
Tutorial: iOS Application Development

Sybase Unwired Platform 2.0

DOCUMENT ID: DC01213-01-0200-02
LAST REVISED: May 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Sybase Unwired Platform Tutorials1
Task Flow ..3
Getting Started ...5

Installing Sybase Unwired Platform5
Starting Unwired Platform Services5
Starting Sybase Unwired WorkSpace6
Connecting to Sybase Control Center6
Learning the Basics ..7

Developing an iOS Application ..11
Generating Object API Code ..12
Setting Up an iOS Client Application in Xcode13
Registering the iPhone Simulator in Sybase Control

Center ...16
Creating the SUP101CallbackHandler File17
Creating the User Interface ...20

Adding the SubscribeController View Controller
...20

Adding the CustomerListController29
Adding the DetailController33

Deploying the Device Application38
Learn More about Sybase Unwired Platform41
Index ..43

Tutorial: iOS Application Development iii

Contents

 iv Sybase Unwired Platform

Sybase Unwired Platform Tutorials

The Sybase® Unwired Platform tutorials demonstrate how to develop, deploy, and test mobile
business objects, device applications, and mobile workflow packages. You can also use the
tutorials to demonstrate system functionality and train users.

• Learn mobile business object (MBO) basics, and create a mobile device application:
• Tutorial: Mobile Business Object Development

• Create native mobile device applications:
• Tutorial: BlackBerry Application Development
• Tutorial: iOS Application Development

• Create a mobile workflow package:
• Tutorial: Mobile Workflow Package Development

The tutorials demonstrate a cross section of basic functionality, which includes creating
MBOs that can be used in replication-based or message-based synchronization; and using
various Sybase Unwired WorkSpace development tools, independent development
environments, and device types.

Table 1. Tutorial summary

Tutorials Mobile
business
objects
(MBOs)

Synchroni-
zation types

Development
tools

Device
types

Tutorial: Mobile Business Ob-
ject Development

Create new
MBOs

Replication-
based

Sybase Unwired
WorkSpace

N/A

Tutorial: BlackBerry Applica-
tion Development

Create new
MBOs

Replication-
based

Sybase Unwired
WorkSpace

BlackBerry

Tutorial: iOS Application De-
velopment

Create new
MBOs

Message-based Sybase Unwired
WorkSpace

iPhone

Tutorial: Mobile Workflow
Package Development

Create new
MBOs

Message-based Mobile Workflow
Forms Editor

Windows
Mobile

iPhone

Sybase Unwired Platform Tutorials

Tutorial: iOS Application Development 1

Sybase Unwired Platform Tutorials

 2 Sybase Unwired Platform

Task Flow

Use this tutorial to develop a device application for an Apple iOS device using message-based
synchronization and custom coding. Test the application on a simulator.

Table 2. Eclipse Tutorials

Task Goals Steps required to complete the
task

Getting started • Install all required WorkSpace
components and external re-
sources.

• Start Unwired Server.

• Open the Mobile Development
perspective, and become famil-
iar with the views of the per-
spective, the Mobile Applica-
tion Diagram.

• Install Sybase Unwired Platform 2.0.

• Start the Unwired Platform services.

• Start Sybase Unwired Workspace.

Note: These tasks are prerequisites for
all the other tutorials. You need to per-
form them only once.

Developing a de-
vice application

• Create an iOS device applica-
tion, and run it on the iPhone
simulator.

• Generate the Object API code for
iOS.

• Set up the iOS client project in
Xcode.

• Register the iPhone simulator in
Sybase Control Center.

• Create the SUP101CallbackHandler
file.

• Create the iOS application user in-
terface.

• Deploy the iOS application to the
simulator.

Task Flow

Tutorial: iOS Application Development 3

Task Flow

 4 Sybase Unwired Platform

Getting Started

Goal: Install and learn about Sybase Unwired Platform and its associated components.

The following tasks are required, unless otherwise noted, for all tutorials, but you need to
perform them only once.

1. Installing Sybase Unwired Platform on page 5

2. Starting Unwired Platform Services on page 5

3. Starting Sybase Unwired WorkSpace on page 6

4. Connecting to Sybase Control Center on page 6

5. (optional) Learning the Basics on page 7

Installing Sybase Unwired Platform
Goal: Install Sybase Unwired Platform.

Install these Sybase Unwired Platform components:

• Data Tier
• Unwired Server
• Unwired WorkSpace

If Unwired Platform is already installed and any of these components are missing:

1. Start the Sybase Unwired Platform installer.
2. Follow the instructions in the installation wizard.
3. Select the required components, and complete the installation.

For complete installation instructions, see the Sybase Unwired Platform Installation Guide
and Release Bulletin.

Starting Unwired Platform Services
Goal: Start Unwired Server and the sample database.

Select Start > Programs > Sybase > Unwired Platform > Start Unwired Platform
Services.

Getting Started

Tutorial: iOS Application Development 5

Starting Sybase Unwired WorkSpace
Goal: Start Unwired WorkSpace.

1. Select Start > Programs > Sybase > Unwired Platform > Unwired WorkSpace.

The Welcome page displays links to product information, and to the product.

2. To read more about Sybase Unwired WorkSpace concepts and tasks, select Help > Help
Contents from the main menu.

Connecting to Sybase Control Center
Goal: Open the Web-based Sybase Control Center administration console to manage
Unwired Server and its components.

From Sybase Control Center, you can:

• View servers and their status
• Start and stop a server
• View server logs
• Deploy a mobile application package
• Register devices
• Set role mappings

For information on configuring, managing, and monitoring Unwired Server, select Help >
Online Documentation.

1. Select Start > Programs > Sybase > Sybase Control Center.

Note: If Sybase Control Center does not launch, make sure that the Sybase Unified Agent
service is started. See the Installation Guide for details.

2. Log in using the default login:

• User name – supAdmin

• Password – s3pAdmin

Logging in to Sybase Control Center allows you access to Unwired Platform
administration features that you are authorized to use.

Getting Started

 6 Sybase Unwired Platform

Learning the Basics
Goal: Learn about Sybase Unwired WorkSpace and how to access help.

Prerequisites
Start Unwired WorkSpace.

Task

1. From the Welcome page, select any of the links to familiarize yourself with the Unwired
WorkSpace environment.

To close this page, click the X. You can reopen this page by selecting Help > Welcome.

2. Select Start Development to access the Sybase Unwired WorkSpace development
environment.

Look at the area (window or view) that you will be working in to access, create, define, and
update mobile business objects (MBOs).

View Description

WorkSpace Navigator This view displays mobile application project fold-
ers, each of which contains all project-related re-
sources in subfolders, including MBOs, data source
references to which the MBOs are bound, personal-
ization keys, and so on.

Use this view to review and modify MBO-related
properties.

Enterprise Explorer A window that provides functionality to connect to
various enterprise back-end systems; for example,
database servers, SAP servers, and Sybase Unwired
Server.

Getting Started

Tutorial: iOS Application Development 7

View Description

Mobile Application Diagram A graphical editor where you create and define mo-
bile business objects.

Use the Mobile Application Diagram to create
MBOs (including attributes and operations), then
define relationships with other MBOs. You can:

• Create MBOs in the Mobile Application Dia-
gram using Palette icons and menu selections –
either bind or defer binding to a data source,
when creating an MBO. For example, you may
want to model your MBOs before creating the
data sources to which they bind. This is some-
times called the top-down approach.

• Drag items from Enterprise Explorer and drop
them onto the Mobile Application Diagram to
create the MBO – quickly creates the operations
and attributes automatically based on the data
source being dropped on the Mobile Application
Diagram. This is sometimes called the bottom-
up approach.

Each new mobile application project generates an
associated Mobile Application Diagram.

Palette Access the Palette from the Mobile Application Di-
agram. It provides controls, such as the ability to
create MBOs, add attributes and operations, and de-
fine relationships, by dragging and dropping the
corresponding icon onto the Mobile Application Di-
agram or existing MBO.

Properties view Select an object in the Mobile Application Diagram
to display and edit its properties in the Properties
view. You cannot create an MBO from the Properties
view, but generally, most development and configu-
ration is performed here.

Outline view Displays an outline of the file that is currently open in
the editor area, and lists structural elements. The
contents are editor-specific.

Problem view Displays problems, errors, or warnings that you may
encounter.

3. To access the online help, select Help > Help Contents from the main menu bar.

Getting Started

 8 Sybase Unwired Platform

4. Expand any of the documents that appear in the left pane.

Some documents are for Sybase Unwired Platform, while others are for the Eclipse
development environment.

Getting Started

Tutorial: iOS Application Development 9

Getting Started

 10 Sybase Unwired Platform

Developing an iOS Application

Goal: Generate Object API code for the iOS platform, develop a universal iOS device
application with code, and test its functionality.

Prerequisites
Complete these tasks:

• Getting Started on page 5.
• Tutorial: Mobile Business Object Development, which provides the foundation tasks for

this tutorial:
1. Create a mobile application project.
2. Create the database mobile business objects (MBOs).
3. Deploy the database MBOs.

Task

The device application communicates with the database MBOs that are deployed to Unwired
Server.

Supported platforms include:

• For development, MacOS 10.6 (Snow Leopard) and Xcode 4.0
• For deployment, iOS SDK 4.2 and 4.3

1. Open the SUP101 mobile application project.

In WorkSpace Navigator, right-click the SUP101 folder and select Open in Diagram
Editor.

Note: If you do not see the SUP101 folder, make sure that you have successfully
completed Tutorial: Mobile Business Object Development, which is a prerequisite for this
tutorial.

2. Generate the object API code for iOS on page 12.

3. Set up the universal iOS client application in Xcode on page 13.

4. Register the iPhone simulator in Sybase Control Center on page 16.

5. Create the SUP101 CallbackHandler file on page 17.

6. Add the SubscribeController View controller on page 20.

7. Add the CustomerListController on page 29.

8. Add the DetailController on page 33.

9. Deploy the application to the simulator on page 38.

Developing an iOS Application

Tutorial: iOS Application Development 11

Generating Object API Code
Goal: Launch the code generation wizard and generate the object API code for a message-
based iOS application.

1. Right-click in the SUP101 Mobile Application Diagram and select Generate Code.

2. In the code generation wizard, accept the default, Continue without a configuration, and
click Next.

3. Make sure the Customer and Sales_order MBOs are selected, then click Next.

Note: You can select the code generation configuration if you are using the Advanced
developer profile.

4. Enter these configuration options and click Next:

Option Description

Language Select Objective C.

Platform Accept the default, iOS.

Unwired server Select My Unwired Server.

Server domain Accept default.

Name prefix The prefix for the generated files. Leave blank.

Project path Accept the default or enter a different location
for the generated project files.

(Optional) Clean up destination before code
generation

Select this option to delete all items in the des-
tination folder before generating the device cli-
ent files.

Message-based Default for Objective-C.

Developing an iOS Application

 12 Sybase Unwired Platform

Objective-C code is generated into the specified output location.

Setting Up an iOS Client Application in Xcode
Goal: Set up an iOS client application in the Xcode IDE.

Prerequisites

• Generate Objective-C code in to an output location.
• Ensure the directory where Sybase Unwired Platform is installed is a shared directory so

you can access it from your Mac.

Developing an iOS Application

Tutorial: iOS Application Development 13

• Obtain the header and Objective-C source code files you need to build the user interface
from the SUP_iOS_Custom_Dev_Tutorial_code.zip file. This way, you can
easily copy and paste the code into the corresponding files that are created in Xcode.
• If you are viewing this guide as a PDF, you can obtain the files from the Sybase Product

Documentation Web site at http://sybooks.sybase.com/nav/summary.do?
prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired
+Platform&archive=0. Navigate to this topic in the tutorial, then click the link for the
zip file to access the provided source code files.

• If you are viewing this guide online from the Sybase Product Documention web site,
click SUP_iOS_Custom_Dev_Tutorial_code.zip to access the source code files.

Task

Note: This tutorial was developed using Xcode 4.0 and iOS SDK 4.3. If you use a different
version of Xcode, some steps may vary. For more information on Xcode, refer to the Apple
Developer Connection: http://developer.apple.com/technologies/tools/xcode.html.

1. Start Xcode and select Create a new Xcode project.

2. Select iOS Application and Window-based Application as the project template, and
then click Next.

3. Enter SUP101 as the Product Name, MyCorp as the Company Identifier, select
Universal as the Device Family product, and then click Next.

4. Select a location to save the project and click Create to open it.

Xcode creates a folder, SUP101, to contain the project file, SUP101.xcodeproj and
another SUP101 folder, which contains a number of automatically generated files.

Copy the files from your Windows machine in to the SUP101 folder that Xcode created to
contain the generated source code.

5. Connect to the Microsoft Windows machine where Sybase Unwired Platform is installed:

a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, smb://<machine DNS

name> or smb://<IP Address>.

You see the shared directory.

6. Navigate to the \UnwiredPlatform\ClientAPI\MBS\ObjectiveC directory
in the Unwired Platform installation directory, and copy the includes and libs folders
to the SUP101/SUP101 directory on your Mac.

7. Navigate to the SUP101 mobile application project (for example, C:\Documents and
Settings\administrator\workspace\SUP101), and copy the Generated
Code folder to the SUP101/SUP101 directory on your Mac.

When you have finished copying the files to your Xcode project, it should look like this:

Developing an iOS Application

 14 Sybase Unwired Platform

http://sybooks.sybase.com/nav/summary.do?prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired+Platform&archive=0
http://sybooks.sybase.com/nav/summary.do?prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired+Platform&archive=0
http://sybooks.sybase.com/nav/summary.do?prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired+Platform&archive=0
http://developer.apple.com/technologies/tools/xcode.html

8. In the Xcode Project Navigator, right-click the SUP101 folder under the project, select
Add Files to "SUP101", select the Generated Code folder, unselect Copy items into
destination group's folder (if needed), and click Add.

The Generated Code folder is added to the project in the Project Navigator.

9. Right-click the SUP101 folder under the project, select Add Files to "SUP101", navigate
to the Temp/libs/Debug-iphonesimulator directory, select the
libclientrt.a, libSUPObj.a, and libMO.a libraries, unselect Copy items into
destination group's folder (if needed), and click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. In this
tutorial, you work with the libraries for the Debug version of the iPhone simulator.

10. Right-click the project root, select New Group, and then rename it to Resources.

11. Right-click the Resources folder, select Add Files to "SUP101", navigate to the
includes directory, select the Settings.bundle file, unselect Copy items into
destination group's folder (if needed), and click Add.

The bundle Settings.bundle is added to the project in the Project Navigator.

This bundle adds resources that lets iOS device client users input information such as
server name, server port, user name and activation code in the Settings application.

12. Click the project root and then, in the middle pane, click the SUP101 project.

Developing an iOS Application

Tutorial: iOS Application Development 15

a) In the right pane, click the Build Settings tab, then scroll down to the Search Paths
section.

b) Enter the location of your includes folder ("$SRCROOT/SUP101/includes/
**") in the Header Search Paths field.

$SRCROOT is a macro that expands to the directory where the Xcode project file
resides.

13. In the middle pane select the SUP101 target.

a) In the right pane, select the Build Phases tab, then expand the Link Binary with
Libraries section.

b) Click the + icon below the list, select the following libraries, and then click Add to add
them from the SDK to the project:

• AddressBook.framework

• CoreFoundation.framework

• QuartzCore.framework

• Security.framework

• libicucore.A.dylib

• libstdc++6.dylib

• libz.1.2.3.dylib

14. Select Product > Clean, then Product > Build to test the initial set up of the project. If you
correctly followed this procedure, you see a Build Succeeded message.

Registering the iPhone Simulator in Sybase Control Center
Goal: Register the iPhone Simulator in Sybase Control Center.

Prerequisites
Connect to Sybase Control Center.

Task

1. Log in to Sybase Control Center using the supAdmin/s3pAdmin user name and password.

2. In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

3. In the left pane, select Device Users.

4. In the right pane, click Devices.

5. Click Register.

6. In the Register Device window, enter the required information:

• User name – user1

• Server name – <localhost.sybase.com>

Developing an iOS Application

 16 Sybase Unwired Platform

Note: The information should match the input on the client and
"localhost.sybase.com" should be the actual name of your machine and domain.

• Port – the Unwired Server port, 5001.

• Farm ID – 0

• Activation code – 123

Creating the SUP101CallbackHandler File
Goal: Configure the SUP101CallBackHandler file.

Prerequisites

SUP101CallbackHandler is a subclass of SUPCallbackHandler, and is used to
listen for events sent from the server. The header, SUP101CallbackHandler.h, is
referenced in a number of classes in this application, so you create it first.

There are two threads involved in the SUP101 application — the main thread, which is driven
by the client application user interface controller, and the mobile object client access thread,
which takes charge of message transportation with the server and synchronization with the
application through the mobile object. In iOS, all code that updates the user interface must be
called on the main thread, so it is a good idea to send notifications that might trigger changes to
the interface from the main thread.

Tip: Be sure you saved the SUP_iOS_Custom_Dev_Tutorial_code.zip file to your
development machine so you can easily copy and paste the provided code into the
corresponding .h and .m files in Xcode.

Task

1. In the SUP101 Xcode project, select File > New > New File.

2. Select Objective-C Class and click Next.

3. Enter SUPDefaultCallbackHandler in the Subclass of field and click Next.

4. Enter SUP101CallbackHandler in the Save as field and click Save.
The files SUP101CallbackHandler.h and SUP101CallbackHandler.m are
created in the Project Navigator.

5. Click the SUP101CallbackHandler.h file and replace the existing code with the
provided source code.
#import "SUPDefaultCallbackHandler.h"

// These strings will be used to send out NSNotifications.
#define ON_IMPORT_SUCCESS @"SUPImportSuccess"
#define ON_LOGIN_SUCCESS @"SUPLoginSuccess"
#define ON_LOGIN_FAILURE @"SUPLoginFailure"
#define ON_CONNECT_SUCCESS @"SUPConnectSuccess"

Developing an iOS Application

Tutorial: iOS Application Development 17

#define ON_CONNECT_FAILURE @"SUPConnectFailure"
#define ON_REPLAY_SUCCESS @"SUPReplaySuccess"
#define ON_REPLAY_FAILURE @"SUPReplayFailure"

// For this example we are only handling a small subset of the
notifications
// defined in SUPCallbackHandler. Refer to the iOS Developer's
Guide for SUP for more
// information on when the other callbacks are used.

@interface SUP101CallbackHandler : SUPDefaultCallbackHandler
{
}

@end

6. Click the SUP101CallbackHandler.m file and replace the existing code with the
provided source code.
#import "SUP101CallbackHandler.h"

@implementation SUP101CallbackHandler

- (void)sendNotification:(NSNotification *)notification
{
 [[NSNotificationCenter defaultCenter]
postNotification:notification];
 [notification release];
}

- (void)postNotification:(NSString *)notification withObject:
(id)obj;
{
 // All callback notifications other than onSubscribe: will
happen on a thread other than the main UI thread. So, if you
 // want to update the UI in response to a callback you need to
post the notification from the main thread.
 NSNotification *n = [NSNotification
notificationWithName:notification object:obj];
 [n retain];
 [self
performSelectorOnMainThread:@selector(sendNotification:)
withObject:n waitUntilDone:NO];
}

- (void)onConnectionStatusChange:
(SUPDeviceConnectionStatus)connStatus :
(SUPDeviceConnectionType)connType :(int32_t)errorCode :(NSString
*)errorString
{
 NSString *notification = nil;
 switch(connStatus)
 {
 case CONNECTED_NUM:
 notification = ON_CONNECT_SUCCESS;
 break;

Developing an iOS Application

 18 Sybase Unwired Platform

 case DISCONNECTED_NUM:
 notification = ON_CONNECT_FAILURE;
 break;
 default:
 // Ignore all other status changes for this example.
 break;
 }

 if (notification != nil) [self postNotification:notification
withObject:nil];
}

- (void)onReplaySuccess:(id)theObject
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Replay Successful");

MBOLogInfo(@"===");

 [self postNotification:ON_REPLAY_SUCCESS
withObject:theObject];
}

- (void)onReplayFailure:(id)theObject
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Replay Failure");

MBOLogInfo(@"===");

 [self postNotification:ON_REPLAY_FAILURE
withObject:theObject];
}

- (void)onLoginSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Login Successful");

MBOLogInfo(@"===");

 [self postNotification:ON_LOGIN_SUCCESS withObject:nil];
}

- (void)onLoginFailure
{
 MBOLog(@"=============================");
 MBOLogError(@"Login Failed");
 MBOLog(@"=============================");

 [self postNotification:ON_LOGIN_FAILURE withObject:nil];
}

Developing an iOS Application

Tutorial: iOS Application Development 19

- (void)onSubscribeSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Subscribe Successful");

MBOLogInfo(@"===");
}

- (void)onImportSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"import ends Successful");

MBOLogInfo(@"===");

 [self postNotification:ON_IMPORT_SUCCESS withObject:nil];
}

@end

Creating the User Interface
Use Interface Builder to create and configure the user interface for the SUP101 application.

Adding the SubscribeController View Controller
Goal: Create a view controller that functions as the root view screen for the SUP101 mobile
application.

When you create the user interface, you assign a target action to a control object—in this
example a Subscribe button so that a message (the action) is sent to another object (the target)
in response to a user event, for example, a touch on the button. The view controller manages
and configures the view when asked.

1. In the SUP101 Xcode project, select File > New > New File.

2. Select UIViewController subclass and click Next.

3. Select UIViewController in the Subclass of field, select With XIB for user interface,
and then click Next.

4. Enter SubscribeController in the Save as field and click Save.

The files SubscribeController.h, SubscribeController.m, and
SubscribeController.xib are created in the Project Navigator.

Developing an iOS Application

 20 Sybase Unwired Platform

Configuring the SUP101Appdelegate Files
Goal: The SUP101Appdelegate.h and SUP101Appdelegate.m files are created
when you create the Xcode project, but you must add the view controller property and create
the view controller instance.

Delegates extend the functionality of reusable objects. A delegate allows one object to send
messages to another object specified as its delegate to ask for input, or to be notified when an
event occurs.

1. Click the SUP101Appdelegate.h file and replace the existing code with the provided
code to add the view controller property to the application delegate:
#import <UIKit/UIKit.h>
#import "SUP101CallbackHandler.h"

@interface SUP101AppDelegate : NSObject <UIApplicationDelegate> {

}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController
*navController;
@property (nonatomic, retain) NSDate *connectStartTime;
@property (nonatomic, retain) SUP101CallbackHandler
*callbackHandler;

@end

2. Click the SUP101Appdelegate.m file and replace the existing code with the provided
code to create an instance of the view controller, set it as the value for the property, import
the view controller's header file, synthesize the accessor methods, and make sure the view
controller is released in the dealloc method:
#import "SUP101AppDelegate.h"
#import "SUPMessageClient.h"
#import "SUP101_SUP101DB.h"
#import "SUP101CallbackHandler.h"

@implementation SUP101AppDelegate

@synthesize window, navController, connectStartTime,
callbackHandler;

- (void)alertView:(UIAlertView *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex {
 exit (0);
}

- (void)showNoTransportAlert:(NSInteger) ret
{
 NSString *message = nil;

 if (ret == kSUPMessageClientNoSettings) {
 message = @"The connection settings have not been filled in

Developing an iOS Application

Tutorial: iOS Application Development 21

for this application. Go to Settings, enter the connection
information, and restart this app.";
 } else if (ret == kSUPMessageClientKeyNotAvailable) {
 message = @"Unable to access the key.";
 } else {
 message = @"An error occurred attempting to log in.";
 }

 UIAlertView * noTransportAlert = [[UIAlertView alloc]
initWithTitle:@"Unable to start message server" message:message
delegate:self cancelButtonTitle:@"OK" otherButtonTitles:nil];
 [noTransportAlert performSelectorOnMainThread:@selector(show)
withObject:self waitUntilDone:YES];
 [noTransportAlert release];
}

-(void)onConnectSuccess:(NSNotification *)obj
{
 // Connection to the server was made, so log in.
 // See [CallbackHandler onLoginSuccess] and [CallbackHandler
onLoginFailure]. One of those
 // callbacks will be called at some point in the future.
 [[NSNotificationCenter defaultCenter] removeObserver:self
name:ON_CONNECT_SUCCESS object:nil];
 [[NSNotificationCenter defaultCenter] removeObserver:self
name:ON_CONNECT_FAILURE object:nil];
 [SUP101_SUP101DB beginOnlineLogin:@"supAdmin"
password:@"s3pAdmin"];
}

-(void)onConnectFailure:(NSNotification *)obj
{
 // Once [SUPMessageClient start] is called, ON_CONNECT_FAILURE
is sent from our callback handler
 // until the device is connected or something changes. If we
haven't connected in 30 seconds, give up.
 NSDate *now = [NSDate date];
 if ([now timeIntervalSinceDate:self.connectStartTime] > 30) {
 [SUPMessageClient stop];
 [self showNoTransportAlert:kSUPMessageClientFailure];
 }
}

- (void)applicationDidFinishLaunching:(UIApplication
*)application {

 // Override point for customization after application launch

 // Register a callback handler. This should be done before any
other SUP code is called.
 self.callbackHandler = [SUP101CallbackHandler new];
 [SUP101_SUP101DB
registerCallbackHandler:self.callbackHandler];

 // Don't try to connect if the connection settings have not

Developing an iOS Application

 22 Sybase Unwired Platform

been set up yet.
 if (![SUPMessageClient provisioned]) {
 [self showNoTransportAlert:kSUPMessageClientNoSettings];
 } else {
 // Set log level (optional -- this will generate a lot of
output in the debug console)
 [MBOLogger setLogLevel:LOG_INFO];

 // Normally you would not delete the local database. For
this simple example, though,
 // deleting and creating an empty database will cause all
data to be sent from the
 // server, and we can use [CallbackHandler
onImportSuccess:] to know when to proceed.
 [SUP101_SUP101DB deleteDatabase];
 [SUP101_SUP101DB createDatabase];

 // Start listening for messages from the server.
 [SUP101_SUP101DB startBackgroundSynchronization];

 // Start up the messaging client. This will attempt to
connect to the server. If a connection was
 // established we can proceed with login. See
onConnectFailure: for more information about handling connection
failure.
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onConnectSuccess:) name:ON_CONNECT_SUCCESS
object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onConnectFailure:) name:ON_CONNECT_FAILURE
object:nil];
 self.connectStartTime = [NSDate date];
 [SUPMessageClient start];

 // Create the main UI for the application. We will update it
as we receive messages from the server.
 [window addSubview:navController.view];
 [window makeKeyAndVisible];
 }
}

- (void)applicationDidEnterBackground:(UIApplication
*)application
{
 // In this example, because we delete and recreate the local
database, we need to unsubscribe
 // and shut down the app when it is no longer active. All data
will be sent on next launch.
 [SUP101_SUP101DB unsubscribe];
 [SUPMessageClient stop];
 exit(EXIT_SUCCESS);
}

- (void)dealloc {
 self.navController = nil;
 self.window = nil;

Developing an iOS Application

Tutorial: iOS Application Development 23

 self.callbackHandler = nil;
 self.connectStartTime = nil;

 [super dealloc];
}

@end

Configuring the SubscribeController View
Goal: Use Interface Builder to configure the SubscribeController.xib file and
create the user interface.

1. Click the SubscribeController.xib file to reveal a view of the (presently empty)
screen in the right pane and the following three items represented by icons in the middle
pane:

• File's Owner – the object that is set to be the owner of the user interface, which is
typically the object that loads the interface. In this tutorial, this is the
SubscribeController.

• First Responder – the first responder proxy object handles events. Connecting an
action to the first responder means that when the action is invoked, it is dynamically
sent to the responder chain.

• View – displayed in a separate window to allow you to edit it.

2. Select the File's Owner icon, select View > Utilities > Identity Inspector, and select
SubscribeController in the Class field.

This tells Interface Builder the class of the object to allow you to make connections to and
from the File's Owner.

3. Select the View icon, and in the Identity Inspector panel, select UIView in the Class
field.

4. Select View > Utilities > Object Library. In the Object Library panel, select the Round
Rect Button item, drag it onto the view, and then double-click it and enter Subscribe
and press Return.

5. In the Accessibility section of the Identity Inspector, temporarily uncheck Enabled.

We temporarily disable the button because the application cannot subscribe to the server
for updates until it is connected.

6. Click the SubscribeController.h file and replace the existing code with the
provided code to make connections to the user interface from the view controller, by
specifying outlets and adding property declarations for the instance variables and a
declaration for the action method:
#import <UIKit/UIKit.h>
@class CustomerListController;

@interface SubscribeController : UIViewController {
}

-(IBAction)buttonPressed:(id)sender;

Developing an iOS Application

 24 Sybase Unwired Platform

@property (nonatomic, retain) IBOutlet UIButton *button;
@property (nonatomic, retain) CustomerListController
*listController;

@end

Note: This code references a view controller (CustomerListController) you will create
later in this tutorial. This code says that when the user touches the Subscribe button, the
CustomerList view opens.

7. Click the SubscribeController.m file and replace the existing code with the
provided code.
#import "SubscribeController.h"
#import "SUP101_SUP101DB.h"
#import "SUP101CallbackHandler.h"
#import "Sup101AppDelegate.h"
#import "CustomerListController.h"

@implementation SubscribeController

@synthesize button, listController;

- (void) showListController {
 SUP101AppDelegate *delegate = [[UIApplication
sharedApplication] delegate];
 [delegate.navController
pushViewController:self.listController animated:YES];
}

- (void) onImportSuccess:(NSNotification *)object {
 // We have data, so present the view that will display it.
 self.listController = [[CustomerListController alloc]
initWithStyle:UITableViewStylePlain];
 [self showListController];
 [[NSNotificationCenter defaultCenter] removeObserver:self
name:ON_IMPORT_SUCCESS object:nil];
}

- (IBAction)buttonPressed:(id)sender
{
 if (self.listController != nil) {
 [self showListController];
 } else {
 // Although there is an onSubscribeSuccess notification,
data has not arrived on the device until the server sends
 // onImportSuccess. Don't block the UI thread while waiting
-- always listen for a notification.
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onImportSuccess:) name:ON_IMPORT_SUCCESS
object:nil];
 [SUP101_SUP101DB subscribe];
 }
}

Developing an iOS Application

Tutorial: iOS Application Development 25

/*
 // The designated initializer. Override if you create the
controller programmatically and want to perform customization that
is not appropriate for viewDidLoad.
 - (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle
*)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
 }
 */

- (void)onLoginSuccess:(NSNotification *)notification {
 self.button.enabled = YES;
 [[NSNotificationCenter defaultCenter] removeObserver:self
name:ON_LOGIN_SUCCESS object:nil];
}

- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];

 if (self.listController == nil) {
 // The application cannot subscribe to data updates until
login has completed. Wait for an ON_LOGIN_SUCCESS notification
 // to arrive before enabling the 'Subscribe' button
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onLoginSuccess:) name:ON_LOGIN_SUCCESS
object:nil];
 } else {
 // Already subscribed, and a list controller has been
created. Just show it again.
 [self.button setTitle:@"Show List"
forState:UIControlStateNormal];
 }
}

- (void)viewDidDisappear:(BOOL)animated {
 [super viewDidDisappear:animated];
 [[NSNotificationCenter defaultCenter] removeObserver:self];
}

// Implement viewDidLoad to do additional setup after loading the
view, typically from a nib.
- (void)viewDidLoad {
 self.title = @"Subscribe";
 [super viewDidLoad];
}

/*
 // Override to allow orientations other than the default portrait
orientation.
 - (BOOL)shouldAutorotateToInterfaceOrientation:

Developing an iOS Application

 26 Sybase Unwired Platform

(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
 }
 */

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)dealloc {
 self.listController = nil;
 [super dealloc];
}

@end

8. Click the SubscribeController.xib file and control-click the Subscribe button
to show the inspector.

9. Drag from the circle to the right of Touch Up Inside to the File's Owner icon and release,
then click on buttonPressed to establish a connection between the Subscribe button and
the button's action method:

Developing an iOS Application

Tutorial: iOS Application Development 27

Making Connections
Goal: Add Navigation Controllers to MainWindow_iPhone.xib and
MainWindow_iPad.xib and create a connection from the AppDelegate to the Navigation
Controller.

1. Click the MainWindow_iPhone.xib file and, if the Objects Library pane is not
already visible, select View > Utilities > Object Library to display it.

2. In the Interface Builder menu, drag and drop the Navigation Controller onto the
MainWindow_iPhone.xib documents window.

A new Navigation Controller icon is added to the middle pane.

3. Control-drag from the AppDelegate icon to the new Navigation Controller icon to create
a navController outlet.

4. Click on the expansion arrow at the bottom of the middle pane to switch to list view, select
Navigation Controller > View Controller, and in the Identity Inspector, select
SubscribeController in the Class field.

Developing an iOS Application

 28 Sybase Unwired Platform

Once the class is selected, the ViewController name in the hierarchy changes to
SubscribeController and the connection from the AppDelegate to the Navigation
Controller is created.

5. Repeat these steps to add a navigation controller to MainWindow_iPad.xib.

Adding the CustomerListController
Goal: Create the customer list view.

1. In the SUP101 Xcode project, select File > New > New File.

2. Select UIViewController subclass and click Next.

3. Select UITableViewController in the Subclass of field, select With XIB for user
interface, and then click Next.

4. Enter CustomerListController in the Save as field and click Save.

The files CustomerListController.h, CustomerListController.m, and
CustomerListController.xib are created in the Project Navigator.

5. Click the CustomerListController.m file, and replace the existing code with the
provided code.
#import "CustomerListController.h"
#import "SUP101AppDelegate.h"
#import "DetailController.h"

#import "SUP101_Customer.h"

Developing an iOS Application

Tutorial: iOS Application Development 29

@implementation CustomerListController
@synthesize customerList, childController;

- (void)viewWillAppear:(BOOL)animated {

 self.title = @"Customers";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 SUP101_CustomerList *customers = [SUP101_Customer findAll];
 if ([customers length] > 0)
 {
 for (SUP101_Customer * oneRec in customers)
 {
 [array addObject:oneRec];
 }
 }
 self.customerList = array;
 [array release];
 [[self tableView] reloadData];
 [super viewWillAppear:animated];
}

/*
 - (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
 }
 */
/*
 - (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
 }
 */
/*
 - (void)viewWillDisappear:(BOOL)animated {
 [super viewWillDisappear:animated];
 }
 */
/*
 - (void)viewDidDisappear:(BOOL)animated {
 [super viewDidDisappear:animated];
 }
 */

/*
 // Override to allow orientations other than the default portrait
orientation.
 - (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation == UIInterfaceOrientationPortrait);
 }
 */

Developing an iOS Application

 30 Sybase Unwired Platform

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

#pragma mark Table view methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

// Customize the number of rows in the table view.
- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section {
 return [self.customerList count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
 }

 // Set up the cell...
 NSUInteger row = [indexPath row];
 SUP101_Customer *customer = [customerList objectAtIndex:row];
 cell.textLabel.text = [NSString stringWithFormat:@"%@%@%@",
[customer fname], @" ", [customer lname]];
 cell.accessoryType =
UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 [self tableView:tableView

Developing an iOS Application

Tutorial: iOS Application Development 31

accessoryButtonTappedForRowWithIndexPath:indexPath];
}

/*
 // Override to support conditional editing of the table view.
 - (BOOL)tableView:(UITableView *)tableView
canEditRowAtIndexPath:(NSIndexPath *)indexPath {
 // Return NO if you do not want the specified item to be editable.
 return YES;
 }
 */

/*
 // Override to support editing the table view.
 - (void)tableView:(UITableView *)tableView commitEditingStyle:
(UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
(NSIndexPath *)indexPath {

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 // Delete the row from the data source
 [tableView deleteRowsAtIndexPaths:[NSArray
arrayWithObject:indexPath] withRowAnimation:YES];
 }
 else if (editingStyle == UITableViewCellEditingStyleInsert) {
 // Create a new instance of the appropriate class, insert it into
the array, and add a new row to the table view
 }
 }
 */

/*
 // Override to support rearranging the table view.
 - (void)tableView:(UITableView *)tableView moveRowAtIndexPath:
(NSIndexPath *)fromIndexPath toIndexPath:(NSIndexPath
*)toIndexPath {
 }
 */

/*
 // Override to support conditional rearranging of the table view.
 - (BOOL)tableView:(UITableView *)tableView
canMoveRowAtIndexPath:(NSIndexPath *)indexPath {
 // Return NO if you do not want the item to be re-orderable.
 return YES;
 }
 */
/*
 - (UITableViewCellAccessoryType)tableView:(UITableView
*)tableView accessoryTypeForRowWithIndexPath:(NSIndexPath
*)indexPath
 {
 return UITableViewCellAccessoryDisclosureIndicator;

Developing an iOS Application

 32 Sybase Unwired Platform

 }
 */
- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
 if (childController == nil)
 childController = [[DetailController alloc]
 initWithNibName:@"DetailController"
bundle:nil];

 NSUInteger row = [indexPath row];

 SUP101_Customer *selectedCustomer = [customerList
objectAtIndex:row];
 childController.title = [NSString stringWithFormat:@"%d",
[selectedCustomer id]];
 childController.originalObj = selectedCustomer;

 SUP101AppDelegate *delegate = [[UIApplication
sharedApplication] delegate];
 [delegate.navController pushViewController:childController
animated:YES];

}

- (void)dealloc {
 self.customerList = nil;
 self.childController = nil;
 [super dealloc];
}

@end

6. Click the CustomerListController.h file, and replace the existing code with the
provided code.
#import <UIKit/UIKit.h>
@class DetailController;

@interface CustomerListController : UITableViewController
<UITableViewDelegate, UITableViewDataSource> {
}

@property (nonatomic, retain) NSArray *customerList;
@property (nonatomic, retain) DetailController *childController;

@end

Adding the DetailController
Goal: Create the DetailController.xib.

1. In the SUP101 Xcode project, select File > New > New File.

Developing an iOS Application

Tutorial: iOS Application Development 33

2. Select UIViewController subclass and click Next.

3. Select UIViewController in the Subclass of field, select With XIB for user interface,
and then click Next.

4. Enter DetailController in the Save as field and click Save.

The files DetailController.h, DetailController.m, and
DetailController.xib are created in the Project Navigator.

Configuring the DetailController View
Goal: Add the user interface to the customer detail view and specify the outlets in the
DetailController.m and DetailController.h files.

1. Click the DetailController.xib file to open Interface Builder.

2. Select View > Utilities > Object Library. In the Object Library panel, select the Text
Field item, drag it onto the view three times to create three text fields aligned vertically to
the right of the screen.

You can resize the text fields using the resize handles and position the button by dragging it
to the desired location.

3. In the Object Library panel, select the Label item, drag it onto the view three times to
create three labels to the left of and aligned with the three text fields. Replace the default
Label text with:

• First Name
• Last Name
• Phone

4. In the Object Library panel, select the Round Rect Button item, drag it onto the view, and
rename it to Submit.

To make connections to the user interface from the view controller, you must specify
outlets in the DetailController.h file and add property declarations for the
instance variables and a declaration for the action method.

5. Open the DetailController.h file and replace the existing code with the provided
code.
#import <UIKit/UIKit.h>
#import "SUP101_Customer.h"

@interface DetailController : UIViewController {
}

@property (nonatomic, retain) IBOutlet UITextField *fname;
@property (nonatomic, retain) IBOutlet UITextField *lname;
@property (nonatomic, retain) IBOutlet UITextField *phone;
@property (nonatomic, retain) SUP101_Customer *originalObj;
@property (nonatomic, retain) IBOutlet UIButton *submitButton;

-(IBAction)buttonPressed:(id)sender;

Developing an iOS Application

 34 Sybase Unwired Platform

@end

6. Click the DetailController.m file and replace the existing code with the provided
code.
#import "DetailController.h"
#import "SUP101_SUP101DB.h"
#import "SUP101CallbackHandler.h"

@implementation DetailController
@synthesize fname, lname, phone, originalObj, submitButton;

// The designated initializer. Override if you create the
controller programmatically and want to perform customization that
is not appropriate for viewDidLoad.
//- (id)initWithNibName:(NSString *)nibNameOrNil bundle:(NSBundle
*)nibBundleOrNil {
// if ((self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil])) {
// // Custom initialization
// }
// return self;
//}

- (void) onReplaySuccess:(NSNotification *)notification
{
 // 'replay success' means the server accepted the changes.
Refresh
 // the in-memory object so it's in sync with the local
database,
 // and re-enable the submit button so additional changes can be
made.
 SUP101_Customer *successObj = (SUP101_Customer *)[notification
object];
 if (successObj.id_ == self.originalObj.id_) {
 [self.originalObj refresh];
 self.submitButton.enabled = YES;
 }
}

- (void) onReplayFailure:(NSNotification *)notification
{
 // 'replay failure' means the server rejected the changes.
Refresh
 // the object from the local database and restore the text
fields,
 // and re-enable the submit button so additional changes can be
made.
 SUP101_Customer *failedObj = (SUP101_Customer *)[notification
object];
 if (failedObj.id_ == self.originalObj.id_) {
 [self.originalObj refresh];
 fname.text = originalObj.fname;
 lname.text = originalObj.lname;
 phone.text = originalObj.phone;

Developing an iOS Application

Tutorial: iOS Application Development 35

 self.submitButton.enabled = YES;
 }
}

- (IBAction)buttonPressed:(id)sender
{

 if (([lname.text compare:originalObj.fname] != NSOrderedSame)
||
 ([fname.text compare:originalObj.lname] != NSOrderedSame)
||
 ([phone.text compare:originalObj.phone] != NSOrderedSame))
 {
 SUP101_Customer *newCustomer = [SUP101_Customer find:
[originalObj id]];
 if (newCustomer) {
 newCustomer.lname = lname.text;
 newCustomer.fname = fname.text;
 newCustomer.phone = phone.text;

 // After saving changes and sending them to the server
 // disable the 'submit' button so the object won't be
changed
 // while there are pending changes.
 [newCustomer save];
 [newCustomer submitPending];
 [sender setEnabled:NO];
 }

 }

}

/*
 // Implement viewDidLoad to do additional setup after loading the
view, typically from a nib.
 - (void)viewDidLoad {
 [super viewDidLoad];
 }
 */

// Override to allow orientations other than the default portrait
orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
UIInterfaceOrientationPortrait);
}

- (void)viewWillAppear:(BOOL)animated {
 fname.text = originalObj.fname;
 lname.text = originalObj.lname;
 phone.text = originalObj.phone;

Developing an iOS Application

 36 Sybase Unwired Platform

 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onReplaySuccess:) name:ON_REPLAY_SUCCESS
object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(onReplayFailure:) name:ON_REPLAY_FAILURE
object:nil];
 [super viewWillAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [super viewWillDisappear:animated];
}

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (IBAction)touchesEnded:(NSSet*)touches withEvent:
(UIEvent*)event
{
 UITextView* fname1 = (UITextView*) [[self view] viewWithTag:
 1];
 UITextView* lname1 = (UITextView*) [[self view] viewWithTag:
 2];
 UITextView* phone1 = (UITextView*) [[self view] viewWithTag:
 3];
 [fname1 resignFirstResponder];
 [lname1 resignFirstResponder];
 [phone1 resignFirstResponder];
}

- (void)dealloc {
 self.originalObj = nil;
 [super dealloc];
}

@end

7. Click the DetailController.xib file to open it in Interface Builder, click the First
Name text field, and select View > Utilities > Attributes Inspector.

8. In the Attributes Inspector panel , scroll to the View section and enter 1 in the Tag field.

9. Set the tags for the Last Name and Phone text fields to 2 and 3 respectively.

Developing an iOS Application

Tutorial: iOS Application Development 37

10. Control-drag from the File's Owner icon in the middle pane to each of the text fields and
select the fname, lname, and phone outlets respectively to create connections between the
text fields and the outlets defined in the DetailController.m file.

11. Select View > Utilities > Connections Inspector to confirm that the outlets have been
correctly configured:

12. Control-drag from the File's Owner icon in the middle pane to the Submit button and
select submitButton.

Deploying the Device Application
Goal: Deploy the SUP101 application to the iPhone Simulator for testing.

Prerequisites
Have a registered device user in Sybase Control Center.

You must be connected to the server where the mobile application project is deployed.

Task

1. In XCode, make sure that the Scheme is set to SUP101|iPhone 4.3 Simulator, and select
Product > Build and then Product > Run.

The project is built and the iPhone Simulator starts.

2. In the iPhone simulator, go to the Settings app, choose SUP101 and enter the connection
settings:

Developing an iOS Application

 38 Sybase Unwired Platform

• ServerNameSetting – the machine that hosts the server where the SUP101 mobile
application project is deployed.

• ServerPortSetting – Unwired Server port number. The default is 5001.
• CompanyIDSetting – the company ID you entered when you registered the device in

Sybase Control Center, in this case, 0.

• UserNameSetting – the user you registered in Sybase Control Center, user1.

• ActivationCodeSetting – the activation code for the user, 123.

3. In the iPhone applications screen, open the SUP101 application.

4. Click Subscribe.
The customer list appears.

5. Select a customer record from the customer list and double-click to open the detail view.
The customer detail shows the fields: First Name, Last Name, and Phone.

6. Change the First Name to something else, and click Submit.

Developing an iOS Application

Tutorial: iOS Application Development 39

Developing an iOS Application

 40 Sybase Unwired Platform

Learn More about Sybase Unwired Platform

Once you have finished, try some of the other samples or tutorials, or refer to other
development documents in the Sybase Unwired Platform documentation set.

Check the Sybase Product Documentation Web site regularly for updates: http://
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-2.0.0/doc/html/title.html.

Tutorials
Try out some of the other getting started tutorials to get a broad view of the development tools
available to you.

Samples
Sample applications are fully developed, working applications that demonstrate the features
and capabilities of Sybase Unwired Platform.

Check the SAP Development Network (SDN) Web site regularly for updates: http://
www.sdn.sap.com/irj/sdn/mobile. Click on Sybase Unwired Platform and navigate to
Samples.

Online Help
See the online help that is installed with the product, or the Product Documentation Web site.

Developer Guides
Learn about using the API to create device applications:

• Developer Guide for BlackBerry
• Developer Guide for iOS
• Developer Guide for Mobile Workflow Packages
• Developer Guide for Windows and Windows Mobile

Customize and automate:

• Developer Guide for Unwired Server Management API – customize and automate system
administration features.

• Developer Guide for Unwired Server – customize and automate server-side
implementations for device applications, and administration, such as data handling.

Javadoc and HeaderDoc are also available in the installation directory.

Learn More about Sybase Unwired Platform

Tutorial: iOS Application Development 41

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-2.0.0/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-2.0.0/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-2.0.0/doc/html/title.html
http://www.sdn.sap.com/irj/sdn/mobile
http://www.sdn.sap.com/irj/sdn/mobile

Learn More about Sybase Unwired Platform

 42 Sybase Unwired Platform

Index
B
basics, learning 7

C
callback handler 17
connecting to Sybase Control Center 6
connection, creating 28
customer list view 29
CustomerListController 29

D
delegate file 21
deploying 38
DetailController view 34
DetailController.xib 33
developing

device application 11
device application, developing 11

E
Eclipse Studio Edition

Sybase Unwired WorkSpace 6
Enterprise Explorer, defined 7

F
File's Owner 24
First Responder 24

G
generating object API code 12
getting started

developing a device application 11
Sybase Unwired Platform 5
Sybase Unwired WorkSpace 7
tutorials 1

H
help, online 7

I

installing
Sybase Unwired Platform 5

Interface Builder 24
iPhone Simulator 38

L

linking outlets 34

M

MainWindow_iPad.xib 28
MainWindow_iPhone.xib 28
Mobile Application Diagram, defined 7

N

navigation controllers 28

O

Objective-C code, generating 12
online help, accessing 7
outlets, linking 34

P

Palette, defined 7
Properties view, defined 7

R

registering the iPhone simulator 16

S

servers
Unwired Server, starting 5

starting
Sybase Control Center 6

Index

Tutorial: iOS Application Development 43

Sybase Unwired WorkSpace 6
Unwired Server 5

SubscribeController view 24
SUP_iOS_Custom_Dev_Tutorial_code.zip 13, 17
SUP101Appdelegate files, configuring 21
SUP101CallbackHandler file 17
Sybase Control Center 6, 16

connecting to 6
Sybase Unwired Platform

getting started 5
installing 5

Sybase Unwired WorkSpace
getting started 7
starting 6

U
UIViewController subclass 20

Unwired Server 5

V

View 24
view controller, adding 20

W

WorkSpace Navigator, defined 7

X

Xcode, build project 13

Index

 44 Sybase Unwired Platform

	Tutorial: iOS Application Development
	Contents
	Sybase Unwired Platform Tutorials
	Task Flow
	Getting Started
	Installing Sybase Unwired Platform
	Starting Unwired Platform Services
	Starting Sybase Unwired WorkSpace
	Connecting to Sybase Control Center
	Learning the Basics

	Developing an iOS Application
	Generating Object API Code
	Setting Up an iOS Client Application in Xcode
	Registering the iPhone Simulator in Sybase Control Center
	Creating the SUP101CallbackHandler File
	Creating the User Interface
	Adding the SubscribeController View Controller
	Configuring the SUP101Appdelegate Files
	Configuring the SubscribeController View
	Making Connections

	Adding the CustomerListController
	Adding the DetailController
	Configuring the DetailController View

	Deploying the Device Application

	Learn More about Sybase Unwired Platform
	Index

