SYBASE

Company

Tutorial: iOS Object API Application
Development

Sybase Unwired Platform 2.2
SP04

DOCUMENT ID: DC01213-01-0224-01

LAST REVISED: May 2013

Copyright © 2013 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Sybase Unwired Platform Tutorialsccccoeeeveeviiiiiiiiieeiennnnn. 1
Getting Started with Unwired Platformcccccceeiieeeeee. 3
Installing Sybase Unwired Platformcccccceeeieinnnnnn, 3
Starting Sybase Unwired Platform Services................... 4
Starting Sybase Unwired WorkSpacecccceeeevennn. 4
Connecting to Sybase Control Center............cccoeeevvunnnn. 5
Learning Sybase Unwired WorkSpace Basics............... 5
Developing an iOS Applicationcccoovveeeeiiiiiiiiiiiiiiieeeee, 9
Installing Xcode IDE ... 10
Generating Object API Codeccoovvevvviiiciiieeieei, 10
Setting Up an iOS Client Application in Xcode.............. 12
Adding Source Code Files, Libraries, and
Resources to the Xcode Project..........ccccoee..e. 13
Configuring the Build Settings.........cc.ccvvvvveenennn. 14
Registering the Application Connection in Sybase
CoNtrol CeNLENcvvviiiiiiiiiiiiiieieeieeeeieieeee e 16
Viewing the CallbackHandler and
ApplicationCallbackHandler Filesccccccceeeeens 17
Creating the User Interface ... 17
Viewing the SubscribeController View Controller
... 18
Creating the MenuListController.......................... 30
Creating the CustomerListController................... 31
Adding the DetailController and Configuring the
VIBW i 31
Deploying the Device Applicationccccoeevvviiieeennnnn. 34
Learn More About Sybase Unwired Platform 39
I EX oo ————— 41

Tutorial: iOS Object API Application Development iii

Contents

iv Sybase Unwired Platform

Sybase Unwired Platform Tutorials

Sybase Unwired Platform Tutorials

The Sybase® tutorials demonstrate how to develop, deploy, and test mobile business objects,
device applications, online mobile applications (native OData and REST services based), and
Hybrid App packages. You can also use the tutorials to demonstrate system functionality and
train users.

« Learn mobile business object (MBO) basics, and use this tutorial as a foundation for the
Object API application development tutorials:

o Tutorial: Mobile Business Object Development

Note: For all Object API tutorials, if you opt to use the Mobile Business Object
example project instead of performing the Mobile Business Object Tutorial, you must
deploy the mobile application project to Unwired Server as a prerequisite.
» Create native Object APl mobile device applications:
o Tutorial: Android Object API Application Development
e Tutorial: BlackBerry Object APl Application Development
e Tutorial: iOS Object API Application Development
o Tutorial: Windows Object APl Application Development
o Tutorial: Windows Mobile Object API Application Development
« Create a mobile business object, then develop a hybrid app package that uses it:
o Tutorial: Hybrid App Package Development
« Create an OData mobile application with REST Services
« Tutorial: Android OData Application Development with REST Services
e Tutorial: iOS OData Application Development with REST Services

Tutorial: iOS Object API Application Development 1

Sybase Unwired Platform Tutorials

2 Sybase Unwired Platform

Getting Started with Unwired Platform

Getting Started with Unwired Platform

Install and learn about Sybase Unwired Platform and its associated components.

Complete the following tasks for all tutorials, but you need to perform them only once.

1

Installing Sybase Unwired Platform
Install Sybase Mobile SDK and Unwired Platform Runtime.
Starting Sybase Unwired Platform Services

Start Unwired Server, Sybase Control Center, the sample database, the cache database
(CDB), and other essential services.

Starting Sybase Unwired WorkSpace

Start the development environment, where you can create mobile business objects
(MBOs), manage enterprise information system (EIS) datasources and Unwired Server
connections, develop Hybrid App applications (Hybrid Apps), and generate Object API
code.

Connecting to Sybase Control Center

Open Sybase Control Center to manage Unwired Server and its components.

Learning Sybase Unwired WorkSpace Basics

Sybase Unwired WorkSpace features are well integrated in the Eclipse IDE. If you are
unfamiliar with Eclipse, you can quickly learn the basic layout of Sybase Unwired
WorkSpace and the location of online help.

Installing Sybase Unwired Platform

Install Sybase Mobile SDK and Unwired Platform Runtime.

Before starting this tutorial, install all the requisite Unwired Platform components. See the
Sybase Unwired Platform documentation at h#tp.//sybooks.sybase.con.

Release Bulletin
Installation Guide for Sybase Mobile SDK
Installation Guide for Runtime

Install these Unwired Platform Runtime components:
» Data Tier (included with single-server installation)
e Unwired Server

Install Mobile SDK, which includes:

Tutorial:

iOS Object API Application Development 3

http://sybooks.sybase.com

Getting Started with Unwired Platform

« Development support for native Object API applications, HTML5/JS Hybrid Apps,
and native OData SDK applications.

« Sybase Unwired WorkSpace, the Eclipse-based development environment for MBOs
and Hybrid Apps.

Starting Sybase Unwired Platform Services

Start Unwired Server, Sybase Control Center, the sample database, the cache database (CDB),
and other essential services.

The way in which you start Unwired Platform Services depends on the options you selected
during installation. You may need to manually start Unwired Platform Services.

Select Start > (All) Programs > Sybase > Unwired Platform > Start Unwired Platform
Services.

The following services will be started:

« Sybase Control Center <Version>

» Sybase Unwired Cache DB

e Sybase Unwired SampleDB

e Sybase Unwired Server

Unwired Platform Services enable you to access the Unwired Platform runtime components
and resources.

Note: The Unwired Platform installer creates the Windows service (Unwired Platform
Sample DB) that runs the sampledb server only when you install Unwired Server with a
Personal or Enterprise Development license. If you installed Unwired Server with an
Enterprise Server (production) license, you must create this service using the
sampledb.bat command line utility. See Create or Remove the Windows Service for
sampledb Server (sampledb) Utility in System Administration for more information about
using this command line utility.

Starting Sybase Unwired WorkSpace

Start the development environment, where you can create mobile business objects (MBOs),
manage enterprise information system (EIS) datasources and Unwired Server connections,
develop Hybrid App applications (Hybrid Apps), and generate Object API code.

Select Start > Programs > Sybase > Unwired Platform > Sybase Unwired Wor k Space.
The Sybase Unwired WorkSpace opens in the Mobile Development perspective. The
Welcome page displays links to the product and information.

Next
To read more about Sybase Unwired WorkSpace concepts and tasks, select Help > Help
Contents.

4 Sybase Unwired Platform

Getting Started with Unwired Platform

Connecting to Sybase Control Center

Open Sybase Control Center to manage Unwired Server and its components.

From Sybase Control Center, you can:

View servers and their status

Start and stop a server

View server logs

Deploy a mobile application package

Register application connections

Set role mappings

Assign/Unassign a hybrid application to a device

For information on configuring, managing, and monitoring Unwired Server, click Help >
Online Documentation.

1

Select Start > Programs > Sybase > Sybase Control Center.

Note: If Sybase Control Center does not launch, make sure that the Sybase Control Center
service is started in the Windows Services dialog.

Log in by entering the credentials set during installation.

Sybase Control Center gives you access to the Unwired Platform administration features
that you are authorized to use.

Learning Sybase Unwired WorkSpace Basics

Sybase Unwired WorkSpace features are well integrated in the Eclipse IDE. If you are
unfamiliar with Eclipse, you can quickly learn the basic layout of Sybase Unwired WorkSpace
and the location of online help.

To access the online help, select Help > Help Contents. Some documents are for Sybase
Unwired Platform, while others are for the Eclipse development environment.

The Welcome page provides links to useful information to get you started.

* To close the Welcome page, click X.

* Reopen the Welcome page by selecting Help > Welcome.

* To learn about tasks you must perform, select the Development Processicon.

In Sybase Unwired WorkSpace, look at the area (window or view) that you will use to
access, create, define, and update mobile business objects (MBOSs).

Tutorial:

iOS Object API Application Development 5

Getting Started with Unwired Platform

Window

Description

WorkSpace Navigator view

Use this view to create Mobile Application projects,
and review and modify MBO-related properties.

This view displays mobile application project fold-
ers, each of which contains all project-related re-
sources in subfolders, including MBOs, datasource
references to which the MBOs are bound, personal-
ization keys, and so on.

Enterprise Explorer view

A view that provides functionality to connect to var-
ious enterprise information systems (EIS), such as
database servers, SAP® back ends, and Unwired
Server.

Mobile Application Diagram

The Mobile Application Diagram is a graphical ed-
itor where you create and define mobile business
objects.

Use the Mobile Application Diagram to create
MBOs (including attributes and operations), then
define relationships with other MBOs. You can:

« Create MBOs in the Mobile Application Dia-
gram using Palette icons and menu selections —
either bind or defer binding to a datasource,
when creating an MBO. For example, you may
want to model your MBOs before creating the
datasources to which they bind. This MBO de-
velopment method is sometimes referred to as
the top-down approach.

¢ Dragand drop items from Enterprise Explorer to
the Mobile Application Diagram to create the
MBO - quickly creates the operations and at-
tributes automatically based on the datasource
artifact being dropped on the Mobile Applica-
tion Diagram.

Each new mobile application project generates an
associated mobile application diagram.

Sybase Unwired Platform

Getting Started with Unwired Platform

Window

Description

Palette

The Palette is accessed from the Mobile Application
Diagram and provides controls, such as the ability to
create MBOs, add attributes and operations, and de-
fine relationships, by dragging and dropping the
corresponding icon onto the Mobile Application Di-
agram or existing MBO.

Properties view

Select an object in the Mobile Application Diagram
to display and edit its properties in the Properties
view. While you cannot create an MBO from the
Properties view, most development and configura-
tion is performed here.

Outline view

Displays an outline of the active file and lists struc-
tural elements. The contents are editor-specific.

Problems view

Displays validation errors or warnings that you may
encounter in addition to errors in the Diagram editor
and Properties view. Follow warning and error mes-
sages to adjust MBO properties and configurations
to avoid problems, and use as a valuable source for
collecting troubleshooting information when report-
ing issues to Customer Service and Support.

Error Log view

Displays error log information. This is a valuable
source for collecting troubleshooting information.

Tutorial: iOS Object API Application Development 7

Getting Started with Unwired Platform

8 Sybase Unwired Platform

Developing an iOS Application

Developing an iOS Application

Generate Object API code for the iOS platform, develop a universal iOS device application
with code, and test its functionality. The device application communicates with the database
MBOs that are deployed to Unwired Server.

Prerequisites

Note: This tutorial has been developed using Sybase Unwired Platform 2.2 SP04, Mac OS X
10.8.2, i0OS SDK 6.1, and Xcode 4.6 Development Environment, and executed on an iOS
Simulator v 6.1. If you use a different version, some steps may vary. For more information on
Xcode, refer to the Apple Developer Connection: http.//developer.apple.com/technologies/
tools/whats-new.html.

1
2.

Complete the tasks in Getting Started with Unwired Platform.

Either:

 create the MBO project by completing 7utorial: Mobile Business Object
Development, or

» download and deploy the MBO SUP101 example project (complete project files) from
the SAP® Community Network: Attp.//scn.sap.com/docs/DOC-88083.

Note: If you upgrade Sybase Mobile SDK after completing the tutorial, you can convert
the project to the current SDK by importing the earlier project into the Unwired Workspace
and then accepting the confirmation prompt.

(Optional) To use as a reference and copy source code when completing this tutorial,
download the iOS SUP 101 example project (source code only) from the SAP®
Community Network: Attp.//scn.sap.com/docs/DOC-8803.

Task

Installing Xcode IDE

Download and install the Apple Xcode IDE to build, deploy, and run a mobile application
on an iPhone simulator.

Generating Object APl Code

Launch the code generation wizard and generate the object API code for a replication-
based iOS application.

Setting Up an iOS Client Application in Xcode

Set up an iOS client application in the Xcode IDE.

Registering the Application Connection in Sybase Control Center
Register the iPhone simulator in Sybase Control Center.

Tutorial:

iOS Object API Application Development 9

http://developer.apple.com/technologies/tools/whats-new.html
http://developer.apple.com/technologies/tools/whats-new.html
http://scn.sap.com/docs/DOC-8803
http://scn.sap.com/docs/DOC-8803

Developing an iOS Application

5.

Viewing the CallbackHandler and ApplicationCallbackHandler Files
Look at CallBackHandler and ApplicationCallbackHandler files in Xcode.
Creating the User Interface

Use Interface Builder to create and configure the user interface for the SUP101
application.

Deploying the Device Application
Deploy the SUP101 application to the iPhone simulator for testing.

Installing Xcode IDE

Download and install the Apple Xcode IDE to build, deploy, and run a mobile application on
an iPhone simulator.

1
2.

Open the App Store and search for Xcode.
Install Xcode, entering a valid Apple ID and password.

Generating Object API Code

Launch the code generation wizard and generate the object API code for a replication-based
iOS application.

1

In Sybase Unwired WorkSpace, open the SUP101 mobile application project.

In WorkSpace Navigator, right-click the SUP101 folder and select Open in Diagram
Editor.

Right-click anywhere in the SUP101 - Mobile Application Diagram and select Gener ate
Code.

3. On the Code generation configuration screen, click Next.

Make sure the Customer and Sales_order MBOs are selected, then click Next.
In the Configure Options page, specify these values and click Finish.

Option Description

Language Select Objective C.

Platform Accept the default, iOS.

Unwired Server Select My Unwired Server.

Server domain Accept default. If you are not connected to
Unwired Server, this field is empty. Connect to
Unwired Server to proceed.

10

Sybase Unwired Platform

Developing an iOS Application

Option Description

Page size Accept the default or select a larger page size.
Name prefix The prefix for the generated files. Leave blank.
Project path Accept the default or enter a different location

for the generated project files.

(Optional) Clean up destination before code
generation

Delete all items in the destination folder before
generating the device client files.

+'i Generate Code

Configure options

Configure options For code generation

I =]

—Code generation options

Language: IObjective C

Platform: IiOS

Unwired server: IMy Unwired Server

Server domain: I default

Page size: |1024

Mame prefix; |

Drestination

¥ Project path: | isUP101iGenerated Cods

Browse. ..

" File syskem path: |

[Clean up destination before code generation

Browse. ..

Third-party jar File: |

Browse...

_ U— Ll Ll el I

¥ | Generate metadata classes

[™ | Including chiect manager classes

@

< Back

MiExt = | Finish I

Zancel

6. Click OK in the Success dialog.

Tutorial: iOS Object API Application Development

11

Developing an iOS Application

Obijective-C code is generated into the specified output location and in the WorkSpace
Navigator.

Setting Up an iOS Client Application in Xcode

Set up an iOS client application in the Xcode IDE.

Prerequisites

Generate Objective-C code in to an output location.

Verify that Sybase Unwired Platform is installed in a shared directory so you can access it
from your Mac.

To help create your project, and to later build the interface, download and import the
SUP101 iOS Object API (2.2 SP04) example project from the SAP Community Network
(SCN) at Attp.//scn.sap.com/docs/DOC-8803.

Copy the SUP101iOS Object API example project to your Mac machine and extract it into
afolder. The example project contains the Xcode project and a SUP101 project archive file
to use in Sybase Unwired WorkSpace.

Task

1

On your Mac, start Xcode and select Create a new Xcode proj ect.

2. SelectiOS Application and Single View Application as the project template, and then

click Next.

Specify these values and click Next.

a) Enter SUP101 as the product name.

b) Enter MyCorp (or another value as needed) as the company identifier.
c) Select SUP101 for the class prefix.

d) Select Universal as the device family product.

e) Unselect Use Storyboards.

f) Unselect Use Automatic Reference Counting.

g) Unselect Include Unit Tests.

Select a location in which to save the project and click Create to open it.
Xcode creates a folder, SUP1 01, to contain the project file, SUP101 . xcodeproj, and

another sup101 folder, which contains a number of automatically generated files and a
build folder.

Delete some of the automatically generated files created by default for the Xcode project.
a) In Xcode, delete the suP101 folder under the SUP101 project:
1. Click Remove References.

12

Sybase Unwired Platform

http://scn.sap.com/docs/DOC-8803

Developing an iOS Application

2. In the Finder, manually delete the SUP101 folder from the project folder.
3. Verify that only the SUP101 . xcodepro7 file and the build folder are in the
SuP101 folder.

6. Verify that the SDK and deployment targets are correct:

a) Select SUP101 in Project Navigator and then select Build Settings.

b) Under Project, select SUP101.

¢) Verify that Base SDK under Architectures is setto Latest 10S (i0S 6.1).

d) Scroll to the Deployment section and set the iOS Deployment Targetto 10S 4.3 or
higher.

e) Select Targets > SUP101 and verify that those values are also set.

Copy the files from the sup101 folder on your Windows machine to the sSup101 folder

on your Mac that Xcode created to contain the SUP101 project:

a) Connect to the Microsoft Windows machine where Sybase Unwired Platform is
installed

b) From the Apple Finder menu, select Go > Connect to Server.

c) Enter the name or IP address of the machine, for example, smb: //<machine DNS
name> Of smb://<IP Address>,then click Connect.
You see the shared directory.

d) Copy the SUP_ HOME\MobileSDK22\ObjectAPI\10S folder from the
Unwired Platform installation directory to the SUP101 folder on your Mac.

e) On your Windows machine, navigate to the SUP101 mobile application project and
copy the Generated Code folder to the SUP101 directory on your Mac.

Next
Add libraries, resources, and source code to the SUP101 Xcode project.

See also

Registering the Application Connection in Sybase Control Center on page 16

Adding Source Code Files, Libraries, and Resources to the Xcode

Project

Once you set up the initial project in Xcode, add files from the Sybase Unwired Platform
folders you copied from your Windows machine.

1

In the Xcode Project Navigator, Ctrl-click the SUP101 project, then select Add Filesto
" SUP101".

Select the Generated Code folder, unselect Copy itemsinto destination group's
folder (if needed), and click Add.
The Generated Code folder is added to the project in the Project Navigator.

Tutorial: iOS Object API Application Development 13

Developing an iOS Application

2. Ctrl-click the Framework group, then select Add Filesto " SUP101".

a) Inthe iOS folder you copied from the Sybase Unwired Platform installation, navigate
tothe Libraries/Debug-iphonesimulator directory.

b) Selectthe 1ibAfariaSLL.a, libclientrt.a, libDatavault.a,
1ibMO.a, libPerformancelib.a, libsupClientUtil.a,
1ibSUPObJ.a, 1ibSUPSupportability.a,and libsupUltralite.a
libraries.

¢) Unselect Copy itemsinto destination group'sfolder (if needed).

d) Click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. In this

tutorial, you work with the libraries for the Debug version of the iPhone simulator.
3. Add the source code files from the SUP101 iOS Object API example project.

a) In Xcode, Ctrl-click the SUP101 project and select Add Filesto " SUP101".

b) Select the SUP101 > SUP101 folder from the SUP101 tutorial ZIP file.

c) Select Copy itemsinto destination group'sfolder (if needed).

The project now looks like this:

|al & 4 = =» B |5 4 > |Eysurior |4i>a
PROJECT

TARGETS
Asuriol

) bjs. I e Xcode. 1770675987 /Shar.

normal
LVMGeC 424
DWARF with dSYM File &

Add Target Validate Settings. Add Build Setting

Next
Configuring the build settings.

Configuring the Build Settings
Configure the build settings for the Xcode project, then build the project.

1. Intheright pane, click the Build Settingstab and scroll down to the Search Paths section.
Enter the location of the iPhone simulator libraries in the Header Search Paths and Library
Search Paths fields.

14 Sybase Unwired Platform

Developing an iOS Application

$SRCROOT is a macro that expands to the directory where the Xcode project file resides.
Adding this macro in front of the path is optional.
« In Header Search Paths, enter the path to the 10S/includes directory, then select
the recursive option. In this example, the path is indicated as 10S/includes/**.
* In Library Search Paths, specify profiles for Debug and Release. In this example, the
path is indicated as "i0S/Libraries/$ (CONFIGURATION) $
(EFFECTIVE PLATFORM NAME) ". Escape the path names using double quotes.

w | 4 » | [Hsurio1 R
PROJECT Summary info | Build Settings Build Phases Build Rules
[supr01 Basic @D | Levels Q-
TARCETS Setting A SUPLOL
Force Package Info Generation Yes +
-h-_ Framework Version A

Info.plist File
Info.plist Other Preprocessor Flags
Info.plist Output Encoding
Info.plist Prepracessor Definitions
Info.plist Prepracessor Prefix File
P Preprocess Info.plist File
Preserve HFS Data
Private Headers Folder Path
Product Name
Property List Output Encoding
Public Headers Folder Path
Strings file Output Enceding
Wrapper Extension
Search Paths
Always Search User Paths
Framework Search Paths
Header Search Paths
¥ Library Search Paths
Debug
Release

SUP101/SUP101-Info.plist

binary %

No s

No %
SUP101.app/PrivateHeaders
SUP101

binary +
SUP101.app/Headers
binary 3

app

No &
i0S/includes/**
<Multiple values>

“i0s /Libraries/Debug-iphoneos"
“i0S /Libraries /Release-iphoneos"

Rez Search Paths
Sub-Directories to Exclude in Recursiv... *.nib *.Ipro] *.framework *.gch () .DS_Store CVS .svn .git .hg *.xcodeproj *.xcode *.pbproj *.pbxproj
Sub-Directories to Include in Recursive

User Header Search Paths

In the right pane, select the Build Phases tab, then expand the Link Binary with
Librariessection.

Click the + icon below the list, select the following libraries, and then click Add to add
them to the project:

¢ CFNetwork.framework

e CoreFoundation.framework

e CoreGraphics.framework

e Foundation.framework

e libicucore.A.dylib

e libstdc++.dylib

e libz.dylib

e MobileCoreServices.framework

¢ Security.framework

¢ SystemConfiguration.framework

In the right pane, select the Build Phases tab, then expand the Copy Bundle Resources
section. Select SUP101-info.plist and click on the - sign to remove it.

Tutorial: iOS Object API Application Development 15

Developing an iOS Application

4. Hold the Option key, and select Product > Clean Build Folder, then Product > Build to
test initial project setup. If you correctly followed this procedure, you see a Build
Succeeded message.

Registering the Application Connection in Sybase Control

Center

Register the iPhone simulator in Sybase Control Center.

Prerequisites
Connect to Sybase Control Center.

Task
1.

N

o o M~ W

Next

Log in to Sybase Control Center using the credentials you indicated during installation.

In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

In the left pane, select Applications.

In the right pane, click Application Connections.

Click Register.

In the Register Application Connection window, enter the required information:

User name — userl

Template — SUP101 admin

Application ID - SUP101

Security configuration — admin

Logical role — leave blank or use the logical role when you assigned to this user during
the deployment to Server

Domain —default

Activation code length — 3

Activation expiration (hours) — 72

Specify activation code — 123

Click OK.

In Xcode, view the application source files and walk through how they are created.

See also
Setting Up an iOS Client Application in Xcode on page 12

16

Sybase Unwired Platform

Developing an iOS Application

Viewing the CallbackHandler and
ApplicationCallbackHandler Files

Look at CallBackHandler and ApplicationCallbackHandler files in Xcode.

CallbackHandler isasubclass of SUPDefaultCallbackHandler, and listens for
events sent from the server. It also implements the SUPApplicationCallback protocol
to get connection, registration, and device state change notifications. The header,
CallbackHandler. h,isreferenced in a number of classes in this application, so create it
first. You can create new Objective-C class files from the main menu: File > New > New
File.

ApplicationCallbackHandler is asubclass of
SUPApplicationDefaultCallback, and it gets connection, registration, and device
state change notifications.

There are two threads involved in the SUP101 application—the main thread, which is driven
by the client application user interface controller, and the mobile object client access thread,
which handles data synchronization with the server. In iOS, all code that updates the user
interface must be called on the main thread, so Sybase recommends, as a best practice, that you
send notifications that might trigger changes to the interface from the main thread.

Click the CallbackHandler.h file to view the provided source code.
Click the CallbackHandler .m file to view the provided source code.

ClicktheApplicationCallbackHandler.hfileto view the provided source code.
ClicktheApplicationCallbackHandler .mfileto view the provided source code.

WD P

Creating the User Interface

Use Interface Builder to create and configure the user interface for the SUP101 application.

The SUP101 iOS Object API example project contains the source code for the user interface
for the sample application. Although the user interface is built automatically when you add the
source files to the Xcode project, you can walk through the rest of the tasks and view the source
code to see how to use Interface Builder to build the sample application.

See also
« Deploying the Device Application on page 34

Tutorial: iOS Object API Application Development 17

Developing an iOS Application

Viewing the SubscribeController View Controller

A view controller functions as the root view screen for the SUP101 mobile application.

When you create the user interface, you assign a target action to a control object—in this
example a, Subscribe button that sends a message (the action) another object (the target) in
response to a user event, for example, a touch on the button. The view controller manages and
configures the view.

In Xcode, you can create the view controller by creating a new file using the UIViewController
subclass. Select With X1B for user interface. Xcode creates the corresponding . h, .m,
and . xib files.

1. Inthe SUP101 Xcode project, click SubscribeController.m to view the logic for
the view controller.

2. Click SubscribeController.h to view the header file.

See also

e Creating the MenulL istController on page 30

e Creating the CustomerListController on page 31

» Adding the DetailController and Configuring the View on page 31

Viewing the SUP101Appdelegate Files

The SUP101Appdelegate.hand SUP101Appdelegate . mfilesare created whenyou
create the Xcode project; however, you deleted the automatically generated versions and
replaced them with the ones added from the source code ZIP file.

The SUP101Appdelegate files make use of the SUPApplication and SUPDatavVault
APIs to show how to store and retrieve sensitive data (such as Sybase Unwired Platform
credentials) using a PIN.

The applicationDidFinishLaunching method checks to see if the application has
been run before, then prompts the device user for a PIN to unlock the application; the Sybase
Unwired Platform user's password is also requested.

Control passesto the initializeSUP101 method. This code sample does one of two
things, depending on whether the application has been run before:

« If the application is running for the first time, the sample creates a new SUPDataVault
secured with the user-provided PIN, to store the password and other items.

» Iftheapplication has been run before, the sample attempts to unlock the existing vault with
the provided PIN. If this fails, the application displays an error dialog and exits.

SUPDataVault *suplOlvault = nil;
SUPDataVault *messagingvault = nil;

// Make sure to set the application identifier same as the project

18

Sybase Unwired Platform

Developing an iOS Application

name. This is case sensetive.

// Setting the identifer first is essential to getting any
information from the SUPApplication class

// about registration, connection and context.

SUPApplication* app = [SUPApplication getInstance];
if (!SUPApplication.applicationIdentifier)

{

app.applicationIdentifier = @"SUP101";

}

if (self.firstRun)

{
NSLog (@"Running the app for the first time.");

// If the application is being run for the first time, we do the
following:

// 1. Remove the messaging data vault created by earlier versions of
the application, if it exists.

// 2. Remove the SUP101 data vault created by earlier versions of the
application, if it exists.

// 3. Create the messaging vault using the PIN as the password,
leaving it unlocked for use by the messaging layer.

// 4. Create the SUP101 data vault using the PIN as the password, and
store the SUP username/password credentials

// and a database encryption key in the vault.

//

Qtry

{

NSLog (@"Delete preexisting messaging vault");

[SUPDataVault deleteVault:kMessagingDataVaultID];

}

@catch (NSException *e)

{

// Ignore any exception

}

Qtry {

NSLog (@"Delete preexisting SUP101 data vault");

[SUPDataVault deleteVault:kSUPl0lDataVaultID];

}

@catch (NSException *e)

{

// Ignore any exception

}

@try {

NSLog (@"Create new SUP101l data vault and store credentials and a
generated encryption key");

suplOlvault = [SUPDataVault createVault:kSUP10lDataVaultID
withPassword:self.pin withSalt:kSUPl0lDataVaultSalt]; // creates the
vault

[suplOlvault setString:Q@"password" withValue:self.password];

if (![suplOlvault isLocked])

{

Tutorial: iOS Object API Application Development 19

Developing an iOS Application

[suplOlvault lock];

}

}

@catch (NSException *exception) {

NSLog (@"Exception in creating new SUP101 data vault: %Q@: %Q",
[exception name], [exception reason]);

[self showNoTransportAlert:kSUP10lErrorFailure];

return;

}

Qtry {

NSLog (@"Create new messaging vault and leave it unlocked");
messagingvault = [SUPDataVault createVault:kMessagingDataVaultID
withPassword:self.pin withSalt:kDVStandardSalt];

}

@catch (NSException *exception) {

NSLog (@"Exception in creating new messaging data vault: %$@: %@",
[exception name], [exception reason]);

[self showNoTransportAlert:kSUP10lErrorFailure];

return;

}
}

else

{

// If the application has been run before, we get the PIN from the
user, and use it to unlock the existing messaging data vault

// (otherwise the messaging layer cannot start).

NSLog (@"App has been run before.");

@try {

NSLog (@"Unlock messaging vault");

messagingvault = [SUPDataVault getVault:kMessagingDataVaultID];

if ([messagingvault isLocked])

{

[messagingvault unlock:self.pin withSalt:kDVStandardSalt];

}

}

@catch (NSException *exception) {

NSLog (@"Exception unlocking messaging data vault: %@: %@", [exception
name], [exception reason]);

[self showNoTransportAlert:kSUP10lErrorBadPin];

return;

}
}

This code sample sets up the notification observers and the Application API settings for
connection to the Unwired Server and registers with the Unwired Server.

// Add the observer to listen for ON REGISTER SUCCESS or

ON_ CONNECT SUCCESS if its the first run or

// subsequent runs respectively.Refer the comments in
registerObserverForCallbackNotifications.

// The observer must be added before the call to registerApplication,
but after applicationIdentifier is

// set and the messaging vault unlocked. (AppIdentifier being set and
vault being unlocked are prerequisites to

20

Sybase Unwired Platform

Developing an iOS Application

// calling [SUPApplication isRegistered]which is used in
registerObserverForCallbackNotifications.
UIViewController *sController = [self.navController
visibleViewController];

if ([sController

respondsToSelector:@selector (registerObserverForCallbackNotificatio
ns)])

{

[sController

performSelector:@selector (registerObserverForCallbackNotifications)
1

}

// When we get a connection failure or a registeration failure, the
callbacks are triggered, which then send out the

// appropriate notifications. Register the observers here to handle
the notifications.

// See onFailure: for more information on handling these failures..
[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (onFailure:) name:ON REGISTER FAILURE object:nil];
[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector (onFailure:) name:ON CONNECT FAILURE object:nil];

Qtry {

suplOlvault = [SUPDataVault getVault:kSUP10lDataVaultID];

if ([suplOlvault isLocked])

{

[suplOlvault unlock:self.pin withSalt:kSUP101lDataVaultSalt];
}

// Register callback handlers. This should be done before any other
SUP code is called.

[SUP101SUP101DB registerCallbackHandler: [CallbackHandler
getInstance]];

[app setApplicationCallback: [ApplicationCallbackHandler
getInstance]];

// Setup the connection properties and login credentials required for
registration.

SUPConnectionProperties* props = app.connectionProperties;

[props setServerName:self.serverName];

[props setPortNumber: [self.serverPort intValue]];

[props setUrlSuffix:@""];

[props setFarmId:self.farmID];

SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
if (self.manualRegistration)

{

login.username = self.connectionName;

login.password = nil;

props.activationCode = self.activationCode;

}

Tutorial: iOS Object API Application Development 21

Developing an iOS Application

else

{

login.username = self.userName;

login.password = [suplOlvault getString:@"password"];

props.activationCode = nil;

}

props.loginCredentials = login;

// Get the connection profile for the database.
SUPConnectionProfile *cp = [SUP101SUP101DB getConnectionProfile];
[cp enableTrace:NO]J;

// Delete any existing database from previous versions.
if (self.firstRun && [SUP101SUP101DB databaseExists])

{

[SUP101SUP101DB deleteDatabase];

}

// Create the database if required and set the encryption key.

if (! [SUP101SUP101DB databaseExists])

{

[SUP101SUP101DB createDatabase];

// We need to generate a new encryption key to encrypt the DB
[SUP101SUP101DB generateEncryptionKey];

// Store the encryption key in the data vault for future use.
SUPConnectionProfile *cp = [SUP101SUP101DB getConnectionProfile];
[suplOlvault setString:Q@"encryptionkey" withValue: [cp
getEncryptionKey]];

}

else

{

// When we are create the database from scratch, we set the database
encryption key in generateEncryptionKey.

// If we were using the database from a previous run of the app and
not creating it each time, an application should

// run the code below instead to successfully access a previously
encrypted database by retrieving the encryption key

// from the datavault and setting it in the connection profile.
NSString *key = [suplOlvault getString:@"encryptionkey"];

NSLog (@"Got the encryption key: %@",key);

[cp setEncryptionKey:key];

}

// Set the synchronization configuration required to sync with the
server.
SUPConnectionProfile *sp =
getSynchronizationProfile];
[sp setDomainName:(@"default"];
[sp enableTrace:YES];

// by default the AsyncReplay is enabled. We will turn it off. This
will make the next syncrhonization a blocking call.

[sp setAsyncReplay:NO];

[sp setUser:self.userName];

[sp setPassword: [suplOlvault getString:@"password"]];

[SUP101SUP101DB

22

Sybase Unwired Platform

Developing an iOS Application

}

@catch (SUPPersistenceException * pe) {

NSLog (@"%@: %@", [pe name], [pe message]);
[self showNoTransportAlert:kSUPl10lErrorFailure];
return;

}

@catch (NSException* e) {

NSLog (@"%@: %@", [e name], [e reason]);

[self showNoTransportAlert:kSUP10lErrorFailure];
return;

}

@finally

{

if (![suplOlvault isLocked])

{
[suplOlvault lock];
}
}

@try {

// Initialize generated package database class with this application
instance.

[SUP101SUP101DB setApplication:appl];

// Register the application with the server.
[app registerApplication:100];

// Update the value of self.firstRun, We have created the vault and
registered with server at this point.

self.firstRun = (! [MessagingClientLib isMessagingDBExist] ||

! [SUPDataVault vaultExists:kSUP101DataVaultID]) ;

}
@catch (SUPApplicationTimeoutException* tex)

{

NSLog (@"%@: %@Q@", [tex name], [tex message]) ;
[self showNoTransportAlert:kSUP10lErrorFailure];
return;

}

@catch (NSException *e)

{

// When we are faced with a registeration error or connection error,
the 'onRegistrationStatusChanged'

// or on 'onConnectionStatusChanged' callbacks are triggered in which
we send the ON CONNECT FAILURE

// notification or the ON _REGISTER FAILURE notification to handle it
// and show the alert window to the user.So we don't have to do it
again here.

// For all other failures, other than the timeout exception above ,
we will handle it here.

if ([SUPApplication registrationStatus] =
SUPRegistrationStatus REGISTRATION ERROR)
{

return;

}

Tutorial: iOS Object API Application Development 23

Developing an iOS Application

if ([SUPApplication connectionStatus] ==
SUPConneCtionStatuS_CONNECTION_ERROR)
{

return;

}

NSLog (@"%@: %@", [e name], [e reason]);
[self showNoTransportAlert:kSUPl10lErrorFailure];
return;

}

On the first run, the onRegistrationStatusChanged method in the callback handler
posts an ON_REGISTER_SUCCESS notification. For subsequent runs, the
onConnectionStatusChanged method in the callback handler posts an
ON_CONNECT_SUCCESS notification. Both notifications are mapped to
SUP101AppDelegate's onConnectSuccess method. This method enables the
synchronize button on screen.

If you are connecting to the Unwired Server through a Relay Server, then you must provide
additional information for the database synchronization profile:

* Add the certificate file provided by the Relay Server to the Resource folder of your
Xcode project.
* Add this code:

SUPConnectionProfile *sp = [SUP101SUP101DB
getSynchronizationProfile];

[sp setNetworkProtocol:@"https"]; // or http

[sp setPortNumber:443]; // if http then corresponding port

[sp
setNetworkStreamParams:@"trusted certificates=certificateName;com
pression=zlib;url suffix=urlsuffixProvidedByTheRelayServer"];

* NetworkProtocol — http or https.

* PortNumber —the correct port number for the selected NetworkProtocol.

* NetworkStreamParams — certificateName: the name of the certificate you added in
the Resource folder.

urlsuffixProvidedByTheRelayServer: the URL suffix provided by the Relay Server

Configuring the SubscribeController View

Use Interface Builder to configure the SubscribeController.xib file and create the
user interface. Although the provided XIB file is already configured, you can walk through the
steps to see how to create the interface.

1. Clickthe SubscribeController.xib file toreveal aview of the (presently empty)
screen in the right pane and the following three items represented by icons in the middle
pane:

24

Sybase Unwired Platform

Developing an iOS Application

< File's Owner — the object that is set to be the owner of the user interface, which is
typically the object that loads the interface. In this tutorial, this is the
SubscribeController.

L File's Owner

« First Responder — the first responder proxy object handles events. Connecting an
action to the first responder means that when the action is invoked, it is dynamically
sent to the responder chain.

9 <=

* View — appears in a separate window to allow editing.

2. Select the File's Owner icon, click View in the utility area, click Show the | dentity
I nspector, and make sure SubscribeController appears in the Class field under
Custom Class.

¥ Custom Class

Class | SubscribeController r

b User Defined Runtime Attributes
¥ Document

Label | File's Owner

®
Object ID -1
Lock | Inherited - (Nothing) =
Notes | = | = |=|=|---|[-] =
Mo Font T]||+

This tells Interface Builder the class of the object to allow you to make connections to and
from the File's Owner.

3. Clickthe Viewicon, and in the Identity Inspector panel, and make sure UIView appearsin
the Class field under Custom Class.

Tutorial: iOS Object API Application Development 25

Developing an iOS Application

D B8 (¥ « ©

¥ Custom Class

Class | UlView Ol

¥ ldentity

Restoration 1D

b User Defined Runtime Attributes
¥ Document

Label | ¥code Specific Label

X

Object ID 1
Lock | Inherited - (Nothing) :I
Notes | = =| =| = ---|[F] |

Mo Font @] |
| |

4. To create a Subscribe button, select View > Utilities> Show Object Library.

a) In the Object Library pane, select the Round Rect Button item, and drag it onto the

view.

0D {} & =
['| J] objects = 1EE

Label - A variably sized amount of m
Label static text.

-~ Round Rect Button - Intercepts
| touch events and sends an action
“— message to a target object when...

Segmented Control - Displays
| 1 2 | multiple segments, each of which
“——— functions as a discrete button.

#~ Text Field - Displays editable text
Text and sends an action message to a

target object when Return is tapped. | ¥

b) Double-click it, enter Subscribe, and press Enter.

. To make connections to the user interface from the view controller, the
SubscribeController.h file contains the outlets, property declarations for the instance

variables, and a declaration for the action method.
- (IBAction)buttonPressed: (id) sender;

Sybase Unwired Platform

@property (nonatomic,
@property (nonatomic,

Developing an iOS Application

retain) IBOutlet UIButton *button;
retain) MenulListController *menuController;

6. Inthe Accessibility section of the Identity Inspector, unselect Enabled.
The application cannot subscribe to the server for updates until it is connected.

a

=

7. Ctrl-click the Subscribe button to show the inspector.

Label | Xcode Specific Label

®

Object ID

1
Lock [Inherited - (Nothing) [%]
Motes [_| Show With Selection

¥ Accessibility

Accessibility] Enabled

Label
Hint
Traits [Button] Link
) image) selected
) Plays Sound

[T Keyboard Key

[Static Text

7] Summary Element

E User Interaction Enabled

[T Updates Frequently 3
") Search Field v
D ()% m
['[Jl] objects E1EE

Label - A variably sized amount of m
Label static text.

8. Drag from the circle to the right of Touch Up I nsideto the File'sOwner icon and release,
then click buttonPressed to establish a connection between the Subscribe button and the

button's action method:

Tutorial: iOS Object API Application Development

27

Developing an iOS Application

%]

[] Button - Subscribe
¥ Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Touch Cancel

Touch Down

SN

| :] Touch Down Repeat
| Subscribe [Touch Drag Enter
h £ Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up In... # File's ...
button...

Touch Up Outside
Value Changed @]
Referencing Outlets

Mew Referencing Outlet O
Referencing Outlet Collections
New Referencing Outlet Colle... ()

Making Connections

Add Navigation Controllers to MainWindow iPhone.xib and
MainWindow iPad.xib, and create a connection from the AppDelegate to the
Navigation Controller.

1. Inthe left pane, under the i Phone folder, click the MainWindow iPhone.xib
file.

If you do not see the Navigation Controller in the middle pane, drag it from Objects to the
middle pane:

28 Sybase Unwired Platform

Developing an iOS Application

|m|om & 4 = =» B w4 > | [SUP101 [Js.) [i) FM> @ M) @ Navigation Controller » () View Controller - Root View Controller |« . B D B|lE|w s ©

sup101 ¥ Custom Class
7 B3 targer, 05 3ok si0

tohecomae &7

» G CPNetwork framework Class [SubscribeControlier O v |
» i CoreFoundation.framework ¥ _Identity
libicucare.Adylib
libstde+ +.dylib LRI
libz.dylib »_User Defined Runtime Attributes
» &% MobileCoreServices. framework =
¥ K Security.framework

» 5 SystemConfiguration.framenork @ L Bl view Concroller - oot View
v supion = =
» [Classes | x
< Default-568h@2x.png Root View Controller ObjectiD 11
" nfoPliststrings Lock [mherited (othing) ¢
> & Fad nherited - Moting)__+)
v []iPhene
)

Tn] SUPL01AppDelegate Phone.n]

ml SUP101AppDelegate_iPhone.m

Bl @

¥ [Resources
|41 CustomertistControllerxib

Notes [=

|72 DeailControlleraxib]
|/, MenuListController.xib
B subscribeController.xib
» () settings.bundle
[} SUP101-Info.plist
[h] SUP101-Prefix.pch
b [Generated Code
v [Frameworks
| libAfariaSLLa
| libclientrta
[ibDatavaulta D U|s|m

[libMO.2 (Tl ovjects BlE=
[libPerformanceLib.a ==
| libsupClientUtil.a Label - A variably sized amount of

®[

[libSUPObj.a Label ric et

| libSUPSupportability.a

] libsupUltralite.a Round Rect Button - Infercepts
» &= UIKit framework touch events and sends an action
e message t0 a target object wher...

2. Under Objects in the middle pane, Ctrl-drag from the AppDelegateicon to the Navigation
Controller icon to create a havController outlet.

5 Objects

| Window

¥ & Mavigation Controller
®< Navigation Bar
») View Controller - Root View Controller

3. Click the expansion arrow at the bottom of the middle pane to switch to list view, select
Navigation Controller > View Controller, and in the Identity Inspector, select
SubscribeController inthe Classfield.

Tutorial: iOS Object API Application Development 29

Developing an iOS Application

m | 4 p | [ysuplory[s..»

) @™ B M. @ Navigation Controller) () View Controller - Root View Controller | 4

0D BB @ & ©

[T} Placeholders

File's Owner
@ First Responder
W Objects
¥ App Delegate
Window
w @ Navigation Controller
#= Navigation Bar

& Navigation Item - Ro.

Root View Controller

¥ Custom Class.
Class | SubscribeController v

¥ _Identity

Restoration ID
b User Defined Runtime Attributes
¥ Document
Label | View Controller - Root View
Controller
x
Object ID 11
Lock | Inherited - (Nothing) s |

0O)| % =

||l objects

R

Label - A variably sized amount of
static text.

Label

Round Rect Button - Intercepts
touch events and sends an action
message 10 a target object when...

Segmented Control - Displays
9 | 2 | multiple seaments, each of which
functions as a discrete button.

Once the class is selected, the ViewController name in the hierarchy changes to
SubscribeController and the connection from the AppDelegate to the Navigation

Controller is created.

4. Repeat steps 1 - 3 to add a navigation controller to MainWindow iPad.xib.

Creating the MenuListController

Create the menu list view.

The source files you added from the SUP101 iOS Object API example project contain the
MenuListController.h,MenuListController.m, and
MenuListController.xib files that create the menu list view. To create these files
manually in Xcode, create a new file using the UlViewController subclass template, then
indicate it is a subclass of UITableViewController. Select With XIB for user

interface.

1. View the MenulListController.h file.
View the MenuListController.mfile.

MenulListController .misatableview controllerthat displays two menuitems: List
and Create. Tap a row to move to the corresponding screen.

30

Sybase Unwired Platform

Developing an iOS Application

See also

» Viewing the SubscribeController Viiew Controller on page 18

» Creating the CustomerListController on page 31

» Adding the DetailController and Configuring the View on page 31

Creating the CustomerListController
Create the customer list view.

The source files you added from the SUP101 iOS Object API example project contain the
CustomerListController.h, CustomerListController.m,and
CustomerListController.xib files which create the customer list view. To create
these files manually in Xcode, create a new file using the UlViewController subclass template,
then indicate it is a subclass of UITableViewController. Select With XIB for user
interface.

1. Viewthe CustomerListController.h file.
2. View the CustomerListController.mfile.

CustomerListController.mis a table view controller that displays the customer
data in the client database. The viewWillAppear method uses the Object API to query
the database for a list of all Customer objects, and builds an NSArray that is used by this
class as the datasource for displaying the table view.

If a row is tapped, the accessoryButtonTappedForRowWithIndexPath
method is executed, which pushes a DetailController onto the stack to display
additional information and allow the data to be modified.

See also

» Viewing the SubscribeController View Controller on page 18

e Creating the Menul istController on page 30

» Adding the DetailController and Configuring the View on page 31

Adding the DetailController and Configuring the View
Create the DetailController.xib.

The detail controller view displays information about a single customer in the client database.
The source files you added from the SUP101 iOS Object API example project contain the
DetailController.h, DetailController.m, and DetailController.xib
files that create the customer detail view. This file also supports creating a new customer or
deleting an existing customer. To create these files manually in Xcode, you would create a new
file using the UlViewController subclass template, then indicate it is a subclass of
UIViewController. Select With XIB for user interface.

Although the provided XIB file is already configured, you can walk through the steps to see
how to create the interface.

Tutorial: iOS Object API Application Development 31

Developing an iOS Application

Click the DetailController.xib file to open Interface Builder.

Select View > Utilities> Object Library.

In the Object Library pane, select the Text Field item, and drag it onto the view three times
to create three text fields aligned vertically to the right of the screen.

You can resize the text fields using the resize handles, and position the button by dragging
it to the desired location.

In the Object Library panel, select the L abel item, and drag it onto the view three times to
create three labels to the left of and aligned with the three text fields. Replace the default
Label text with:

e First Name

e Last Name

e Phone

In the Object Library panel, select the Round Rect Button item, drag it onto the view, and
rename it Submit. Add a Delete button in the same way.

To make connections to the user interface from the view controller, the
DetailController.h file contains the outlets, property declarations for the instance
variables, and a declaration for the action method.

#import <UIKit/UIKit.h>
#import "SUP10lCustomer.h"
#import "CallbackHandler.h"

@class CallbackHandler;

@interface DetailController
BOOL deleteRecord;

UIViewController {

}

@property (nonatomic, retain) IBOutlet UITextField *fname;
@property (nonatomic, retain) IBOutlet UITextField *lname;
@property (nonatomic, retain) IBOutlet UITextField *phone;
@property (nonatomic, retain) SUP101Customer *originalObj;
@property (nonatomic, retain) IBOutlet UIButton *submitButton;
@property (nonatomic, retain) IBOutlet UIButton *deleteButton;
@property (nonatomic, retain) IBOutlet UILabel *label;
@property (nonatomic, assign) BOOL deleteRecord;

IBAction)buttonPressed: (id) sender;

void) keyBoardOff;
void) cleanForm;

-
- (IBAction)
=
—(

keyBoardOff

- (void) setupNotification;

(id)

sender;

- (void) reeplaySuccess: (NSNotification *)notification;
- (void) reeplayFailure: (NSNotification *)notification;
@end

32

Sybase Unwired Platform

Developing an iOS Application

6. View the DetailController.mfile.

This class displays detailed information about a single customer in the client database. The
information can be edited. If the data is changed and the Submit button is pressed, the
buttonPressed method uses Object API calls to save the changes in the client
database, send the changes to the server, and disable the Submit button.

If the server accepts the changes, the callback handler posts an ON_REPLAY_SUCCESS
notification, which causes the onReplaySuccess notification handler to run. The
cached Ul data is refreshed from the database and the Submit button is reenabled.

This class also registers for the ON_REPLAY_FAILURE notification to handle the case
where the server rejects the changes, or an error occurs on the server side.

If you press the Deletebutton, the but tonPressed method uses the Object API calls to
delete the record, then initiates a synchronization call to send the delete request to the
server. If the server accepts the changes, the callback handler posts an
ON_REPLAY_SUCCESS notification and the list page is shown.

If the Create option is selected from the menu list, the DetailController is loaded with an
empty form. The Submit button is called Create. If you fill out the form and press the
Create button, a new record is created in the local database and a synchronization call is
initiated. If the server accepts the new record, an ON_REPLAY_SUCCESS notification is
posted.

7. Clickthe DetailController.xib filetoopenitin Interface Builder, click the First
Name text field, and select View > Utilities > Attributes I nspector.

8. In the Attributes Inspector pane, scroll to the View section and enter 1 in the Tag field.
9. Set the tags for the Last Name and Phone text fields to 2 and 3 respectively.

10. Ctrl-drag from the File' sOwner icon in the middle pane to each of the text fields and select
the fname, Iname, and phoneoutlets, respectively, to create connections between the text
fields and the outlets defined in the DetailController .mfile.

11. Select View > Utilities> Connections | nspector to confirm that the outlets have been
correctly configured:

Tutorial: iOS Object API Application Development 33

Developing an iOS Application

Deploying the Device Application

First Name :

Last Name :

Phone :

Submit

Delete

~| ¥ Qutlets
| deleteButton = ® Button - Delate @1
[fname (% Text Field [C]
(label i # Label ®
| Iname b= % Text Field @1
(_phane = Text Field [C]
searchDisplayContraller O
| submitButton = ® Button - Submit @1
(view % View [C]
¥ Referencing Outlets
MNew Referencing Qutlet O
¥ Referencing Outlet Collections
Mew Referencing Qutlet Collection O
¥ Received Actions
| buttonPressed: # Button - Submit
_‘ Touch Up Inside j
® Button - Delete
Touch Up Inside
keyBoardOff: O

T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Viewing the SubscribeController View Controller on page 18
Creating the Menul istController on page 30
Creating the CustomerListController on page 31

12. Ctrl-drag from the File's Owner icon in the middle pane to the Submit button and select
submitButton.

13. Repeat steps 6 — 12 for the Delete button as for the Submit button.

Prerequisites
Register an application connection in Sybase Control Center.

Deploy the SUP101 application to the iPhone simulator for testing.

You must be connected to the server where the mobile application project is deployed.

1. From the top menu, select Product > Edit Schemeto iPhone 6.1 Simulator.

34

Sybase Unwired Platform

Developing an iOS Application

[supio1 _+ | [iPhone 6.1 Simulater] (]
Scheme Destination Breakpoints
» [Build Inffe | Arguments | Options Diagnostics

1 target

¥ Arguments Passed On Launch

Test

Debug

Profile SUP101.app
¥ 2 Release i
[ES Analyze ¥ Environment Variables

Debug

= Name Value

> Archive

Release

+ —
Expand Variables Based On SUP101
Build settings like S{ARCHS) will be expanded relative to this target.
Duplicate Scheme Manage Schemes... | (OK |

2. Select Product > Build then Product > Run to build the project and start the iPhone
simulator.

3. In the iPhone applications screen, open the SUP101 application.
When you run the application for the first time, it exits immediately with a dialog asking
you to enter the application settings in the Settings application.

4. In the iPhone simulator, go to Settings > SUP101 to enter the connection settings.

* SUP Server —the machine that hosts the server where the SUP101 mobile application
project is deployed.

e SUP Server Port — Unwired Server port number. The default is 5001.

e Farm ID - the company ID you entered when you registered the device in Sybase
Control Center, in this case, 0.

¢ SUP Username - the user to be authenticated, supAdmin.

Tutorial: iOS Object API Application Development 35

Developing an iOS Application

Carrier =

SUP 101 Settings

SUP Server

SUP Server Port 5001
Farm ID 0

SUP Username supAdmin
Manual registration

If manual connection:
Connection Name

Activation Code

N 4

If the Manual registration switch is off, the application attempts an automatic registration,
creating an application registration with the same name as the Unwired Platform user
name (“"supAdmin" in this example). This allows a client with a valid Unwired Platform
user name and password to connect and register with the server without manual
registration.

36 Sybase Unwired Platform

Developing an iOS Application

If the Manual registration switch is on, the connection name and activation code must be
filled in, and must match an application connection that has already been created in Sybase
Control Center (see Registering the Application Connection in Sybase Control Center).

In the iPhone applications screen, reopen the SUP101 application.

Enter a pin with which to securely store your Sybase Unwired Platform password, and a
database encryption key that is generated when the application launches. For subsequent
launches of the application, you need only enter the PIN.

Enter a PIN, and enter the password for the Unwired Platform user name entered in step
4,

Click Synchronize.

Click List.

Select a customer record from the customer list and double-click to open the detail view.
The customer detail shows the First Name, Last Name, and Phone.

10. Change the First Name to something else, and click Update.

See also

Creating the User Interface on page 17

Tutorial: iOS Object API Application Development 37

Developing an iOS Application

38

Sybase Unwired Platform

Learn More About Sybase Unwired Platform

Learn More About Sybase Unwired Platform

Once you have finished, try some of the other samples or tutorials, or refer to other
development documents in the Sybase Unwired Platform documentation set.

Check the Product Documentation Web site regularly for updates: Attp.//sybooks.sybase.com/
sybooks/sybooks.xhtml?id=1289&, c=firsttab&,a=0&,p=categories, then
navigate to the most current version.

Tutorials
Try out some of the other getting started tutorials available on the Product Documentation
Web site to get a broad view of the development tools available to you.

Example Projects

An example project contains source code for its associated tutorial. It does not contain the
completed tutorial project. Download example projects from the SAP® Community Network
(SCN) at Attp.//scn.sap.com/docs/DOC-8803.

Samples
Sample applications are fully developed, working applications that demonstrate the features
and capabilities of Sybase Unwired Platform.

Check the SAP® Development Network (SDN) Web site regularly for new and updated
samples: https.//cw.san.sap.com/cw/groups/sup-apps.

Online Help
See the online help that is installed with the product, or available from the Product
Documentation Web site.

Developer Guides
Learn best practices for architecting and building device applications:

e Mobile Data Models.: Using Data Orchestration Engine — provides information about
using Sybase Unwired Platform features to create DOE-based applications.

* Mobile Data Models: Using Mobile Business Objects— provides information about
developing mobile business objects (MBOs) to fully maximize their potential.

* SAP Mobile WorkSpace: Mobile Business Object Development — provides information
about using SAP Mobile Platform to develop MBOs and generate Object API code that
can be used to create native device applications and Hybrid Apps.

Use the appropriate API to create device applications:

» Developer Guide: Android Object APl Applications
» Developer Guide: BlackBerry Object APl Applications

Tutorial: iOS Object API Application Development 39

http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://scn.sap.com/docs/DOC-8803
https://cw.sdn.sap.com/cw/groups/sup-apps

Learn More About Sybase Unwired Platform

» Developer Guide: iOS Object API Applications

» Developer Guide: Windows and Windows Mobile Object API Applications
o Developer Guide: Hybrid Apps

o Developer Guide: OData SDK

» Developer Guide: REST API Applications

Customize and automate:

o Developer Guide: Unwired Server Runtime > Management APl — customize and
automate system administration features.

Javadoc and HeaderDoc are also available in the installation directory.

40

Sybase Unwired Platform

Index

Index
A

application callback handler 17 o

application connection 16 Obiect AP tutorials 1
ApplicationCallbackHandler file 17 Ob}ective-C code, generating 10

c s
callback handler 17
CallbackHandler file 17 samples
connection, creating 28 downloading 39
customer list view 30, 31 SubscribeController view 24
CustomerListController 30, 31 SUP_iOS_Custom_Dev_Tutorial_code.zip 12
SUP101Appdelegate files 18
Sybase Control Center 16
D connecting to 5
delegate file 18 Sybase Mobile SDK
DetailController.xib 31 installing 3
Sybase Unwired Platform
documentation resources 39
E getting started 3
: installing 3
example projects 1 Sybase Unwired WorkSpace
basics 5
G how to access online help 5
starting 4

generating object API code 10 Sybase Unwired WorkSpace basics 5

H
T
Hybrid App package tutorial 1 o]
troubleshooting information 5
| tutorials 1
downloading 39
iOS application, developing 9
iPhone simulator 34 U
M UlViewController subclass 18
Unwired Platform Runtime
MainWindow_iPad.xib 28 installing 3
MainWindow_iPhone.xib 28 Unwired Platform services 4
mobile business object tutorial 1
\%

N

o view controller, adding 18
navigation controllers 28

Tutorial: iOS Object API Application Development 41

Index

X add source code 13
build settings 14

Xcode project setting up 12

add libraries and resources 13

42 Sybase Unwired Platform

	Tutorial: iOS Object API Application Development
	Contents
	Sybase Unwired Platform Tutorials
	Getting Started with Unwired Platform
	Installing Sybase Unwired Platform
	Starting Sybase Unwired Platform Services
	Starting Sybase Unwired WorkSpace
	Connecting to Sybase Control Center
	Learning Sybase Unwired WorkSpace Basics

	Developing an iOS Application
	Installing Xcode IDE
	Generating Object API Code
	Setting Up an iOS Client Application in Xcode
	Adding Source Code Files, Libraries, and Resources to the Xcode Project
	Configuring the Build Settings

	Registering the Application Connection in Sybase Control Center
	Viewing the CallbackHandler and ApplicationCallbackHandler Files
	Creating the User Interface
	Viewing the SubscribeController View Controller
	Viewing the SUP101Appdelegate Files
	Configuring the SubscribeController View
	Making Connections

	Creating the MenuListController
	Creating the CustomerListController
	Adding the DetailController and Configuring the View

	Deploying the Device Application

	Learn More About Sybase Unwired Platform
	Index

