call the Object APl in a reflection style.

| Obj ect Manager rm = new MyDat abase_RM) ;

Cl assMet aDat a cust oner = MyDat abase. Met adat a. Get d ass(“ Custonmer”);
AttributeMetabData | name = custoner. Get Attribute(“l nane”);

Oper ati onMet aDat a save = custoner. Get Operati on(“save”);

obj ect myMBO = rm NewObj ect (cust omer) ;

rm Set Val ue(nyMBO, | name, “Steve”);

rm | nvoke(nyMBO, save, new CbjectList());

DatabaseMetaData
The Dat abaseMet aDat a class holds package level metadata. You can use it to retrieve
data such as synchronization groups, default database file, and MBO metadata .

Dat abaseMet aDat a dnd = Sanpl eAppDB. Met adat a;
foreach (String syncGoup in dnd. Synchroni zati onG oups)

Consol e. Wit eLi ne(syncG oup);

70

Sybase Unwired Platform

Reference

EntityMetaData
The Ent i t yMet aDat a class holds metadata for the MBO, including attributes and

operations.

EntityMet aDat a cust oner Met aData = Cust oner. Get Met aDat a() ;
AttributeMetabData | nane =

cust oner Met aDat a. Get Attri bute("l nane");
Qper ati onMet aDat a save = cust oner Met aDat a. Get Oper ati on("save");

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name, column
name, type, and maxlength.

Consol e. Wi t eLi ne(l name. Nane) ;
Consol e. Wi t eLi ne(l name. Col um) ;
Consol e. Wi t eLi ne(l name. MaxLengt h) ;

Replication-Based Synchronization APIs
The following operations are available when performing replication-based synchronization.

IsSynchronized() and GetLastSynchronizationTime

For replication-based synchronization applications, the package database class provides the
following two methods for querying the synchronized state and the last synchronization time
of a certain synchronization group:

/1l Returns if the synchronizationG oup was synchronized
public static bool |sSynchronized(string synchronizationG oup)

/1] Returns the | ast synchronization time of the synchronizati onG oup
public static System DateTi ne GetLast Synchroni zati onTi me(string
synchroni zati onG oup)

Push Configuration APIs
The push configuration APIs provide methods for configuring push through lightweight
polling (LWP).

Note: To use the push notification API in the Object API, the Sybase Server Sync Tool must be
installed on the device. You can get the installer from

\ <Unwi redPl atform I nstal | Di r>\ Server s\ Unwi r edSer ver

\Client API\ Server Sync\ce\l nstal |l er*. CAB.

LWPPush
The following APIs support registering or unregistering for push notification in the generated
database class:

MyDat abase. Regi st er Cal | backHandl er (new PushLi st ener());
MyDat abase. Get Synchr oni zati onProfil e(). Sl SAppnane = "TestSI S"

Developer Reference for Windows and Windows Maobile 71

Reference

MyDat abase. Get Synchroni zati onProfile(). Sl SInterval M5 = 10000
MyDat abase. Get Synchroni zati onProfile(). SI SNotificationFilePath =
Server SyncRegi stry. Newl nst ance() . Fi | ePat h;

MyDat abase. St art Backgr oundSynchr oni zati on() ;

MyDat abase. St opBackgr oundSynchr oni zati on();

The client should set the SIS push configuration using Synchr oni zat i onGr oup.

Sybase. Per si st ence. | Synchr oni zat i onG oup
Get Synchroni zati onG oup(stri ng syncG oup)

| Synchroni zati onG oup sg = End2EndDB. Get Synchroni zati onG oup("of s");
sg. Enabl eSI' S = true;

sg. I nterval = 0;

sg. Save();

Sybase. Persi st ence. Synchr oni zat i onManager . | nst ance. Regi st er Ser ver Sy
ncConfi guration();

Creating a Replication-based Push Application
The device application must meet these requirements to utilize the replication-based Push
Synchronization APIs described in this section.

You can develop the push application directly from generated mobile business object (MBO)
code, or from the Device Application Designer.

1. Properly configure and deploy the mobile business objects (MBOS).

a) Create a Cache Group and set the cache policy to Scheduled and set some value for the
Cacheinterval, 30 seconds for example.

b) Create a Synchronization Group and set some value for the Change detection level,
one minute for example.

c) Place all Mobile Application project MBOs in the same Cache Group and
Synchronization Group.

d) Deploy the Mobile Application Project as Replication-based in the Deployment
wizard.

2. Configure the Emulator or device:

a) Copy the server synchronization tool SybaseSer ver Sync. v35. CAB from
Cli ent API'\ Server Sync\ ce\i nst al | er to the Emulator or device.

b) Click on the CAB file to install it on the Emulator or device.

Develop the application in Device Application Designer.

Add the Push Settings and Synchronization stock screens.

Generate the device application code.

Run the application in the Emulator or device.

In the Push Settings screen, define the polling interval and notification file path.

N o g MW

72

Sybase Unwired Platform

Reference

‘e |Push settings.m E,V o T o< ok

Enter the folowing information to
register for push notifications.

Paling interval in miliseconds
booo
Motification file path:
Wapplication Data

8. In the Synchronization screen, select the Enable push checkbox, choose a push
notification mode, and click Save.

Developer Reference for Windows and Windows Maobile 73

Reference

9. Start the Server Synchronization Tool on the device.

a)

b)

Setting Up Lightweight Polling for a Single Client

-

Push settings:
| ¥|Enable push

Push interval in minutes:
Push Motification:
Sy immediately

JPrompt and sync if there is no..

@ Prompt but don't sync if there ks no...

Dan't prompt and don't sync

On the device, make sure the sybaseser ver sync. v35. cab file is installed as

described above.

Note: Sybase recommends that you use the sybaseser ver sync. cab file that has
the same .NET CF version as the application. If two applications with different
versions are on the same device, for example one is version 2.0 and the other version
3.5, then use the lower version, such as sybaseser ver sync. v20. cab.

Navigate to the Sever Sync tool included with the program: { devi ce_r oot }

\ Prograns \ Server sync\supsis. exe.

Click supsi s. exe.

This enables push synchronization between Unwired Server and devices.

If you do not want to set the lightweight polling configuration on Unwired Server for multiple

device clients, use the client-side program for a single client.

The poll_every unit should be set to seconds (not minutes, hours, or acombination of the two).
The lightweight poller listener on the client can be turned on/off if you do not want to receive
notifications during a specific period; do not just change the interval.

74

Sybase Unwired Platform

Reference

1. Inyour program, look for where you specify the polling option right

after:. . . ; pol | _noti fier=UALI GHTVEI GHT; pol | _key. ...
2. Change the polling option, for
example:; pol | _notifier=UALI GHTVEI GHT; pol | _every=180; pol |
key=.....

Note: Do not setthe client poll_every value to a shorter time interval than the server value.
This does not result in receiving push notifications any faster, and can cause the client to
see the same notification multiple times, causing multiple useless synchronizations. Only
set this value on the client if for some reason you do not want to see notifications as
frequently as the server checks for pending notifications.

Notification Handling APIs
The notification handling APIs provide method for configuring notifications through
lightweight polling (LWP).

LWPPush

To register to receive push messages through lightweight polling, the client should use these
methods:

Regi st er Cal | backHandl er (Sybase. Per si st ence. | Cal | backHandl er

_handl er)

End2EndDB. Regi st er Cal | backHand! er (new MyCal | backHandl er (t hi s))

Message-Based Synchronization APIs

Message-based synchronization uses the publish/subscribe model. During a subscription, the
subscriber indicates the data to be received from the publisher. When a subscription is
established, the publisher must send all relevant data to the subscriber (to maintain the data
state on the client).

The following operations are available when performing message based synchronization.

Subscribe Data
The following example shows how to notify the server of your subscription to a specific
package.

Sanpl eAppDB. Subscri be() ;

Unsubscribe Data

If the client does not require the subscribed data, it can send an unsubscribe request to remove
it. The following example shows how to notify the server to remove a subscription so it does
not have to push to the application/device any longer.

Sanpl eAppDB. Unsubscri be()

Calling to O eanAl | Dat a() also cleans up all data on the local database.

Developer Reference for Windows and Windows Maobile 75

Reference

Sanpl eAppDB. C eanAl | Dat a() ;

Suspend Operation

This operation is used if the device is going offline or user has no need to receive updates for a
significant amount of time. The following example shows how to notify the server to stop
delivering data change notifications for a specific package.

MyPackageDB. Suspend() ;

Resume Operation
The Resurme operation notifies the server to resume sending the data change notifications
from the last suspension. All modified data since suspension is pushed the application/device.

MyPackageDB. Resume() ;

Recover Operation
If data on the device is corrupted or a Res une request is rejected, you can use this operation to
recover the data.

MyPackageDB. Recover () ;

Start Background Synchronization
This operation starts background synchronization for the database class.

MyPackageDB. St art Backgr oundSynchr oni zati on() ;

Stop Background Synchronization
This operation stops background synchronization for the database class.

MyPackageDB. St opBackgr oundSynchroni zati on();

HasPendingOperations Operation

The HasPendi ngOper at i on operation returns false if there are some requests that have
not yet been processed by server. The following code shows how to wait until the replay
operation is processed by the server.

Custoner c¢ = new Customer();
c.ld = 900;

c. Address = "Beijing";
c.Create();

c. Subm t Pendi ng() ;

[luse this code to wait for the replay operation result:
whi | e (MyPackageDB. HasPendi ngOper ati ons())
Thr ead. Sl eep(1000) ;

76

Sybase Unwired Platform

Reference

Windows Mobile Device Framework API

Describes solutions and examples for tasks and uses of the Sybase Unwired Platform Device
Application Designer API, which allows you to customize the Windows Mobile device user
interface.

Add Controls Manually to a Screen

You can add controls manually to a screen by using the Visual Studio Form Designer, or by
editing the For nt . desi gner . cs file.

Toadd controls from the designer, open the form in Visual Studio Form Designer, and drag and
drop controls from the toolbox to the form.

Another method for adding controls is to open and edit For nt . desi gner. cs.

Il
[/ nyEdi t Box
I/
t hi s. myEdi t Box. Anchor = ((System W ndows. For nms. Anchor Styl es)
(System W ndows. For ms. Anchor St yl es. None |
Syst em W ndows. For ns. Anchor Styl es. Top |
Syst em W ndows. For ns. Anchor Styl es. Left |
Syst em W ndows. For ns. Anchor Styl es. Right)) ;
t hi s. nyEdi t Box. BackCol or = System Draw ng. Col or. Fr omAr gb(

OxFF, OXFF, OxFF) ;
t hi s. nyEdi t Box. Font =

new System Drawi ng. Font (" Tahoma", 9F ,

((System Drawi ng. Font Styl e)
(System Drawi ng. Font Styl e. Regul ar)));

t hi s. nyEdi t Box. ForeCol or =

Syst em Dr awi ng. Col or . Fr omAr gb(0x00, 0x00, 0x00) ;
t hi s. myEdi t Box. Logi cal Type =

Sybase. Unwi r edPl at f or m W ndows. For ns. Logi cal Type. Phone;

thi s. nyEdi t Box. Si ze = new System Drawi ng. Si ze(150, 20) ;
t hi s. myEdi t Box. Tabl ndex = 16;

t hi s. nyEdi t Box. Tag = "16";

thi s. nyEdi t Box. Text = "";

t hi s. nyEdi t Box. Border Style =

Sybase. Unwi r edPl at f or m W ndows. For ns. Bor der St yl e. Bot t orLi ne;

t hi s. nyEdi t Box. Locati on = new Syst em Dr awi ng. Poi nt (87, 180) ;
thi s. nyEdi t Box. Name = "nyEdi t Box";

t hi s. di spl ayMai nPanel . Set Col um(t hi s. nyEdi t Box, 1);

t hi s. di spl ayMai nPanel . Set Rowm(t hi s. nyEdi t Box, 7);

t hi s. di spl ayMai nPanel . Set RowSpan(t hi s. myEdi t Box, 1);

t hi s. di spl ayMai nPanel . Set Col umSpan(t hi s. myEdi t Box, 1);

t hi s. di spl ayMai nPanel . Set Cel | Anchor Styl es(t hi s. nyEdi t Box,

((System W ndows. For ns. Anchor St yl es)
(Syst em W ndows. For ms. Anchor St yl es. None |
Syst em W ndows. For nms. Anchor Styl es. Top |
Syst em W ndows. For ns. Anchor Styl es. Left |

Developer Reference for Windows and Windows Maobile 77

Reference

Syst em W ndows. For ns. Anchor Styl es. Right)));
t hi s. di spl ayMai nPanel . Cont rol s. Add(t hi s. nyEdi t Box) ;

private Sybase. Unwi redPl at f orm W ndows. For ns. Text Box nyEdi t Box;

Customize Controller
In the Cust om zedCode folder, you can add new classes to customize a controller.

This is an example of the FormCreateCustomerController code

/1] <summary>

/1l The Base cl ass of FornCreat eCustonerController

/1] <lsummary>

i nternal abstract class FornCreat eCust onerControl | er Base :
Control | er Base

publ i ¢ For nCr eat eCust orer Cont r ol | er Base(| FormPart form
base(form
{

}

/1 button (Submit) click event handler
internal virtual void Subm t Button_Handl er (For neManager Dat aCbj ect
dat aCbj ect)

/|l GCenerated code

}
}

/1] <summary>

/1l The Controller class of Form FornCreat eCust onmer
[l <lsummary>

internal partial class FornCreateCustonerController
For nCr eat eCust oner Cont r ol | er Base

publ i ¢ FormCr eat eCust omer Control | er (1 FornPart form
base(form
{

}
}
The following code example and illustration describe a partial class where you can override
the virtual methods defined in For nCr eat eCust orrer Cont r ol | er Base and provide
your own business logic.

internal partial class FornCreateCustonerController
{
internal override void

Submi t But t on_Handl er (Sybase. Unwi r edPl at f or m W ndows. For ns. For ns Mana
ger Dat alhj ect dat alhj ect)

/1 Add your custom actions here
MessageBox. Show(" Before Submit!");

// Performthe default action

78 Sybase Unwired Platform

Reference

base. Submi t But t on_Handl er (dat aCbj ect) ;

ControllerBase

FormCreateCustomerControllerBase

SubmitButton_Handler (..}

FormCreateCustomerController

Customize Widget Event Code

You can customize widget event code in the Device Application Designer. Define the widget
event in control's Actions|Coding tab.

After code generation, a widget event handler method is generated in the controller class. For
example:

/] button (Button Events) click event handler
internal virtual void
But t onEvent sBut t on_Cl i ckHandl er (For ne Manager Dat aCbj ect dat aChj ect)

/] actions
try
{

}
catch (Exception __ex_)

{

if (__ex__.lnnerException != null)

{
MessageBox. Show(__ex__. Message + " [" +
__ex__.lnnerException. Message + "]", "Error",
Syst em W ndows. For ns. MessageBoxBut t ons. K,
Syst em W ndows. For ns. MessageBox| con. Excl anat i on,
Syst em W ndows. For ns. MessageBoxDef aul t Butt on. Butt onl) ;
}

el se

{
MessageBox. Show(__ex__. Message, "Error",
Syst em W ndows. For ns. MessageBoxBut t ons. OK,
Syst em W ndows. For ns. MessageBox| con. Excl anat i on,

Developer Reference for Windows and Windows Mobile 79

Reference

Syst em W ndows. For ns. MessageBoxDef aul t But t on. But t onl) ;
}

Sybase. Unwi redPl at f orm W ndows. Uti | . Logger. | nstance. Log(__ex_);
}
}
You can add your action code in this method or define the action code in a partial class so your

code will not be overridden during the next generation. For example:

/1] <summary>
/1l The Controller class of Form FornCreat eCustomerController
/1l </ sunmmary>
internal partial class FornCreateCustonerController

internal override void
But t onEvent sBut t on_Cl i ckHandl er (For neManager Dat aChj ect dat aChj ect)

/1 Add your event handl er code here

/1 Call base method
base. Butt onEvent sButt on_C i ckHandl er (dat aCbj ect) ;
}
}

Add Validators

A validator defines a set of standard classes for performing common data validation checks,
for example, a phone number input field must be numbers. A component can have one or more
validators.

this. editbox. Validating += new

Syst em Conponent Mbdel . Cancel Event Handl er
(editbox_Validating);

Perform Ul Binding to an MBO

You can perform Ul binding to an MBO through the Dat aBi ndi ngs method.

t hi s. edi t box. Dat aBi ndi ngs. Add(new

Syst em W ndows. For ns. Bi ndi ng(" Text ",

t hi s. Cust oner Bi ndi ngSource, "I1d", true,

Syst em W ndows. For ns. Dat aSour ceUpdat eMbde. Never)) ;

Access Pending Operations and Operation Logs

You can access pending operations directly from the MBO.

public static

Sybase. Col | ecti ons. Generi cLi st <Order sManagnent . Cust oner >

Get Pendi ngObj ect s()

public

Sybase. Col | ecti ons. Generi cLi st <Sybase. Per si st ence. | LogRecor d>
Get LogRecor ds()

80

Sybase Unwired Platform

Reference

Connect to Unwired Server
You can call PackageDB. Logi nToSync(user nane, passwor d) to connect to the
Unwired Server.

Add or Modify Navigation
The Form Manager implements the navigation of forms. You can add or modify the navigation
by using a connection action.

Sybase. Unwi redPl at f or m W ndows. Acti on. Acti on

connecti onActi onl_From FornCust oner _To_For nCust onerDetails =
Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory
. Creat eScreenAct i on(typeof (For mCust oner Det ai | s),
(this.Form as FornBase), dat albj ect) ;

connecti onActi onl_From For mCust omer _To_For nCust oner Detai |l s
. Execut e();

You can also call the Form Manager directly.
For nBase. For nsManager . Showror nf ..)

Add or Modify Actions

To add or modify actions, you can create a partial class for the controller and override the event
handler or you can modify the event handler code directly.

Create and Assign Variables
Variables are managed by the VariableManager.

To create a variable:

Sybase. Unwi r edPl at f orm W ndows. Vari abl e. Vari abl eManager
. I nstance. User Var ai bl es
.AddVariabl e("test", null);

To read a variable:

Sybase. Unwi r edPl at f or m W ndows. Vari abl e. Vari abl eManager
. I nstance. Get Vari abl eVal ug(
Sybase. Unwi r edPl at f orm W ndows. Vari abl e. Vari abl eType. User,
"test")

Assign PIM Actions to Controls
You can add a PIM action to a control to integrate the control with a Windows Maobile PIM
application.

To add a PIM attribute to a control:

[Sybase. Unwi r edPl at f or m W ndows. For ns. Cust omAt t ri but es. Pl M_ogi cal Ty
peAttribute
("Contact","FirstNanme")]

Developer Reference for Windows and Windows Mobile 81

Reference

private Sybase. Unwi redPl at f or m W ndows. For ns. Text Box edi t box4;

[Sybase. Unwi r edPl at f orm W ndows. For ns. Cust omAt t ri but es. Pl M_ogi cal Ty
peAttribute

("Contact", "Last Nane")]

private Sybase. Unwi redPl at f or m W ndows. For ns. Text Box edi t box6;

To add a PIM action in the control event handler:

Sybase. Unwi redPl at f or m W ndows. Acti on. Action action0 =
new Sybase. Unwi r edPl at f or m W ndows. Acti on. Pi mActi on
((this.Formas FornBase),"Contact", true,"Display");
acti on0. Execut e();

Change Default Layout
In Windows Mobile, the default layout in the generated application is TableLayout. To change
the layout, you can open the form in the Visual Studio Form Designer, and manually change
the layout.

Windows Mobile Device Framework Assemblies

The Windows Mobile Device Framework consists of the following three assemblies, which
provide device component integration, custom controls, and Device Application Designer
actions:

Table 9. Sybase Windows Device Framework Assemblies

Name Function

Sybase.UnwiredPlatform.Windows Provides drawing improvement and device component inte-
gration. For example, integration with the device's phone, e-
mail, or camera functionalities.

Sybase.UnwiredPlatform.Win- Provides customized control, MVP pattern, action frame-

dows.Forms work, and validation framework.

Sybase.UnwiredPlatform.Win- Provides Device Application Designer specific features. For

dows.StockScreens example, stock screens, prepared stock actions, and varia-
bles.

Sybase.UnwiredPlatform.Windows
The Sybase.UnwiredPlatform.Windows assembly provides nonvisual components.

Table 10. Sybase.UnwiredPlatform.Windows Non-visual Components

Component Description

PictureCamera Allows developers to use the device camera to take pictures.

82 Sybase Unwired Platform

Reference

Component Description

VideoCamera Allows developers to use the device camera to shoot videos.
Email Allows developers to send e-mail messages.

SMS Allows developers to send SMS messages.

Phone Allows developers to make phone calls.

GPS Allows developers to interact with the GPS.

PictureCamera Component

Because of the many types of devices that exist, a developer must check whether a device hasa
picture camera, and must display a message if the device lacks a camera. The PictureCamera
component simplifies developing an application that can work correctly on all devices, by
allowing the use of the PictureCamera component without writing a lot of code.

The PictureCamera supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

VideoCamera Component

Because of the many types of devices that exist, a developer must check whether a device hasa
video camera, and must display a message if the device lacks a camera. The VideoCamera
component simplifies developing an application that can work correctly on all devices, by
allowing the use of the VideoCamera component without writing a lot of code.

Using the VideoCamera Component
How to use the VideoCamera component.

To use the VideoCamera component:

» Add the Sybase.UnwiredPlatform.Windows assembly.

e Openaform.

» Drag and drop the VideoCamera component from toolbox to the form, or manually add
VideoCamera in the form’s desi gner . cs file.

« Set the VideoCamera object properties if required.

< Add an event handler in your form (for example, when clicking on button) to capture a
video using the VideoCamera object.

Example of code generated by the form designer:

private Sybase. Unwi redPl at f orm W ndows. Devi ce. Vi deoCaner a
vi deoCaner al;

this.videoCaneral = new

Sybase. Unwi r edPl at f or m W ndows. Devi ce. Vi deoCaner a() ;

The following sample code for the event handler includes two buttons on the form: the first
button captures a video and returns the video file name. The second button plays the video.

Developer Reference for Windows and Windows Mobile 83

Reference

private void buttonl _dick(object sender, EventArgs e)

Thi s. Fil eName = this.videoCaneral. CaptureVi deoFil e(this);
this.button2. Enabled = !String.lsNull O Enpty(this.FileNane);

}

private void button2_Cick(object sender, EventArgs e)

{

Sybase. Unwi r edPl at f orm W ndows. Devi ce. Process. OpenFi |l e(t hi s. Fi | eNam
e);

Email Component
The e-mail component allows a device application to set e-mail properties and to compose or
send an e-mail message using an e-mail object.

The e-mail component supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

Using the E-mail Component
To use the E-mail component:

e Add the Sybase.UnwiredPlatform.Windows assembly.

e Openaform.

» Drag and drop the e-mail component from toolbox to the form, or manually add e-mail in
the form’s desi gner . cs file.

» Set the e-mail object properties if required.

e Add an event handler in your form (for example, when clicking a button) to compose or
send an e-mail message using the Emai | object.

Example of code generated by the form designer:

private Sybase. Unwi redPl at f orm W ndows. Devi ce. Emai | enai | 1;
this.emil1l = new Sybase. Unwi redPl at f orm W ndows. Devi ce. Emai | () ;

The following sample code for the event handler uses the ConposeEnai | For n() method
to send an e-mail message. The user can review the e-mail message before sending it. The
addressBox1 TextBox control defines the e-mail address, the subjectBox2 TextBox control
defines the e-mail subject, the emailBox3 TextBox control defines the e-mail text.

private void buttonl_dick(object sender, EventArgs e)

/1 You can always try to open the send enail formor send an enmil
thi s. emai | 1. ConposeEnsi | For n(t hi s. addr essBox1. Text,
t hi s. subj ect Box2. Text, this.email Box3. Text, null);

}

84

Sybase Unwired Platform

Reference

SMS Component
The SMS component allows a device application to set SMS properties and to compose or
send an SMS message.

The SMS component supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

Using the SMS Component

To use the SMS component, you must:

e Add the Sybase.UnwiredPlatform.Windows assembly.

e Open aform.

» Drag and drop the SMS component from toolbox to the form, or manually add SMS in the
form’s desi gner . cs file.

» Set the SMS object properties if required.

« Add an event handler in your form (for example, when clicking a button) to compose or
send an SMS message using the SMS object.

Example of code generated by the form designer:

private Sybase. Unwi redPl at f orm W ndows. Devi ce. SMS sns1l;
this.snmsl = new Sybase. Unwi r edPl at f or m W ndows. Devi ce. SMS() ;

The following sample code for the event handler uses the ConposeSnsFor n{) method to
send a SMS. The user can review the message before sending it. The phoneBox1 TextBox
control defines the SMS phone number, the smsBox2 TextBox control defines the SMS text.

private void buttonl _dick(object sender, EventArgs e)

/1 You can always try to open the send SM5 formor send a SMS
this.snmsl. ConposeSnsFor m(t hi s. phoneBox1. Text, this.snsBox2. Text);

}

Phone Component
The phone component .

The phone component supports Windows Mobile Professional 5.x and Windows Mobile
Standard and Professional 6.0, 6.1, and 6.5.

Using the Phone Component

To use the phone component:

* Add the Sybase.UnwiredPlatform.Windows assembly.
e Openaform.

» Drag and drop the Phone component from toolbox to the form, or manually add the Phone
component in the form’s desi gner . cs file.

Developer Reference for Windows and Windows Mobile 85

Reference

« Set the Phone object properties if required.

< Addan event handler in your form (for example, when clicking a button) to make a phone
call using the Phone object.

Example of code generated by the form designer:

private Sybase. Unwi redPl at f or m W ndows. Devi ce. Phone phonel,;

t hi s. phonel = new Sybase. Unwi r edPl at f or m W ndows. Devi ce. Phone() ;

The following sample code for the event handler uses the Cal | () method to make a phone
call. The phoneBox1 TextBox control defines the phone number.

private void buttonl_Cick(object sender, EventArgs e)

/1 You can always try to call
t hi s. phonel. Cal | (thi s. phoneBox1. Text, false);

}

Sybase.UnwiredPlatform.Windows.Forms

The Sybase.UnwiredPlatform.Forms assembly provides custom controls used in Windows
Mobile and Windows code generation. These controls extend the capability and improve the
look and feel of standard Windows Mobile 6.x controls.

The following controls provide features not available in the standard Windows Mobile 6.x
controls:

» Transparent background

* Gradient-filled background

« Background pictures

» Background transparency level (alpha-channel)

» Border thickness and color

* Rounded corners

« Auto-ellipsis for labels

» Phone, email, and SMS integration for LinkLabel

» Button with gradient, image and text

« CheckBox and RadioButton controls with image and text
« Automatic handling of Undo, Copy, Paste, InputPanel, and zoom for TextBox control
» Watermarker for TextBox and PictureBox controls

« Camera integration in PictureBox control

e Edit and ReadOnly modes

The following provide controls that do not exist in Windows Mobile 6.x:

¢ ImageButton

e Masked TextBox
« Signature

* FlowLayoutPanel

86

Sybase Unwired Platform

e TableLayoutPanel

* PowerList

¢ FreeFormView

e Separator

« Touch screen optimized toolbar

* Title bar

Reference

¢ TabControl for Windows Mobile Standard
* RadioButton for Windows Mobile Standard

There are several versions of this assembly for different targets:

* Windows Mobile Professional/PocketPC
« Windows Mobile Standard/Smartphone

* Windows

Table 11. Sybase.UnwiredPlatform.Windows.Form Custom Controls

Component Description

FormBase Extends the standard Windows Mobile Form.

Button Extends the standard Windows Mobile Button control.
CheckBox Extends the standard Windows Mobile CheckBox control.

DateTimePicker

Extends the standard Windows Mobile DateTimePicker
control.

FlowLayoutPanel

Similar to the FlowLayoutPanel control for Windows. Win-
dows Mobile does not have such a control.

FreeFormView Provides similar Form features as a control. It also supports
paging feature if you have many controls and need to put
controls on different pages.

ImageButton A push button with image, text, or both.

Label Extends the standard Windows Mobile Label control.

LinkLabel Extends the standard Windows Mobile LinkLabel control.

Maps Shows the map using Goolge Maps.

MaskedTextBox Similar to the MaskedTextBox control for Windows. Win-
dows Mobile does not have such a control.

Notification Extends the standard Windows Mobile Notification control.

It also supports Windows Mobile Standard and Windows.

Developer Reference for Windows and Windows Mobile

87

Reference

Component Description

Panel Extends the standard Windows Mobile Panel control.
PictureBox Extends the standard Windows Mobile PictureBox control.
PowerL.ist The PowerList control is a powerful list control that is opti-

mized for touch screens.

ProgressBar Shows the progress of a task.

RadioButton Extends the standard Windows Mobile RadioButton control.
It also supports Windows Mobile Standard.

Separator Draws a horizontal or vertical separator.

Signature Allows the user to add signature capture.

TabControl Extends the standard Windows Mobile TabControl control.
TabPage Extends the standard Windows Mobile TabPage control.
TableLayoutPanel Similar to the TableLayoutPanel control for Windows. Win-

dows Mobile does not have such a control.

TextBox Extends the standard Windows Mobile TextBox control.

Toolbar Provides a touch screen optimized Toolbar control.

TitleBar Provides an easier to use TitleBar control for forms or panels.
FormBase

The FormBase is a base form class that provides common form management functions. It
supports the following features:

* Gradient filled background
» Background picture
e Form navigation support

Button Control
The Button control is similar to the Windows Maobile Button control, but improves the look
and feel of the standard control.

The Button control provides the following additional features:

e Gradient fill styles

* Rounded corner

» PushButton, CheckBox, ImageButton styles
e Image

88

Sybase Unwired Platform

Reference

* Image and text alignments
« Pushed font, code, image

CheckBox Control
The CheckBox control is similar to the Windows Mobile CheckBox control, but improves the
look and feel of the standard control.

The CheckBox control provides the following additional features:

¢ Image

* Image and text alignments
« Pushed font, code, image
« Transparent background

DateTimePicker Control
The DateTimePicker control is similar to the Windows Mobile DateTimePicker control.

The DateTimePicker control provides the following additional features:

« Border style

e Text alignment

« Edit and ReadOnly modes
e Transparent background

FlowLayoutPanel Control
The FlowLayoutPanel control is similar to the Windows version, but provides additional
features that are useful for developing Windows Mobile applications.

The FlowLayoutPanel control provides the following additional features:

« Stack layout, wrap layout, and uniform layout
« Border thickness and color

* Rounded corner

e Gradient fill

« Background image

» Transparency level

FreeFormView Control
The FreeFormView control provides similar Form features as a control. It also supports a
paging feature, if you have many controls that must be placed on different pages.

ImageButton Control
The ImageButton control is identical to the Button control with the ImageButton style.

Developer Reference for Windows and Windows Mobile 89

Reference

Label Control
The Label control is similar to the Windows Mobile Label control.

The Label control provides the following additional features:

e Auto ellipsis
e Text alignment
» Transparent background

LinkLabel Control
The Label control is similar to the Windows Mobile LinkLabel control.

The LinkLabel control provides the following additional features:

e Auto ellipsis

e Text alignment

« Transparent background

e Phone, e-mail, SMS, Web URL, and file path integration

Maps Control
The Maps control shows a map using the Google Maps service.

It provides the following features:

* Show map view

e Show satellite view

» Go to the current location of the GPS
« Show an address on the map

» Show a geolocation on the map

« Convert geolocation to an address

e Zoom In and Zoom Out

e Scroll

MaskedTextBox Control
The MaskedTextBox control is similar to the Windows version of MaskedTextBox. This
control is a subclass of TextBox.

Note: Windows Mobile does not support the Windows version of MaskedTextBox.

The MaskedTextBox control provides the following additional features:

« Edit and ReadOnly modes

« Border style

* Watermark text

e Phone, email, SMS, Web URL, and file path integration

90 Sybase Unwired Platform

Reference

Notification Control
The Notification control is an extension of the Windows Mobile Notification control.

It supports the following additional features:

» Support for default icons

« Support for HTML text

* Return parsed action defined in HTML text
e Support for Windows

Notification Event

If HTML text is used and the user selects a button or hyperlink, a ResponseSubmitted event
handler is called with the event argument Notification.ResponseSubmittedEventArgs. The
notification event contains the following parsed information:

* Response— The original response.

* Action —Action defined in the HTML text. Allowable values are "notify", "hyperlink" or
"unknown."

* Arguments— Notify arguments (Istbx=1&chkbx=on) or hyperlink name.

» NameValues— The name values map.

Panel Control
The Panel control extends the Windows Mobile standard Panel control.

It provides the following additional features.

< Border thickness and color
« Rounded corners

e Gradient fill

» Background image

e Transparent background

e Transparency level

PictureBox Control
The PictureBox control extends the Windows Mobile standard Panel control.

The PictureBox control provides the following features:

* Border

» Transparent background
e Watermark

e Camera integration

» Browse pictures

« Rotate pictures

Developer Reference for Windows and Windows Maobile 91

Reference

« Load and save pictures
e Limit picture size

PowerList Control
The PowerList control is a powerful list control that is optimized for touch screens.

The PowerL.ist control provides the following features:

< Allows the use of a different layout for selected and unselected items.
e Touch scrolling

« Grouping items by category

» Sorting

« Search support

RadioButton Control
The Panel control extends the Windows Mobile standard RadioButton control, and provides
the following additional features.

< Enhanced radio button bitmap

* Rounded corners

« Auto ellipsis

e Support picture

e Support picture and text alignments
» Transparent background

Separator Control
The Separator control draws a line horizontally or vertically.

Signature Control
The Signature control is a subclass of PictureBox that allows users to sign their signature.

Because Signature is a subclass of PictureBox, all PictureBox properties can be used.

TabControl Control
The TabControl is similar to the Windows Mobile TabControl, but also supports smartphone.

TabPage Control
The TabPage control is similar to the Windows Mobile TabPage control, but also supports
smartphone.

TableLayoutPanel Control
The TableLayoutPanel control is similar to the Windows Mobile TableLayoutPanel control,
but also supports Pocket PC and Smartphone.

92

Sybase Unwired Platform

Reference

TextBox Control
The TextBox control is similar to the Windows Mobile TextBox control, but provides the
following additional features:

e Edit and ReadOnly modes

« Border style

» Transparent background

e Phone, email, SMS, Web URL and file path support
e Watermark

e Built-in input panel support

 Built-in undo/cut/copy/paste support

e Zoom window for multiline text

Toolbar Control
The Toolbar control provides a Toolbar control optimized for touch screen or Smartphone.

TitleBar Control
The TitleBar control provides a more usable TitleBar control for forms or panels, and provides
the following features:

e |con

e Capture

e Left button
« Right button

Sybase.UnwiredPlatform.Windows.StockScreens

Provides Device Application Designer specific features. For example, variables, prepared
stock actions, and stock screens.

Variables
Variables are key-values. There are three types of variables: user-defined variables, table
context variables, and system variables.

A system variable is a predefined variable to retrieve system information such as device date
and time, RAM, flash memory, and other parameters, and information about the Unwired
Server.

The table context variable is related to the MBO used in the current context (for example,
operation).

Developer Reference for Windows and Windows Maobile 93

Reference

Table 12. Variables

Variable Name [Variable Constant Description

Device Date DEVICE_DATE The date set on the device.

Device Time DEVICE_TIME The time set on the device.

OS version DEVICE_OS The OS version running on the device.

Package Name

PACKAGE_NAME

The package name used for the logged-
in user.

Password LOGIN_PASSWORD The password used to log in to Sybase
Unwired Platform.
User Name LOGIN_USER_NAME The user name used to log in to Sybase

Unwired Platform.

Server Name

SERVER_NAME

The name of the Unwired Server where
the user logged in.

Unique ID

GUID

A 32-bit unique ID.

Unwired Server URL

SERVER_URL

The URL used for connecting to the
Sybase Unwired Server.

The following sample code shows how to access the system variable "Package Name."

String packageNane =
Sybase. Unwi r edPl at f orm W ndows. Vari abl e. Vari abl eManager . | nst ance.

Get Vari abl eVal ue(Sybase. Unwi r edPl at f or m W ndows. Vari abl e. Vari abl eTy
pe. System " PACKAGE _NAME");

Actions

You can implement ActionFactory to create different types of actions that are predefined in the
Device Application Designer.

Table 13. Creating Predefined Actions Using ActionFactory

Action Type Description
Alert Shows a message to alert the user.
Connection An action for navigating to another screen.

Navigation Back

An action for navigating to the previous screen.

Exit

Exits the client application.

Logout

Logs out the user, and clears the user name and password.
The user will be required to enter login credentials during the
next login attempt.

94

Sybase Unwired Platform

Reference

Action Type Description

Operation An action for performing a mobile object operation.

Persist Persists local variables assigned to this screen.

Refresh Refreshes the current screen.

Synchronize Synchronizes the MBO in the current screen.

Object Query An action for performing an object query of a mobile busi-
ness object

Alert
The following sample code for the Alert action causes an error message box to appear:
string description = “Hello world”;

Sybase. Unwi redPl at f orm W ndows. Acti on. Action al ertAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFactory. Creat eAl ert Act i
on(description, "ERROR') ;

al ert Acti on. Execut e();

Connection

The following sample code for the Connection action navigates from the current screen to the
FormUpdateProduct screen:

Sybase. Unwi redPl at f or m W ndows. Acti on. Acti on connecti onAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat eScr eenAct
i on(typeof (For mJpdat eProduct),

(this.Formas FornBase), dataObject);
connecti onActi on. Execut e();

Navigation Back
The following sample code for the Navigation Back action is an InlineAction that instructs the
FormsManager to close the current screen and navigate to the previous screen:

Sybase. Unwi r edPl at f or m W ndows. Acti on. Action action0 =
Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFactory. Creat el nl i neAct
i on(

del egat e(Obj ect[] args, out string nessage)

For nBase. For nsManager . Cl oseFor m() ;
nessage = "";
return fal se;

}

)

act i on0. Execut e();

Developer Reference for Windows and Windows Maobile 95

Reference

Exit
The following is sample code for the Exit action:

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti on exitAction =
Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFactory. Creat eExi t Acti o
n();

exi t Acti on. Execute();

Logout
The following is sample code for the Logout action:

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti on | ogout Action =
Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat eLogout Act
ion(this.Formas Form;

| ogout Acti on. Execut e() ;

Operation
The following sample code for the Operation action calls the Cr eat e method of the mobile

business object "newProduct," and creates a new instance of Product:

Li st <Cbj ect > creat eParamet erLi st = new Li st <obj ect>();
Li st <Type> creat ePar anet er TypelLi st = new Li st <Type>();
//create

Product newProduct = new Product();

newPr oduct . | d=100;

newPr oduct . Nane = “ SUP";

[/ Call Product.Create()
Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti on operationAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Creat eOper ati on
Act i on(
t ypeof (Product), newProduct,"Create",

creat eParanet er Li st. ToArray(), creat ePar anet er TypeLi st. ToArray());
oper ati onActi on. Execute();

Persist
The following sample code for the Persist action persists the user variable named "UserVar":

String variabl elValue = “Hell 0”;

Sybase. Unwi redPl at f or m W ndows. Acti on. Acti on persistAction =
Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat ePer si st Ac
tion(

Sybase. Unwi r edPl at f orm W ndows. Vari abl e. Vari abl eType. User, " User Var "
,vari abl elVal ue);
persi st Acti on. Execut e();

96

Sybase Unwired Platform

Reference

Refresh
The following sample code for the Refresh action refreshes the current screen:

Sybase. Unwi redPl at f or m W ndows. Acti on. Action refreshAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat eRef r eshAc
tion((this.Formas FornBase));
ref reshActi on. Execute();

Synchronize
The following sample code for the Synchronize action starts synchronization of the

synchronization group where the "Product™ mobile business object is a member:

Sybase. Unwi r edPl at f orm W ndows. Acti on. Action syncAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat eSynchr oni
zati onActi on(

Product . Get Met aDat a() . Get Publ i cati on(),
"Product");
syncAct i on. Execute();

Object Query

An Object Query action can perform an object query of a mobile business object by using the
Fr eeMet hodAct i on method to delegate to the object query operations of the mobile
business object, as shown in the following sample code for the Object Query action:

Sybase. Unwi r edPl at f or m W ndows. Acti on. Acti on namedQuer yAction =

Sybase. Unwi redPl at f or m W ndows. Acti on. Acti onFact ory. Cr eat eFr eeMet ho
dAct i on(
del egat e(Obj ect[] args,out string nessage)

System I nt32 p_Id = Convert. Tolnt32(@ 100");
| Li st <Custoner> findByld_List =
Cust oner Dat aSt or e. I nst ance. Fi ndByPri maryKey(p_Id);

t hi s. Set Tabl elDat asource(findByld_List);

nmessage = "";
return fal se;

!,
nanedQuer yAct i on. Execut e();

Stock Screens
The following stock screens are available in the Windows Mobile Ul framework.

Table 14. Stock Screens

Screen Type Description

Login The Login screen allows entering a user name and password.

Developer Reference for Windows and Windows Maobile 97

Reference

Screen Type Description

Logs The Logs screen shows the operation logs in the device.

Pending Operations The Pending Operation screen shows the MBO’s pending
operations, and allows you to submit or delete them.

Personalization The Personalization screen allows modifying the values of
Personalization keys defined in the specific package.

Search The Search screen allows a search on specific MBOs.

Synchronize The Synchronize screen lets you manually synchronize the

specific synchronization group and its included MBOs.

Login
The following sample code creates a Login screen:

For nsManager Dat aObj ect For mLogi nDat aCbj ect = new

For nsManager Dat aCbj ect () ;

Form | ogi nScr een= For nBase. For nsManager . Get For n(t ypeof (Forniogin));
For nBase. For nsManager . Fi r st Form = | ogi nScr een;

Appl i cation. Run(l ogi nScreen);

Search
The following sample code creates a Search screen to search the Customer mobile business
object:

For nsManager Dat aCbj ect dat aCbj ect = new For nsManager Dat aCbj ect () ;
dat abj ect [" Cont ext MBOType"] = typeof (Custoner);

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti on screenAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat eScr eenAct
i on(typeof (FornSearch), (this.Formas FornmBase), dataObject);
screenActi on. Execute();

Synchronize
The following sample code creates a Synchronize screen.

For nsManager Dat aCbj ect dat aCbj ect = new For nsManager Dat aCbj ect () ;
Sybase. Unwi r edPl at f orm W ndows. Acti on. Action screenAction =

Sybase. Unwi r edPl at f orm W ndows. Acti on. Acti onFact ory. Cr eat eScr eenAct
i on(typeof (FornBSynchroni zation), (this.Form as FornBase),

dat aCbj ect) ;

screenActi on. Execute();

To enable the Synchronize screen, call this registration method:

MBA nf or mat i onRegi stry. | nst ance. Dat abaseC assType =
t ypeof (MyDat abase) ;

98 Sybase Unwired Platform

Index

A

actions 97
alert 95
connection 95
exit 96
logout 96

navigation back 95

operation 96

persist 96

synchronize 97
ActiveSync, installing and configuring 8
alert action 95
arbitrary find method 42
AttributeMetadata 71
AttributeTest 42

C

callback handler 62

certificates 39

ClassMetadata 71

client database 67

client object API 37

code, generating 12

common APIs 57
CompositeTest 42

connection action 95
ConnectionProfile 37, 39
ConnectionProfile.EncryptionKey 39
controls:adding to a screen 77
CreateDatabase 67
customization:of a controller 78

D

database:client 67
DatabaseMetadata 70
debugging 27
Delete operation 47
DeleteDatabase 67
dependencies 11
deploying
configuring ActiveSync for 8

message-based applications 32
Device Application Designer

generated solution files and projects 21

DLL dependencies 11
documentation roadmap
document descriptions 2

E

EIS error codes 67, 69
entity states 52, 54
error codes
EIS 67, 69
HTTP 67, 69
mapping of SAP error codes 69
non-recoverable 67
recoverable 67
exceptions
server-side 67, 69
exit action 96

G

generated API help 1, 37
Generateld 62

generating code 12

generation gap pattern 22
GetLastSynchronizedTime() 71
getLogRecords 61

H
HasPendingOperations operation 76
HTTP error codes 67, 69

installing
Microsoft ActiveSync 8
synchronization software 8
IsSynchronized() 71

Index

Developer Reference for Windows and Windows Maobile

99

Index

K
KeyGenerator 62

L

layout 82

libraries 25

local business object 51
LocalKeyGenerator 62
LoginToSync 38, 81
logout action 96
LogRecord API 61
LogRecordIimpl 61
LWPPush 71

M

Maps control 90

MetaData API 70

Microsoft ActiveSync, installing and configuring 8
mobile business object states 60
MyPackageDB.CleanAllData(); 75

N

navigation 81
navigation back action 95
newLogRecord 61

O

Object Manager API 70
object query 42, 97
Object query action 97
ObjectManager 70
OfflineLogin 38
OnlmportSuccess 40
OnLineLogin 38
operation actions 96
Other operation 47

P

paging data 42

pending operation 49
accessing 80

persist action 96

personalization keys 52
types 51

PersonalizationParameters 52

PIM actions 81

push synchronization 72

Q

Query object 42
QueryResultSet 45

R

recover operation 76
Refresh operation 60
relationship data, retrieving 46
resume operation 76

S

SampleAppDB.subscribe() 40
setting the database file location on the device 39
setting the databaseFile location 39
simultaneous synchronization 40
Skip 42
SortCriteria 42
start background synchronization 76
status methods 52, 54
Stop Background Synchronization 76
submitLogRecords 61
subscribe data 75
SUPMessaging_Pro.cab 32
SUPMessaging_Std.cab 32
suspend operation 76
Sybase.UnwiredPlatform.Windows 82
Sybase.UnwiredPlatform.Windows assembly 82
Sybase.UnwiredPlatform.Windows.Forms 82
Sybase.UnwiredPlatform.Windows.StockScreens
82

SybaseServerSync 71
synchronization

MBO package 40

of MBOs 40

replication-based 40

simultaneous 40
synchronization software

installing 8
SynchronizationProfile 37
synchronize action 97

100

Sybase Unwired Platform

T

task flow 7
TestCriteria 42

U

unsubscribe data 75
Update operation 47

Vv

validators 80

w

widget events 79
Windows Mobile Device Center 9

Index

Developer Reference for Windows and Windows Maobile

101

Index

102 Sybase Unwired Platform

	Developer Reference for Windows and Windows Mobile
	Contents
	Introduction to Developer Reference for Windows and Windows Mobile
	Documentation Road Map for Unwired Platform
	Introduction to Developing Device Applications with Sybase Unwired Platform

	Development Task Flows
	Task Flow for C# Development
	Task Flow for Device Application Designer and C# Development
	Configuring Your Windows Mobile Environment
	Configuring Connection Settings for the Synchronization Software
	Configuring Windows Mobile Device Center
	Enabling Network Access from the Windows Mobile Device Emulator

	Installing Required Components
	Client API Dependencies

	Mobile Business Object Code or Device Application Designer Code
	Generating Windows or Windows Mobile Application Project Code
	Generating Windows Mobile Device Application Code from the Device Application Designer
	Generating Code For a Windows Mobile Device Application
	Device Application Designer Generated Solution Files and Projects
	Generation Gap Pattern Support
	Windows Mobile UI Project

	Developing a Windows Mobile Device Application Using Visual Studio
	Project Setup
	Creating a Mobile Application Project

	Windows Mobile Libraries
	Windows Mobile Development
	Integrating Help into a Project
	Debugging Windows and Windows Mobile Device Development

	Implementing SyncNow for MBS Applications

	Application Deployment to Devices
	Deploying Replication-Based Applications
	Deploying Message-Based Applications to an Emulator or Device
	Message-based Synchronization Overview
	Device Registration

	Reference
	Generated API Help
	Windows Mobile Client Object API
	Connection APIs
	ConnectionProfile
	SynchronizationProfile
	Authentication
	Connect Using a Certificate
	Encrypt the Database
	Set Database File Property

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization

	Query APIs
	Retrieving Data from the local database
	Object Queries
	Arbitrary Find
	QueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Other Operation
	Cascade Operations
	Pending Operation
	Passing Structures to Operations

	Local Business Object
	Personalization APIs
	Type of Personalization Keys
	Get or Set Personalization Key Values

	Object State APIs
	Entity State Management
	Entity State Example

	Pending State Pattern
	Mobile Business Object States
	Refresh Operation
	Clear Relationship Objects

	Utility APIs
	Using the Logger and LogRecord APIs
	Viewing Error Codes in Log Records

	GenerateId
	Callback Handlers
	Client Database APIs

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	EntityMetaData
	AttributeMetaData

	Replication-Based Synchronization APIs
	IsSynchronized() and GetLastSynchronizationTime
	Push Configuration APIs
	LWPPush
	Creating a Replication-based Push Application
	Setting Up Lightweight Polling for a Single Client

	Notification Handling APIs
	LWPPush

	Message-Based Synchronization APIs
	Subscribe Data
	Unsubscribe Data
	Suspend Operation
	Resume Operation
	Recover Operation
	Start Background Synchronization
	Stop Background Synchronization
	HasPendingOperations Operation

	Windows Mobile Device Framework API
	Add Controls Manually to a Screen
	Customize Controller
	Customize Widget Event Code
	Add Validators
	Perform UI Binding to an MBO
	Access Pending Operations and Operation Logs
	Connect to Unwired Server
	Add or Modify Navigation
	Add or Modify Actions
	Create and Assign Variables
	Assign PIM Actions to Controls
	Change Default Layout

	Windows Mobile Device Framework Assemblies
	Sybase.UnwiredPlatform.Windows
	PictureCamera Component
	VideoCamera Component
	Using the VideoCamera Component

	Email Component
	Using the E-mail Component

	SMS Component
	Using the SMS Component

	Phone Component
	Using the Phone Component

	Sybase.UnwiredPlatform.Windows.Forms
	FormBase
	Button Control
	CheckBox Control
	DateTimePicker Control
	FlowLayoutPanel Control
	FreeFormView Control
	ImageButton Control
	Label Control
	LinkLabel Control
	Maps Control
	MaskedTextBox Control
	Notification Control
	Notification Event

	Panel Control
	PictureBox Control
	PowerList Control
	RadioButton Control
	Separator Control
	Signature Control
	TabControl Control
	TabPage Control
	TableLayoutPanel Control
	TextBox Control
	Toolbar Control
	TitleBar Control

	Sybase.UnwiredPlatform.Windows.StockScreens
	Variables
	Actions
	Alert
	Connection
	Navigation Back
	Exit
	Logout
	Operation
	Persist
	Refresh
	Synchronize
	Object Query

	Stock Screens
	Login
	Search
	Synchronize

	Index

