SYBASE

Company

Tutorial: iOS Application Development

Sybase Unwired Platform 2.0

DOCUMENT ID: DC01213-01-0200-02

LAST REVISED: May 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Sybase Unwired Platform Tutorialsccccoeeeveeviiiiiiiiieeiennnnn. 1
TASK FIOW ... e e e 3
Getting Startedooovviiiii s 5
Installing Sybase Unwired Platformccccccoeeeeeennne, 5
Starting Unwired Platform Servicesccccvvvvvvvnnnnn. 5
Starting Sybase Unwired WorkSpacecccoceveee. 6
Connecting to Sybase Control Center..........cccccoeevvevnnnn. 6
Learning the BasiCSccovvviviiiiiiieeeceee e 7
Developing an iOS Applicationcccoooeiiiiiiiiiiiiiiecciees 11
Generating Object API Codeccoovvevvviiiciiieeieei, 12
Setting Up an iOS Client Application in Xcode.............. 13
Registering the iPhone Simulator in Sybase Control
CONLEI .. 16
Creating the SUP101CallbackHandler File.................... 17
Creating the User Interface ... 20
Adding the SubscribeController View Controller
... 20
Adding the CustomerListController...................... 29
Adding the DetailController............ccccccvvviiiinnnnnn. 33
Deploying the Device Applicationccccoeevvviieeeeennnn. 38
Learn More about Sybase Unwired Platform.................... 41
I EX e ————— 43
Tutorial: iOS Application Development iii

Contents

Sybase Unwired Platform

Sybase Unwired Platform Tutorials

Sybase Unwired Platform Tutorials

The Sybase® Unwired Platform tutorials demonstrate how to develop, deploy, and test mobile
business objects, device applications, and mobile workflow packages. You can also use the
tutorials to demonstrate system functionality and train users.

« Learn mobile business object (MBO) basics, and create a mobile device application:
o Tutorial: Mobile Business Object Development
» Create native mobile device applications:
» Tutorial: BlackBerry Application Development
e Tutorial: iOS Application Development
» Create a mobile workflow package:
o Tutorial: Mobile Workflow Package Development

The tutorials demonstrate a cross section of basic functionality, which includes creating
MBOs that can be used in replication-based or message-based synchronization; and using
various Sybase Unwired WorkSpace development tools, independent development
environments, and device types.

Table 1. Tutorial summary

Tutorials Mobile Synchroni- |Development | Device
business |zation types [tools types
objects
(MBOs)

Tutorial: Mobile Business Ob- | Create new | Replication- Sybase Unwired | N/A

ject Development MBOs based WorkSpace

Tutorial: BlackBerry Applica- | Create new | Replication- Sybase Unwired | BlackBerry

tion Development MBOs based WorkSpace

Tutorial: iOS Application De- | Create new | Message-based | Sybase Unwired | iPhone

velopment MBOs WorkSpace

Tutorial: Mobile Workflow Create new | Message-based | Mobile Workflow | Windows

Package Development MBOs Forms Editor Mobile

iPhone

Tutorial: iOS Application Development 1

Sybase Unwired Platform Tutorials

2 Sybase Unwired Platform

Task Flow

Task Flow

Use this tutorial to develop a device application for an Apple iOS device using message-based
synchronization and custom coding. Test the application on a simulator.

Table 2. Eclipse Tutorials

Task

Goals

Steps required to complete the
task

Getting started

 Install all required WorkSpace
components and external re-
sources.

» Start Unwired Server.

* Open the Mobile Development
perspective, and become famil-
iar with the views of the per-
spective, the Mobile Applica-
tion Diagram.

 Install Sybase Unwired Platform 2.0.
» Start the Unwired Platform services.
» Start Sybase Unwired Workspace.

Note: These tasks are prerequisites for
all the other tutorials. You need to per-
form them only once.

Developing a de-
vice application

» Create an iOS device applica-
tion, and run it on the iPhone
simulator.

» Generate the Object API code for
iOS.

e Set up the iOS client project in
Xcode.

» Register the iPhone simulator in
Sybase Control Center.

» Create the SUP101CallbackHandler
file.

» Create the iOS application user in-
terface.

» Deploy the iOS application to the
simulator.

Tutorial: iOS Application Development

Task Flow

4 Sybase Unwired Platform

Getting Started

Getting Started

Goal: Install and learn about Sybase Unwired Platform and its associated components.

The following tasks are required, unless otherwise noted, for all tutorials, but you need to
perform them only once.

1. Installing Sybase Unwired Platform on page 5
Starting Unwired Platform Services on page 5
Starting Sybase Unwired WorkSpace on page 6
Connecting to Sybase Control Centeron page 6
(optional) Learning the Basics on page 7

o r~ wD

Installing Sybase Unwired Platform
Goal: Install Sybase Unwired Platform.

Install these Sybase Unwired Platform components:

« Data Tier
¢ Unwired Server
« Unwired WorkSpace

If Unwired Platform is already installed and any of these components are missing:

1. Start the Sybase Unwired Platform installer.
2. Follow the instructions in the installation wizard.
3. Select the required components, and complete the installation.

For complete installation instructions, see the Sybase Unwired Platform Installation Guide
and Release Bulletin.

Starting Unwired Platform Services

Goal: Start Unwired Server and the sample database.

Select Start > Programs > Sybase > Unwired Platform > Start Unwired Platform
Services.

Tutorial: iOS Application Development 5

Getting Started

Starting Sybase Unwired WorkSpace
Goal: Start Unwired WorkSpace.

1. Select Start > Programs > Sybase > Unwired Platform > Unwired Work Space.

The Welcome page displays links to product information, and to the product.

2. To read more about Sybase Unwired WorkSpace concepts and tasks, select Help > Help
Contents from the main menu.

Connecting to Sybase Control Center

Goal: Open the Web-based Sybase Control Center administration console to manage
Unwired Server and its components.

From Sybase Control Center, you can:

» View servers and their status
 Start and stop a server

* View server logs

« Deploy a mobile application package
* Register devices

« Set role mappings

For information on configuring, managing, and monitoring Unwired Server, select Help >
Online Documentation.

1. Select Start > Programs > Sybase > Sybase Control Center.

Note: If Sybase Control Center does not launch, make sure that the Sybase Unified Agent
service is started. See the Installation Guide for details.

2. Log in using the default login:
e User name — supAdm n
e Password — s3pAdmi n

Logging in to Sybase Control Center allows you access to Unwired Platform
administration features that you are authorized to use.

6 Sybase Unwired Platform

Getting Started

Learning the Basics

Goal: Learn about Sybase Unwired WorkSpace and how to access help.

Prerequisites
Start Unwired WorkSpace.

Task

1. From the Welcome page, select any of the links to familiarize yourself with the Unwired
WorkSpace environment.

To close this page, click the X. You can reopen this page by selecting Help > Welcome.

2. Select Start Development to access the Sybase Unwired WorkSpace development
environment.

Look at the area (window or view) that you will be working in to access, create, define, and
update mobile business objects (MBOSs).

View Description

WorkSpace Navigator This view displays mobile application project fold-
ers, each of which contains all project-related re-
sources in subfolders, including MBOs, data source
references to which the MBOs are bound, personal-
ization keys, and so on.

Use this view to review and modify MBO-related
properties.

Enterprise Explorer A window that provides functionality to connect to
various enterprise back-end systems; for example,
database servers, SAP servers, and Sybase Unwired
Server.

Tutorial: iOS Application Development 7

Getting Started

View Description

Mobile Application Diagram A graphical editor where you create and define mo-
bile business objects.

Use the Mobile Application Diagram to create
MBOs (including attributes and operations), then
define relationships with other MBOs. You can:

¢ Create MBOs in the Mobile Application Dia-
gram using Palette icons and menu selections —
either bind or defer binding to a data source,
when creating an MBO. For example, you may
want to model your MBOs before creating the
data sources to which they bind. This is some-
times called the top-down approach.

« Drag items from Enterprise Explorer and drop
them onto the Mobile Application Diagram to
create the MBO — quickly creates the operations
and attributes automatically based on the data
source being dropped on the Mobile Application
Diagram. This is sometimes called the bottom-
up approach.

Each new mobile application project generates an
associated Mobile Application Diagram.

Palette Access the Palette from the Mobile Application Di-
agram. It provides controls, such as the ability to
create MBOs, add attributes and operations, and de-
fine relationships, by dragging and dropping the
corresponding icon onto the Mobile Application Di-
agram or existing MBO.

Properties view Select an object in the Mobile Application Diagram
to display and edit its properties in the Properties
view. You cannot create an MBO from the Properties
view, but generally, most development and configu-
ration is performed here.

Outline view Displays an outline of the file that is currently openin
the editor area, and lists structural elements. The
contents are editor-specific.

Problem view Displays problems, errors, or warnings that you may
encounter.

3. To access the online help, select Help > Help Contents from the main menu bar.

8 Sybase Unwired Platform

Getting Started

4. Expand any of the documents that appear in the left pane.

Some documents are for Sybase Unwired Platform, while others are for the Eclipse
development environment.

Tutorial: iOS Application Development 9

Getting Started

10 Sybase Unwired Platform

Developing an iOS Application

Developing an iOS Application

Goal: Generate Object API code for the iOS platform, develop a universal iOS device
application with code, and test its functionality.

Prerequisites
Complete these tasks:

» Getting Started on page 5.
o Tutorial: Mobile Business Object Development, which provides the foundation tasks for
this tutorial:
1. Create a mobile application project.
2. Create the database mobile business objects (MBOS).
3. Deploy the database MBOs.

Task

The device application communicates with the database MBOs that are deployed to Unwired
Server.

Supported platforms include:

« For development, MacOS 10.6 (Snow Leopard) and Xcode 4.0
e For deployment, iOS SDK 4.2 and 4.3

1. Open the SUP101 mobile application project.

In WorkSpace Navigator, right-click the SUP101 folder and select Open in Diagram
Editor.

Note: If you do not see the SUP101 folder, make sure that you have successfully
completed 7utorial: Mobile Business Object Development, which is a prerequisite for this
tutorial.

Generate the object API code for iOS on page 12.

Set up the universal iOS client application in Xcode on page 13.
Register the iPhone simulator in Sybase Control Centeron page 16.
Create the SUP101 CallbackHandler file on page 17.

Add the SubscribeController View controller on page 20.

Add the CustomerL istController on page 29.

Add the DetailController on page 33.

Deploy the application to the simulator on page 38.

© © N 0k WD

Tutorial: iOS Application Development 11

Developing an iOS Application

Generating Object API Code

Goal: Launch the code generation wizard and generate the object API code for a message-
based iOS application.

1
2.

Right-click in the SUP101 Mobile Application Diagram and select Gener ate Code.
In the code generation wizard, accept the default, Continuewithout a configur ation, and

click Next.

Make sure the Customer and Sales_order MBOs are selected, then click Next.

Note: You can select the code generation configuration if you are using the Advanced

developer profile.

Enter these configuration options and click Next:

Option Description
Language Select Objective C.
Platform Accept the default, iOS.

Unwired server

Select My Unwired Server.

Server domain

Accept default.

Name prefix

The prefix for the generated files. Leave blank.

Project path

Accept the default or enter a different location
for the generated project files.

(Optional) Clean up destination before code
generation

Select this option to delete all items in the des-
tination folder before generating the device cli-
ent files.

Message-based

Default for Objective-C.

12

Sybase Unwired Platform

Developing an iOS Application

+% Generate Code |:| |E| El

Configure options <

Configure options For code generation |

Code generation options

Language: |Objective C w |
PlatFarm: |i05 v |
Unwired server: |My Uruwired Server w |
Server domain: | default L |
Page size:

Mame prefix: | |
Destination

(%) Project path: | \SUP101YGenerated Code | ’Browse. a0 l

() File: system path: | |

[Jlean up destination before code generation

(#) Message-based

[Jenerate metadata classes

[]=enerate metadata and object manager classes

@ I Finish H Cancel]

Obijective-C code is generated into the specified output location.

Setting Up an iOS Client Application in Xcode
Goal: Set up an iOS client application in the Xcode IDE.

Prerequisites

» Generate Objective-C code in to an output location.
» Ensure the directory where Sybase Unwired Platform is installed is a shared directory so
you can access it from your Mac.

Tutorial: iOS Application Development 13

Developing an iOS Application

« Obtain the header and Objective-C source code files you need to build the user interface
from the SUP_i OS_Cust om Dev_Tut ori al _code. zi p file. This way, you can
easily copy and paste the code into the corresponding files that are created in Xcode.

* Ifyouare viewing this guide as a PDF, you can obtain the files from the Sybase Product
Documentation Web site at Attp.//sybooks.sybase.com/nav/summary.do?
prod=1289& lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired
+Platform&archive=0. Navigate to this topic in the tutorial, then click the link for the
zip file to access the provided source code files.

« If you are viewing this guide online from the Sybase Product Documention web site,
click SUP_iOS Custom_Dev_Tutorial _code.zip to access the source code files.

Task

Note: This tutorial was developed using Xcode 4.0 and iOS SDK 4.3. If you use a different
version of Xcode, some steps may vary. For more information on Xcode, refer to the Apple
Developer Connection: Attp.//developer.apple.com/technologies/tools/xcode.html.

1. Start Xcode and select Create a new Xcode project.

2. Select iOS Application and Window-based Application as the project template, and
then click Next.

3. Enter SUP101 as the Product Name, My Cor p as the Company | dentifier, select
Universal as the Device Family product, and then click Next.

4. Select a location to save the project and click Createto open it.

Xcode creates a folder, SUP101, to contain the project file, SUP101. xcodepr oj and
another SUP101 folder, which contains a number of automatically generated files.

Copy the files from your Windows machine in to the SUP101 folder that Xcode created to
contain the generated source code.

5. Connect to the Microsoft Windows machine where Sybase Unwired Platform is installed:
a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, snb: / / <machi ne DNS
name>orsnb: // <l P Addr ess>.
You see the shared directory.
6. Navigate to the\ Unwi r edPl at f orml O i ent APl \ MBS\ Cbj ect i veCdirectory

in the Unwired Platform installation directory, and copy thei ncl udes andl i bs folders
to the SUP101/ SUP101 directory on your Mac.

7. Navigate to the SUP101 mobile application project (for example, C: \ Docunent s and
Set tings\ admi ni strator\workspace\ SUP101), and copy the Gener at ed
Code folder to the SUP101/ SUP101 directory on your Mac.

When you have finished copying the files to your Xcode project, it should look like this:

14

Sybase Unwired Platform

http://sybooks.sybase.com/nav/summary.do?prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired+Platform&archive=0
http://sybooks.sybase.com/nav/summary.do?prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired+Platform&archive=0
http://sybooks.sybase.com/nav/summary.do?prod=1289&lang=en&submit=%A0Go%A0&prodName=Sybase+Unwired+Platform&archive=0
http://developer.apple.com/technologies/tools/xcode.html

Developing an iOS Application

MName &| Date Modified Size Kind
¥ @ 5UP101 Today, 12:56 PM - Folder
¥ B SUP101 Today, 1:21 PM - Folder
> L en.lproj Today, 1:21 PM - Folder
v |5 Generated Code | Today, 1:22 AM -~ Folder
» L includes Today, 1:22 AM == Folder
» (8 src Today, 1:22 AM - Folder
v [includes | Today, 1:22 AM - Folder
»] internal Today, 1:22 AM == Folder
* L public Today, 1:22 AM == Folder
Settings.bundle Today, 1:22 AM = Bundle
»] iPad Today, 1:11 PM e Folder
> | iPhone Today, 1:11 PM o Folder
v Today, 1:21 AM -~ Folder
» || Debug-iphoneos Today, 1:21 AM - Folder
»] Debug-iphonesimulator Today, 1:21 AM - Folder
¥ [] Release-iphoneos Today, 1:21 AM . Folder
*] Release-iphonesimulator Today, 1:21 AM - Folder
m maln.m Today, 10:39 AM 4 KB Objective-C Source
[SUP101-Info.plist Today, 10:39 AM 4 KB Property List
h! SUP101-Prefix.pch Today, 10:39 AM 4 KB C Precompiled Header Source
hl SUP101AppDelegate.h Today, 10:39 AM 4 KB C Header Source
m SUP101AppDelegate.m Today, 10:39 AM 4 KB Objective-C Source
l SUP101.xcodeproj Today, 10:39 AM - Xcode Project

8. In the Xcode Project Navigator, right-click the SUP101 folder under the project, select
Add Filesto” SUP101", selectthe Gener at ed Code folder, unselect Copy itemsinto
destination group'sfolder (if needed), and click Add.

The Gener at ed Code folder is added to the project in the Project Navigator.

9. Right-clickthe SUP101 folder under the project, select Add Filesto" SUP101", navigate
to the Tenp/ | i bs/ Debug- i phonesi mul at or directory, select the
libclientrt.a,li bSUPQhj. a,andl i bMO. a libraries, unselect Copy itemsinto
destination group'sfolder (if needed), and click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. In this
tutorial, you work with the libraries for the Debug version of the iPhone simulator.

10. Right-click the project root, select New Group, and then rename it to Resour ces.

11. Right-click the Resour ces folder, select Add Filesto " SUP101", navigate to the
i ncl udes directory, select the Set t i ngs. bundl e file, unselect Copy itemsinto
destination group'sfolder (if needed), and click Add.

The bundle Set ti ngs. bundl e is added to the project in the Project Navigator.

This bundle adds resources that lets iOS device client users input information such as

server name, server port, user name and activation code in the Settings application.
12. Click the project root and then, in the middle pane, click the SUP101 project.

Tutorial: iOS Application Development 15

Developing an iOS Application

a) In the right pane, click the Build Settings tab, then scroll down to the Search Paths
section.

b) Enter the location of youri ncl udes folder (" $SRCROOT/ SUP101/ i ncl udes/
**") in the Header Search Pathsfield.
$SRCROOT is a macro that expands to the directory where the Xcode project file
resides.

13. In the middle pane select the SUP101 target.

a) In the right pane, select the Build Phases tab, then expand the Link Binary with

Librariessection.

b) Clickthe +icon below the list, select the following libraries, and then click Add to add
them from the SDK to the project:

Addr essBook. f r amewor k
Cor eFoundat i on. f ramewor k
Quart zCore. franmewor k
Security. franmework
I'ibicucore. A dylib

i bstdc++6.dylib
libz.1.2.3.dylib

14. Select Product > Clean, then Product > Build to test the initial set up of the project. If you
correctly followed this procedure, you see a Build Succeeded message.

Registering the iPhone Simulator in Sybase Control Center

Goal: Register the iPhone Simulator in Sybase Control Center.

Prerequisites
Connect to Sybase Control Center.

Task

1. Log into Sybase Control Center using the supAdmin/s3pAdmin user name and password.

N

o o M~ w

In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

In the left pane, select Device Users.

In the right pane, click Devices.

Click Register.

In the Register Device window, enter the required information:

e User name—userl
» Server name — </ocalhost.sybase.com>

16

Sybase Unwired Platform

Developing an iOS Application

Note: The information should match the input on the client and
"localhost.sybase.com" should be the actual name of your machine and domain.

* Port —the Unwired Server port, 5001.
« FarmID-0
» Activation code - 123

Creating the SUP101CallbackHandler File

Goal: Configure the SUP101Cal | BackHandl er file.

Prerequisites

SUP101Cal | backHandl er is a subclass of SUPCal | backHandl er, and is used to
listen for events sent from the server. The header, SUP101Cal | backHandl er. h,is
referenced in a number of classes in this application, so you create it first.

There are two threads involved in the SUP101 application — the main thread, which is driven
by the client application user interface controller, and the mobile object client access thread,
which takes charge of message transportation with the server and synchronization with the
application through the mobile object. In i0S, all code that updates the user interface must be
called on the main thread, so it isa good idea to send notifications that might trigger changes to
the interface from the main thread.

Tip: Besure you saved the SUP_i OS_Cust om Dev_Tut ori al _code. zi p filetoyour
development machine so you can easily copy and paste the provided code into the
corresponding . h and . mfiles in Xcode.

Task

1. Inthe SUP101 Xcode project, select File> New > New File.

2. Select Objective-C Classand click Next.

3. Enter SUPDef aul t Cal | backHandl er in the Subclass of field and click Next.
4

. Enter SUP101Cal | backHand! er in the Save asfield and click Save.
The files SUP101Cal | backHandl er . h and SUP101Cal | backHandl er . mare
created in the Project Navigator.

5. Click the SUP101Cal | backHandl er . h file and replace the existing code with the
provided source code.
#i mport " SUPDef aul t Cal | backHandl er . h"

/1 These strings will be used to send out NSNotifications.
#defi ne ON_|I MPORT_SUCCESS @ SUPI nport Success"

#defi ne ON_LOG N_SUCCESS @ SUPLogi nSuccess"

#defi ne ON_LOG N_FAI LURE @ SUPLogi nFai | ure"

#defi ne ON_CONNECT_SUCCESS @ SUPConnect Success"

Tutorial: iOS Application Development 17

Developing an iOS Application

#defi ne ON_CONNECT_FAI LURE @ SUPConnect Fai | ure"
#defi ne ON_REPLAY_SUCCESS @ SUPRepl aySuccess"
#defi ne ON_REPLAY_FAI LURE @ SUPRepl ayFai | ure"

/1 For this exanple we are only handling a small subset of the
notifications

/1 defined in SUPCal | backHandl er. Refer to the i OS Devel oper's
CQui de for SUP for nore

[/ information on when the other call backs are used.

@nterface SUP101Cal | backHandl er : SUPDef aul t Cal | backHandl er

{
}

@nd

6. Click the SUP101Cal | backHandl er . mfile and replace the existing code with the
provided source code.
#i mport " SUP101Cal | backHandl er. h"

@ npl enent ati on SUP101Cal | backHandl er
- (void)sendNotification:(NSNotification *)notification

[[NSNoti ficationCenter defaultCenter]
post Noti fication:notification];
[notification rel ease];
}

- (void)postNotification:(NSString *)notification w thCbject:
(id)obj;

/1 Al callback notifications other than onSubscribe: will
happen on a thread other than the main U thread. So, if you

/1 want to update the U in response to a call back you need to
post the notification fromthe main thread.

NSNot i fication *n = [NSNotification
notificati onWthNanme: notification object:obj];

[n retain];

[sel f
per f or nSel ect or OnMai nThr ead: @el ect or (sendNot i fi cation:)
wi t hObj ect:n waitUntil Done: NQ ;

}

- (void)onConnecti onSt at usChange:

(SUPDevi ceConnect i onSt at us) connSt at us :

(SUPDevi ceConnecti onType) connType : (i nt32_t)errorCode : (NSString
*)errorString

NSString *notification = nil;
swi t ch(connSt at us)
{
case CONNECTED_Num
notification = ON_CONNECT_SUCCESS;
br eak;

18 Sybase Unwired Platform

Developing an iOS Application

case DI SCONNECTED_Num
notification = ON_CONNECT_FAI LURE;

br eak;
defaul t:
/1 lgnore all other status changes for this exanple.
br eak;
}
if (notification != nil) [self postNotification:notification
withObject:nil];

}
- (void)onRepl aySuccess: (i d)t heObj ect
{

MBCLogl nf o(@ ");
MBOLogl nf o(@ Repl ay Successful ");

MBCLogl nf o(@ ")
[sel f postNotification: ON_ REPLAY_ SUCCESS

wi t hObj ect: t heCbj ect];

}

- (void)onRepl ayFai |l ure: (i d)theObject
{

MBCLogl nf o(@ ");
MBOLogl nf o(@ Repl ay Fail ure");

MBOLogl nf o(@ "y

[sel f postNotification: ON_ REPLAY_FAI LURE
wi t hObj ect: t heCbj ect];
}

- (voi d)onLogi nSuccess

MBCLogl nf o(@ ");
MBOLogl nf o(@ Logi n Successful ");

MBOLogl nf o(@ "y

[sel f postNotification: ON LOG N _SUCCESS w thCbject:nil];

(voi d)onLogi nFai | ure

MBQLog(@ ")
MBOLogError (@ Logi n Fail ed");
MBQLog(@ ")

[sel f postNotification: ON LOd N _FAILURE withObject:nil];

Tutorial: iOS Application Development 19

Developing an iOS Application

- (void)onSubscri beSuccess

MBCLogl nf o(@ ");
MBOLogl nf o(@ Subscri be Successful");

MBCLogl nf o(@ ")
}

- (voi d)onl nport Success

MBCOLogl nf o(@ ");
MBOLogl nfo(@i nport ends Successful");

MBCLogl nf o(@ ")
[sel f postNotification: ON_| MPORT_SUCCESS wit hCbj ect: nil];

}

@nd

Creating the User Interface

Use Interface Builder to create and configure the user interface for the SUP101 application.

Adding the SubscribeController View Controller

Goal: Create a view controller that functions as the root view screen for the SUP101 mobile
application.

When you create the user interface, you assign a target action to a control object—in this
example a Subscribe button so that a message (the action) is sent to another object (the target)
in response to a user event, for example, a touch on the button. The view controller manages
and configures the view when asked.

1. Inthe SUP101 Xcode project, select File > New > New File.
2. Select UlViewController subclassand click Next.

3. Select Ul ViewController in the Subclass of field, select With XIB for user interface,
and then click Next.

4. Enter Subscri beControl | er inthe Save asfield and click Save.

The files Subscri beControl | er. h, Subscri beControl | er. mand
Subscri beControl | er. xi b are created in the Project Navigator.

20

Sybase Unwired Platform

Developing an iOS Application

Configuring the SUP101Appdelegate Files

Goal: The SUP101Appdel egat e. h and SUP101Appdel egat e. mfiles are created
when you create the Xcode project, but you must add the view controller property and create
the view controller instance.

Delegates extend the functionality of reusable objects. A delegate allows one object to send
messages to another object specified as its delegate to ask for input, or to be notified when an
event occurs.

1. Clickthe SUP101Appdel egat e. hfile and replace the existing code with the provided
code to add the view controller property to the application delegate:

#import <UKit/UKit.h>
#i nport "SUP101Cal | backHandl er. h"

@nterface SUP101AppDel egate : NSChj ect <Ul Appli cationDel egat e> {
}

@roperty (nonatomic, retain) |BQutlet U Wndow *w ndow,
@roperty (nonatomic, retain) |BQutlet U NavigationController
*navControl |l er;

@roperty (nonatomnic, retain) NSDate *connect StartTi nme;
@roperty (nonatom c, retain) SUP101Cal | backHandl er

*cal | backHandl er;

@nd

2. Clickthe SUP101Appdel egat e. mfile and replace the existing code with the provided
code to create an instance of the view controller, set it as the value for the property, import
the view controller's header file, synthesize the accessor methods, and make sure the view
controller is released in the dealloc method:

#i nport " SUP101AppDel egate. h"

#i mport " SUPMessageClient. h"

#i mport " SUP101_SUP101DB. h"

#i nport "SUPl01Cal | backHandl er. h"

@ npl enent ati on SUP101AppDel egat e

@ynt hesi ze wi ndow, navControl |l er, connectStartTi ne,
cal | backHandl er;

- (void)alertView (U Al ertView *)acti onSheet

cl i ckedBut t onAt | ndex: (NSI nt eger) but t onl ndex {
exit (0);

}

- (voi d) showNoTransport Al ert: (NSl nt eger) ret
NSString *nessage = nil;

if (ret == kSUPMessageC i ent NoSettings) {
message = @ The connection settings have not been filled in

Tutorial: iOS Application Development 21

Developing an iOS Application

for this application. Go to Settings, enter the connection
information, and restart this app.";

} else if (ret == kSUPMessaged i ent KeyNot Avai | abl e) {
message = @Unable to access the key.";
} else {

nessage = @An error occurred attenpting to log in.";

}

U AlertView * noTransportAlert = [[U Al ertView all oc]
initWthTitle: @Unable to start nessage server" nessage: nessage
del egate: sel f cancel ButtonTitle: @OK"' otherButtonTitles:nil];

[noTransport Al ert perfornSel ect or OnMai nThr ead: @el ect or (show)
withObj ect:self waitUntil Done: YES];

[noTransport Al ert rel ease];

}

- (voi d) onConnect Success: (NSNoti fi cati on *)obj

/1 Connection to the server was nmade, so log in.

/1 See [Cal |l backHandl er onLogi nSuccess] and [Cal | backHandl er
onLogi nFai l ure] . One of those

/1 callbacks will be called at sone point in the future.

[[NSNotificationCenter defaultCenter] removeQbserver:self
nane: ON_CONNECT_SUCCESS obj ect:nil];

[[NSNotificationCenter defaultCenter] removeQbserver:self
nanme: ON_CONNECT_FAI LURE obj ect:nil];

[SUP101_SUP101DB begi nOnl i neLogi n: @ supAdmi n"
passwor d: @ s3pAdmi n"];
}

- (voi d) onConnect Fai | ure: (NSNoti fi cati on *)obj

/1l Once [SUPMessageC ient start] is called, ON_CONNECT_FAI LURE
is sent fromour call back handl er
/1 until the device is connected or sonething changes. If we
haven't connected in 30 seconds, give up.
NSDat e *now = [NSDat e date];
if ([now timelnterval Si nceDate: sel f.connectStartTine] > 30) {
[SUPMessaged i ent stop];
[sel f showNoTransportAl ert: kSUPMessaged i ent Fai |l ure] ;

}

- (void)applicationbDi dFi ni shLaunchi ng: (Ul Appl i cation
*)application {

/1 Cverride point for custom zation after application |aunch

/'l Register a call back handler. This should be done before any
ot her SUP code is call ed.

sel f. cal | backHandl er = [SUP101Cal | backHandl er newj ;

[SUP101_SUP101DB
regi sterCal | backHandl er: sel f. cal | backHandl er] ;

/1 Don't try to connect if the connection settings have not

22 Sybase Unwired Platform

Developing an iOS Application

been set up yet.
if (![SUPMessaged ient provisioned]) {
[sel f showNoTransport Al ert: kSUPMessageCd i ent NoSet ti ngs] ;
} else {
/1l Set log |level (optional -- this will generate a | ot of
output in the debug consol e)
[MBOLogger setLogLevel : LOG | NFQ ;

/1 Normally you woul d not delete the |ocal database. For
this sinple exanple, though,

/1 deleting and creating an enpty database will cause all
data to be sent fromthe

/1 server, and we can use [Call backHandl er
onl nmport Success:] to know when to proceed.

[SUP101_SUP101DB del et eDat abase] ;

[SUP101_SUP101DB cr eat eDat abase] ;

/] Start listening for nessages fromthe server.
[SUP101_SUP101DB st art Backgr oundSynchr oni zati on] ;

/1 Start up the messaging client. This will attenpt to
connect to the server. |If a connection was

/1 established we can proceed with | ogin. See
onConnect Fai l ure: for nore information about handling connection
failure.

[[NSNoti ficationCenter defaultCenter] addCbserver:self
sel ector: @el ect or (onConnect Success:) name: ON_CONNECT _SUCCESS
object:nil];

[[NSNotificationCenter defaultCenter] addCbserver:self
sel ect or: @el ect or (onConnect Fai l ure:) nane: ON_CONNECT_FAI LURE
object:nil];

sel f.connectStartTime = [NSDat e date];

[SUPMessageCl i ent start];

/] Create the main U for the application. W will update it
as we receive nessages fromthe server.
[wi ndow addSubvi ew: navControl | er.vi ew ;
[wi ndow makeKeyAndVi si bl e] ;

}

- (void)applicationbDi dEnt er Background: (Ul Application
*)application

/1 In this exanple, because we delete and recreate the |ocal
dat abase, we need to unsubscribe

/1 and shut down the app when it is no | onger active. Al data
wi |l be sent on next |aunch.

[SUP101_SUP101DB unsubscri be];

[SUPMessaged i ent stop];

exi t (EXI T_SUCCESS) ;
}
- (void)deall oc {

sel f.navController = nil;
sel f.wi ndow = nil;

Tutorial: iOS Application Development 23

Developing an iOS Application

sel f.cal | backHandl er = nil;
sel f.connectStartTinme = nil;

[super deall oc];

@nd

Configuring the SubscribeController View

Goal: Use Interface Builder to configure the Subscri beControl | er. xi b file and
create the user interface.

1

Click the Subscri beControl | er. xi b file to reveal a view of the (presently empty)
screen in the right pane and the following three items represented by icons in the middle
pane:

< File's Owner — the object that is set to be the owner of the user interface, which is
typically the object that loads the interface. In this tutorial, this is the
SubscribeController.

« First Responder — the first responder proxy object handles events. Connecting an
action to the first responder means that when the action is invoked, it is dynamically
sent to the responder chain.

* View —displayed in a separate window to allow you to edit it.

Select the File's Owner icon, select View > Utilities > Identity I nspector, and select

Subscri beCont rol | er inthe Classfield.

This tells Interface Builder the class of the object to allow you to make connections to and

from the File's Owner.

Select the View icon, and in the Identity Inspector panel, select Ul Vi ewin the Class

field.

Select View > Utilities> Object Library. In the Object Library panel, select the Round

Rect Button item, drag it onto the view, and then double-click it and enter Subscri be

and press Return.

In the Accessibility section of the Identity Inspector, temporarily uncheck Enabled.

We temporarily disable the button because the application cannot subscribe to the server

for updates until it is connected.

Click the Subscri beControl | er. h file and replace the existing code with the

provided code to make connections to the user interface from the view controller, by

specifying outlets and adding property declarations for the instance variables and a
declaration for the action method:

#import <UKit/UKit.h>
@l ass CustonerlListController;

@nterface SubscribeController : U ViewController {
}

- (1 BActi on) butt onPressed: (i d)sender;

24

Sybase Unwired Platform

Developing an iOS Application

@roperty (nonatomic, retain) |BOutlet U Button *button;
@roperty (nonatom c, retain) CustonerlListController
*|listController;

@nd

Note: This code references a view controller (CustomerListController) you will create
later in this tutorial. This code says that when the user touches the Subscribe button, the
CustomerL.ist view opens.

7. Click the Subscri beControl | er. mfile and replace the existing code with the
provided code.

#i nport " Subscri beController.h"

#i mport " SUP101_SUP101DB. h"

#i nport "SUP101Cal | backHandl er. h"
#i mport " Supl01AppDel egat e. h"

#i mport " CustomerLi stController.h"

@ npl enent ati on Subscri beController
@ynt hesi ze button, listController;

- (void) showlistController {

SUP101AppDel egate *del egate = [[Ul Application
shar edAppl i cati on] del egate];

[del egat e. navControl | er
pushVi ewControl l er:self.listController aninated: YES];

}

- (void) onlnportSuccess: (NSNotification *)object {

/] W have data, so present the view that will display it.

self.listController = [[CustonerListController alloc]
initWthStyl e: U Tabl eVi ewSt yl ePl ai n] ;

[sel f showlListController];

[[NSNotificationCenter defaultCenter] renoveCbserver:self
nane: ON_| MPORT_SUCCESS obj ect:nil];

}
(1 BActi on) butt onPressed: (i d) sender
if (self.listController !'=nil) {
[sel f showListController];
} else {

/1 Although there is an onSubscri beSuccess notification,

data has not arrived on the device until the server sends
/1 onl nmport Success. Don't block the U thread while waiting
-- always listen for a notification.

[[NSNotificationCenter defaultCenter] addCbserver:self
sel ector: @el ect or (onl nport Success:) nane: ON_| MPORT_SUCCESS
object:nil];

[SUP101_SUP101DB subscri be];

}

Tutorial: iOS Application Development 25

Developing an iOS Application

/*

/1 The designated initializer. Override if you create the
controller progranmatically and want to performcustom zation that
is not appropriate for viewDi dLoad.

- (id)ini tWthN bName: (NSString *)ni bNameOr Ni | bundl e: (NSBundl e
*) ni bBundl eOr Ni | {

if (self = [super initWthN bNane: ni bNameOr Ni |

bundl e: ni bBundl eOrNi 1]) {

// Custominitialization

}

return self;
}
S

- (void)onLogi nSuccess: (NSNotification *)notification {

sel f. but ton. enabl ed = YES;

[[NSNotificationCenter defaultCenter] renmpveCbserver:self
nane: ON_LOG N_SUCCESS obj ect:nil];
}

- (void)vi ewDi dAppear: (BOOL) ani mat ed {
[super vi ewDi dAppear: ani mat ed] ;

if (self.listController == nil) {
/1 The application cannot subscribe to data updates until
I ogin has conpleted. Wait for an ON_LOG N_SUCCESS notification
/1 to arrive before enabling the 'Subscribe' button
[[NSNoti ficati onCenter defaultCenter] addCbserver:self
sel ector: @el ect or (onLogi nSuccess:) nane: ON_LOG N_SUCCESS
object:nil];
} else {
/1 Al ready subscribed, and a |list controller has been
created. Just show it again.
[self.button setTitle: @ Show List"
forState: U Control St at eNornmal];

}
}
- (void)vi ewDi dDi sappear: (BOOL) ani mat ed {

[super vi ewDi dDi sappear: ani mat ed] ;

[[NSNotificationCenter defaultCenter] removeCbserver:self];
}

/1 1 mplenment viewDi dLoad to do additional setup after |oading the
view, typically froma nib.
- (void)viewbDi dLoad {

self.title = @ Subscri be";

[super vi ewDi dLoad];

/*

/1 Override to alloworientations other than the default portrait
orientation.

- (BOCQL) shoul dAut or ot at eTol nterfaceOri ent ati on:

26

Sybase Unwired Platform

Developing an iOS Application

(UlnterfaceOientation)interfaceOientation {
/1 Return YES for supported orientations
return (interfaceOientation == U lnterfaceOientationPortrait);

}
*/
- (void)di dRecei veMenor yWar ni ng {
/!l Releases the viewif it doesn't have a superview.
[super di dRecei veMenor yWar ni ng] ;

/'l Rel ease any cached data, inmmges, etc that aren't in use.

(voi d) vi ewDi dunl oad {
/'l Rel ease any retained subviews of the main view
/[l e.g. self.myQutlet = nil;

(voi d)deal | oc {
self.listController = nil;
[super deall oc];

@nd

8. Click the Subscri beControl | er. xi b file and control-click the Subscribe button
to show the inspector.

9. Drag from the circle to the right of Touch Up I nsideto the File'sOwner icon and release,

then click on buttonPressed to establish a connection between the Subscribe button and
the button's action method:

Tutorial: iOS Application Development 27

Developing an iOS Application

%]

[] Button - Subscribe
¥ Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Touch Cancel

Touch Down

: :] Touch Down Repeat
Subscribe [Touch Drag Enter
: £ Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up In... # File's ...
button...

f
|
'\

Touch Up Outside
Value Changed
Referencing Outlets

Mew Referencing Outlet O

Referencing Outlet Collections
New Referencing Outlet Colle... ()

Making Connections

Goal: Add Navigation Controllers to Mai nW ndow_i Phone. xi b and

Mai nW ndow_i Pad. xi b and create a connection from the AppDelegate to the Navigation
Controller.

1. Click the Mai nW ndow_i Phone. xi b file and, if the Objects Library pane is not
already visible, select View > Utilities> Object Library to display it.

2. In the Interface Builder menu, drag and drop the Navigation Controller onto the
MainWindow_iPhone.xib documents window.
A new Navigation Controller icon is added to the middle pane.

3. Control-drag from the AppDelegateicon to the new Navigation Controller icon to create
a navController outlet.

4. Click on the expansion arrow at the bottom of the middle pane to switch to list view, select
Navigation Controller > View Controller, and in the Identity Inspector, select
Subscri beCont rol | er inthe Classfield.

28

Sybase Unwired Platform

5.

Developing an iOS Application

i | 4 b | [4SUP101 [|» [|2 4 » 4 ke Navigation Controller » {) View Controller - Root View Controller | 4 @ >‘ D B2 @® « ©

@ Placehold Custom Class

aceholders e
File's O Class | SubscribeController
ile's Owner = L s

ﬁ'- First Responder

il
|
Label | View Controller - Root View | |
L
1

5 Objects Contraller
App Delegate x
(Mncow Object ID 1]
@ Navigation Controller : m A
- Lock | Inherited - (Nothing) v
Navigation Bar 11
5 Notes [_] Show With Selection
)
View
D {} & =
m i 3 2=l |
| il objects =) (8B i=
Switch - Displays an element a
H showing the boolean state of a value.
7 Allows tapping the control to...
Activity Indicator View - Provides
feedback on the progress of a task or
process of unknown duration.
]
. Progress View - Depicts the
progress of a task over time. 2
i
[fEGY Q A

Once the class is selected, the ViewController name in the hierarchy changes to
SubscribeController and the connection from the AppDelegate to the Navigation
Controller is created.

Repeat these steps to add a navigation controller to Mai nW ndow _i Pad. xi b.

Adding the CustomerListController

Goal: Create the customer list view.

1. Inthe SUP101 Xcode project, select File > New > New File.

2. Select UlViewController subclassand click Next.

3. Select Ul TableViewController in the Subclass of field, select With XIB for user
interface, and then click Next.

4. Enter Cust omrer Li st Cont rol | er inthe Save as field and click Save.
The files Cust orrer Li st Control | er. h, Cust onmer Li st Control | er. mand
Cust oner Li st Control | er. xi b are created in the Project Navigator.

5. Clickthe Cust omer Li st Cont r ol | er . mfile, and replace the existing code with the
provided code.
#i nport " CustonerLi stController.h"
#i mport " SUP101AppDel egat e. h"
#i mport "Detail Controller.h"
#i nport "SUP101_Cust omer . h"

Tutorial: iOS Application Development 29

Developing an iOS Application

@ npl enent ati on Cust onerLi stController
@ynt hesi ze custonerList, childController;

- (void)viewW || Appear: (BOCOL) ani mat ed {

self.title = @ Custoners";
NSMut abl eArray *array = [[NSMut abl eArray alloc] init];

SUP101_Cust oner Li st *customers = [SUP101_Customer findAll];
if ([custoners |length] > 0)

for (SUP101_Custoner * oneRec in custoners)

[array addObj ect: oneRec];

sel f. custonerlLi st = array;
[array rel ease];

[[sel f tableView rel oadData];

[super viewW | | Appear: ani nat ed] ;

/*
- (void)viewN || Appear: (BOCL) ani mat ed {
[super viewWw | | Appear: ani mat ed] ;
}

*/
/*
- (voi d)vi ewDi dAppear: (BOOL) ani mat ed {
[super vi ewDi dAppear: ani mat ed] ;
}
*/
/*
- (void)vi ewW || Di sappear: (BOOL) ani mat ed {
[super viewW | | Di sappear: ani nat ed] ;

}
*/
/*
- (voi d)vi ewDi dDi sappear: (BOOL) ani nat ed {
[super vi ewDi dDi sappear: ani mat ed] ;

*/

/*

/1 Override to alloworientations other than the default portrait
orientation.

- (BOQL) shoul dAut or ot at eTol nt erfaceOri ent ati on:
(UlnterfaceOrientation)interfaceOientation {

/1 Return YES for supported orientations

return (interfaceOientation == U lnterfaceOientationPortrait);

}
*/

30 Sybase Unwired Platform

Developing an iOS Application

- (void)di dRecei veMenor yWar ni ng {
/] Releases the viewif it doesn't have a superview.
[super di dRecei veMenor yWar ni ng] ;

/'l Rel ease any cached data, inmges, etc that aren't in use.

}

- (void)viewbDi dunl oad {
/'l Rel ease any retained subviews of the main view
/1 e.g. self.myQutlet = nil;

}

#pragma mark Tabl e vi ew net hods
- (NSI nt eger) nunber O Sect i onsl nTabl eVi ew. (Ul Tabl eVi ew *) t abl eVi ew
{

return 1;

/] Customize the nunmber of rows in the table view
- (NSInteger)tabl eVi ew. (U Tabl eVi ew *)t abl eVi ew
nunmber OF Rows| nSect i on: (NSI nt eger) secti on {

return [sel f.custonmerlList count];
}

/1l Custom ze the appearance of table view cells.
- (Ul Tabl eViewCel | *)tabl eView (Ul Tabl eVi ew *)tabl eVi ew
cel | For RowAt | ndexPat h: (NSI ndexPat h *)i ndexPat h {

static NSString *Cellldentifier = @Cel | ";

U Tabl eViewCel I *cell = [tableView
dequeueReusabl eCel | Wthidentifier:Cellldentifier];
if (cell ==nil)
cell = [[[U Tabl eViewCel |l all oc]

initWthStyl e: U Tabl eVi ewCel | St yl eDef aul t
reuseldentifier:Cellldentifier] autorel ease];

}

/1 Set up the cell...
NSUI nt eger row = [i ndexPath row ;
SUP101_Cust oner *customer = [custonerList objectAtlndex:row;
cell.textLabel.text = [NSString stringWthFornat: @ %@ ,
[custoner fnane], @ ", [customer |nane]];
cell.accessoryType =
Ul Tabl eVi ewCel | Accessor yDi scl osur el ndi cat or;
return cell;
}

- (void)tabl eView (U Tabl eVi ew *)t abl eVi ew
di dSel ect RowAt | ndexPat h: (NSI ndexPat h *)i ndexPath {
[self tabl eView tabl eView

Tutorial: iOS Application Development 31

Developing an iOS Application

accessor yButt onTappedFor RowW t hl ndexPat h: i ndexPat h] ;
}

/*

/1 Override to support conditional editing of the table view.

- (BOQL)t abl eVi ew. (Ul Tabl eVi ew *)t abl eVi ew

canEdi t RowAt | ndexPat h: (NSI ndexPat h *)i ndexPat h {

/1 Return NOif you do not want the specified itemto be editable.
return YES;

}
*/

/*

/1 Override to support editing the table view

- (void)tabl eView (U Tabl eView *)tabl eVi ew conm t Edi ti ngStyl e:
(Ul Tabl eVi enCel | Edi ti ngStyl e)editingStyl e forRowAt | ndexPat h:
(NSI ndexPat h *)i ndexPath {

if (editingStyle == Ul Tabl eVi ewCel | Edi ti ngStyl eDel ete) {
/| Delete the row fromthe data source
[tabl eVi ew del et eRowsAt | ndexPat hs: [NSArr ay

arrayWt hQbj ect: i ndexPat h] wi t hRowAni mati on: YES] ;

else if (editingStyle == Ul Tabl eVi enCel | Edi ti ngStyl el nsert) {
/] Create a new instance of the appropriate class, insert it into
the array, and add a new row to the table view

}

}

*/

/*

/1 COverride to support rearranging the table view

- (void)tabl eView (U Tabl eVi ew *)tabl eVi ew noveRowAt | ndexPat h:
(NSI ndexPat h *)from ndexPat h tol ndexPat h: (NSI ndexPat h
*)t ol ndexPat h {

}
*/

/*
/1 Override to support conditional rearranging of the table view
- (BOQL)t abl eVi ew: (Ul Tabl eVi ew *)t abl eVi ew
canMoveRowAt | ndexPat h: (NSI ndexPat h *) i ndexPat h {
/1 Return NOif you do not want the itemto be re-orderable.
return YES;
}
*/
/*
- (U Tabl eVi ewCel | AccessoryType)tabl eVi ew. (Ul Tabl eVi ew
*)tabl eVi ew accessor yTypeFor RowW t hl ndexPat h: (NSI ndexPat h
*)i ndexPat h

return Ul Tabl eVi ewCel | AccessoryDi scl osur el ndi cat or;

32

Sybase Unwired Platform

Developing an iOS Application

}
*/
- (void)tabl eView (U Tabl eVi ew *)t abl eVi ew

accessor yButt onTappedFor RowW t hl ndexPat h: (NSI ndexPat h *)i ndexPat h

if (childController == nil)
childController = [[Detail Controller alloc]
initWthN bNanme: @Detail Control |l er"
bundl e:nil];

NSUI nt eger row = [i ndexPath row ;

SUP101_Cust oner *sel ect edCustoner = [custonerlLi st
obj ect At I ndex: rowj ;

childController.title = [NSString stringWthFormat: @ %",
[sel ectedCustoner id]];

childController.original Obj = sel ectedCustoner;

SUP101AppDel egate *del egate = [[Ul Application
shar edAppl i cati on] del egate];

[del egat e. navControl | er pushVi ewControl |l er:childController
ani mat ed: YES] ;

}

- (void)deall oc {
sel f.custonerList = nil;
self.childController = nil;
[super deall oc];

@nd

6. Clickthe Cust omer Li st Control | er. hfile, and replace the existing code with the

provided code.
#inport <U Kit/UKit.h>
@l ass Detail Controller;

@nterface CustonerListController : U Tabl eViewController
<Ul Tabl eVi ewDel egat e, Ul Tabl eVi ewDat aSour ce> {

}

@roperty (nonatomic, retain) NSArray *custonerlList;
@roperty (nonatomic, retain) Detail Controller *childController;

@nd

Adding the DetailController
Goal: Create the Det ai | Control | er. xi b.

1. Inthe SUP101 Xcode project, select File > New > New File.

Tutorial: iOS Application Development

33

Developing an iOS Application

Select Ul ViewController subclassand click Next.

Select Ul ViewController in the Subclass of field, select With XIB for user interface,
and then click Next.

Enter Det ai | Cont rol | er in the Save asfield and click Save.

The filesDet ai | Control | er. h,Detail Controller.mand
Det ai | Control | er. xi b are created in the Project Navigator.

Configuring the DetailController View

Goal: Add the user interface to the customer detail view and specify the outlets in the
Det ai |l Control | er. mand Det ai | Control | er. h files.

1

Click the Det ai | Control | er. xi b file to open Interface Builder.

2. Select View > Utilities> Object Library. In the Object Library panel, select the Text

Field item, drag it onto the view three times to create three text fields aligned vertically to
the right of the screen.

You can resize the text fields using the resize handles and position the button by dragging it
to the desired location.

In the Object Library panel, select the Label item, drag it onto the view three times to
create three labels to the left of and aligned with the three text fields. Replace the default
Label text with:

¢ First Name
e [ast Name
* Phone

In the Object Library panel, select the Round Rect Button item, drag it onto the view, and
rename it to Submi t.

To make connections to the user interface from the view controller, you must specify
outlets in the Det ai | Cont r ol | er. h file and add property declarations for the
instance variables and a declaration for the action method.

Openthe Det ai | Contr ol | er. h file and replace the existing code with the provided
code.

#import <UKit/UKit.h>
#i mport "SUP101_ Cust orer. h"

@nterface Detail Controller : U ViewController {
}

@roperty (nonatomic, retain) IBQutlet U TextField *fnane;
@roperty (nonatonmic, retain) IBQutlet U TextField *Inane;
@roperty (nonatom c, retain) IBQutlet U TextField *phone;
@roperty (nonatom c, retain) SUP101_Custoner *original oj;
@roperty (nonatomc, retain) |BOutlet U Button *subm tButton;

- (1 BAction)buttonPressed: (id)sender;

34

Sybase Unwired Platform

Developing an iOS Application

@nd
6. Clickthe Det ai | Contr ol | er. mfile and replace the existing code with the provided
code.

#i nport "Detail Controller.h"
#i mport " SUP101_SUP101DB. h"
#i nport "SUPl01Cal | backHandl er. h"

@ npl enentation Detail Controller
@ynt hesi ze fname, | name, phone, original Cbj, submtButton;

I/ The designated initializer. Override if you create the
controller progranmatically and want to performcustom zation that
is not appropriate for viewDi dLoad.

[1- (id)initWthN bNanme: (NSString *)ni bNaneOr Ni | bundl e: (NSBundl e
*) ni bBundl eOrNi | {

I if ((self = [super initWthN bName: ni bNameOr Ni |
bundl e: ni bBundl eOrNi l])) {

11 /1 Custominitialization

11

/1 return self;

11}

- (void) onReplaySuccess: (NSNotification *)notification

/1 'replay success' means the server accepted the changes.

Ref resh
/1 the in-menory object so it's in sync with the |ocal
dat abase,
/1 and re-enable the submt button so additional changes can be
nmade.
SUP101_Cust oner *successObj = (SUP101_Custoner *)[notification
obj ect];
if (successOhj.id_ == self.original Goj.id_) {
[sel f.original Obj refresh];
sel f. submi t Button. enabl ed = YES;
}
}

- (void) onReplayFailure: (NSNotification *)notification

[l 'replay failure' means the server rejected the changes.

Ref resh

/1l the object fromthe |ocal database and restore the text
fields,

/1 and re-enable the submt button so additional changes can be
nmade.

SUP101_Custoner *fail edObj = (SUP101_Custoner *)[notification
obj ect];

if (failedObj.id_ == self.original Obj.id_) {

[sel f.original Obj refresh];

f name. t ext ori gi nal Obj . f nane;
| nare. t ext ori gi nal Qoj . | nane;
phone. t ext ori gi nal Obj . phone;

Tutorial: iOS Application Development 35

Developing an iOS Application

sel f.subm t Butt on. enabl ed = YES;

}
- (1 BAction)buttonPressed: (id)sender
{

if (([Inane.text conpare:original Goj.fnane] != NSO der edSane)
([fname. text conpare:original Obj.lnane] != NSO der edSane)
([phone. text conpare: origi nal Cbj . phone] != NSO deredSane))
SUP101_Cust oner *newCustoner = [SUP101_Customrer find:

[original Cbj id]];
i f (newCustomner) ({

newCust oner. | nanme = | nane. t ext;
newCust oner . f nane = fnane. text;
newCust ormer . phone = phone. t ext;

/1 After saving changes and sending themto the server
// disable the 'subnmit' button so the object won't be

changed
/1 while there are pendi ng changes.
[newCust oner save];
[newCust omer subni t Pendi ng] ;
[sender set Enabl ed: NQ ;

}
}
}
/*

/1 I npl enment viewDi dLoad to do additional setup after |oading the
view, typically froma nib.

- (voi d)vi ewDi dLoad {

[super vi ewDi dLoad];

}
*/

/1 Override to allow orientations other than the default portrait
orientation.
- (BOQL) shoul dAut or ot at eTol nterfaceOri entati on:
(UlnterfaceOrientation)interfaceOientation {

/1l Return YES for supported orientations

return (interfaceOrientation ==
UlnterfaceOientationPortrait);

}

- (void)viewN || Appear: (BOCL) ani mat ed {
f nane. t ext ori gi nal Obj . f nane;
| nane. t ext origi nal Obj . | nane;
phone. t ext ori gi nal Obj . phone;

36 Sybase Unwired Platform

Developing an iOS Application

[[NSNotificationCenter defaultCenter] addCbserver:self
sel ector: @el ect or (onRepl aySuccess:) nanme: ON_REPLAY_SUCCESS
object:nil];

[[NSNoti ficati onCenter defaultCenter] addCbserver:self
sel ector: @el ect or (onRepl ayFai | ure:) nane: ON_REPLAY_FAI LURE
object:nil];

[super viewW | | Appear: ani mat ed] ;

(void)viewN || D sappear: (BOOL) ani mat ed {
[[NSNoti ficationCenter defaultCenter] removeCbserver:self];
[super viewW || Di sappear: ani mat ed] ;

(voi d) di dRecei veMenor yWar ni ng {
/! Releases the viewif it doesn't have a superview.
[super di dRecei veMenor yWar ni ng] ;

/'l Rel ease any cached data, inmges, etc that aren't in use.

}

- (void)vi ewDi dunl oad {
/'l Rel ease any retained subviews of the main view
/[l e.g. self.myQutlet = nil;

}

- (1 BAction)touchesEnded: (NSSet *)touches wi t hEvent:
(Ul Event *) event

U Text Vi ew* fnamel = (Ul TextView) [[self view] viewWthTag:

U Text Vi ew* | namel = (Ul Text Vi ew*) [[sél f view] viewWthTag:
2 .

U Text Vi ew* phonel = (U TextView) [[self view] viewWthTag:
35

[fnamel resignFirstResponder];

[namel resignFirstResponder];

[phonel resignFirst Responder];

}

- (void)dealloc {
self.original Gbj = nil;
[super deall oc];

@nd
7. Clickthe Det ai | Cont rol | er. xi b filetoopen itin Interface Builder, click the First
Name text field, and select View > Utilities > Attributes | nspector.

8. In the Attributes Inspector panel , scroll to the View section and enter 1 in the Tag field.
9. Set the tags for the Last Name and Phone text fields to 2 and 3 respectively.

Tutorial: iOS Application Development 37

Developing an iOS Application

10. Control-drag from the File'sOwner icon in the middle pane to each of the text fields and
select the fname, Iname, and phoneoutlets respectively to create connections between the
text fields and the outlets defined in the Det ai | Cont r ol | er . mfile.

11. Select View > Utilities> Connections | nspector to confirm that the outlets have been
correctly configured:

searchDisplayContraller O
submitButton O
Referencing Qutlets

Mew Referencing Qutlet O

. Referencing Outlet Collections
First Name

Mew Referencing Outlet Collection O
Received Actions
buttonPressed O
Last Name
Phone

Submit

12. Control-drag from the File's Owner icon in the middle pane to the Submit button and
select submitButton.

Deploying the Device Application
Goal: Deploy the SUP101 application to the iPhone Simulator for testing.

Prerequisites
Have a registered device user in Sybase Control Center.

You must be connected to the server where the mobile application project is deployed.

Task

1. In XCode, make sure that the Schemeis set to SUP101|iPhone 4.3 Simulator, and select
Product > Build and then Product > Run.

The project is built and the iPhone Simulator starts.

2. Inthe iPhone simulator, go to the Settings app, choose SUP101 and enter the connection
settings:

38 Sybase Unwired Platform

Developing an iOS Application

« ServerNameSetting — the machine that hosts the server where the SUP101 mobile
application project is deployed.
» ServerPortSetting — Unwired Server port number. The default is 5001.

« CompanylDSetting — the company ID you entered when you registered the device in
Sybase Control Center, in this case, O.

« UserNameSetting — the user you registered in Sybase Control Center, user 1.
« ActivationCodeSetting — the activation code for the user, 123.

3. Inthe iPhone applications screen, open the SUP101 application.

4. Click Subscribe.
The customer list appears.

5. Select a customer record from the customer list and double-click to open the detail view.
The customer detail shows the fields: First Name, Last Name, and Phone.

6. Change the First Name to something else, and click Submit.

Tutorial: iOS Application Development 39

Developing an iOS Application

40 Sybase Unwired Platform

Learn More about Sybase Unwired Platform

Learn More about Sybase Unwired Platform

Once you have finished, try some of the other samples or tutorials, or refer to other
development documents in the Sybase Unwired Platform documentation set.

Check the Sybase Product Documentation Web site regularly for updates: Attp.//
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-2.0.0/doc/htmil/title. html.

Tutorials
Try out some of the other getting started tutorials to get a broad view of the development tools
available to you.

Samples
Sample applications are fully developed, working applications that demonstrate the features
and capabilities of Sybase Unwired Platform.

Check the SAP Development Network (SDN) Web site regularly for updates: Attp.//
www.sadn.sap.com/irf/san/mobile. Click on Sybase Unwired Platform and navigate to
Samples.

Online Help
See the online help that is installed with the product, or the Product Documentation \Web site.

Developer Guides
Learn about using the API to create device applications:

e Developer Guide for BlackBerry

» Developer Guide for iOS

o Developer Guide for Mobile Workflow Packages

» Developer Guide for Windows and Windows Mobile

Customize and automate:

» Developer Guide for Unwired Server Management APl — customize and automate system
administration features.

» Developer Guide for Unwired Server— customize and automate server-side
implementations for device applications, and administration, such as data handling.

Javadoc and HeaderDoc are also available in the installation directory.

Tutorial: iOS Application Development 41

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-2.0.0/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-2.0.0/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-2.0.0/doc/html/title.html
http://www.sdn.sap.com/irj/sdn/mobile
http://www.sdn.sap.com/irj/sdn/mobile

Learn More about Sybase Unwired Platform

42 Sybase Unwired Platform

Index
B

basics, learning 7

C

callback handler 17

connecting to Sybase Control Center 6
connection, creating 28

customer list view 29
CustomerListController 29

D

delegate file 21
deploying 38
DetailController view 34
DetailController.xib 33
developing

device application 11
device application, developing 11

E

Eclipse Studio Edition
Sybase Unwired WorkSpace 6
Enterprise Explorer, defined 7

F

File's Owner 24
First Responder 24

G

generating object API code 12

getting started
developing a device application 11
Sybase Unwired Platform 5
Sybase Unwired WorkSpace 7
tutorials 1

H

help, online 7

Index

installing

Sybase Unwired Platform 5
Interface Builder 24
iPhone Simulator 38

L

linking outlets 34

M

MainWindow_iPad.xib 28
MainWindow_iPhone.xib 28
Mobile Application Diagram, defined 7

N

navigation controllers 28

@)

Objective-C code, generating 12
online help, accessing 7
outlets, linking 34

=]

Palette, defined 7
Properties view, defined 7
R

registering the iPhone simulator 16

S

servers
Unwired Server, starting 5
starting
Sybase Control Center 6

Tutorial: iOS Application Development

43

Index

Sybase Unwired WorkSpace 6

Unwired Server 5
SubscribeController view 24
SUP_iOS_Custom_Dev_Tutorial_code.zip 13, 17
SUP101Appdelegate files, configuring 21
SUP101CallbackHandler file 17
Sybase Control Center 6, 16

connecting to 6
Sybase Unwired Platform

getting started 5

installing 5
Sybase Unwired WorkSpace

getting started 7

starting 6

U

UlViewController subclass 20

Unwired Server 5

Vv

View 24
view controller, adding 20

w

WorkSpace Navigator, defined 7

X

Xcode, build project 13

44

Sybase Unwired Platform

	Tutorial: iOS Application Development
	Contents
	Sybase Unwired Platform Tutorials
	Task Flow
	Getting Started
	Installing Sybase Unwired Platform
	Starting Unwired Platform Services
	Starting Sybase Unwired WorkSpace
	Connecting to Sybase Control Center
	Learning the Basics

	Developing an iOS Application
	Generating Object API Code
	Setting Up an iOS Client Application in Xcode
	Registering the iPhone Simulator in Sybase Control Center
	Creating the SUP101CallbackHandler File
	Creating the User Interface
	Adding the SubscribeController View Controller
	Configuring the SUP101Appdelegate Files
	Configuring the SubscribeController View
	Making Connections

	Adding the CustomerListController
	Adding the DetailController
	Configuring the DetailController View

	Deploying the Device Application

	Learn More about Sybase Unwired Platform
	Index

