SYBASE

Company

Developer Reference for BlackBerry

Sybase Unwired Platform 1.5.5

DOCUMENT ID: DC01215-01-0155-02

LAST REVISED: February 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Reference for BlackBerry 1
Documentation Road Map for Unwired Platform............ 2
Introduction to Developing Device Applications with

Sybase Unwired Platform..........ccccccoeeeeiiiiiiiiieniien. 5

Development Task FIOWSccoovviiiiiiiiiii e 7
Task Flow for BlackBerry JDE Development................... 7
Task Flow for Device Application Designer and

BlackBerry JDE Development.........ccccooeeevveviinieeennnnns 8
Configuring Your BlackBerry Development
ENVIFONMENToeiiiiiiiiii e 8
Installing the BlackBerry Development
ENVIrONMENTovvviiiiiiiiiii e, 8
Client APl JAR File Locations...........ccccoeeevveevnnnnnn. 10
Mobile Business Object Code or Device Application
DeSigner COOecoooiiiiiiiiiieeee e 10
Generating BlackBerry Mobile Application
Project Codeooovviiiiiiiiiiie 10
Generating BlackBerry Device Application Code
from the Device Application Designer 14
Creating Projects and Importing Files into the
BlackBerry Development Environment 20

Differences Between Mobile Business Object
and Device Application Designer Required

FIles .o 21
Differences Between the BlackBerry Java Plug-

in and BlackBerry JDEccoviiiiiiiiiiiieeee, 21

Creating a BlackBerry Device Application

PrOJECE v 21

Adding Required .jar and .cod Files..................... 25
Developing, Debugging, and Customizing BlackBerry

APPIICALIONS ... 25

Developer Reference for BlackBerry

Contents

Building an Object API based Client Application

... 26
Adding a Device Application Entry Point............... 26
Developing the BlackBerry Device Application....27
Debugging BlackBerry Device Development....... 28
Customizing Device Application Designer Code
... 31
Deploying Applications to Devices.........cccceeeeeeeevevvvnnnnnn. 40
Device Registrationcoooeeeieeiiiiiiee 41
SIGNING < e 41
Deploying BlackBerry Applications....................... 41
REFEIENCE .o 43
BlackBerry Client Object APl ... 43
Client Object APl JavadoCs...........ccoeeeevvvinneenennnn. 43
ConNection APIS ... 43
Synchronization APISceeiiiiiiiiieeeieereeeeeiiii, 45
QUETY APIS ... 45
Operations APISooeviiiiiiiiiiei e 50
Mobile and Local Business Objects...................... 55
Personalization APISccccoiiiiiiiiiiiiiines 55
Object State APIScovviiiiiiiiiiieiee e 56
CommON APIS ... 61
Security APIS ... 61
ULIHEY APIS oo 62
EXCEPLIONS ... 67
MetaData and Object Manager API 70
Replication-Based Push Synchronization
Applicationseeiiiiiii 71
BlackBerry Device Framework APlcccooeeeeieiii 78
BlackBerry Device Framework API Javadocs...... 79
Screen ODJEeCtS ..o 79
Control ObJECESccovvvviiiiiiee e, 81
Layout Manager ObJecCtSoovvvvvvviiiieeeeeieeennns 85
ACtION ODJECES ..vvvviiiiiiiie e 86
Data ODJECTSevvveeiiiiiiiieeiieieieeeeeeeee 89

iv Sybase Unwired Platform

Contents

Constant ClaSSeScuveneeeeeeee e 91
Generated Client Codecuvevveeiieeeeeeeeeeeaeen 91
I X e 97

Developer Reference for BlackBerry %

Contents

Vi

Sybase Unwired Platform

Introduction to Developer Reference for BlackBerry

Introduction to Developer Reference for
BlackBerry

This developer reference provides information about using advanced Sybase® Unwired
Platform features to create applications for RIM BlackBerry devices. The audience is
advanced developers who are familiar working with APIs, but who may be new to Sybase
Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the client object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and client object API documentation.

Companion guides include:

o Sybase Unwired WorkSpace — Mobile Business Object

o Sybase Unwired WorkSpace — Device Application Development

» Tutorial: BlackBerry Device Application Development (Device Application Designer),
where you create the SUP101 sample project referenced in this guide

» Tutorial: BlackBerry Device Application Development (Custom Development)
Complete the tutorials to gain a better understanding of Unwired Platform components
and the development process.

e Troubleshooting for Sybase Unwired Platform

» Javadocs, which provide a complete reference to the APIs, are available from:

* Client Object API — the Unwired Platform installation directory
<Unwi redPl at form I nstal | Di r >\ Server s\ Unwi r edSer ver
\ C i ent API'\ api doc. There are subdirectories for\ j 2me and \ j 2se.
« Device Framework APl — the Unwired Platform installation directory
<Unwi redPl atform I nstal |l Di r>\ Unwi red_Wor kSpace\ Ecl i pse
\ sybase_wor kspace\ nobi | e\ ecl i pse\ pl ugi ns
\ com sybase. uep. bob. ri m <ver si on>\ gener at e\ bl ackberry.

See Fundamentalsfor high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Developer Reference for BlackBerry 1

Introduction to Developer Reference for BlackBerry

Documentation Road Map for Unwired Platform

Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document

Description

Sybase Unwired Platform Installation Guide

Describes how to install or upgrade Sybase Un-

wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin

Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.
Fundamentals Describes basic mobility concepts and how Syb-

ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Sybase Unwired Platform

Introduction to Developer Reference for BlackBerry

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat- | Describes how to use the Sybase Control Center
form administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase> Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Developer Reference for BlackBerry 3

Introduction to Developer Reference for BlackBerry

Document

Description

Getting started tutorials

Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

¢ Learn mobile business object (MBO) basics,
and create a mobile device application:
e Tutorial: Mobile Business Object Devel-
opment
e Tutorial: BlackBerry Application Devel-
opment using Device Application De-
signer
e Tutorfal: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer
< Create native mobile device applications:
e Tutorial: BlackBerry Application Devel-
opment using Custom Development
e Tutorial: iPhone Application Develop-
ment using Custom Development
e Tutorfal: Windows Mobile Application
Development using Custom Develop-
ment
¢ Create a mobile workflow package:
e Tutorial: Mobile Workflow Package De-
velopment

Sybase Unwired WorkSpace — Mobile Business
Object Development

Online help for developing MBOs.
Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace — Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired Platform

Introduction to Developer Reference for BlackBerry

Document

Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

e Developer Reference for BlackBerry

e Developer Reference for iOS

e Developer Reference for Mobile Workflow
Packages

e Developer Reference for Windows and Win-
aows Mobile

Developer reference for Unwired Server side
customization — Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentalsand Syb-
ase Unwired WorkSpace — Mobile Business Ob-
Ject Development.

Developer reference for system administration
customization — Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentalsand Sys-
tem Administration.

Introduction to Developing Device Applications with
Sybase Unwired Platform

A device application includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

Within Sybase Unwired Platform, development tools enable both aspects of mobile

application development:

» The data aspects of the mobile application are called mobile business objects (MBO), and
“MBO development” refers to defining object data models with back-end enterprise
information system (EIS) connections, attributes, operations, and relationships that allow

Developer Reference for BlackBerry

Introduction to Developer Reference for BlackBerry

segmented data sets to be synchronized to the device. Applications can reference one or
more MBOs and can include synchronization keys, load parameters, personalization, and
error handling.

« Once you have developed MBOs and deployed them to Unwired Server, develop device-
resident presentation and logic for your device application by generating code to use as a
base in a native IDE. Follow an API approach that uses your native IDE's Client Object
API and Device Framework API. Unwired WorkSpace provides MBO code generation
options targeted for specific development environments, for example, BlackBerry JDE for
BlackBerry device applications, or Visual Studio for Windows Mobile device
applications.

The Client Object API uses the data persistence library to access and store object data in
the database on the device. Code generation takes place in Unwired WorkSpace. You can
generate code manually, or by using scripts. The code generation engine applies the
correct templates based on options and the MBO model, and outputs client objects.

Note: You can use Device Application Designer to create prototype device application
code, then add custom coding for end-to-end prototyping. This guide provides some
reference material for prototyping.

Note: See Sybase Unwired WorkSpace — Mobile Business Object Development for
procedures and information about creating and deploying MBOs. See Sybase Unwired
WorkSpace - Device Application Development for information about device application
features and appearance.

6 Sybase Unwired Platform

Development Task Flows

Development Task Flows

This section describes the overall development task flows, and provides information and
procedures for setting up the development environment, and developing device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding, as
shown on the left. This is how you create device applications with sophisticated Ul interaction,
validation, business logic, and performance.

Optionally you can use Device Application Designer to create prototype device applications,
as shown on the right.

Mabile Application

~ 3

Development path for Custom Generated Ul Development path for
il ing a production l;:,m G!mc:ladhd K u ﬁ;ﬂt buildi ng a prototype
mobile application Application L amework Customization mabile application
\ Designer Generated Prototype
Generated Object API Object AM Framework

MBO Object API Layer

Persistence Messaging M'ui bile O3

Mobile System Services

Task Flow for BlackBerry JDE Development

This describes a typical task flow for creating a device application using the BlackBerry JDE
or the BlackBerry Java plug-in for Eclipse (eJDE).

Highlevel steps:

1. Configuring the BlackBerry development environment:
a. Installing the BlackBerry Java Plug-in for Eclipse .
b. Client API JAR File Locations.
2. Generating BlackBerry Mobile Application Project Code.
Creating a BlackBerry Device Application Project .
4. Adding Required .jar and .cod Files .

w

Developer Reference for BlackBerry

Development Task Flows

5. Developing, Debugging, and Customizing BlackBerry Applications .
6. Deploying Applications to Devices .

Task Flow for Device Application Designer and BlackBerry
JDE Development

This describes a typical task flow for creating a device application prototype using the Device
Application Designer with BlackBerry JDE or BlackBerry Java plug-in for Eclipse (eJDE).

Highlevel prototyping steps:

1. Configuring Your BlackBerry Development Environment.

2. Generating BlackBerry Device Application Code from the Device Application Designer.
3. Developing, Debugging, and Customizing BlackBerry Applications.

4. Deploying Applications to Devices.

Configuring Your BlackBerry Development Environment

This section describes how to set up your BlackBerry development environment, and provides
the location of required JAR files and client object APIs.

Installing the BlackBerry Development Environment

Download and install either the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse
(eJDE).

You can develop device applications with either the BlackBerry JDE or the BlackBerry Java
plug-in for Eclipse, but since Unwired WorkSpace and the Device Application Designer both
run in Eclipse, Sybase recommends that you use the BlackBerry Java plug-in for Eclipse for a
more integrated development environment.

For information on transitioning from the BlackBerry JDE to the eJDE, view the video at the
Research In Motion Developer Video Library Web site: Attp.//supportforums.blackberry.com/
t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Installing the BlackBerry Java Plug-in for Eclipse

The Device Application Designer supports the BlackBerry Java Plug-in for Eclipse, which
allows you to generate the device application code using the Device Application Designer
code generation wizard, then debug the generated code.

Prerequisites
You must have a BlackBerry developer account to download the BlackBerry Java Plug-in for
Eclipse. You may be required to register if you do not already have an account.

8 Sybase Unwired Platform

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Development Task Flows

Task

Note: To ensure that you are using the supported version of the BlackBerry Java Plug-in for
Eclipse, see the topic Sybase Unwired Platform 1.5.5 > New Features > Supported Hardware
and Software.

1. Shut down Unwired WorkSpace.

Go to http.//us.blackberry.com/developers/javaappdev/and download the BlackBerry
Java Plug-in for Eclipse (full installer) to a temporary folder.

Double-click the setup application file.

N

On the Introduction page, click Next.
Accept or decline the terms of the license agreement and click Next.

Choose <Unwi redPl atform_ I nstal | Di r >\ Unwi redPl at f or ml Ecl i pse
as the installation directory and click Next.

7. Review the information on the Pre-installation Summary screen and click I nstall.
8. Click Done.

o o~ w

BlackBerry Java Plug-in for Eclipse Integration
The Device Application Designer Code Generation wizard is integrated with the BlackBerry
Java Plug-in for Eclipse.

You can launch a BlackBerry project directly from Eclipse after code generation. This allows
you to debug generated device application code that contains the user interface framework
within a BlackBerry project.

Note: To use this feature, you must first install the BlackBerry Java Plug-in for Eclipse.

See the documentation on the BlackBerry developer Web site http.//docs. blackberry.com/en/
developers/?userType=21 for more information about the BlackBerry Java Plug-in for
Eclipse.

Downloading the BlackBerry JDE and MDS Simulator

To generate and distribute BlackBerry device applications built with the Unwired WorkSpace
Device Application Designer, download the MDS simulator and the BlackBerry JDE and its
prerequisites from the BlackBerry Web site.

Prerequisites

You must have a BlackBerry developer account to download the BlackBerry JDE. You may be
required to register if you do not already have an account. Before you download the JDE,
ensure the 32-bit JDK has already been installed, even for 64-bit operating systems;
otherwise, MDS will not start.

Developer Reference for BlackBerry 9

http://us.blackberry.com/developers/javaappdev/
http://docs.blackberry.com/en/developers/?userType=21
http://docs.blackberry.com/en/developers/?userType=21

Development Task Flows

Task

Note: The BlackBerry JDE is a standalone development environment. The BlackBerry Java
Plug-in for Eclipse v1.1 is recommended.

1. Go to the BlackBerry Web site at http.//na.blackberry.com/eng/developers/javaappdev/
Javadevenv.fspto download and install the BlackBerry JDE.

2. Go to http.//na.blackberry.com/eng/developers/browserdev/devioolsdownloads.jsp to
download and install the MDS simulator.

Client APl JAR File Locations

The client API library JAR files and dependencies are installed in the Sybase Unwired
Platform installation directory. JAR files are used for compilation and COD files for runtime.
Make sure COD files are deployed to the simulator/device along with the device application.

The contents and location of the client API are:
« Client database (UltraLite®J) libraries — <Unwi r edPl atform I nstal | Di r>
\ Servers\Unwi redServer\ClientAPI\U traliteJd.

« Framework classes that are used by generated classes (J2ME, J2SE and RIM BlackBerry)
—<Unwi redPl atform I nstal | Di r >\ Server s\ Unwi r edSer ver
\dientAPI\java

Mobile Business Object Code or Device Application
Designer Code
Determine whether to develop a device application directly from mobile business object

(MBO) generated code, or from Device Application Designer generated code, then generate
the code according to your decision.

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,
create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

To avoid errors or inconsistent behavior, client applications must be regenerated whenever a
mobile application package has been redeployed.

Generating BlackBerry Mobile Application Project Code

After developing the mobile business objects (MBOSs), generate the Java files that implement
the business logic and are required for BlackBerry device application development.

1. From Unwired WorkSpace, right-click in the Mobile Application Diagram of the project
for which you are generating code and select Gener ate Code.

10 Sybase Unwired Platform

http://na.blackberry.com/eng/developers/javaappdev/javadevenv.jsp
http://na.blackberry.com/eng/developers/javaappdev/javadevenv.jsp
http://na.blackberry.com/eng/developers/browserdev/devtoolsdownloads.jsp

Development Task Flows

2. Follow the Code Generation wizard instructions to generate code appropriate for the
BlackBerry JDE environment, by selecting Java as the language and, in this case, Java

ME for BlackBerry as the platform.

4 Generate Code H=] E3

Configure options

Configure options For code generation

rizode generation opkions

Language: IJava

PlatFarm: IJava ME Far BlackBerry

Urnired server: IMy Unwired Server

Server domain: I default

Page size: I

Package: |

Destination

% Project path:

| \MBCs_for_BE_deviGenerated Code

" File system path: |

¥ Clean up destination before code generation

Browse, .,

Browise, ..

U— Ll Lol 1o I

&' Replication-based

™ Backward compatible

" Message-based

(‘?‘j < Back. I Mext = I

Firist

Zancel

Other selections affect generated output as well. For example, if you include an Unwired

Server entry, it generates a default connection to Unwired Server.

See Generating Object API Code for details of all options.
3. Click Next. Select the MBOs for which you are generating code and any additional options

you require.

Developer Reference for BlackBerry

11

Development Task Flows

i

Select mobile business objects

Select mobile business objects For which the metadata dasses need to
be generated

Select Mobile Business Cbjects:

= [B Mobile Business Objects
E-[ALs Default

B & Customer

Dependencies:

[™ Generate metadata classes
[Generate metadata and object manager classes

¥ Generate JavaDoc

Gy
'\?jl < Back. | Mext = | Finish I Zancel |

You can select the Gener ate metadata classes or Gener ate metadata and obj ect
manager classesselections to generate metadata for the attributes and operations of each
generated client object and an object manager for the generated metadata.

The object manager allows you to retrieve the metadata of packages, MBOs, attributes,
operations, and parameters during runtime using the name instead of the object instance.
See Generating Object API Code for details of all options.

4. Click Finish.

The class files include all methods required to create connections, synchronize deployed
MBOs with the device, query objects, and so on, as defined in your MBOs.

12 Sybase Unwired Platform

Development Task Flows

By default, the MBO source code and supporting documentation are generated in the
project's Generated Code folder. The generated Java files are located in the
<MBO_project_name> folder under the sr c folder:

Eﬂ Enterprise Explorer EE Cutline (‘l;':_ wiorkSpace Navigator &3

fiy

= MBOs_for_BE_dew [Wersion 1.0]
[#-E2 Mobile Business Obijects
li‘f Data Source References
E-E% Cache Groups
[E™ Personalization Keys
% Roles
B Synchronization Groups
= |=" Filters
E-(= Generated Code

E‘lc? daoc

PR mbos_for_bb_dew

= _for_BE_dew %
F-E= intrrl
----- m Customer.java

----- m KeyGenerakar,java

----- m KeyaeneratorPE. java

----- 1] keyPackageMame.java

----- m LocalkeyGenerator java

----- [J] LocalkeyGeneratorPK, java

----- m LogRecardImpl.java

----- [J] MBOs_for_BE_devDE_RM.java
----- [1] MBOs_for_BE_devDE.java

----- 1] offlinefuthentication.java

----- [J] operationReplayException. java
----- m PersonalizationParameters, java

----- m SessionPersonalization. java

----- m CustamerSynchronizationParameters. java

The frequently used Java files in this project, described in code samples include:

Table 2. Source code file descriptions

Java file

Description

MBO class (for example, Customer. java)

Includes all the attributes, operations, object
queries, and so on, defined in this MBO.

Synchronization parameter class (for example,
CustomerSynchronizationParameters.java)

Includes any synchronization parameters de-
fined in this MBO.

Key generator classes (for example, KeyGen-
erator.java)

Includes generation of surrogate keys used to
identify and track MBO instances and data.

Developer Reference for BlackBerry

13

Development Task Flows

Java file

Description

Local Key generator classes(for example Lo-
calKeyGenerator.java)

Includes generation of surrogate keys used to
identify and track MBO instances and data that
exist only on the local device.

Personalization parameter classes (for exam-
ple, PersonalizationParameters.java)

Includes any defined personalization keys.

OfflineAuthentication.java

Saves authentication information locally and
includes methods used between the device ap-
plication and local database for offline authen-
tication (does not communicate with Unwired
Server).

<PkgName>DB (where PkgName is the name
of the project/package, for example,
MBOs_for_BB_devDB)

Defines API to handle client database access,
synchronization profile, authentication, and
synchronization operations.

ObjectManager (for example,
MBOs_for_BB_devDB_RM)

Invokes methods and retrieves the metadata of
packages, MBOs, attributes, operations, and
parameters during runtime using the name (re-
flection) instead of the object instance.

Note: ObjectManager classes are generated on-
ly when you select the Gener atemetadataand
object manager classes option.

Other operation classes (for example,

<MBO><OtherOperation>Operation)

Encapsulates each other operation into an ob-
ject

Generating BlackBerry Device Application Code from the Device

Application Designer

After developing the mobile business objects (MBOSs), begin device application development
using the Device Application Designer, then use the Generate Device Application wizard to
generate the device application code required for further development in the BlackBerry JDE.

Use this procedure if you are developing BlackBerry device applications using both the
Device Application Designer and the BlackBerry JDE.

1
2.

From Unwired WorkSpace, select File > New > Device Application Designer.

Follow the Device Application Designer wizard instructions to create a Device
Application Designer project based on the MBOs that are appropriate for the type of
BlackBerry device application you are developing, and click Finish.

Develop as much of the device application as you want using the Device Application

Designer.

Generate the code for a BlackBerry Device application, then debug and extend the code in

the BlackBerry JDE.

14

Sybase Unwired Platform

Development Task Flows

Generating Code For a BlackBerry Device Application
Use the Generate Device Application wizard to generate the device application code.

Prerequisites

Verify the device application and fix any errors that are found. Device applications with errors
cannot be generated.

Task

1. Click the Verify icon & on the toolbar to verify the device application has no errors.
2. Click the code generation icon &z on the toolbar.

3. Inthe Generate Device Application wizard, in Device Platform, select BlackBerry, and,
optionally, select:

Option Description

Server domain Select the domain to use for the connection
profile. The profiles used in the design appear in
the Profile column. The initial value of "de-
fault" appears under the domain. Select the Do-
main column to choose a different domain.

You can enter any value you want or select one
that is available. The list of available domains
are returned from the profile. If you have pre-
viously connected, it caches the list of last
known domains. If you have never connected,
“default” is returned.

Locale Expand this section to see a list of available
locales from which you can select.

Advanced Expand this section for advanced options:

* Check mobile business object on Sybase
Unwired Platform Server — select to verify
that the mobile business objects that are
used in the device application exist on the
corresponding Unwired Server.

* Mobile Business Object Group — the mo-
bile business object group that contains the
mobile business objects you want to verify.
Click Generate Code to launch the Gen-
erate Code wizard.

Developer Reference for BlackBerry 15

Development Task Flows

4. Click Next.
In the Generate Device Application wizard, enter the information, then click Finish:

5.

Option

Description

Favorite Configurations

(Optional) Select a saved configuration from
the drop-down list.

Note: The Remove the custom folder option
state is not saved in a favorite configuration.
You must explicitly choose that option when
you want to remove the custom folder that con-
tains any custom coding you have added.

Locations

» Generate code only — if this option is se-
lected, the code is not compiled.

« Deploy the BlackBerry application — select
to deploy the BlackBerry application to the
specified location. Selecting this option ac-
tivates the Deploy Configurations section,
where you can set the locations for the
BlackBerry rapc compiler, simulator loca-
tion, and so on.

16

Sybase Unwired Platform

Development Task Flows

Option Description

Deploy Configurations « BlackBerry rapc compiler —the BlackBerry
JDE rapc compiler location. This deter-
mines the operating system version of the
generated BlackBerry application.

» Copy to Simulator location — the filepath to
the location of the compatible simulator
you want to use for development and test-
ing.

» Start the BlackBerry Simulator after
copying — select to start the simulator
after you generate the device client ap-
plication.

e Start MDS automatically — select if a
connection to the mobile business ob-
ject is required. This is a one-time ac-
tion. A check is performed to see
whether the MDS is started. If it is, it
will not be started twice. Once the MDS
is running, it does not have to be restar-
ted.

« Disable signing — disables the signing
process for testing only. This option is
available only when you are copying
the generated COD files to a simulator
location for testing.

» Copy to desktop location — the location
where you want to copy the gener-
ated . cod files.

« Copy to Workspace location — the location
for the workspace to which you want to
copy the device client application.

Debug the BlackBerry application Debug configurations:

e Client project

« Options project

e Launch the BlackBerry project
e Launch configuration

Note: This option is enabled only if you have
installed the BlackBerry Java Plug-in for
Eclipse.

Developer Reference for BlackBerry 17

Development Task Flows

Option Description

Advanced * Open the generated folder under Windows
Explorer — select this option to open the
generated folder under Windows Explorer
when code generation is complete. This is
useful to locate the generated source so you
can move it to a JDE project or for custom
coding.

» Generated artifacts location — this option
indicates the location of the folder where all
the code is generated. The default is <work-
space>\<dad_project_name>\DAD Gener-
ated Code\<dag_file_name>\Blackberry.
Click Browse to change the location.
Click Restoreto restore to the default lo-
cation.

* Remove the Custom folder — select this op-
tion to remove any previously generated
custom code placed in the Custom folder.

* Use JDK path — use this JDK path for the
rapc.execompiler from RIM. This must be
in the following format: c: \ pr ogr am
files\java
\jdk1. 6. 0_16\ bi n.

» Configure package for generated code —
select this option to specify one or more of
the following package names.

» Package for the client code - The pack-
age for the code in XX. cod.

» Package for the option code - The pack-
age for the Ul code in XXOp-
tions. cod.

» Package for the object API code - The
package for the object API.

Device Application Designer Generated Code Structure
This topic illustrates the structure of code generated by the Device Application Designer, and
describes the contents of folders.

The BlackBerry application is built into two parts: the client application and the options
library. The application package contains all client code, while the options package contains

18

Sybase Unwired Platform

Development Task Flows

options code. The custom package accommodates all screen classes as well as any tab folder
packages. The tab panel classes are contained in the tab folder packages.

Client code is generated into two categories:

1. Code is generated each time you invoke the Device Application Designer generation
wizard. The Device Application Designer Model document is parsed and the screen
classes and the BOBCUIDefinition/BOBCOptionsDefinition class are generated.

2. User's custom code is initially generated by the Device Application Designer when the
Device Application Designer generation wizard is invoked. The custom code extends the
generated screen classes and BOBCUIDefinition/ BOBCOptionsDefinition class.

Modify the custom code only to customize your BlackBerry device application in the
BlackBerry JDE (or any other Native IDE).

[= 1) ttrl bob
= [5) Blackberry
= [C3) custam
= C5) application
= 153 com
= I3 svbase
= I5) uep
= I3 bobdlient
_‘] cuskonm
[(£ option
|) generated
= IC5) application
= 153 com
= I3 svbase
= I5) uep
= I3 boblient
= 123 custom
I3 corkroller

I3 images
= [C5) option
I lib
= 123 object_api
= 5 genfiles
= 15 java
153 doc
=0 stc
= I kel
[inkrrl

Developer Reference for BlackBerry 19

Development Task Flows

Custom Coding Subclasses

You can enable custom code generation by assigning a value of true to the platform-specific
property Generate a custom coding subclass for the Device, Screens, Tab Folder, and Tab
panels. You can specify this property for all elements from the preference page.

Folder Contents

The default generated code location is <%¢ur r ent _wor kspace%\ <

%urrent _project %\ DAD Generated Code\ <%urrent_dad_fil e_nane
%\ Bl ackberry. In that location, the application client code is in the gener at ed/
appl i cat i on folder. The options module code is in the gener at ed/ opt i ons folder.
The image files are in the gener at ed/ i mages folder. The JavaDoc files are in the
gener at ed/ doc folder.

The custom code is generated into the cust omfolder in the same package structure as the

gener at ed folder. The appl i cat i onandopt i on folders, contain the custom code for
the main application and the option application, respectively. For each element that enables
custom coding, a subclass is generated into the appl i cat i on folder. Once generated, the
custom subclass is not overwritten in subsequent code generation unless you select Remove
custom folder in the generation wizard.

All object API code is generated into a separate folder named obj ect _api . This folder
contains subfolders for the main application and option application.

You can customize subclasses to insert your own code in your development environment.

Event Delegates

For elements that support widget events, you can specify what events are supported for a
particular element. When you select events, those events take effect in the application. An
event delegate is generated in the cust omfolder for all events (whether selected or not). This
allows the delegation of all the selected events for an element. The event delegate class is in
same package as its element’s containing class (that is, the event delegate class for a button is
located in the same package as the subclass for the parent screen).

You can customize the event delegate to apply your own code.

Similar to the custom subclasses, the event delegate is not overwritten during subsequent code
generation, unless you select Remove custom folder.

Creating Projects and Importing Files into the BlackBerry
Development Environment

Set up the BlackBerry project, add required libraries, and import mobile business object
(MBO) or Device Application Designer generated Java files. Use these procedures if you are

20

Sybase Unwired Platform

Development Task Flows

developing a device application using the BlackBerry JDE or the BlackBerry Java plug-in for
Eclipse.

Differences Between Mobile Business Object and Device Application
Designer Required Files

The procedures for developing a device application directly from mobile business object
(MBO) generated code differ slightly compared to developing from Device Application
Designer generated code.

The main differences between the two procedures are:

» Device Application Designer — contains MBO business logic and BlackBerry device
application code. You must:

* Include libraries and JAR files in the BlackBerry project that support both the
BlackBerry Client Object API and the BlackBerry Device Framework API.

e Add the Java files from the Device Application Designer Custom folder, generated
folder, and the generated MBO classes to the BlackBerry project.
« Mobile business objects — contain only MBO business logic. If you do not plan on using
the Device Application Designer, you must:
* Include libraries and JAR files in the BlackBerry project that support the BlackBerry
Client Object API.
* Add the Java files from the MBO Generated Code folder to the BlackBerry project.

Differences Between the BlackBerry Java Plug-in and BlackBerry JDE

To develop a device application using the BlackBerry Java plug-in for Eclipse, use the same
procedure as developing with the BlackBerry JDE, but note the differences.

« Libraries cannot be located inside BlackBerry projects developed using the BlackBerry
Java plug-in for Eclipse, due to a RIM limitation. The libraries must be outside the projects
and referred to with an absolute path.

« Thedebug option in the BlackBerry generation wizard page is enabled if the BlackBerry
Java plug-in for Eclipse is installed. This option can be useful when developing device
applications.

Creating a BlackBerry Device Application Project

Create the BlackBerry project and add the generated mobile business object (MBO) Javafiles,
or the Device Application Designer Java and framework files, to the BlackBerry JDE.

Follow these steps whether you are developing the device application directly from code
generated from MBOs, or extending an existing Device Application Designer device
application, except where noted.

Note: These steps apply only if you are using the BlackBerry JDE to develop the application.
If you are using the BlackBerry Eclipse plug-in, you must only specify the client project and

Developer Reference for BlackBerry 21

Development Task Flows

options project (described in step 7). Additional configuration is performed automatically by
the Device Application Designer when you generate the code.

A w NP

Launch the BlackBerry JDE and create a new workspace.
Create a BlackBerry project and name it supOpt i ons.
Right-click the project and select Properties.

Inthe properties dialog, select the Application tab, specify Li br ar y for Project type and
select Auto-run on startup.

Select the Build tab, and click Add next to “Imported jar files.” Add either:

» For Device Application Designer —these Ul traLi teJ. j ar and

BOBFr amewor k. j ar files to the project:

e <UnwiredPlatformlnstall D r>\Unw red WrkSpace
\ Ecl i pse\ sybase_ wor kspace\ nobi | e\ ecl i pse\ pl ugi ns
\ com sybase. uep. bob. ri nkversi on_tinme_stanp>\ generate
\ bl ackberry\U traLiteld.jar

e <UnwiredPl atform.lInstall D r>\Unw red_WrkSpace
\ Ecl i pse\ sybase_wor kspace\ nobi | e\ ecl i pse\ pl ugi ns
\ com sybase. uep. bob. ri mcversi on_ti ne_st anp>\ generate
\ bl ackberry\ bui | d- <os- ver si on>\ BOBFr anewor k. j ar

Note: (Device Application Designer only) Select the version of
BOBFr amewor k. j ar that corresponds with selected Device Application
Designer code generation options (BlackBerry rapc compiler version) from the
supported versions.
e For MBO generated code — these Ul t raLi t eJ. j ar and

sup_client_rimjar files to the project:

e <UnwiredPl atformInstallDir>\Servers\Unw redServer
\dientAPI\U traliteJ\J2neRi nl1\U traLited.jar

e <UnwiredPlatform.lnstallDir>\Servers\Unw redServer
\ClientAPI\java\RIMA2\sup client _rimjar

Click OK.

Right-click the supQpt i ons project and select Add file to project to add files for the
project, which depends on whether you are creating a device application directly from
MBO or from Device Application Designer code:

* MBO generated code — references the Client object APl and contains the Java files that
implements the business logic of your project. From Look in, navigate to the sr ¢
subdirectory where you generated the Java code from your Unwired WorkSpace
mobile application. This location is dependent on the workspace that you used.

For example, if your workspace isinthe C: \ nyBBappl i cat i ons directory and the
name of the mobile application project ist est , navigate to C:

22

Sybase Unwired Platform

Development Task Flows

\ nyBBappl i cati ons\t est\ Generat ed Code\src\test andadd all of
the . j ava files to your project.

» Device Application Generated code — references the Device Application Generated
code, BOBCOpt i onsDef i ni ti on. j ava (the options definition), and
Opt i onsMai n. j ava. Complete these additional steps:

1. \erify that the generated code is the correct version (you can see the version from
the Device Application Designer generation wizard).

2. From L ook in, navigate to the object API code at the generated location and add it
to the project: <wor kspace>\ <pr oj ect nane>\ DAD Gener at ed Code
\ <bobf i | enanme>\ Bl ackber ry\ obj ect _api\genfil es\java
\src

3. Locate the options definition file at the following location and add it to the project:
<wor kspace>\ <pr oj ect name>\ DAD CGener at ed Code
\ <bobfi | enane>\ Bl ackber ry\ gener at ed\ opti on\ com sybase
\ uep\ bobcl i ent\ opti ons\ BOBCOpti onsDefinition.java

4. Locate Opti onsMai n. j ava at the following location and add it to the project:
<wor kspace>\ <pr oj ect nane>\ DAD Cener at ed Code
\ <bobfi | enane>\ Bl ackber ry\ gener at ed\ opti on\ com sybase
\ uep\ bobcl i ent\ opti ons\ Opti onsMai n. j ava

5. Locate | BOBSt yl es. j ava at the following location and add it to the project:
<wor kspace>\ <pr oj ect nane>\ DAD Cener at ed Code
\ <bobf i | enane>\ Bl ackber ry\ gener at ed\ opti on\ com sybase
\ uep\ bobcl i ent\options\|BOBStyl es. java
This is the Java file that defines all styles.

6. Locate™*. rr h atthe following location and add it to the project: <wor kspace>
\ <pr oj ect nane>\ DAD Gener at ed Code\ <bobfi | enanme>
\ Bl ackberry\ gener at ed\ opti on\ com sybase\ uep\ bobcl i ent
\options*.rrh
This is the resource header file that defines resource indices.

7. Locate*. rr c atthe following location and add it to the project: <wor kspace>
\ <pr oj ect nane>\ DAD Gener at ed Code\ <bobfi | enane>
\ Bl ackberry\ gener at ed\ opti on\ com sybase\ uep\ bobcl i ent
\options*.rrc
This is the resource content file that defines resource values.

Creating a BlackBerry Device Application Client Project

Create a BlackBerry client project that contains Device Application Designer generated code
(other than the options definition code), and BOBUI Cont r ol | er . j ava (the application
entry point).

1. Create a BlackBerry project in the same workspace that contains the supQpt i ons
project and name it supd i ent .

Developer Reference for BlackBerry 23

Development Task Flows

2.
3.

Right-click the project and select Properties.

In the properties dialog, select the Application tab, and specify CLDC Appl i cati onas
the project type.

Select the Build tab, and in the Imported jar files section, click Add to add

BOBFr amewor k. j ar to the project, which is located in:

<Unwi redPl atform I nstal | Di r>\ Unwi red_Wor kSpace\ Ecl i pse

\ sybase_wor kspace\ nobi | e\ ecl i pse\ pl ugi ns

\ com sybase. uep. bob. ri m <versi on_ti nest anp>\ gener at e\

\ bl ackber ry\ bui | d- <ver si on>\ BOBFr anmewor k. j ar

Note: Select the correct version of BOBFramework.jar for your BlackBerry operating
system from the supported versions.

Select the supd i ent project, right-click and select Add file to project to insert
generated Device Application Designer code into the project:
a) Verify that the generated code is the correct version (you can see the version from the
Device Application Designer generation wizard).
b) Locate the Device Application Designer generated code at the generated location and
add it to the project. For example:
<wor kspace>\ <pr oj ect nane>\ DAD Cener at ed Code
\ <bobf i | enanme>\ Bl ackber r y\ gener at ed\ appl i cati on\ com
\ sybase\ uep\ bobcl i ent\ custom
c) Locate BOBUI Contr ol | er. j ava in the general location and add it to the project:

<wor kspace>\ <pr oj ect nane>\ DAD Cener at ed Code

\ <bobf i | enanme>\ Bl ackber r y\ gener at ed\ appl i cati on\ com
\ sybase\ uep\ bobcl i ent\ custom control | er

\ BOBUI Control |l er.java

Note: All Device Application Designer generated code and required libraries are
imported to the projects, and project types are set. If custom coding or widget events
are enabled, you must also add the generated subclasses and widget event delegate to
the client project. This code is located in the custom folder at <wor kspace>

\ <pr oj ect nane>\ DAD Gener at ed Code\ <bobfi | enanme>

\ Bl ackberry\ cust om appl i cati on\ com sybase\ uep\ bobcl i ent
\custom.

6. To make the client project dependent on the options project, select the supCl i ent

project and select Project Dependencies. Select the supQpt i ons project in the dialog
box.

24

Sybase Unwired Platform

Development Task Flows

Referencing BlackBerry Device Framework Javadocs
The BlackBerry Device Framework API enables you to customize the BlackBerry device user
interface. Javadoc provides a complete reference to the API.

Perform these steps only if developing the application in the BlackBerry Eclipse plug-in
(eJDE). The BlackBerry JDE does not support this Javadoc configuration.

1. From the eJDE, right-click your project and choose Properties.
2. Select Java Build Path, then Libraries.

3. Expand BOBFr anewor k. j ar and select the Javadoc location.
4

. Click Edit, select Javadoc in archive, and set the archive path to
<Unwi redPl atform InstallDir>\Unw redPl atf orm
\ Unwi red_Wor kSpace\ Ecl i pse\ sybase_wor kspace\ nobi | e\ ecl i pse
\ pl ugi ns\ com sybase. uep. bob. ri m <ver si on>\ generat e
\ bl ackber r y\ BOBFr amrewor kJavadoc. zi p.

Adding Required .jar and .cod Files
Add the following Unwired Platform .jar and .cod file references to the BlackBerry project's
Java build path.

Add these files only if you are developing the device application in the BlackBerry JDE, which
are located in the Unwired WorkSpace installation path as indicated, to your project's build
path:
e sup_client_rimjar —from<Unw redPl atform InstallDir>
\ Servers\ Unwi redServer\client APl \java\ Rl M2 for the Blackberry
client.
e UtraLited.jar from<Unwi redPl atform.Install Dir>\Servers
\ SQLAnywherell\ U traLite\U traliteJ\Bl ackBerry<os_versi on>
for the Device Application Designer client.
Copy required .cod files to the BlackBerry simulator directory: Ul t r aLi t eJ. cod from
<Unwi redPl atform I nstal | Di r>\ Servers\ SQLAnywherell\U traLite
\UtraliteJd\Bl ackBerry<os_versi on> for the BlackBerry client.

Developing, Debugging, and Customizing BlackBerry
Applications

Use the BlackBerry Client Object API, BlackBerry Device Application Framework API, as
well as native Research in Motion (RIM) APIs to create or customize your device applications.

To learn more about the BlackBerry JDE, BlackBerry Java plug-in for Eclipse, or RIM
BlackBerry APIs, go to the BlackBerry Java application development Web site at Atip.//
na.blackberry.com/eng/developers/javaappdev’.

Developer Reference for BlackBerry 25

http://na.blackberry.com/eng/developers/javaappdev/
http://na.blackberry.com/eng/developers/javaappdev/

Development Task Flows

Note: Do not modify generated MBO API or Device Application Designer generated code
directly. For Device Application Designer Code, use the customization pattern documented in
this guide by either adding event handlers or customization classes. For MBO generated code,
create a layer on top of the MBOs using patterns native to the mobile operating system
development to extend and add functionality.

Building an Object APl based Client Application

This example illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application froma
Client Object API based device application.

1

Log in to Unwired Server using a user name and password:
<PkgName>DB. | ogi nToSync("supAdm n", "s3pAdm n");
Synchronize MBOs by group name synchronization;
<PkgNanme>DB. synchr oni ze(“defaul t”);

Retrieve MBO data:

Ohj ect Li st custoners = Customer.findAll();

int size = custoners.count();

for (int i =0; i < size; i++)

{
Cust oner cust = (Customer)custoners. el ement At (i);
/| Feed the MBO data to your view..

}
Update MBO data:

Custoner cust = Custoner.findByPri maryKey(100);
cust.set Address(“1 Sybase Dr.");

cust . set Phone(“9252360000") ;

cust.save();//or cust.update();

Submit pending operations and synchronize again:

Cust oner. submi t Pendi ngOper ati ons();
<PkgNanme>DB. synchr oni ze(“defaul t”);

Adding a Device Application Entry Point

If you are creating a BlackBerry device application from code generated directly from mobile
business objects (MBOs), add a main file to the application.

1

From the BlackBerry project that contains your generated MBO code, for example
supOpt i ons, add a new file by right-clicking the project and selecting Create new file
in project.

Name the file, for example, BBMai n. Click OK.

This file is the main entry point to the device application.

Import the common BlackBerry device application development packages as well as the
package that contains your MBOs (for example, com.custom.MBO.*).

26

Sybase Unwired Platform

Development Task Flows

You can now create the code to connect to Unwired Server, access and synchronize your
MBOs, and perform other functions.

Developing the BlackBerry Device Application
This section provides procedures and compares the differences between creating a
BlackBerry Device Application from mobile business object generated code in the
BlackBerry JDE versus the Blackberry Eclipse plug-in (eJDE).

Prerequisites

The following procedures requires you to create, deploy, and generate code from the mobile
business objects (MBOs) used in 7utorial: BlackBerry Device Application Development
(Custom Development), which creates the business logic and generates the Java files required
for the device application. Sybase recommends that you complete the tutorial.

For either development approach:

1. Since KeywordFilterField is employed in this sample, which is available since JDE 4.5.0,
make sure this sample is used in the proper BlackBerry operating system.

2. The generated code SUP101.Customer is modified to overridethet oSt ri ng() method
so that the KeywordFilterField displays the data properly.

Task

Developing a BlackBerry Device Application using the BlackBerry Eclipse

Plug-in
Follow these procedures to run the SUP101 project in the BlackBerry Eclipse plug-in (eJDE).

1. Modify the build path to point to the correct location for the sup_client _rimj ar
andU traLited.jar files.
The files cannot be located in the current project due to a RIM BlackBerry Plug-in
restriction.

2. Copysup_client _rimcodandU traLited. cod files to the simulator
directory.

3. Deploy the SUP101 project to the Unwired Server to which the sample refers.

4. Modify SUP101DB. j ava to include your Unwired Server information(lines 47-51). For
example:

get Synchroni zati onProfil e(). set Server Nane(" <Unwi r edSer ver Host >") ;
get Synchroni zati onProfil e().set Port Nunber (2480) ;

get Synchroni zati onProfil e().set Net workProtocol ("http");

get Synchroni zati onProfil e().set Net wor kSt r eanPar ans
("trusted_certificates=;url_suffix=");

get Synchroni zati onProfil e().set Donai nNane("defaul t");

Developer Reference for BlackBerry 27

Development Task Flows

5. Run the project on a BlackBerry simulator. By default, the simulator is installed at C:
\ Program Fi | es\ Research In Motion\Bl ackBerry JDE
5.0.0\simul ator.

Developing a BlackBerry Device Application using the BlackBerry JDE
Follow these procedures to run the SUP101 project in the BlackBerry JDE.

1. Open the BlackBerry JDE and create a new workspace.
2. Create a new project in the new workspace.

3. Change the Project Type to be CLDC Application or BlackBerry Application (depending
on the JDE you are using).

4. Adduep_ri bbon_i con. png to Icon files.

5. Addsup_client_rimjar andU traLited.jar filesto the Build import jar
files.

6. Copysup_client_rimcodandU traLited. cod files to the simulator
directory.

7. Deploy the SUP101 project to the Unwired Server to which the sample refers.

8. Modify SUP101DB. j ava to include your Unwired Server information (lines 47-51).
For example:

get Synchroni zati onProfil e(). set Server Nanme(" <Unwi r edSer ver Host >") ;
get Synchroni zati onProfil e(). set Port Nunber (2480) ;

get Synchroni zati onProfil e().set Net workProtocol ("http");

get Synchroni zati onProfil e(). set Net wor kSt r eanPar ans
("trusted_certificates=;url_suffix=");

get Synchroni zati onProfil e(). set Domai nNanme("defaul t");

9. Run the project.

Debugging BlackBerry Device Development

Device client and Unwired Server troubleshooting tools for diagnosing RIM® BlackBerry®
development problems.

Client-side debugging
Problems on the device client side that may cause client application problems:

e Unwired Server connection failed.
« Data does not appear on the client device.
¢ Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

» If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging, and review the debugging information. See Developer

28

Sybase Unwired Platform

Development Task Flows

Reference for BlackBerryabout using the MBOLogger class to add log levels to messages
reported to the console.

» Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods. Use this method
for logs corresponding to MBO classes, except for Other operations, which cannot be
retrieved with get LogRecor ds.

This is the log format:

| evel , code, ei sCode, nessage, conponent, enti t yKey, oper ati on, r equest |

d, ti mestanp

This is a log sample:

5,500,"'","java.l ang. SecurityException: Aut hori zation fail ed:

Domai n = default Package = end2end.rdb: 1. 0 nboNanme =

si npl eCust oner action =

del ete','sinpleCustoner','100001', " 'delete','100014',"' 2010-05-11

14: 45: 59. 710’

« | evel -thelog level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

« code - replication-based synchronization, Unwired Server administration codes:
e 200 - success.
» 500 - failure.

» ei sCode - not currently used.

e nmessage - the message content.

e conponent — Mobile Business Object (MBO) name.

e entityKey - MBO surrogate key, used to identify and track MBO instances and
data.

e operati on - operation name.

e request | d - operation replay request ID or messaging-based synchronization
message request ID.

« timestanp - message logged time, or operation execution time.

* View the log records on the L ogl nfo screen, which shows both client and server log
information for the application. You can change the client log level in BlackBerry options
> L ogging.

e Check the Storm event log:
1. On the Home screen, press Hold.
2. Click the upper-left corner and upper-right corner twice.
3. Review the event log.

« Check the BlackBerry event log:

1. Onthe device, press ALT+Iglg; or, for touch-screen devices, hold the ESC key, tap (no
click) top-left, top-right, top-left, then top-right.

Developer Reference for BlackBerry 29

Development Task Flows

2. Review the event log, and see the RIM BlackBerry documentation for information
about debugging and optimizing. Attp.//na.blackberry.com/eng/developers/resources/
A50 How to Debug and Optimize V2pdf

Server-side debugging
Problems on the Unwired Server side that may cause device client problems:

The domain or package does not exist.

Authentication failed for the synchronizing user.

The operation role check failed for the synchronizing user.

Back-end authentication failed.

An operation failed on the remote, replication database back end, for example, a table or
foreign key does not exist. Detailed messages can be found in the Log Record.

An operation failed on the Web service, REST, or SAP® back end. You can find detailed
messages in the log record.

To find out more information on the Unwired Server side:

Check the MMS server log files. See the Sybase Control Center documentation for more
information.

Debugging the BlackBerry Device Application

Debug your device application by setting breakpoints and stepping through code.

1

From the BlackBerry JDE, select Debug > Go to build and execute the application, and
launch the simulator.

You can view build results in the JDE output window.

Add breakpoints to the code:

a) Place your cursor in the code where you want to add a breakpoint and select Debug >
Breakpoint > Set Breakpoint at Cursor.

b) You can also set breakpoints for a given event from the same menu, for example, On
startup, When an exception isthrown, Before gar bage collection, and so on.

Run the application from the simulator. The application stops based upon the breakpoint

you set.

Once stopped, you can step through the code using any of the step icons (step over, step
into, step out, and so on) located in the JDE toolbar:

¥

F

For more information about the various views available for debugging, including
determining memory usage, code coverage, and so on, refer to the BlackBerry JDE
documentation. To view a video on how to debug your BlackBerry device application in
the BlackBerry JDE, go to the Research In Motion Developer Video Library Web site at:

30

Sybase Unwired Platform

http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf
http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf

Development Task Flows

http.//supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Customizing Device Application Desigher Code

After you generate code from your BlackBerry development environment, choosing the
Custom Classgeneration option, go to the folders that contain the custom classes, and modify
the code as needed. For example, adding controls to screens, adding widget event code, and so
on.

Generated Screen Class Outline:

public class BOBScreenSal es_or der extends
BaseBOBScreen i npl ements | BOBScreen {

protected voi d defineScreen() {
createControl s();
creat eMenus() ;

}

protected void createControl s() {
creat eCont rol Byl d(CONTROL1) ;
confi gureControl Byl d(CONTROL1) ;
}

protected void configureControl Byld(int ID {
switch (ID) {
case LAYOUTMANACER:
confi gureObj ect Met aDat aByl d(1 D, | ayout Manager);
confi gureQbj ect Handl er sByl d(1 D, | ayout Manager);
return;

}

protected void createMenus() {
menul = creat eMenuByl d(MENUL) ;
}

public Object getControl Byld(int 1D);
}

Manually Adding Controls to a Screen
The cr eat eCont r ol s method allows you to manually add controls to a screen.

The following code adds controls to a layoutManager, which is eventually added to the screen.
The layoutManager takes the control, column span, and row span as arguments to add the
control and lay it out.

Conf i gur eCont r ol Byl d configures the controls’s meta data(calling

confi gur eObj ect Met aDat aBy| d) and handlers(calling

confi gur eCbj ect Handl er sByl d) by Ids. A custom subclass can override this method
to customize controls.

Developer Reference for BlackBerry 31

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Development Task Flows

| ayout Manager = (Layout Manager) createControl Byl d(LAYOUTMANAGER) ;
| abel 1 = (Label) createControl Byl d(LABEL1) ;

conf i gur eCont r ol Byl d(LAYOUTMANAGER) ;
confi gureControl Byl d(LABEL1) ;

i .a'yout Manager . addW dget (| abel 1, 1, 1);

th| s. add(| ayout Manager) ;

Writing Widget Event Code

To enable widget events, you must first specify events for a control from its coding properties

tab.

During code generation, the event delegate gets generated into the custom folder. The event
delegate is called by cont r ol . set Cust onmEvent sDel egat e(event Del egat e,
event Tyl e) inthe confi gur eObj ect Handl er sByl d method.

At runtime, the control’s specified events are passed to the event delegate and handled by your
code. The event delegate implements | cust omEvent sDel egat e and has the following
methods to handle a variety of events:

Methods to onLoad event:

e onlLoad: called during loading of the control

Methods to onDr awevent:

e pai nt: called when painting dr awFocus: called when drawing focus
Methods to onCl i ck event:

e onFocus: called when focused

e onUnf ocus: called when unfocused

e navi gationd i ck: called when navigation clicked

e navi gati onUncl i ck: called when navigation unclicked
e navi gati onMovenent : called when navigation moved
e touchEvent : called when touched

Note: this event is available only to touch screen devices, make sure you define the correct

preprocessor for the client project to make it work properly.

Methods to onRecor dSel ect i onChange event:

e onRecor dChange: called when scrolling through records and mainly used for table
type controls (cell table, grid table, list detail). It can be used for enabling or disabling
menu items, activating phone actions, expanding content of a cell, or showing cell
content in a fish eye view.

Methods to onVal ueChange event:

e onVal ueChange: called when the value of an input control changes, and useful for
linked parameters in that the values of a control change based on the selected value of
another control. This is primarily used in CGI type controls.

32

Sybase Unwired Platform

Development Task Flows

* Methods to onOri ent at i onChange event:
e onOi ent ati onChange: called when orientation changes

Note: this event is available only to touch screen devices, make sure you define the correct
preprocessor for the client project to make it work properly.

The following sample code shows how to write widget events:

public void onOrientationChange(Object field, int controllD,
int width, int height) {
/] custom code
Swi t ch(control | D)

{
case BOBScreenCust oners. BUTTON:

Di al og. al ert("button orientation changed!");
def aul t:

return;

}
b

Adding Validators
You can assign Text | nput a vector of validators. Val i dat or validates the text input’s
value based on the validation types and patterns.

The following is a code example for adding validators:

case TEXTI NPUT1:
Text I nput localtextlnputl = (Textlnput) object;
Vect or textFieldlValidateVector = new Vector();
t ext Fi el d1Val i dat eVect or. addEl enent (new
Val i dat or (" PATTERN_MATCH', " CONTAINS", "ny",
"The input does not contain {0}."));
t ext Fi el d1Val i dat eVect or . addEl enent (
new Val i dat or (" PATTERN_MATCH', "STARTS W TH', "sup",
"The input rmust start with {0}."));
| ocal text | nput 1. set | nval i dVal ueMessage(
"Enter a valid value (data type {0} and |ogical type {1}).");
| ocal text | nput 1. setVal i dators(textFieldlValidateVector);
| ocal text | nput 1. set Font Styl e(styl eEdit_box_Styl e);
br eak;

Perform Ul Binding to an MBO
You can perform Ul binding to an MBO through the conf i gur eCbj ect Met aDat aByl d
method.

The following code shows how to perform Ul binding to an MBO:

protected void configureCbject Met abDat aByl d(int 1D, Object object) {
switch (ID) {

case CELLTABLE1L:
Cel | Tabl e | ocal cel | Tabl el = (Cel | Tabl e) object;
| ocal cel | Tabl el. set Col utmPer cent age(
new int[] {33, 34, 33 });
| ocal cel | Tabl el. set Sorti ngCol um("Sort on col um");

Developer Reference for BlackBerry 33

Development Task Flows

| ocal cel | Tabl el. set Mool d(BOBCUI Defi ni ti on. MBO_A B_C DEPARTMENT) ;
| ocal cel | Tabl el. set FocusFont Styl e(styl eCel | _Tabl e_Focus_Styl e);
| ocal cel | Tabl el. set Nunber O Col utms(3) ;
| ocal cel | Tabl el. set Col umConf i g(
new String[] {"dept_id", "dept_nane", "dept_head_id" });
| ocal cel | Tabl el. set Unf ocusFont Styl e(
styl eCel | _Tabl e_Unfocus_Styl e);
br eak;

The set Mool d method binds the cell table to the MBO department. This also applies to other
MBO data controls such as grid table, select box and list detail.

Access Pending Operations and Operation Logs

MBOModel is an object for mobile business objects, and has a method called

get Pendi ngQhj ect s to return pending operations. A pending object is the combined
pending operations on that object instance.

CommonMBOWbdel nbol nstance =
MBOWbdel Fact ory. get | nst ance() . get ConmoniVBOVbdel (mbol d) ;
if (!'(nbolnstance instanceof MBOWodel)) {
conti nue;

}
MBOWbdel nmobil eApp = (MBOWbdel) nbol nst ance;
hj ect Li st pendi ngChj ect Li st = nobi | eApp. get Pendi ngCbj ect s() ;

Similarly, the static method get Logs returns all logs for the specified package name and
query criteria.

Query query = new Query();

query.setTestCriteria(new Attri buteTest ("conponent”, component Nane,

AttributeTest. EQUAL));
LogRecord[] | ogs = MBOWbdel . get Logs(packageNane, query);

Connecting to Unwired Server
CommonMBOWbdel defines | ogi nToSync to log in to the Unwired Server.

ConmonMBOMWbdel . | ogi nToSync(
profil e. get PackageNane(),
profile.getUser Nanme(),
profile.get Password());

Adding or Modifying Navigation
To add navigation to a screen, you can add ScreenAction to controls or menus that take actions.

protected void configureCbject Handl er sByl d(
int ID, Object object) {
switch (I1D) {
case MENU2:
MenuAction menu2 = (MenuAction) object;
//Create |list of actions

ActionLi st actionListl5 = new ActionList();
| BOBActi on connecti onAction9 = new

34

Sybase Unwired Platform

Development Task Flows

ScreenAction(U Definition.getScreen("screenl6"), false, null);
menu2. set Acti on(acti onLi st 15);
| BOBAct i on cont ext Acti on4
= new SaveMobi | eDat aCont ext Acti on(
cell Tabl el);
actionLi st 15. addActi on(cont ext Acti on4);
acti onLi st 15. addAct i on(connecti onActi on9);

To remove navigation, you can override the menu or control's action to remove the screen
action.
protected voi d configureCbj ect Handl er sByl d(

int 1D, hject object) {
switch (ID) {

case MENUZ:
MenuActi on menu2 = (MenuAction) object;

ﬁéﬁuZ. set Acti on(XxxX) ;
defaul t:
super . confi gur eCbj ect Handl er sByl d(|1 D, obj ect);

For controls that support an action, you can create a widget event:

publ i ¢ bool ean navi gati onC i ck(
Chject field, int controllD,
ActionLi st actions, int status, int tine)

/1 custom code
/1 nodify actions which include the screen action
return fal se;

}

Adding or Modifying Actions
You can add or modify actions for controls or menus through the
configureObjectHandlersByld method.

Note: By default, the conf i gur eCbj ect Handl er sByl d method adds all actions to
controls and menus.

The following is a code example for adding actions:
protected void configureObj ect Handl ersByl d(int | D, Object object)

switch (1D) {

case BUTTONS:
Button | ocal button8 = (Button) object;
//Create |ist of actions
ActionLi st actionList3 = new ActionList();
//Create set of submt elenents
Vector subnmit2 = new Vector();
[/ Create subnit el enent "dept_id"
submi t 2. addEl ement (new Submi t El emrent ("dept _id", "2",
Vari abl eProperties. SUBM T_CONTROL_TYPE, null, true,

Developer Reference for BlackBerry 35

Development Task Flows

null, -1, "dept_id", MBOAttribute. SCHEMA TYPE_I NT,
false, null, false));

[/ Create subnmit el enent "dept_nane"

submi t 2. addEl ement (new Submi t El enent (" dept _nanme”, "4",
Vari abl eProperties. SUBM T_CONTROL_TYPE, null,
false, null, 40, "dept_nane",
MBOAt t ri but e. SCHEMA_TYPE_STRI NG,
false, null, false));

// Create submt elenment "dept_head_id"

submi t 2. addEl enent (new Subni t El enent (" dept _head_i d", "6",
Vari abl eProperties. SUBM T_CONTROL_TYPE, null,

false, null, -1, "dept_head_id",
MBQOAt t ri but e. SCHEMA TYPE_| NT,
false, null, false));

| ocal button8. set Acti on(acti onLi st 3);

| BOBActi on submi t Action2 = new Submit Acti on(
BOBCUI Defi ni ti on. MBO_ A B C DEPARTMENT, this,
Qper ati onTypes. OPERATI ON_I NSERT, submit2, fal se,
"Input {0} is required.",
"I nput {0} exceeds the maxi num|length of {1}.",
"create");

actionLi st 3. addAct i on(submi t Acti on2);

| BOBActi on backActionl = BackAction. getlnstance();

acti onLi st 3. addAct i on(backActi onl);

br eak;

To modify actions, you can override this method by using custom code, and the widget event
method navi gat i ond i ck.

Creating and Assigning Variables
There are four types of variables: user, system, table and personalized.

To create user variables, add the variable in BOBCUIDefinition:

addVari abl e(VARI ABLE_HI SVAR, " hi sVar Val ue",
Vari abl eProperties. VARl ABLE_TYPE_USER,
MBOAt t ri but e. SCHEMA_TYPE_STRI NG ;

To use a user variable in controls:

case LABEL2:

Label |ocall abel 2 = (Label) object;

| ocal | abel 2. set Font Styl e(styl eLabel _Styl e);

I/l ocal | abel 2. set FooterField(null);

| ocal | abel 2. set FocusFont Styl e(styl eDefault _Styl e);

| ocal | abel 2. set WapText (fal se);

| ocal | abel 2. set Vari abl eLabel (new Cont r ol Vari abl e(
BOBCUI Def i ni ti on. VAR ABLE_HI SVAR,
Vari abl eProperties. VARl ABLE_TYPE_USER, nul |,
null));

To persist a user variable:

String key = "vari abl eNane";
/1 NOTE: Sybase only supports this type.
String keyType = Vari abl eProperties. VAR ABLE_TYPE_USER;

36 Sybase Unwired Platform

Development Task Flows

String schemaType = MBQAttri but e. SCHEVMA TYPE BOOLEAN;
hj ect value = "true";
Util.addVariabl e(key, val ue, keyType, schemaType);

System variables are used in a similar manner.

To create table variable and bind to text input:

| ocal text | nput 4. set Vari abl el nput (
new Control Vari abl e("dept _head_i d",
Vari abl eProperties. VARl ABLE_TYPE_TABLE,
BOBCUI Def i niti on. MBO_ A B C DEPARTMENT, null));

You must save a Cont ext before table variables can be used by a context action.

case MENUG:
MenuAction menu6é = (MenuAction) object;
[/ Create list of actions
ActionLi st actionListl3 = new ActionList();
| BOBActi on connecti onAction9 =
new ScreenActi on(
Ul Definition.getScreen("screend4"), false, null);
menub6. set Acti on(acti onLi st13);
| BOBActi on context Action4 =
new SaveMbi | eDat aCont ext Acti on(cel | Tabl el);
acti onLi st 13. addAct i on(cont ext Acti on4);
acti onLi st 13. addActi on(connecti onActi on9);
cel | Tabl el. set Def aul t Acti on(acti onLi st 13);

Using PIM Actions
You can add a PIM action to a control to integrate the control with a BlackBerry PIM
application. The PIM action constructor takes the following arguments.

int type:
public interface Rl MPi nConstants

[#HitH##H#AH#AHAHAHAHAH#A#A#E Avai | abl e RIM appl i cati ons
HHHHHHBRHHHH AR]

public static int RIMPIMCONTACT = 0;
public static int RIM P MEMIL = 1;
public static int R M Pl M PHONE = 2;
public static int R MPIMEVENT = 3;
public static int RIMPI M TODO = 4;
public static int R MPI M MEMO = b;

}

bool ean i sRead: if true, the constructor reads from the BlackBerry PIM application; if
false the constructor writes to the BlackBerry PIM application.

Obiject control: A
com sybase. uep. bobcl i ent. control s. Mobi | eDat aCont r ol widgetsuch as
com sybase. uep. bobcl i ent. control s. Mobi | eAppTabl e,

Developer Reference for BlackBerry 37

Development Task Flows

com sybase. uep. bobcl i ent. control s. TwoCol unnLayout or
com sybase. uep. bobcl i ent. screens. | BOBScr een.

The following code example shows the use of the PIM read action, which requires the
control’s logical type to be set as one of the PIM application type, and the creation of a PIM
action that refers to the control or the control’s parent screen.

Text | nput textlnput = new Textlnput("", ""
Basi cEdi t Fi el d. DEFAULT_MAXCHARS, Fi el d. FI ELD) LEFT) ;
/1 set logical type of text input, this is inportant for PIM usage
text | nput. set Logi cal Type(
new Logi cal Type(
RI MPi mConst ants. Rl M_PI M_CONTACT,
Bl ackBer r yCont act . NAME,
PI M tem ATTR_NONE, Contact. NAVE_G VEN)) ;
| ayout Manager . addW dget (text I nputl, 1, 1);
Button button2 = (Button) object;
/] Create list of actions
ActionLi st actionList2 = new ActionList();
butt on2. set Acti on(acti onLi st2);
/] pass the text input’s parent screen to PIM action
Action rimAction2 =
new RI MPi mAppActi on(
Rl MPi nConst ants. RI M_PI M_CONTACT, true, this, false);
actionLi st 2. addActi on(ri mActi on2);
| ayout Manager . addW dget (button2, 1, 1);

The following is a code example for the PIM write action:

Text I nput textlnput3 = (Textlnput) object;
text I nput 3. set | nval i dVal ueMessage(
"Enter a valid value (data type {0} and |l ogical type {1}).");
text | nput 3. set Logi cal Type(
new Logi cal Type(
Rl MPi nConst ant s. Rl M_PI M_CONTACT,
Bl ackBer r yCont act . NAME,
PIMtem ATTR _NONE, Contact.NAME_FAMLY));
| ayout Manager . addW dget (text I nput3, 1, 1);
Button button4 = (Button) object;
//Create |ist of actions
ActionLi st actionList2 = new ActionList();
button4. set Acti on(acti onLi st 2);
Action rimcti on2 = new RI MPi mAppActi on(
RI MPi mConst ants. Rl M_PI M_CONTACT, false, this,
true);
acti onLi st 2. addActi on(ri mActi on2);
| ayout Manager . addW dget (button4, 1, 1);

bool ean | aunchPl MApp: if frue, the PIM application gets launched after performing a
write operation, otherwise false.

case MENU13:
MenuActi on menul3 = (MenuAction) object;
Action rimAction9 =
new RI MPi mAppAct i on(
Rl MPi mConst ants. RI M_PI M_CONTACT, true, this,

38

Sybase Unwired Platform

Development Task Flows

fal se);
menul3. set Action(ri mActi on9);
br eak;

Using LayoutManager
These examples illustrate how to customize margin and button layout.

int[] col Percentages = { 35, 65 };
Layout Manager | ayout Manager = new Layout Manager (2,
col Percent ages, true, styleDisplay_Style);

| ayout Manager . addW dget (t ext I nput 52, 1, 1);

| ayout Manager . addW dget (hori zont al Rul er53, 2);
| ayout Manager . addW dget (button54, 1, 1);

| ayout Manager . addW dget (button55, 1, 1);

t hi s. add(| ayout Manager) ;

Adding a Table Header
Add a Region which contains the table header columns for the screen that you want to
customize using the Device Application Designer. Then modify the generated gap class:

protected void createControl s() {
super. createControl s();

i f (regionvanagerl. get Manager() != null) {
Manager m = regi onManager 1. get Manager () ;
m del et e(regi onManager 1) ;
| ayout Manager . del ete(n);

}

set Banner (nul |');
Verti cal Fi el dManager vfm = new Verti cal Fi el dvanager () ;
vf m add(navi gati onBar Fi el d) ;

regi onvanager 1. set Col unmPer cent age(cel | Tabl el. get Tabl eConfi g()
. get Col ummPer cent age()) ;
vf m add(r egi onManager 1) ;
| ayout Manager . set Scr eenHeader (vfn);
set Banner (vfn;

}

Filling a Space with a Button
By default, the generated button adjusts its width based on the displayed content and does not
fill any extra space.

To change the button so it fills the extra space:

1. Create a customized button class which uses all the available layout space:

public int getButtonWdth() {
[/ al ways use |layout width to fill the space
if (_layoutWdth > 0)
{

return _| ayout Wdt h;

Developer Reference for BlackBerry 39

Development Task Flows

return super.getButtonWdth();
}

public void setLayoutWdth(int wi dth) {
super . set Layout W dt h(w dt h) ;
_layoutWdth = wi dth;
}

2. Usethe new Fi | | But t on class in the generated gap class:

/'l custom ze BOBScreenUpdat e_Sal es_order
protected Object createControl Byld(int ID) {
switch (ID) {
case BUTTONLG:
//Create button "Submt"
Button | ocal buttonl6 = new Fill Button(Fi el d. FI ELD_RI GHT
| Field.FlELD VCENTER);

return | ocal buttonl6;
case BUTTONL7:
// Create button "Cancel"
Button | ocal buttonl7 = new Fil | Button(Fi el d. FI ELD LEFT
| Field.FlELD VCENTER);

return | ocal buttonl7;
defaul t:

br eak;
}

return super.createControl Byld(ID);

Removing the CellTable Margin
By default, the CellTable is surrounded with a border. To remove it, customize the generated
gap class:

protected void configureCbj ect Met aDat aByl d(int 1D, Object object) {
super . confi gur eCbj ect Met aDat aByl d(| D, obj ect);
switch (ID {
case LAYOUTMANACER:
Layout Manager | ocal | ayout Manager = (Layout Manager) obj ect;
[/ remove margin for cell table
| ocal | ayout Manager . set Mar gi nW dt h(0) ;
| ocal | ayout Manager . set Mar gi nHei ght (0) ;
br eak;
def aul t:
br eak;
}

Deploying Applications to Devices

This section describes how to deploy customized mobile applications to devices.

40 Sybase Unwired Platform

Development Task Flows

Device Registration

Replication devices are used exclusively with replication-based synchronization (RBS)
mobile business objects that rely on RBS data cached in the consolidated database. RBS
device users are automatically registered when they first synchronize data. There is no device
configuration required; the only tasks an administrator performs are monitoring RBS device
activity and deleting RBS devices.

Note: For more information on device registration, see Sybase Unwired Platform System
Administration > Device and User Management > Replication Devicesand Sybase Unwired
Platform System Administration > Device and User Management > Device Provisioning.

Signing
Code signing is required for applications to run on devices (as opposed to simulators).

You can implement code signing from the Device Application Designer or the BlackBerry
JDE:

» Device Application Designer — the BlackBerry generation wizard includes a “Disable
signing" option. If this option is unselected the wizard presents a signing dialog after
compiling. This dialog allows you to input a sign key to sign the options and the client
COD (.cod) file, so they can run on a physical device.

« BlackBerry JDE — download the Signing Authority Tool from the BlackBerry Web site at
http.//na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp. View
Deploying and Signing Applications in the BlackBerry JDE plug-in for Eclipse at the
Research In Motion Developer Video Library Web site: Attp.//
supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Deploying BlackBerry Applications

You can deploy BlackBerry applications to physical devices through BlackBerry Desktop
Manager or over-the-air (OTA).

The generated code is compiled against the BlackBerry RAPC compiler to output the
following COD (.cod), Application Loader Files (.alx), and Java Application Descriptor (.jad)
files. File requirements depend on application and installation type:

« OTA installation —requires all the JAD and COD files located in the ot a subdirectory of
the BlackBerry build version. For example: <Unwi redPl atform I nstal I Dir>
\ Unwi red_Wor kSpace\ Ecl i pse\ sybase_wor kspace\ nobi | e\ ecl i pse
\ pl ugi ns\ com sybase. uep. bob. ri m <versi on_ti nest anp>
\ gener at e\ bl ackberry\ bui | d- <ver si on>\ ot a.

o Desktop Manager installation — requires ALX and COD files located in the
Bl ackBer r y<bui | dver si on> subdirectory. For example:
<Unwi redPl atform I nstal | Di r>\ Unwi red_Wor kSpace\ Ecl i pse

Developer Reference for BlackBerry 41

http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Development Task Flows

\ sybase_wor kspace\ nobi | e\ ecl i pse\ pl ugi ns
\com sybase. uep. bob. ri m <versi on_ti nest anp>\ generate
\ bl ackberry\ bui | d- <ver si on>,

Required files include:

UltralLiteJ.cod/.alx/.jad files
BOBFramework.cod/.alx/.jad files
SUPPushListener.cod/.alx/.jad files

In addition to these generated files:

client.cod/.alx/.jad files
options.cod/.alx/.jad files

Deploy Applications through BlackBerry Desktop Manager

BlackBerry Desktop Manager allows you to customize synchronization and configuration
settings between a desktop PC and a BlackBerry device, and to deploy third-party

applications.

1. Connect your BlackBerry to your PC.

2. Once the device is attached, launch the BlackBerry Desktop Manager.

3. Launch the Application Loader from inside the Desktop Manager. Select the alx files on
the PC and deploy them to the device.

4. Clickthe Add button in the Application Loader. Browse and select each of the Application
Loader Files (.alx).
The files appear in the list of items to install.

5. Follow the instructions to complete the installation.

Note: For more information on using BlackBerry Desktop Manager, see the RIM
documentation.

Deploying Applications Over the Air

There isan OTAfolder at the generated location, which includes all of the .cod files, splitinto a
number of .cod files of smaller size for the purpose of OTA deployment. You can also find .jad
files in that location, which are required for OTA deployment.

1
2.

Place all the files on a Web server that supports an HTTP connection.

BlackBerry users access the Web server and download the applications by selecting the
corresponding .jad files.

42

Sybase Unwired Platform

Reference

Reference

This section describes the Client Object AP1 and Device Framework API. Classes are defined
and sample code is provided.

BlackBerry Client Object API

Describes solutions and examples for tasks and uses of the Sybase Unwired Platform
BlackBerry Client Object API. The Client Object API enables you to customize mobile
business object data flow and handling for the BlackBerry device application.

To generate Client Object API Javadoc, select the Gener ate JavaDoc option when generating
mobile business object (MBO) code.

Client Object APl Javadocs
Use the Sybase Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object API Javadocs, located in the Unwired
Platform installation directory <Unwi r edPl at form I nstal | Di r >\ Servers

\ Unwi r edServer\ C i ent API \ api doc. There are subdirectories for \ j 2me and
\j 2se.

From the i ndex. ht ml file, the top left navigation pane lists all packages installed with
Unwired Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc as required.

Connection APIs

The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server, and authenticating.

ConnectionProfile
The Connect i onPr of i | e class manages local database information. You must set its
properties before creating a local database.

By default, the database class name is generated as "packageName"+"DB".

ConnectionProfile profile = <PkgNane>DB. get Connecti onProfile();
profile.setPageSi ze(4*1024);
profile.set Encrypti onKey(” Your key”);

Developer Reference for BlackBerry 43

Reference

SynchronizationProfile

Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server where the mobile application has been
deployed. The ConnectionProfile class manages that information.

You can configure the synchronization connection profile using the package database class:

ConnectionProfile profil e = <PkgName>DB. get Synchroni zati onProfil e();
profile.setServer Name("sup.sybase.com');

profile.setPort Nunber(2480);

profile.set NetworkProtocol (“http”);

profile.set Domai nNane(“default”);

To connect to Unwired Server through Relay Server, set the required parameters with the
set Net wor kSt r eanPar ans method.

profile.set Net wor kSt r eanPar ans
(“url _suffix=ias_relay_server/client/rs_client.dll/Ryan. SUPFarni);

Authentication
The generated package database class already provides a valid synchronization connection
profile. You can log in to the Unwired Server with your user name and credentials.

The package database class provides the following methods for logging in to the Unwired
Server:

e public static void onlineLogin(String usernane, String
passwor d) ;

e public static bool offlineLogin(String usernanme, String
password) ;

e public static void | oginToSync(String usernane, String
passwor d) ;

onl i neLogi n authenticates the credentials against the Unwired Server.

of f1 i neLogi n authenticates against the last successfully authenticated credentials. There
is no communication with Unwired Server in this method.

| ogi nToSync tries of f | i neLogi n first. If of f | i neLogi n fails, it will try

onl i neLogi n. This is the recommended login method. | ogi nToSync brings the
KeyGenerator to the client from the Unwired Server. The KeyGenerator is an MBO for storing
key values that are known to both the server and the client. On | ogi nToSync from the
client, the server sends down a value that the client can use when creating new records (by
using the method [Key Gener at or gener at el d] to create key values that the server will
accept).

The KeyGenerator is set up so that the value increments each time the gener at el d method
is called. A periodic call to submi t Pendi ng by the KeyGenerator generateld MBO sends
the most recently used value to the Unwired Server, to let the Unwired Server know what keys
have been used on the client side. The client application should put the call to

44

Sybase Unwired Platform

Reference

submi t Pendi ng within a try/catch block and should not attempt to send any more
messages to the server if | ogi nToSync throws an exception.

<PkgNanme>DB. | ogi nToSync("user nane", "password");

Note: Call | ogi nToSync at least once before using the specific Sybase Unwired Platform
package.

Synchronization APIs

You can synchronize mobile business objects (MBQOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Changing Synchronization Parameters
Synchronization parameters let you change the parameters used to retrieve data from an MBO
during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.

Cust oner Synchroni zat i onParaneters sp =

Cust oner. get Synchroni zati onPar amet ers() ;

sp. set Myi d(10001) ;

sp. save();

Performing Mobile Business Object Synchronization

A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

Two synchronization methods are provided in the package database class. You can
synchronize a specified group of MBOs using the synchronization group name:
<PkgNanme>DB. synchr oni ze(“sync_group”);

Or, you can synchronize all synchronization groups:
<PkgNanme>DB. synchr oni ze() ;

Querx APIls

The Query APIs allow you to retrieve data from mobile business objects, to retrieve
relationship and paging data, and to retrieve and filter a query result set.

Retrieving Data from Mobile Business Objects
You can retrieve data from mobile business objects through a variety of queries including
object queries, arbitrary find, and through filtering query result sets.

Developer Reference for BlackBerry 45

Reference

Object Query

To retrieve data from the local database, use one of the static Object Query methods in the
MBO class.

Object Query methods are generated based on Object Queries defined in Unwired WorkSpace
by the modeler. Object Query methods have whatever query name, parameters and return type
that were defined in Unwired WorkSpace. Object Query methods return one object, or a
collection of objects that match the specified search criteria defined in the Object Query.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

The following method retrieves all customers.
public static com sybase. col | ections. QbjectList findAl ()

com sybase. col | ecti ons. Obj ect Li st customers = Customer.findAll();

The following method retrieves all customers in a certain page.
public static com sybase. col | ections. QojectList findAl (int skip,
i nt take)

com sybase. col | ecti ons. Obj ect Li st customers = Custoner.findAll (10,
5);

Suppose the modeler defined the following Object Query:

e name: findByFirstName

» parameter: String firstName

» query definition: SELECT x.* FROM Customer x WHERE x.fname = :firstName
e return type: List

The preceding Object Query results in this generated method:
public static com sybase. col | ections. Qbj ect Li st
findByFirstName(String firstNane)

com sybase. col | ecti ons. Obj ectLi st customers =
Cust oner . fi ndByFi r st Name(“f nanme”) ;

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.

Cust oner customer = Customer.findByld (101);

com sybase. col |l ecti ons. Obj ectLi st orders =
cust oner. get Sal esOrders() ;

46

Sybase Unwired Platform

Reference

You can also use the Query class to filter the return MBO list data.

Query props = new Qery();
/] set query paraneters

com sybase. col | ecti ons. Obj ectLi st orders =
cust oner. get Sal esOr der sFi | t er By(props);

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the

custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set:

Query props = new Query();
props. set Ski p(10) ;
props. set Take(5);

com sybase. col | ecti ons. Obj ectLi st customers =
Cust oner. fi ndW t hQuer y(props);

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 3. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method provides custom device applications the ability to dynamically

build queries based on user input.

AttributeTest
In addition to allowing for arbitrary search criteria, the arbitrary find method lets the user
specify the ordering of the results and object state criteria. A Quer y class is included in the

Developer Reference for BlackBerry a7

Reference

client object API’s core classes. The Quer y class is the single object passed to the arbitrary
search methods and consists of search conditions, object/row state filter conditions, and data
ordering information.

Define these conditions by setting properties in a query:

* TestCriteria— criteria used to filter returned data.

e SortCriteria— criteria used to order returned data.

» Skip —an integer specifying how many rows to skip. Used for paging.

e Take—an integer specifying the maximum number of rows to return. Used for paging.

TestCriteriacanbeanAttri but eTest oraConpositeTest.

AnAttri but eTest defines a filter condition using an MBO attribute, and supports these
conditions:

« IS_NULL
« NOT_NULL
« EQUAL
« NOT_EQUAL
« LIKE
« NOT_LIKE
« MATCH
« NOT_MATCH
 LESS_THAN

« LESS_EQUAL

« GREATER_THAN

« GREATER_EQUAL

.« CONTAINS

« STARTS_WITH

« ENDS_WITH

« DOES_NOT_START WITH
« DOES_NOT_END_WITH
« DOES_NOT_CONTAIN

AConposi t eTest combinesmultiple Test Cri t er i a using the logical operators AND,
OR and NOT to create a compound filter.

The following example retrieves all log records where mboName=entityName and
key=idString:
String entityName = "Custoner";
String idString = "12345";
new

com sybase. persi st ence
com sybase. persi st ence
com sybase. persi stence
com sybase. persi stence

. Query query =
- Query();

. Composi teTest ct =
. Conposi teTest ();

new

48

Sybase Unwired Platform

Reference

ct.set Operator (com sybase. persi st ence. Conposi t eTest. AND) ;

ct.add(com sybase. persi stence. Attri but eTest. equal (" conponent",
entityNane));

ct.add(com sybase. persi stence. Attri buteTest. equal ("entityKey",idStr
ing));

query.setTestCriteria(ct);

com sybase. col | ecti ons. Obj ectLi st |ogList =

LogRecordl npl . fi ndW t hQuery(query);

Sort Criteri adefines alist of Sor t Or der , which contains an attribute name and an
order type (ASCENDING or DESCENDING).

For example, locate all Customer objects based on the following criteria:

e FirstName = ‘John’ AND LastName = ‘Doe’ AND (State = “‘CA’ or State = ‘NY”)
e Customer is New or Updated

e Ordered by: LastName ASC, FirstName ASC, Credit DESC

» Skip the first 10 and take 5

Use code similar to:

Query props = new Query();

//define the attribute based conditions
Conposi t eTest i nner ConpTest = new ConpositeTest();
i nner ConpTest . set Conposi ti onType(Test Type. OR) ;
i nner ConpTest . add (
new AttributeTest ("state", "CA", AttributeTest. EQUAL));
i nner ConpTest . add (
new AttributeTest ("state", "Ny", AttributeTest.EQUAL));
Conposi t eTest out er ConpTest = new Conposi teTest();
out er ConpTest . set Conposi ti onType(Conposi t eTest. AND) ;
out er ConpTest . add (
new AttributeTest("fname", "John", AttributeTest. EQUAL));
out er ConpTest . add (
new AttributeTest ("l nanme", "Doe" ,AttributeTest. EQUAL));
out er ConpTest . add (i nner ConpTest);
[/ define the ordering
SortCriteria sort = new SortCriteria();
sort.add ("l nanme", SortOrder Type. ASCENDI NG) ;
sort.add ("fname", SortOrder Type. ASCENDI NG) ;
sort.add ("id", SortOrderType. DESCENDI NG ;
//set the Query object
props. set TestCriteria(outerConpTest);
props.setSortCriteria(sort);
pr ops. set Ski p(10);
props. set Take(5);
props.setStateCriteri a(CbjectState. NEW |

hj ect St at e. UPDATED) ;
com sybase. col | ecti ons. Obj ect Li st custonmers =

Custoner. fi ndWt hQuery(props);

Developer Reference for BlackBerry 49

Reference

QueryResultSet
The Quer yResul t Set class provides for querying a result set for the dynamic query API.

Quer yResul t Set is returned as a result of executing a query.

Example
The following example shows how to execute a query on multiple MBOs using a join:

com sybase. persi st ence. Query query = new
com sybase. persi stence. Query();

query. sel ect("c.fnane, c.| nane, s. order _date, s.region");
query.from" Custoner ", "c");

query.join(" SalesOrder ", "s", " s.cust_id ", "c.id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("l name");

ts.set Test Val ue(" Devlin");
ts.setQperator(AttributeTest. EQUALS)
query.setTestCriteria(ts);

QueryResul t Set gqrs = <MyPkg>DB. execut eQuery(query);
whi l e(qgrs. next())

{

Systemout. println(qrs.getString(col uml ndex));
System out . println(qgrs. get Stri ngByName(col utmNane)) ;

}

Operations APIs

Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create instances (non-
static) of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the Client Object API, and are not exposed. Any
parameters not mapped to the object’s attributes are left as parameters in the Generated Object
API. The code examples for create, update and delete operations are based on the fill from
attribute being set. Different MBO settings will effect operation methods.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In
other situations, where there are multiple instances of create or update operations, it is not
possible to automatically generate such a Save method.

50

Sybase Unwired Platform

Reference

Create Operation
To execute a create operation on an MBO, create a new MBO instance, setthe MBO attributes,
then call the save() or cr eat e() operation.

Cust oner cust = new Custormer();
cust. set Fname ("supAdmi n");
cust. set Conpany_nane("Sybase");
cust. set Phone("777-8888");
cust.create();// or cust.save();
cust . submi t Pendi ng() ;

<PkgNanme>DB. synchr oni ze() ;

Cust oner cust = new Custoner();

cust. set Fnanme ("supAdmi n");

cust. set Conpany_nane("Sybase");

cust. set Phone("777-8888");

cust.create();// or cust.save();

cust . submi t Pendi ng() ;

<PkgNanme>DB. synchr oni ze() ;

/'l or <PkgName>DB. synchroni ze (String synchronizati onG oup)

Update Operation
To execute update operations on an MBO, get an instance of the MBO, set the MBO attributes,
and then call either the save() or updat e() operations.

Custoner cust = Custoner.findByld(101);

cust. set Fnanme(" supAdm n");

cust . set Conpany_nane(" Sybase") ;

cust . set Phone("777-8888");

cust. save();

cust . subni t Pendi ng() ;

<PkgNanme>DB. synchr oni ze() ;

/'l or <PkgNanme>DB. synchroni ze (String synchroni zati onG oup)

To update multiple MBOs in a relationship, call submni t Pendi ng() on the parent MBO:

Cust oner cust = Customer.findByld(101);

com sybase. col | ecti ons. Obj ectLi st orders = cust. getSal esOrders();
Sal esOrder order = (Sal esOrder)orders. get Byl ndex(0);
order.setOrder _date(new java. util.Date());

order. save();

cust. subm t Pendi ng() ;

Delete Operation
To execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the del et e() operation.

Cust oner cust = Custormer.findByld(101);
cust.del ete();

For MBOs in a relationship, perform a delete as follows:

Developer Reference for BlackBerry 51

Reference

Cust oner cust = Custoner.findByld(101);

com sybase. col | ecti ons. Obj ectLi st orders =

cust. get Sal esOrders();
Sal esOrder order = (Sal esOrder)orders. get Byl ndex(0);
order.del ete();
cust . submi t Pendi ng() ;

<PkgNanme>DB. synchr oni ze() ;

/'l or <PkgName>DB. synchroni ze (String synchronizati onG oup)

Save Operation
When called, the Save method determines internally if it should insert or update data to the
client database.

/1 Update an exi sting custoner
Custoner cust = Customer.findByld(101);
cust. save();

//1nsert a new custoner
Custoner cust = new Custoner();
cust. save();

Other Operation
Operations that are not create, update, or delete operations are called “Other” operations.

Suppose the Customer MBO has an Other operation “other”, with parameters “P1” (string),
“P2” (int) and “P3” (date). This results in a Cust oner & her Qper at i on class being
generated, with “P1”, “P2” and “P3” as its attributes.

To invoke the Other operation, create an instance of Cust orrer @t her Qper at i on, and set
the correct operation parameters for its attributes. This code provides an example:

Cust oner & her Oper ati on ot her = new Cust omer O her Operati on();

ot her. set P1(“soneval ue”);

ot her. set P2(2);

ot her. set P3(new Date());

ot her.save(); // or other.create()

ot her. subm t Pendi ng() ;

<PkgName>DB. synchroni ze(); // or <PkgName>DB. synchronize (String
synchroni zati onG oup)

Multilevel Insert
Multilevel insert allows a single synchronization to execute a chain of related insert
operations.

Consider creating a Customer and a new Customer order at the same time on the client side,
where the SalesOrder has a reference to the new Customer identifier. The following example
demonstrates a multilevel insert:

Cust oner customer = new Custormer();

cust oner. set Fnanme(“firstNane”);

cust oner. set Lnane(“| ast Nane”) ;

cust oner. set Phone(“777-8888");
cust oner. save();

52

Sybase Unwired Platform

Reference

Sal esOrder order = new Sal esOrder();

order. set Cust onmer (cust oner) ;

order.setOrder _date(new java.util.Date());

order. set Regi on("Eastern");

order. set Sal es_rep(102);

custoner. get Orders().add(order);

//Both the child and parent MBO nmust call save()
order. save();

// Must subnit parent

To insert an order for an existing customer, first find the customer, then create a sales order
with the customer ID retrieved:

Cust oner customer = Custorner.findByld(101);
Sal esOrder order = new Sal esOrder();

order. set Cust oner (cust oner) ;

order.setOrder _date(new java.util.Date());
order. set Regi on("Eastern");

order. set Sal es_rep(102);

cust oner. get Sal esOrders(). add(order);
order. save();

cust oner . subm t Pendi ng() ;

See the Sybase Unwired Platform online documentation for specific multilevel insert
requirements.

Pending Operation
You can manage pending operations using these methods:

» cancelPending —cancels the previous create, update, or delete operations on the MBO. It
cannot cancel submitted operations.

» submitPending —submits the operation so that it can be replayed on the Unwired Server.
A request is sent to the Unwired Server during a synchronization.

* submitPendingOper ations — submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submi t Pendi ng method on each
of the pending records.

» cancelPendingOper ations — cancels all the pending records for the entity. This method
internally invokes the cancel Pendi ng method on each of the pending records.

Cust oner customer = Custoner.findByld(101);
i f (errorHappened) {
cust oner. cancel Pendi ng() ;

el se {
cust oner . subm t Pendi ng() ;
}

Passing Structures to Operations
Structures hold complex datatypes (for example a string list, class or MBO object, or a list of
objects) that enhance interactions with certain enterprise information systems (EIS) data

Developer Reference for BlackBerry 53

Reference

sources, such as SAP and Web services, where the mobile business object (MBO) requires
complex operation parameters.

An Unwired WorkSpace project includes an example MBO that is bound to a Remedy Web
service data source that includes a create operation that takes a structure as an operation
parameter. MBOs differ depending on the data source, configuration, and so on, but the
principles are similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including a parameter named HEADER _ that is a structure datatype named
Authenticationlnfo, defined as:

Aut henti cati onl nf o
user Nane: String
password: String
aut hentication: String
| ocale: String
ti meZone: String

Structures are implemented as classes, so the parameter HEADER_ is an instance of the
AuthenticationInfo class. The generated Java code for the create operation is:

public void create(conpl ex. Aut henti cationlnfo
_HEADER , java.lang. String escal ated, java.l ang. String
hotlist,java.lang. String orig Submtter,java.lang. String
pendi ng, j ava. | ang. Stri ng wor kLog)

This example demonstrates how to initialize the AuthenticationInfo class instance and pass
them, along with the other operation parameters, to the create operation:

Aut henti cati onl nfo aut hen = new Aut henti cationl nfo();
aut hen. set User Nane(" Deno") ;
aut hen. set Password("");
aut hen. set Aut henti cati on("");
aut hen. set Local e("EN_US") ;
aut hen. set Ti neZone(" GMI'") ;

Si npl eCaseli st newCase = new Si npl eCaseli st ();
newCase. set Case_Type(" Il nci dent");

newCase. set Cat egor y(" Net wor ki ng") ;

newCase. set Depart nent (" Mar keti ng");

newCase. set Descri ption("A new hel p desk case.");
newCase. set |t en(" Confi guration");

newCase. set O fi ce("#3 Sybase Drive");

newCase. set Submi tted_By("Denmp");

newCase. set Phone_Nunber (" #0861023242526") ;
newCase. set Priority("H gh");

newCase. set Regi on(" USA") ;

newCase. set Request _Urgency("Hi gh");

newCase. set Request er _Logi n_Name(" Denp") ;

newCase. set Request er _Name(" Denmp") ;

newCase. setSite("25 Bay St, Muntain View, CA");
newCase. set Sour ce(" Requester");

newCase. set St at us(" Assi gned") ;

newCase. set Sunmar y(" Mar kHel | ous was here Fix it.");

54

Sybase Unwired Platform

Reference

newCase. set Type("Access to Files/Drives");
newCase. set Cr eat e_Ti ne(new

java.sql . Timestanp(SystemcurrentTineMI1is()));
newCase. creat e(aut hen, "CGther", "Qther", "Denp", “fal se”,
“wor kl 0g”) ;

newCase. subm t Pendi ng() ;

Mobile and Local Business Objects
A business object can be either local or mobile. A local business object is a client only object,
and is represented by the Local Busi nessbj ect interface. A mobile business object can
be synchronized with the Unwired Server, and is represented by the
Mobi | eBusi nessQhj ect interface.

Both Local Busi nessOhj ect and Mobi | eBusi nessCbj ect extend

Busi nessbj ect . Mbbi | eBusi nessOhj ect provides the following additional
methods:

public interface Mbil eBusi nessCbj ect extends Busi nessOhj ect

{

voi d cancel Pendi ng();
LogRecord[] getLogRecords();
bool ean i sCreated();

bool ean i sPendi ng() ;

bool ean i sUpdat ed() ;

voi d subm t Pendi ng();

}

get LogRecor ds returns operation logs as LogRecor d instances. See the LogRecord
API.

submi t Pendi ng submits a pending record to the Unwired Server. A pending record is one
that has been updated in the client database, but not sent to the Unwired Server.

cancel Pendi ng cancels a pending record.

Personalization APIs
Personalization keys allow the application to define certain input parameter values that differ
(are personalized) for each mobile user. The Personalization APIs allow you to manage
personalization keys, and get and set personalization key values.

Type of Personalization Keys

There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
after the device application terminates.

A personalization parameter can be a primitive or complex type. This is shown in the code
example.

Developer Reference for BlackBerry 55

Reference

Get or Set Personalization Key Values

The Per sonal i zat i onPar amet er s class is generated automatically for managing
personalization keys. Personalization keys allow the application to define certain input
parameter values that are different (personalized) for each mobile user.

The following code provides an example on how to set a personalization key, and pass an array
of values and array of objects:

Personal i zati onParaneters pp =

<PkgNanme>DB. get Per sonal i zat i onPar anet ers() ;
pp. set Myl nt PK(10002) ;

pp. save();

IntList il = new IntList(2);

i|.add(10001);

i|.add(10002);

pp. set Myl nt Li st PK(i l);

pp. save();

MyDat aLi st dl = new MyDat aLi st();
/I MyData is a structure type defined in tooling
MyData md = new MyData();

md. set I nt Menber(...);
nd. set Stri ngMenber2(...);
dl . add(nd);

pp. set MyDat aLi st(dl);
pp. save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Object State APIs

The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database. All entities that support pending state have the following attributes:

Name Java Type Description

isNew boolean Returns true if this entity is new (but has not been created in

the client database).

56

Sybase Unwired Platform

Reference

Name Java Type Description

isCreated boolean Returns true if this entity has been newly created in the client
database, and one the following is true:

» The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

isDirty boolean Returns true if this entity has been changed in memory, but the
change has not yet been saved to the client database.

isDeleted boolean Returns true if this entity was loaded from the database and
was subsequently deleted.

isUpdated boolean Returns true if this entity has been updated or changed in the
database, and one of the following is true:

* The entity has not yet been submitted to the server with a
replay request.

» The entity has been submitted to the server, but the server
has not finished processing the request.

e The server rejected the replay request (replayFailure
message received).

pending boolean Returns true for any row that represents a pending create,
update, or delete operation, or a row that has cascading chil-
dren with a pending operation.

pendingChange | char If pending is true, then 'C' (create), 'U' (update), 'D' (delete),
'P' (to indicate that this MBO is a parent in a cascading rela-
tionship for one or more pending child objects, but this MBO
itself has no pending create, update or delete operations). If
pending is false, then 'N'.

replayCounter long Returns a long value which is updated each time a row is
created or modified by the client. This value is derived from
the time in seconds since an epoch, and increases each time a
row is changed.

Developer Reference for BlackBerry 57

Reference

Name

Java Type

Description

replayPending

long

Returns a long value. When a pending row is submitted to the

server, the value of r epl ayCount er is copiedto r e-
pl ayPendi ng. This allows the client code to detect if a
row has been changed since it was submitted to the server
(that is, if the value ofr epl ayCount er is greater than
r epl ayPendi ng).

replayFailure long Returns a long value. When the server responds withar e-
pl ayFai | ur e message for a row that was submitted to
the server, the value of r epl ayCount er is copied to

repl ayFai | ure,andr epl ayPendi ng is set to 0.

Pending State Pattern

When a create, update, delete, or save operation is called on an entity in a replication-based
synchronization application, the requested change becomes pending. To apply the pending
change, call subni t Pendi ng on the entity, or submi t Pendi ngOper at i ons on the
MBO class:

Custoner e = new Customer();
e. set Fnanme(" Fred");
e.set Address("123 Four St.");
e.create(); // create as pending
e. submi t Pending(); // submit to server
Cust oner . subni t Pendi ngOperations(); // subnit all
rows to server

pendi ng Cust oner

submi t Pendi ngQper at i ons submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submi t Pendi ng method on each of
the pending records.

The call to subni t Pendi ng causes the operations to be marked for replay by Unwired
Server. On the next synchronization, Unwired Server processes the operations and creates log
records for each operation with code indicating the status of the operation. The LogRecor d
interface is defined as follows:

Method Java Type Description

Name

component string Name of the MBO for the row for which this log record was
written.

entityKey string String representation of the primary key of the row for which
this log record was written.

58

Sybase Unwired Platform

Reference

Method Java Type Description
Name
code int One of several possible HTTP error codes:

e 200 indicates success.

» 401 indicates that the client request had invalid creden-
tials, or that authentication failed for some other reason.

« 403 indicates that the client request had valid credentials,
but that the user does not have permission to access the
requested resource (package, MBO, or operation).

e 404 indicates that the client tried to access a nonexistent
package or MBO.

e 405 indicates that there is no valid license to check out for
the client.

» 500 to indicate an unexpected (unspecified) server fail-
ure.

message String Descriptive message from the server with the reason for the
log record.

operation String The operation (create, update, or delete) that caused the log
record to be written.

requestld String The id of the replay message sent by the client that caused this
log record to be written.

timestamp Date Date and time of the log record.

If a rejection is received, the application can use the entity method get LogRecor ds to
access the log records and get the reason:

com sybase. col | ecti ons. Obj ectLi st | ogs = e. get LogRecords();
for(int i=0; i<logs.count(); i++)
{
com sybase. persi st ence. LogRecord | og =
(com sybase. persi st ence. LogRecord) | ogs. get Byl ndex(i);
Systemout.printin("Entity has a log record:");
Systemout.println("Code = " + |0g.getCode());
System out . pri ntl n(" Conmponent " + | 0og. get Conponent ());
Systemout. println("EntityKey " + log.getEntityKey());
Systemout.println("Level =" | 0g. get Level ());
System out . println("Message = + | 0g. get Message());
System out . println("Operation " + | 0g. get Operation
System out . println("Requestld
System out . println("Ti mestanp

}

cancel Pendi ngQper at i ons cancels all the pending records for an entity. This method
internally invokes the cancel Pendi ng method on each of the pending records.

+ 1

" + | 0g. get Request | d8§
" + |l og.getTimestanp());

Developer Reference for BlackBerry 59

Reference

Mobile Business Object States
A mobile business object can be in one of three states:

« Original state, the state before any CUD operation.
« Downloaded state, the state downloaded from the Unwired Server.
* Current state, the state after any CUD operation.

The Mobile Business Object class provides properties for querying the original state and the
downloaded state:

public Custoner getOriginal State();
publi ¢ Customer get Downl oadState();

The original state is valid only before the application synchronizes with the Unwired Server.
After synchronization has completed successfully, the original state is cleared and set to null.
Cust oner cust = Customer.findByld(101); /] state 1

cust. set Fnane(“first Nane");

cust . set Conpany_nane(" Sybase") ;
cust . set Phone("777-8888") ;

cust. save(); /] state 2
Custoner org = cust.getOriginal State(); /Il state 1
I/ suppose there is new downl oad for Custoner 101 here

Cust omer downl oad = cust. get Downl oadSt at e() ; /] state 3
cust . cancel Pendi ng() ; /Il state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

The following code provides an example:

Cust oner cust = Custoner.findByld(101);
cust. set Fnanme(" newNane") ;
cust.refresh();// newNane is discarded

Clear Relationship Objects

The cl ear Rel ati onshi pQbj ect s method releases relationship attributes and sets
them to null. Attributes get filled from the client database on the next getter method call or
property reference. You can use this method to conserve memory if an MBO has large child
attributes that are not needed at all times.

clearRelationshipObjects

60

Sybase Unwired Platform

Reference

Common APIs
In addition to Object State APIs these APIs are available with each mobile business object.

» save-—save a record to the local database, In the case of an existing record, save calls
update. In the case of a new record, save calls create.

» refresh —client refreshes the entity from the local database.

» cancelPending — cancels a pending record.

* submitPending — submits a pending record to the server.

» getPendingChange—if pending is true, then 'C' (create), 'U' (update), 'D' (delete), 'P' (to
indicate that this row is a parent in a cascading relationship for one or more pending child
objects, but this row itself has no pending create, update or delete operations). If pending is
false, then 'N'".

* getReplayCounter — updated each time a row is created or modified by the client. This
value is derived from the time in seconds since an epoch, so it always increases each time
the row is changed.

» getReplayPending —when a pending row is submitted to the server, the value of
replayCounter is copied to replayPending. This allows client code to detect if a row has
been changed since it was submitted to the server --the test to look for : replayCounter >
replayPending. On receiving a successful response (replayResult) from the server, this is
reset to 0.

» getReplayFailure—when the server responds with a replayFailure message for a row that
was submitted to the server, the replayCounter value is copied to replayFailure, and
replayPending is set to 0.

Security APIs

The security APIs allow you to customize some aspects of connection and database security.

Connect Using a Certificate
You can set certificate information in Connecti onProfil e.

ConnectionProfile profile = <PkgName>DB. get Synchroni zati onProfile();
profile.set Domai nNane("default");

profile.setServerNanme("host-nane");

profile.setPort Nunber(2481);

profile.set NetworkProtocol ("https");

profile. set Net wor kSt r eanPar ans

("trusted_certificates=rsa_public_cert.crt");

Encrypt the Database

You can use Connect i onProfil e. Encrypti onKey to set the encryption key of a
local database. Set the key during application initialization, and before creating or accessing
the client database.

Developer Reference for BlackBerry 61

Reference

ConnectionProfile profile = <PkgNane>DB. get Connecti onProfile();
profile.setEncrypti onKey("“Your key”);

Utility APIs

The Utility APIs allow you to customize aspects of logging, callback handling, and generated
code.

LogRecord API
LogRecor d is used to store two types of logs.

« Operation logs on the Unwired Server. These logs can be downloaded to the device.
« Client logs. These logs can be uploaded to the Unwired Server.

The following example code executes an update operation and examines the log records for
the Customer MBO:

int id = 101;

Custoner result = Custoner.findByld(id);

resul t. set Fnane(“newFnane”) ;

result.save();

resul t.subni t Pendi ng();

<PkgNanme>DB. synchr oni ze() ;

result = Custoner.findByld(id);

com sybase. col | ections. Obj ectList |ogs = result.getlLogRecords();
for(iint i=0; i<logs.count(); i++)

{

com sybase. persi stence. LogRecord | og = | ogs. get Byl ndex(i);
Systemout. println("Mssage: " + | og.get Message());

System out . println("Conmponent: " + | o0g.get Conponent());
Systemout.println("COperation: " + |og.getOperation());
Systemout.println("Timestanp: " + |o0g.getTinestanp());

}
Viewing Error Codes in Log Records

You can view any EIS error codes and the logically mapped HTTP error codes in the log
record.

For example, you could observe a "Backend down" or "Backend login failure" after the
following sequence of events:

1. Deploying packages to Unwired Server.

2. Performing an initial synchronization.

3. Switching off the backend or change the login credentials at the backend.
4. Invoking a create operation by sending a JSON message.

JsonHeader

{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": " 111#M/1: 1", "ppni:
"eyJilc2VybnFt ZSI 61 nNLcEFkbW ul i wi cGFzc3dven) G JzMBBBZGLpbi J9", " p
id":"noca://

Erul at or 17128142", " et hod": "repl ay", "pbi ": "true", "upa": " c3VWQ\Rt a

62

Sybase Unwired Platform

Reference

WI6czNWQARt aWa=", "bo": "Bi ", "app": " My1: 1", "pkg":"inmot1:1.0"}

JsonCont ent
{"c2":null,"c1":1,"createCalled":true," _op":"C'}

The Unwired Server returns a response. The code is included in the ResponseHeader .

ResponseHeader
{"id":"684cbel6f 6b740eb930d08f d626e1551", "ci d": " 111#M/1: 1", "I ogi nFa
iled":fal se, "nethod": "repl ayFai |l ed", "l 0g":

[{"nmessage": "com sybase. j dbc3. j dbc. SybSQ.Excepti on: SQL Anywher e
Error -193: Primary key for table "bi' is not unique : Primary key
value ('1')","repl ayPendi ng":

0, "ei sCode":"", "conponent":"Bi","entityKey":"0", "code":

500, "pendi ng": fal se, "di sabl eSubnit": fal se,"?":"inoptl. server.LogReco
rdlnmpl ", "timestanp":"2010- 08- 26

14: 05: 32. 97", "request 1 d": "684chbel6f 6b740eb930d08f d626e1551", " oper at
ion":"create"," _op":"N',"repl ayFail ure":

0, "l evel ": "ERROR", "pendi ngChange": "N', "nessagel d": 200001, " _rc":
0}],"nbo":"Bi ", "app":"M1: 1", "pkg":"inot1l:1. 0"}

ResponseCont ent
{"id":100001}

Logging APIs
Retrieve client log records.

[/To fill out the deleted and subnmitted | og records
AttributeTest attributeTest NotDel eted = new

AttributeTest (LogConfi g. Repl ayPendi ng/ *"repl ayPendi ng" */,

LogConf i g. Def aul t Repl ayPendi ngVal ue/ *"0"*/, Attri buteTest.EQUAL);

g.setTestCriteria(AttributeTest.isNull ("operation").and(attributeTe
st Not Del et ed)) ;

package com sybase. persi st ence;

/**
* The interface for the |logger. Used to create |og record.
*/
public interface Logger
{ /**
* Get current log |evel
*/
public int getLogLevel ();
/**
* Set current |log |evel
*/

public void setlLogLevel (int newLevel);

/**

* Create a new |l og record

* @aram |l evel The |og |evel of the new log record

* @©@aram nessage The | og nessage of the new | og record
*/

Developer Reference for BlackBerry 63

Reference

publi ¢ LogRecord newlLogRecord(int |level, String nmessage);

/**

* Create a fatal |og

* @aram nessage The | og nmessage of the new | og record
*/

public void fatal (String nmessage);

/**

* Create an error |og

* @aram nessage The | og message of the new | og record
*/

public void error(String nessage);

/**

* Create a warn | og

* @©@aram nessage The | og nmessage of the new | og record
*/

public void warn(String nessage);

/**

* Create an info |og

* @aram nessage The | og message of the new | og record
*/

public void info(String nessage);

/**

* Create a debug | og

* @©@param nessage The | og nmessage of the new | og record
*/

public void debug(String nessage);

/**

* Create a trace |og

* @aram nessage The | og message of the new | og record
*/

public void trace(String nessage);

}

Callback Handlers

To receive callbacks, you must register a Cal | BackHandl er with the generated database
class, the entity class, or both. You can create a handler by extending the

Def aul t Cal | backHandl er class.

In your handler, override the particular callback that you are interested in (for example,
OnRepl ayFai | ur e). The callback is executed in the thread that is performing the action
(for example, replay). When you receive the callback, the particular activity is already
complete. The Cal | backHandl er interface consists of the following callbacks:

64 Sybase Unwired Platform

Reference

Table 4. Callbacks in the CallbackHandler Interface

Callback

Description

void onReplayFailure(java.lang.Object entity)

Replay failure response notification. entityis a
client MBO instance.

void onReplaySuccess(java.lang.Object entity)

Replay success response notification. entityis a
client MBO instance.

int onSynchronize(com.sybase.collections.Ob-
jectList groups,SynchronizationContext context)

This method will be invoked at the specified sta-
tus of the synchronization.groups is a list of syn-
chronization group names. contextis the syn-
chronization context.

void onSynchronizeFailure(com.sybase.collec-
tions.ObjectList groups)

Synchronization failure notification. groupsis a
list of synchronization group names.

void onSynchronizeSuccess(com.sybase.collec-
tions.ObjectList groups)

Synchronization success notification. groupsis a
list of synchronization group names.

The following code example shows how to create and register a handler to receive callbacks:
public class MyCal | backHandl er extends Defaul t Cal | backHandl er

/1 inplenentation

}

Cal | backHandl er handl er = new MyCal | backHandl er () ;
<PkgNanme>DB. r egi st er Cal | backHandl| er (handl er) ;
I/ or Custoner.registerCall backHandl er (handl er);

SyncStatusListener API
You can implement a synchronization status listener to track the progress of synchronization.

Create a listener that implements the SyncStatusListener interface as follows:
public interface SyncStatusLi stener

bool ean obj ect SyncSt at us(Obj ect SyncSt at usDat a st atusDat a) ;

}

public class M/SyncLi stener extends SyncStatusLi stener
{

/1 1nplenentation

}

Pass an instance of the listener to the synchronize methods as follows:

MySyncLi stener |istener = new MySyncLi stener();

<PkgName>DB. synchr oni ze("sync_group", |istener);

/'l or <PkgName>DB.synchroni ze(listener); if we want to synchroni ze
al |

/'l synchroni zati on groups

Developer Reference for BlackBerry 65

Reference

As the application synchronization progresses, the obj ect Sync St at us method defined
by the Sync St at usLi st ener interface is called and is passed an

hj ect SyncSt at usDat a object. The Cbj ect SyncSt at usDat a object contains
information about the MBO being synchronized, the connection to which it is related, and the
current state of the synchronization process. By testing the St at e property of the

(hj ect SyncSt at usDat a object and comparing it to the possible values in the
SyncSt at usSt at e enumeration, the application can react accordingly to the state of the
synchronization.

Possible uses of obj ect SyncSt at us method include changing form elements on the
client screen to show synchronization progress, such as a green image when the
synchronization is in progress, a red image if the synchronization fails, and a gray image when
the synchronization has completed successfully and disconnected from the server.

Note: The obj ect SyncSt at us method of SyncSt at usLi st ener is called and
executed in the data synchronization thread. If a client runs synchronizations in a thread that is
not the primary user interface thread, the client cannot update its screen as the status changes.
In that case, the client must instruct the primary user interface thread to update the screen
regarding the current synchronization status.

The following is an example of sync St at usLi st ener implementation:
public class SyncLi stener extends syncStatusLi st ener

publ i ¢ bool ean obj ect SyncSt at us(Obj ect SyncSt at usDat a dat a)

switch (data.getSyncStatusState()) {

case SyncStatusStat e. APPLI CATI ON_SYNC_DONE:
[1inplement your own U indicator bar
br eak;

case SyncStatusSt at e. APPLI CATI ON_SYNC_ERROR:
[/inplement your own U indicator bar
br eak;

case SyncStatusSt at e. SYNC_DONE:
[/inmplement your own U indicator bar
br eak;

case SyncStatusSt ate. SYNC_STARTI NG
[/inmplement your own U indicator bar
br eak;

return false;

}
}

isSynchronized() and getLastSynchronizationTime()
The package database class provides the following methods for querying the synchronized
state and the last synchronization time of a synchronization group:

/1l Returns if the synchronizationG oup was synchroni zed
public static boolean i sSynchronized(String synchroni zati onG oup)

66

Sybase Unwired Platform

Reference

/'l Returns the | ast synchronization tinme of the synchronizati onG oup
public static java.util.Date getlLast SynchronizationTi ne(String
synchroni zati onG oup)

generateld
You can use the gener at el d methods in the Local KeyGener at or and

KeyGener at or classes to generate an ID when creating a new object for which you require
a primary key.

This method in the Local KeyGener at or class generates a unique 1D for the package on
the local device:

public static |ong generateld()

This method in the KeyGener at or class generates a unique ID for the same package across
all devices:
public static |ong generateld()

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void del et eDat abase()

Typically, cr eat eDat abase does not need to be called since it is called internally when
necessary. An application may use del et eDat abase when the client database contains
corrupted data and needs to be cleared.

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions

Exceptions thrown on the Unwired Server are logged in both the server log and in
LogRecor d. For LogRecor d, the exception gets downloaded to the device automatically
during synchronization.

HTTP Error Codes

Unwired Server examines the EIS code received in a server response message and maps itto a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

Developer Reference for BlackBerry 67

Reference

The following is a list of recoverable and non-recoverable error codes. Beginning with
Unwired Platform version 1.5.5, all error codes that are not explicitly considered recoverable
are now considered unrecoverable.

Table 5. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS down or the connection is terminated.
Table 6. Non-recoverable Error Codes
Error Code Probable Cause Manual Recovery Action
401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.
403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).
404 Resource (table/webservice/BA- | Restore the EIS configuration.
PI1) not found on Backend EIS.
405 Invalid license for the client (ap- | N/A
plicable only for MBS).
412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.
500 SUP internal error in modifying | N/A
the CDB cache.

Beginning with Unwired Platform version 1.5.5, error code 401 is no longer treated as a
simple recoverable error. If the SupThr owCr edent i al Request On401Er r or context
variable is set to true (which is the default), error code 401 throws a

Credenti al Request Except i on, which sends a credential request notification to the
user's inbox. You can change this default behavior by modifying the value of the

SupThr owCr edent i al Request On401Er r or context variable in Sybase Control
Center. If SupThr owCr edent i al Request On401Er r or is set to false, error code 401
is treated as a normal recoverable exception.

68

Sybase Unwired Platform

Reference

Mapping of EIS Codes to Logical HTTP Error Codes
The following is a list of SAP error codes mapped to HTTP error codes. SAP error codes
which are not listed map by default to HTTP error code 500.

Table 7. Mapping of SAP error codes to HTTP error codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net- | 503
work problems, such as
connection breakdowns,
gateway problems, or ina-
vailability of the remote
SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401
ing the logon phase usually
caused by unknown user-
name, wrong password, or
invalid certificates.

JCO_ERROR_RESOURCE Indicates that JCO has run | 503
out of resources such as
connections in a connec-
tion pool

JCO_ERROR_STATE_BUSY The remote SAP system is | 503
busy. Try again later

Client-Side Exceptions
Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

* SynchronizeException — this exception is thrown when an error occurs during
synchronization.

* ObjectNotFoundException —this exception is thrown when trying to load an MBO that
is inside the local database.

* NoSuchOperationException — this exception is thrown when trying to call a method
(using the Object Manager API) but the method is not defined for the MBO.

* NoSuchAttributeException —this exception is thrown when trying to access an attribute
(using the Object Manager API) but the attribute is not defined for the MBO.

Developer Reference for BlackBerry 69

Reference

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API

Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the —nd code generation option. You can use the—r m
option to generate the object manager class.

The following code synchronizes and retrieves MBO data:

<PkgNanme>DB. | ogi nToSync(“username”, “password”);
<PkgNanme>DB. synchr oni ze() ;
Cust oner cust = Custormer.findByld(123);

The following code gets the same result by using the reflection mechanism:

Obj ect Manager om = new <PkgNanme>DB RM) ;

Dat abaseMet aDat a dbnd = <PkgNane>DB. get Met aDat a() ;

oj ect Li st params = new Cbj ectList(2);

par ans. add(" user nane") ;

par ans. add(" passwor d") ;

om i nvoke(dbnd, dbnd. get Operation("logi nToSync"), parans);
om i nvoke(dbnd, dbnd. get Operation("synchronize"), null);
Ohj ect Li st syncParans = new Obj ectList(1);

syncPar ans. add("defaul t");

om i nvoke(dbnd, dbnd. get Operation("synchroni ze", new
String[] {"string"}), syncParans);

ObjectManager
The Obj ect Manager class allows an application to call the Object APl in a reflection style.

Cust oner obj ect = Custoner.findByld(123);

bj ect Manager rm = new <PkgName>DB_RM) ;

Cl assMet aDat a cust omer =

<PkgNane>DB. get Met aDat a() . get Gl ass(“ Cust oner”);
AttributeMetaData | name = custoner.getAttribute(“l nane”);
Oper ati onMet aDat a save = custoner. get Operati on(“save”);
Chj ect myMBO = rm newQbj ect (cust omer) ;

rm set Val ue(nyMBO, | name, “Steve”);

rminvoke(object, save, new ObjectList());

70

Sybase Unwired Platform

Reference

DatabaseMetaData
The Dat abaseMet aDat a class holds package level metadata. You can use it to retrieve
data such as synchronization groups, default database file, and MBO metadata.

Dat abaseMet aDat a dnd = <PkgName>DB. get Met aDat a() ;
com sybase. col | ections. StringLi st syncG oups =
dnd. get Synchroni zati onG oups() ;

for(int i=0; i<syncG oups.size(); i++)

{

String syncGoup = syncG oups. get Byl ndex(i);
System out. printl n(syncG oup);

}

ClassMetaData
The G assMet aDat a class holds metadata for the MBO, including attributes and

operations.

AttributeMetabData | name = cust oner Met aDat a. get Attri bute(“l name”);
Qper ati onMet aDat a save = cust oner Met aDat a. get Oper ati on(“save”);

AttributeMetaData
The At t ri but eMet aDat a class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System out . println(l nane. get Nane()) ;
System out . printl n(l nanme. get Col um());
System out . printl| n(l name. get MaxLengt h());

Replication-Based Push Synchronization Applications

BlackBerry devices support sending push requests through HTTP. Sybase Unwired Platform
supports push configuration and notification handling APIs for BlackBerry HTTP push.

HTTP Push Gateway

Blackberry has an HTTP push feature for sending messages to occasionally connected
devices. For Blackberry devices paired with BlackBerry Enterprise Server (BES), the HTTP
push gateway contains an address that points to the HTTP listener of the BES server. The
POST to the BES server has a query parameter that contains the device ID of the target devices
(for example, 2100000a for an emulator). The BES server holds the message for a
configurable amount of time, and delivers it to the device when the device becomes reachable.

The push listener runs in the background, and listens for server-initiated synchronization
notifications, for example, based on a schedule or triggered by a Data Change Notification
(DCN):

Developer Reference for BlackBerry 71

Reference

Start Push
Listener

{5‘[andalcme]6 —

EIS

Notify
Listener

Register Synchronize

for Push

DCN

Sthedule

The HTTP push gateway can also be used for network-connected Sybase Unwired Platform
applications (for example the Java desktop). The address of the subscription contains an
HTTP URL to an HTTP listener which the application creates. The URL contains a query
parameter such as:

&node=di r ect

When the HTTP push gateway sees a query parameter without a device ID, the gateway
understands that the message is not going through the BES server. For the node=di r ect
notifications to work, the application must be running and have the listener open. If the
application is not running, the HT TPPush gateway reportsa Connect i onRef used errorin
the log files, and the notification is not delivered.

Creating a Replication Based Push Application
The device application must meet these requirements to utilize the Replication-Based Push
Synchronization APIs described in this section.

You can develop the push application directly from generated mobile business object (MBO)
code, or from the Device Application Designer.

1. Properly configure and deploy the mabile business objects (MBOS).

72 Sybase Unwired Platform

Reference

a) CreateaCache Group (or use the default) and set the cache policy to Scheduled and set
some value for the Cacheinterval, 30 seconds for example.

b) Create a Synchronization Group and set some value for the Change detection level,
one minute for example.

c) Place all Mobile Application project MBOs in the same Cache Group and
Synchronization Group.

d) Deploy the Mobile Application Project as Replication-based in the Deployment
wizard.

2. Develop the push application.

You can either develop the push application directly from MBO generated code or by using

the Device Application Designer:

» Develop the application directly from MBO code:
1. Generate the Object API code.
2. Write a push listener to listen to SIS notification sent from server

publi c class PushLi st ener
i mpl ement s Runnabl e

Connection conn = null;

private static String url = "http://:
100; devi cesi de=f al se";
/**
* Constructor
*/
publ i ¢ PushLi st ener ()
{
}
public void run()
{
Systemout. println("++++++ Started Push Listener +++++
+++") ;
try
{

conn = Connector.open(url);
while (true)
{

String syncRequestStr = nul | ;
try

if (conn instanceof
St reantConnecti onNoti fier)

/1 Open an |nput Stream
St reanConnectionNotifier scn =
(StreantConnectionNotifier) conn;
St reamConnection sc = scn. accept AndOpen();
I nput Stream i nput = sc. openl nput Streamn();
/1l Extract the data fromthe | nputStream
StringBuffer sb = new StringBuffer();

Developer Reference for BlackBerry 73

Reference

byte[] data =
int chunk = 0;
while (-1 !'= (chunk = input.read(data)))

new byt e[256] ;

{
sb. append(new String(data, 0, chunk));
}

/1 Close the | nputStream and StreanConnecti on.
i nput.close();
String s = sb.toString();

/1 Display the received data.
syncRequest Str = s.trim);

System out. println(">>Recei ved: " +
syncRequest Str);
}
catch (Exception ex)

{

System out . println(ex);

/1 dients can parse the syncRequestStr to find client
application

/1 nanme, package nanme, sync group nanme(publication), |aunch
client

[l application and perform sync.

/1 format of the push nessage sent by the server:

/1 notification_tinestanp=<datetine>;app=<client app nane>;
/'] devi ce_i d=<devi ce i d>; package=<sup package nane w th
ver si on>;

/1 publication=<comm separated |ist of syncG oup names>

Test DB. r egi st er Cal | backHandl er (new MyCal | backHandl er ()) ;
com sybase. col | ecti ons. Obj ectLi st sgs = new com sybase.
col I ecti ons. Cbj ect Li st ()
/1 Assune you have notification to sync two
syncG oups(publications),
/1 sgl and sg2:
sgs. add(Test DB. get Synchr oni zati onG oup("sgl"));
sgs. add(Test DB. get Synchroni zati onG oup("sg2"))
Test DB. begi nSynchroni ze(sgs, new Object());

}

catch (Exception ex)

Systemout. println("HttpPushLi stener - ERROR : " +
ex);
}
}
/*
* Define call back handler for handling SIS notifications
*/

public class MyCal |l backHandl er extends com sybase.

74 Sybase Unwired Platform

Reference

persi st ence. Def aul t Cal | backHandl er
{

public int onSynchroni ze(Obj ectLi st arg0,
Synchroni zati onCont ext argl)

{
Systemout.println("Called on Synchronize");
return Synchroni zati onActi on. CONTI NUE;

/'l returns Synchroni zati onAction. CONTI NUE to proceed
this sync

}
public void onSynchroni zeFai |l ure(Cbj ect Li st arg0)

{
Systemout. println("Called
onSynchroni zeFai | ure");

public void onSynchroni zeSuccess(bj ect Li st arg0)

{
Systemout.println("Called
onSynchr oni zeSuccess") ;

}
}
}

In the application, start the push listener, set up the connection profile for SIS and
synchronize SIS subscription to server:

public class Pushd ient App extends Application

public static String MDSSERVER = "l ocal host";
public static String MDSSERVERPORT = "8080";
static String PROFILE_HTTP_PUSH PROTOCOL = "HITTPPUSH';
static String PROFI LE_KEY_ADDRESS = "address";
static String PROFI LE_KEY_PROTOCOL = "protocol ";
static String PRCFI LE_KEY_APPNAMVE = "appnane";
static String PROFILE _KEY_DEVICE_|I D = "devi cel d";
static String PUSH HTTP_DEFAULT_DEVI CE_PORT = "100";
static String DEVI CE_I D = "2100000a";

public static void main(String[] args)

Pushd i ent App app = new Pushd i ent App();
app. ent er Event Di spat cher () ;

Thread pushThr ead;
Pushd i ent App()

/1 Set the connection profile information
Systemout. println("++++++++ Starting the client +++
++++++4")
ConnectionProfile syncprofile
Test DB. get Synchroni zati onProfil e(
I

) DE
syncprofile.set Server Nane("kpatil xp");

Developer Reference for BlackBerry 75

Reference

syncprofile. setPortNunber (2480);
syncprofile.save();

/1 Login to the SUP server
Test DB. | ogi nToSync("supAdm n", "s3pAdmi n");

/1 Start the http push |istener thread
pushThread = new Thr ead(new PushLi stener());
pushThread. start();

set PushConnecti onProfil e("Test: 1. 0", DEVI CE_I D,
syncprofile, "PushCdientApp");

/1 Enable SIS on the synchronization group
Synchroni zati onG oup sg =

Test DB. get Synchr oni zati onG oup(" PushEnabl ed") ;
sg. set Enabl eSI S(true);

sg. setlnterval (3);

sg.save(); // this will update the | ocal db

/1 This will synchronize the SIS subscription to the

server
Test DB. synchr oni ze() ;
System out . printl n("++++ Synchroni zati on succeeded +
+++++") ;
}
/*

* For now this assunes MDS is running on | ocal host
* Creates the URL for PUSH
*
* @aram deviceid for SUP client
*/
public static String get HTTPPushAddress(String devi cei d)

{
String ndsServer = MDSSERVER,

String ndsPort = MDSSERVERPORT;

StringBuffer result = new StringBuffer("http://");
resul t. append(ndsServer);

result.append(":");

resul t.append(ndsPort);

resul t.append("/ push?DESTI NATI ON=") ;

resul t. append(deviceid);

resul t.append(" &PORT=");

resul t.append(PUSH HTTP_DEFAULT_DEVI CE_PORT) ;
return result.toString();

*

~

* 0% ok ok F

Sets up push settings for specified package's
synchroni zation profile.

@ar am packageNane
the specified package nane

76 Sybase Unwired Platform

Reference

* @eturn true if set up succesfully.
*/
private bool ean set PushConnectionProfile(String
packageNane,
String deviceld, ConnectionProfile syncProfile,
String appld)
{

try
t.
String httpPushAddress =
get HTTPPushAddr ess(devi cel d) ;

syncProfil e. set Property(PROFI LE_KEY_ADDRESS,
ht t pPushAddr ess) ;

syncProfil e. setProperty(PROFI LE_KEY_PROTOCOL,
PROFI LE_HTTP_PUSH_PROTOCCL) ;

syncProfil e.set Property(PROFI LE_KEY_ APPNAME,
appl d);

syncProfil e. set Property(PROFI LE_KEY_DEVI CE_| D,
devi cel d);

syncProfile.save();

}
catch (Exception e)

{
System out . println(">> set PushConnectionProfile -
Exception e : " + e);
return fal se;
}

return true;
}
« Develop the application in the Device Application Designer:

1. Add the Push Settings and Synchronization stock screen:

Developer Reference for BlackBerry 77

Reference

2. Generate the device application.

Run the application in the simulator or on a device and set the appropriate settings.

4. In the Push Settings screen define the MDS server and port. For example:
e MDS Server: localhost
« MDS Port: 8080

5. In the Synchronization screen, select a synchronization group and click Menu >
Synchronization Group Info Screen to navigate to the synchronization group
info screen. Select Enable push and select a Push notification mode (Sync
Immediately, Prompt and sync if there is no response, Prompt but don't sync if there
is a response, or Don't prompt and don't sync).

6. Select Menu > Save to upload the push registration to the server.

w

BlackBerry Device Framework API

Describes solutions and examples for tasks and uses of the Sybase Unwired Platform
BlackBerry Device Framework API, which lets you customize the BlackBerry device user
interface.

The Device Framework works as a library that supports the running of device client
applications. The main class for a device client is BOBUIController. This class is the entry
point when a client is first launched, and keeps track of screens and push actions. The
BOBUIController class extends UiApplication, providing methods to add Device Application
Designer screens, and push those screens to the stack. It also provides methods to remove
screens, invoke objects that run code, and respond to events.

The Device Framework also provides a number of synchronization classes for handling
mobile business object (MBO) synchronization, including push sync, as well as
synchronization group sync. A couple of utility classes are there for various purposes. See the
Java doc for details. Both BOB options and client module depend on the Device Framework.

78 Sybase Unwired Platform

Reference

The BOB options module includes generated object API code and screen registration code.
BOB client is the main Ul application and it also depends on the options module.

Note: For information on BlackBerry development using the RIM APIs, see the RIM
documentation.

BlackBerry Device Framework APl Javadocs

Use the Sybase BlackBerry Device Framework API Javadocs as a Device Framework API
reference.

Review the reference details in the BlackBerry Device Framework API Javadocs. To access
the Framework API Javadocs, copy BOBFr amewor kJavadoc. zi p from

<Unwi redPl atform I nstal | Di r>\ Unwi r ed_Wor kSpace\ Ecl i pse

\ sybase_wor kspace\ nobi | e\ ecl i pse\ pl ugi ns

\ com sybase. uep. bob. ri m <ver si on>\ gener at e\ bl ackber ry, and then
unzip it to a directory on your local machine.

Clickthei ndex. ht m file, the Javadoc open in a browser. The top left navigation pane lists
all packages installed with Unwired Platform. The applicable documentation is available with
each package. Navigate through the Javadoc as required.

Screen Objects
The main structure for a BlackBerry device user interface is the screen object.

All screens that you create are generated into Device Application Designer screens, which
extend the BaseBOBScreen class. BaseBOBScreen is the base implementation of
IBOBScreen. All Device Application Designer screens implement this interface.

Users cannot change the layout of stock screens; however, they can modify certain exposed
stock properties.

Table 8. Device Application Designer Screen Types

Screen Class Description

Type

Base Device BaseBOBScreen A base implementation of IBOBScreen that is used by
Application most screens in the framework. It provides methods for
Designer adding menus, menu separators, and source screen refer-
Screen ences or spacers to the current screen, as well as deleting

menu actions. It also creates menu items based on current
focused controls.

Base Device BaseBOBStockScreen | The base Device Application Designer stock screen is
Application used by most stock screens in the framework.
Designer
Stock Screen

Developer Reference for BlackBerry 79

Reference

Screen Class Description

Type

Base Device BaseSettingsScreen The base Device Application Designer settings screen is
Application used by most settings screens in the framework.

Designer Set-
tings Screen

About Screen

AboutScreen

Information about the Sybase Unwired Platform Black-
Berry client application.

Date Picker DatePickerPopup Both shows, and allows the user to specify, date and time
Screen information.

Exception ExceptionScreen Internal server errors.

Screen

File Explorer | FileExplorerScreen Allows the user to select a file from a device.

Screen

Image Screen

ImageScreen

Shows the entire image on the screen.

LoginScreen

LoginScreen

Login information for the Sybase Unwired Platform
BlackBerry client application.

Logs Screen

LogsScreen

Logs for the Sybase Unwired Platform BlackBerry client
application.

Log Informa-
tion Screen

LoglInfoScreen

Log information for the Sybase Unwired Platform Black-
Berry client application.

Pending Oper-
ation Screen

PendingOpera-
tionScreen

Pending operations for the Sybase Unwired Platform
BlackBerry client application.

Pending Oper-
ation Informa-

PendingOperationin-
foScreen

Pending operation information for the Sybase Unwired
Platform BlackBerry client application.

tion Screen
Personaliza- PersonalizationScreen | Personalization information for the Sybase Unwired Plat-
tion Screen form BlackBerry client application.

Profile Screen

ProfileScreen

Profiles for the Sybase Unwired Platform BlackBerry
client application.

Profile Update
Screen

ProfileUpdateScreen

Profiles information for the Sybase Unwired Platform
BlackBerry client application.

Push
LogsScreen

PushLogsScreen

Push logs for the Sybase Unwired Platform BlackBerry
client application.

80

Sybase Unwired Platform

Reference

Screen Class Description

Type

Push Request | PushRequestScreen Push request for the Sybase Unwired Platform Black-
Screen Berry client application.

Push Settings | PushSettingsScreen Push settings for the Sybase Unwired Platform Black-

Screen Berry client application.

Screen Saver | ScreenSaverScreen Screen saver for the Sybase Unwired Platform BlackBer-
Screen ry client application.

Search Screen | SearchScreen Search information for the Sybase Unwired Platform

BlackBerry client application.

Synchroniza- | SyncronizationGrou- Synchronization Group information for the Sybase Un-
tion Group In- | pInfoScreen wired Platform BlackBerry client application.
formation
Screen

Synchroniza- | SynchronizationScreen | Synchronization information for the Sybase Unwired
tion Screen Platform BlackBerry client application.

This example illustrates how to customize stock/settings screen properties:

/1 Define and regi ster the screen
screen5 = new About Screen("About", "untitledl");

//Section to define the stock screen properties
screenb. set Property(ABOUT_SCREEN LOGO | MAGE, "bl ackberry_16.gif");
screenb. set Propert y(ABOUT_SCREEN_VERS| ON_LABEL, "MVersion");

Control Objects

Control objects represent all of the user interface (Ul) components on the Device Application
Designer screens, which are rectangular regions that a Manager controls. A control's layout
requirements determine the control size. Managers provide scrolling for the fields that they
contain.

Developer Reference for BlackBerry 81

Reference

Table 9. Device Application Designer Control Types

Control
Type

Class

Description

Button

Button

Extends Field and displays the assigned text or image.
You can set a focus on a button control; thus, you can
assign different styles to it for focused and unfocused.
You can also bind a button to a list of actions, which run
when the trackball is clicked or touched on touchable
devices.

Cell Image

Celllmage

Extends ImageControl. You can bind Celllmage to a
MBO attribute, value mapping, state indicator, variable,
or image.

Cell Label

CellLabel

Extends Label. You can assign styles to it for focus and
unfocus status. You can bind CellLabel to MBO attrib-
utes, literals, or variables.

Cell Table

CellTable

Extends ListField and displays the data of the assigned
MBO. Cell table accommodates cell labels and cell im-
ages, which can be bound to MBO attributes. In addition,
cell image can be configured to show a different image
based on the specified attribute’s value. You can assign
styles to cell table for focus and unfocus status. You can
bind CellTable to a MBO, whose values are filled into the
table.

Check Box

CheckBox

Extends CheckboxField.

Grid Table

MobileAppTable

Extends Field and displays the data of the assigned MBO.
The table header displays the MBO attributes, while the
cells display the corresponding value. Styles can be as-
signed to Mobile App table for header, odd row, even row,
pending row, border, focused cell. You must bind Mobi-
leAppTable to a MBO, for which the values are filled into
the table.

Horizontal
Ruler

HorizontalRuler

Draws a line across the screen.

82

Sybase Unwired Platform

Reference

Control Class Description
Type
Hyperlink HyperLink Extends LabelField and displays the assigned text with

underscore. You can set a focus on a hyperlink control;
thus, you can assign different styles to it for focused and
unfocused. You can also bind Hyperlink to a list of ac-
tions, which run when the trackball is clicked or touched
on touchable devices.

Hyperlink HyperLinkRichField The difference between HyperLinkRichField and Hyper-
Rich Field Link is that HyperLinkRichField uses Blackberry rich
context matching to handle phone and email options.

Image Control | ImageControl Extends BitmapField and displays the assigned image.
You can bind ImageControl to a list of actions, which run
when the trackball is clicked or touched on touchable

devices.
Label Label Extends LabelField and displays the assigned text.
List Detail TwoColumnLayout Extends LayoutManager, must be bound to a MBO, and

can display the details for the assigned MBO in a two
column layout.

As with MobileAppTable, odd row style, even row style,
pending style, border style, and focus style are available.
You can assign hot keys as well as menu labels to previ-
ous/next menus of this control.

List Item ListFieldControl Extends ListField and displays the assigned text or image.
You can set a focus on a list item control; thus, you can
assign different styles to it for focused and unfocused.
You can also bind a list item to a list of actions, which run
when the trackball is clicked or touched on touchable

devices.
Navigation NavigationBar Extends BitmapField and allows users to navigate client
Bar screens and keep track of where they are.
Radio Box RadioBox Extends RadioButtonField and displays the assigned text.

RadioBox is contained in the RadioBoxGroup.

Select Box SelectBox Extends ObjectChoiceField and displays the assigned
texts. You can bind SelectBox to a MBO, whose values
are filled into the select box.

Spacer Spacer Extends Field and shows nothing.

Developer Reference for BlackBerry 83

Reference

Control Class Description
Type
Text Input TextInput Extends EditField and displays the assigned texts. You

must assign a data type to TextInput, the default type is
STRING. You canalso assign it a logical type for personal
information management (PIM). Validations are also
available.

Toolbar Item | Toolbar Item Extends Button control. You must add it to Toolbar. Tool-
bar Item is only available on touch screen devices. Toolbar
item can be assigned image and actions.

This example illustrates how to create a control:

Cel Il I mage cel Il Il mage = new Cel | | mage(Fi el d. Fl ELD_LEFT
| Field.Fl ELD VCENTER);

Cel | Label cell Label = new Cel |l Label (Fi el d. FI ELD_LEFT
| Field.Fl ELD VCENTER);

Cel | Tabl e cell Tabl e = new Cel | Tabl e(Fi el d. FI ELD_LEFT) ;

This example illustrates how to configure a control:

Cel | Tabl e | ocal cel | Tabl el = (Cel | Tabl e) object;
[/ Create set of subnmit elenents
Vector submitl = new Vector();
submit 1. addEl ement (new Subni t El ement (" par aneter 1",
"2010-06- 07", Vari abl eProperties. SUBM T_USER_TYPE,
null, false, null, -1, "startDate",
MBOAt t ri but e. SCHEMA TYPE_DATE, false, null, false));
| ocal cel | Tabl el. set Col umPer cent age(new int[] { 10, 60, 30 });
| ocal cel | Tabl el. set Sorti ngCol um("Sort on colum");
| ocal cel | Tabl el. set Mol d(BOBCUI Defi ni ti on. MBO_POC_ACTI VI TY) ;
| ocal cel | Tabl el. set NanedQuer ySubmi t El enment s(submit1);
| ocal cel | Tabl el. set NanedQuery("fi ndByDate");
| ocal cel | Tabl el. set FocusFont Styl e(styl eCel | _Tabl e_Focus_Styl e);
| ocal cel | Tabl el. set Nunber O Col utms(3) ;
| ocal cel | Tabl el. set Col umConfi g(new String[] { "description",
"status", "actType" });
| ocal cel | Tabl el
. set Unf ocusFont Styl e(styl eCel | _Tabl e_Unf ocus_Styl e);

Cel Il I mage | ocal cel | I nage0 = (Cel I | nage) object;
| ocal cel I | mageO
.setl mageType(l Cel | Attri but eTypeConst ants. | MAGE_VALUEVAPPI NG
_TYPE) ;
| ocal cel I | nage0. set PreserveAspect Rati o(true);
| ocal cel I I mage0. set Order (0);
| ocal cel I | nage0. set MooAttrld("typeCode");

84 Sybase Unwired Platform

Reference

Layout Manager Objects

Use the layout manager objects to add and position controls on the screen. Device Application
Designer provides a number of layout managers for laying out controls.

Table 10. Device Application Designer Layout Manager Types

Layout Class Description

Manager

Type

Row Layout RowLayout Extends Manager, and is the base BOB layout manager.

All other layout managers leverage this layout manager to
lay out controls. RowLayout lays out the controls based
on assigned horizontal/vertical spans and the width/
height of the controls.

Layout Man- | LayoutManager Extends Manager, and lay outs the controls that use Row-
ager Layout.

LayoutManager first creates a RowLayout based on as-
signed horizontal/vertical spans. When the first RowLay-
out is full, LayoutManager creates another RowLayout
for the rest of the controls.

Region Man- | RegionManager Extends LayoutManager.

ager

Tab Content TabContentPanel The TabContentPanel extends Manager and is used in

Panel TabLayoutManager.

Tab Control TabControlLayout Extends HorizontalFieldManager and provides methods

Layout to add tabs and switch tabs. It is used in TabLayoutMan-
ager.

Tab Layout TabLayoutManager Extends Manager and lays out controls for tab panels.

Manager

Toolbar ToolbarManager Extends VerticalFieldManager to accommodate toolbar

items. You can assign styles to Toolbar for style and bor-
der style. Toolbar is only available to touch screen devi-
Ces.

This example illustrates how the createControls method is added to the screen:

| ayout Manager = (Layout Manager) createControl Byl d(LAYOUTMANAGER) ;
| abel 1 = (Label) createControl Byl d(LABEL1);

conf i gur eCont r ol Byl d(LAYOUTMANAGER) ;
confi gureControl Byl d(LABEL1);

Developer Reference for BlackBerry 85

Reference

Action Objects

i é&/out Manager . addW dget (I abel 1, 1, 1);

th| s. add(| ayout Manager) ;

Device Application Designer actions can be executed as a specific program or instruction, and
are bound to controls such as Button, Hyperlink, Image, or List Item.

You can assign single or multiple actions to each of these controls. All Device Application
Designer actions are implementations of the IBOBAction interface.

Table 11. Device Application Designer Action Object Types

Action Class Description

Type

Action Action Action is the base implementation of IBOBAction; its
methods include hasFai | ed,i sProcessi ng for
monitoring the action status, and the r un method to ex-
ecute the action.

Action List ActionList Extends Action and holds a vector of actions. Itsr un
method executes all the actions.

Alert Action AlertAction Shows an alert informational message dialog.

AlertError Ac- | AlertErrorAction Shows an alert error message dialog.

tion

Alert Question
Action

AlertQuestionAction

Shows an alert question message dialog.

Navigate Back
Action

BackAction

BackAction pops current screen to display the parent
screen.

Close Screen

CloseScreenAction

Closes the current screen.

Action

Exit Action ExitAction Exits the current application.

Google Map GoogleMapAction Invokes Google Map and locates the address.
Action

Lock Client LockClientAction Locks the current application.

Action

Login Action | LoginAction Logs in the user.

86

Sybase Unwired Platform

Reference

Action
Type

Class

Description

Logout Action

LogoutAction

Logs out the current user.

Object Query
Action

NamedQueryAction

Executes the assigned object query.

Persist Action

PersistAction

Saves all the variables in a form.

Refresh Ac- RefreshAction Refreshes the current focused screen or supplied screen.
tion

RIM PIM Ap- | RIMPimAppAction Allows the read and write of data in personal information
plication Ac- management (PIM) databases from a RIM client appli-
tion cation, including e-mail, contacts, phone, or to-do lists.
Save Mobile SaveMobileDataCon- | Saves current mobile data control context to memory.
Data Context | textAction

Action

Screen Action

ScreenAction

Goes to another screen.

Submit Action

SubmitAction

Creates a update/insert/delete/others operation.

Synchroniza-
tion Action

SyncAction

Performs synchronization actions on all MBOs within the
synchronization group.

Synchroniza-

SyncPublicationAction

Performs sync actions on specific publications (Publica-

tion Publica- tion > Synchronization group).
tion Action
Tab Action TabAction Controls the tab layout manager to switch to different

tabs.

Close Screen
Action

CloseScreenAction

CloseScreenAction closes the current screen.

This example illustrates adding and modifying an action:

protected void configureObj ect Handl er sByl d(i nt

switch (ID) {

case BUTTONS:
Button | ocal button8 = (Button) object;
//Create |ist of actions
ActionList actionList3 =
// Create set of submt elenents

Vector submt2 =

[/ Create subnmt el enent N
submi t 2. addEl ement (new Submi t El emrent (" dept _i d*, "2",

-1,

Vari abl eProperties. SUBM T_CONTROL_TYPE, null, true,
MBQAt t ri but e. SCHEMA TYPE_| NT,

"dept _i d",

I D, Object object) {

new Acti onLi st ();

new Vector();
"dept

id"

nul |,

false, null,

Developer Reference for BlackBerry

87

Reference

fal se));
//Create subnmit el enent "dept_nane"
subni t 2. addEl ement (new Subni t El enent (" dept _nanme", "4",

Vari abl eProperties. SUBM T_CONTROL_TYPE, nuI I, false, null,
40, "dept _name", MBOAttri bute. SCHEMA TYPE_ STRI NG fal se,
null, false));
[/ Create subnmit el enent "dept_head_id"
submi t 2. addEl ement (new Submi t El enent ("dept _head_i d", "6",

Vari abl eProperties. SUBM T_CONTROL_TYPE, null, false, nuI I,

-1, "dept_head_id", MBOAttribute. SCHEMA TYPE | NT, fal se,
nul |, false));
| ocal butt on8. set Acti on(acti onLi st 3);
| BOBActi on submitAction2 = new SubnitActi on(
BOBCUI Defi ni ti on. MBO_A B _C _DEPARTMENT, this,
Oper ati onTypes. OPERATI ON_| NSERT, submit?2, fal se,
"Input {0} is required.",
"I nput {0} exceeds the maxi numlength of {1}.", "create");
actionLi st 3. addAct i on(submi t Acti on2);
| BOBActi on backActionl = BackAction. getlnstance();
acti onLi st 3. addAct i on(backActi onl);

br eak;

This example illustrates a PIM action. The PIM action constructor takes an int type argument:
public interface Rl MPi nConstants

|| s A Avai | abl e RIM appl i cati ons

HHHHHH R HH TS]

public static int R MPI M CONTACT = 0;
public static int R MPIMEMAIL = 1;
public static int R MPI M PHONE = 2;
public static int R MPIMEVENT = 3;
public static int RIMPI M TODO = 4;
public static int RIMPI M MEMO = b;
}
* bool ean i sRead:
« True indicates reading from the BlackBerry PIM application
« False indicates writing to the BlackBerry PIM application
« Object control — Can be the
com sybase. uep. bobcl i ent. control s. Mobi | eDat aCont r ol widgets
such as the com sybase. uep. bobcl i ent. control s. Mobi | eAppTabl e,
com sybase. uep. bobcl i ent. control s. TwoCol unmLayout or
com sybase. uep. bobcl i ent. screens. | BOBScr een.
e bool ean | aunchPl MApp - true launches the PIM application after performing a
write operation, otherwise false.
case MENUL3:
MenuActi on menul3 = (MenuAction) object;
Action rimActi on9 = new RI MPi mAppActi on(
RI MPi nConst ants. RIM Pl M_CONTACT, true, this,
fal se);

88

Sybase Unwired Platform

Reference

menul3. set Action(ri mActi on9);
br eak;

Data Objects

Device Application Designer provides layers for wrapping data, such as styles, variables, and
mobile business objects (MBOs).

Table 12. Device Application Designer Data Object Types

Data Type |Class Description

Variable ControlVariable Holds the variable attributes for controls. It includes type
(USER for user-defined variables, SYSTEM for system-
defined variables, TABLE for table context variables),
key (variable key), and MBO id (for table context varia-
bles).

Variable Man- | RIMVariables Manages variables, including store/access variables.
agement

Style FontStyle Holds the font information, including font face, font size,
font size unit, font style, background color, foreground
color, and gradient color.

Logical Type | LogicalType Contains all the logical type information. Also contains
personal information management (PIM) information if
applicable.

MBO CommonMBOModel CommonMBOModel contains information about MBOs
and their subclasses, including normal MBO, personali-

MBOModel . . .
zation MBO, and local business object.

PKMBOModel
CommonMBOModel provides methods for the MBO,

including subm t Pendi ngOper at i ons and
syncPubl i cati on.

Other important classes in this package include:

* ModelChangeEvent

* MobileApplicationDataHandler

* MobileApplicationDataPagingHandler
* MBOModelSyncParameters

MBO Attrib- | MBOAttribute Contains information about MBO attribute 1D, display
ute name and datatype.

Developer Reference for BlackBerry 89

Reference

Data Type |[Class Description

Client Profile | RIMClientProfile Contains client profile information, including profile
name, server name, server port, user name, password,
package name, stream parameters, and so on.

Link Parame- | RIMLinkParamNode Contains link parameter information.

ter

MBO Applica- | RIMMBOMobileAp- | Represents the MBO in Device Application Designer

tion plication styles.

Repository RIMRepository The central place for store or accessing the client profile,
client settings, variables, MBO applications, and other
settings.

Settings RIMSettings Contains various settings information, including the push
settings, screen saver settings, log level settings.

Validation Ob- | RIMValidationObject | Manages validation information, including regular ex-

ject pressions and messages.

These examples illustrate how to assign and read variables.

Adds a variable in BOBCUIdefinition:

addVari abl e(VARI ABLE_HI SVAR, "hi sVar Val ue",
Vari abl eProperties. VARl ABLE_TYPE USER,
MBOAt t ri but e. SCHEMA_TYPE_STRI NG) ;

Use variables in controls:

case LABEL2:
Label |ocallabel2 = (Label) object;
| ocal | abel 2. set Font Styl e(styl eLabel _Styl e);
/11 ocal | abel 2. set FooterFi el d(null);
| ocal | abel 2. set FocusFont Styl e(styl eDefault_Styl e);
| ocal | abel 2. set WapText (fal se);
| ocal | abel 2. set Vari abl eLabel (new Cont r ol Vari abl e(
BOBCUI Def i ni ti on. VARI ABLE_HI SVAR,
Vari abl eProperties. VARI ABLE TYPE USER, null, null));

Use table variables:

| ocal text | nput 4. set Vari abl el nput (new Control Vari abl e(
"dept _head_i d", Variabl eProperties. VAR ABLE TYPE_TABLE,
BOBCUI Def i niti on. MBO_A B _C DEPARTMENT, null));

Context variables must be saved before table variables are used by context actions:

case MENU6G:

MenuActi on menu6 = (MenuAction) object;

[/ Create list of actions

ActionLi st actionListl3 = new ActionList();

| BOBActi on connecti onAction9 = new ScreenAction(U Definition
.getScreen("screend"), false, null);

90

Sybase Unwired Platform

Reference

menub6. set Acti on(acti onLi st13);

| BOBActi on cont ext Acti on4d = new SavelMbbi | eDat aCont ext Acti on(
cel |l Tabl el);

acti onLi st 13. addAct i on(cont ext Acti on4);

acti onLi st 13. addActi on(connecti onActi on9);

cel | Tabl el. set Def aul t Acti on(acti onLi st 13);

Constant Classes

A number of constant classes are defined.

Table 13. Device Application Designer Constant Types

Constant Class Description

Type

Styles FontStylesProperties Defines a number of default styles are defined, including
DEFAULT_SCREEN_FONT_STYLE, and
FONT_STYLE_HYPERLINK_UNFOCUS.

Literals Literals Defines all literals for the Device Application Designer
framework.

RIM PIM RIMPimConstants PIM-related constants.

Constants

Stock/Settings | ScreenProperties Stock/Settings screen properties.

Screen Con-

stants

Validator Con- | ValidatorConstants Constants for validators.

stants

Variable Prop- | VariableProperties Constants for variables.

erties

Generated Client Code

After you design a Device Application Designer application, and generate the device
application from that document, each screen is generated into a class that extends
BaseBOBScreen, and each tab panel is generated into a class that extends LayoutManager,
where various controls are defined, as well as actions and menus.

An additional BOBCUIDefinition is generated to keep track of user defined variables, styles,
MBOs, screens, and so on. The BOBCUIDefinition as well as the screen classes are compiled
against the Device Framework and the BOBUIController to produce the final client
application. BOBCOptionsDefinition is generated to keep track of settings screens, MBO
packages, profiles, and so on. The class and OptionsMain and generated object API code are
compiled into options module. The generated client code serves as good sample code to
illustrate the usage of the Device Framework.

Developer Reference for BlackBerry

91

Reference

If you select Gener ate custom coding subclass for device/options/screen/tab panel classes
during device application code generation, a subclass is generated with methods skeleton for
you to add custom code, as these examples illustrate.

Super class:

protected Ooject createControl Byld(int ID) {
switch (ID) {
case CELLTABLEL:
Cel | Tabl e | ocal cel | Tabl el = new Cel | Tabl e(Fi el d. FI ELD_LEFT) ;

return | ocal cel | Tabl el;

Custom subclass:

protected Object createControl Byld(int ID) {
switch (ID) {
case CELLTABLE1:
Cel | Tabl e | ocal cel |l Tabl el = new Cel | Tabl e(Fi el d. Fl ELD_LEFT) {
publi ¢ bool ean keyChar (char key, int status, int tinme) {
/1 TODO sym key seens ignored
bool ean retval = fal se;
switch (key) {
case Characters. ENTER
case Characters. NULL:
case Characters. CONTROL_SYMBOL:
case Characters. CONTROL_UP:
case Characters. CONTROL_VOLUMVE_DOMN:
case Characters. CONTROL_VOLUMVE_UP:
case Characters. TAB:
retval = super. keyChar (key, status, tine);
br eak;
case Characters. DELETE:
case Charact er s. BACKSPACE:
String text = custonNavi Bar. get Fi ndText () ;
if (text.length() > 0) {
cust omNavi Bar . set Fi ndText (text. substring(0, text
.length() - 1));
} else {
cust onNavi Bar . set Fi ndText ("");
}
br eak;
defaul t:
cust omNavi Bar . set Fi ndText (cust omNavi Bar . get Fi ndText ()
+ key);
br eak;

}

return retval;

}
}
return | ocal cel | Tabl el;
defaul t:
return super.createControl Byld(ID);

92 Sybase Unwired Platform

Reference

Overriding metadata - super class:

protected void configureCbj ect Met aDat aByl d(int 1D, Object object) {
switch (I1D) {
case CELLTABLE1:
if (object instanceof Cell Table) {
Cel | Tabl e | ocal cel |l Tabl el = (Cel | Tabl e) object;
[/ Create set of subnit elenents
Vector submitl = new Vector();
subm t 1. addEl enent (new Submi t El enent (" par aneter 1",
"2010-06- 07", Vari abl eProperties. SUBM T_USER_TYPE,
null, false, null, -1, "startDate",
MBOAt t ri but e. SCHEMA TYPE_DATE, false, null, false));
| ocal cel | Tabl el. set Col umPer cent age(new int[] { 10, 60, 30 });
| ocal cel | Tabl el. set Sorti ngCol um("Sort on colum");
| ocal cel | Tabl el. set Mol d(BOBCUI Defi ni ti on. MBO_POC_ACTI VI TY) ;
| ocal cel | Tabl el. set NanedQuer ySubmni t El enent s(submit 1) ;
| ocal cel | Tabl el. set NanedQuery("fi ndByDate");
| ocal cel | Tabl el. set FocusFont Styl e(styl eCel | _Tabl e_Focus_Styl e);
| ocal cel | Tabl el. set Nunber O Col utms(3) ;
| ocal cel | Tabl el. set Col utmConfi g(new String[] { "description",
"status", "actType" });
| ocal cel | Tabl el
. set Unf ocusFont Styl e(styl eCel | _Tabl e_Unf ocus_Styl e);

Subclass in which the cell table's named query is set to null:

protected void configureCbject MetabDat aByld(int 1D, Object object) {
switch (ID) {
case CELLTABLE1L:
super . confi gur eCbj ect Met aDat aByl d(|1 D, obj ect);
if (object instanceof Cell Table) {
Cel | Tabl e | ocal cel |l Tabl el = (Cel | Tabl e) object;
| ocal cel | Tabl el. set NanedQuery(nul |);
}
br eak;
defaul t:
super . confi gur eCbj ect Met aDat aByl d(|1 D, obj ect);
}
}

Override handler superclass:

protected void configureCbj ect Handl ersByld(int 1D, Object object) {
switch (1D {
case MENUS:
i f (object instanceof MenuAction) {
MenuActi on menu8 = (MenuAction) object;
[/ Create list of actions
ActionLi st actionListl7 = new ActionList();
| BOBActi on connecti onAction7 = new ScreenAction(Ul Definition

Developer Reference for BlackBerry 93

Reference

.get Screen("screen34"), false, null);

menu8. set Acti on(actionLi st17);

| BOBActi on contextAction7 = new SaveMbi | eDat aCont ext Acti on(
cel |l Tabl el);

actionLi st 17. addActi on(cont ext Acti on7);

actionLi st17. addActi on(connecti onActi on7);

Subclass in which the menu’s actions are overridden:

protected voi d configureObj ect Handl ersByld(int I D, Object object) {
switch (ID) {
case MENUS:
if (object instanceof MenuAction) ({
MenuActi on menu8 = (MenuAction) object;
I/ Create |ist of actions
ActionLi st actionListl7 = new ActionList();
menu8. set Acti on(actionLi st17);
| BOBActi on contextAction7 = new SaveMbbi | eDat aCont ext Act i on(
cell Tabl el);
actionLi st17. addActi on(cont ext Acti on7);
actionLi st 17. addActi on(new Acti on()

public void run()

if (U Definition.getScreen("screen34") instanceof
BOBScr eenUpdat e_Acti viti es_Cust o {
BOBScr eenUpdat e_Activities_Custom screen =
(BOBScreenUpdat e_Acti vities_Custom Ul Definition.getScreen("screen34
")
Ui Appl i cation. getU Application().pushScreen(screen);
}

1),

br eak;
defaul t:
super . conf i gur eCbj ect Handl er sByl d(|1 D, obj ect);
}

}

A widget event in which an onDraw event is selected for a control, and the corresponding
event delegate is generated:

protected void configureCbjectHandl ersByld(int 1D, Object object) {
switch (ID) {
case SELECTBOX31:
i f (object instanceof Sel ectBox) {

Sel ect Box | ocal sel ect Box31 = (Sel ect Box) object;

| ocal sel ect Box31. set Control | D(SELECTBOX31) ;

| ocal sel ect Box31. set Cust onEvent sDel egat e(

new BOBScreenUpdat e_Activities_Sel ect BoxDel egate(),

94

Sybase Unwired Platform

Reference

Literal s. CUSTOM EVENT_ON_DRAW ;

Add custom code in the widget event delegate for an onDraw event. In this case we redraw the
selectBox by adding custom code to the paint and drawFocus methods:

/**
* (non-Javadoc)
*
* @Bee
com sybase. uep. bobcl i ent. control s. | Cust onEvent sDel egat e#pai nt (Cbj ec
t field, int controllD, G aphics Q)
*/
public void paint(Ooject field, int controll D, Graphics g) {
/'l custom code
switch (control I D) {
case BOBScreenUpdate_Activities_. SELECTBOX31:
g.clear();
Sel ect Box sel ect Box = (Sel ect Box)fi el d;
int currentSel ect = sel ect Box. get Sel ect edl ndex();
i f(current Sel ect>-1)

Sel ect BoxChoi ce choice =
(Sel ect BoxChoi ce) sel ect Box. get Choi ce(current Sel ect) ;
String choi ceLabel = choice. getLabel ();
g. set Col or (Col or . BLACK) ;
g. drawText (choi ceLabel , H_PADDI NG
(sel ect Box. get Pref erredHei ght () -
sel ect Box. get Font Styl e() . get Font (). get Hei ght ())/
DrawStyl e. ELLI PSI' S, sel ect Box. get Pref erredW dt h(
DROPDOWN_HI NT_AREA_W DTH H_PADDI NG ;

2,
)

br eak;
defaul t:
br eak;
}

}
/**

* (non-Javadoc)
*
* @Bee
com sybase. uep. bobcl i ent. control s. | Cust onEvent sDel egat e#dr awrFocus
* (Cbject field, int controllD, G aphics g, bool ean on)
*/
public void drawFocus(Object field, int controllD, G aphics g,
bool ean on) {
/'l custom code
switch (control I D) {
case BOBScreenUpdate Activities_. SELECTBOX31:
g.clear();
Sel ect Box sel ect Box = (Sel ect Box)fi el d;
int ol dCol or = g.getColor();

Developer Reference for BlackBerry 95

Reference

i nt ol dBgCol or = g. get Backgr oundCol or () ;
int currentSelect = sel ect Box. get Sel ect edl ndex();
i f(current Sel ect>-1)

Sel ect BoxChoi ce choice =
(Sel ect BoxChoi ce) sel ect Box. get Choi ce(current Sel ect) ;

String choi ceLabel = choice. getLabel ();

int y = (sel ect Box. get PreferredHei ght () -
sel ect Box. get Font Styl e() . get Font ().

get Hei ght ())/ 2;

i nt height = sel ectBox. get PreferredHei ght();

int wdth = sel ect Box. getPreferredWdth() -
DROPDOWN_HI NT_AREA_ W DTH- H_PADDI NG,

g. set Col or (OX00FFFFFF) ;

int actual Wdth = g.drawTlext (choi ceLabel, H PADDI NG v,
DrawSt yl e. ELLI PSI' S, wi dt h);

g. set Col or (0x00185AB5) ;

g.fill Rect (H_PADDI NG, y, actual Wdth, height);

g. set Col or (OX00FFFFFF) ;

g. drawText (choi ceLabel, H PADDI NG vy, DrawStyle.ELLIPSIS,
wi dt h);

}
g. set Col or (ol dCol or) ;
g. set Backgr oundCol or (ol dBgCol or) ;
br eak;
defaul t:
br eak;

96 Sybase Unwired Platform

Index
A

action objects 86
Adding a table header 39
AttributeMetaData 71

B

BlackBerry Desktop Manager 42
BlackBerry Java plug-in for Eclipse 21
BlackBerry Java Plug-in for Eclipse 8, 9
BlackBerry JDE 21, 23

BlackBerry JDE, download 9
BlackBerry MDS Simulator, download 9
BlackBerry Simulator 9

C

callback handlers 64

certificates 61

ClassMetaData 71

client database 67

code 91

common APIs 58
configureObjectHandlersByld 35
ConnectionProfile 43, 61
ConnectionProfile.EncryptionKey 61
constant classes 91

control objects 81, 85

create operation 51
createControls 31
createDatabase 67

D

data objects 89
database
client 67
DatabaseMetaData 71
Delete operation 51
deleteDatabase 67
dependencies 10
deployment 41
device framework 78
documentation roadmap
document descriptions 2

Index

download 9

E

EIS error codes 67, 69
encryption key 61
entity states 56
error codes
EIS 67, 69
HTTP 67, 69
mapping of SAP error codes 69
non-recoverable 67
recoverable 67
exceptions
client-side 69
server-side 67

F

Filling a space with a button 39

G

generated code 91

generateld 67
getLastSynchronizationTime() 66
getLogRecords 62
getPendingObjects 34

H

HTTP error codes 67, 69

HTTP push gateway 71

I

isSynchronized() 66

J

Javadocs 1
Javadocs, opening 43, 79

Developer Reference for BlackBerry

97

Index

K
KeyGenerator 67

L

LayoutManager 39
local business object 55
local MBO 55
LocalKeyGenerator 67
loginToSync 34
LogRecord API 62
LogRecordImpl 62

M

MetaData API 70

mobile business object 55
mobile business object states 60
multilevel insert 52

N

newLogRecord 62
NoSuchAttributeException 69
NoSuchOperationException 69

O

Object Manager API 70
object query 46
ObjectManager 70
ObjectNotFoundException 69
OfflineLogin 44

Other operation 52

P

pending operation 53

personalization keys 56
types 55
PersonalizationParameters 56

Q

QueryResultSet 50

R

Refresh operation 60
relationships 46
Removing CellTable Margin 40

S

screen objects 79

signing 41

status methods 56
submitLogRecords 62
synchronization groups 45
SynchronizationProfile 44
SynchronizeException 69

U

Update operation 51

Vv

variables 36

w

widget event code 32

98

Sybase Unwired Platform

	Developer Reference for BlackBerry
	Contents
	Introduction to Developer Reference for BlackBerry
	Documentation Road Map for Unwired Platform
	Introduction to Developing Device Applications with Sybase Unwired Platform

	Development Task Flows
	Task Flow for BlackBerry JDE Development
	Task Flow for Device Application Designer and BlackBerry JDE Development
	Configuring Your BlackBerry Development Environment
	Installing the BlackBerry Development Environment
	Installing the BlackBerry Java Plug-in for Eclipse
	BlackBerry Java Plug-in for Eclipse Integration

	Downloading the BlackBerry JDE and MDS Simulator

	Client API JAR File Locations

	Mobile Business Object Code or Device Application Designer Code
	Generating BlackBerry Mobile Application Project Code
	Generating BlackBerry Device Application Code from the Device Application Designer
	Generating Code For a BlackBerry Device Application
	Device Application Designer Generated Code Structure

	Creating Projects and Importing Files into the BlackBerry Development Environment
	Differences Between Mobile Business Object and Device Application Designer Required Files
	Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
	Creating a BlackBerry Device Application Project
	Creating a BlackBerry Device Application Client Project
	Referencing BlackBerry Device Framework Javadocs

	Adding Required .jar and .cod Files

	Developing, Debugging, and Customizing BlackBerry Applications
	Building an Object API based Client Application
	Adding a Device Application Entry Point
	Developing the BlackBerry Device Application
	Developing a BlackBerry Device Application using the BlackBerry Eclipse Plug-in
	Developing a BlackBerry Device Application using the BlackBerry JDE

	Debugging BlackBerry Device Development
	Debugging the BlackBerry Device Application

	Customizing Device Application Designer Code
	Manually Adding Controls to a Screen
	Writing Widget Event Code
	Adding Validators
	Perform UI Binding to an MBO
	Access Pending Operations and Operation Logs
	Connecting to Unwired Server
	Adding or Modifying Navigation
	Adding or Modifying Actions
	Creating and Assigning Variables
	Using PIM Actions
	Using LayoutManager
	Adding a Table Header
	Filling a Space with a Button
	Removing the CellTable Margin

	Deploying Applications to Devices
	Device Registration
	Signing
	Deploying BlackBerry Applications
	Deploy Applications through BlackBerry Desktop Manager
	Deploying Applications Over the Air

	Reference
	BlackBerry Client Object API
	Client Object API Javadocs
	Connection APIs
	ConnectionProfile
	SynchronizationProfile
	Authentication

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Query

	Retrieving Relationship Data
	Paging Data
	Query and Related Classes
	Arbitrary Find
	QueryResultSet

	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Multilevel Insert
	Pending Operation
	Passing Structures to Operations

	Mobile and Local Business Objects
	Personalization APIs
	Type of Personalization Keys
	Get or Set Personalization Key Values

	Object State APIs
	Entity State Management
	Pending State Pattern
	Mobile Business Object States
	Refresh Operation
	Clear Relationship Objects

	Common APIs
	Security APIs
	Connect Using a Certificate
	Encrypt the Database

	Utility APIs
	LogRecord API
	Viewing Error Codes in Log Records

	Logging APIs
	Callback Handlers
	SyncStatusListener API
	isSynchronized() and getLastSynchronizationTime()

	generateId
	Client Database APIs

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	ClassMetaData
	AttributeMetaData

	Replication-Based Push Synchronization Applications
	HTTP Push Gateway
	Creating a Replication Based Push Application

	BlackBerry Device Framework API
	BlackBerry Device Framework API Javadocs
	Screen Objects
	Control Objects
	Layout Manager Objects
	Action Objects
	Data Objects
	Constant Classes
	Generated Client Code

	Index

