
Tutorial: iOS Object API Application
Development

Sybase Unwired Platform 2.2
SP05

DOCUMENT ID: DC01213-01-0225-01
LAST REVISED: November 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Sybase Unwired Platform Tutorials1
Getting Started with Unwired Platform3

Installing Sybase Unwired Platform3
Starting Sybase Unwired Platform Services4
Starting tooling-nameSybase Unwired WorkSpace4
Connecting to Sybase Control Center5
Learning Sybase Unwired WorkSpace Basics5

Developing an iOS Application ..9
Installing Xcode IDE ...10
Generating Object API Code ..10
Setting Up an iOS Client Application in Xcode12

Adding Source Code Files, Libraries, and
Resources to the Xcode Project13

Configuring the Build Settings16
Registering the Application Connection in Sybase

Control Center ..17
Viewing the CallbackHandler and

ApplicationCallbackHandler Files18
Creating the User Interface ...18

Viewing the SubscribeController View Controller
...19

Creating the PasswordPinViewController31
Creating the MenuListController34
Creating the CustomerListController34
Adding the DetailController and Configuring the

View ...35
Deploying the Device Application37

Learn More About Sybase Unwired Platform41
Index ..43

Tutorial: iOS Object API Application Development iii

Contents

iv Sybase Unwired Platform

Sybase Unwired Platform Tutorials

The Sybase® tutorials demonstrate how to develop, deploy, and test mobile business objects,
device applications, online mobile applications (native OData and REST services based), and
Hybrid App packages. You can also use the tutorials to demonstrate system functionality and
train users.

• Learn mobile business object (MBO) basics, and use this tutorial as a foundation for the
Object API application development tutorials:
• Tutorial: Mobile Business Object Development

Note: For all Object API tutorials, if you opt to use the Mobile Business Object
example project instead of performing the Mobile Business Object Tutorial, you must
deploy the mobile application project to Unwired Server as a prerequisite.

• Create native Object API mobile device applications:
• Tutorial: Android Object API Application Development
• Tutorial: BlackBerry Object API Application Development
• Tutorial: iOS Object API Application Development
• Tutorial: Windows Object API Application Development
• Tutorial: Windows Mobile Object API Application Development

• Create a mobile business object, then develop a hybrid app package that uses it:
• Tutorial: Hybrid App Package Development

• Create an OData mobile application with REST Services
• Tutorial: Android OData Application Development with REST Services
• Tutorial: iOS OData Application Development with REST Services

Sybase Unwired Platform Tutorials

Tutorial: iOS Object API Application Development 1

Sybase Unwired Platform Tutorials

2 Sybase Unwired Platform

Getting Started with Unwired Platform

Install and learn about Sybase Unwired Platform and its associated components.

Complete the following tasks for all tutorials, but you need to perform them only once.

1. Installing Sybase Unwired Platform

Install Sybase Mobile SDK and Unwired Platform Runtime.

2. Starting Sybase Unwired Platform Services

Start Unwired Server, Sybase Control Center, the sample database, the cache database
(CDB), and other essential services.

3. Starting tooling-nameSybase Unwired WorkSpace

Start the development environment, where you can create mobile business objects
(MBOs), manage enterprise information system (EIS) datasources and Unwired Server
connections, develop Hybrid App applications (Hybrid Apps), and generate Object API
code.

4. Connecting to Sybase Control Center

Open Sybase Control Center to manage Unwired Server and its components.

5. Learning Sybase Unwired WorkSpace Basics

Sybase Unwired WorkSpace features are well integrated in the Eclipse IDE. If you are
unfamiliar with Eclipse, you can quickly learn the basic layout of Sybase Unwired
WorkSpace and the location of online help.

Installing Sybase Unwired Platform
Install Sybase Mobile SDK and Unwired Platform Runtime.

Before starting this tutorial, install all the requisite Unwired Platform components. See the
Sybase Unwired Platform documentation at http://sybooks.sybase.com:

• Release Bulletin
• Installation Guide for Sybase Mobile SDK
• Installation Guide for Runtime

1. Install these Unwired Platform Runtime components:

• Data Tier (included with single-server installation)
• Unwired Server

2. Install Mobile SDK, which includes:

Getting Started with Unwired Platform

Tutorial: iOS Object API Application Development 3

http://sybooks.sybase.com

• Development support for native Object API applications, HTML5/JS Hybrid Apps,
and native OData SDK applications.

• Sybase Unwired WorkSpace, the Eclipse-based development environment for MBOs
and Hybrid Apps.

Starting Sybase Unwired Platform Services
Start Unwired Server, Sybase Control Center, the sample database, the cache database (CDB),
and other essential services.

The way in which you start Unwired Platform Services depends on the options you selected
during installation. You may need to manually start Unwired Platform Services.
Select Start > (All) Programs > Sybase > Unwired Platform > Start Unwired Platform
Services.
The following services will be started:
• Sybase Control Center <Version>
• Sybase Unwired Cache DB
• Sybase Unwired SampleDB
• Sybase Unwired Server
Unwired Platform Services enable you to access the Unwired Platform runtime components
and resources.

Note: The Unwired Platform installer creates the Windows service (Unwired Platform
Sample DB) that runs the sampledb server only when you install Unwired Server with a
Personal or Enterprise Development license. If you installed Unwired Server with an
Enterprise Server (production) license, you must create this service using the
sampledb.bat command line utility. See Create or Remove the Windows Service for
sampledb Server (sampledb) Utility in System Administration for more information about
using this command line utility.

Starting tooling-nameSybase Unwired WorkSpace
Start the development environment, where you can create mobile business objects (MBOs),
manage enterprise information system (EIS) datasources and Unwired Server connections,
develop Hybrid App applications (Hybrid Apps), and generate Object API code.
Select Start > Programs > Sybase > Unwired Platform > Sybase Unwired WorkSpace.
The Sybase Unwired WorkSpace opens in the Mobile Development perspective. The
Welcome page displays links to the product and information.

Next
To read more about Sybase Unwired WorkSpace concepts and tasks, select Help > Help
Contents.

Getting Started with Unwired Platform

4 Sybase Unwired Platform

Connecting to Sybase Control Center
Open Sybase Control Center to manage Unwired Server and its components.

From Sybase Control Center, you can:

• View servers and their status
• Start and stop a server
• View server logs
• Deploy a mobile application package
• Register application connections
• Set role mappings
• Assign/Unassign a hybrid application to a device

For information on configuring, managing, and monitoring Unwired Server, click Help >
Online Documentation.

1. Select Start > Programs > Sybase > Sybase Control Center.

Note: If Sybase Control Center does not launch, make sure that the Sybase Control Center
service is started in the Windows Services dialog.

2. Log in by entering the credentials set during installation.

Sybase Control Center gives you access to the Unwired Platform administration features
that you are authorized to use.

Learning Sybase Unwired WorkSpace Basics
Sybase Unwired WorkSpace features are well integrated in the Eclipse IDE. If you are
unfamiliar with Eclipse, you can quickly learn the basic layout of Sybase Unwired WorkSpace
and the location of online help.

• To access the online help, select Help > Help Contents. Some documents are for Sybase
Unwired Platform, while others are for the Eclipse development environment.

• The Welcome page provides links to useful information to get you started.
• To close the Welcome page, click X.
• Reopen the Welcome page by selecting Help > Welcome.
• To learn about tasks you must perform, select the Development Process icon.

• In Sybase Unwired WorkSpace, look at the area (window or view) that you will use to
access, create, define, and update mobile business objects (MBOs).

Getting Started with Unwired Platform

Tutorial: iOS Object API Application Development 5

Window Description

WorkSpace Navigator view Use this view to create Mobile Application projects,
and review and modify MBO-related properties.

This view displays mobile application project fold-
ers, each of which contains all project-related re-
sources in subfolders, including MBOs, datasource
references to which the MBOs are bound, personal-
ization keys, and so on.

Enterprise Explorer view A view that provides functionality to connect to var-
ious enterprise information systems (EIS), such as
database servers, SAP® back ends, and Unwired
Server.

Mobile Application Diagram The Mobile Application Diagram is a graphical ed-
itor where you create and define mobile business
objects.

Use the Mobile Application Diagram to create
MBOs (including attributes and operations), then
define relationships with other MBOs. You can:

• Create MBOs in the Mobile Application Dia-
gram using Palette icons and menu selections –
either bind or defer binding to a datasource,
when creating an MBO. For example, you may
want to model your MBOs before creating the
datasources to which they bind. This MBO de-
velopment method is sometimes referred to as
the top-down approach.

• Drag and drop items from Enterprise Explorer to
the Mobile Application Diagram to create the
MBO – quickly creates the operations and at-
tributes automatically based on the datasource
artifact being dropped on the Mobile Applica-
tion Diagram.

Each new mobile application project generates an
associated mobile application diagram.

Getting Started with Unwired Platform

6 Sybase Unwired Platform

Window Description

Palette The Palette is accessed from the Mobile Application
Diagram and provides controls, such as the ability to
create MBOs, add attributes and operations, and de-
fine relationships, by dragging and dropping the
corresponding icon onto the Mobile Application Di-
agram or existing MBO.

Properties view Select an object in the Mobile Application Diagram
to display and edit its properties in the Properties
view. While you cannot create an MBO from the
Properties view, most development and configura-
tion is performed here.

Outline view Displays an outline of the active file and lists struc-
tural elements. The contents are editor-specific.

Problems view Displays validation errors or warnings that you may
encounter in addition to errors in the Diagram editor
and Properties view. Follow warning and error mes-
sages to adjust MBO properties and configurations
to avoid problems, and use as a valuable source for
collecting troubleshooting information when report-
ing issues to Customer Service and Support.

Error Log view Displays error log information. This is a valuable
source for collecting troubleshooting information.

Getting Started with Unwired Platform

Tutorial: iOS Object API Application Development 7

Getting Started with Unwired Platform

8 Sybase Unwired Platform

Developing an iOS Application

Generate Object API code for the iOS platform, develop a universal iOS device application
with code, and test its functionality. The device application communicates with the database
MBOs that are deployed to Unwired Server.

Prerequisites

Note: This tutorial has been developed using Sybase Unwired Platform 2.2 SP05, Mac OS X
10.8.5, iOS SDK 7.0.3, and Xcode 5.0.1 Development Environment, and executed on an iOS
Simulator v 7.0. If you use a different version, some steps may vary. For more information on
Xcode, refer to the Apple Developer Connection: http://developer.apple.com/technologies/
tools/whats-new.html.

1. Complete the tasks in Getting Started with Unwired Platform.
2. Either:

• create the MBO project by completing Tutorial: Mobile Business Object
Development, or

• download and deploy the MBO SUP101 example project (complete project files) from
the SAP® Community Network: http://scn.sap.com/docs/DOC-8803.

Note: If you upgrade Sybase Mobile SDK after completing the tutorial, you can convert
the project to the current SDK by importing the earlier project into the Unwired Workspace
and then accepting the confirmation prompt.

3. (Optional) To use as a reference and copy source code when completing this tutorial,
download the iOS SUP 101 example project (source code only) from the SAP®

Community Network: http://scn.sap.com/docs/DOC-8803.

Task

1. Installing Xcode IDE

Download and install the Apple Xcode IDE to build, deploy, and run a mobile application
on an iPhone simulator.

2. Generating Object API Code

Launch the code generation wizard and generate the object API code for a replication-
based iOS application.

3. Setting Up an iOS Client Application in Xcode

Set up an iOS client application in the Xcode IDE.

4. Registering the Application Connection in Sybase Control Center

Register the iPhone simulator in Sybase Control Center.

Developing an iOS Application

Tutorial: iOS Object API Application Development 9

http://developer.apple.com/technologies/tools/whats-new.html
http://developer.apple.com/technologies/tools/whats-new.html
http://scn.sap.com/docs/DOC-8803
http://scn.sap.com/docs/DOC-8803

5. Viewing the CallbackHandler and ApplicationCallbackHandler Files

Look at CallBackHandler and ApplicationCallbackHandler files in Xcode.

6. Creating the User Interface

Use Interface Builder to create and configure the user interface for the SUP101
application.

7. Deploying the Device Application

Deploy the SUP101 application to the iPhone simulator for testing.

Installing Xcode IDE
Download and install the Apple Xcode IDE to build, deploy, and run a mobile application on
an iPhone simulator.

1. Open the App Store and search for Xcode.

2. Install Xcode, entering a valid Apple ID and password.

Generating Object API Code
Launch the code generation wizard and generate the object API code for a replication-based
iOS application.

1. In Sybase Unwired WorkSpace, open the SUP101 mobile application project.

In WorkSpace Navigator, right-click the SUP101 folder and select Open in Diagram
Editor.

2. Right-click anywhere in the SUP101 - Mobile Application Diagram and select Generate
Code.

3. On the Code generation configuration screen, click Next.

4. Make sure the Customer and Sales_order MBOs are selected, then click Next.

5. In the Configure Options page, specify these values and click Finish.

Option Description

Language Select Objective C.

Platform Accept the default, iOS.

Unwired Server Select My Unwired Server.

Server domain Accept default. If you are not connected to
Unwired Server, this field is empty. Connect to
Unwired Server to proceed.

Developing an iOS Application

10 Sybase Unwired Platform

Option Description

Page size Accept the default or select a larger page size.

Name prefix The prefix for the generated files. Leave blank.

Project path Accept the default or enter a different location
for the generated project files.

(Optional) Clean up destination before code
generation

Delete all items in the destination folder before
generating the device client files.

6. Click OK in the Success dialog.

Developing an iOS Application

Tutorial: iOS Object API Application Development 11

Objective-C code is generated into the specified output location and in the WorkSpace
Navigator.

Setting Up an iOS Client Application in Xcode
Set up an iOS client application in the Xcode IDE.

Prerequisites

• Generate Objective-C code in to an output location.
• Verify that Sybase Unwired Platform is installed in a shared directory so you can access it

from your Mac.
• To help create your project, and to later build the interface, download and import the

SUP101 iOS Object API (2.2 SP05) example project from the SAP Community Network
(SCN) at http://scn.sap.com/docs/DOC-8803.

• Copy the SUP101 iOS Object API example project to your Mac machine and extract it into
a folder. The example project contains the Xcode project and a SUP101 project archive file
to use in Sybase Unwired WorkSpace.

Task

1. On your Mac, start Xcode and select Create a new Xcode project.

2. Select iOS Application and Single View Application as the project template, and then
click Next.

3. Specify these values and click Next.

a) Enter SUP101 as the product name.

b) Enter MyCorp (or another value as needed) as the company identifier.

c) Select SUP101 for the class prefix.

d) Select Universal as the device family product.

If you do not see the following selections (Use Storyboards and Use Automatic
Reference Counting) during project creation, turn off the ARC in the SUP101 target
build settings, by manually setting Objective-C Automatic Reference Counting to
No.

e) Unselect Use Storyboards.
f) Unselect Use Automatic Reference Counting.
g) Unselect Include Unit Tests.

4. Select a location in which to save the project and click Create to open it.

Xcode creates a folder, SUP101, to contain the project file, SUP101.xcodeproj, and
another SUP101 folder, which contains a number of automatically generated files and a
build folder.

Developing an iOS Application

12 Sybase Unwired Platform

http://scn.sap.com/docs/DOC-8803

5. Delete some of the automatically generated files created by default for the Xcode project.

a) In Xcode, delete the SUP101 folder under the SUP101 project:

1. Click Remove References.
2. In the Finder, manually delete the SUP101 folder from the project folder.

3. Verify that only the SUP101.xcodeproj file and the build folder are in the
SUP101 folder.

6. Verify that the SDK and deployment targets are correct:

a) Select SUP101 in Project Navigator and then select Build Settings.
b) Under Project, select SUP101.
c) Verify that Base SDK under Architectures is set to Latest iOS (iOS 7.0).

d) Scroll to the Deployment section and set the iOS Deployment Target to iOS 4.3 or
higher.

e) Select Targets > SUP101 and verify that those values are also set.

7. Copy the files from the SUP101 folder on your Windows machine to the SUP101 folder
on your Mac that Xcode created to contain the SUP101 project:

a) Connect to the Microsoft Windows machine where Sybase Unwired Platform is
installed

b) From the Apple Finder menu, select Go > Connect to Server.
c) Enter the name or IP address of the machine, for example, smb://<machine DNS

name> or smb://<IP Address>, then click Connect.

You see the shared directory.
d) Copy the SUP_HOME\MobileSDK22\ObjectAPI\iOS folder from the

Unwired Platform installation directory to the SUP101 folder on your Mac.

e) On your Windows machine, navigate to the SUP101 mobile application project and
copy the Generated Code folder to the SUP101 directory on your Mac.

Next
Add libraries, resources, and source code to the SUP101 Xcode project.

See also
• Registering the Application Connection in Sybase Control Center on page 17

Adding Source Code Files, Libraries, and Resources to the Xcode
Project

Once you set up the initial project in Xcode, add files from the Sybase Unwired Platform
folders you copied from your Windows machine.

1. In the Xcode Project Navigator, Ctrl-click the SUP101 project, then select Add Files to
"SUP101".

Developing an iOS Application

Tutorial: iOS Object API Application Development 13

Select the Generated Code folder, unselect Copy items into destination group's
folder (if needed), and click Add.

The Generated Code folder is added to the project in the Project Navigator.

2. Ctrl-click the Frameworks group, then select Add Files to "SUP101".

a) In the iOS folder you copied from the Sybase Unwired Platform installation, navigate
to the Libraries/Debug-iphonesimulator directory.

b) Select the libAfariaSLL.a, libclientrt.a, libDatavault.a,
libMO.a, libPerformanceLib.a, libsupClientUtil.a,
libSUPObj.a, libSUPSupportability.a, and libsupUltralite.a
libraries.

c) Unselect Copy items into destination group's folder (if needed).
d) Click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. In this
tutorial, you work with the libraries for the Debug version of the iPhone simulator.

3. Add the source code files from the SUP101 iOS Object API example project.

a) In Xcode, Ctrl-click the SUP101 project and select Add Files to "SUP101".
b) Select the SUP101 > SUP101 folder from the SUP101 tutorial ZIP file.
c) Select Copy items into destination group's folder (if needed).

The project contents now looks like this:

Developing an iOS Application

14 Sybase Unwired Platform

Next
Configuring the build settings.

Developing an iOS Application

Tutorial: iOS Object API Application Development 15

Configuring the Build Settings
Configure the build settings for the Xcode project, then build the project.

1. In the right pane, click the Build Settings tab and scroll down to the Search Paths section.
Enter the location of the iPhone simulator libraries in the Header Search Paths and Library
Search Paths fields.

$SRCROOT is a macro that expands to the directory where the Xcode project file resides.
Adding this macro in front of the path is optional.
• In Header Search Paths, enter the path to the iOS/includes directory, then select

the recursive option. In this example, the path is indicated as iOS/includes/**.

• In Library Search Paths, specify profiles for Debug and Release. In this example, the
path is indicated as "iOS/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)". Escape the path names using double quotes.

2. In the right pane, select the Build Phases tab, then expand the Link Binary with
Libraries section.

Click the + icon below the list, select the following libraries, and then click Add to add
them to the project:
• CFNetwork.framework
• CoreFoundation.framework
• CoreGraphics.framework
• Foundation.framework
• libicucore.A.dylib
• libstdc++.6.0.9.dylib
• libz.dylib

Developing an iOS Application

16 Sybase Unwired Platform

• MobileCoreServices.framework
• Security.framework
• SystemConfiguration.framework

3. In the right pane, select the Build Phases tab, then expand the Copy Bundle Resources
section. Select SUP101-info.plist and click on the - sign to remove it.

4. Hold the Option key, and select Product > Clean Build Folder, then Product > Build to
test initial project setup. If you correctly followed this procedure, you see a Build
Succeeded message.

Registering the Application Connection in Sybase Control
Center

Register the iPhone simulator in Sybase Control Center.

Prerequisites
Connect to Sybase Control Center.

Task

1. Log in to Sybase Control Center using the credentials you indicated during installation.

2. In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

3. In the left pane, select Applications.

4. In the right pane, click Application Connections.

5. Click Register.

6. In the Register Application Connection window, enter the required information:

• User name – user1
• Template – SUP101_admin
• Application ID – SUP101
• Security configuration – admin
• Logical role – leave blank or use the logical role when you assigned to this user during

the deployment to Server
• Domain – default
• Activation code length – 3
• Activation expiration (hours) – 72
• Specify activation code – 123

7. Click OK.

Developing an iOS Application

Tutorial: iOS Object API Application Development 17

Next
In Xcode, view the application source files and walk through how they are created.

See also
• Setting Up an iOS Client Application in Xcode on page 12

Viewing the CallbackHandler and
ApplicationCallbackHandler Files

Look at CallBackHandler and ApplicationCallbackHandler files in Xcode.

CallbackHandler is a subclass of SUPDefaultCallbackHandler, and listens for
events sent from the server. It also implements the SUPApplicationCallback protocol
to get connection, registration, and device state change notifications. The header,
CallbackHandler.h, is referenced in a number of classes in this application, so create it
first. You can create new Objective-C class files from the main menu: File > New > New
File.

ApplicationCallbackHandler is a subclass of
SUPApplicationDefaultCallback, and it gets connection, registration, and device
state change notifications.

There are two threads involved in the SUP101 application—the main thread, which is driven
by the client application user interface controller, and the mobile object client access thread,
which handles data synchronization with the server. In iOS, all code that updates the user
interface must be called on the main thread, so Sybase recommends, as a best practice, that you
send notifications that might trigger changes to the interface from the main thread.

1. Click the CallbackHandler.h file to view the provided source code.

2. Click the CallbackHandler.m file to view the provided source code.

3. Click the ApplicationCallbackHandler.h file to view the provided source code.

4. Click the ApplicationCallbackHandler.m file to view the provided source code.

Creating the User Interface
Use Interface Builder to create and configure the user interface for the SUP101 application.

The SUP101 iOS Object API example project contains the source code for the user interface
for the sample application. Although the user interface is built automatically when you add the
source files to the Xcode project, you can walk through the rest of the tasks and view the source
code to see how to use Interface Builder to build the sample application.

Developing an iOS Application

18 Sybase Unwired Platform

See also
• Deploying the Device Application on page 37

Viewing the SubscribeController View Controller
A view controller functions as the root view screen for the SUP101 mobile application.

The SubscribeController view controller automatically shows connection status and provides
two buttons for action after the connection is made: one to synchronize data after connection to
the device; and one to change the password. The Synchronize button will trigger data
synchronization, and trigger the MenuListController view when synchronization is complete.
The Change Password button will allow the user to change the password for connection to
Sybase Unwired Platform and trigger the PasswordPinViewController view.

In Xcode, you can create the view controller by creating a new file using the UIViewController
subclass. Select With XIB for user interface. Xcode creates the corresponding .h, .m,
and .xib files.

1. In the SUP101 Xcode project, click SubscribeController.m to view the logic for
the view controller.

2. Click SubscribeController.h to view the header file.

See also
• Creating the PasswordPinViewController on page 31

• Creating the MenuListController on page 34

• Creating the CustomerListController on page 34

• Adding the DetailController and Configuring the View on page 35

Viewing the SUP101Appdelegate Files
The SUP101Appdelegate.h and SUP101Appdelegate.m files are created when you
create the Xcode project; however, you deleted the automatically generated versions and
replaced them with the ones added from the source code ZIP file.

The SUP101Appdelegate files make use of the SUPApplication and SUPDataVault
APIs to show how to store and retrieve sensitive data (such as Sybase Unwired Platform
credentials) using a PIN.

The applicationDidFinishLaunching method checks to see if the application has
been run before, then prompts the device user for a PIN to unlock the application; the Sybase
Unwired Platform user's password is also requested.

Control passes to the initializeSUP101 method. This code sample does one of two
things, depending on whether the application has been run before:

• If the application is running for the first time, the sample creates a new SUPDataVault
secured with the user-provided PIN, to store the password and other items.

Developing an iOS Application

Tutorial: iOS Object API Application Development 19

• If the application has been run before, the sample attempts to unlock the existing vault with
the provided PIN. If this fails, the application displays an error dialog.

SUPDataVault *sup101vault = nil;
SUPDataVault *messagingvault = nil;

// Make sure to set the application identifier same as the project
name. This is case sensetive.
// Setting the identifer first is essential to getting any
information from the SUPApplication class
// about registration, connection and context.

SUPApplication* app = [SUPApplication getInstance];
if (!SUPApplication.applicationIdentifier)
{
app.applicationIdentifier = @"SUP101";
}

if(self.firstRun)
{
NSLog(@"Running the app for the first time.");

// If the application is being run for the first time, we do the
following:
// 1. Remove the messaging data vault created by earlier versions of
the application, if it exists.
// 2. Remove the SUP101 data vault created by earlier versions of the
application, if it exists.
// 3. Create the messaging vault using the PIN as the password,
leaving it unlocked for use by the messaging layer.
// 4. Create the SUP101 data vault using the PIN as the password, and
store the SUP username/password credentials
// and a database encryption key in the vault.
//
@try
{
NSLog(@"Delete preexisting messaging vault");
[SUPDataVault deleteVault:kMessagingDataVaultID];
}
@catch(NSException *e)
{
// Ignore any exception
}
@try {
NSLog(@"Delete preexisting SUP101 data vault");
[SUPDataVault deleteVault:kSUP101DataVaultID];
}
@catch(NSException *e)
{
// Ignore any exception
}

@try {
NSLog(@"Create new SUP101 data vault and store credentials and a

Developing an iOS Application

20 Sybase Unwired Platform

generated encryption key");
sup101vault = [SUPDataVault createVault:kSUP101DataVaultID
withPassword:self.pin withSalt:kSUP101DataVaultSalt]; // creates the
vault
[sup101vault setString:@"password" withValue:self.password];
if (![sup101vault isLocked])
{
[sup101vault lock];
}
}
@catch (NSException *exception) {
NSLog(@"Exception in creating new SUP101 data vault: %@: %@",
[exception name], [exception reason]);
[self showNoTransportAlert:kSUP101ErrorFailure];
return;
}
@try {
NSLog(@"Create new messaging vault and leave it unlocked");
messagingvault = [SUPDataVault createVault:kMessagingDataVaultID
withPassword:self.pin withSalt:kDVStandardSalt];
}
@catch (NSException *exception) {
NSLog(@"Exception in creating new messaging data vault: %@: %@",
[exception name], [exception reason]);
[self showNoTransportAlert:kSUP101ErrorFailure];
return;
}

}
else
{
// If the application has been run before, we get the PIN from the
user, and use it to unlock the existing messaging data vault
// (otherwise the messaging layer cannot start).
NSLog(@"App has been run before.");
@try {
NSLog(@"Unlock messaging vault");
messagingvault = [SUPDataVault getVault:kMessagingDataVaultID];
if ([messagingvault isLocked])
{
[messagingvault unlock:self.pin withSalt:kDVStandardSalt];
}
}
@catch (NSException *exception) {
NSLog(@"Exception unlocking messaging data vault: %@: %@",[exception
name],[exception reason]);
[self showNoTransportAlert:kSUP101ErrorBadPin];
return;
}

}

This code sample sets up the Application API settings for connection to the Unwired Server
and registers with the Unwired Server.

Developing an iOS Application

Tutorial: iOS Object API Application Development 21

// Add the observer to listen for ON_REGISTER_SUCCESS or
ON_CONNECT_SUCCESS for the first run or
// subsequent runs respectively. Also for ON_CONNECT_FAILURE, and
ON_REGISTER_FAILURE. Refer to the comments in
registerObserverForCallbackNotifications.
// The observer must be added before the call to registerApplication,
but after applicationIdentifier is
// set and the messaging vault unlocked. (AppIdentifier being set and
the vault being unlocked are prerequisites to
// calling if ([SUPApplication registrationStatus] ==
SUPRegistrationStatus_REGISTERED) which is used in
registerObserverForCallbackNotifications.

[self.viewController registerObserverForCallbackNotifications];

@try {
sup101vault = [SUPDataVault getVault:kSUP101DataVaultID];
if ([sup101vault isLocked])
{
[sup101vault unlock:self.pin withSalt:kSUP101DataVaultSalt];
}

// Register callback handlers. This should be done before any other
SUP code is called.
[SUP101SUP101DB registerCallbackHandler:[CallbackHandler
getInstance]];
[app setApplicationCallback:[ApplicationCallbackHandler
getInstance]];

// Setup the connection properties and login credentials required for
registration.
SUPConnectionProperties* props = app.connectionProperties;
[props setServerName:self.serverName];
[props setPortNumber:[self.serverPort intValue]];
[props setUrlSuffix:@""];
[props setFarmId:self.farmID];

SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
if(self.manualRegistration)
{
login.username = self.connectionName;
login.password = nil;
props.activationCode = self.activationCode;
}
else
{
login.username = self.userName;
login.password = [sup101vault getString:@"password"];
props.activationCode = nil;
}
props.loginCredentials = login;

Developing an iOS Application

22 Sybase Unwired Platform

This code sample does one of two things depending on whether the application has run
previously:

• If the application is running for the first time, the sample creates the SUP101 database,
generates an encryption key, and stores it in the data vault.

• If the application has run previously, the sample retrieves the encryption key from the data
vault, and sets it in the connection profile so the database can be reused.

// Get the connection profile for the database.
SUPConnectionProfile *cp = [SUP101SUP101DB getConnectionProfile];
[cp enableTrace:NO];

// Delete any existing database from previous versions.
if(self.firstRun && [SUP101SUP101DB databaseExists])
{
[SUP101SUP101DB deleteDatabase];
}

// Create the database if required and set the encryption key.
if(![SUP101SUP101DB databaseExists])
{
[SUP101SUP101DB createDatabase];
// We need to generate a new encryption key to encrypt the DB
[SUP101SUP101DB generateEncryptionKey];
// Store the encryption key in the data vault for future use.
SUPConnectionProfile *cp = [SUP101SUP101DB getConnectionProfile];
[sup101vault setString:@"encryptionkey" withValue:[cp
getEncryptionKey]];
}
else
{
// When we are create the database from scratch, we set the database
encryption key in generateEncryptionKey.
// If we were using the database from a previous run of the app and
not creating it each time, an application should
// run the code below instead to successfully access a previously
encrypted database by retrieving the encryption key
// from the datavault and setting it in the connection profile.
NSString *key = [sup101vault getString:@"encryptionkey"];
NSLog(@"Got the encryption key: %@",key);
[cp setEncryptionKey:key];
}

// Set the synchronization configuration required to sync with the
server.
SUPConnectionProfile *sp = [SUP101SUP101DB
getSynchronizationProfile];
[sp setDomainName:@"default"];
[sp enableTrace:YES];
// by default the AsyncReplay is enabled. We will turn it off. This
will make the next syncrhonization a blocking call.
[sp setAsyncReplay:NO];
[sp setUser:self.userName];
[sp setPassword:[sup101vault getString:@"password"]];

Developing an iOS Application

Tutorial: iOS Object API Application Development 23

}
@catch (SUPPersistenceException * pe) {
NSLog(@"%@: %@", [pe name],[pe message]);
[self showNoTransportAlert:kSUP101ErrorFailure];
return;
}
@catch (NSException* e) {
NSLog(@"%@: %@", [e name],[e reason]);
[self showNoTransportAlert:kSUP101ErrorFailure];
return;
}
@finally
{
if (![sup101vault isLocked])
{
[sup101vault lock];
}
}

@try {
// Initialize generated package database class with this application
instance.
[SUP101SUP101DB setApplication:app];

if ([SUPApplication registrationStatus] !=
SUPRegistrationStatus_REGISTERED)
{
// Register the application with the server.
[app registerApplication:300];
}
else
{
// already registered, start connection.
[app startConnection:300];
}

// Update the value of self.firstRun, We have created the vault and
registered with server at this point.
self.firstRun = (![MessagingClientLib isMessagingDBExist] ||
![SUPDataVault vaultExists:kSUP101DataVaultID]);

}
@catch (SUPApplicationTimeoutException* tex)
{
NSLog(@"%@: %@", [tex name],[tex message]);
[self showNoTransportAlert:kSUP101ErrorFailure];
return;
}
@catch (NSException *e)
{
// When we are faced with a registeration error or connection error,
the 'onRegistrationStatusChanged'
// or on 'onConnectionStatusChanged' callbacks are triggered in which
we send the ON_CONNECT_FAILURE

Developing an iOS Application

24 Sybase Unwired Platform

// notification or the ON_REGISTER_FAILURE notification to handle it
// and show the alert window to the user.So we don't have to do it
again here.
// For all other failures, other than the timeout exception above ,
we will handle it here.
if ([SUPApplication registrationStatus] ==
SUPRegistrationStatus_REGISTRATION_ERROR)
{
return;
}
if ([SUPApplication connectionStatus] ==
SUPConnectionStatus_CONNECTION_ERROR)
{
return;
}

NSLog(@"%@: %@", [e name],[e reason]);
[self showNoTransportAlert:kSUP101ErrorFailure];
return;
}

When you run the application for the first time, the ON_REGISTER_SUCCESS notification
is registered, and for subsequent runs, the ON_CONNECT_SUCCESS notification is
registered. In the above code snippet, the call to the
registerObserverForCallbackNotifications method (in
SubscribeController) registers the appropriate observer depending on whether or not you are
running the application for the first time.

If the application is running for the first time, registerStatus is not
SUPRegistrationStatus_REGISTERED, so [app registerApplication:
300] is called to start a connection with the server and register the application. If the
registration is successful, the onRegistrationStatusChanged:
(SUPRegistrationStatusType)registrationStatus:
(int32_t)errorCode :(NSString*)errorMessage callback is called, resulting
in an ON_REGISTER_SUCCESS notification being posted. Upon receiving this notification,
the observer for the ON_REGISTER_SUCCESS notification calls onConnectSuccess:
(NSNotification *)notification in the SubscribeController. This enables the
Synchronize button in the application, allowing you to initiate a sync with the server.

For subsequent runs, since the application is already registered, registerStatus is
SUPRegistrationStatus_REGISTERED, and the call to [app
registerApplication:300] just starts a connection with the server. In this case, when
the connection is successful, the onConnectionStatusChanged:
(SUPConnectionStatusType)connectionStatus:
(int32_t)errorCode :(NSString*)errorMessage callback is called, resulting
in an ON_CONNECT_SUCCESS notification being posted. Upon receiving this notification,
the observer for the ON_CONNECT_SUCCESS notification calls onConnectSuccess:

Developing an iOS Application

Tutorial: iOS Object API Application Development 25

(NSNotification *)notification in the SubscribeController. This enables the
Synchronize button in the application, allowing you to initiate a sync with the server.

The process above ensures that you initiate a sync with the server only after a registration (and
a connection) is made for the first run. For all other runs you need to initiate the sync only after
you make a connection.

If you are connecting to the Unwired Server through a Relay Server, then you must provide
additional information for the database synchronization profile:

• Add the certificate file provided by the Relay Server to the Resource folder of your
Xcode project.

• Add this code:
SUPConnectionProfile *sp = [SUP101SUP101DB
getSynchronizationProfile];
[sp setNetworkProtocol:@"https"]; // or http
[sp setPortNumber:443]; // if http then corresponding port
[sp
setNetworkStreamParams:@"trusted_certificates=certificateName;com
pression=zlib;url_suffix=urlsuffixProvidedByTheRelayServer"];

• NetworkProtocol – http or https.
• PortNumber – the correct port number for the selected NetworkProtocol.
• NetworkStreamParams – certificateName: the name of the certificate you added in

the Resource folder.

urlsuffixProvidedByTheRelayServer: the URL suffix provided by the Relay Server

Configuring the SubscribeController View
Use Interface Builder to configure the SubscribeController.xib file and create the
user interface. Although the provided XIB file is already configured, you can walk through the
steps to see how to create the interface.

1. Click the SubscribeController.xib file to reveal a view of the (presently empty)
screen in the right pane and the following three items represented by icons in the middle
pane:

• File's Owner – the object that is set to be the owner of the user interface, which is
typically the object that loads the interface. In this tutorial, this is the
SubscribeController.

• First Responder – the first responder proxy object handles events. Connecting an
action to the first responder means that when the action is invoked, it is dynamically
sent to the responder chain.

Developing an iOS Application

26 Sybase Unwired Platform

• View – appears in a separate window to allow editing.

2. Select the File's Owner icon, click View in the utility area, click Show the Identity
Inspector, and make sure SubscribeController appears in the Class field under
Custom Class.

This tells Interface Builder the class of the object to allow you to make connections to and
from the File's Owner.

3. Click the View icon, and in the Identity Inspector panel, and make sure UIView appears in
the Class field under Custom Class.

Developing an iOS Application

Tutorial: iOS Object API Application Development 27

4. To create a Subscribe button, select View > Utilities > Show Object Library.
a) In the Object Library pane, select the Round Rect Button item, and drag it onto the

view.

b) Double-click it, enter Not Connected, and press Enter.

5. Repeat Step 4 to create a Change Password button.

6. To make connections to the user interface from the view controller, the
SubscribeController.h file contains the outlets, property declarations for the instance
variables, and a declaration for the action method.
-(IBAction)buttonPressed:(id)sender;
-(IBAction)changePasswordButtonPressed:(id)sender;

Developing an iOS Application

28 Sybase Unwired Platform

@property (nonatomic, retain) IBOutlet UIButton *button;
@property (nonatomic, retain) IBOutlet UIButton
*changePasswordButton;
@property (nonatomic, retain) MenuListController *menuController;

Save any changes to SubscribeController.h and
SubscribeController.m.

7. Ctrl-drag on the File's Owner icon in the middle pane to the Subscribe button and select
outlet button. Repeat for the changePassword button.

Developing an iOS Application

Tutorial: iOS Object API Application Development 29

8. Ctrl-click the Subscribe button to show the inspector.

9. Drag from the circle to the right of Touch Up Inside to the File's Owner icon and release,
then click buttonPressed to establish a connection between the Subscribe button and the
button's action method. Repeat for the changePassword button, and select
changePasswordButtonPressed, to establish a connection between the
changePassword button and the button's action method:

Developing an iOS Application

30 Sybase Unwired Platform

Creating the PasswordPinViewController
Create the password pin view.

The PasswordPinViewController allows mobile device users to input the PIN to lock and
unlock the datavault and the Sybase Unwired Platform password required for data
synchronization, and/or for automatic registration when an application is first launched. The
password is saved in the datavault and only the PIN is required to unlock the datavault for
subsequent launches.

Developing an iOS Application

Tutorial: iOS Object API Application Development 31

The source files you added from the SMP/SUP101 iOS Object API example project contain
the PasswordPinViewController.h, PasswordPinViewController.m, and
PasswordPinViewController.xib files that create the password pin view. This file
also supports creating a new pin. To create these files manually in Xcode, you would create a
new file using the UIViewController subclass template, then indicate it is a subclass of
UIViewController. Select With XIB for user interface.

Although the provided XIB file is already configured, you can walk through the steps to see
how to create the interface.

1. Click the PasswordPinViewController.xib file to open Interface Builder.

2. Select View > > Utilities > Show Object Library.

3. In the Object Library pane, select the Text Field item, and drag it onto the view two times
to create two text fields aligned vertically to the right of the screen.

You can resize the text fields using the resize handles, and position the button by dragging
it to the desired location.

4. In the Object Library panel, select the Label item, and drag it onto the view two times to
create two labels to the above and aligned with the two text fields. Replace the default
Label text with:

• Create a New PIN (min 8 chars)
• Enter SMP Password

5. In the Object Library panel, select the Round Rect Button item, drag it onto the view, and
rename it Cancel. Add an OK button in the same way.

To make connections to the user interface from the view controller, the
PasswordPinViewController.h file contains the outlets, property declarations
for the instance variables, and a declaration for the action method.
@interface PasswordPinViewController : UIViewController
@property (nonatomic, retain) IBOutlet UILabel *pinLabel;
@property (nonatomic, retain) IBOutlet UITextField
*datavault_pin;
@property (nonatomic, retain) IBOutlet UILabel *passwordLabel;
@property (nonatomic, retain) IBOutlet UITextField *smp_password;

@property (nonatomic, retain) IBOutlet UIButton *cancelButton;
@property (nonatomic, retain) IBOutlet UIButton *okButton;

@property (nonatomic, assign) UIViewController *mvc;

-(IBAction)buttonPressed:(id)sender;
-(IBAction) backgroundClick: (id) sender;
@end

Save any changes that you make to the PasswordPinViewController.h and
PasswordPinViewController.m files.

Developing an iOS Application

32 Sybase Unwired Platform

6. Click the DetailController.xib file to open it in Interface Builder, click the text
field you created for the pin, and select View > Utilities > Show Attributes Inspector.

7. Ctrl-drag from the File's Owner icon in the middle pane to each of the text fields and select
the datavault_pin and smp_password outlets, respectively, to create connections
between the text fields and the outlets defined in the
PasswordPinViewController.m file.

8. Select View > Utilities > Show Connections Inspector to confirm that the outlets have
been correctly configured:

9. Ctrl-drag from the File's Owner icon in the middle pane to the Cancel button and select
buttonPressed to connect the Cancel button with the Touch Up Inside event.

10. Repeat step 9 for the OK button.

See also
• Viewing the SubscribeController View Controller on page 19

• Creating the MenuListController on page 34

• Creating the CustomerListController on page 34

• Adding the DetailController and Configuring the View on page 35

Developing an iOS Application

Tutorial: iOS Object API Application Development 33

Creating the MenuListController
Create the menu list view.

The source files you added from the SUP101 iOS Object API example project contain the
MenuListController.h, MenuListController.m, and
MenuListController.xib files that create the menu list view. To create these files
manually in Xcode, create a new file using the UIViewController subclass template, then
indicate it is a subclass of UITableViewController. Select With XIB for user
interface.

1. View the MenuListController.h file.

2. View the MenuListController.m file.

MenuListController.m is a table view controller that displays two menu items: List
and Create. Tap a row to move to the corresponding screen.

See also
• Viewing the SubscribeController View Controller on page 19

• Creating the PasswordPinViewController on page 31

• Creating the CustomerListController on page 34

• Adding the DetailController and Configuring the View on page 35

Creating the CustomerListController
Create the customer list view.

The source files you added from the SUP101 iOS Object API example project contain the
CustomerListController.h, CustomerListController.m, and
CustomerListController.xib files which create the customer list view. To create
these files manually in Xcode, create a new file using the UIViewController subclass template,
then indicate it is a subclass of UITableViewController. Select With XIB for user
interface.

1. View the CustomerListController.h file.

2. View the CustomerListController.m file.

CustomerListController.m is a table view controller that displays the customer
data in the client database. The viewWillAppear method uses the Object API to query
the database for a list of all Customer objects, and builds an NSArray that is used by this
class as the datasource for displaying the table view.

If a row is tapped, the accessoryButtonTappedForRowWithIndexPath
method is executed, which pushes a DetailController onto the stack to display
additional information and allow the data to be modified.

Developing an iOS Application

34 Sybase Unwired Platform

See also
• Viewing the SubscribeController View Controller on page 19
• Creating the PasswordPinViewController on page 31
• Creating the MenuListController on page 34
• Adding the DetailController and Configuring the View on page 35

Adding the DetailController and Configuring the View
Create the DetailController.xib.

The detail controller view displays information about a single customer in the client database.
The source files you added from the SUP101 iOS Object API example project contain the
DetailController.h, DetailController.m, and DetailController.xib
files that create the customer detail view. This file also supports creating a new customer or
deleting an existing customer. To create these files manually in Xcode, you would create a new
file using the UIViewController subclass template, then indicate it is a subclass of
UIViewController. Select With XIB for user interface.

Although the provided XIB file is already configured, you can walk through the steps to see
how to create the interface.

1. Click the DetailController.xib file to open Interface Builder.

2. Select View > Utilities > Object Library.

3. In the Object Library pane, select the Text Field item, and drag it onto the view three times
to create three text fields aligned vertically to the right of the screen.

You can resize the text fields using the resize handles, and position the button by dragging
it to the desired location.

4. In the Object Library panel, select the Label item, and drag it onto the view three times to
create three labels to the left of and aligned with the three text fields. Replace the default
Label text with:

• First Name
• Last Name
• Phone

5. In the Object Library panel, select the Round Rect Button item, drag it onto the view, and
rename it Submit. Add a Delete button in the same way.

To make connections to the user interface from the view controller, the
DetailController.h file contains the outlets, property declarations for the instance
variables, and a declaration for the action method.
#import <UIKit/UIKit.h>
#import "SUP101Customer.h"
#import "CallbackHandler.h"

@class CallbackHandler;

@interface DetailController : UIViewController {

Developing an iOS Application

Tutorial: iOS Object API Application Development 35

 BOOL deleteRecord;
}

@property (nonatomic, retain) IBOutlet UITextField *fname;
@property (nonatomic, retain) IBOutlet UITextField *lname;
@property (nonatomic, retain) IBOutlet UITextField *phone;
@property (nonatomic, retain) SUP101Customer *originalObj;
@property (nonatomic, retain) IBOutlet UIButton *submitButton;
@property (nonatomic, retain) IBOutlet UIButton *deleteButton;
@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, assign) BOOL deleteRecord;

-(IBAction)buttonPressed:(id)sender;
-(IBAction) keyBoardOff : (id) sender;
-(void)keyBoardOff;
-(void)cleanForm;

-(void)setupNotification;
-(void) reeplaySuccess:(NSNotification *)notification;
-(void) reeplayFailure:(NSNotification *)notification;

@end
6. View the DetailController.m file.

This class displays detailed information about a single customer in the client database. The
information can be edited. If the data is changed and the Submit button is pressed, the
buttonPressed method uses Object API calls to save the changes in the client
database, send the changes to the server, and disable the Submit button.

If the server accepts the changes, the callback handler posts an ON_REPLAY_SUCCESS
notification, which causes the onReplaySuccess notification handler to run. The
cached UI data is refreshed from the database and the Submit button is reenabled.

This class also registers for the ON_REPLAY_FAILURE notification to handle the case
where the server rejects the changes, or an error occurs on the server side.

If you press the Delete button, the buttonPressed method uses the Object API calls to
delete the record, then initiates a synchronization call to send the delete request to the
server. If the server accepts the changes, the callback handler posts an
ON_REPLAY_SUCCESS notification and the list page is shown.

If the Create option is selected from the menu list, the DetailController is loaded with an
empty form. The Submit button is called Create. If you fill out the form and press the
Create button, a new record is created in the local database and a synchronization call is
initiated. If the server accepts the new record, an ON_REPLAY_SUCCESS notification is
posted.

7. Click the DetailController.xib file to open it in Interface Builder, click the First
Name text field, and select View > Utilities > Attributes Inspector.

8. In the Attributes Inspector pane, scroll to the View section and enter 1 in the Tag field.

Developing an iOS Application

36 Sybase Unwired Platform

9. Set the tags for the Last Name and Phone text fields to 2 and 3 respectively.

10. Ctrl-drag from the File's Owner icon in the middle pane to each of the text fields and select
the fname, lname, and phone outlets, respectively, to create connections between the text
fields and the outlets defined in the DetailController.m file.

11. Select View > Utilities > Connections Inspector to confirm that the outlets have been
correctly configured:

12. Ctrl-drag from the File's Owner icon in the middle pane to the Submit button and select
submitButton.

13. Repeat steps 6 – 12 for the Delete button as for the Submit button.

See also
• Viewing the SubscribeController View Controller on page 19

• Creating the PasswordPinViewController on page 31

• Creating the MenuListController on page 34

• Creating the CustomerListController on page 34

Deploying the Device Application
Deploy the SUP101 application to the iPhone simulator for testing.

Prerequisites
Register an application connection in Sybase Control Center.

You must be connected to the server where the mobile application project is deployed.

Developing an iOS Application

Tutorial: iOS Object API Application Development 37

Task

1. From the top menu, select Product > Scheme > Edit Scheme to iOS 7.0 Simulator.

2. Select Product > Build then Product > Run to build the project and start the iPhone
simulator.

3. In the iPhone applications screen, open the SUP101 application.
When you run the application for the first time, it exits immediately with a dialog asking
you to enter the application settings in the Settings application.

4. In the iPhone simulator, go to Settings > SUP101 to enter the connection settings.

• SUP Server – the machine that hosts the server where the SUP101 mobile application
project is deployed.

• SUP Server Port – Unwired Server port number. The default is 5001.
• Farm ID – the company ID you entered when you registered the device in Sybase

Control Center, in this case, 0.

• SUP Username – the user to be authenticated, supAdmin.

Developing an iOS Application

38 Sybase Unwired Platform

If the Manual registration switch is off, the application attempts an automatic registration,
creating an application registration with the same name as the Unwired Platform user
name ("supAdmin" in this example). This allows a client with a valid Unwired Platform
user name and password to connect and register with the server without manual
registration.

Developing an iOS Application

Tutorial: iOS Object API Application Development 39

If the Manual registration switch is on, the connection name and activation code must be
filled in, and must match an application connection that has already been created in Sybase
Control Center (see Registering the Application Connection in Sybase Control Center).

5. In the iPhone applications screen, reopen the SUP101 application.
Enter a pin with which to securely store your Sybase Unwired Platform password, and a
database encryption key that is generated when the application launches. For subsequent
launches of the application, you need only enter the PIN.

6. Enter a PIN, and enter the password for the Unwired Platform user name entered in step
4.

7. Click Synchronize.

8. Click List.

9. Select a customer record from the customer list and double-click to open the detail view.
The customer detail shows the First Name, Last Name, and Phone.

10. Change the First Name to something else, and click Update.

See also
• Creating the User Interface on page 18

Developing an iOS Application

40 Sybase Unwired Platform

Learn More About Sybase Unwired Platform

Once you have finished, try some of the other samples or tutorials, or refer to other
development documents in the Sybase Unwired Platform documentation set.

Check the Product Documentation Web site regularly for updates: http://sybooks.sybase.com/
sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories, then
navigate to the most current version.

Tutorials
Try out some of the other getting started tutorials available on the Product Documentation
Web site to get a broad view of the development tools available to you.

Example Projects
An example project contains source code for its associated tutorial. It does not contain the
completed tutorial project. Download example projects from the SAP® Community Network
(SCN) at http://scn.sap.com/docs/DOC-8803.

Samples
Sample applications are fully developed, working applications that demonstrate the features
and capabilities of Sybase Unwired Platform.

Check the SAP® Development Network (SDN) Web site regularly for new and updated
samples: https://cw.sdn.sap.com/cw/groups/sup-apps.

Online Help
See the online help that is installed with the product, or available from the Product
Documentation Web site.

Developer Guides
Learn best practices for architecting and building device applications:

• Mobile Data Models: Using Data Orchestration Engine – provides information about
using Sybase Unwired Platform features to create DOE-based applications.

• Mobile Data Models: Using Mobile Business Objects – provides information about
developing mobile business objects (MBOs) to fully maximize their potential.

• SAP Mobile WorkSpace: Mobile Business Object Development – provides information
about using SAP Mobile Platform to develop MBOs and generate Object API code that
can be used to create native device applications and Hybrid Apps.

Use the appropriate API to create device applications:

• Developer Guide: Android Object API Applications
• Developer Guide: BlackBerry Object API Applications

Learn More About Sybase Unwired Platform

Tutorial: iOS Object API Application Development 41

http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://scn.sap.com/docs/DOC-8803
https://cw.sdn.sap.com/cw/groups/sup-apps

• Developer Guide: iOS Object API Applications
• Developer Guide: Windows and Windows Mobile Object API Applications
• Developer Guide: Hybrid Apps
• Developer Guide: OData SDK
• Developer Guide: REST API Applications

Customize and automate:

• Developer Guide: Unwired Server Runtime > Management API – customize and
automate system administration features.

Javadoc and HeaderDoc are also available in the installation directory.

Learn More About Sybase Unwired Platform

42 Sybase Unwired Platform

Index
A

application callback handler 18
application connection 17
ApplicationCallbackHandler file 18

C

callback handler 18
CallbackHandler file 18
customer list view 31, 34
CustomerListController 31, 34

D

delegate file 19
DetailController.xib 35

E

example projects 1

G

generating object API code 10

H

Hybrid App package tutorial 1

I

iOS application, developing 9
iPhone simulator 37

M

mobile business object tutorial 1

O

Object API tutorials 1
Objective-C code, generating 10

S

samples
downloading 41

SubscribeController view 26
SUP_iOS_Custom_Dev_Tutorial_code.zip 12
SUP101Appdelegate files 19
Sybase Control Center 17

connecting to 5
Sybase Mobile SDK

installing 3
Sybase Unwired Platform

documentation resources 41
getting started 3
installing 3

Sybase Unwired WorkSpace
basics 5
how to access online help 5
starting 4

Sybase Unwired WorkSpace basics 5

T

troubleshooting information 5
tutorials 1

downloading 41

U

UIViewController subclass 19
Unwired Platform Runtime

installing 3
Unwired Platform services 4

V

view controller, adding 19

X

Xcode project
add libraries and resources 13
add source code 13

Index

Tutorial: iOS Object API Application Development 43

build settings 16 setting up 12

Index

44 Sybase Unwired Platform

	Tutorial: iOS Object API Application Development
	Contents
	Sybase Unwired Platform Tutorials
	Getting Started with Unwired Platform
	Installing Sybase Unwired Platform
	Starting Sybase Unwired Platform Services
	Starting tooling-nameSybase Unwired WorkSpace
	Connecting to Sybase Control Center
	Learning Sybase Unwired WorkSpace Basics

	Developing an iOS Application
	Installing Xcode IDE
	Generating Object API Code
	Setting Up an iOS Client Application in Xcode
	Adding Source Code Files, Libraries, and Resources to the Xcode Project
	Configuring the Build Settings

	Registering the Application Connection in Sybase Control Center
	Viewing the CallbackHandler and ApplicationCallbackHandler Files
	Creating the User Interface
	Viewing the SubscribeController View Controller
	Viewing the SUP101Appdelegate Files
	Configuring the SubscribeController View

	Creating the PasswordPinViewController
	Creating the MenuListController
	Creating the CustomerListController
	Adding the DetailController and Configuring the View

	Deploying the Device Application

	Learn More About Sybase Unwired Platform
	Index

