
Developer Reference for BlackBerry

Sybase Unwired Platform 1.5.5

DOCUMENT ID: DC01215-01-0155-02
LAST REVISED: February 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Reference for BlackBerry1
Documentation Road Map for Unwired Platform2
Introduction to Developing Device Applications with

Sybase Unwired Platform ...5
Development Task Flows ..7

Task Flow for BlackBerry JDE Development7
Task Flow for Device Application Designer and

BlackBerry JDE Development8
Configuring Your BlackBerry Development

Environment ...8
Installing the BlackBerry Development

Environment ..8
Client API JAR File Locations10

Mobile Business Object Code or Device Application
Designer Code ...10

Generating BlackBerry Mobile Application
Project Code ..10

Generating BlackBerry Device Application Code
from the Device Application Designer14

Creating Projects and Importing Files into the
BlackBerry Development Environment20

Differences Between Mobile Business Object
and Device Application Designer Required
Files ...21

Differences Between the BlackBerry Java Plug-
in and BlackBerry JDE21

Creating a BlackBerry Device Application
Project ...21

Adding Required .jar and .cod Files25
Developing, Debugging, and Customizing BlackBerry

Applications ...25

Developer Reference for BlackBerry iii

Building an Object API based Client Application
...26

Adding a Device Application Entry Point26
Developing the BlackBerry Device Application27
Debugging BlackBerry Device Development28
Customizing Device Application Designer Code

...31
Deploying Applications to Devices40

Device Registration ..41
Signing ...41
Deploying BlackBerry Applications41

Reference ...43
BlackBerry Client Object API ..43

Client Object API Javadocs43
Connection APIs ..43
Synchronization APIs ...45
Query APIs ..45
Operations APIs ...50
Mobile and Local Business Objects55
Personalization APIs ..55
Object State APIs ..56
Common APIs ..61
Security APIs ...61
Utility APIs ...62
Exceptions ...67
MetaData and Object Manager API70
Replication-Based Push Synchronization

Applications ...71
BlackBerry Device Framework API78

BlackBerry Device Framework API Javadocs79
Screen Objects ..79
Control Objects ..81
Layout Manager Objects85
Action Objects ..86
Data Objects ..89

Contents

 iv Sybase Unwired Platform

Constant Classes ...91
Generated Client Code ..91

Index ..97

Contents

Developer Reference for BlackBerry v

Contents

 vi Sybase Unwired Platform

Introduction to Developer Reference for
BlackBerry

This developer reference provides information about using advanced Sybase® Unwired
Platform features to create applications for RIM BlackBerry devices. The audience is
advanced developers who are familiar working with APIs, but who may be new to Sybase
Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the client object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and client object API documentation.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object
• Sybase Unwired WorkSpace – Device Application Development
• Tutorial: BlackBerry Device Application Development (Device Application Designer),

where you create the SUP101 sample project referenced in this guide
• Tutorial: BlackBerry Device Application Development (Custom Development)

Complete the tutorials to gain a better understanding of Unwired Platform components
and the development process.

• Troubleshooting for Sybase Unwired Platform
• Javadocs, which provide a complete reference to the APIs, are available from:

• Client Object API – the Unwired Platform installation directory
<UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\apidoc. There are subdirectories for \j2me and \j2se.

• Device Framework API – the Unwired Platform installation directory
<UnwiredPlatform_InstallDir>\Unwired_WorkSpace\Eclipse
\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.bob.rim_<version>\generate\blackberry.

See Fundamentals for high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Introduction to Developer Reference for BlackBerry

Developer Reference for BlackBerry 1

Documentation Road Map for Unwired Platform
Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document Description

Sybase Unwired Platform Installation Guide Describes how to install or upgrade Sybase Un-
wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.

Fundamentals Describes basic mobility concepts and how Syb-
ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Introduction to Developer Reference for BlackBerry

 2 Sybase Unwired Platform

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat-
form

Describes how to use the Sybase Control Center
administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase > Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Introduction to Developer Reference for BlackBerry

Developer Reference for BlackBerry 3

Document Description

Getting started tutorials Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

• Learn mobile business object (MBO) basics,
and create a mobile device application:
• Tutorial: Mobile Business Object Devel-

opment
• Tutorial: BlackBerry Application Devel-

opment using Device Application De-
signer

• Tutorial: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer

• Create native mobile device applications:
• Tutorial: BlackBerry Application Devel-

opment using Custom Development
• Tutorial: iPhone Application Develop-

ment using Custom Development
• Tutorial: Windows Mobile Application

Development using Custom Develop-
ment

• Create a mobile workflow package:
• Tutorial: Mobile Workflow Package De-

velopment

Sybase Unwired WorkSpace – Mobile Business
Object Development

Online help for developing MBOs.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace – Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Introduction to Developer Reference for BlackBerry

 4 Sybase Unwired Platform

Document Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

• Developer Reference for BlackBerry
• Developer Reference for iOS
• Developer Reference for Mobile Workflow

Packages
• Developer Reference for Windows and Win-

dows Mobile

Developer reference for Unwired Server side
customization – Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentals and Syb-
ase Unwired WorkSpace – Mobile Business Ob-
ject Development.

Developer reference for system administration
customization – Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentals and Sys-
tem Administration.

Introduction to Developing Device Applications with
Sybase Unwired Platform

A device application includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of mobile
application development:
• The data aspects of the mobile application are called mobile business objects (MBO), and

“MBO development” refers to defining object data models with back-end enterprise
information system (EIS) connections, attributes, operations, and relationships that allow

Introduction to Developer Reference for BlackBerry

Developer Reference for BlackBerry 5

segmented data sets to be synchronized to the device. Applications can reference one or
more MBOs and can include synchronization keys, load parameters, personalization, and
error handling.

• Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your device application by generating code to use as a
base in a native IDE. Follow an API approach that uses your native IDE's Client Object
API and Device Framework API. Unwired WorkSpace provides MBO code generation
options targeted for specific development environments, for example, BlackBerry JDE for
BlackBerry device applications, or Visual Studio for Windows Mobile device
applications.
The Client Object API uses the data persistence library to access and store object data in
the database on the device. Code generation takes place in Unwired WorkSpace. You can
generate code manually, or by using scripts. The code generation engine applies the
correct templates based on options and the MBO model, and outputs client objects.

Note: You can use Device Application Designer to create prototype device application
code, then add custom coding for end-to-end prototyping. This guide provides some
reference material for prototyping.

Note: See Sybase Unwired WorkSpace – Mobile Business Object Development for
procedures and information about creating and deploying MBOs. See Sybase Unwired
WorkSpace - Device Application Development for information about device application
features and appearance.

Introduction to Developer Reference for BlackBerry

 6 Sybase Unwired Platform

Development Task Flows

This section describes the overall development task flows, and provides information and
procedures for setting up the development environment, and developing device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding, as
shown on the left. This is how you create device applications with sophisticated UI interaction,
validation, business logic, and performance.

Optionally you can use Device Application Designer to create prototype device applications,
as shown on the right.

Task Flow for BlackBerry JDE Development
This describes a typical task flow for creating a device application using the BlackBerry JDE
or the BlackBerry Java plug-in for Eclipse (eJDE).

Highlevel steps:

1. Configuring the BlackBerry development environment:
a. Installing the BlackBerry Java Plug-in for Eclipse .
b. Client API JAR File Locations.

2. Generating BlackBerry Mobile Application Project Code.
3. Creating a BlackBerry Device Application Project .
4. Adding Required .jar and .cod Files .

Development Task Flows

Developer Reference for BlackBerry 7

5. Developing, Debugging, and Customizing BlackBerry Applications .
6. Deploying Applications to Devices .

Task Flow for Device Application Designer and BlackBerry
JDE Development

This describes a typical task flow for creating a device application prototype using the Device
Application Designer with BlackBerry JDE or BlackBerry Java plug-in for Eclipse (eJDE).

Highlevel prototyping steps:

1. Configuring Your BlackBerry Development Environment.
2. Generating BlackBerry Device Application Code from the Device Application Designer.
3. Developing, Debugging, and Customizing BlackBerry Applications.
4. Deploying Applications to Devices.

Configuring Your BlackBerry Development Environment
This section describes how to set up your BlackBerry development environment, and provides
the location of required JAR files and client object APIs.

Installing the BlackBerry Development Environment
Download and install either the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse
(eJDE).

You can develop device applications with either the BlackBerry JDE or the BlackBerry Java
plug-in for Eclipse, but since Unwired WorkSpace and the Device Application Designer both
run in Eclipse, Sybase recommends that you use the BlackBerry Java plug-in for Eclipse for a
more integrated development environment.

For information on transitioning from the BlackBerry JDE to the eJDE, view the video at the
Research In Motion Developer Video Library Web site: http://supportforums.blackberry.com/
t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Installing the BlackBerry Java Plug-in for Eclipse
The Device Application Designer supports the BlackBerry Java Plug-in for Eclipse, which
allows you to generate the device application code using the Device Application Designer
code generation wizard, then debug the generated code.

Prerequisites
You must have a BlackBerry developer account to download the BlackBerry Java Plug-in for
Eclipse. You may be required to register if you do not already have an account.

Development Task Flows

 8 Sybase Unwired Platform

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Task

Note: To ensure that you are using the supported version of the BlackBerry Java Plug-in for
Eclipse, see the topic Sybase Unwired Platform 1.5.5 > New Features > Supported Hardware
and Software.

1. Shut down Unwired WorkSpace.

2. Go to http://us.blackberry.com/developers/javaappdev/ and download the BlackBerry
Java Plug-in for Eclipse (full installer) to a temporary folder.

3. Double-click the setup application file.

4. On the Introduction page, click Next.

5. Accept or decline the terms of the license agreement and click Next.

6. Choose <UnwiredPlatform_InstallDir>\UnwiredPlatform\Eclipse
as the installation directory and click Next.

7. Review the information on the Pre-installation Summary screen and click Install.

8. Click Done.

BlackBerry Java Plug-in for Eclipse Integration
The Device Application Designer Code Generation wizard is integrated with the BlackBerry
Java Plug-in for Eclipse.

You can launch a BlackBerry project directly from Eclipse after code generation. This allows
you to debug generated device application code that contains the user interface framework
within a BlackBerry project.

Note: To use this feature, you must first install the BlackBerry Java Plug-in for Eclipse.

See the documentation on the BlackBerry developer Web site http://docs.blackberry.com/en/
developers/?userType=21 for more information about the BlackBerry Java Plug-in for
Eclipse.

Downloading the BlackBerry JDE and MDS Simulator
To generate and distribute BlackBerry device applications built with the Unwired WorkSpace
Device Application Designer, download the MDS simulator and the BlackBerry JDE and its
prerequisites from the BlackBerry Web site.

Prerequisites
You must have a BlackBerry developer account to download the BlackBerry JDE. You may be
required to register if you do not already have an account. Before you download the JDE,
ensure the 32-bit JDK has already been installed, even for 64-bit operating systems;
otherwise, MDS will not start.

Development Task Flows

Developer Reference for BlackBerry 9

http://us.blackberry.com/developers/javaappdev/
http://docs.blackberry.com/en/developers/?userType=21
http://docs.blackberry.com/en/developers/?userType=21

Task

Note: The BlackBerry JDE is a standalone development environment. The BlackBerry Java
Plug-in for Eclipse v1.1 is recommended.

1. Go to the BlackBerry Web site at http://na.blackberry.com/eng/developers/javaappdev/
javadevenv.jsp to download and install the BlackBerry JDE.

2. Go to http://na.blackberry.com/eng/developers/browserdev/devtoolsdownloads.jsp to
download and install the MDS simulator.

Client API JAR File Locations
The client API library JAR files and dependencies are installed in the Sybase Unwired
Platform installation directory. JAR files are used for compilation and COD files for runtime.
Make sure COD files are deployed to the simulator/device along with the device application.

The contents and location of the client API are:

• Client database (UltraLite®J) libraries – <UnwiredPlatform_InstallDir>
\Servers\UnwiredServer\ClientAPI\UltraliteJ.

• Framework classes that are used by generated classes (J2ME, J2SE and RIM BlackBerry)
– <UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\java

Mobile Business Object Code or Device Application
Designer Code

Determine whether to develop a device application directly from mobile business object
(MBO) generated code, or from Device Application Designer generated code, then generate
the code according to your decision.

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,
create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

To avoid errors or inconsistent behavior, client applications must be regenerated whenever a
mobile application package has been redeployed.

Generating BlackBerry Mobile Application Project Code
After developing the mobile business objects (MBOs), generate the Java files that implement
the business logic and are required for BlackBerry device application development.

1. From Unwired WorkSpace, right-click in the Mobile Application Diagram of the project
for which you are generating code and select Generate Code.

Development Task Flows

 10 Sybase Unwired Platform

http://na.blackberry.com/eng/developers/javaappdev/javadevenv.jsp
http://na.blackberry.com/eng/developers/javaappdev/javadevenv.jsp
http://na.blackberry.com/eng/developers/browserdev/devtoolsdownloads.jsp

2. Follow the Code Generation wizard instructions to generate code appropriate for the
BlackBerry JDE environment, by selecting Java as the language and, in this case, Java
ME for BlackBerry as the platform.

Other selections affect generated output as well. For example, if you include an Unwired
Server entry, it generates a default connection to Unwired Server.

See Generating Object API Code for details of all options.

3. Click Next. Select the MBOs for which you are generating code and any additional options
you require.

Development Task Flows

Developer Reference for BlackBerry 11

You can select the Generate metadata classes or Generate metadata and object
manager classes selections to generate metadata for the attributes and operations of each
generated client object and an object manager for the generated metadata.

The object manager allows you to retrieve the metadata of packages, MBOs, attributes,
operations, and parameters during runtime using the name instead of the object instance.

See Generating Object API Code for details of all options.

4. Click Finish.

The class files include all methods required to create connections, synchronize deployed
MBOs with the device, query objects, and so on, as defined in your MBOs.

Development Task Flows

 12 Sybase Unwired Platform

By default, the MBO source code and supporting documentation are generated in the
project's Generated Code folder. The generated Java files are located in the
<MBO_project_name> folder under the src folder:

The frequently used Java files in this project, described in code samples include:

Table 2. Source code file descriptions

Java file Description

MBO class (for example, Customer. java) Includes all the attributes, operations, object
queries, and so on, defined in this MBO.

Synchronization parameter class (for example,
CustomerSynchronizationParameters.java)

Includes any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, KeyGen-
erator.java)

Includes generation of surrogate keys used to
identify and track MBO instances and data.

Development Task Flows

Developer Reference for BlackBerry 13

Java file Description

Local Key generator classes(for example Lo-
calKeyGenerator.java)

Includes generation of surrogate keys used to
identify and track MBO instances and data that
exist only on the local device.

Personalization parameter classes (for exam-
ple, PersonalizationParameters.java)

Includes any defined personalization keys.

OfflineAuthentication.java Saves authentication information locally and
includes methods used between the device ap-
plication and local database for offline authen-
tication (does not communicate with Unwired
Server).

<PkgName>DB (where PkgName is the name
of the project/package, for example,
MBOs_for_BB_devDB)

Defines API to handle client database access,
synchronization profile, authentication, and
synchronization operations.

ObjectManager (for example,
MBOs_for_BB_devDB_RM)

Invokes methods and retrieves the metadata of
packages, MBOs, attributes, operations, and
parameters during runtime using the name (re-
flection) instead of the object instance.

Note: ObjectManager classes are generated on-
ly when you select the Generate metadata and
object manager classes option.

Other operation classes (for example,
<MBO><OtherOperation>Operation)

Encapsulates each other operation into an ob-
ject

Generating BlackBerry Device Application Code from the Device
Application Designer

After developing the mobile business objects (MBOs), begin device application development
using the Device Application Designer, then use the Generate Device Application wizard to
generate the device application code required for further development in the BlackBerry JDE.

Use this procedure if you are developing BlackBerry device applications using both the
Device Application Designer and the BlackBerry JDE.

1. From Unwired WorkSpace, select File > New > Device Application Designer.

2. Follow the Device Application Designer wizard instructions to create a Device
Application Designer project based on the MBOs that are appropriate for the type of
BlackBerry device application you are developing, and click Finish.

3. Develop as much of the device application as you want using the Device Application
Designer.

4. Generate the code for a BlackBerry Device application, then debug and extend the code in
the BlackBerry JDE.

Development Task Flows

 14 Sybase Unwired Platform

Generating Code For a BlackBerry Device Application
Use the Generate Device Application wizard to generate the device application code.

Prerequisites

Verify the device application and fix any errors that are found. Device applications with errors
cannot be generated.

Task

1. Click the Verify icon on the toolbar to verify the device application has no errors.

2. Click the code generation icon on the toolbar.

3. In the Generate Device Application wizard, in Device Platform, select BlackBerry, and,
optionally, select:

Option Description

Server domain Select the domain to use for the connection
profile. The profiles used in the design appear in
the Profile column. The initial value of "de-
fault" appears under the domain. Select the Do-
main column to choose a different domain.

You can enter any value you want or select one
that is available. The list of available domains
are returned from the profile. If you have pre-
viously connected, it caches the list of last
known domains. If you have never connected,
“default” is returned.

Locale Expand this section to see a list of available
locales from which you can select.

Advanced Expand this section for advanced options:

• Check mobile business object on Sybase
Unwired Platform Server – select to verify
that the mobile business objects that are
used in the device application exist on the
corresponding Unwired Server.

• Mobile Business Object Group – the mo-
bile business object group that contains the
mobile business objects you want to verify.
Click Generate Code to launch the Gen-
erate Code wizard.

Development Task Flows

Developer Reference for BlackBerry 15

4. Click Next.

5. In the Generate Device Application wizard, enter the information, then click Finish:

Option Description

Favorite Configurations (Optional) Select a saved configuration from
the drop-down list.

Note: The Remove the custom folder option
state is not saved in a favorite configuration.
You must explicitly choose that option when
you want to remove the custom folder that con-
tains any custom coding you have added.

Locations • Generate code only – if this option is se-
lected, the code is not compiled.

• Deploy the BlackBerry application – select
to deploy the BlackBerry application to the
specified location. Selecting this option ac-
tivates the Deploy Configurations section,
where you can set the locations for the
BlackBerry rapc compiler, simulator loca-
tion, and so on.

Development Task Flows

 16 Sybase Unwired Platform

Option Description

Deploy Configurations • BlackBerry rapc compiler – the BlackBerry
JDE rapc compiler location. This deter-
mines the operating system version of the
generated BlackBerry application.

• Copy to Simulator location – the filepath to
the location of the compatible simulator
you want to use for development and test-
ing.

• Start the BlackBerry Simulator after
copying – select to start the simulator
after you generate the device client ap-
plication.

• Start MDS automatically – select if a
connection to the mobile business ob-
ject is required. This is a one-time ac-
tion. A check is performed to see
whether the MDS is started. If it is, it
will not be started twice. Once the MDS
is running, it does not have to be restar-
ted.

• Disable signing – disables the signing
process for testing only. This option is
available only when you are copying
the generated COD files to a simulator
location for testing.

• Copy to desktop location – the location
where you want to copy the gener-
ated .cod files.

• Copy to Workspace location – the location
for the workspace to which you want to
copy the device client application.

Debug the BlackBerry application Debug configurations:

• Client project

• Options project

• Launch the BlackBerry project

• Launch configuration

Note: This option is enabled only if you have
installed the BlackBerry Java Plug-in for
Eclipse.

Development Task Flows

Developer Reference for BlackBerry 17

Option Description

Advanced • Open the generated folder under Windows
Explorer – select this option to open the
generated folder under Windows Explorer
when code generation is complete. This is
useful to locate the generated source so you
can move it to a JDE project or for custom
coding.

• Generated artifacts location – this option
indicates the location of the folder where all
the code is generated. The default is <work-
space>\<dad_project_name>\DAD Gener-
ated Code\<dag_file_name>\Blackberry.
Click Browse to change the location.

Click Restore to restore to the default lo-
cation.

• Remove the Custom folder – select this op-
tion to remove any previously generated
custom code placed in the Custom folder.

• Use JDK path – use this JDK path for the
rapc.exe compiler from RIM. This must be
in the following format: c:\program
files\java
\jdk1.6.0_16\bin.

• Configure package for generated code –
select this option to specify one or more of
the following package names.

• Package for the client code - The pack-
age for the code in XX.cod.

• Package for the option code - The pack-
age for the UI code in XXOp-
tions.cod.

• Package for the object API code - The
package for the object API.

Device Application Designer Generated Code Structure
This topic illustrates the structure of code generated by the Device Application Designer, and
describes the contents of folders.

The BlackBerry application is built into two parts: the client application and the options
library. The application package contains all client code, while the options package contains

Development Task Flows

 18 Sybase Unwired Platform

options code. The custom package accommodates all screen classes as well as any tab folder
packages. The tab panel classes are contained in the tab folder packages.

Client code is generated into two categories:

1. Code is generated each time you invoke the Device Application Designer generation
wizard. The Device Application Designer Model document is parsed and the screen
classes and the BOBCUIDefinition/BOBCOptionsDefinition class are generated.

2. User's custom code is initially generated by the Device Application Designer when the
Device Application Designer generation wizard is invoked. The custom code extends the
generated screen classes and BOBCUIDefinition/ BOBCOptionsDefinition class.

Modify the custom code only to customize your BlackBerry device application in the
BlackBerry JDE (or any other Native IDE).

Development Task Flows

Developer Reference for BlackBerry 19

Custom Coding Subclasses
You can enable custom code generation by assigning a value of true to the platform-specific
property Generate a custom coding subclass for the Device, Screens, Tab Folder, and Tab
panels. You can specify this property for all elements from the preference page.

Folder Contents
The default generated code location is <%current_workspace%>\<
%current_project%>\DAD Generated Code\<%current_dad_file_name
%>\Blackberry. In that location, the application client code is in the generated/
application folder. The options module code is in the generated/options folder.
The image files are in the generated/images folder. The JavaDoc files are in the
generated/doc folder.

The custom code is generated into the custom folder in the same package structure as the
generated folder. The applicationandoption folders, contain the custom code for
the main application and the option application, respectively. For each element that enables
custom coding, a subclass is generated into the application folder. Once generated, the
custom subclass is not overwritten in subsequent code generation unless you select Remove
custom folder in the generation wizard.

All object API code is generated into a separate folder named object_api. This folder
contains subfolders for the main application and option application.

You can customize subclasses to insert your own code in your development environment.

Event Delegates
For elements that support widget events, you can specify what events are supported for a
particular element. When you select events, those events take effect in the application. An
event delegate is generated in the custom folder for all events (whether selected or not). This
allows the delegation of all the selected events for an element. The event delegate class is in
same package as its element’s containing class (that is, the event delegate class for a button is
located in the same package as the subclass for the parent screen).

You can customize the event delegate to apply your own code.

Similar to the custom subclasses, the event delegate is not overwritten during subsequent code
generation, unless you select Remove custom folder.

Creating Projects and Importing Files into the BlackBerry
Development Environment

Set up the BlackBerry project, add required libraries, and import mobile business object
(MBO) or Device Application Designer generated Java files. Use these procedures if you are

Development Task Flows

 20 Sybase Unwired Platform

developing a device application using the BlackBerry JDE or the BlackBerry Java plug-in for
Eclipse.

Differences Between Mobile Business Object and Device Application
Designer Required Files

The procedures for developing a device application directly from mobile business object
(MBO) generated code differ slightly compared to developing from Device Application
Designer generated code.

The main differences between the two procedures are:

• Device Application Designer – contains MBO business logic and BlackBerry device
application code. You must:
• Include libraries and JAR files in the BlackBerry project that support both the

BlackBerry Client Object API and the BlackBerry Device Framework API.
• Add the Java files from the Device Application Designer Custom folder, generated

folder, and the generated MBO classes to the BlackBerry project.
• Mobile business objects – contain only MBO business logic. If you do not plan on using

the Device Application Designer, you must:
• Include libraries and JAR files in the BlackBerry project that support the BlackBerry

Client Object API.
• Add the Java files from the MBO Generated Code folder to the BlackBerry project.

Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
To develop a device application using the BlackBerry Java plug-in for Eclipse, use the same
procedure as developing with the BlackBerry JDE, but note the differences.

• Libraries cannot be located inside BlackBerry projects developed using the BlackBerry
Java plug-in for Eclipse, due to a RIM limitation. The libraries must be outside the projects
and referred to with an absolute path.

• The debug option in the BlackBerry generation wizard page is enabled if the BlackBerry
Java plug-in for Eclipse is installed. This option can be useful when developing device
applications.

Creating a BlackBerry Device Application Project
Create the BlackBerry project and add the generated mobile business object (MBO) Java files,
or the Device Application Designer Java and framework files, to the BlackBerry JDE.

Follow these steps whether you are developing the device application directly from code
generated from MBOs, or extending an existing Device Application Designer device
application, except where noted.

Note: These steps apply only if you are using the BlackBerry JDE to develop the application.
If you are using the BlackBerry Eclipse plug-in, you must only specify the client project and

Development Task Flows

Developer Reference for BlackBerry 21

options project (described in step 7). Additional configuration is performed automatically by
the Device Application Designer when you generate the code.

1. Launch the BlackBerry JDE and create a new workspace.

2. Create a BlackBerry project and name it supOptions.

3. Right-click the project and select Properties.

4. In the properties dialog, select the Application tab, specify Library for Project type and
select Auto-run on startup.

5. Select the Build tab, and click Add next to “Imported jar files.” Add either:

• For Device Application Designer – these UltraLiteJ.jar and
BOBFramework.jar files to the project:

• <UnwiredPlatform_InstallDir>\Unwired_WorkSpace
\Eclipse\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.bob.rim<version_time_stamp>\generate
\blackberry\UltraLiteJ.jar

• <UnwiredPlatform_InstallDir>\Unwired_WorkSpace
\Eclipse\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.bob.rim<version_time_stamp>\generate
\blackberry\build-<os-version>\BOBFramework.jar

Note: (Device Application Designer only) Select the version of
BOBFramework.jar that corresponds with selected Device Application
Designer code generation options (BlackBerry rapc compiler version) from the
supported versions.

• For MBO generated code – these UltraLiteJ.jar and
sup_client_rim.jar files to the project:

• <UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\UltraliteJ\J2meRim11\UltraLiteJ.jar

• <UnwiredPlatform_InstallDir>\Servers\UnwiredServer
\ClientAPI\java\RIM42\sup_client_rim.jar

6. Click OK.

7. Right-click the supOptions project and select Add file to project to add files for the
project, which depends on whether you are creating a device application directly from
MBO or from Device Application Designer code:

• MBO generated code – references the Client object API and contains the Java files that
implements the business logic of your project. From Look in, navigate to the src
subdirectory where you generated the Java code from your Unwired WorkSpace
mobile application. This location is dependent on the workspace that you used.
For example, if your workspace is in the C:\myBBapplications directory and the
name of the mobile application project is test, navigate to C:

Development Task Flows

 22 Sybase Unwired Platform

\myBBapplications\test\Generated Code\src\test and add all of
the .java files to your project.

• Device Application Generated code – references the Device Application Generated
code, BOBCOptionsDefinition.java (the options definition), and
OptionsMain.java. Complete these additional steps:

1. Verify that the generated code is the correct version (you can see the version from
the Device Application Designer generation wizard).

2. From Look in, navigate to the object API code at the generated location and add it
to the project: <workspace>\<projectname>\DAD Generated Code
\<bobfilename>\Blackberry\object_api\genfiles\java
\src

3. Locate the options definition file at the following location and add it to the project:
<workspace>\<projectname>\DAD Generated Code
\<bobfilename>\Blackberry\generated\option\com\sybase
\uep\bobclient\options\BOBCOptionsDefinition.java

4. Locate OptionsMain.java at the following location and add it to the project:
<workspace>\<projectname>\DAD Generated Code
\<bobfilename>\Blackberry\generated\option\com\sybase
\uep\bobclient\options\OptionsMain.java

5. Locate IBOBStyles.java at the following location and add it to the project:
<workspace>\<projectname>\DAD Generated Code
\<bobfilename>\Blackberry\generated\option\com\sybase
\uep\bobclient\options\IBOBStyles.java

This is the Java file that defines all styles.
6. Locate *.rrh at the following location and add it to the project: <workspace>

\<projectname>\DAD Generated Code\<bobfilename>
\Blackberry\generated\option\com\sybase\uep\bobclient
\options*.rrh

This is the resource header file that defines resource indices.
7. Locate *.rrc at the following location and add it to the project: <workspace>

\<projectname>\DAD Generated Code\<bobfilename>
\Blackberry\generated\option\com\sybase\uep\bobclient
\options*.rrc

This is the resource content file that defines resource values.

Creating a BlackBerry Device Application Client Project
Create a BlackBerry client project that contains Device Application Designer generated code
(other than the options definition code), and BOBUIController.java (the application
entry point).

1. Create a BlackBerry project in the same workspace that contains the supOptions
project and name it supClient.

Development Task Flows

Developer Reference for BlackBerry 23

2. Right-click the project and select Properties.

3. In the properties dialog, select the Application tab, and specify CLDC Application as
the project type.

4. Select the Build tab, and in the Imported jar files section, click Add to add
BOBFramework.jar to the project, which is located in:

<UnwiredPlatform_InstallDir>\Unwired_WorkSpace\Eclipse
\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.bob.rim_<version_timestamp>\generate\
\blackberry\build-<version>\BOBFramework.jar

Note: Select the correct version of BOBFramework.jar for your BlackBerry operating
system from the supported versions.

5. Select the supClient project, right-click and select Add file to project to insert
generated Device Application Designer code into the project:

a) Verify that the generated code is the correct version (you can see the version from the
Device Application Designer generation wizard).

b) Locate the Device Application Designer generated code at the generated location and
add it to the project. For example:

<workspace>\<projectname>\DAD Generated Code
\<bobfilename>\Blackberry\generated\application\com
\sybase\uep\bobclient\custom

c) Locate BOBUIController.java in the general location and add it to the project:

<workspace>\<projectname>\DAD Generated Code
\<bobfilename>\Blackberry\generated\application\com
\sybase\uep\bobclient\custom\controller
\BOBUIController.java

Note: All Device Application Designer generated code and required libraries are
imported to the projects, and project types are set. If custom coding or widget events
are enabled, you must also add the generated subclasses and widget event delegate to
the client project. This code is located in the custom folder at <workspace>
\<projectname>\DAD Generated Code\<bobfilename>
\Blackberry\custom\application\com\sybase\uep\bobclient
\custom\.

6. To make the client project dependent on the options project, select the supClient
project and select Project Dependencies. Select the supOptions project in the dialog
box.

Development Task Flows

 24 Sybase Unwired Platform

Referencing BlackBerry Device Framework Javadocs
The BlackBerry Device Framework API enables you to customize the BlackBerry device user
interface. Javadoc provides a complete reference to the API.

Perform these steps only if developing the application in the BlackBerry Eclipse plug-in
(eJDE). The BlackBerry JDE does not support this Javadoc configuration.

1. From the eJDE, right-click your project and choose Properties.

2. Select Java Build Path, then Libraries.

3. Expand BOBFramework.jar and select the Javadoc location.

4. Click Edit, select Javadoc in archive, and set the archive path to
<UnwiredPlatform_InstallDir>\UnwiredPlatform
\Unwired_WorkSpace\Eclipse\sybase_workspace\mobile\eclipse
\plugins\com.sybase.uep.bob.rim_<version>\generate
\blackberry\BOBFrameworkJavadoc.zip.

Adding Required .jar and .cod Files
Add the following Unwired Platform .jar and .cod file references to the BlackBerry project's
Java build path.

Add these files only if you are developing the device application in the BlackBerry JDE, which
are located in the Unwired WorkSpace installation path as indicated, to your project's build
path:

• sup_client_rim.jar – from <UnwiredPlatform_InstallDir>
\Servers\UnwiredServer\clientAPI\java\RIM42 for the Blackberry
client.

• UltraLiteJ.jar from <UnwiredPlatform_InstallDir>\Servers
\SQLAnywhere11\UltraLite\UltraliteJ\BlackBerry<os_version>
for the Device Application Designer client.

Copy required .cod files to the BlackBerry simulator directory: UltraLiteJ.cod from
<UnwiredPlatform_InstallDir>\Servers\SQLAnywhere11\UltraLite
\UltraliteJ\BlackBerry<os_version> for the BlackBerry client.

Developing, Debugging, and Customizing BlackBerry
Applications

Use the BlackBerry Client Object API, BlackBerry Device Application Framework API, as
well as native Research in Motion (RIM) APIs to create or customize your device applications.

To learn more about the BlackBerry JDE, BlackBerry Java plug-in for Eclipse, or RIM
BlackBerry APIs, go to the BlackBerry Java application development Web site at http://
na.blackberry.com/eng/developers/javaappdev/.

Development Task Flows

Developer Reference for BlackBerry 25

http://na.blackberry.com/eng/developers/javaappdev/
http://na.blackberry.com/eng/developers/javaappdev/

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,
create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

Building an Object API based Client Application
This example illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application from a
Client Object API based device application.

1. Log in to Unwired Server using a user name and password:
<PkgName>DB.loginToSync("supAdmin", "s3pAdmin");

2. Synchronize MBOs by group name synchronization:
<PkgName>DB.synchronize(“default”);

3. Retrieve MBO data:
ObjectList customers = Customer.findAll();
int size = customers.count();
for (int i = 0; i < size; i++)
{
 Customer cust = (Customer)customers.elementAt(i);
 //Feed the MBO data to your view…
}

4. Update MBO data:
Customer cust = Customer.findByPrimaryKey(100);
cust.setAddress(“1 Sybase Dr.”);
cust.setPhone(“9252360000”);
cust.save();//or cust.update();

5. Submit pending operations and synchronize again:
Customer.submitPendingOperations();
<PkgName>DB.synchronize(“default”);

Adding a Device Application Entry Point
If you are creating a BlackBerry device application from code generated directly from mobile
business objects (MBOs), add a main file to the application.

1. From the BlackBerry project that contains your generated MBO code, for example
supOptions, add a new file by right-clicking the project and selecting Create new file
in project.

2. Name the file, for example, BBMain. Click OK.

This file is the main entry point to the device application.

3. Import the common BlackBerry device application development packages as well as the
package that contains your MBOs (for example, com.custom.MBO.*).

Development Task Flows

 26 Sybase Unwired Platform

You can now create the code to connect to Unwired Server, access and synchronize your
MBOs, and perform other functions.

Developing the BlackBerry Device Application
This section provides procedures and compares the differences between creating a
BlackBerry Device Application from mobile business object generated code in the
BlackBerry JDE versus the Blackberry Eclipse plug-in (eJDE).

Prerequisites
The following procedures requires you to create, deploy, and generate code from the mobile
business objects (MBOs) used in Tutorial: BlackBerry Device Application Development
(Custom Development), which creates the business logic and generates the Java files required
for the device application. Sybase recommends that you complete the tutorial.

For either development approach:

1. Since KeywordFilterField is employed in this sample, which is available since JDE 4.5.0,
make sure this sample is used in the proper BlackBerry operating system.

2. The generated code SUP101.Customer is modified to override the toString() method
so that the KeywordFilterField displays the data properly.

Task

Developing a BlackBerry Device Application using the BlackBerry Eclipse
Plug-in
Follow these procedures to run the SUP101 project in the BlackBerry Eclipse plug-in (eJDE).

1. Modify the build path to point to the correct location for the sup_client_rim.jar
and UltraLiteJ.jar files.

The files cannot be located in the current project due to a RIM BlackBerry Plug-in
restriction.

2. Copy sup_client_rim.cod and UltraLiteJ.cod files to the simulator
directory.

3. Deploy the SUP101 project to the Unwired Server to which the sample refers.

4. Modify SUP101DB.java to include your Unwired Server information(lines 47-51). For
example:

getSynchronizationProfile().setServerName("<UnwiredServerHost>");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
getSynchronizationProfile().setNetworkStreamParams
("trusted_certificates=;url_suffix=");
getSynchronizationProfile().setDomainName("default");

Development Task Flows

Developer Reference for BlackBerry 27

5. Run the project on a BlackBerry simulator. By default, the simulator is installed at C:
\Program Files\Research In Motion\BlackBerry JDE
5.0.0\simulator.

Developing a BlackBerry Device Application using the BlackBerry JDE
Follow these procedures to run the SUP101 project in the BlackBerry JDE.

1. Open the BlackBerry JDE and create a new workspace.

2. Create a new project in the new workspace.

3. Change the Project Type to be CLDC Application or BlackBerry Application (depending
on the JDE you are using).

4. Add uep_ribbon_icon.png to Icon files.

5. Add sup_client_rim.jar and UltraLiteJ.jar files to the Build import jar
files.

6. Copy sup_client_rim.cod and UltraLiteJ.cod files to the simulator
directory.

7. Deploy the SUP101 project to the Unwired Server to which the sample refers.

8. Modify SUP101DB.java to include your Unwired Server information (lines 47-51).
For example:

getSynchronizationProfile().setServerName("<UnwiredServerHost>");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
getSynchronizationProfile().setNetworkStreamParams
("trusted_certificates=;url_suffix=");
getSynchronizationProfile().setDomainName("default");

9. Run the project.

Debugging BlackBerry Device Development
Device client and Unwired Server troubleshooting tools for diagnosing RIM® BlackBerry®

development problems.

Client-side debugging
Problems on the device client side that may cause client application problems:

• Unwired Server connection failed.
• Data does not appear on the client device.
• Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

• If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging, and review the debugging information. See Developer

Development Task Flows

 28 Sybase Unwired Platform

Reference for BlackBerry about using the MBOLogger class to add log levels to messages
reported to the console.

• Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods. Use this method
for logs corresponding to MBO classes, except for Other operations, which cannot be
retrieved with getLogRecords.

This is the log format:
level,code,eisCode,message,component,entityKey,operation,requestI
d,timestamp

This is a log sample:
5,500,'','java.lang.SecurityException:Authorization failed:
Domain = default Package = end2end.rdb:1.0 mboName =
simpleCustomer action =
delete','simpleCustomer','100001','delete','100014','2010-05-11
14:45:59.710'

• level – the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

• code – replication-based synchronization, Unwired Server administration codes:

• 200 – success.
• 500 – failure.

• eisCode – not currently used.

• message – the message content.

• component – Mobile Business Object (MBO) name.

• entityKey – MBO surrogate key, used to identify and track MBO instances and
data.

• operation – operation name.

• requestId – operation replay request ID or messaging-based synchronization
message request ID.

• timestamp – message logged time, or operation execution time.

• View the log records on the LogInfo screen, which shows both client and server log
information for the application. You can change the client log level in BlackBerry options
> Logging.

• Check the Storm event log:
1. On the Home screen, press Hold.
2. Click the upper-left corner and upper-right corner twice.
3. Review the event log.

• Check the BlackBerry event log:
1. On the device, press ALT+lglg; or, for touch-screen devices, hold the ESC key, tap (no

click) top-left, top-right, top-left, then top-right.

Development Task Flows

Developer Reference for BlackBerry 29

2. Review the event log, and see the RIM BlackBerry documentation for information
about debugging and optimizing.http://na.blackberry.com/eng/developers/resources/
A50_How_to_Debug_and_Optimize_V2.pdf

Server-side debugging
Problems on the Unwired Server side that may cause device client problems:

• The domain or package does not exist.
• Authentication failed for the synchronizing user.
• The operation role check failed for the synchronizing user.
• Back-end authentication failed.
• An operation failed on the remote, replication database back end, for example, a table or

foreign key does not exist. Detailed messages can be found in the Log Record.
• An operation failed on the Web service, REST, or SAP® back end. You can find detailed

messages in the log record.

To find out more information on the Unwired Server side:

• Check the MMS server log files. See the Sybase Control Center documentation for more
information.

Debugging the BlackBerry Device Application
Debug your device application by setting breakpoints and stepping through code.

1. From the BlackBerry JDE, select Debug > Go to build and execute the application, and
launch the simulator.

You can view build results in the JDE output window.

2. Add breakpoints to the code:

a) Place your cursor in the code where you want to add a breakpoint and select Debug >
Breakpoint > Set Breakpoint at Cursor.

b) You can also set breakpoints for a given event from the same menu, for example, On
startup, When an exception is thrown, Before garbage collection, and so on.

3. Run the application from the simulator. The application stops based upon the breakpoint
you set.

4. Once stopped, you can step through the code using any of the step icons (step over, step
into, step out, and so on) located in the JDE toolbar:

For more information about the various views available for debugging, including
determining memory usage, code coverage, and so on, refer to the BlackBerry JDE
documentation. To view a video on how to debug your BlackBerry device application in
the BlackBerry JDE, go to the Research In Motion Developer Video Library Web site at:

Development Task Flows

 30 Sybase Unwired Platform

http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf
http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Customizing Device Application Designer Code
After you generate code from your BlackBerry development environment, choosing the
Custom Class generation option, go to the folders that contain the custom classes, and modify
the code as needed. For example, adding controls to screens, adding widget event code, and so
on.

Generated Screen Class Outline:

public class BOBScreenSales_order extends
BaseBOBScreen implements IBOBScreen {

 protected void defineScreen() {
 createControls();
 createMenus();
 }

 protected void createControls() {
 createControlById(CONTROL1);
 configureControlById(CONTROL1);
 }

 protected void configureControlById(int ID) {
 switch (ID) {
 case LAYOUTMANAGER:
 configureObjectMetaDataById(ID, layoutManager);
 configureObjectHandlersById(ID, layoutManager);
 return;
 }
 }

 protected void createMenus() {
 menu1 = createMenuById(MENU1);
 }

 public Object getControlById(int ID);
}

Manually Adding Controls to a Screen
The createControls method allows you to manually add controls to a screen.

The following code adds controls to a layoutManager, which is eventually added to the screen.
The layoutManager takes the control, column span, and row span as arguments to add the
control and lay it out.

ConfigureControlById configures the controls’s meta data(calling
configureObjectMetaDataById) and handlers(calling
configureObjectHandlersById) by Ids. A custom subclass can override this method
to customize controls.

Development Task Flows

Developer Reference for BlackBerry 31

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

layoutManager = (LayoutManager) createControlById(LAYOUTMANAGER);
label1 = (Label) createControlById(LABEL1);
....
configureControlById(LAYOUTMANAGER);
configureControlById(LABEL1);
...
layoutManager.addWidget(label1, 1, 1);
...
this.add(layoutManager);

Writing Widget Event Code
To enable widget events, you must first specify events for a control from its coding properties
tab.

During code generation, the event delegate gets generated into the custom folder. The event
delegate is called by control.setCustomEventsDelegate(eventDelegate,
eventTyle) in the configureObjectHandlersById method.

At runtime, the control’s specified events are passed to the event delegate and handled by your
code. The event delegate implements IcustomEventsDelegate and has the following
methods to handle a variety of events:

• Methods to onLoad event:

• onLoad: called during loading of the control

• Methods to onDraw event:

• paint: called when painting drawFocus: called when drawing focus

• Methods to onClick event:

• onFocus: called when focused

• onUnfocus: called when unfocused

• navigationClick: called when navigation clicked

• navigationUnclick: called when navigation unclicked

• navigationMovement: called when navigation moved

• touchEvent: called when touched

Note: this event is available only to touch screen devices, make sure you define the correct
preprocessor for the client project to make it work properly.

• Methods to onRecordSelectionChange event:

• onRecordChange: called when scrolling through records and mainly used for table
type controls (cell table, grid table, list detail). It can be used for enabling or disabling
menu items, activating phone actions, expanding content of a cell, or showing cell
content in a fish eye view.

• Methods to onValueChange event:

• onValueChange: called when the value of an input control changes, and useful for
linked parameters in that the values of a control change based on the selected value of
another control. This is primarily used in CGI type controls.

Development Task Flows

 32 Sybase Unwired Platform

• Methods to onOrientationChange event:
• onOrientationChange: called when orientation changes

Note: this event is available only to touch screen devices, make sure you define the correct
preprocessor for the client project to make it work properly.

The following sample code shows how to write widget events:
public void onOrientationChange(Object field, int controlID,
 int width, int height) {
 // custom code
 Switch(controlID)
 {
 case BOBScreenCustomers.BUTTON:
 Dialog.alert("button orientation changed!");
 default:
 return;
 }
};

Adding Validators
You can assign TextInput a vector of validators. Validator validates the text input’s
value based on the validation types and patterns.

The following is a code example for adding validators:
case TEXTINPUT1:
 TextInput localtextInput1 = (TextInput) object;
 Vector textField1ValidateVector = new Vector();
 textField1ValidateVector.addElement(new
 Validator("PATTERN_MATCH", "CONTAINS", "my",
 "The input does not contain {0}."));
 textField1ValidateVector.addElement(
 new Validator("PATTERN_MATCH", "STARTS_WITH", "sup",
 "The input must start with {0}."));
 localtextInput1.setInvalidValueMessage(
 "Enter a valid value (data type {0} and logical type {1}).");
 localtextInput1.setValidators(textField1ValidateVector);
 localtextInput1.setFontStyle(styleEdit_box_Style);
break;

Perform UI Binding to an MBO
You can perform UI binding to an MBO through the configureObjectMetaDataById
method.

The following code shows how to perform UI binding to an MBO:
protected void configureObjectMetaDataById(int ID, Object object) {
 switch (ID) {
 ...
 case CELLTABLE1:
 CellTable localcellTable1 = (CellTable) object;
 localcellTable1.setColumnPercentage(
 new int[] {33, 34, 33 });
 localcellTable1.setSortingColumn("Sort on column");

Development Task Flows

Developer Reference for BlackBerry 33

 localcellTable1.setMboId(BOBCUIDefinition.MBO_A_B_C_DEPARTMENT);
 localcellTable1.setFocusFontStyle(styleCell_Table_Focus_Style);
 localcellTable1.setNumberOfColumns(3);
 localcellTable1.setColumnConfig(
 new String[] {"dept_id","dept_name","dept_head_id" });
 localcellTable1.setUnfocusFontStyle(
 styleCell_Table_Unfocus_Style);
 break;
 ...

The setMboId method binds the cell table to the MBO department. This also applies to other
MBO data controls such as grid table, select box and list detail.

Access Pending Operations and Operation Logs
MBOModel is an object for mobile business objects, and has a method called
getPendingObjects to return pending operations. A pending object is the combined
pending operations on that object instance.

CommonMBOModel mboInstance =
 MBOModelFactory.getInstance().getCommonMBOModel(mboId);
if (!(mboInstance instanceof MBOModel)) {
 continue;
}
MBOModel mobileApp = (MBOModel) mboInstance;
ObjectList pendingObjectList = mobileApp.getPendingObjects();

Similarly, the static method getLogs returns all logs for the specified package name and
query criteria.
Query query = new Query();
query.setTestCriteria(new AttributeTest("component", componentName,
AttributeTest.EQUAL));
LogRecord[] logs = MBOModel.getLogs(packageName, query);

Connecting to Unwired Server
CommonMBOModel defines loginToSync to log in to the Unwired Server.

CommonMBOModel.loginToSync(
 profile.getPackageName(),
 profile.getUserName(),
 profile.getPassword());

Adding or Modifying Navigation
To add navigation to a screen, you can add ScreenAction to controls or menus that take actions.

protected void configureObjectHandlersById(
 int ID, Object object) {
 switch (ID) {
 ...
 case MENU2:
 MenuAction menu2 = (MenuAction) object;
 //Create list of actions
 ActionList actionList15 = new ActionList();
 IBOBAction connectionAction9 = new

Development Task Flows

 34 Sybase Unwired Platform

 ScreenAction(UIDefinition.getScreen("screen16"), false, null);
 menu2.setAction(actionList15);
 IBOBAction contextAction4
 = new SaveMobileDataContextAction(
 cellTable1);
 actionList15.addAction(contextAction4);
 actionList15.addAction(connectionAction9);
 ...

To remove navigation, you can override the menu or control's action to remove the screen
action.
protected void configureObjectHandlersById(
 int ID, Object object) {
 switch (ID) {
 ...
 case MENU2:
 MenuAction menu2 = (MenuAction) object;
 ...
 menu2.setAction(xxxx);
 default:
 super.configureObjectHandlersById(ID, object);

For controls that support an action, you can create a widget event:
public boolean navigationClick(
 Object field, int controlID,
 ActionList actions, int status, int time)
{
 // custom code
 // modify actions which include the screen action
 return false;
}

Adding or Modifying Actions
You can add or modify actions for controls or menus through the
configureObjectHandlersById method.

Note: By default, the configureObjectHandlersById method adds all actions to
controls and menus.

The following is a code example for adding actions:
protected void configureObjectHandlersById(int ID, Object object)
{
 switch (ID) {
 ...
 case BUTTON8:
 Button localbutton8 = (Button) object;
 //Create list of actions
 ActionList actionList3 = new ActionList();
 //Create set of submit elements
 Vector submit2 = new Vector();
 //Create submit element "dept_id"
 submit2.addElement(new SubmitElement("dept_id", "2",
 VariableProperties.SUBMIT_CONTROL_TYPE, null, true,

Development Task Flows

Developer Reference for BlackBerry 35

 null, -1, "dept_id", MBOAttribute.SCHEMA_TYPE_INT,
 false, null, false));
 //Create submit element "dept_name"
 submit2.addElement(new SubmitElement("dept_name", "4",
 VariableProperties.SUBMIT_CONTROL_TYPE, null,
 false, null, 40, "dept_name",
 MBOAttribute.SCHEMA_TYPE_STRING,
 false, null, false));
 //Create submit element "dept_head_id"
 submit2.addElement(new SubmitElement("dept_head_id", "6",
 VariableProperties.SUBMIT_CONTROL_TYPE, null,
 false, null, -1, "dept_head_id",
 MBOAttribute.SCHEMA_TYPE_INT,
 false, null, false));
 localbutton8.setAction(actionList3);
 IBOBAction submitAction2 = new SubmitAction(
 BOBCUIDefinition.MBO_A_B_C_DEPARTMENT, this,
 OperationTypes.OPERATION_INSERT, submit2, false,
 "Input {0} is required.",
 "Input {0} exceeds the maximum length of {1}.",
 "create");
 actionList3.addAction(submitAction2);
 IBOBAction backAction1 = BackAction.getInstance();
 actionList3.addAction(backAction1);
 break;

To modify actions, you can override this method by using custom code, and the widget event
method navigationClick.

Creating and Assigning Variables
There are four types of variables: user, system, table and personalized.

To create user variables, add the variable in BOBCUIDefinition:
addVariable(VARIABLE_HISVAR, "hisVarValue",
 VariableProperties.VARIABLE_TYPE_USER,
 MBOAttribute.SCHEMA_TYPE_STRING);

To use a user variable in controls:
case LABEL2:
 Label locallabel2 = (Label) object;
 locallabel2.setFontStyle(styleLabel_Style);
 //locallabel2.setFooterField(null);
 locallabel2.setFocusFontStyle(styleDefault_Style);
 locallabel2.setWrapText(false);
 locallabel2.setVariableLabel(new ControlVariable(
 BOBCUIDefinition.VARIABLE_HISVAR,
 VariableProperties.VARIABLE_TYPE_USER, null,
 null));

To persist a user variable:
String key = "variableName";
 // NOTE: Sybase only supports this type.
 String keyType = VariableProperties.VARIABLE_TYPE_USER;

Development Task Flows

 36 Sybase Unwired Platform

 String schemaType = MBOAttribute.SCHEMA_TYPE_BOOLEAN;
 Object value = "true";
 Util.addVariable(key, value, keyType, schemaType);

System variables are used in a similar manner.

To create table variable and bind to text input:
localtextInput4.setVariableInput(
 new ControlVariable("dept_head_id",
 VariableProperties.VARIABLE_TYPE_TABLE,
 BOBCUIDefinition.MBO_A_B_C_DEPARTMENT, null));

You must save a Context before table variables can be used by a context action.

case MENU6:
 MenuAction menu6 = (MenuAction) object;
 //Create list of actions
 ActionList actionList13 = new ActionList();
 IBOBAction connectionAction9 =
 new ScreenAction(
 UIDefinition.getScreen("screen4"), false, null);
 menu6.setAction(actionList13);
 IBOBAction contextAction4 =
 new SaveMobileDataContextAction(cellTable1);
 actionList13.addAction(contextAction4);
 actionList13.addAction(connectionAction9);
 cellTable1.setDefaultAction(actionList13);

Using PIM Actions
You can add a PIM action to a control to integrate the control with a BlackBerry PIM
application. The PIM action constructor takes the following arguments.

int type:

public interface RIMPimConstants
{
 // #################### Available RIM applications
#################### //

 public static int RIM_PIM_CONTACT = 0;
 public static int RIM_PIM_EMAIL = 1;
 public static int RIM_PIM_PHONE = 2;
 public static int RIM_PIM_EVENT = 3;
 public static int RIM_PIM_TODO = 4;
 public static int RIM_PIM_MEMO = 5;
}

boolean isRead: if true, the constructor reads from the BlackBerry PIM application; if
false the constructor writes to the BlackBerry PIM application.

Object control: A
com.sybase.uep.bobclient.controls.MobileDataControl widget such as
com.sybase.uep.bobclient.controls.MobileAppTable,

Development Task Flows

Developer Reference for BlackBerry 37

com.sybase.uep.bobclient.controls.TwoColumnLayout or
com.sybase.uep.bobclient.screens.IBOBScreen.

The following code example shows the use of the PIM read action, which requires the
control’s logical type to be set as one of the PIM application type, and the creation of a PIM
action that refers to the control or the control’s parent screen.
TextInput textInput = new TextInput("", "",
 BasicEditField.DEFAULT_MAXCHARS, Field.FIELD_LEFT);
// set logical type of text input, this is important for PIM usage
textInput.setLogicalType(
 new LogicalType(
 RIMPimConstants.RIM_PIM_CONTACT,
 BlackBerryContact.NAME,
 PIMItem.ATTR_NONE, Contact.NAME_GIVEN));
layoutManager.addWidget(textInput1, 1, 1);
Button button2 = (Button) object;
// Create list of actions
ActionList actionList2 = new ActionList();
button2.setAction(actionList2);
// pass the text input’s parent screen to PIM action
Action rimAction2 =
 new RIMPimAppAction(
 RIMPimConstants.RIM_PIM_CONTACT, true, this, false);
actionList2.addAction(rimAction2);
layoutManager.addWidget(button2, 1, 1);

The following is a code example for the PIM write action:
TextInput textInput3 = (TextInput) object;
textInput3.setInvalidValueMessage(
 "Enter a valid value (data type {0} and logical type {1}).");
textInput3.setLogicalType(
 new LogicalType(
 RIMPimConstants.RIM_PIM_CONTACT,
 BlackBerryContact.NAME,
 PIMItem.ATTR_NONE, Contact.NAME_FAMILY));
layoutManager.addWidget(textInput3, 1, 1);
Button button4 = (Button) object;
//Create list of actions
ActionList actionList2 = new ActionList();
button4.setAction(actionList2);
Action rimAction2 = new RIMPimAppAction(
 RIMPimConstants.RIM_PIM_CONTACT, false, this,
 true);
actionList2.addAction(rimAction2);
layoutManager.addWidget(button4, 1, 1);

boolean launchPIMApp: if true, the PIM application gets launched after performing a
write operation, otherwise false.
case MENU13:
 MenuAction menu13 = (MenuAction) object;
 Action rimAction9 =
 new RIMPimAppAction(
 RIMPimConstants.RIM_PIM_CONTACT, true, this,

Development Task Flows

 38 Sybase Unwired Platform

 false);
 menu13.setAction(rimAction9);
 break;

Using LayoutManager
These examples illustrate how to customize margin and button layout.

int[] colPercentages = { 35, 65 };
LayoutManager layoutManager = new LayoutManager(2,
 colPercentages, true, styleDisplay_Style);
...
layoutManager.addWidget(textInput52, 1, 1);
layoutManager.addWidget(horizontalRuler53, 2);
layoutManager.addWidget(button54, 1, 1);
layoutManager.addWidget(button55, 1, 1);
this.add(layoutManager);

Adding a Table Header
Add a Region which contains the table header columns for the screen that you want to
customize using the Device Application Designer. Then modify the generated gap class:

protected void createControls() {
 super.createControls();

 if (regionManager1.getManager() != null) {
 Manager m = regionManager1.getManager();
 m.delete(regionManager1);
 layoutManager.delete(m);
 }

 setBanner(null);
 VerticalFieldManager vfm = new VerticalFieldManager();
 vfm.add(navigationBarField);

regionManager1.setColumnPercentage(cellTable1.getTableConfig()
 .getColumnPercentage());
 vfm.add(regionManager1);
 layoutManager.setScreenHeader(vfm);
 setBanner(vfm);
 }

Filling a Space with a Button
By default, the generated button adjusts its width based on the displayed content and does not
fill any extra space.

To change the button so it fills the extra space:

1. Create a customized button class which uses all the available layout space:
public int getButtonWidth() {
 //always use layout width to fill the space
 if (_layoutWidth > 0)
 {
 return _layoutWidth;
 }

Development Task Flows

Developer Reference for BlackBerry 39

 return super.getButtonWidth();
 }

 public void setLayoutWidth(int width) {
 super.setLayoutWidth(width);
 _layoutWidth = width;
 }

2. Use the new FillButton class in the generated gap class:

// customize BOBScreenUpdate_Sales_order
 protected Object createControlById(int ID) {
 switch (ID) {
 case BUTTON16:
 //Create button "Submit"
 Button localbutton16 = new FillButton(Field.FIELD_RIGHT
 | Field.FIELD_VCENTER);

 return localbutton16;
 case BUTTON17:
 //Create button "Cancel"
 Button localbutton17 = new FillButton(Field.FIELD_LEFT
 | Field.FIELD_VCENTER);

 return localbutton17;
 default:
 break;
 }

 return super.createControlById(ID);
 }

Removing the CellTable Margin
By default, the CellTable is surrounded with a border. To remove it, customize the generated
gap class:

protected void configureObjectMetaDataById(int ID, Object object) {
 super.configureObjectMetaDataById(ID, object);
 switch (ID) {
 case LAYOUTMANAGER:
 LayoutManager locallayoutManager = (LayoutManager) object;
 //remove margin for cell table
 locallayoutManager.setMarginWidth(0);
 locallayoutManager.setMarginHeight(0);
 break;
 default:
 break;
 }
 }

Deploying Applications to Devices
This section describes how to deploy customized mobile applications to devices.

Development Task Flows

 40 Sybase Unwired Platform

Device Registration
Replication devices are used exclusively with replication-based synchronization (RBS)
mobile business objects that rely on RBS data cached in the consolidated database. RBS
device users are automatically registered when they first synchronize data. There is no device
configuration required; the only tasks an administrator performs are monitoring RBS device
activity and deleting RBS devices.

Note: For more information on device registration, see Sybase Unwired Platform System
Administration > Device and User Management > Replication Devices and Sybase Unwired
Platform System Administration > Device and User Management > Device Provisioning.

Signing
Code signing is required for applications to run on devices (as opposed to simulators).

You can implement code signing from the Device Application Designer or the BlackBerry
JDE:

• Device Application Designer – the BlackBerry generation wizard includes a “Disable
signing" option. If this option is unselected the wizard presents a signing dialog after
compiling. This dialog allows you to input a sign key to sign the options and the client
COD (.cod) file, so they can run on a physical device.

• BlackBerry JDE – download the Signing Authority Tool from the BlackBerry Web site at
http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp. View
Deploying and Signing Applications in the BlackBerry JDE plug-in for Eclipse at the
Research In Motion Developer Video Library Web site: http://
supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Deploying BlackBerry Applications
You can deploy BlackBerry applications to physical devices through BlackBerry Desktop
Manager or over-the-air (OTA).

The generated code is compiled against the BlackBerry RAPC compiler to output the
following COD (.cod), Application Loader Files (.alx), and Java Application Descriptor (.jad)
files. File requirements depend on application and installation type:

• OTA installation – requires all the JAD and COD files located in the ota subdirectory of
the BlackBerry build version. For example: <UnwiredPlatform_InstallDir>
\Unwired_WorkSpace\Eclipse\sybase_workspace\mobile\eclipse
\plugins\com.sybase.uep.bob.rim_<version_timestamp>
\generate\blackberry\build-<version>\ota.

• Desktop Manager installation – requires ALX and COD files located in the
BlackBerry<buildversion> subdirectory. For example:
<UnwiredPlatform_InstallDir>\Unwired_WorkSpace\Eclipse

Development Task Flows

Developer Reference for BlackBerry 41

http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.bob.rim_<version_timestamp>\generate
\blackberry\build-<version>.

Required files include:

• UltralLiteJ.cod/.alx/.jad files
• BOBFramework.cod/.alx/.jad files
• SUPPushListener.cod/.alx/.jad files

In addition to these generated files:

• client.cod/.alx/.jad files
• options.cod/.alx/.jad files

Deploy Applications through BlackBerry Desktop Manager
BlackBerry Desktop Manager allows you to customize synchronization and configuration
settings between a desktop PC and a BlackBerry device, and to deploy third-party
applications.

1. Connect your BlackBerry to your PC.

2. Once the device is attached, launch the BlackBerry Desktop Manager.

3. Launch the Application Loader from inside the Desktop Manager. Select the alx files on
the PC and deploy them to the device.

4. Click the Add button in the Application Loader. Browse and select each of the Application
Loader Files (.alx).
The files appear in the list of items to install.

5. Follow the instructions to complete the installation.

Note: For more information on using BlackBerry Desktop Manager, see the RIM
documentation.

Deploying Applications Over the Air
There is an OTA folder at the generated location, which includes all of the .cod files, split into a
number of .cod files of smaller size for the purpose of OTA deployment. You can also find .jad
files in that location, which are required for OTA deployment.

1. Place all the files on a Web server that supports an HTTP connection.

2. BlackBerry users access the Web server and download the applications by selecting the
corresponding .jad files.

Development Task Flows

 42 Sybase Unwired Platform

Reference

This section describes the Client Object API and Device Framework API. Classes are defined
and sample code is provided.

BlackBerry Client Object API
Describes solutions and examples for tasks and uses of the Sybase Unwired Platform
BlackBerry Client Object API. The Client Object API enables you to customize mobile
business object data flow and handling for the BlackBerry device application.

To generate Client Object API Javadoc, select the Generate JavaDoc option when generating
mobile business object (MBO) code.

Client Object API Javadocs
Use the Sybase Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object API Javadocs, located in the Unwired
Platform installation directory <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\ClientAPI\apidoc. There are subdirectories for \j2me and
\j2se.

From the index.html file, the top left navigation pane lists all packages installed with
Unwired Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc as required.

Connection APIs
The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server, and authenticating.

ConnectionProfile
The ConnectionProfile class manages local database information. You must set its
properties before creating a local database.

By default, the database class name is generated as "packageName"+"DB".
ConnectionProfile profile = <PkgName>DB.getConnectionProfile();
profile.setPageSize(4*1024);
profile.setEncryptionKey(”Your key”);

Reference

Developer Reference for BlackBerry 43

SynchronizationProfile
Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed. The ConnectionProfile class manages that information.

You can configure the synchronization connection profile using the package database class:
ConnectionProfile profile = <PkgName>DB.getSynchronizationProfile();
profile.setServerName("sup.sybase.com");
profile.setPortNumber(2480);
profile.setNetworkProtocol(“http”);
profile.setDomainName(“default”);

To connect to Unwired Server through Relay Server, set the required parameters with the
setNetworkStreamParams method.

profile.setNetworkStreamParams
(“url_suffix=ias_relay_server/client/rs_client.dll/Ryan.SUPFarm”);

Authentication
The generated package database class already provides a valid synchronization connection
profile. You can log in to the Unwired Server with your user name and credentials.

The package database class provides the following methods for logging in to the Unwired
Server:

• public static void onlineLogin(String username, String
password);

• public static bool offlineLogin(String username, String
password);

• public static void loginToSync(String username, String
password);

onlineLogin authenticates the credentials against the Unwired Server.

offlineLogin authenticates against the last successfully authenticated credentials. There
is no communication with Unwired Server in this method.

loginToSync tries offlineLogin first. If offlineLogin fails, it will try
onlineLogin. This is the recommended login method. loginToSync brings the
KeyGenerator to the client from the Unwired Server. The KeyGenerator is an MBO for storing
key values that are known to both the server and the client. On loginToSync from the
client, the server sends down a value that the client can use when creating new records (by
using the method [KeyGenerator generateId] to create key values that the server will
accept).

The KeyGenerator is set up so that the value increments each time the generateId method
is called. A periodic call to submitPending by the KeyGenerator generateId MBO sends
the most recently used value to the Unwired Server, to let the Unwired Server know what keys
have been used on the client side. The client application should put the call to

Reference

 44 Sybase Unwired Platform

submitPending within a try/catch block and should not attempt to send any more
messages to the server if loginToSync throws an exception.

<PkgName>DB.loginToSync("username", "password");

Note: Call loginToSync at least once before using the specific Sybase Unwired Platform
package.

Synchronization APIs
You can synchronize mobile business objects (MBOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Changing Synchronization Parameters
Synchronization parameters let you change the parameters used to retrieve data from an MBO
during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.
CustomerSynchronizationParameters sp =
Customer.getSynchronizationParameters();
sp.setMyid(10001);
sp.save();

Performing Mobile Business Object Synchronization
A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

Two synchronization methods are provided in the package database class. You can
synchronize a specified group of MBOs using the synchronization group name:
<PkgName>DB.synchronize(“sync_group”);

Or, you can synchronize all synchronization groups:
<PkgName>DB.synchronize();

Query APIs
The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship and paging data, and to retrieve and filter a query result set.

Retrieving Data from Mobile Business Objects
You can retrieve data from mobile business objects through a variety of queries including
object queries, arbitrary find, and through filtering query result sets.

Reference

Developer Reference for BlackBerry 45

Object Query
To retrieve data from the local database, use one of the static Object Query methods in the
MBO class.

Object Query methods are generated based on Object Queries defined in Unwired WorkSpace
by the modeler. Object Query methods have whatever query name, parameters and return type
that were defined in Unwired WorkSpace. Object Query methods return one object, or a
collection of objects that match the specified search criteria defined in the Object Query.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

The following method retrieves all customers.
public static com.sybase.collections.ObjectList findAll()

com.sybase.collections.ObjectList customers = Customer.findAll();

The following method retrieves all customers in a certain page.
public static com.sybase.collections.ObjectList findAll(int skip,
int take)

com.sybase.collections.ObjectList customers = Customer.findAll(10,
5);

Suppose the modeler defined the following Object Query:

• name: findByFirstName
• parameter: String firstName
• query definition: SELECT x.* FROM Customer x WHERE x.fname = :firstName
• return type: List

The preceding Object Query results in this generated method:
public static com.sybase.collections.ObjectList
findByFirstName(String firstName)

com.sybase.collections.ObjectList customers =
Customer.findByFirstName(“fname”);

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.
Customer customer = Customer.findById (101);
com.sybase.collections.ObjectList orders =
customer.getSalesOrders();

Reference

 46 Sybase Unwired Platform

You can also use the Query class to filter the return MBO list data.
Query props = new Query();
// set query parameters
......
com.sybase.collections.ObjectList orders =
customer.getSalesOrdersFilterBy(props);

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set:
Query props = new Query();
props.setSkip(10);
props.setTake(5);

com.sybase.collections.ObjectList customers =
Customer.findWithQuery(props);

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 3. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method provides custom device applications the ability to dynamically
build queries based on user input.

AttributeTest
In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify the ordering of the results and object state criteria. A Query class is included in the

Reference

Developer Reference for BlackBerry 47

client object API’s core classes. The Query class is the single object passed to the arbitrary
search methods and consists of search conditions, object/row state filter conditions, and data
ordering information.

Define these conditions by setting properties in a query:

• TestCriteria – criteria used to filter returned data.
• SortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

TestCriteria can be an AttributeTest or a CompositeTest.

An AttributeTest defines a filter condition using an MBO attribute, and supports these
conditions:

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE
• MATCH
• NOT_MATCH
• LESS_THAN
• LESS_EQUAL
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• DOES_NOT_START_WITH
• DOES_NOT_END_WITH
• DOES_NOT_CONTAIN

A CompositeTest combines multiple TestCriteria using the logical operators AND,
OR and NOT to create a compound filter.

The following example retrieves all log records where mboName=entityName and
key=idString:
String entityName = "Customer";
 String idString = "12345";
 com.sybase.persistence.Query query = new
 com.sybase.persistence.Query();
 com.sybase.persistence.CompositeTest ct = new
 com.sybase.persistence.CompositeTest();

Reference

 48 Sybase Unwired Platform

 ct.setOperator(com.sybase.persistence.CompositeTest.AND);

ct.add(com.sybase.persistence.AttributeTest.equal("component",
 entityName));

ct.add(com.sybase.persistence.AttributeTest.equal("entityKey",idStr
ing));
 query.setTestCriteria(ct);
 com.sybase.collections.ObjectList logList =
 LogRecordImpl.findWithQuery(query);

SortCriteria defines a list of SortOrder, which contains an attribute name and an
order type (ASCENDING or DESCENDING).

For example, locate all Customer objects based on the following criteria:

• FirstName = ‘John’ AND LastName = ‘Doe’ AND (State = ‘CA’ or State = ‘NY’)
• Customer is New or Updated
• Ordered by: LastName ASC, FirstName ASC, Credit DESC
• Skip the first 10 and take 5

Use code similar to:
 Query props = new Query();
 //define the attribute based conditions
 CompositeTest innerCompTest = new CompositeTest();
 innerCompTest.setCompositionType(TestType.OR);
 innerCompTest.add (
 new AttributeTest ("state", "CA", AttributeTest.EQUAL));
 innerCompTest.add (
 new AttributeTest ("state", "NY", AttributeTest.EQUAL));
 CompositeTest outerCompTest = new CompositeTest();
 outerCompTest.setCompositionType(CompositeTest.AND);
 outerCompTest.add (
 new AttributeTest("fname", "John", AttributeTest.EQUAL));
 outerCompTest.add (
 new AttributeTest("lname", "Doe" ,AttributeTest.EQUAL));
 outerCompTest.add (innerCompTest);
 //define the ordering
 SortCriteria sort = new SortCriteria();
 sort.add ("lname", SortOrderType.ASCENDING);
 sort.add ("fname", SortOrderType.ASCENDING);
 sort.add ("id", SortOrderType.DESCENDING);
 //set the Query object
 props.setTestCriteria(outerCompTest);
 props.setSortCriteria(sort);
 props.setSkip(10);
 props.setTake(5);
 props.setStateCriteria(ObjectState.NEW |
ObjectState.UPDATED);
 com.sybase.collections.ObjectList customers =
Customer.findWithQuery(props);

Reference

Developer Reference for BlackBerry 49

QueryResultSet
The QueryResultSet class provides for querying a result set for the dynamic query API.
QueryResultSet is returned as a result of executing a query.

Example
The following example shows how to execute a query on multiple MBOs using a join:
com.sybase.persistence.Query query = new
com.sybase.persistence.Query();

query.select("c.fname,c.lname,s.order_date,s.region");
query.from(" Customer ", "c");
query.join(" SalesOrder ", "s", " s.cust_id ", "c.id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("lname");
ts.setTestValue(" Devlin");
ts.setOperator(AttributeTest.EQUALS)
query.setTestCriteria(ts);
QueryResultSet qrs = <MyPkg>DB.executeQuery(query);
while(qrs.next())
{
 System.out.println(qrs.getString(columnIndex));
 System.out.println(qrs.getStringByName(columnName));
}

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create instances (non-
static) of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the Client Object API, and are not exposed. Any
parameters not mapped to the object’s attributes are left as parameters in the Generated Object
API. The code examples for create, update and delete operations are based on the fill from
attribute being set. Different MBO settings will effect operation methods.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In
other situations, where there are multiple instances of create or update operations, it is not
possible to automatically generate such a Save method.

Reference

 50 Sybase Unwired Platform

Create Operation
To execute a create operation on an MBO, create a new MBO instance, set the MBO attributes,
then call the save() or create() operation.

Customer cust = new Customer();
cust.setFname ("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.create();// or cust.save();
cust.submitPending();
<PkgName>DB.synchronize();

Customer cust = new Customer();
cust.setFname ("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.create();// or cust.save();
cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

Update Operation
To execute update operations on an MBO, get an instance of the MBO, set the MBO attributes,
and then call either the save() or update() operations.

Customer cust = Customer.findById(101);
cust.setFname("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.save();
cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

To update multiple MBOs in a relationship, call submitPending() on the parent MBO:

Customer cust = Customer.findById(101);
com.sybase.collections.ObjectList orders = cust.getSalesOrders();
SalesOrder order = (SalesOrder)orders.getByIndex(0);
order.setOrder_date(new java.util.Date());
order.save();
cust.submitPending();

Delete Operation
To execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the delete() operation.

Customer cust = Customer.findById(101);
cust.delete();

For MBOs in a relationship, perform a delete as follows:

Reference

Developer Reference for BlackBerry 51

 Customer cust = Customer.findById(101);
 com.sybase.collections.ObjectList orders =
cust.getSalesOrders();
 SalesOrder order = (SalesOrder)orders.getByIndex(0);
 order.delete();
 cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

Save Operation
When called, the Save method determines internally if it should insert or update data to the
client database.

//Update an existing customer
Customer cust = Customer.findById(101);
cust.save();

//Insert a new customer
Customer cust = new Customer();
cust.save();

Other Operation
Operations that are not create, update, or delete operations are called “Other” operations.

Suppose the Customer MBO has an Other operation “other”, with parameters “P1” (string),
“P2” (int) and “P3” (date). This results in a CustomerOtherOperation class being
generated, with “P1”, “P2” and “P3” as its attributes.

To invoke the Other operation, create an instance of CustomerOtherOperation, and set
the correct operation parameters for its attributes. This code provides an example:
CustomerOtherOperation other = new CustomerOtherOperation();
other.setP1(“somevalue”);
other.setP2(2);
other.setP3(new Date());
other.save(); // or other.create()
other.submitPending();
<PkgName>DB.synchronize(); // or <PkgName>DB.synchronize (String
synchronizationGroup)

Multilevel Insert
Multilevel insert allows a single synchronization to execute a chain of related insert
operations.

Consider creating a Customer and a new Customer order at the same time on the client side,
where the SalesOrder has a reference to the new Customer identifier. The following example
demonstrates a multilevel insert:
Customer customer = new Customer();
customer.setFname(“firstName”);
customer.setLname(“lastName”);
customer.setPhone(“777-8888”);
customer.save();

Reference

 52 Sybase Unwired Platform

SalesOrder order = new SalesOrder();
order.setCustomer(customer);
order.setOrder_date(new java.util.Date());
order.setRegion("Eastern");
order.setSales_rep(102);
customer.getOrders().add(order);
//Both the child and parent MBO must call save()
order.save();
//Must submit parent
...

To insert an order for an existing customer, first find the customer, then create a sales order
with the customer ID retrieved:
Customer customer = Customer.findById(101);
SalesOrder order = new SalesOrder();
order.setCustomer(customer);
order.setOrder_date(new java.util.Date());
order.setRegion("Eastern");
order.setSales_rep(102);
customer.getSalesOrders().add(order);
order.save();
customer.submitPending();

See the Sybase Unwired Platform online documentation for specific multilevel insert
requirements.

Pending Operation
You can manage pending operations using these methods:

• cancelPending – cancels the previous create, update, or delete operations on the MBO. It
cannot cancel submitted operations.

• submitPending – submits the operation so that it can be replayed on the Unwired Server.
A request is sent to the Unwired Server during a synchronization.

• submitPendingOperations – submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submitPending method on each
of the pending records.

• cancelPendingOperations – cancels all the pending records for the entity. This method
internally invokes the cancelPending method on each of the pending records.

Customer customer = Customer.findById(101);
if (errorHappened) {
 customer.cancelPending();
}
else {
 customer.submitPending();
}

Passing Structures to Operations
Structures hold complex datatypes (for example a string list, class or MBO object, or a list of
objects) that enhance interactions with certain enterprise information systems (EIS) data

Reference

Developer Reference for BlackBerry 53

sources, such as SAP and Web services, where the mobile business object (MBO) requires
complex operation parameters.

An Unwired WorkSpace project includes an example MBO that is bound to a Remedy Web
service data source that includes a create operation that takes a structure as an operation
parameter. MBOs differ depending on the data source, configuration, and so on, but the
principles are similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including a parameter named _HEADER_ that is a structure datatype named
AuthenticationInfo, defined as:
AuthenticationInfo
 userName: String
 password: String
 authentication: String
 locale: String
 timeZone: String

Structures are implemented as classes, so the parameter _HEADER_ is an instance of the
AuthenticationInfo class. The generated Java code for the create operation is:
public void create(complex.AuthenticationInfo
HEADER,java.lang.String escalated,java.lang.String
hotlist,java.lang.String orig_Submitter,java.lang.String
pending,java.lang.String workLog)

This example demonstrates how to initialize the AuthenticationInfo class instance and pass
them, along with the other operation parameters, to the create operation:
AuthenticationInfo authen = new AuthenticationInfo();
 authen.setUserName("Demo");
 authen.setPassword("");
 authen.setAuthentication("");
 authen.setLocale("EN_US");
 authen.setTimeZone("GMT");

 SimpleCaseList newCase = new SimpleCaseList();
 newCase.setCase_Type("Incident");
 newCase.setCategory("Networking");
 newCase.setDepartment("Marketing");
 newCase.setDescription("A new help desk case.");
 newCase.setItem("Configuration");
 newCase.setOffice("#3 Sybase Drive");
 newCase.setSubmitted_By("Demo");
 newCase.setPhone_Number("#0861023242526");
 newCase.setPriority("High");
 newCase.setRegion("USA");
 newCase.setRequest_Urgency("High");
 newCase.setRequester_Login_Name("Demo");
 newCase.setRequester_Name("Demo");
 newCase.setSite("25 Bay St, Mountain View, CA");
 newCase.setSource("Requester");
 newCase.setStatus("Assigned");
 newCase.setSummary("MarkHellous was here Fix it.");

Reference

 54 Sybase Unwired Platform

 newCase.setType("Access to Files/Drives");
 newCase.setCreate_Time(new
 java.sql.Timestamp(System.currentTimeMillis()));

 newCase.create(authen, "Other", "Other", "Demo", “false”,
“worklog”);
 newCase.submitPending();

Mobile and Local Business Objects
A business object can be either local or mobile. A local business object is a client only object,
and is represented by the LocalBusinessObject interface. A mobile business object can
be synchronized with the Unwired Server, and is represented by the
MobileBusinessObject interface.

Both LocalBusinessObject and MobileBusinessObject extend
BusinessObject. MobileBusinessObject provides the following additional
methods:
public interface MobileBusinessObject extends BusinessObject
{
 void cancelPending();
 LogRecord[] getLogRecords();
 boolean isCreated();
 boolean isPending();
 boolean isUpdated();
 void submitPending();
}

getLogRecords returns operation logs as LogRecord instances. See the LogRecord
API.

submitPending submits a pending record to the Unwired Server. A pending record is one
that has been updated in the client database, but not sent to the Unwired Server.

cancelPending cancels a pending record.

Personalization APIs
Personalization keys allow the application to define certain input parameter values that differ
(are personalized) for each mobile user. The Personalization APIs allow you to manage
personalization keys, and get and set personalization key values.

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Reference

Developer Reference for BlackBerry 55

Get or Set Personalization Key Values
The PersonalizationParameters class is generated automatically for managing
personalization keys. Personalization keys allow the application to define certain input
parameter values that are different (personalized) for each mobile user.

The following code provides an example on how to set a personalization key, and pass an array
of values and array of objects:
PersonalizationParameters pp =
<PkgName>DB.getPersonalizationParameters();
pp.setMyIntPK(10002);
pp.save();
IntList il = new IntList(2);
il.add(10001);
il.add(10002);
pp.setMyIntListPK(il);
pp.save();

MyDataList dl = new MyDataList();
//MyData is a structure type defined in tooling
MyData md = new MyData();
md.setIntMember(...);
md.setStringMember2(...);
dl.add(md);
pp.setMyDataList(dl);
pp.save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Object State APIs
The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Java Type Description

isNew boolean Returns true if this entity is new (but has not been created in
the client database).

Reference

 56 Sybase Unwired Platform

Name Java Type Description

isCreated boolean Returns true if this entity has been newly created in the client
database, and one the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

isDirty boolean Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted boolean Returns true if this entity was loaded from the database and
was subsequently deleted.

isUpdated boolean Returns true if this entity has been updated or changed in the
database, and one of the following is true:

• The entity has not yet been submitted to the server with a
replay request.

• The entity has been submitted to the server, but the server
has not finished processing the request.

• The server rejected the replay request (replayFailure
message received).

pending boolean Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

replayCounter long Returns a long value which is updated each time a row is
created or modified by the client. This value is derived from
the time in seconds since an epoch, and increases each time a
row is changed.

Reference

Developer Reference for BlackBerry 57

Name Java Type Description

replayPending long Returns a long value. When a pending row is submitted to the
server, the value of replayCounter is copied to re-
playPending. This allows the client code to detect if a

row has been changed since it was submitted to the server
(that is, if the value ofreplayCounter is greater than

replayPending).

replayFailure long Returns a long value. When the server responds with a re-
playFailure message for a row that was submitted to

the server, the value of replayCounter is copied to

replayFailure, and replayPending is set to 0.

Pending State Pattern
When a create, update, delete, or save operation is called on an entity in a replication-based
synchronization application, the requested change becomes pending. To apply the pending
change, call submitPending on the entity, or submitPendingOperations on the
MBO class:

 Customer e = new Customer();
e.setFname("Fred");
e.setAddress("123 Four St.");
e.create(); // create as pending
e.submitPending(); // submit to server
Customer.submitPendingOperations(); // submit all pending Customer
rows to server

submitPendingOperations submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submitPending method on each of
the pending records.

The call to submitPending causes the operations to be marked for replay by Unwired
Server. On the next synchronization, Unwired Server processes the operations and creates log
records for each operation with code indicating the status of the operation. The LogRecord
interface is defined as follows:

Method
Name

Java Type Description

component string Name of the MBO for the row for which this log record was
written.

entityKey string String representation of the primary key of the row for which
this log record was written.

Reference

 58 Sybase Unwired Platform

Method
Name

Java Type Description

code int One of several possible HTTP error codes:

• 200 indicates success.

• 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

• 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

• 404 indicates that the client tried to access a nonexistent
package or MBO.

• 405 indicates that there is no valid license to check out for
the client.

• 500 to indicate an unexpected (unspecified) server fail-
ure.

message String Descriptive message from the server with the reason for the
log record.

operation String The operation (create, update, or delete) that caused the log
record to be written.

requestId String The id of the replay message sent by the client that caused this
log record to be written.

timestamp Date Date and time of the log record.

If a rejection is received, the application can use the entity method getLogRecords to
access the log records and get the reason:
 com.sybase.collections.ObjectList logs = e.getLogRecords();
for(int i=0; i<logs.count(); i++)
{
com.sybase.persistence.LogRecord log =
(com.sybase.persistence.LogRecord)logs.getByIndex(i);
System.out.println("Entity has a log record:");
System.out.println("Code = " + log.getCode());
System.out.println("Component = " + log.getComponent());
System.out.println("EntityKey = " + log.getEntityKey());
System.out.println("Level = " + log.getLevel());
System.out.println("Message = " + log.getMessage());
System.out.println("Operation = " + log.getOperation());
System.out.println("RequestId = " + log.getRequestId());
System.out.println("Timestamp = " + log.getTimestamp());
}

cancelPendingOperations cancels all the pending records for an entity. This method
internally invokes the cancelPending method on each of the pending records.

Reference

Developer Reference for BlackBerry 59

Mobile Business Object States
A mobile business object can be in one of three states:

• Original state, the state before any CUD operation.
• Downloaded state, the state downloaded from the Unwired Server.
• Current state, the state after any CUD operation.

The Mobile Business Object class provides properties for querying the original state and the
downloaded state:
public Customer getOriginalState();
public Customer getDownloadState();

The original state is valid only before the application synchronizes with the Unwired Server.
After synchronization has completed successfully, the original state is cleared and set to null.
Customer cust = Customer.findById(101); // state 1
cust.setFname(“firstName");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.save(); // state 2
Customer org = cust.getOriginalState(); // state 1
//suppose there is new download for Customer 101 here
Customer download = cust.getDownloadState(); // state 3
cust.cancelPending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

The following code provides an example:
Customer cust = Customer.findById(101);
cust.setFname("newName");
cust.refresh();// newName is discarded

Clear Relationship Objects
The clearRelationshipObjects method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

clearRelationshipObjects

Reference

 60 Sybase Unwired Platform

Common APIs
In addition to Object State APIs these APIs are available with each mobile business object.

• save – save a record to the local database, In the case of an existing record, save calls
update. In the case of a new record, save calls create.

• refresh – client refreshes the entity from the local database.

• cancelPending – cancels a pending record.
• submitPending – submits a pending record to the server.
• getPendingChange – if pending is true, then 'C' (create), 'U' (update), 'D' (delete), 'P' (to

indicate that this row is a parent in a cascading relationship for one or more pending child
objects, but this row itself has no pending create, update or delete operations). If pending is
false, then 'N'.

• getReplayCounter – updated each time a row is created or modified by the client. This
value is derived from the time in seconds since an epoch, so it always increases each time
the row is changed.

• getReplayPending – when a pending row is submitted to the server, the value of
replayCounter is copied to replayPending. This allows client code to detect if a row has
been changed since it was submitted to the server --the test to look for : replayCounter >
replayPending. On receiving a successful response (replayResult) from the server, this is
reset to 0.

• getReplayFailure – when the server responds with a replayFailure message for a row that
was submitted to the server, the replayCounter value is copied to replayFailure, and
replayPending is set to 0.

Security APIs
The security APIs allow you to customize some aspects of connection and database security.

Connect Using a Certificate
You can set certificate information in ConnectionProfile.

ConnectionProfile profile = <PkgName>DB.getSynchronizationProfile();
profile.setDomainName("default");
profile.setServerName("host-name");
profile.setPortNumber(2481);
profile.setNetworkProtocol("https");
profile.setNetworkStreamParams
("trusted_certificates=rsa_public_cert.crt");

Encrypt the Database
You can use ConnectionProfile.EncryptionKey to set the encryption key of a
local database. Set the key during application initialization, and before creating or accessing
the client database.

Reference

Developer Reference for BlackBerry 61

ConnectionProfile profile = <PkgName>DB.getConnectionProfile();
profile.setEncryptionKey(“Your key”);

Utility APIs
The Utility APIs allow you to customize aspects of logging, callback handling, and generated
code.

LogRecord API
LogRecord is used to store two types of logs.

• Operation logs on the Unwired Server. These logs can be downloaded to the device.
• Client logs. These logs can be uploaded to the Unwired Server.

The following example code executes an update operation and examines the log records for
the Customer MBO:
int id = 101;
Customer result = Customer.findById(id);
result.setFname(“newFname”);
result.save();
result.submitPending();
<PkgName>DB.synchronize();
result = Customer.findById(id);
com.sybase.collections.ObjectList logs = result.getLogRecords();
for(iint i=0 ; i<logs.count(); i++)
{
com.sybase.persistence.LogRecord log = logs.getByIndex(i);
System.out.println("Message: " + log.getMessage());
System.out.println("Component: " + log.getComponent());
System.out.println("Operation: " + log.getOperation());
System.out.println("Timestamp: " + log.getTimestamp());
...
}

Viewing Error Codes in Log Records
You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.
2. Performing an initial synchronization.
3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","ppm":
"eyJ1c2VybmFtZSI6InN1cEFkbWluIiwicGFzc3dvcmQiOiJzM3BBZG1pbiJ9","p
id":"moca://
Emulator17128142","method":"replay","pbi":"true","upa":"c3VwQWRta

Reference

 62 Sybase Unwired Platform

W46czNwQWRtaW4=","mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

JsonContent
{"c2":null,"c1":1,"createCalled":true,"_op":"C"}

The Unwired Server returns a response. The code is included in the ResponseHeader.

ResponseHeader
{"id":"684cbe16f6b740eb930d08fd626e1551","cid":"111#My1:1","loginFa
iled":false,"method":"replayFailed","log":
[{"message":"com.sybase.jdbc3.jdbc.SybSQLException:SQL Anywhere
Error -193: Primary key for table 'bi' is not unique : Primary key
value ('1')","replayPending":
0,"eisCode":"","component":"Bi","entityKey":"0","code":
500,"pending":false,"disableSubmit":false,"?":"imot1.server.LogReco
rdImpl","timestamp":"2010-08-26
14:05:32.97","requestId":"684cbe16f6b740eb930d08fd626e1551","operat
ion":"create","_op":"N","replayFailure":
0,"level":"ERROR","pendingChange":"N","messageId":200001,"_rc":
0}],"mbo":"Bi","app":"My1:1","pkg":"imot1:1.0"}

ResponseContent
{"id":100001}

Logging APIs
Retrieve client log records.

//To fill out the deleted and submitted log records
 AttributeTest attributeTestNotDeleted = new
AttributeTest(LogConfig.ReplayPending/*"replayPending"*/,
LogConfig.DefaultReplayPendingValue/*"0"*/, AttributeTest.EQUAL);

q.setTestCriteria(AttributeTest.isNull("operation").and(attributeTe
stNotDeleted));

package com.sybase.persistence;

/**
 * The interface for the logger. Used to create log record.
 */
public interface Logger
{
 /**
 * Get current log level
 */
 public int getLogLevel();
 /**
 * Set current log level
 */

 public void setLogLevel(int newLevel);

 /**
 * Create a new log record
 * @param level The log level of the new log record
 * @param message The log message of the new log record
 */

Reference

Developer Reference for BlackBerry 63

 public LogRecord newLogRecord(int level, String message);

 /**
 * Create a fatal log
 * @param message The log message of the new log record
 */
 public void fatal(String message);

 /**
 * Create an error log
 * @param message The log message of the new log record
 */
 public void error(String message);

 /**
 * Create a warn log
 * @param message The log message of the new log record
 */
 public void warn(String message);

 /**
 * Create an info log
 * @param message The log message of the new log record
 */
 public void info(String message);

 /**
 * Create a debug log
 * @param message The log message of the new log record
 */
 public void debug(String message);

 /**
 * Create a trace log
 * @param message The log message of the new log record
 */
 public void trace(String message);
}

Callback Handlers
To receive callbacks, you must register a CallBackHandler with the generated database
class, the entity class, or both. You can create a handler by extending the
DefaultCallbackHandler class.

In your handler, override the particular callback that you are interested in (for example,
OnReplayFailure). The callback is executed in the thread that is performing the action
(for example, replay). When you receive the callback, the particular activity is already
complete. The CallbackHandler interface consists of the following callbacks:

Reference

 64 Sybase Unwired Platform

Table 4. Callbacks in the CallbackHandler Interface

Callback Description

void onReplayFailure(java.lang.Object entity) Replay failure response notification. entity is a
client MBO instance.

void onReplaySuccess(java.lang.Object entity) Replay success response notification. entity is a
client MBO instance.

int onSynchronize(com.sybase.collections.Ob-
jectList groups,SynchronizationContext context)

This method will be invoked at the specified sta-
tus of the synchronization.groups is a list of syn-
chronization group names. context is the syn-
chronization context.

void onSynchronizeFailure(com.sybase.collec-
tions.ObjectList groups)

Synchronization failure notification. groups is a
list of synchronization group names.

void onSynchronizeSuccess(com.sybase.collec-
tions.ObjectList groups)

Synchronization success notification. groups is a
list of synchronization group names.

The following code example shows how to create and register a handler to receive callbacks:
public class MyCallbackHandler extends DefaultCallbackHandler
{
 // implementation
}

CallbackHandler handler = new MyCallbackHandler();
<PkgName>DB.registerCallbackHandler(handler);
//or Customer.registerCallbackHandler(handler);

SyncStatusListener API
You can implement a synchronization status listener to track the progress of synchronization.

Create a listener that implements the SyncStatusListener interface as follows:
public interface SyncStatusListener
{
 boolean objectSyncStatus(ObjectSyncStatusData statusData);
}

public class MySyncListener extends SyncStatusListener
{
// implementation
}

Pass an instance of the listener to the synchronize methods as follows:
MySyncListener listener = new MySyncListener();
<PkgName>DB.synchronize("sync_group", listener);
// or <PkgName>DB.synchronize(listener); if we want to synchronize
all
// synchronization groups

Reference

Developer Reference for BlackBerry 65

As the application synchronization progresses, the objectSyncStatus method defined
by the SyncStatusListener interface is called and is passed an
ObjectSyncStatusData object. The ObjectSyncStatusData object contains
information about the MBO being synchronized, the connection to which it is related, and the
current state of the synchronization process. By testing the State property of the
ObjectSyncStatusData object and comparing it to the possible values in the
SyncStatusState enumeration, the application can react accordingly to the state of the
synchronization.

Possible uses of objectSyncStatus method include changing form elements on the
client screen to show synchronization progress, such as a green image when the
synchronization is in progress, a red image if the synchronization fails, and a gray image when
the synchronization has completed successfully and disconnected from the server.

Note: The objectSyncStatus method of SyncStatusListener is called and
executed in the data synchronization thread. If a client runs synchronizations in a thread that is
not the primary user interface thread, the client cannot update its screen as the status changes.
In that case, the client must instruct the primary user interface thread to update the screen
regarding the current synchronization status.

The following is an example of syncStatusListener implementation:

public class SyncListener extends syncStatusListener
{
 public boolean objectSyncStatus(ObjectSyncStatusData data)
 {
 switch (data.getSyncStatusState()) {
 case SyncStatusState.APPLICATION_SYNC_DONE:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.APPLICATION_SYNC_ERROR:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.SYNC_DONE:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.SYNC_STARTING:
 //implement your own UI indicator bar
 break;
 ...
 }
 return false;
 }
}

isSynchronized() and getLastSynchronizationTime()
The package database class provides the following methods for querying the synchronized
state and the last synchronization time of a synchronization group:

// Returns if the synchronizationGroup was synchronized
public static boolean isSynchronized(String synchronizationGroup)

Reference

 66 Sybase Unwired Platform

// Returns the last synchronization time of the synchronizationGroup
public static java.util.Date getLastSynchronizationTime(String
synchronizationGroup)

generateId
You can use the generateId methods in the LocalKeyGenerator and
KeyGenerator classes to generate an ID when creating a new object for which you require
a primary key.

This method in the LocalKeyGenerator class generates a unique ID for the package on
the local device:
public static long generateId()

This method in the KeyGenerator class generates a unique ID for the same package across
all devices:
public static long generateId()

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void deleteDatabase()

Typically, createDatabase does not need to be called since it is called internally when
necessary. An application may use deleteDatabase when the client database contains
corrupted data and needs to be cleared.

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
Exceptions thrown on the Unwired Server are logged in both the server log and in
LogRecord. For LogRecord, the exception gets downloaded to the device automatically
during synchronization.

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps it to a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

Reference

Developer Reference for BlackBerry 67

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 5. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS down or the connection is terminated.

Table 6. Non-recoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/webservice/BA-
PI) not found on Backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SUP internal error in modifying
the CDB cache.

N/A

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThrowCredentialRequestOn401Error context
variable is set to true (which is the default), error code 401 throws a
CredentialRequestException, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the
SupThrowCredentialRequestOn401Error context variable in Sybase Control
Center. If SupThrowCredentialRequestOn401Error is set to false, error code 401
is treated as a normal recoverable exception.

Reference

 68 Sybase Unwired Platform

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 7. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later

503

Client-Side Exceptions
Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

• SynchronizeException – this exception is thrown when an error occurs during
synchronization.

• ObjectNotFoundException – this exception is thrown when trying to load an MBO that
is inside the local database.

• NoSuchOperationException – this exception is thrown when trying to call a method
(using the Object Manager API) but the method is not defined for the MBO.

• NoSuchAttributeException – this exception is thrown when trying to access an attribute
(using the Object Manager API) but the attribute is not defined for the MBO.

Reference

Developer Reference for BlackBerry 69

MetaData and Object Manager API
The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API
Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the –md code generation option. You can use the –rm
option to generate the object manager class.

The following code synchronizes and retrieves MBO data:
<PkgName>DB.loginToSync(“username”, “password”);
<PkgName>DB.synchronize();
Customer cust = Customer.findById(123);

The following code gets the same result by using the reflection mechanism:
ObjectManager om = new <PkgName>DB_RM();
DatabaseMetaData dbmd = <PkgName>DB.getMetaData();
ObjectList params = new ObjectList(2);
params.add("username");
params.add("password");
om.invoke(dbmd, dbmd.getOperation("loginToSync"), params);
om.invoke(dbmd, dbmd.getOperation("synchronize"), null);
ObjectList syncParams = new ObjectList(1);
syncParams.add("default");
om.invoke(dbmd, dbmd.getOperation("synchronize",new
String[] {"string"}),syncParams);

ObjectManager
The ObjectManager class allows an application to call the Object API in a reflection style.

Customer object = Customer.findById(123);
ObjectManager rm = new <PkgName>DB_RM();
ClassMetaData customer =
<PkgName>DB.getMetaData().getClass(“Customer”);
AttributeMetaData lname = customer.getAttribute(“lname”);
OperationMetaData save = customer.getOperation(“save”);
Object myMBO = rm.newObject(customer);
rm.setValue(myMBO, lname, “Steve”);
rm.invoke(object, save, new ObjectList());

Reference

 70 Sybase Unwired Platform

DatabaseMetaData
The DatabaseMetaData class holds package level metadata. You can use it to retrieve
data such as synchronization groups, default database file, and MBO metadata.

DatabaseMetaData dmd = <PkgName>DB.getMetaData();
com.sybase.collections.StringList syncGroups =
dmd.getSynchronizationGroups();
for(int i=0; i<syncGroups.size(); i++)
{
String syncGroup = syncGroups.getByIndex(i);
System.out.println(syncGroup);
}

ClassMetaData
The ClassMetaData class holds metadata for the MBO, including attributes and
operations.

AttributeMetaData lname = customerMetaData.getAttribute(“lname”);
OperationMetaData save = customerMetaData.getOperation(“save”);
...

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System.out.println(lname.getName());
System.out.println(lname.getColumn());
System.out.println(lname.getMaxLength());

Replication-Based Push Synchronization Applications
BlackBerry devices support sending push requests through HTTP. Sybase Unwired Platform
supports push configuration and notification handling APIs for BlackBerry HTTP push.

HTTP Push Gateway
Blackberry has an HTTP push feature for sending messages to occasionally connected
devices. For Blackberry devices paired with BlackBerry Enterprise Server (BES), the HTTP
push gateway contains an address that points to the HTTP listener of the BES server. The
POST to the BES server has a query parameter that contains the device ID of the target devices
(for example, 2100000a for an emulator). The BES server holds the message for a
configurable amount of time, and delivers it to the device when the device becomes reachable.

The push listener runs in the background, and listens for server-initiated synchronization
notifications, for example, based on a schedule or triggered by a Data Change Notification
(DCN):

Reference

Developer Reference for BlackBerry 71

The HTTP push gateway can also be used for network-connected Sybase Unwired Platform
applications (for example the Java desktop). The address of the subscription contains an
HTTP URL to an HTTP listener which the application creates. The URL contains a query
parameter such as:
&mode=direct

When the HTTP push gateway sees a query parameter without a device ID, the gateway
understands that the message is not going through the BES server. For the mode=direct
notifications to work, the application must be running and have the listener open. If the
application is not running, the HTTPPush gateway reports a ConnectionRefused error in
the log files, and the notification is not delivered.

Creating a Replication Based Push Application
The device application must meet these requirements to utilize the Replication-Based Push
Synchronization APIs described in this section.

You can develop the push application directly from generated mobile business object (MBO)
code, or from the Device Application Designer.

1. Properly configure and deploy the mobile business objects (MBOs).

Reference

 72 Sybase Unwired Platform

a) Create a Cache Group (or use the default) and set the cache policy to Scheduled and set
some value for the Cache interval, 30 seconds for example.

b) Create a Synchronization Group and set some value for the Change detection level,
one minute for example.

c) Place all Mobile Application project MBOs in the same Cache Group and
Synchronization Group.

d) Deploy the Mobile Application Project as Replication-based in the Deployment
wizard.

2. Develop the push application.
You can either develop the push application directly from MBO generated code or by using
the Device Application Designer:
• Develop the application directly from MBO code:

1. Generate the Object API code.
2. Write a push listener to listen to SIS notification sent from server

public class PushListener
implements Runnable
{
 Connection conn = null;

 private static String url = "http://:
100;deviceside=false";

 /**
 * Constructor
 */
 public PushListener()
 {
 }

 public void run()
 {
 System.out.println("++++++ Started Push Listener +++++
+++");
 try
 {
 conn = Connector.open(url);
 while (true)
 {
 String syncRequestStr = null;
 try
 {
 if (conn instanceof
StreamConnectionNotifier)
 {
 // Open an InputStream.
 StreamConnectionNotifier scn =
 (StreamConnectionNotifier) conn;
 StreamConnection sc = scn.acceptAndOpen();
 InputStream input = sc.openInputStream();
 // Extract the data from the InputStream.
 StringBuffer sb = new StringBuffer();

Reference

Developer Reference for BlackBerry 73

 byte[] data = new byte[256];
 int chunk = 0;
 while (-1 != (chunk = input.read(data)))
 {
 sb.append(new String(data, 0, chunk));
 }

 // Close the InputStream and StreamConnection.
 input.close();
 String s = sb.toString();
 // Display the received data.
 syncRequestStr = s.trim();
 System.out.println(">>Received: " +
syncRequestStr);
 }
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }

// Clients can parse the syncRequestStr to find client
application
// name, package name, sync group name(publication), launch
client
//application and perform sync.

// format of the push message sent by the server:
// notification_timestamp=<datetime>;app=<client app name>;
// device_id=<device id>;package=<sup package name with
version>;
// publication=<comma separated list of syncGroup names>

 TestDB.registerCallbackHandler(new MyCallbackHandler());
 com.sybase.collections.ObjectList sgs = new com.sybase.
 collections.ObjectList()
// Assume you have notification to sync two
syncGroups(publications),
// sg1 and sg2:
 sgs.add(TestDB.getSynchronizationGroup("sg1"));
 sgs.add(TestDB.getSynchronizationGroup("sg2"));
 TestDB.beginSynchronize(sgs, new Object());

 }
 }
 catch (Exception ex)
 {
 System.out.println("HttpPushListener - ERROR : " +
ex);
 }
 }

 /*
 * Define callback handler for handling SIS notifications
 */
 public class MyCallbackHandler extends com.sybase.

Reference

 74 Sybase Unwired Platform

 persistence.DefaultCallbackHandler
 {
 public int onSynchronize(ObjectList arg0,
SynchronizationContext arg1)
 {
 System.out.println("Called on Synchronize");
 return SynchronizationAction.CONTINUE;
 // returns SynchronizationAction.CONTINUE to proceed
this sync
 }

 public void onSynchronizeFailure(ObjectList arg0)
 {
 System.out.println("Called
onSynchronizeFailure");
 }

 public void onSynchronizeSuccess(ObjectList arg0)
 {
 System.out.println("Called
onSynchronizeSuccess");
 }
 }
}

3. In the application, start the push listener, set up the connection profile for SIS and
synchronize SIS subscription to server:
public class PushClientApp extends Application
{
 public static String MDSSERVER = "localhost";
 public static String MDSSERVERPORT = "8080";

 static String PROFILE_HTTP_PUSH_PROTOCOL = "HTTPPUSH";
 static String PROFILE_KEY_ADDRESS = "address";
 static String PROFILE_KEY_PROTOCOL = "protocol";
 static String PROFILE_KEY_APPNAME = "appname";
 static String PROFILE_KEY_DEVICE_ID = "deviceId";
 static String PUSH_HTTP_DEFAULT_DEVICE_PORT = "100";
 static String DEVICE_ID = "2100000a";

 public static void main(String[] args)
 {
 PushClientApp app = new PushClientApp();
 app.enterEventDispatcher();
 }

 Thread pushThread;

 PushClientApp()
 {
 // Set the connection profile information
 System.out.println("++++++++ Starting the client +++
+++++++");
 ConnectionProfile syncprofile =
 TestDB.getSynchronizationProfile();
 syncprofile.setServerName("kpatilxp");

Reference

Developer Reference for BlackBerry 75

 syncprofile.setPortNumber(2480);
 syncprofile.save();

 // Login to the SUP server
 TestDB.loginToSync("supAdmin", "s3pAdmin");

 // Start the http push listener thread
 pushThread = new Thread(new PushListener());
 pushThread.start();

 setPushConnectionProfile("Test:1.0", DEVICE_ID,
 syncprofile, "PushClientApp");

 // Enable SIS on the synchronization group
 SynchronizationGroup sg =
 TestDB.getSynchronizationGroup("PushEnabled");
 sg.setEnableSIS(true);
 sg.setInterval(3);
 sg.save(); // this will update the local db

 // This will synchronize the SIS subscription to the
server
 TestDB.synchronize();
 System.out.println("++++ Synchronization succeeded +
+++++");
 }

 /*
 * For now this assumes MDS is running on localhost
 * Creates the URL for PUSH
 *
 * @param deviceid for SUP client
 */
 public static String getHTTPPushAddress(String deviceid)
 {
 String mdsServer = MDSSERVER;

 String mdsPort = MDSSERVERPORT;

 StringBuffer result = new StringBuffer("http://");
 result.append(mdsServer);
 result.append(":");
 result.append(mdsPort);
 result.append("/push?DESTINATION=");
 result.append(deviceid);
 result.append("&PORT=");
 result.append(PUSH_HTTP_DEFAULT_DEVICE_PORT);
 return result.toString();
 }

 /**
 * Sets up push settings for specified package's
 * synchronization profile.
 *
 * @param packageName
 * the specified package name

Reference

 76 Sybase Unwired Platform

 * @return true if set up succesfully.
 */
 private boolean setPushConnectionProfile(String
packageName,
 String deviceId, ConnectionProfile syncProfile,
 String appId)
 {

 try
 {
 String httpPushAddress =
getHTTPPushAddress(deviceId);

 syncProfile.setProperty(PROFILE_KEY_ADDRESS,
 httpPushAddress);

 syncProfile.setProperty(PROFILE_KEY_PROTOCOL,
 PROFILE_HTTP_PUSH_PROTOCOL);

 syncProfile.setProperty(PROFILE_KEY_APPNAME,
appId);

 syncProfile.setProperty(PROFILE_KEY_DEVICE_ID,
deviceId);

 syncProfile.save();
 }
 catch (Exception e)
 {
 System.out.println(">> setPushConnectionProfile -
 Exception e : " + e);
 return false;
 }

 return true;
}

• Develop the application in the Device Application Designer:
1. Add the Push Settings and Synchronization stock screen:

Reference

Developer Reference for BlackBerry 77

2. Generate the device application.
3. Run the application in the simulator or on a device and set the appropriate settings.
4. In the Push Settings screen define the MDS server and port. For example:

• MDS Server: localhost
• MDS Port: 8080

5. In the Synchronization screen, select a synchronization group and click Menu >
Synchronization Group Info Screen to navigate to the synchronization group
info screen. Select Enable push and select a Push notification mode (Sync
Immediately, Prompt and sync if there is no response, Prompt but don't sync if there
is a response, or Don't prompt and don't sync).

6. Select Menu > Save to upload the push registration to the server.

BlackBerry Device Framework API
Describes solutions and examples for tasks and uses of the Sybase Unwired Platform
BlackBerry Device Framework API, which lets you customize the BlackBerry device user
interface.

The Device Framework works as a library that supports the running of device client
applications. The main class for a device client is BOBUIController. This class is the entry
point when a client is first launched, and keeps track of screens and push actions. The
BOBUIController class extends UiApplication, providing methods to add Device Application
Designer screens, and push those screens to the stack. It also provides methods to remove
screens, invoke objects that run code, and respond to events.

The Device Framework also provides a number of synchronization classes for handling
mobile business object (MBO) synchronization, including push sync, as well as
synchronization group sync. A couple of utility classes are there for various purposes. See the
Java doc for details. Both BOB options and client module depend on the Device Framework.

Reference

 78 Sybase Unwired Platform

The BOB options module includes generated object API code and screen registration code.
BOB client is the main UI application and it also depends on the options module.

Note: For information on BlackBerry development using the RIM APIs, see the RIM
documentation.

BlackBerry Device Framework API Javadocs
Use the Sybase BlackBerry Device Framework API Javadocs as a Device Framework API
reference.

Review the reference details in the BlackBerry Device Framework API Javadocs. To access
the Framework API Javadocs, copy BOBFrameworkJavadoc.zip from
<UnwiredPlatform_InstallDir>\Unwired_WorkSpace\Eclipse
\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.bob.rim_<version>\generate\blackberry, and then
unzip it to a directory on your local machine.

Click the index.html file, the Javadoc open in a browser. The top left navigation pane lists
all packages installed with Unwired Platform. The applicable documentation is available with
each package. Navigate through the Javadoc as required.

Screen Objects
The main structure for a BlackBerry device user interface is the screen object.

All screens that you create are generated into Device Application Designer screens, which
extend the BaseBOBScreen class. BaseBOBScreen is the base implementation of
IBOBScreen. All Device Application Designer screens implement this interface.

Users cannot change the layout of stock screens; however, they can modify certain exposed
stock properties.

Table 8. Device Application Designer Screen Types

Screen
Type

Class Description

Base Device
Application
Designer
Screen

BaseBOBScreen A base implementation of IBOBScreen that is used by
most screens in the framework. It provides methods for
adding menus, menu separators, and source screen refer-
ences or spacers to the current screen, as well as deleting
menu actions. It also creates menu items based on current
focused controls.

Base Device
Application
Designer
Stock Screen

BaseBOBStockScreen The base Device Application Designer stock screen is
used by most stock screens in the framework.

Reference

Developer Reference for BlackBerry 79

Screen
Type

Class Description

Base Device
Application
Designer Set-
tings Screen

BaseSettingsScreen The base Device Application Designer settings screen is
used by most settings screens in the framework.

About Screen AboutScreen Information about the Sybase Unwired Platform Black-
Berry client application.

Date Picker
Screen

DatePickerPopup Both shows, and allows the user to specify, date and time
information.

Exception
Screen

ExceptionScreen Internal server errors.

File Explorer
Screen

FileExplorerScreen Allows the user to select a file from a device.

Image Screen ImageScreen Shows the entire image on the screen.

LoginScreen LoginScreen Login information for the Sybase Unwired Platform
BlackBerry client application.

Logs Screen LogsScreen Logs for the Sybase Unwired Platform BlackBerry client
application.

Log Informa-
tion Screen

LogInfoScreen Log information for the Sybase Unwired Platform Black-
Berry client application.

Pending Oper-
ation Screen

PendingOpera-
tionScreen

Pending operations for the Sybase Unwired Platform
BlackBerry client application.

Pending Oper-
ation Informa-
tion Screen

PendingOperationIn-
foScreen

Pending operation information for the Sybase Unwired
Platform BlackBerry client application.

Personaliza-
tion Screen

PersonalizationScreen Personalization information for the Sybase Unwired Plat-
form BlackBerry client application.

Profile Screen ProfileScreen Profiles for the Sybase Unwired Platform BlackBerry
client application.

Profile Update
Screen

ProfileUpdateScreen Profiles information for the Sybase Unwired Platform
BlackBerry client application.

Push
LogsScreen

PushLogsScreen Push logs for the Sybase Unwired Platform BlackBerry
client application.

Reference

 80 Sybase Unwired Platform

Screen
Type

Class Description

Push Request
Screen

PushRequestScreen Push request for the Sybase Unwired Platform Black-
Berry client application.

Push Settings
Screen

PushSettingsScreen Push settings for the Sybase Unwired Platform Black-
Berry client application.

Screen Saver
Screen

ScreenSaverScreen Screen saver for the Sybase Unwired Platform BlackBer-
ry client application.

Search Screen SearchScreen Search information for the Sybase Unwired Platform
BlackBerry client application.

Synchroniza-
tion Group In-
formation
Screen

SyncronizationGrou-
pInfoScreen

Synchronization Group information for the Sybase Un-
wired Platform BlackBerry client application.

Synchroniza-
tion Screen

SynchronizationScreen Synchronization information for the Sybase Unwired
Platform BlackBerry client application.

This example illustrates how to customize stock/settings screen properties:
//Define and register the screen
screen5 = new AboutScreen("About", "untitled1");

//Section to define the stock screen properties
screen5.setProperty(ABOUT_SCREEN_LOGO_IMAGE, "blackberry_16.gif");
screen5.setProperty(ABOUT_SCREEN_VERSION_LABEL, "MyVersion");

Control Objects
Control objects represent all of the user interface (UI) components on the Device Application
Designer screens, which are rectangular regions that a Manager controls. A control's layout
requirements determine the control size. Managers provide scrolling for the fields that they
contain.

Reference

Developer Reference for BlackBerry 81

Table 9. Device Application Designer Control Types

Control
Type

Class Description

Button Button Extends Field and displays the assigned text or image.
You can set a focus on a button control; thus, you can
assign different styles to it for focused and unfocused.
You can also bind a button to a list of actions, which run
when the trackball is clicked or touched on touchable
devices.

Cell Image CellImage Extends ImageControl. You can bind CellImage to a
MBO attribute, value mapping, state indicator, variable,
or image.

Cell Label CellLabel Extends Label. You can assign styles to it for focus and
unfocus status. You can bind CellLabel to MBO attrib-
utes, literals, or variables.

Cell Table CellTable Extends ListField and displays the data of the assigned
MBO. Cell table accommodates cell labels and cell im-
ages, which can be bound to MBO attributes. In addition,
cell image can be configured to show a different image
based on the specified attribute’s value. You can assign
styles to cell table for focus and unfocus status. You can
bind CellTable to a MBO, whose values are filled into the
table.

Check Box CheckBox Extends CheckboxField.

Grid Table MobileAppTable Extends Field and displays the data of the assigned MBO.
The table header displays the MBO attributes, while the
cells display the corresponding value. Styles can be as-
signed to Mobile App table for header, odd row, even row,
pending row, border, focused cell. You must bind Mobi-
leAppTable to a MBO, for which the values are filled into
the table.

Horizontal
Ruler

HorizontalRuler Draws a line across the screen.

Reference

 82 Sybase Unwired Platform

Control
Type

Class Description

Hyperlink HyperLink Extends LabelField and displays the assigned text with
underscore. You can set a focus on a hyperlink control;
thus, you can assign different styles to it for focused and
unfocused. You can also bind Hyperlink to a list of ac-
tions, which run when the trackball is clicked or touched
on touchable devices.

Hyperlink
Rich Field

HyperLinkRichField The difference between HyperLinkRichField and Hyper-
Link is that HyperLinkRichField uses Blackberry rich
context matching to handle phone and email options.

Image Control ImageControl Extends BitmapField and displays the assigned image.
You can bind ImageControl to a list of actions, which run
when the trackball is clicked or touched on touchable
devices.

Label Label Extends LabelField and displays the assigned text.

List Detail TwoColumnLayout Extends LayoutManager, must be bound to a MBO, and
can display the details for the assigned MBO in a two
column layout.

As with MobileAppTable, odd row style, even row style,
pending style, border style, and focus style are available.
You can assign hot keys as well as menu labels to previ-
ous/next menus of this control.

List Item ListFieldControl Extends ListField and displays the assigned text or image.
You can set a focus on a list item control; thus, you can
assign different styles to it for focused and unfocused.
You can also bind a list item to a list of actions, which run
when the trackball is clicked or touched on touchable
devices.

Navigation
Bar

NavigationBar Extends BitmapField and allows users to navigate client
screens and keep track of where they are.

Radio Box RadioBox Extends RadioButtonField and displays the assigned text.
RadioBox is contained in the RadioBoxGroup.

Select Box SelectBox Extends ObjectChoiceField and displays the assigned
texts. You can bind SelectBox to a MBO, whose values
are filled into the select box.

Spacer Spacer Extends Field and shows nothing.

Reference

Developer Reference for BlackBerry 83

Control
Type

Class Description

Text Input TextInput Extends EditField and displays the assigned texts. You
must assign a data type to TextInput, the default type is
STRING. You can also assign it a logical type for personal
information management (PIM). Validations are also
available.

Toolbar Item Toolbar Item Extends Button control. You must add it to Toolbar. Tool-
bar Item is only available on touch screen devices. Toolbar
item can be assigned image and actions.

This example illustrates how to create a control:
CellImage cellImage = new CellImage(Field.FIELD_LEFT
| Field.FIELD_VCENTER);

 CellLabel cellLabel = new CellLabel(Field.FIELD_LEFT
| Field.FIELD_VCENTER);

CellTable cellTable = new CellTable(Field.FIELD_LEFT);

This example illustrates how to configure a control:
CellTable localcellTable1 = (CellTable) object;
//Create set of submit elements
Vector submit1 = new Vector();
submit1.addElement(new SubmitElement("parameter1",
 "2010-06-07", VariableProperties.SUBMIT_USER_TYPE,
 null, false, null, -1, "startDate",
 MBOAttribute.SCHEMA_TYPE_DATE, false, null, false));
localcellTable1.setColumnPercentage(new int[] { 10, 60, 30 });
localcellTable1.setSortingColumn("Sort on column");
localcellTable1.setMboId(BOBCUIDefinition.MBO_POC_ACTIVITY);
localcellTable1.setNamedQuerySubmitElements(submit1);
localcellTable1.setNamedQuery("findByDate");
localcellTable1.setFocusFontStyle(styleCell_Table_Focus_Style);
localcellTable1.setNumberOfColumns(3);
localcellTable1.setColumnConfig(new String[] { "description",
 "status", "actType" });
localcellTable1
 .setUnfocusFontStyle(styleCell_Table_Unfocus_Style);

CellImage localcellImage0 = (CellImage) object;
localcellImage0
 .setImageType(ICellAttributeTypeConstants.IMAGE_VALUEMAPPING
_TYPE);
localcellImage0.setPreserveAspectRatio(true);
localcellImage0.setOrder(0);
localcellImage0.setMboAttrId("typeCode");

Reference

 84 Sybase Unwired Platform

Layout Manager Objects
Use the layout manager objects to add and position controls on the screen. Device Application
Designer provides a number of layout managers for laying out controls.

Table 10. Device Application Designer Layout Manager Types

Layout
Manager
Type

Class Description

Row Layout RowLayout Extends Manager, and is the base BOB layout manager.
All other layout managers leverage this layout manager to
lay out controls. RowLayout lays out the controls based
on assigned horizontal/vertical spans and the width/
height of the controls.

Layout Man-
ager

LayoutManager Extends Manager, and lay outs the controls that use Row-
Layout.

LayoutManager first creates a RowLayout based on as-
signed horizontal/vertical spans. When the first RowLay-
out is full, LayoutManager creates another RowLayout
for the rest of the controls.

Region Man-
ager

RegionManager Extends LayoutManager.

Tab Content
Panel

TabContentPanel The TabContentPanel extends Manager and is used in
TabLayoutManager.

Tab Control
Layout

TabControlLayout Extends HorizontalFieldManager and provides methods
to add tabs and switch tabs. It is used in TabLayoutMan-
ager.

Tab Layout
Manager

TabLayoutManager Extends Manager and lays out controls for tab panels.

Toolbar ToolbarManager Extends VerticalFieldManager to accommodate toolbar
items. You can assign styles to Toolbar for style and bor-
der style. Toolbar is only available to touch screen devi-
ces.

This example illustrates how the createControls method is added to the screen:
layoutManager = (LayoutManager) createControlById(LAYOUTMANAGER);
label1 = (Label) createControlById(LABEL1);
....
configureControlById(LAYOUTMANAGER);
configureControlById(LABEL1);

Reference

Developer Reference for BlackBerry 85

...
layoutManager.addWidget(label1, 1, 1);
...
this.add(layoutManager);

Action Objects
Device Application Designer actions can be executed as a specific program or instruction, and
are bound to controls such as Button, Hyperlink, Image, or List Item.

You can assign single or multiple actions to each of these controls. All Device Application
Designer actions are implementations of the IBOBAction interface.

Table 11. Device Application Designer Action Object Types

Action
Type

Class Description

Action Action Action is the base implementation of IBOBAction; its
methods include hasFailed, isProcessing for

monitoring the action status, and the run method to ex-

ecute the action.

Action List ActionList Extends Action and holds a vector of actions. Its run
method executes all the actions.

Alert Action AlertAction Shows an alert informational message dialog.

Alert Error Ac-
tion

AlertErrorAction Shows an alert error message dialog.

Alert Question
Action

AlertQuestionAction Shows an alert question message dialog.

Navigate Back
Action

BackAction BackAction pops current screen to display the parent
screen.

Close Screen
Action

CloseScreenAction Closes the current screen.

Exit Action ExitAction Exits the current application.

Google Map
Action

GoogleMapAction Invokes Google Map and locates the address.

Lock Client
Action

LockClientAction Locks the current application.

Login Action LoginAction Logs in the user.

Reference

 86 Sybase Unwired Platform

Action
Type

Class Description

Logout Action LogoutAction Logs out the current user.

Object Query
Action

NamedQueryAction Executes the assigned object query.

Persist Action PersistAction Saves all the variables in a form.

Refresh Ac-
tion

RefreshAction Refreshes the current focused screen or supplied screen.

RIM PIM Ap-
plication Ac-
tion

RIMPimAppAction Allows the read and write of data in personal information
management (PIM) databases from a RIM client appli-
cation, including e-mail, contacts, phone, or to-do lists.

Save Mobile
Data Context
Action

SaveMobileDataCon-
textAction

Saves current mobile data control context to memory.

Screen Action ScreenAction Goes to another screen.

Submit Action SubmitAction Creates a update/insert/delete/others operation.

Synchroniza-
tion Action

SyncAction Performs synchronization actions on all MBOs within the
synchronization group.

Synchroniza-
tion Publica-
tion Action

SyncPublicationAction Performs sync actions on specific publications (Publica-
tion > Synchronization group).

Tab Action TabAction Controls the tab layout manager to switch to different
tabs.

Close Screen
Action

CloseScreenAction CloseScreenAction closes the current screen.

This example illustrates adding and modifying an action:
protected void configureObjectHandlersById(int ID, Object object) {
switch (ID) {
......
case BUTTON8:
 Button localbutton8 = (Button) object;
 //Create list of actions
 ActionList actionList3 = new ActionList();
 //Create set of submit elements
 Vector submit2 = new Vector();
 //Create submit element "dept_id"
 submit2.addElement(new SubmitElement("dept_id", "2",
 VariableProperties.SUBMIT_CONTROL_TYPE, null, true, null,
 -1, "dept_id", MBOAttribute.SCHEMA_TYPE_INT, false, null,

Reference

Developer Reference for BlackBerry 87

 false));
 //Create submit element "dept_name"
 submit2.addElement(new SubmitElement("dept_name", "4",
 VariableProperties.SUBMIT_CONTROL_TYPE, null, false, null,
 40, "dept_name", MBOAttribute.SCHEMA_TYPE_STRING, false,
 null, false));
 //Create submit element "dept_head_id"
 submit2.addElement(new SubmitElement("dept_head_id", "6",
VariableProperties.SUBMIT_CONTROL_TYPE, null, false, null,
 -1, "dept_head_id", MBOAttribute.SCHEMA_TYPE_INT, false,
 null, false));
 localbutton8.setAction(actionList3);
 IBOBAction submitAction2 = new SubmitAction(
 BOBCUIDefinition.MBO_A_B_C_DEPARTMENT, this,
 OperationTypes.OPERATION_INSERT, submit2, false,
 "Input {0} is required.",
 "Input {0} exceeds the maximum length of {1}.", "create");
 actionList3.addAction(submitAction2);
 IBOBAction backAction1 = BackAction.getInstance();
 actionList3.addAction(backAction1);

 break;

This example illustrates a PIM action. The PIM action constructor takes an int type argument:
public interface RIMPimConstants
{
 // #################### Available RIM applications
#################### //

public static int RIM_PIM_CONTACT = 0;
public static int RIM_PIM_EMAIL = 1;
public static int RIM_PIM_PHONE = 2;
public static int RIM_PIM_EVENT = 3;
public static int RIM_PIM_TODO = 4;
public static int RIM_PIM_MEMO = 5;
}

• boolean isRead:
• True indicates reading from the BlackBerry PIM application
• False indicates writing to the BlackBerry PIM application

• Object control – Can be the
com.sybase.uep.bobclient.controls.MobileDataControl widgets
such as the com.sybase.uep.bobclient.controls.MobileAppTable,
com.sybase.uep.bobclient.controls.TwoColumnLayout or
com.sybase.uep.bobclient.screens.IBOBScreen.

• boolean launchPIMApp – true launches the PIM application after performing a
write operation, otherwise false.

case MENU13:
 MenuAction menu13 = (MenuAction) object;
 Action rimAction9 = new RIMPimAppAction(
 RIMPimConstants.RIM_PIM_CONTACT, true, this,
false);

Reference

 88 Sybase Unwired Platform

 menu13.setAction(rimAction9);
 break;

Data Objects
Device Application Designer provides layers for wrapping data, such as styles, variables, and
mobile business objects (MBOs).

Table 12. Device Application Designer Data Object Types

Data Type Class Description

Variable ControlVariable Holds the variable attributes for controls. It includes type
(USER for user-defined variables, SYSTEM for system-
defined variables, TABLE for table context variables),
key (variable key), and MBO id (for table context varia-
bles).

Variable Man-
agement

RIMVariables Manages variables, including store/access variables.

Style FontStyle Holds the font information, including font face, font size,
font size unit, font style, background color, foreground
color, and gradient color.

Logical Type LogicalType Contains all the logical type information. Also contains
personal information management (PIM) information if
applicable.

MBO CommonMBOModel

MBOModel

PKMBOModel

CommonMBOModel contains information about MBOs
and their subclasses, including normal MBO, personali-
zation MBO, and local business object.

CommonMBOModel provides methods for the MBO,
including submitPendingOperations and

syncPublication.

Other important classes in this package include:

• ModelChangeEvent

• MobileApplicationDataHandler

• MobileApplicationDataPagingHandler

• MBOModelSyncParameters

MBO Attrib-
ute

MBOAttribute Contains information about MBO attribute ID, display
name and datatype.

Reference

Developer Reference for BlackBerry 89

Data Type Class Description

Client Profile RIMClientProfile Contains client profile information, including profile
name, server name, server port, user name, password,
package name, stream parameters, and so on.

Link Parame-
ter

RIMLinkParamNode Contains link parameter information.

MBO Applica-
tion

RIMMBOMobileAp-
plication

Represents the MBO in Device Application Designer
styles.

Repository RIMRepository The central place for store or accessing the client profile,
client settings, variables, MBO applications, and other
settings.

Settings RIMSettings Contains various settings information, including the push
settings, screen saver settings, log level settings.

Validation Ob-
ject

RIMValidationObject Manages validation information, including regular ex-
pressions and messages.

These examples illustrate how to assign and read variables.

Adds a variable in BOBCUIdefinition:
addVariable(VARIABLE_HISVAR, "hisVarValue",
 VariableProperties.VARIABLE_TYPE_USER,
 MBOAttribute.SCHEMA_TYPE_STRING);

Use variables in controls:
case LABEL2:
Label locallabel2 = (Label) object;
locallabel2.setFontStyle(styleLabel_Style);
//locallabel2.setFooterField(null);
locallabel2.setFocusFontStyle(styleDefault_Style);
locallabel2.setWrapText(false);
locallabel2.setVariableLabel(new ControlVariable(
 BOBCUIDefinition.VARIABLE_HISVAR,
 VariableProperties.VARIABLE_TYPE_USER, null, null));

Use table variables:
localtextInput4.setVariableInput(new ControlVariable(
 "dept_head_id", VariableProperties.VARIABLE_TYPE_TABLE,
 BOBCUIDefinition.MBO_A_B_C_DEPARTMENT, null));

Context variables must be saved before table variables are used by context actions:
case MENU6:
MenuAction menu6 = (MenuAction) object;
//Create list of actions
ActionList actionList13 = new ActionList();
IBOBAction connectionAction9 = new ScreenAction(UIDefinition
 .getScreen("screen4"), false, null);

Reference

 90 Sybase Unwired Platform

menu6.setAction(actionList13);
IBOBAction contextAction4 = new SaveMobileDataContextAction(
 cellTable1);
actionList13.addAction(contextAction4);
actionList13.addAction(connectionAction9);
cellTable1.setDefaultAction(actionList13);

Constant Classes
A number of constant classes are defined.

Table 13. Device Application Designer Constant Types

Constant
Type

Class Description

Styles FontStylesProperties Defines a number of default styles are defined, including
DEFAULT_SCREEN_FONT_STYLE, and
FONT_STYLE_HYPERLINK_UNFOCUS.

Literals Literals Defines all literals for the Device Application Designer
framework.

RIM PIM
Constants

RIMPimConstants PIM-related constants.

Stock/Settings
Screen Con-
stants

ScreenProperties Stock/Settings screen properties.

Validator Con-
stants

ValidatorConstants Constants for validators.

Variable Prop-
erties

VariableProperties Constants for variables.

Generated Client Code
After you design a Device Application Designer application, and generate the device
application from that document, each screen is generated into a class that extends
BaseBOBScreen, and each tab panel is generated into a class that extends LayoutManager,
where various controls are defined, as well as actions and menus.

An additional BOBCUIDefinition is generated to keep track of user defined variables, styles,
MBOs, screens, and so on. The BOBCUIDefinition as well as the screen classes are compiled
against the Device Framework and the BOBUIController to produce the final client
application. BOBCOptionsDefinition is generated to keep track of settings screens, MBO
packages, profiles, and so on. The class and OptionsMain and generated object API code are
compiled into options module. The generated client code serves as good sample code to
illustrate the usage of the Device Framework.

Reference

Developer Reference for BlackBerry 91

If you select Generate custom coding subclass for device/options/screen/tab panel classes
during device application code generation, a subclass is generated with methods skeleton for
you to add custom code, as these examples illustrate.

Super class:
protected Object createControlById(int ID) {
 switch (ID) {

 case CELLTABLE1:
 CellTable localcellTable1 = new CellTable(Field.FIELD_LEFT);

return localcellTable1;
......

Custom subclass:
protected Object createControlById(int ID) {
switch (ID) {
case CELLTABLE1:
 CellTable localcellTable1 = new CellTable(Field.FIELD_LEFT) {
 public boolean keyChar(char key, int status, int time) {
 // TODO sym key seems ignored
 boolean retval = false;
 switch (key) {
 case Characters.ENTER:
 case Characters.NULL:
 case Characters.CONTROL_SYMBOL:
 case Characters.CONTROL_UP:
 case Characters.CONTROL_VOLUME_DOWN:
 case Characters.CONTROL_VOLUME_UP:
 case Characters.TAB:
 retval = super.keyChar(key, status, time);
 break;
 case Characters.DELETE:
 case Characters.BACKSPACE:
 String text = customNaviBar.getFindText();
 if (text.length() > 0) {
 customNaviBar.setFindText(text.substring(0, text
 .length() - 1));
 } else {
 customNaviBar.setFindText("");
 }
 break;
 default:
 customNaviBar.setFindText(customNaviBar.getFindText()
 + key);
 break;
 }
 return retval;
 }
 };
 return localcellTable1;
default:
 return super.createControlById(ID);

Reference

 92 Sybase Unwired Platform

Overriding metadata - super class:
protected void configureObjectMetaDataById(int ID, Object object) {
 switch (ID) {

case CELLTABLE1:
 if (object instanceof CellTable) {
 CellTable localcellTable1 = (CellTable) object;
 //Create set of submit elements
 Vector submit1 = new Vector();
 submit1.addElement(new SubmitElement("parameter1",
 "2010-06-07", VariableProperties.SUBMIT_USER_TYPE,
 null, false, null, -1, "startDate",
 MBOAttribute.SCHEMA_TYPE_DATE, false, null, false));
 localcellTable1.setColumnPercentage(new int[] { 10, 60, 30 });
 localcellTable1.setSortingColumn("Sort on column");
 localcellTable1.setMboId(BOBCUIDefinition.MBO_POC_ACTIVITY);
 localcellTable1.setNamedQuerySubmitElements(submit1);
 localcellTable1.setNamedQuery("findByDate");
 localcellTable1.setFocusFontStyle(styleCell_Table_Focus_Style);
 localcellTable1.setNumberOfColumns(3);
 localcellTable1.setColumnConfig(new String[] { "description",
 "status", "actType" });
localcellTable1
 .setUnfocusFontStyle(styleCell_Table_Unfocus_Style);

}
 break;

Subclass in which the cell table's named query is set to null:
protected void configureObjectMetaDataById(int ID, Object object) {
 switch (ID) {
case CELLTABLE1:
super.configureObjectMetaDataById(ID, object);
if (object instanceof CellTable) {
CellTable localcellTable1 = (CellTable) object;
localcellTable1.setNamedQuery(null);
}
break;
 default:
 super.configureObjectMetaDataById(ID, object);
 }
 }

Override handler superclass:
protected void configureObjectHandlersById(int ID, Object object) {
switch (ID) {

case MENU8:
if (object instanceof MenuAction) {
 MenuAction menu8 = (MenuAction) object;
 //Create list of actions
 ActionList actionList17 = new ActionList();
 IBOBAction connectionAction7 = new ScreenAction(UIDefinition

Reference

Developer Reference for BlackBerry 93

 .getScreen("screen34"), false, null);
 menu8.setAction(actionList17);
 IBOBAction contextAction7 = new SaveMobileDataContextAction(
 cellTable1);
 actionList17.addAction(contextAction7);
 actionList17.addAction(connectionAction7);

 }
break;
.....
}

Subclass in which the menu’s actions are overridden:
protected void configureObjectHandlersById(int ID, Object object) {
switch (ID) {
case MENU8:
 if (object instanceof MenuAction) {
 MenuAction menu8 = (MenuAction) object;
 //Create list of actions
 ActionList actionList17 = new ActionList();
 menu8.setAction(actionList17);
 IBOBAction contextAction7 = new SaveMobileDataContextAction(
 cellTable1);
 actionList17.addAction(contextAction7);
 actionList17.addAction(new Action()
 {
 public void run()
 {
 if (UIDefinition.getScreen("screen34") instanceof
BOBScreenUpdate_Activities_Custom){
 BOBScreenUpdate_Activities_Custom screen =
(BOBScreenUpdate_Activities_Custom)UIDefinition.getScreen("screen34
");
 UiApplication.getUiApplication().pushScreen(screen);
 }
 }
 });
 }
 break;
 default:
 super.configureObjectHandlersById(ID, object);
 }
 }

A widget event in which an onDraw event is selected for a control, and the corresponding
event delegate is generated:
protected void configureObjectHandlersById(int ID, Object object) {
switch (ID) {
......
case SELECTBOX31:
 if (object instanceof SelectBox) {
 SelectBox localselectBox31 = (SelectBox) object;
 localselectBox31.setControlID(SELECTBOX31);
 localselectBox31.setCustomEventsDelegate(
 new BOBScreenUpdate_Activities_SelectBoxDelegate(),

Reference

 94 Sybase Unwired Platform

 Literals.CUSTOM_EVENT_ON_DRAW);
 }

break;

Add custom code in the widget event delegate for an onDraw event. In this case we redraw the
selectBox by adding custom code to the paint and drawFocus methods:
/**
* (non-Javadoc)
*
* @see
com.sybase.uep.bobclient.controls.ICustomEventsDelegate#paint(Objec
t field, int controlID, Graphics g)
*/
 public void paint(Object field, int controlID, Graphics g) {
 // custom code
switch (controlID) {
case BOBScreenUpdate_Activities_.SELECTBOX31:
 g.clear();
 SelectBox selectBox = (SelectBox)field;
 int currentSelect = selectBox.getSelectedIndex();
 if(currentSelect>-1)
 {
 SelectBoxChoice choice =
(SelectBoxChoice)selectBox.getChoice(currentSelect);
 String choiceLabel = choice.getLabel();
 g.setColor(Color.BLACK);
 g.drawText(choiceLabel, H_PADDING,
(selectBox.getPreferredHeight()-
selectBox.getFontStyle().getFont().getHeight())/2,
DrawStyle.ELLIPSIS, selectBox.getPreferredWidth() -
DROPDOWN_HINT_AREA_WIDTH-H_PADDING);
 }
break;
 default:
 break;
 }
 }

/**
* (non-Javadoc)
*
* @see
com.sybase.uep.bobclient.controls.ICustomEventsDelegate#drawFocus
* (Object field, int controlID, Graphics g, boolean on)
*/
public void drawFocus(Object field, int controlID, Graphics g,
boolean on) {
// custom code
 switch (controlID) {
 case BOBScreenUpdate_Activities_.SELECTBOX31:
 g.clear();
 SelectBox selectBox = (SelectBox)field;
 int oldColor = g.getColor();

Reference

Developer Reference for BlackBerry 95

 int oldBgColor = g.getBackgroundColor();
 int currentSelect = selectBox.getSelectedIndex();
 if(currentSelect>-1)
 {
 SelectBoxChoice choice =
(SelectBoxChoice)selectBox.getChoice(currentSelect);
 String choiceLabel = choice.getLabel();
 int y = (selectBox.getPreferredHeight()-
selectBox.getFontStyle().getFont().
 getHeight())/2;
 int height = selectBox.getPreferredHeight();
 int width = selectBox.getPreferredWidth() -
DROPDOWN_HINT_AREA_WIDTH-H_PADDING;
 g.setColor(0x00FFFFFF);
 int actualWidth = g.drawText(choiceLabel, H_PADDING, y,
DrawStyle.ELLIPSIS, width);
 g.setColor(0x00185AB5);
 g.fillRect(H_PADDING, y, actualWidth, height);
 g.setColor(0x00FFFFFF);
 g.drawText(choiceLabel, H_PADDING, y, DrawStyle.ELLIPSIS,
width);
 }
 g.setColor(oldColor);
 g.setBackgroundColor(oldBgColor);
 break;
default:
 break;
 }
}
......

Reference

 96 Sybase Unwired Platform

Index
A
action objects 86
Adding a table header 39
AttributeMetaData 71

B
BlackBerry Desktop Manager 42
BlackBerry Java plug-in for Eclipse 21
BlackBerry Java Plug-in for Eclipse 8, 9
BlackBerry JDE 21, 23
BlackBerry JDE, download 9
BlackBerry MDS Simulator, download 9
BlackBerry Simulator 9

C
callback handlers 64
certificates 61
ClassMetaData 71
client database 67
code 91
common APIs 58
configureObjectHandlersById 35
ConnectionProfile 43, 61
ConnectionProfile.EncryptionKey 61
constant classes 91
control objects 81, 85
create operation 51
createControls 31
createDatabase 67

D
data objects 89
database

client 67
DatabaseMetaData 71
Delete operation 51
deleteDatabase 67
dependencies 10
deployment 41
device framework 78
documentation roadmap

document descriptions 2

download 9

E

EIS error codes 67, 69
encryption key 61
entity states 56
error codes

EIS 67, 69
HTTP 67, 69
mapping of SAP error codes 69
non-recoverable 67
recoverable 67

exceptions
client-side 69
server-side 67

F

Filling a space with a button 39

G

generated code 91
generateId 67
getLastSynchronizationTime() 66
getLogRecords 62
getPendingObjects 34

H

HTTP error codes 67, 69
HTTP push gateway 71

I

isSynchronized() 66

J

Javadocs 1
Javadocs, opening 43, 79

Index

Developer Reference for BlackBerry 97

K
KeyGenerator 67

L
LayoutManager 39
local business object 55
local MBO 55
LocalKeyGenerator 67
loginToSync 34
LogRecord API 62
LogRecordImpl 62

M
MetaData API 70
mobile business object 55
mobile business object states 60
multilevel insert 52

N
newLogRecord 62
NoSuchAttributeException 69
NoSuchOperationException 69

O
Object Manager API 70
object query 46
ObjectManager 70
ObjectNotFoundException 69
OfflineLogin 44
Other operation 52

P
pending operation 53

personalization keys 56
types 55

PersonalizationParameters 56

Q

QueryResultSet 50

R

Refresh operation 60
relationships 46
Removing CellTable Margin 40

S

screen objects 79
signing 41
status methods 56
submitLogRecords 62
synchronization groups 45
SynchronizationProfile 44
SynchronizeException 69

U

Update operation 51

V

variables 36

W

widget event code 32

Index

 98 Sybase Unwired Platform

	Developer Reference for BlackBerry
	Contents
	Introduction to Developer Reference for BlackBerry
	Documentation Road Map for Unwired Platform
	Introduction to Developing Device Applications with Sybase Unwired Platform

	Development Task Flows
	Task Flow for BlackBerry JDE Development
	Task Flow for Device Application Designer and BlackBerry JDE Development
	Configuring Your BlackBerry Development Environment
	Installing the BlackBerry Development Environment
	Installing the BlackBerry Java Plug-in for Eclipse
	BlackBerry Java Plug-in for Eclipse Integration

	Downloading the BlackBerry JDE and MDS Simulator

	Client API JAR File Locations

	Mobile Business Object Code or Device Application Designer Code
	Generating BlackBerry Mobile Application Project Code
	Generating BlackBerry Device Application Code from the Device Application Designer
	Generating Code For a BlackBerry Device Application
	Device Application Designer Generated Code Structure

	Creating Projects and Importing Files into the BlackBerry Development Environment
	Differences Between Mobile Business Object and Device Application Designer Required Files
	Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
	Creating a BlackBerry Device Application Project
	Creating a BlackBerry Device Application Client Project
	Referencing BlackBerry Device Framework Javadocs

	Adding Required .jar and .cod Files

	Developing, Debugging, and Customizing BlackBerry Applications
	Building an Object API based Client Application
	Adding a Device Application Entry Point
	Developing the BlackBerry Device Application
	Developing a BlackBerry Device Application using the BlackBerry Eclipse Plug-in
	Developing a BlackBerry Device Application using the BlackBerry JDE

	Debugging BlackBerry Device Development
	Debugging the BlackBerry Device Application

	Customizing Device Application Designer Code
	Manually Adding Controls to a Screen
	Writing Widget Event Code
	Adding Validators
	Perform UI Binding to an MBO
	Access Pending Operations and Operation Logs
	Connecting to Unwired Server
	Adding or Modifying Navigation
	Adding or Modifying Actions
	Creating and Assigning Variables
	Using PIM Actions
	Using LayoutManager
	Adding a Table Header
	Filling a Space with a Button
	Removing the CellTable Margin

	Deploying Applications to Devices
	Device Registration
	Signing
	Deploying BlackBerry Applications
	Deploy Applications through BlackBerry Desktop Manager
	Deploying Applications Over the Air

	Reference
	BlackBerry Client Object API
	Client Object API Javadocs
	Connection APIs
	ConnectionProfile
	SynchronizationProfile
	Authentication

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Query

	Retrieving Relationship Data
	Paging Data
	Query and Related Classes
	Arbitrary Find
	QueryResultSet

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert
	Pending Operation
	Passing Structures to Operations

	Mobile and Local Business Objects
	Personalization APIs
	Type of Personalization Keys
	Get or Set Personalization Key Values

	Object State APIs
	Entity State Management
	Pending State Pattern
	Mobile Business Object States
	Refresh Operation
	Clear Relationship Objects

	Common APIs
	Security APIs
	Connect Using a Certificate
	Encrypt the Database

	Utility APIs
	LogRecord API
	Viewing Error Codes in Log Records

	Logging APIs
	Callback Handlers
	SyncStatusListener API
	isSynchronized() and getLastSynchronizationTime()

	generateId
	Client Database APIs

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	ClassMetaData
	AttributeMetaData

	Replication-Based Push Synchronization Applications
	HTTP Push Gateway
	Creating a Replication Based Push Application

	BlackBerry Device Framework API
	BlackBerry Device Framework API Javadocs
	Screen Objects
	Control Objects
	Layout Manager Objects
	Action Objects
	Data Objects
	Constant Classes
	Generated Client Code

	Index

