
Developer Guide: BlackBerry Native
Applications

Sybase Unwired Platform 2.1

DOCUMENT ID: DC01215-01-0210-02
LAST REVISED: November 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Guide for BlackBerry1
Documentation Roadmap for Unwired Platform1
Introduction to Developing Device Applications with

Sybase Unwired Platform ...2
Development Task Flow ..3

Task Flow for BlackBerry JDE Development3
Configuring Your BlackBerry Development

Environment ...4
Installing the BlackBerry Development

Environment ..4
Client API JAR File Locations5

Using Object API to Develop a Device Application5
Generating Java Object API Code5
Generated Code Location and Contents9
Validating Generated Code9

Creating Projects and Importing Files into the
BlackBerry Development Environment10

Mobile Business Object Required Files10
Differences Between the BlackBerry Java Plug-

in and BlackBerry JDE10
Creating a Project in the BlackBerry JDE11
Creating a Project in the BlackBerry Java Plug-in

for Eclipse ..11
Adding Required .jar and .cod Files11

Developing, Debugging, and Customizing BlackBerry
Applications ...12

Configuring an Application to Synchronize and
Retrieve MBO Data ...12

Adding a Device Application Entry Point15
Configuring Unwired Server to Use HTTPS for

RBS ...15

Developer Guide: BlackBerry Native Applications iii

Developing the BlackBerry Device Application16
Debugging BlackBerry Device Development17
Localizing a BlackBerry Application19
Signing ...22

Reference ...23
BlackBerry Client Object API ..23

Client Object API Javadocs23
Connection APIs ..23
Synchronization APIs ...26
Query APIs ..27
Operations APIs ...32
Mobile and Local Business Objects37
Personalization APIs ..37
Object State APIs ..38
Common APIs ..43
Security APIs ...43
Installing X.509 Certificates on BlackBerry

Simulators and Devices53
Single Sign-On With X.509 Certificate Related

Object API ...55
Utility APIs ...56
Exceptions ...61
MetaData and Object Manager API64
Replication-Based Push Synchronization

Applications ...65
Best Practices for Developing Applications72

Check Network Connection Before Login72
Constructing Synchronization Parameters73
Clear Synchronization Parameters73
Clear the Local Database74
Process Synchonized Data74
Create a Custom Callback Handler75
Turn Off API Logger ...76

Index ..77

Contents

iv Sybase Unwired Platform

Introduction to Developer Guide for
BlackBerry

This developer guide provides information about using advanced Sybase® Unwired Platform
features to create applications for RIM BlackBerry devices. The audience is advanced
developers who are familiar working with APIs, but who may be new to Sybase Unwired
Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the client object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and client object API documentation.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object Development
• Tutorial: BlackBerry Application Development, where you create the SUP101 sample

project referenced in this guide.
Complete the tutorials to gain a better understanding of Unwired Platform components
and the development process.

• Troubleshooting for Sybase Unwired Platform
• Javadocs, which provide a complete reference to the APIs, are available from:

• Client Object API – the Unwired Platform installation directory
<UnwiredPlatform_InstallDir>\ClientAPI\apidoc. There is a
subdirectory for rim.

See Fundamentals for high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Documentation Roadmap for Unwired Platform
Learn more about Sybase® Unwired Platform documentation.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on Production Documentation.

Check the Sybase Product Documentation Web site regularly for updates: access http://
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Introduction to Developer Guide for BlackBerry

Developer Guide: BlackBerry Native Applications 1

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Introduction to Developing Device Applications with
Sybase Unwired Platform

A device application includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of mobile
application development:

• The data aspects of the mobile application are called mobile business objects (MBO), and
“MBO development” refers to defining object data models with back-end enterprise
information system (EIS) connections, attributes, operations, and relationships that allow
segmented data sets to be synchronized to the device. Applications can reference one or
more MBOs and can include synchronization keys, load parameters, personalization, and
error handling.

• Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your device application by generating code to use as a
base in a native IDE. Follow an API approach that uses your native IDE's Client Object
API. Unwired WorkSpace provides MBO code generation options targeted for specific
development environments, for example, BlackBerry JDE for BlackBerry device
applications, or Visual Studio for Windows Mobile device applications.
The Client Object API uses the data persistence library to access and store object data in
the database on the device. Code generation takes place in Unwired WorkSpace. You can
generate code manually, or by using scripts. The code generation engine applies the
correct templates based on options and the MBO model, and outputs client objects.

Note: See Sybase Unwired WorkSpace – Mobile Business Object Development for
procedures and information about creating and deploying MBOs.

Introduction to Developer Guide for BlackBerry

2 Sybase Unwired Platform

Development Task Flow

Describes the overall development task flow, and provides information and procedures for
setting up the development environment, and developing device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated UI interaction, validation, business
logic, and performance.

Task Flow for BlackBerry JDE Development
This describes a typical task flow for creating a device application using the BlackBerry JDE
or the BlackBerry Java plug-in for Eclipse (eJDE).

Highlevel steps:

1. Configuring the BlackBerry development environment:

Development Task Flow

Developer Guide: BlackBerry Native Applications 3

a. Installing the BlackBerry Java Plug-in for Eclipse or Downloading the BlackBerry
JDE and MDS Simulator.

b. Client API JAR File Locations.
2. Generating Object API code for Mobile Business Objects.
3. Creating a BlackBerry Device Application Project .
4. Adding Required .jar and .cod Files .
5. Developing, Debugging, and Customizing BlackBerry Applications .

Configuring Your BlackBerry Development Environment
This section describes how to set up your BlackBerry development environment, and provides
the location of required JAR files and client object APIs.

Installing the BlackBerry Development Environment
Download and install either the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse
(eJDE).

You can develop device applications with either the BlackBerry JDE or the BlackBerry Java
plug-in for Eclipse,

For information on transitioning from the BlackBerry JDE to the eJDE, view the video at the
Research In Motion Developer Video Library Web site: http://supportforums.blackberry.com/
t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Installing the BlackBerry Java Plug-in for Eclipse
The BlackBerry Java Plug-in for Eclipse enables you to finish developing the BlackBerry
application using BlackBerry smartphone-specific development, debugging, and simulation
tools.

1. Download the BlackBerry Java Plug-in for Eclipse (full installer) from http://
us.blackberry.com/developers/javaappdev/.

2. Run the downloaded installer and follow the instructions to install the BlackBerry Java
Plug-in for Eclipse. Accept the default installation folder: do not specify the Unwired
WorkSpace Eclipse directory.

Downloading the BlackBerry JDE and MDS Simulator
To generate and distribute BlackBerry device applications, download the MDS simulator and
the BlackBerry JDE and its prerequisites from the BlackBerry Web site.

Prerequisites
You must have a BlackBerry developer account to download the BlackBerry JDE. You may be
required to register if you do not already have an account. Before you download the JDE,

Development Task Flow

4 Sybase Unwired Platform

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://us.blackberry.com/developers/javaappdev/
http://us.blackberry.com/developers/javaappdev/

ensure the 32-bit JDK has already been installed, even for 64-bit operating systems;
otherwise, MDS will not start.

Task

1. Go to the BlackBerry Web site at http://us.blackberry.com/developers/javaappdev/
javadevenv.jsp to download and install the BlackBerry JDE.

2. Go to http://us.blackberry.com/developers/browserdev/devtoolsdownloads.jsp to
download and install the MDS simulator.

Client API JAR File Locations
The client API library JAR files and dependencies are installed in the Sybase Unwired
Platform installation directory. JAR files are used for compilation and COD files for runtime.
Make sure COD files are deployed to the simulator/device along with the device application.

The contents and location of the client API are:

• Client database (UltraLite®J) libraries – <UnwiredPlatform_InstallDir>
\ClientAPI\RBS\BB\UltraliteJ.jar.

• Object API libraries - <UnwiredPlatform_InstallDir>\ClientAPI\RBS
\BB\sup_client_rim.jar.

• Single sign-on libraries - <UnwiredPlatform_InstallDir>\ClientAPI\RBS
\BB\CommonClient.jar.

Using Object API to Develop a Device Application
Generate object API code on which to build your application.

Unwired Platform provides the Code Generation wizard for generating object API code. Code
generation creates the business logic, attributes, and operations for your Mobile Business
Object. You can generate code for these platforms:

• RIM BlackBerry

See the guidelines for generating code for each platform type.

Generating Java Object API Code
Generate object API code containing mobile business object (MBO) references, which allows
you to use APIs to develop device applications for BlackBerry devices.

Prerequisites

Before generating device client code, develop the MBOs that will be referenced in the device
applications you are developing. A mobile application project must contain at least one non-

Development Task Flow

Developer Guide: BlackBerry Native Applications 5

http://us.blackberry.com/developers/javaappdev/javadevenv.jsp
http://us.blackberry.com/developers/javaappdev/javadevenv.jsp
http://us.blackberry.com/developers/browserdev/devtoolsdownloads.jsp

online MBO. You must have an active connection to the data sources to which the MBOs are
bound.

Task

1. Launch the Code Generation wizard.

From Action

The Mobile
Application Diagram

Right-click within the Mobile Application Diagram and select
Generate Code.

WorkSpace Navigator Right-click the Mobile Application project folder that contains the
mobile objects for which you are generating API code, and select
Generate Code.

2. (Optional) Enter the information for these options:

Note: This page of the code generation wizard is seen only if you are using the Advanced
developer profile.

Option Description

Select code genera-
tion configuration

Select either an existing configuration that contains code generation set-
tings, or generate device client code without using a configuration:

• Continue without a configuration – select this option to generate device
code without using a configuration.

• Select an existing configuration – select this option to either select an
existing configuration from which you generate device client code, or
create a new configuration. Selecting this option enables:

• Select code generation configuration – lists any existing configu-
rations, from which you can select and use for this session. You can
also delete any and all existing saved configurations.

• Create new configuration – enter the Name of the new configura-
tion and click Create to save the configuration for future sessions.

Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

3. Click Next.

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Development Task Flow

6 Sybase Unwired Platform

Note: Code generation fails if the server-side (run-time) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

5. Click Next.

6. Enter the information for these configuration options:

Option Description

Language Select Java.

Platform Select the platform (target device) from the
drop-down list for which the device client code
is intended.

• Java ME for BlackBerry

Note: When generating code into a plain Java
project with language 'Java' and platform 'Java
Me for BlackBerry', compilation errors are
generated because of code references to RIM
API's. To avoid errors, generate code into a
BlackBerry project.

Unwired Server Specify a default Unwired Server connection
profile to which the generated code connects at
runtime.

Server domain Choose the domain to which the generated code
will connect. If you specified an Unwired Serv-
er to which you previously connected success-
fully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an Un-
wired Server is selected.

Development Task Flow

Developer Guide: BlackBerry Native Applications 7

Option Description

Page size Optionally, select the page size for the gener-
ated client code. If the page size is not set, the
default page size is 4KB at runtime. The default
is a proposed page size based on the selected
MBO's attributes.

The page size should be larger than the sum of
all attribute lengths (a binary length greater
than 32767 is converted to a Binary Large Ob-
ject (BLOB), and is not included in the sum; a
string greater than 8191 is converted to a Char-
acter Large Object (CLOB), and is also not in-
cluded) for any MBO that is included with all
the selected MBOs. If an MBO attribute's
length sum is greater than the page size, some
attributes are automatically converted to BLOB
or CLOB, and therefore, these attributes cannot
be put into a where clause.

Note: This field is only enabled when an Un-
wired Server is selected.

Package Enter a unique name for the Java package.

Note: Do not use "java" in package names. The
Java package name along with the class name
makes the fully qualified class name that must
be unique into one RIM JVM. If there is a class
with the same fully qualified name, the appli-
cation may fail on real device.

Destination Specify the destination of the generated device
client files. Enter (or Browse) to a Project path
or File system path (Mobile Application
project) location, and select Generated
Code as the destination. JAR files are auto-

matically added to the destination project.

Select Clean up destination before code gen-
eration to clean up the destination folder before
generating the device client files.

Replication-based Select to use replication-based synchronization
for the application.

Development Task Flow

8 Sybase Unwired Platform

Option Description

Message-based This option is not supported for Java applica-
tions.

7. Select Generate metadata classes to generate metadata for the attributes and operations
of each generated client object.

8. Select Generate metadata and object manager classes to generate both the metadata for
the attributes and operations of each generated client object and an object manager for the
generated metadata.

The object manager allows you to invoke MBOs using metadata instead of the object
instances.

9. (Optional) Select Generate JavaDoc to generate API documentation from the source
code.

10. Click Finish.

Generated Code Location and Contents
Generated object API code is stored in the project's Generated Code sub-folder by default, for
example, C:\Documents and Settings\administrator\workspace
\<Unwired Platform project name>\Generated Code\src. Language,
platform, and whether or not you select the Generate metadata classes option determines the
class files generated in this folder.

Assuming you generate code in the default location, you can access it from WorkSpace
Navigator by expanding the Mobile Application project folder for which the code is
generated, and expand the Generated Code folder.

The contents of the folder is determined by the options you selected from the Generate Code
wizard, and include generated class (.java) files that contain:

• MBO - the business logic of your MBO.
• Synchronization parameters - any synchronization parameters for the MBOs.
• Personalization - personalization and personalization synchronization parameters used by

the MBOs.
• Metadata - if you selected Generate metadata classes, the metadata classes which allow

you to use code completion and compile-time checking to ensure that run-time references
to the metadata are correct.

Validating Generated Code
Validation rules are enforced when generating client code for C# and Java. Define prefix
names in the Mobile Business Object Preferences page to correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for key word
conflicts in generated Java and C# code. For example, by displaying error messages in the
Properties view or in the wizard. Other than the known name conversion rules (converting '.' to

Development Task Flow

Developer Guide: BlackBerry Native Applications 9

'_', removing white space from names, and so on), there is no other language specific name
conversion. For example, cust_id is not changed to custId.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand Sybase, Inc > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are auto-generated. For example, when you drag-and-drop a data source onto
the Mobile Application Diagram.

Creating Projects and Importing Files into the BlackBerry
Development Environment

Set up the BlackBerry project, add required libraries, and import mobile business object
(MBO) generated files. Use these procedures if you are developing a device application using
the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse.

Mobile Business Object Required Files
Develop a device application directly from mobile business object (MBO) generated code.

The main characteristics are:

• Mobile business objects – contain only MBO business logic. You must:
• Include libraries and JAR files in the BlackBerry project that support the BlackBerry

Client Object API.
• Add the Java files from the MBO Generated Code folder to the BlackBerry project.

Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
To develop a device application using the BlackBerry Java plug-in for Eclipse, use the same
procedure as developing with the BlackBerry JDE, but note the differences.

• Libraries cannot be located inside BlackBerry projects developed using the BlackBerry
Java plug-in for Eclipse, due to a RIM limitation. The libraries must be outside the projects
and referred to with an absolute path.

Development Task Flow

10 Sybase Unwired Platform

Creating a Project in the BlackBerry JDE
Create the BlackBerry project and add the generated mobile business object (MBO) Java files
to the BlackBerry JDE.

1. Launch the BlackBerry JDE and create a new workspace.

2. Create a BlackBerry project and name it supClients.

3. Right-click the project and select Properties.

4. In the properties dialog, select the Application tab, specify Application for Project
type and select Always make project active in the General tab of the properties for the
project.

5. Select the Build tab, and click Add next to “Imported jar files.” Add files as described in
Developer Guide for BlackBerry > Development Tasks Flows > Creating Projects and
Importing Files into the BlackBerry Development Environment > Adding Required .jar
and .cod Files.

6. Click OK.

7. Copy the MBO generated Java code from the generated location to the project location.

• MBO generated code – references the Client object API and contains the Java files that
implements the business logic of your project. Navigate to the src subdirectory where
you generated the Java code from your Unwired WorkSpace mobile application. This
location is dependent on the workspace that you used.
For example, if your workspace is in the C:\myBBapplications directory and the
name of the mobile application project is test, navigate to C:
\myBBapplications\test\Generated Code\src\test and copy all of
the .java files to your project.

Creating a Project in the BlackBerry Java Plug-in for Eclipse
Create a new BlackBerry project in the BlackBerry Java Plug-in for Eclipse..

1. Start the BlackBerry Java Plug-in for Eclipse.

2. From the toolbar, select New > BlackBerry Project.

3. In the New BlackBerry Project wizard, use these values and click Next.

• Name – enter SUPClient

• Use a project specific JRE – select BlackBerry JRE 6.0.0

Adding Required .jar and .cod Files
Add the following Unwired Platform .jar and .cod file references to the BlackBerry project's
Java build path.

Development Task Flow

Developer Guide: BlackBerry Native Applications 11

• sup_client_rim.jar – from <UnwiredPlatform_InstallDir>
\ClientAPI\RBS\BB for the Blackberry client.

• UltraLiteJ.jar from <UnwiredPlatform_InstallDir>\ClientAPI
\RBS\BB for the BlackBerry client.

• CommonClient.jar from <UnwiredPlatform_InstallDir>\ClientAPI
\RBS\BB for the BlackBerry client.

Copy required .cod files to the BlackBerry simulator directory:

• UltraLiteJ.cod from <UnwiredPlatform_InstallDir>\ClientAPI
\RBS\BB for the BlackBerry client.

• sup_client_rim.cod and CommonClient.cod from
<UnwiredPlatform_InstallDir>\ClientAPI\RBS\BB for the BlackBerry
client.

• CommonClient.cod and CommonClient.cod from
<UnwiredPlatform_InstallDir>\ClientAPI\RBS\BB for the BlackBerry
client.

Developing, Debugging, and Customizing BlackBerry
Applications

Use the BlackBerry Client Object API, as well as native Research in Motion (RIM) APIs to
create or customize your device applications.

To learn more about the BlackBerry JDE, BlackBerry Java plug-in for Eclipse, or RIM
BlackBerry APIs, go to the BlackBerry Java application development Web site at http://
na.blackberry.com/eng/developers/javaappdev/.

Note: Do not modify generated MBO code directly. Create a layer on top of the MBOs using
patterns native to the mobile operating system development to extend and add functionality.

Configuring an Application to Synchronize and Retrieve MBO Data
This example illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application from a
Client Object API based device application.

1. Configure a synchronization profile to point to your host and port.
TestDB.getSynchronizationProfile().setServerName("localhost");
TestDB.getSynchronizationProfile().setPortNumber(2480);

2. Log in to Unwired Server using a user name and password. This step is required for
application initialization.
TestDB.loginToSync("supAdmin", "s3pAdmin");

3. Subscribe to Unwired Server. Unwired Server creates a subscription for this particular
application.

Development Task Flow

12 Sybase Unwired Platform

http://na.blackberry.com/eng/developers/javaappdev/
http://na.blackberry.com/eng/developers/javaappdev/

TestDB.subscribe();

4. Synchronize with Unwired Server. Synchronization uploads all the local changes and
downloads new data with related subscriptions.
ObjectList sgs = new ObjectList();
sgs.add(TestDB.getSynchronizationGroup("default"));
TestDB.beginSynchronize(sgs, "mycontext");

5. List all customer MBO instances from the local database using an object query. FindAll
is a pre-defined object query.
ObjectList customers = Customer.findAll();
for(int i = 0; i < customers.size(); i++)
{
 Customer customer = (Customer)(customers.elementAt(i));
 System.out.println("customer: " + customer.getFname() + " " +
customer.getLname()
 + " " + customer.getId() + customer.getCity());
}

6. Find and update a particular MBO instance, and save to the local database.
Customer cust = Customer.findByPrimaryKey(100);
cust.setAddress(“1 Sybase Dr.”);
cust.setPhone(“9252360000”);
cust.save();//or cust.update();

7. Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the Unwired Server.
Customer.submitPendingOperations();

8. Upload the pending changes to the Unwired Server and get the replay results and all the
changed MBO instances.
<PkgName>DB.beginSynchronize(sgs, "mycontext");

9. Unsubscribe the device application if the application is no longer used.
TestDB.unsubscribe();

Device Application Example Code
Example code for an object API-based client application.

package test;

import com.sybase.persistence.*;
import com.sybase.collections.*;

class MyCallbackHandler extends DefaultCallbackHandler
{
 public int onSynchronize(ObjectList groups,
 com.sybase.persistence.SynchronizationContext context)
 {
 System.out.println("OnSynchronize is called with user context: "
+ context.getUserContext());
 return SynchronizationAction.CONTINUE;
 }
}

Development Task Flow

Developer Guide: BlackBerry Native Applications 13

public class JavaMain extends net.rim.device.api.ui.UiApplication{
 public JavaMain() { }

 public static void main(String [] args) throws Exception
 {
 //Configure synchronization profile to point to your host and
port
 TestDB.getSynchronizationProfile().setServerName("localhost");
 TestDB.getSynchronizationProfile().setPortNumber(2480);

 //If the application requires a callback (for example, to allow
the client framework to provide
 //notification of synchronization results),register the callback
 //function after setting up the connection profile, by executing
 MyCallbackHandler callback = new MyCallbackHandler();
 TestDB.registerCallbackHandler(callback);

 //Login to Unwired Server. This step is required for application
initialization.
 TestDB.loginToSync("supAdmin", "s3pAdmin");

 //Subscribe to Unwired Server. Unwired Server creates a
subscription for this particular application.
 TestDB.subscribe();

 //Synchronize with Unwired Server. Synchronization uploads all
the local changes and downloads new data with related subscriptions.
 ObjectList sgs = new ObjectList();
 sgs.add(TestDB.getSynchronizationGroup("default"));
 TestDB.beginSynchronize(sgs, "mycontext");

 //Wait for synchronization to complete. May not be required for a
typical UI application.
 Thread.sleep(1000*10);

 //List all customer MBO instances from the local database using a
named query. FindAll is a pre-defined object query.
 //Alternatively you can use Dynamic Query to MBO instances too.
 ObjectList customers = Customer.findAll();
 for(int i = 0; i < customers.size(); i++)
 {
 Customer customer = (Customer)(customers.elementAt(i));
 System.out.println("customer: " + customer.getFname() + " " +
customer.getLname()
 + " " + customer.getId() + customer.getCity());
 }

 //Find a particular MBO instance.
 Customer cust = Customer.findByPrimaryKey(441);
 cust.setAddress("1 Sybase Dr.");
 cust.setPhone("9252360000");

 //Update the customer MBO instance. Save to the local database.
 cust.save();
 //Submit the pending changes. The changes are ready for upload,

Development Task Flow

14 Sybase Unwired Platform

but have not yet been uploaded to the Unwired Server.
 cust.submitPending();

 //Upload the pending changes to the Unwired Server and get the
replay results and all the changed MBO instances.
 TestDB.beginSynchronize(sgs, "mycontext");

 //Unsubscribe the device application if the application is no
longer used.
 TestDB.unsubscribe();
 }
}

Adding a Device Application Entry Point
Add a main file to the BlackBerry device application.

1. From the BlackBerry Application project that contains your generated MBO code, for
example supClient, add a new file by right-clicking the project and selecting Create
new file in project.

2. Name the file, for example, BBMain. Click OK.

This file is the main entry point to the device application.

3. Import the common BlackBerry device application development packages as well as the
package that contains your MBOs (for example, com.custom.MBO.*).

You can now create the code to connect to Unwired Server, access and synchronize your
MBOs, and perform other functions.

Configuring Unwired Server to Use HTTPS for RBS
Enable SSL encryption by configuring the replication-based synchronization HTTPS port.

1. In the left navigation pane of Sybase Control Center for Unwired Platform, expand the
Servers node and click the server name.

2. Click Server Configuration.

3. In the right administration pane, on the Replication tab, click Synchronization
Listener.

4. Select Secure synchronization port as the protocol used for synchronization
and configure the certificate properties, then in the optional properties section, specify the
myserver_identity.crt certificate file using the fully qualified path to the file,
along with the password you entered during certificate creation.

Note: In a clustered environment, this fully qualified path must work for all nodes in the
cluster. You can do this via a a shared disk, or distribute this file manually to all nodes.

See Configuring Replication-Based Synchronization Properties. in the Sybase Control
Center online help.

Development Task Flow

Developer Guide: BlackBerry Native Applications 15

Developing the BlackBerry Device Application
This section provides procedures and compares the differences between creating a
BlackBerry application from mobile business object generated code in the BlackBerry JDE
versus the Blackberry Eclipse plug-in (eJDE).

Prerequisites
The following procedures requires you to create, deploy, and generate code from the mobile
business objects (MBOs) used in Tutorial: BlackBerry Application Development, which
creates the business logic and generates the Java files required for the application. Sybase
recommends that you complete the tutorial.

For either development approach:

1. Since KeywordFilterField is employed in this sample, which is available since JDE 4.5.0,
make sure this sample is used in the proper BlackBerry operating system.

2. The generated code SUP101.Customer is modified to override the toString() method
so that the KeywordFilterField displays the data properly.

Task

Developing a BlackBerry Device Application using the BlackBerry Eclipse
Plug-in
Follow these procedures to run the SUP101 project in the BlackBerry® Java® Plug-in for
Eclipse®.

1. Modify the build path to point to the correct location for the sup_client_rim.jar,
CommonClient.jar, and UltraLiteJ.jar files.

The files cannot be located in the current project due to a RIM BlackBerry Plug-in
restriction.

2. Copy sup_client_rim.cod, CommonClient.cod, and UltraLiteJ.cod
files to the simulator directory.

3. Deploy the SUP101 project to the Unwired Server to which the sample refers.

4. Modify SUP101DB.java to include your Unwired Server information(lines 47-51). For
example:

getSynchronizationProfile().setServerName("<UnwiredServerHost>");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
getSynchronizationProfile().setNetworkStreamParams
("trusted_certificates=;url_suffix=");
getSynchronizationProfile().setDomainName("default");

5. Run the project.

Development Task Flow

16 Sybase Unwired Platform

Developing a BlackBerry Device Application using the BlackBerry JDE
Follow these procedures to run the SUP101 project in the BlackBerry JDE.

1. Open the BlackBerry JDE and create a new workspace.

2. Create a new project in the new workspace.

3. Change the Project Type to be CLDC Application or BlackBerry Application (depending
on the JDE you are using).

4. Add an image file to Icon files.

5. Add sup_client_rim.jar, CommonClient.jar, and UltraLiteJ.jar files
to the Build import jar files.

6. Copy sup_client_rim.cod, CommonClient.cod, and UltraLiteJ.cod
files to the simulator directory.

7. Deploy the SUP101 project to the Unwired Server to which the sample refers.

8. Modify SUP101DB.java to include your Unwired Server information (lines 47-51).
For example:

getSynchronizationProfile().setServerName("<UnwiredServerHost>");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
getSynchronizationProfile().setNetworkStreamParams
("trusted_certificates=;url_suffix=");
getSynchronizationProfile().setDomainName("default");

9. Run the project.

Debugging BlackBerry Device Development
Device client and Unwired Server troubleshooting tools for diagnosing RIM® BlackBerry®

development problems.

Client-side debugging
Problems on the device client side that may cause client application problems:

• Unwired Server connection failed.
• Data does not appear on the client device.
• Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

• If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging, and review the debugging information. See Developer
Guide for BlackBerry about using the MBOLogger class to add log levels to messages
reported to the console.

• Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods. Use this method
for logs corresponding to MBO classes.

Development Task Flow

Developer Guide: BlackBerry Native Applications 17

This is the log format:
level,code,eisCode,message,component,entityKey,operation,requestI
d,timestamp

This is a log sample:
5,500,'','java.lang.SecurityException:Authorization failed:
Domain = default Package = end2end.rdb:1.0 mboName =
simpleCustomer action =
delete','simpleCustomer','100001','delete','100014','2010-05-11
14:45:59.710'

• level – the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

• code – replication-based synchronization, Unwired Server administration codes:

• 200 – success.
• 500 – failure.

• eisCode – not currently used.

• message – the message content.

• component – Mobile Business Object (MBO) name.

• entityKey – MBO surrogate key, used to identify and track MBO instances and
data.

• operation – operation name.

• requestId – operation replay request ID or messaging-based synchronization
message request ID.

• timestamp – message logged time, or operation execution time.

• Check the Storm event log:
1. On the Home screen, press Hold.
2. Click the upper-left corner and upper-right corner twice.
3. Review the event log.

• Check the BlackBerry event log:
1. On the device, press ALT+lglg; or, for touch-screen devices, hold the ESC key, tap (no

click) top-left, top-right, top-left, then top-right.
2. Review the event log, and see the RIM BlackBerry documentation for information

about debugging and optimizing.http://na.blackberry.com/eng/developers/resources/
A50_How_to_Debug_and_Optimize_V2.pdf

Server-side debugging
Problems on the Unwired Server side that may cause device client problems:

• The domain or package does not exist.
• Authentication failed for the synchronizing user.
• The operation role check failed for the synchronizing user.
• Back-end authentication failed.

Development Task Flow

18 Sybase Unwired Platform

http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf
http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf

• An operation failed on the remote, replication database back end, for example, a table or
foreign key does not exist. Detailed messages can be found in the Log Record.

• An operation failed on the Web service, REST, or SAP® back end. You can find detailed
messages in the log record.

To find out more information on the Unwired Server side:

• Check the MMS server log files. See the Sybase Control Center documentation for more
information.

Debugging the BlackBerry Device Application
Debug your device application by setting breakpoints and stepping through code.

1. From the BlackBerry JDE, select Debug > Go to build and execute the application, and
launch the simulator.

You can view build results in the JDE output window.

2. Add breakpoints to the code:

a) Place your cursor in the code where you want to add a breakpoint and select Debug >
Breakpoint > Set Breakpoint at Cursor.

b) You can also set breakpoints for a given event from the same menu, for example, On
startup, When an exception is thrown, Before garbage collection, and so on.

3. Run the application from the simulator. The application stops based upon the breakpoint
you set.

4. Once stopped, you can step through the code using any of the step icons (step over, step
into, step out, and so on) located in the JDE toolbar:

For more information about the various views available for debugging, including
determining memory usage, code coverage, and so on, refer to the BlackBerry JDE
documentation. To view a video on how to debug your BlackBerry device application in
the BlackBerry JDE, go to the Research In Motion Developer Video Library Web site at:
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Localizing a BlackBerry Application
To localize a BlackBerry application, you must create a resource header file, a resource
content file for the global locale, and a resource content file for any specific locales that you
require.

Adding a Resource File to the Application
Add a resource file to define the descriptive keys for each localized string.

1. Open the BlackBerry application using the Java Perspective in Eclipse.

Development Task Flow

Developer Guide: BlackBerry Native Applications 19

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

2. Focus on the res folder, and right-click and select New > Package.

3. In the New Java Package dialog, in the Name field, enter the same package name as the
src package name, for example, "com.sybase.sup.samples.objectapi."

4. Add the resource file under res > <package-name>.

• Focus on res > <package-name> and right-click and select New > Other.

5. In the New dialog, select BlackBerry > BlackBerry Resource File and click Next.

6. In the New BlackBerry Resource File dialog, under the res package, enter the a file name
for the rrh (resource header file) in the File name field. Name it by the project name.

When you create a new resource header file, the BlackBerry® Java® Plug-in for Eclipse®

creates the associated .rrc resource content file. For example, entering
SUP101Sample.rrh creates SUP101Sample.rrh and SUP101Sample.rrc
files.

You can create additional resource content files as required for specific locales. These files
must have the same name as the resource header file, followed by an underscore (_) and the
language code, and then, optionally, by a single underscore (_) and a country code.
Language and country codes are specified in ISO-639 and ISO-3166, respectively.

Adding Resource Keys and Values
Localize a BlackBerry application by adding a resource files to the application, and adding
localization code to the application source file.

1. Focus on the rrh (resource header) file and double-click it to open the Resource
Editor.

2. Add resource keys to the resource header file by selecting Add Key from the Root tab.
The resource keys are added in the Root tab, indicating that these resource keys have been
added to the resource header file. The keys are also automatically created in each of the
resource content files.

3. Enter resource values in each of the resource content files.

Adding Localization Code
Add localization code into the application file. The following example is from the SUP101
project.

1. Open the CustomerSampleScreen.java file in the SUP101Sample project. Add
the following code:
//import resource bundle interface. SUP101SampleResource is the
resource bundle interface created automatically
import com.sybase.sup.samples.objectapi.SUP101SampleResource;

2. Add the following code to the concrete screen code:
implements SUP101SampleResource

Development Task Flow

20 Sybase Unwired Platform

private static ResourceBundle _resources =
ResourceBundle.getBundle(BUNDLE_ID, BUNDLE_NAME);

3. Call the resource bundles string to display user interface text, and change the string to call
the resource bundles to display. Add the following code:
InfoScreen(CustomerSampleScreen sampleScreen, Customer customer)
{
 _sampleScreen = sampleScreen;
 _customer = customer;

 // Set up and display UI elements. Use resource bundle string to
display.
 setTitle(_resources.getString(UPDATE_TITLE));
 _fnameField = new
BasicEditField(_resources.getString(FIELD_FNAME),
customer.getFname(),
BasicEditField.DEFAULT_MAXCHARS,Field.FOCUSABLE);
 _lnameField = new
BasicEditField(_resources.getString(FIELD_LNAME),
customer.getLname(),
BasicEditField.DEFAULT_MAXCHARS,Field.FOCUSABLE);
 _companyField = new
BasicEditField(_resources.getString(FIELD_COMPANY),
customer.getCompany_name(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _addressField = new
BasicEditField(_resources.getString(FIELD_ADDRESS),
customer.getAddress(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _stateField = new
BasicEditField(_resources.getString(FIELD_STATE),
customer.getState(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _cityField = new
BasicEditField(_resources.getString(FIELD_CITY),
customer.getCity(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _phoneField = new
BasicEditField(_resources.getString(FIELD_PHONE),
customer.getPhone(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _zipField = new BasicEditField(_resources.getString(FIELD_ZIP),
customer.getZip(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);

Validating the Localization Changes
Test that your changes appear in your application.

1. Launch the BlackBerry simulator then launch the application.

2. Select Options.

3. Select the language you want to test.
The simulator restarts in the new language.

Development Task Flow

Developer Guide: BlackBerry Native Applications 21

4. Launch your application and verify that it is localized.

Signing
Code signing is required for applications to run on physical devices.

You can implement code signing from the BlackBerry JDE:

• BlackBerry JDE – download the Signing Authority Tool from the BlackBerry Web site at
http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp. View
Deploying and Signing Applications in the BlackBerry JDE plug-in for Eclipse at the
Research In Motion Developer Video Library Web site: http://
supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Development Task Flow

22 Sybase Unwired Platform

http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Reference

This section describes the Client Object API. Classes are defined and sample code is provided.

BlackBerry Client Object API
The Sybase Unwired Platform BlackBerry Client Object API consists of generated business
object classes that represent the mobile business object model built and designed in the
Unwired WorkSpace development environment. The BlackBerry Client Object API is used by
device applications to retrieve data and invoke mobile business object operations.

To generate Client Object API Javadoc, select the Generate JavaDoc option when generating
mobile business object (MBO) code.

Client Object API Javadocs
Use the Sybase Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object API Javadocs, located in the Unwired
Platform installation directory <UnwiredPlatform_InstallDir>\ClientAPI
\apidoc. There is a subdirectory for rim.

From the index.html file, the top left navigation pane lists all packages installed with
Unwired Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc as required.

Connection APIs
The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server, and authenticating.

ConnectionProfile
The ConnectionProfile class manages local database information. You must set its
properties before creating a local database.

By default, the database class name is generated as "packageName"+"DB".
ConnectionProfile profile = <PkgName>DB.getConnectionProfile();
profile.setPageSize(4*1024);
profile.setEncryptionKey(”Your key”);

Reference

Developer Guide: BlackBerry Native Applications 23

Managing Device Database Connections
Use the openConnection() and closeConnection() methods generated in the
package database class to manage device database connections.

The openConnection() method checks that the package database exists, creates it if it
does not, and establishes a connection to the database. This method is useful when first starting
the application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the openConnection() method, after logging in, the connection already exists
and is immediately available to the user.

The closeConnection() method closes the current database connection, and releases it
from the used connection pool.

Improving Device Application Performance with Multiple Database Reader Threads
The maxDbConnections property improves device application performance by allowing
multiple threads to read data concurrently from the same local database.

Note: Replication based synchronization clients support a single write thread concurrently
with multiple read threads.

In a typical device application such as Sybase Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry displays, and
loads the details for that entry.

Prior to the implementation of maxDbConnections, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) operation waits for any previous operation to finish before the next is allowed
to proceed. In the list view to detail view example, when the background thread is loading the
entire list, and a user selects the details of one entry to display, the loading of details for that
entry must wait until the entire list is loaded, which can be a long while, depending on the size
of the list.

You can specify the amount of reader threads using maxDbConnections. The default
value is 2.

Implementing maxDbConnections
The ConnectionProfile class in the persistence package includes the maxDbConnections
property, that you set before performing any operation in the application. The default value
(maximum number of concurrent read threads) is two.

ConnectionProfile connectionProfile =
MyPackageDB.getConnectionProfile();

Reference

24 Sybase Unwired Platform

To allow 6 concurrent read threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the application.
 connectionProfile.setMaxDbConnections(6);

SynchronizationProfile
Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed. The ConnectionProfile class manages that information.

The generated package database class initially has default settings for the synchronization
connection profile. You can modify these setttings if you require different settings than the
generated code, or set certificate settings.
ConnectionProfile profile = <PkgName>DB.getSynchronizationProfile();
profile.setDomainName(“default”);
profile.setServerName("sup.sybase.com");
profile.setPortNumber(2480);
profile.setNetworkProtocol(“http”);
profile.setNetworkStreamParams(“trusted_certificates=rsa_public_ce
rt.crt”);

Connect through a Relay Server
To enable your client application to connect through a Relay Server you must make manual
configuration changes in the object API code to provide the Relay Server properties.

Edit <package-name>DB by modifying the values of the Relay Server properties for your
Relay Server environment.

To update properties for Relay Server installed on Apache on Linux:
getSynchronizationProfile().setServerName("examplexp-vm1");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
getSynchronizationProfile().setNetworkStreamParams("trusted
certificates=;url_suffix=/cli/iarelayserver/<FarmName>");
getSynchronizationProfile().setDomainName("default");

To update properties for Relay Server installed on Internet Information Services (IIS) on
Microsoft Windows:
getSynchronizationProfile().setServerName("examplexp-vm1");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
getSynchronizationProfile().setNetworkStreamParams("trusted
certificates=;url_suffix=ias_relay_server/client/rs_client.dll/
<FarmName>");
getSynchronizationProfile().setDomainName("default");

For more information on Relay Server configuration, see System Administration and Sybase
Control Center for Unwired Server.

Reference

Developer Guide: BlackBerry Native Applications 25

Authentication
The generated package database class already provides a valid synchronization connection
profile. You can log in to the Unwired Server with your user name and credentials.

The package database class provides the following methods for logging in to the Unwired
Server:

• public static void onlineLogin(String username, String
password);

• public static bool offlineLogin(String username, String
password);

• public static void loginToSync(String username, String
password);

onlineLogin authenticates the credentials against the Unwired Server.

offlineLogin authenticates against the last successfully authenticated credentials. There
is no communication with Unwired Server in this method.

loginToSync tries offlineLogin first. If offlineLogin fails, it will try
onlineLogin. This is the recommended login method. loginToSync brings the
KeyGenerator to the client from the Unwired Server. The KeyGenerator is an MBO for storing
key values that are known to both the server and the client. On loginToSync from the
client, the server sends down a value that the client can use when creating new records (by
using the method [KeyGenerator generateId] to create key values that the server will
accept).

The KeyGenerator is set up so that the value increments each time the generateId method
is called. A periodic call to submitPending by the KeyGenerator generateId MBO sends
the most recently used value to the Unwired Server, to let the Unwired Server know what keys
have been used on the client side.
<PkgName>DB.loginToSync("username", "password");

Note: Call loginToSync at least once before using the specific Sybase Unwired Platform
package.

Synchronization APIs
You can synchronize mobile business objects (MBOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Reference

26 Sybase Unwired Platform

Changing Synchronization Parameters
Synchronization parameters let you change the parameters used to retrieve data from an MBO
during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.
CustomerSynchronizationParameters sp =
Customer.getSynchronizationParameters();
sp.setMyid(10001);
sp.save();

Performing Mobile Business Object Synchronization
A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

Two synchronization methods are provided in the package database class. You can
synchronize a specified group of MBOs using the synchronization group name:
<PkgName>DB.synchronize(“sync_group”);

Or, you can synchronize all synchronization groups:
<PkgName>DB.synchronize();

Query APIs
The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship and paging data, and to retrieve and filter a query result set.

Retrieving Data from Mobile Business Objects
You can retrieve data from mobile business objects through a variety of queries including
object queries, arbitrary find, and through filtering query result sets.

Object Query
To retrieve data from the local database, use one of the static Object Query methods in the
MBO class.

Object Query methods are generated based on Object Queries defined in Unwired WorkSpace
by the modeler. Object Query methods have whatever query name, parameters and return type
that were defined in Unwired WorkSpace. Object Query methods return one object, or a
collection of objects that match the specified search criteria defined in the Object Query.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

The following method retrieves all customers.

Reference

Developer Guide: BlackBerry Native Applications 27

public static com.sybase.collections.ObjectList findAll()

com.sybase.collections.ObjectList customers = Customer.findAll();

The following method retrieves all customers in a certain page.
public static com.sybase.collections.ObjectList findAll(int skip,
int take)

com.sybase.collections.ObjectList customers = Customer.findAll(10,
5);

Suppose the modeler defined the following Object Query:

• name: findByFirstName
• parameter: String firstName
• query definition: SELECT x.* FROM Customer x WHERE x.fname = :firstName
• return type: List

The preceding Object Query results in this generated method:
public static com.sybase.collections.ObjectList
findByFirstName(String firstName)

com.sybase.collections.ObjectList customers =
Customer.findByFirstName(“fname”);

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 1. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Reference

28 Sybase Unwired Platform

Arbitrary Find
The arbitrary find method provides custom device applications the ability to dynamically
build queries based on user input.

In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify the ordering of the results and object state criteria. A Query class is included in the
client object API’s core classes. The Query class is the single object passed to the arbitrary
search methods and consists of search conditions, object/row state filter conditions, and data
ordering information.

Define these conditions by setting properties in a query:

• TestCriteria – criteria used to filter returned data.
• SortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

TestCriteria can be an AttributeTest or a CompositeTest.

Dynamic Query
You can construct a query SQL statement to query data from a local database. This query may
across multiple tables (MBOs).

Query query2 = new Query();
query2.select("c.fname,c.lname,s.order_date,s.region");
query2.from("Customer", "c");
//
// Convenience method for adding a join to the query
// Detailed construction of the join criteria
query2.join("Sales_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("fname");
ts.setTestValue("Beth");
query2.where(ts);
QueryResultSet qrs = SampleAppDB.executeQuery(query2);

Note: A wildcard is not allowed in the select clause. You must use explicit column names.

SortCriteria
SortCriteria defines a list of SortOrder, which contains an attribute name and an
order type (ASCENDING or DESCENDING).

For example, locate all Customer objects based on the following criteria:

• FirstName = ‘John’ AND LastName = ‘Doe’ AND (State = ‘CA’ or State = ‘NY’)
• Customer is New or Updated
• Ordered by: LastName ASC, FirstName ASC, Credit DESC
• Skip the first 10 and take 5

Reference

Developer Guide: BlackBerry Native Applications 29

Use code similar to:
 Query props = new Query();
 //define the attribute based conditions
 CompositeTest innerCompTest = new CompositeTest();
 innerCompTest.setCompositionType(TestType.OR);
 innerCompTest.add (
 new AttributeTest ("state", "CA", AttributeTest.EQUAL));
 innerCompTest.add (
 new AttributeTest ("state", "NY", AttributeTest.EQUAL));
 CompositeTest outerCompTest = new CompositeTest();
 outerCompTest.setCompositionType(CompositeTest.AND);
 outerCompTest.add (
 new AttributeTest("fname", "John", AttributeTest.EQUAL));
 outerCompTest.add (
 new AttributeTest("lname", "Doe" ,AttributeTest.EQUAL));
 outerCompTest.add (innerCompTest);
 //define the ordering
 SortCriteria sort = new SortCriteria();
 sort.add ("lname", SortOrderType.ASCENDING);
 sort.add ("fname", SortOrderType.ASCENDING);
 sort.add ("id", SortOrderType.DESCENDING);
 //set the Query object
 props.setTestCriteria(outerCompTest);
 props.setSortCriteria(sort);
 props.setSkip(10);
 props.setTake(5);
 props.setStateCriteria(ObjectState.NEW |
ObjectState.UPDATED);
 com.sybase.collections.ObjectList customers =
Customer.findWithQuery(props);

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set:
Query props = new Query();
props.setSkip(10);
props.setTake(5);

com.sybase.collections.ObjectList customers =
Customer.findWithQuery(props);

AttributeTest
An AttributeTest defines a filter condition using an MBO attribute, and supports
conditions.

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL

Reference

30 Sybase Unwired Platform

• LIKE
• NOT_LIKE
• MATCH
• NOT_MATCH
• LESS_THAN
• LESS_EQUAL
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• DOES_NOT_START_WITH
• DOES_NOT_END_WITH
• DOES_NOT_CONTAIN

CompositeTest
A CompositeTest combines multiple TestCriteria using the logical operators AND,
OR and NOT to create a compound filter.

The following example retrieves all log records where mboName=entityName and
key=idString:
String entityName = "Customer";
 String idString = "12345";
 com.sybase.persistence.Query query = new
 com.sybase.persistence.Query();
 com.sybase.persistence.CompositeTest ct = new
 com.sybase.persistence.CompositeTest();
 ct.setOperator(com.sybase.persistence.CompositeTest.AND);

ct.add(com.sybase.persistence.AttributeTest.equal("component",
 entityName));

ct.add(com.sybase.persistence.AttributeTest.equal("entityKey",idStr
ing));
 query.setTestCriteria(ct);
 com.sybase.collections.ObjectList logList =
 LogRecordImpl.findWithQuery(query);

QueryResultSet
The QueryResultSet class provides for querying a result set for the dynamic query API.
QueryResultSet is returned as a result of executing a query.

Example
The following example shows how to execute a query on multiple MBOs using a join:
com.sybase.persistence.Query query = new
com.sybase.persistence.Query();

Reference

Developer Guide: BlackBerry Native Applications 31

query.select("c.fname,c.lname,s.order_date,s.region");
query.from(" Customer ", "c");
query.join(" SalesOrder ", "s", " s.cust_id ", "c.id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("lname");
ts.setTestValue(" Devlin");
ts.setOperator(AttributeTest.EQUALS)
query.setTestCriteria(ts);
QueryResultSet qrs = <MyPkg>DB.executeQuery(query);
while(qrs.next())
{
 System.out.println(qrs.getString(columnIndex));
 System.out.println(qrs.getStringByName(columnName));
}

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.
Customer customer = Customer.findById (101);
com.sybase.collections.ObjectList orders =
customer.getSalesOrders();

You can also use the Query class to filter the return MBO list data.
Query props = new Query();
// set query parameters
......
com.sybase.collections.ObjectList orders =
customer.getSalesOrdersFilterBy(props);

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create instances (non-
static) of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the Client Object API, and are not exposed. Any
parameters not mapped to the object’s attributes are left as parameters in the Generated Object
API. The code examples for create, update and delete operations are based on the fill from
attribute being set. Different MBO settings will effect operation methods.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In

Reference

32 Sybase Unwired Platform

other situations, where there are multiple instances of create or update operations, it is not
possible to automatically generate such a Save method.

Create Operation
To execute a create operation on an MBO, create a new MBO instance, set the MBO attributes,
then call the save() or create() operation.

Customer cust = new Customer();
cust.setFname ("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.create();// or cust.save();
cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

Update Operation
To execute update operations on an MBO, get an instance of the MBO, set the MBO attributes,
and then call either the save() or update() operations.

Customer cust = Customer.findById(101);
cust.setFname("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.save();
cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

To update multiple MBOs in a relationship, call submitPending() on the parent MBO, or
call submitPending() on the changed child MBO:

Customer cust = Customer.findById(101);
com.sybase.collections.ObjectList orders = cust.getSalesOrders();
SalesOrder order = (SalesOrder)orders.getByIndex(0);
order.setOrder_date(new java.util.Date());
order.save();
cust.submitPending();

Delete Operation
To execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the delete() operation.

Customer cust = Customer.findById(101);
cust.delete();

For MBOs in a relationship, perform a delete as follows:
 Customer cust = Customer.findById(101);
 com.sybase.collections.ObjectList orders =
cust.getSalesOrders();
 SalesOrder order = (SalesOrder)orders.getByIndex(0);
 order.delete();

Reference

Developer Guide: BlackBerry Native Applications 33

 cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

Save Operation
When called, the Save method determines internally if it should insert or update data to the
client database.

//Update an existing customer
Customer cust = Customer.findById(101);
cust.save();

//Insert a new customer
Customer cust = new Customer();
cust.save();

Other Operation
Operations that are not create, update, or delete operations are called “Other” operations. An
Other operation class is generated for each operation in the MBO that is not a create, update or
delete operation.

Suppose the Customer MBO has an Other operation “other”, with parameters “P1” (string),
“P2” (int) and “P3” (date). This results in a CustomerOtherOperation class being
generated, with “P1”, “P2” and “P3” as its attributes.

To invoke the Other operation, create an instance of CustomerOtherOperation, and set
the correct operation parameters for its attributes. This code provides an example:
CustomerOtherOperation other = new CustomerOtherOperation();
other.setP1(“somevalue”);
other.setP2(2);
other.setP3(new Date());
other.save(); // or other.create()
other.submitPending();
<PkgName>DB.synchronize(); // or <PkgName>DB.synchronize (String
synchronizationGroup)

Multilevel Insert
Multilevel insert allows a single synchronization to execute a chain of related insert
operations.

Consider creating a Customer and a new Customer order at the same time on the client side,
where the SalesOrder has a reference to the new Customer identifier. The following example
demonstrates a multilevel insert:
Customer customer = new Customer();
customer.setFname(“firstName”);
customer.setLname(“lastName”);
customer.setPhone(“777-8888”);
customer.save();
SalesOrder order = new SalesOrder();
order.setCustomer(customer);
order.setOrder_date(new java.util.Date());

Reference

34 Sybase Unwired Platform

order.setRegion("Eastern");
order.setSales_rep(102);
customer.getOrders().add(order);
//Both the child and parent MBO must call save()
order.save();
//Must submit parent
...

To insert an order for an existing customer, first find the customer, then create a sales order
with the customer ID retrieved:
Customer customer = Customer.findById(101);
SalesOrder order = new SalesOrder();
order.setCustomer(customer);
order.setOrder_date(new java.util.Date());
order.setRegion("Eastern");
order.setSales_rep(102);
customer.getSalesOrders().add(order);
order.save();
customer.submitPending();

See the Sybase Unwired Platform online documentation for specific multilevel insert
requirements.

Pending Operation
You can manage pending operations using these methods:

• cancelPending – cancels the previous create, update, or delete operations on the MBO. It
cannot cancel submitted operations.

• submitPending – submits the operation so that it can be replayed on the Unwired Server.
A request is sent to the Unwired Server during a synchronization.

• submitPendingOperations – submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submitPending method on each
of the pending records.

• cancelPendingOperations – cancels all the pending records for the entity. This method
internally invokes the cancelPending method on each of the pending records.

Customer customer = Customer.findById(101);
if (errorHappened) {
 customer.cancelPending();
}
else {
 customer.submitPending();
}

Passing Structures to Operations
Structures hold complex datatypes (for example a string list, class or MBO object, or a list of
objects) that enhance interactions with certain enterprise information systems (EIS) data

Reference

Developer Guide: BlackBerry Native Applications 35

sources, such as SAP and Web services, where the mobile business object (MBO) requires
complex operation parameters.

An Unwired WorkSpace project includes an example MBO that is bound to a Web service data
source that includes a create operation that takes a structure as an operation parameter. MBOs
differ depending on the data source, configuration, and so on, but the principles are similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including a parameter named _HEADER_ that is a structure datatype named
AuthenticationInfo, defined as:
AuthenticationInfo
 userName: String
 password: String
 authentication: String
 locale: String
 timeZone: String

Structures are implemented as classes, so the parameter _HEADER_ is an instance of the
AuthenticationInfo class. The generated Java code for the create operation is:
public void create(complex.AuthenticationInfo
HEADER,java.lang.String escalated,java.lang.String
hotlist,java.lang.String orig_Submitter,java.lang.String
pending,java.lang.String workLog)

This example demonstrates how to initialize the AuthenticationInfo class instance and pass
them, along with the other operation parameters, to the create operation:
AuthenticationInfo authen = new AuthenticationInfo();
 authen.setUserName("Demo");
 authen.setPassword("");
 authen.setAuthentication("");
 authen.setLocale("EN_US");
 authen.setTimeZone("GMT");

 SimpleCaseList newCase = new SimpleCaseList();
 newCase.setCase_Type("Incident");
 newCase.setCategory("Networking");
 newCase.setDepartment("Marketing");
 newCase.setDescription("A new help desk case.");
 newCase.setItem("Configuration");
 newCase.setOffice("#3 Sybase Drive");
 newCase.setSubmitted_By("Demo");
 newCase.setPhone_Number("#0861023242526");
 newCase.setPriority("High");
 newCase.setRegion("USA");
 newCase.setRequest_Urgency("High");
 newCase.setRequester_Login_Name("Demo");
 newCase.setRequester_Name("Demo");
 newCase.setSite("25 Bay St, Mountain View, CA");
 newCase.setSource("Requester");
 newCase.setStatus("Assigned");
 newCase.setSummary("MarkHellous was here Fix it.");
 newCase.setType("Access to Files/Drives");
 newCase.setCreate_Time(new

Reference

36 Sybase Unwired Platform

 java.sql.Timestamp(System.currentTimeMillis()));

 newCase.create(authen, "Other", "Other", "Demo", “false”,
“worklog”);
 newCase.submitPending();

Mobile and Local Business Objects
A business object can be either local or mobile. A local business object is a client only object,
and is represented by the LocalBusinessObject interface. A mobile business object can
be synchronized with the Unwired Server, and is represented by the
MobileBusinessObject interface.

Both LocalBusinessObject and MobileBusinessObject extend
BusinessObject. MobileBusinessObject provides the following additional
methods:
public interface MobileBusinessObject extends BusinessObject
{
 void cancelPending();
 LogRecord[] getLogRecords();
 boolean isCreated();
 boolean isPending();
 boolean isUpdated();
 void submitPending();
}

getLogRecords returns operation logs as LogRecord instances. See the LogRecord
API.

submitPending submits a pending record to the Unwired Server. A pending record is one
that has been updated in the client database, but not sent to the Unwired Server.

cancelPending cancels a pending record.

Personalization APIs
Personalization keys allow the application to define certain input parameter values that differ
(are personalized) for each mobile user. The Personalization APIs allow you to manage
personalization keys, and get and set personalization key values.

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Reference

Developer Guide: BlackBerry Native Applications 37

Get or Set Personalization Key Values
The PersonalizationParameters class is generated automatically for managing
personalization keys. Personalization keys allow the application to define certain input
parameter values that are different (personalized) for each mobile user.

The following code provides an example on how to set a personalization key, and pass an array
of values and array of objects:
PersonalizationParameters pp =
<PkgName>DB.getPersonalizationParameters();
pp.setMyIntPK(10002);
pp.save();
IntList il = new IntList(2);
il.add(10001);
il.add(10002);
pp.setMyIntListPK(il);
pp.save();

MyDataList dl = new MyDataList();
//MyData is a structure type defined in tooling
MyData md = new MyData();
md.setIntMember(...);
md.setStringMember2(...);
dl.add(md);
pp.setMyDataList(dl);
pp.save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Object State APIs
The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Java Type Description

isNew boolean Returns true if this entity is new (but has not been created in
the client database).

Reference

38 Sybase Unwired Platform

Name Java Type Description

isCreated boolean Returns true if this entity has been newly created in the client
database, and one the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

isDirty boolean Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted boolean Returns true if this entity was loaded from the database and
was subsequently deleted.

isUpdated boolean Returns true if this entity has been updated or changed in the
database, and one of the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

pending boolean Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

replayCounter long Returns a long value which is updated each time a row is
created or modified by the client. This value is derived from
the time in seconds since an epoch, and increases each time a
row is changed.

Reference

Developer Guide: BlackBerry Native Applications 39

Name Java Type Description

replayPending long Returns a long value. When a pending row is submitted to the
server, the value of replayCounter is copied to re-
playPending. This allows the client code to detect if a

row has been changed since it was submitted to the server
(that is, if the value ofreplayCounter is greater than

replayPending).

replayFailure long Returns a long value. When the server responds with a re-
playFailure message for a row that was submitted to

the server, the value of replayCounter is copied to

replayFailure, and replayPending is set to 0.

Pending State Pattern
When a create, update, delete, or save operation is called on an entity in a replication-based
synchronization application, the requested change becomes pending. To apply the pending
change, call submitPending on the entity, or submitPendingOperations on the
MBO class:

 Customer e = new Customer();
e.setFname("Fred");
e.setAddress("123 Four St.");
e.create(); // create as pending
e.submitPending(); // submit to server
Customer.submitPendingOperations(); // submit all pending Customer
rows to server

submitPendingOperations submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submitPending method on each of
the pending records.

The call to submitPending causes the operations to be marked for replay by Unwired
Server. On the next synchronization, Unwired Server processes the operations and creates log
records for each operation with code indicating the status of the operation. The LogRecord
interface is defined as follows:

Method
Name

Java Type Description

component string Name of the MBO for the row for which this log record was
written.

entityKey string String representation of the primary key of the row for which
this log record was written.

Reference

40 Sybase Unwired Platform

Method
Name

Java Type Description

code int One of several possible HTTP error codes:

• 200 indicates success.

• 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

• 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

• 404 indicates that the client tried to access a nonexistent
package or MBO.

• 405 indicates that there is no valid license to check out for
the client.

• 500 to indicate an unexpected (unspecified) server fail-
ure.

message String Descriptive message from the server with the reason for the
log record.

operation String The operation (create, update, or delete) that caused the log
record to be written.

requestId String The id of the replay message sent by the client that caused this
log record to be written.

timestamp Date Date and time of the log record.

If a rejection is received, the application can use the entity method getLogRecords to
access the log records and get the reason:
 com.sybase.collections.ObjectList logs = e.getLogRecords();
for(int i=0; i<logs.count(); i++)
{
com.sybase.persistence.LogRecord log =
(com.sybase.persistence.LogRecord)logs.getByIndex(i);
System.out.println("Entity has a log record:");
System.out.println("Code = " + log.getCode());
System.out.println("Component = " + log.getComponent());
System.out.println("EntityKey = " + log.getEntityKey());
System.out.println("Level = " + log.getLevel());
System.out.println("Message = " + log.getMessage());
System.out.println("Operation = " + log.getOperation());
System.out.println("RequestId = " + log.getRequestId());
System.out.println("Timestamp = " + log.getTimestamp());
}

cancelPendingOperations cancels all the pending records for an entity. This method
internally invokes the cancelPending method on each of the pending records.

Reference

Developer Guide: BlackBerry Native Applications 41

Mobile Business Object States
A mobile business object can be in one of three states:

• Original state, the state before any CUD operation.
• Downloaded state, the state downloaded from the Unwired Server.
• Current state, the state after any CUD operation.

The Mobile Business Object class provides properties for querying the original state and the
downloaded state:
public Customer getOriginalState();
public Customer getDownloadState();

The original state is valid only before the application synchronizes with the Unwired Server.
After synchronization has completed successfully, the original state is cleared and set to null.
Customer cust = Customer.findById(101); // state 1
cust.setFname(“firstName");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.save(); // state 2
Customer org = cust.getOriginalState(); // state 1
//suppose there is new download for Customer 101 here
Customer download = cust.getDownloadState(); // state 3
cust.cancelPending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

The following code provides an example:
Customer cust = Customer.findById(101);
cust.setFname("newName");
cust.refresh();// newName is discarded

Clear Relationship Objects
The clearRelationshipObjects method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

clearRelationshipObjects

Reference

42 Sybase Unwired Platform

Common APIs
In addition to Object State APIs these APIs are available with each mobile business object.

• save – save a record to the local database, In the case of an existing record, save calls
update. In the case of a new record, save calls create.

• refresh – client refreshes the entity from the local database.

• cancelPending – cancels a pending record.
• submitPending – submits a pending record to the server.
• getPendingChange – if pending is true, then 'C' (create), 'U' (update), 'D' (delete), 'P' (to

indicate that this row is a parent in a cascading relationship for one or more pending child
objects, but this row itself has no pending create, update or delete operations). If pending is
false, then 'N'.

• getReplayCounter – updated each time a row is created or modified by the client. This
value is derived from the time in seconds since an epoch, so it always increases each time
the row is changed.

• getReplayPending – when a pending row is submitted to the server, the value of
replayCounter is copied to replayPending. This allows client code to detect if a row has
been changed since it was submitted to the server --the test to look for : replayCounter >
replayPending. On receiving a successful response (replayResult) from the server, this is
reset to 0.

• getReplayFailure – when the server responds with a replayFailure message for a row that
was submitted to the server, the replayCounter value is copied to replayFailure, and
replayPending is set to 0.

Security APIs
The security APIs allow you to customize some aspects of connection and database security.

Connect Using a Certificate
You can set certificate information in ConnectionProfile.

ConnectionProfile profile = <PkgName>DB.getSynchronizationProfile();
profile.setDomainName("default");
profile.setServerName("host-name");
profile.setPortNumber(2481);
profile.setNetworkProtocol("https");

Install the certificate to BlackBerry:

• Simulator: copy the certificate to the simulator directory.
• Physical device: use the Desktop Manager Certificate Synchronization tool to import an

HTTPS public certificate from the PC to the device. Then perform a synchronization with
Unwired Server by HTTPS.

Reference

Developer Guide: BlackBerry Native Applications 43

Encrypt the Database
You can use ConnectionProfile.EncryptionKey to set the encryption key of a
local database. Set the key during application initialization, and before creating or accessing
the client database.

The length of the encyption key cannot be fewer than 16 characters.
ConnectionProfile profile = <PkgName>DB.getConnectionProfile();
profile.setEncryptionKey(“Your key of length 16 or more
characters”);

DataVault
The DataVault class provides encrypted storage of occasionally used, small pieces of data.
All exceptions thrown by DataVault methods are of type DataVaultException.

You can use the DataVault class for on-device persistent storage of certificates, database
encryption keys, passwords, and other sensitive items. Use this class to:

• Create a vault
• Set a vault's properties
• Store objects in a vault
• Retrieve objects from a vault
• Change the password used to access a vault

The contents of the data vault are strongly encrypted using AES-256. The DataVault class
allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is
deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the DataVault would be to implement an application login screen. Upon
application start, the user is prompted for a password, which is then used to unlock the vault. If
the unlock attempt is successful, the user is allowed into the rest of the application. User
credentials needed for synchronization can also be extracted from the vault so the user is not
repeatedly prompted to re-enter passwords.

createVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a
vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Reference

44 Sybase Unwired Platform

Syntax
public static DataVault createVault(
 String name,
 String password,
 String salt
)

Parameters

• name – The vault name.
• password – The password.
• salt – The encryption salt value.

Returns

createVault creates a DataVault instance.

If a vault already exists with the same name, a DataVaultException is thrown this with
the reason ALREADY_EXISTS.

Examples

• Create a Data Vault – Creates a new data vault called myVault.

DataVault vault = null;
if (!DataVault.vaultExists("myVault"))
{
 vault = DataVault.createVault("myVault", "password", "salt");
}
else
{
 vault = DataVault.getVault("myVault");
}

vaultExists
Tests whether the specified vault exists.

Syntax
public static boolean vaultExists(String name)

Parameters

• name – The vault name.

Returns

vaultExists can return the following values:

Reference

Developer Guide: BlackBerry Native Applications 45

Returns Indicates

true The vault exists.

false The vault does not exist.

Examples

• Check if a Data Vault Exists – Checks if a data vault called myVault exists, and if so,
deletes it.
if (DataVault.vaultExists("myVault"))
{
 DataVault.deleteVault("myVault");
}

getVault
Retrieves a vault.

Syntax
public static DataVault getVault(String name)

Parameters

• name – The vault name.

Returns

getVault returns a DataVault instance.

If the vault does not exist, a DataVaultException is thrown.

deleteVault
Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
public static void deleteVault(String name)

Parameters

• name – The vault name.

Reference

46 Sybase Unwired Platform

Examples

• Delete a Data Vault – Deletes a data vault called myVault.

if (DataVault.vaultExists("myVault"))
{
 DataVault.deleteVault("myVault");
}

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
public void lock()

Examples

• Locks the data vault. – Prevents changing the vaults properties or stored content.
vault.lock();

isLocked
Tests whether the vault is locked.

Syntax
public boolean isLocked()

Returns

isLocked can return the following values:

Returns Indicates

true The vault is locked.

false The vault is unlocked.

unlock
Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

Syntax
public void unlock(String password, String salt)

Reference

Developer Guide: BlackBerry Native Applications 47

Parameters

• password – The password.
• salt – The encryption salt value.

Returns

If the incorrect password or salt is used, a DataVaultException is thrown this with the
reason INVALID_PASSWORD.

Examples

• Unlocks the data vault. – Once the vault is unlocked you can change the its properties and
stored content.
if (vault.isLocked())
{
 vault.unlock("password", "salt");
}

setLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public void setLockTimeout(int timeout)

Parameters

• timeout – The number of seconds before the lock times out.

Examples

• Set the Lock Timeout – Sets the lock timeout to 1 hour.
vault.setLockTimeout(3600);

getLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public int getLockTimeout()

Reference

48 Sybase Unwired Platform

Returns

getLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before it automatically locks. The default value, 0, indicates that the lock never times
out.

Examples

• Set the Lock Timeout – Retrieves the lock timeout in seconds.
int timeout = vault.getLockTimeout();

setRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an
unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Syntax
public void setRetryLimit(int limit)

Parameters

• limit – The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

• Set the Retry Limit – Sets the retry limit to 5 attempts.
vault.setRetryLimit(5);

getRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
public int getRetryLimit()

Returns

getRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Reference

Developer Guide: BlackBerry Native Applications 49

Examples

• Set the Retry Limit – Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.
int retrylimit = vault.getRetryLimit();

setString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax
public void setString(
 String name,
 String value
)

Parameters

• name – The name associated with the string object to be stored.
• value – The string object to store in the vault.

Examples

• Set a String Value – Creates a test string, unlocks the vault, and sets a string value
associated with the name "testString" in the vault. The finally clause in the
try/catch block ensure that the vault ends in a secure state even if an exception occurs.

string teststring = "ABCDEFabcdef";
try
{
 vault.unlock("password", "salt");
 vault.setString("testString", teststring);
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

getString
Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Reference

50 Sybase Unwired Platform

Syntax
public String getString(String name)

Parameters

• name – The name associated with the string object to be retrieved.

Returns

getString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

• Get a String Value – Unlocks the vault and retrieves a string value associated with the
name "testString" in the vault. The finally clause in the try/catch block
ensure that the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 string retrievedstring = vault.getString("testString");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

setValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax
public void setValue(
 string name,
 byte[] value
)

Parameters

• name – The name associated with the binary object to be stored.
• value – The binary object to store in the vault.

Reference

Developer Guide: BlackBerry Native Applications 51

Examples

• Set a Binary Value – Unlocks the vault and stores a binary value associated with the name
"testValue" in the vault. The finally clause in the try/catch block ensure that
the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 vault.setValue("testValue", new byte[] { 1, 2, 3, 4, 5});
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

getValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
public byte[] getValue(string name)

Parameters

• name – The name associated with the binary object to be retrieved.

Returns

getValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

• Get a Binary Value – Unlocks the vault and retrieves a binary value associated with the
name "testValue" in the vault. The finally clause in the try/catch block
ensure that the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 byte[] retrievedvalue = vault.getValue("testValue");
}
catch (DataVaultException e)

Reference

52 Sybase Unwired Platform

{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

changePassword
Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax
public void changePassword(
 String newPassword,
 String newSalt
)

Parameters

• newPassword – The new password.
• newSalt – The new encryption salt value.

Examples

• Change the Password for a Data Vault – Changes the password to "newPassword".
The finally clause in the try/catch block ensure that the vault ends in a secure state
even if an exception occurs.
try
{
 vault.unlock("password", "salt");
 vault.changePassword("newPassword", "newSalt");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

Installing X.509 Certificates on BlackBerry Simulators and Devices
Install the .p12 certificate on the BlackBerry device or simulator and select it during
authentication.

1. Install the certificate on a device:

Reference

Developer Guide: BlackBerry Native Applications 53

a) Connect to the device with a USB cable.
b) Browse to the SD Card folder on the computer to which the device is connected.
c) Navigate to and select the certificate. Enter the password.
d) Import the certificate.

You can also use the BlackBerry Desktop Manager to intstall the certificate on the device,
but you may need to perform a custom installation to access the Synchronize Certificates
option.

2. Install the certificate on a simulator:

a) From the simulator, select Simulate > Change SD Card.
b) Add/or select the directory that contains the certificate.
c) Open the media application on the device, and select Menu > Explore.
d) Navigate to and select the certificate. Enter the password.
e) Check the certificate and select Menu > Import Certificate.

BlackBerry Sample Code
This sample code illustrates importing the certificate and setting up login credentials, as well
as other APIs related to certificate handling:

/// End2EndDB is a generated RBS class
///First install certificates on your simulator, for example
"Sybase101.p12"

//Test getting certificate from certificat store
CertificateStore myStore =
CertificateStore.getDefault();
String filter1 = "Sybase";
StringList labels = myStore.certificateLabels(filter1, null);
String aLabel = labels.item(0);
LoginCertificate lc = myStore.getSignedCertificate(aLabel,
"password");

// Save the login certificate to your synchronization profile
End2EndDB.getSynchronizationProfile().setCertificate(lc);

// Login to and synchronize with Unwired Server
End2EndDB.loginToSync();
End2EndDB.synchronize();

// Save the login certificate to your data vault
// The vault must be unlocked before saving
String vaultName = "myVault";
DataVault vault = null;
if(!DataVault.vaultExists(vaultName))
{
 vault = DataVault.createVault(vaultName, "password", "salt");
}
else
{

Reference

54 Sybase Unwired Platform

 vault = DataVault.getVault(vaultName);
}
vault.unlock("password", "salt");
lc.save("myLabel", vault);

//test loading and deleting certificate
LoginCertificate newLc = LoginCertificate.load("myLabel", vault);
LoginCertificate.delete("myLabel", vault);

Single Sign-On With X.509 Certificate Related Object API
Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

• CertificateStore class - wraps platform-specific key/certificate store class, or file directory
• LoginCertificate class - wraps platform-specific X.509 distinguished name and signed

certificate
• ConnectionProfile class - includes the certificate attribute used for Unwired Server

synchronization.

Refer to the Javadocs that describe implementation details.

Importing a Certificate Into the Data Vault
Obtain a certificate reference and store it in a password protected data vault to use for X.509
certificate authentication.

The difference between importing a certificate from a system store or a file directory is
determined by how you obtain the CertificateStore object. In either case, only a label
and password are required to import a certificate.

// Obtain a reference to the certificate store
CertificateStore certStore = CertificateStore.getDefault();

// Obtain a list of certificates
StringList labels = certStore.certificateLabels();

// Import a certificate from store (into memory)
String label = ...; // ask user to select a label
String password = ...; // ask the user for a password
LoginCertificate cert = certStore.getSignedCertificate(label,
password);

// Lookup or create data vault
String vaultPassword = ...; // ask user or from O/S protected storage
String vaultName = "..."; // e.g. "SAP.CRM.CertificateVault"
String vaultSalt = "..."; // e.g. a hard-coded random GUID
DataVault vault;
try
{
 vault = DataVault.getVault(vaultName);
 vault.unlock(vaultPassword, vaultSalt);
}
catch (DataVaultException ex)
{

Reference

Developer Guide: BlackBerry Native Applications 55

 vault = DataVault.createVault(vaultName, vaultPassword,
vaultSalt);
}

// Save certificate into data vault
cert.save("myCert", vault);

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

LoginCertificate cert = LoginCertificate.load("myCert", vault);
ConnectionProfile syncProfile =
MyDatabase.getSynchronizationProfile();
syncProfile.setCertificate(cert);

Connecting to Unwired Server With a Certificate
Once the certificate property is set, use the onlineLogin() API with no parameters (do
not use the onlineLogin() API with username and password).

MyPackage_MyPackageDB onlineLogin();

// Handle login response

MyPackage_MyPackageDB subscribe;

Utility APIs
The Utility APIs allow you to customize aspects of logging, callback handling, and generated
code.

LogRecord API
LogRecord is used to store two types of logs.

• Operation logs on the Unwired Server. These logs can be downloaded to the device.
• Client logs. These logs can be uploaded to the Unwired Server.

The following example code executes an update operation and examines the log records for
the Customer MBO:
int id = 101;
Customer result = Customer.findById(id);
result.setFname(“newFname”);
result.save();
result.submitPending();
<PkgName>DB.synchronize();
result = Customer.findById(id);
com.sybase.collections.ObjectList logs = result.getLogRecords();
for(iint i=0 ; i<logs.count(); i++)
{
com.sybase.persistence.LogRecord log = logs.getByIndex(i);

Reference

56 Sybase Unwired Platform

System.out.println("Message: " + log.getMessage());
System.out.println("Component: " + log.getComponent());
System.out.println("Operation: " + log.getOperation());
System.out.println("Timestamp: " + log.getTimestamp());
...
}

Viewing Error Codes in Log Records
You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.
2. Performing an initial synchronization.
3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","ppm":
"eyJ1c2VybmFtZSI6InN1cEFkbWluIiwicGFzc3dvcmQiOiJzM3BBZG1pbiJ9","p
id":"moca://
Emulator17128142","method":"replay","pbi":"true","upa":"c3VwQWRta
W46czNwQWRtaW4=","mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

JsonContent
{"c2":null,"c1":1,"createCalled":true,"_op":"C"}

The Unwired Server returns a response. The code is included in the ResponseHeader.

ResponseHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","loginFa
iled":false,"method":"replayFailed","log":
[{"message":"com.sybase.jdbc3.jdbc.SybSQLException:SQL Anywhere
Error -193: Primary key for table 'bi' is not unique : Primary key
value ('1')","replayPending":
0,"eisCode":"","component":"Bi","entityKey":"0","code":
500,"pending":false,"disableSubmit":false,"?":"imot1.server.LogReco
rdImpl","timestamp":"2010-08-26
14:05:32.97","requestId":"684cbe16f6b740eb930d08fd626e1551","operat
ion":"create","_op":"N","replayFailure":
0,"level":"ERROR","pendingChange":"N","messageId":200001,"_rc":
0}],"mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

ResponseContent
{"id":100001}

Logging APIs
Retrieve client log records.

//To fill out the deleted and submitted log records
 AttributeTest attributeTestNotDeleted = new
AttributeTest(LogConfig.ReplayPending/*"replayPending"*/,

Reference

Developer Guide: BlackBerry Native Applications 57

LogConfig.DefaultReplayPendingValue/*"0"*/, AttributeTest.EQUAL);

q.setTestCriteria(AttributeTest.isNull("operation").and(attributeTe
stNotDeleted));

package com.sybase.persistence;

/**
 * The interface for the logger. Used to create log record.
 */
public interface Logger
{
 /**
 * Get current log level
 */
 public int getLogLevel();
 /**
 * Set current log level
 */

 public void setLogLevel(int newLevel);

 /**
 * Create a new log record
 * @param level The log level of the new log record
 * @param message The log message of the new log record
 */
 public LogRecord newLogRecord(int level, String message);

 /**
 * Create a fatal log
 * @param message The log message of the new log record
 */
 public void fatal(String message);

 /**
 * Create an error log
 * @param message The log message of the new log record
 */
 public void error(String message);

 /**
 * Create a warn log
 * @param message The log message of the new log record
 */
 public void warn(String message);

 /**
 * Create an info log
 * @param message The log message of the new log record
 */
 public void info(String message);

 /**
 * Create a debug log
 * @param message The log message of the new log record

Reference

58 Sybase Unwired Platform

 */
 public void debug(String message);

 /**
 * Create a trace log
 * @param message The log message of the new log record
 */
 public void trace(String message);
}

Callback Handlers
To receive callbacks, you must register a CallBackHandler with the generated database
class, the entity class, or both. You can create a handler by extending the
DefaultCallbackHandler class.

In your handler, override the particular callback that you are interested in (for example,
OnReplayFailure). The callback is executed in the thread that is performing the action
(for example, replay). When you receive the callback, the particular activity is already
complete. The CallbackHandler interface consists of the following callbacks:

Table 2. Callbacks in the CallbackHandler Interface

Callback Description

void onReplayFailure(java.lang.Object entity) Replay failure response notification. entity is a
client MBO instance.

void onReplaySuccess(java.lang.Object entity) Replay success response notification. entity is a
client MBO instance.

int onSynchronize(com.sybase.collections.Ob-
jectList groups,SynchronizationContext context)

This method will be invoked at the specified sta-
tus of the synchronization.groups is a list of syn-
chronization group names. context is the syn-
chronization context.

The following code example shows how to create and register a handler to receive callbacks:
public class MyCallbackHandler extends DefaultCallbackHandler
{
 // implementation
}

CallbackHandler handler = new MyCallbackHandler();
<PkgName>DB.registerCallbackHandler(handler);
//or Customer.registerCallbackHandler(handler);

SyncStatusListener API
You can implement a synchronization status listener to track the progress of synchronization.

Create a listener that implements the SyncStatusListener interface as follows:
public interface SyncStatusListener
{

Reference

Developer Guide: BlackBerry Native Applications 59

 boolean objectSyncStatus(ObjectSyncStatusData statusData);
}

public class MySyncListener extends SyncStatusListener
{
// implementation
}

Pass an instance of the listener to the synchronize methods as follows:
MySyncListener listener = new MySyncListener();
<PkgName>DB.synchronize("sync_group", listener);
// or <PkgName>DB.synchronize(listener); if we want to synchronize
all
// synchronization groups

As the application synchronization progresses, the objectSyncStatus method defined
by the SyncStatusListener interface is called and is passed an
ObjectSyncStatusData object. The ObjectSyncStatusData object contains
information about the MBO being synchronized, the connection to which it is related, and the
current state of the synchronization process. By testing the State property of the
ObjectSyncStatusData object and comparing it to the possible values in the
SyncStatusState enumeration, the application can react accordingly to the state of the
synchronization.

Possible uses of objectSyncStatus method include changing form elements on the
client screen to show synchronization progress, such as a green image when the
synchronization is in progress, a red image if the synchronization fails, and a gray image when
the synchronization has completed successfully and disconnected from the server.

Note: The objectSyncStatus method of SyncStatusListener is called and
executed in the data synchronization thread. If a client runs synchronizations in a thread that is
not the primary user interface thread, the client cannot update its screen as the status changes.
In that case, the client must instruct the primary user interface thread to update the screen
regarding the current synchronization status.

The following is an example of syncStatusListener implementation:

public class SyncListener extends syncStatusListener
{
 public boolean objectSyncStatus(ObjectSyncStatusData data)
 {
 switch (data.getSyncStatusState()) {
 case SyncStatusState.APPLICATION_SYNC_DONE:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.APPLICATION_SYNC_ERROR:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.SYNC_DONE:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.SYNC_STARTING:

Reference

60 Sybase Unwired Platform

 //implement your own UI indicator bar
 break;
 ...
 }
 return false;
 }
}

isSynchronized() and getLastSynchronizationTime()
The package database class provides the following methods for querying the synchronized
state and the last synchronization time of a synchronization group:

// Returns if the synchronizationGroup was synchronized
public static boolean isSynchronized(String synchronizationGroup)

// Returns the last synchronization time of the synchronizationGroup
public static java.util.Date getLastSynchronizationTime(String
synchronizationGroup)

generateId
You can use the generateId methods in the LocalKeyGenerator and
KeyGenerator classes to generate an ID when creating a new object for which you require
a primary key.

This method in the LocalKeyGenerator class generates a unique ID for the package on
the local device:
public static long generateId()

This method in the KeyGenerator class generates a unique ID for the same package across
all devices:
public static long generateId()

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void deleteDatabase()

Typically, createDatabase does not need to be called since it is called internally when
necessary. An application may use deleteDatabase when the client database contains
corrupted data and needs to be cleared.

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Reference

Developer Guide: BlackBerry Native Applications 61

Server-Side Exceptions
Exceptions thrown on the Unwired Server are logged in both the server log and in
LogRecord. For LogRecord, the exception gets downloaded to the device automatically
during synchronization.

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps it to a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 3. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS down or the connection is terminated.

Table 4. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/webservice/BA-
PI) not found on Backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SUP internal error in modifying
the CDB cache.

N/A

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThrowCredentialRequestOn401Error context
variable is set to true (which is the default), error code 401 throws a

Reference

62 Sybase Unwired Platform

CredentialRequestException, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the
SupThrowCredentialRequestOn401Error context variable in Sybase Control
Center. If SupThrowCredentialRequestOn401Error is set to false, error code 401
is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP® error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 5. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later

503

Client-Side Exceptions
Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

• SynchronizeException – this exception is thrown when an error occurs during
synchronization.

• ObjectNotFoundException – this exception is thrown when trying to load an MBO that
is inside the local database.

Reference

Developer Guide: BlackBerry Native Applications 63

• NoSuchOperationException – this exception is thrown when trying to call a method
(using the Object Manager API) but the method is not defined for the MBO.

• NoSuchAttributeException – this exception is thrown when trying to access an attribute
(using the Object Manager API) but the attribute is not defined for the MBO.

MetaData and Object Manager API
The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API
Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the –md code generation option. You can use the –rm
option to generate the object manager class.

The following code synchronizes and retrieves MBO data:
<PkgName>DB.loginToSync(“username”, “password”);
<PkgName>DB.synchronize();
Customer cust = Customer.findById(123);

The following code gets the same result by using the reflection mechanism:
ObjectManager om = new <PkgName>DB_RM();
DatabaseMetaData dbmd = <PkgName>DB.getMetaData();
ObjectList params = new ObjectList(2);
params.add("username");
params.add("password");
om.invoke(dbmd, dbmd.getOperation("loginToSync"), params);
om.invoke(dbmd, dbmd.getOperation("synchronize"), null);
ObjectList syncParams = new ObjectList(1);
syncParams.add("default");
om.invoke(dbmd, dbmd.getOperation("synchronize",new
String[] {"string"}),syncParams);

ObjectManager
The ObjectManager class allows an application to call the Object API in a reflection style.

Customer object = Customer.findById(123);
ObjectManager rm = new <PkgName>DB_RM();
ClassMetaData customer =
<PkgName>DB.getMetaData().getClass(“Customer”);
AttributeMetaData lname = customer.getAttribute(“lname”);
OperationMetaData save = customer.getOperation(“save”);
Object myMBO = rm.newObject(customer);

Reference

64 Sybase Unwired Platform

rm.setValue(myMBO, lname, “Steve”);
rm.invoke(object, save, new ObjectList());

DatabaseMetaData
The DatabaseMetaData class holds package level metadata. You can use it to retrieve
data such as synchronization groups, default database file, and MBO metadata.

DatabaseMetaData dmd = <PkgName>DB.getMetaData();
com.sybase.collections.StringList syncGroups =
dmd.getSynchronizationGroups();
for(int i=0; i<syncGroups.size(); i++)
{
String syncGroup = syncGroups.getByIndex(i);
System.out.println(syncGroup);
}

ClassMetaData
The ClassMetaData class holds metadata for the MBO, including attributes and
operations.

AttributeMetaData lname = customerMetaData.getAttribute(“lname”);
OperationMetaData save = customerMetaData.getOperation(“save”);
...

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System.out.println(lname.getName());
System.out.println(lname.getColumn());
System.out.println(lname.getMaxLength());

Replication-Based Push Synchronization Applications
BlackBerry devices support sending push requests through HTTP. Sybase Unwired Platform
supports push configuration and notification handling APIs for BlackBerry HTTP push.

HTTP Push Gateway
Blackberry has an HTTP push feature for sending messages to occasionally connected
devices. For Blackberry devices paired with BlackBerry Enterprise Server (BES), the HTTP
push gateway contains an address that points to the HTTP listener of the BES server. The
POST to the BES server has a query parameter that contains the device ID of the target devices
(for example, 2100000a for an emulator). The BES server holds the message for a
configurable amount of time, and delivers it to the device when the device becomes reachable.

The push listener runs in the background, and listens for server-initiated synchronization
notifications, for example, based on a schedule or triggered by a Data Change Notification
(DCN):

Reference

Developer Guide: BlackBerry Native Applications 65

The HTTP push gateway can also be used for network-connected Sybase Unwired Platform
applications (for example the Java desktop). The address of the subscription contains an
HTTP URL to an HTTP listener which the application creates. The URL contains a query
parameter such as:
&mode=direct

When the HTTP push gateway sees a query parameter without a device ID, the gateway
understands that the message is not going through the BES server. For the mode=direct
notifications to work, the application must be running and have the listener open. If the
application is not running, the HTTPPush gateway reports a ConnectionRefused error in
the log files, and the notification is not delivered.

Push Configuration APIs
The following APIs support push notification in the generated database class.

The following code example starts an HTTP push listener thread.
// Start the http push listener thread
pushThread = new Thread(new PushListener());
pushThread.start();

The client sets the SIS push configuration parameters using SynchronizationGroup.

Reference

66 Sybase Unwired Platform

SynchronizationGroup sg =
MyDatabase.getSynchronizationGroup("PushEnabled");
sg.setEnableSIS(true);
sg.setInterval(3);
sg.save(); // this will update the local db

The synchronize() method synchronizes the SIS subscription to the Unwired Server.

MyDatabase.synchronize();
System.out.println("++++ Synchronization succeeded ++++++");

The following code example creates the HTTP URL for push, when MDS is running on the
localhost.
public static String getHTTPPushAddress(String deviceid)
{
 String mdsServer = MDSSERVER;

 String mdsPort = MDSSERVERPORT;

 StringBuffer result = new StringBuffer("http://");
 result.append(mdsServer);
 result.append(":");
 result.append(mdsPort);
 result.append("/push?DESTINATION=");
 result.append(deviceid);
 result.append("&PORT=");
 result.append(PUSH_HTTP_DEFAULT_DEVICE_PORT);
 return result.toString();

The setPushConnectionProfile method configures push settings for the specified
package's synchronization profile.
private boolean setPushConnectionProfile(String packageName, String
deviceId, ConnectionProfile syncProfile, String appId)

Creating a Replication Based Push Application
The device application must meet these requirements to utilize the Replication-Based Push
Synchronization APIs described in this section.

Develop the push application directly from generated mobile business object (MBO) code.

1. Properly configure and deploy the mobile business objects (MBOs).

a) Create a Cache Group (or use the default) and set the cache policy to Scheduled and set
some value for the Cache interval, 30 seconds for example.

b) Create a Synchronization Group and set some value for the Change detection level,
one minute for example.

c) Place all Mobile Application project MBOs in the same Cache Group and
Synchronization Group.

d) Deploy the Mobile Application Project as Replication-based in the Deployment
wizard.

2. Develop the push application.

Reference

Developer Guide: BlackBerry Native Applications 67

• Develop the application directly from MBO code:
1. Generate the Object API code.
2. Write a push listener to listen to SIS notification sent from server

public class PushListener
implements Runnable
{
 Connection conn = null;

 private static String url = "http://:
100;deviceside=false";

 /**
 * Constructor
 */
 public PushListener()
 {
 }

 public void run()
 {
 System.out.println("++++++ Started Push Listener +++++
+++");
 try
 {
 conn = Connector.open(url);
 while (true)
 {
 String syncRequestStr = null;
 try
 {
 if (conn instanceof
StreamConnectionNotifier)
 {
 // Open an InputStream.
 StreamConnectionNotifier scn =
 (StreamConnectionNotifier) conn;
 StreamConnection sc = scn.acceptAndOpen();
 InputStream input = sc.openInputStream();
 // Extract the data from the InputStream.
 StringBuffer sb = new StringBuffer();
 byte[] data = new byte[256];
 int chunk = 0;
 while (-1 != (chunk = input.read(data)))
 {
 sb.append(new String(data, 0, chunk));
 }

 // Close the InputStream and StreamConnection.
 input.close();
 String s = sb.toString();
 // Display the received data.
 syncRequestStr = s.trim();
 System.out.println(">>Received: " +
syncRequestStr);

Reference

68 Sybase Unwired Platform

 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }

// Clients can parse the syncRequestStr to find client
application
// name, package name, sync group name(publication), launch
client
//application and perform sync.

// format of the push message sent by the server:
// notification_timestamp=<datetime>;app=<client app name>;
// device_id=<device id>;package=<sup package name with
version>;
// publication=<comma separated list of syncGroup names>

 TestDB.registerCallbackHandler(new MyCallbackHandler());
 com.sybase.collections.ObjectList sgs = new com.sybase.
 collections.ObjectList()
// Assume you have notification to sync two
syncGroups(publications),
// sg1 and sg2:
 sgs.add(TestDB.getSynchronizationGroup("sg1"));
 sgs.add(TestDB.getSynchronizationGroup("sg2"));
 TestDB.beginSynchronize(sgs, new Object());

 }
 }
 catch (Exception ex)
 {
 System.out.println("HttpPushListener - ERROR : " +
ex);
 }
 }

 /*
 * Define callback handler for handling SIS notifications
 */
 public class MyCallbackHandler extends com.sybase.
 persistence.DefaultCallbackHandler
 {
 public int onSynchronize(ObjectList arg0,
SynchronizationContext arg1)
 {
 System.out.println("Called on Synchronize");
 return SynchronizationAction.CONTINUE;
 // returns SynchronizationAction.CONTINUE to proceed
this sync
 }

 public void onSynchronizeFailure(ObjectList arg0)
 {
 System.out.println("Called

Reference

Developer Guide: BlackBerry Native Applications 69

onSynchronizeFailure");
 }

 public void onSynchronizeSuccess(ObjectList arg0)
 {
 System.out.println("Called
onSynchronizeSuccess");
 }
 }
}

3. In the application, start the push listener, set up the connection profile for SIS and
synchronize SIS subscription to server:
public class PushClientApp extends Application
{
 public static String MDSSERVER = "localhost";
 public static String MDSSERVERPORT = "8080";

 static String PROFILE_HTTP_PUSH_PROTOCOL = "HTTPPUSH";
 static String PROFILE_KEY_ADDRESS = "address";
 static String PROFILE_KEY_PROTOCOL = "protocol";
 static String PROFILE_KEY_APPNAME = "appname";
 static String PROFILE_KEY_DEVICE_ID = "deviceId";
 static String PUSH_HTTP_DEFAULT_DEVICE_PORT = "100";
 static String DEVICE_ID = "2100000a";

 public static void main(String[] args)
 {
 PushClientApp app = new PushClientApp();
 app.enterEventDispatcher();
 }

 Thread pushThread;

 PushClientApp()
 {
 // Set the connection profile information
 System.out.println("++++++++ Starting the client +++
+++++++");
 ConnectionProfile syncprofile =
 TestDB.getSynchronizationProfile();
 syncprofile.setServerName("kpatilxp");
 syncprofile.setPortNumber(2480);
 syncprofile.save();

 // Login to the SUP server
 TestDB.loginToSync("supAdmin", "s3pAdmin");

 // Start the http push listener thread
 pushThread = new Thread(new PushListener());
 pushThread.start();

 setPushConnectionProfile("Test:1.0", DEVICE_ID,
 syncprofile, "PushClientApp");

 // Enable SIS on the synchronization group

Reference

70 Sybase Unwired Platform

 SynchronizationGroup sg =
 TestDB.getSynchronizationGroup("PushEnabled");
 sg.setEnableSIS(true);
 sg.setInterval(3);
 sg.save(); // this will update the local db

 // This will synchronize the SIS subscription to the
server
 TestDB.synchronize();
 System.out.println("++++ Synchronization succeeded +
+++++");
 }

 /*
 * For now this assumes MDS is running on localhost
 * Creates the URL for PUSH
 *
 * @param deviceid for SUP client
 */
 public static String getHTTPPushAddress(String deviceid)
 {
 String mdsServer = MDSSERVER;

 String mdsPort = MDSSERVERPORT;

 StringBuffer result = new StringBuffer("http://");
 result.append(mdsServer);
 result.append(":");
 result.append(mdsPort);
 result.append("/push?DESTINATION=");
 result.append(deviceid);
 result.append("&PORT=");
 result.append(PUSH_HTTP_DEFAULT_DEVICE_PORT);
 return result.toString();
 }

 /**
 * Sets up push settings for specified package's
 * synchronization profile.
 *
 * @param packageName
 * the specified package name
 * @return true if set up succesfully.
 */
 private boolean setPushConnectionProfile(String
packageName,
 String deviceId, ConnectionProfile syncProfile,
 String appId)
 {

 try
 {
 String httpPushAddress =
getHTTPPushAddress(deviceId);

 syncProfile.setProperty(PROFILE_KEY_ADDRESS,

Reference

Developer Guide: BlackBerry Native Applications 71

 httpPushAddress);

 syncProfile.setProperty(PROFILE_KEY_PROTOCOL,
 PROFILE_HTTP_PUSH_PROTOCOL);

 syncProfile.setProperty(PROFILE_KEY_APPNAME,
appId);

 syncProfile.setProperty(PROFILE_KEY_DEVICE_ID,
deviceId);

 syncProfile.save();
 }
 catch (Exception e)
 {
 System.out.println(">> setPushConnectionProfile -
 Exception e : " + e);
 return false;
 }

 return true;
}

Best Practices for Developing Applications
Observe best practices to help improve the success of software development for Sybase
Unwired Platform.

Set up your development environment and develop your application using the procedures in
the Developer Guide for BlackBerry.

Check Network Connection Before Login
Use offlineLogin to test the wireless connection before a login attempt is made. If the
wireless connection option has been switched off, the loginToSync call takes a long time
to fail when a wrong password is entered, with an 'Invalid Password' error message appearing
only after a timeout.

import net.rim.device.api.system.RadioInfo;
……
 public class Test {
 public static void main(String[] args) {
 if (isWirelessConnected ())
 {
 XXDB.loginToSync(username, password);
 }
 else
 {
 boolean result = XXDB. offlineLogin(username, password);
 if (result == false)
 {
 throw new Exception("Offline login failed");

Reference

72 Sybase Unwired Platform

 }
 }
}

 public static boolean isWirelessConnected()
 {
 boolean isWirelessConnected = true;
 int state = RadioInfo.getState();
 int signal = RadioInfo.getSignalLevel();
 if (state == RadioInfo.STATE_OFF || state ==
RadioInfo.STATE_LOWBATT ||
 signal == RadioInfo.LEVEL_NO_COVERAGE)
 {
 isWirelessConnected = false;
 }
 return isWirelessConnected;
 }
}

If your application uses BES or BIS connectivity to connect to an Unwired Server from a
BlackBerry device, the application can automatically switch to use Wi-Fi when it becomes
available. If using a direct TCP connection, the application must explicitly specify a Wi-Fi
transport type.
DatabaseClass.getSynchronizationProfile().setString("transport",
"WIFI")

Constructing Synchronization Parameters
When constructing synchronization parameters to filter rows to be download to a device, if the
SQL statement involves two mobile business objects, you must use an "in" clause rather than a
"join" clause. Otherwise, when there is a joined SQL statement, all rows of the subsequent
mobile business object are filtered out.

For example, you would change this statement:
SELECT x.* FROM So_company x ,So_user y where x.company_id =
y.company_id and y.uname='test'

To:
SELECT x.* FROM So_company x where x.company_id in (select
y.company_id from So_user y where y.uname='test')

Clear Synchronization Parameters
When using synchronization parameters to retrieve data from an MBO during a
synchronization session, clear the previous synchronization parameter values.

MBOSynchronizationParameters param =
<MBO>.SynchronizationParameters;
param.delete();
param = <MBO>.SynchronizationParameters; //must re-get the sync
parameter instance
params.Param1 = value1; //set new sync parameter value

Reference

Developer Guide: BlackBerry Native Applications 73

params.Param2 = value2; //set new sync parameter value
param.save();

Clear the Local Database
Each time you redeploy a package on the Unwired Server, the client application should clear
the local database. After clearing the database, login again so that the local database is
reconstructed.

XXDB.deleteDatabase();
XXDB.loginToSync(); //Don't forget to login again so that the local
database will be re-constructed.

Process Synchonized Data
When performing data synchronization, apply logic to the data that is synchronized.

import com.sybase.persistence.SyncStatusListener;
……
public class Test {
 public static void main(String[] args) {
 XXDB.loginToSync();
 MySyncStatusListener myListener = new MySyncStatusListener();
 XXDB.synchronize(myListener);
 int receivedRowCount = myListener.getReceivedRowCount();
 if (receivedRowCount > 0)
 {
 // handle the logic only if there is data
synchronized.
 }
 …
 myListener.setReceivedRowCount(0); // reset row count
 XXDB.synchronize(myListener);
 …….
 }
}
class MySyncStatusListener implements SyncStatusListener {
 private int _receivedRowCount = 0;
 @Override
 public boolean objectSyncStatus(ObjectSyncStatusData data) {
 if (data.getReceivedRowCount() > 0)
 {
 _receivedRowCount = data.getReceivedRowCount();
 }
 return false;
 }
 public int getReceivedRowCount() {
 return _receivedRowCount;
 }
 public void setReceivedRowCount(int receivedRowCount) {
 this._receivedRowCount = receivedRowCount;
 }
}

Reference

74 Sybase Unwired Platform

Create a Custom Callback Handler
Create a custom callback handler if the application requires a callback (for example, to allow
the client framework to provide notification of synchronization results).

import com.sybase.persistence.DefaultCallbackHandler;
……
public class Test {
 public static void main(String[] args) {
 XXDB.loginToSync();
 XXDB.registerCallbackHandler(new MyCallbackHandler());
 GenericList sgs = new GenericList(2);
 sgs.add(SortDB.getSynchronizationGroup("sg1"));
 sgs.add(SortDB.getSynchronizationGroup("sg2"));
 XXDB.beginSynchronize(sgs, new SynchronizationNotification());
 }
}
class MyCallbackHandler extends DefaultCallbackHandler
{
 public int onSynchronize(GenericList groups,
SynchronizationContext context)
 {
 if (context == null)
 {
 return SynchronizationAction.CANCEL;
 }
 if (!(context.getUserContext() instanceof
SynchronizationNotification))
 {
 return super.onSynchronize(groups, context);
 }
 switch (context.getStatus())
 {
 case SynchronizationStatus.STARTING:
 return beforeSynchronize(groups);
 case SynchronizationStatus.FINISHING:
 return afterSynchronize(groups);
 default:
 return SynchronizationAction.CONTINUE;
 }
 }
 private int beforeSynchronize(GenericList groups)
 {
 // logic before sync
 if (groups == null || groups.size() == 0)
 {
 return SynchronizationAction.CANCEL;
 }

 return SynchronizationAction.CONTINUE;
 }
 private int afterSynchronize(GenericList groups)
 {
 // logic after sync

Reference

Developer Guide: BlackBerry Native Applications 75

 if (groups == null || groups.size() == 0)
 {
 return SynchronizationAction.CANCEL;
 }
 return SynchronizationAction.CONTINUE;
 }
}

Turn Off API Logger
In production environments, turn off the API logger to improve performance.

XXDB.getLogger().setLogLevel(LogLevel.OFF);

Reference

76 Sybase Unwired Platform

Index
A
AttributeMetaData 65

B
BlackBerry Java plug-in for Eclipse 10
BlackBerry Java Plug-in for Eclipse

installing 4
BlackBerry JDE 11
BlackBerry JDE, download 4
BlackBerry MDS Simulator, download 4
BlackBerry project, creating 11
BlackBerry Simulator 4
build path 11

C
callback handlers 59
certificates 43
ClassMetaData 65
client database 61
closeConnection 24
common APIs 40
ConnectionProfile 23, 43
ConnectionProfile.EncryptionKey 44
create operation 33
createDatabase 61

D
data vault 46

change password 53
creating 44
deleting 46
exists 45
lock timeout 48
locked 47
locking 47
retrieve string 50
retrieve value 52
retry limit 49
set string 50
set value 51
unlocking 47

database
client 61

database connections
managing 24

DatabaseMetaData 65
DataVault 44
DataVaultException 44
debugging 17
Delete operation 33
deleteDatabase 61
dependencies 5
descriptor file 11
documentation roadmap 1
download 4

E

EIS error codes 62, 63
encryption key 44
entity states 38
error codes

EIS 62, 63
HTTP 62, 63
mapping of SAP error codes 63
non-recoverable 62
recoverable 62

exceptions
client-side 63
server-side 62

G

generated code contents 9
generated code, location 9
generateId 61
generating code using the API 5
getLastSynchronizationTime() 61
getLogRecords 57

H

HTTP error codes 62, 63
HTTP push gateway 65

Index

Developer Guide: BlackBerry Native Applications 77

I
isSynchronized() 61

J
JAR files

adding 11
sup-client-rim.jar 11
UltraLiteJ.jar 11

Javadocs 1
Javadocs, opening 23, 72

K
KeyGenerator 61

L
local business object 37
local MBO 37
localization 19–21
LocalKeyGenerator 61
LogRecord API 56
LogRecordImpl 57

M
maxDbConnections 24
MBOLogger 17
MetaData API 64
mobile business object 37
mobile business object states 42
multilevel insert 34

N
newLogRecord 57
NoSuchAttributeException 63
NoSuchOperationException 63

O
Object API code

location of generated 9

Object Manager API 64
object query 27
ObjectManager 64
ObjectNotFoundException 63
OfflineLogin 26
openConnection 24
Other operation 34

P

pending operation 35
personalization keys 38

types 37
PersonalizationParameters 38
project build path 11
Push Configuration APIs 66

Q

QueryResultSet 31

R

Refresh operation 42
relationships 32

S

signing 22
status methods 38
submitLogRecords 57
sup-client-rim.jar 11
synchronization groups 27
SynchronizationProfile 25
SynchronizeException 63

U

UltraLiteJ.jar 11
Update operation 33

Index

78 Sybase Unwired Platform

	Developer Guide: BlackBerry Native Applications
	Contents
	Introduction to Developer Guide for BlackBerry
	Documentation Roadmap for Unwired Platform
	Introduction to Developing Device Applications with Sybase Unwired Platform

	Development Task Flow
	Task Flow for BlackBerry JDE Development
	Configuring Your BlackBerry Development Environment
	Installing the BlackBerry Development Environment
	Installing the BlackBerry Java Plug-in for Eclipse
	Downloading the BlackBerry JDE and MDS Simulator

	Client API JAR File Locations

	Using Object API to Develop a Device Application
	Generating Java Object API Code
	Generated Code Location and Contents
	Validating Generated Code

	Creating Projects and Importing Files into the BlackBerry Development Environment
	Mobile Business Object Required Files
	Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
	Creating a Project in the BlackBerry JDE
	Creating a Project in the BlackBerry Java Plug-in for Eclipse
	Adding Required .jar and .cod Files

	Developing, Debugging, and Customizing BlackBerry Applications
	Configuring an Application to Synchronize and Retrieve MBO Data
	Device Application Example Code

	Adding a Device Application Entry Point
	Configuring Unwired Server to Use HTTPS for RBS
	Developing the BlackBerry Device Application
	Developing a BlackBerry Device Application using the BlackBerry Eclipse Plug-in
	Developing a BlackBerry Device Application using the BlackBerry JDE

	Debugging BlackBerry Device Development
	Debugging the BlackBerry Device Application

	Localizing a BlackBerry Application
	Adding a Resource File to the Application
	Adding Resource Keys and Values
	Adding Localization Code
	Validating the Localization Changes

	Signing

	Reference
	BlackBerry Client Object API
	Client Object API Javadocs
	Connection APIs
	ConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with Multiple Database Reader Threads

	SynchronizationProfile
	Connect through a Relay Server
	Authentication

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Query
	Query and Related Classes
	Arbitrary Find
	Dynamic Query
	SortCriteria
	Paging Data

	AttributeTest
	CompositeTest
	QueryResultSet

	Retrieving Relationship Data

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert
	Pending Operation
	Passing Structures to Operations

	Mobile and Local Business Objects
	Personalization APIs
	Type of Personalization Keys
	Get or Set Personalization Key Values

	Object State APIs
	Entity State Management
	Pending State Pattern
	Mobile Business Object States
	Refresh Operation
	Clear Relationship Objects

	Common APIs
	Security APIs
	Connect Using a Certificate
	Encrypt the Database
	DataVault
	createVault
	vaultExists
	getVault
	deleteVault
	lock
	isLocked
	unlock
	setLockTimeout
	getLockTimeout
	setRetryLimit
	getRetryLimit
	setString
	getString
	setValue
	getValue
	changePassword

	Installing X.509 Certificates on BlackBerry Simulators and Devices
	BlackBerry Sample Code

	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate Into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server With a Certificate

	Utility APIs
	LogRecord API
	Viewing Error Codes in Log Records

	Logging APIs
	Callback Handlers
	SyncStatusListener API
	isSynchronized() and getLastSynchronizationTime()

	generateId
	Client Database APIs

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	ClassMetaData
	AttributeMetaData

	Replication-Based Push Synchronization Applications
	HTTP Push Gateway
	Push Configuration APIs
	Creating a Replication Based Push Application

	Best Practices for Developing Applications
	Check Network Connection Before Login
	Constructing Synchronization Parameters
	Clear Synchronization Parameters
	Clear the Local Database
	Process Synchonized Data
	Create a Custom Callback Handler
	Turn Off API Logger

	Index

