
Tutorial: iPhone Application Development
using Custom Development

Sybase Unwired Platform 1.5.2

DOCUMENT ID: DC01213-01-0152-01
LAST REVISED: August 2010
Copyright © 2010 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Getting Started Tutorials1
Overview of Getting Started Tutorials1
Understanding the Unwired Platform Development

Environment ..2
Development in Eclipse2

Understanding Fundamental Mobile Development
Concepts ..3

Mobile Business Objects3
Synchronization Methods4
Application Types4
Data Sources ..4
Switching Between Developer Profiles5

Task Flow ...7
Getting Started ..9

Installing Sybase Unwired Platform9
Starting Unwired Platform Services9
Starting Sybase Unwired WorkSpace10
Connecting to Sybase Control Center10
Learning the Basics ...11

Developing an iPhone Application15
Deploying the Database Mobile Business Objects16
Generating Object API Code17
Setting Up an iPhone Client Application in Xcode19
Registering the iPhone Simulator in Sybase Control

Center ...22
Creating the SUP101CallbackHandler File24
Creating the User Interface28

Adding the SubscribeController View Controller
...28

Adding the CustomerListController35
Adding the DetailController40

Tutorial: iPhone Application Development using Custom
Development

 iii

Deploying the Device Application46
Learn More about Sybase Unwired Platform49
Index ..51

Contents

 iv Sybase Unwired Platform

Introduction to Getting Started Tutorials

Getting started tutorials enable users of all levels to try Sybase® Unwired Platform with
minimal setup. You can also use the tutorials to demonstrate system functionality and train
users.

Overview of Getting Started Tutorials
The getting started tutorials demonstrate how to develop, deploy, and test mobile business
objects, device applications, and message-based mobile workflow packages.

• Learn mobile business object (MBO) basics, and create a mobile device application:
• Tutorial: Mobile Business Object Development
• Tutorial: BlackBerry Application Development using Device Application Designer
• Tutorial: Windows Mobile Device Application Development using Device

Application Designer
• Create native mobile device applications:

• Tutorial: BlackBerry Application Development using Custom Development
• Tutorial: iPhone Application Development using Custom Development
• Tutorial: Windows Mobile Application Development using Custom Development

• Create a mobile workflow package:
• Tutorial: Mobile Workflow Package Development

The getting started tutorials demonstrate a cross section of basic functionality, which includes
creating MBOs that can be used in replication-based or message-based synchronization; and
using various Sybase Unwired WorkSpace development tools, independent development
environments, and device types.

Table 1. Tutorial summary

Tutorials Mobile
business
objects
(MBOs)

Synchroni‐
zation types

Development
tools

Device
types

Tutorial: Mobile Business Ob-
ject Development

Create new
MBOs

Replication-
based

Sybase Unwired
WorkSpace

N/A

Tutorial: BlackBerry Applica-
tion Development using De-
vice Application Designer

Reuse
MBOs

Replication-
based

Device Applica-
tion Designer

BlackBerry

Introduction to Getting Started Tutorials

Tutorial: iPhone Application Development using Custom
Development

 1

Tutorials Mobile
business
objects
(MBOs)

Synchroni‐
zation types

Development
tools

Device
types

Tutorial: BlackBerry Applica-
tion Development using Cus-
tom Development

Create new
MBOs

Replication-
based

Sybase Unwired
WorkSpace

BlackBerry

Tutorial: iPhone Application
Development using Custom
Development

Create new
MBOs

Message-based Sybase Unwired
WorkSpace

iPhone

Tutorial: Windows Mobile
Application Development us-
ing Device Application De-
signer

Reuse
MBOs

Replication-
based

Device Applica-
tion Designer

Windows
Mobile

Tutorial: Windows Mobile
Device Application Develop-
ment using Custom Develop-
ment

Create new
MBOs

Message-based Sybase Unwired
WorkSpace

Windows
Mobile

Tutorial: Mobile Workflow
Package Development

Create new
MBOs

Message-based Mobile Workflow
Forms Editor

Windows
Mobile

Understanding the Unwired Platform Development
Environment

Learn more from the getting started tutorials by understanding basic development
environment concepts. Sybase Unwired Platform provides an Eclipse development
environment.

Development in Eclipse
Sybase Unwired WorkSpace is a plug-in to your Eclipse development environment that
provides tools for creating mobile applications.

Unwired WorkSpace includes back-end integration tools that connect Unwired Server to
enterprise data sources, allowing you to create mobile business objects (MBOs) from the
back-end business data model.

Developers can perform MBO code generation at any time and use this MBO model code
along with the user interface code in a native IDE. This makes the code available to transition
from the rapid application development (RAD) model to the fully extensible and open
development environment provided for device platforms from third-party vendors.

Introduction to Getting Started Tutorials

 2 Sybase Unwired Platform

Optionally you can use the Device Application Designer to develop user interfaces for
BlackBerry, Windows Mobile, and Windows devices. And you can use the Mobile Workflow
Forms Editor to develop message-based workflow packages for Windows Mobile, Windows,
iPhone, and Symbian devices.

Understanding Fundamental Mobile Development Concepts
Learn more from the getting started tutorials by understanding basic mobile development
concepts.

Learn more about these concepts:

• Fundamentals
• Sybase Unwired WorkSpace – Mobile Business Object Development

Mobile Business Objects
Mobile business objects help form the business logic for mobile applications.

A mobile business object (MBO) is derived from a data source (such as a database server, Web
service, or SAP® server). MBOs are deployed to Unwired Server, and accessed from mobile
device application clients. MBOs include:

• Implementation-level details – metadata columns that include information about the data
from a data source.

• Abstract-level details – attributes that correspond to instance-level properties of a
programmable object in the mobile client, and map to data source output columns.
Parameters correspond to synchronization parameters on the mobile client, and map to
data source arguments. For example, output of a SQL SELECT query are mapped as
attributes, and the arguments in the WHERE clause are mapped as synchronization
parameters, so that the client can pass input to the query.
MBO operations include parameters that map to data source input arguments. Operation
parameters determine information a client passes to the enterprise information system
(EIS).

• Relationships – defined between MBOs by linking attributes and parameters in one MBO,
to attributes and parameters in another MBO.

You can define MBOs using either a top-down approach—first designing attributes and
parameters, then binding them to a data source; or a bottom-up approach—first specifying a
data source, then automatically generating attributes and parameters from it.

A mobile application package includes MBOs, roles. and data source connection mappings,
and other artifacts that are delivered to the Unwired Server during package deployment.

Introduction to Getting Started Tutorials

Tutorial: iPhone Application Development using Custom
Development

 3

Synchronization Methods
Developers can use either replication-based or message-based synchronization to move data
and transactions between device application clients and Unwired Server.

The choice depends on the target device platform, application requirements, target platform,
and the nature of data changes and activity between Unwired Server and clients, for example,
mobile workflow forms always use message-based synchronization.

Unwired Server manages and maintains data freshness between multiple data sources and
device application through synchronization.

Application Types
Sybase Unwired Platform supports two choices for application type. First is the native
application type, and the other is the container-based business workflow type.

The native application model enables the developer to write custom code (C#, Java, or
Objective-C, depending on the platform), or to use the Device Application Designer to
generate the user interface. The native application model is supported on BlackBerry, Apple,
Windows Mobile, and Windows platforms. The choice depends on the functionality desired in
the application, and the need to access third-party and platform-provided APIs.

The business workflow model offers a fast and simple way to build applications that support
simple business workflows, such as approvals and requests. The workflow model is supported
on iPhone, Windows Mobile, Windows, and Symbian platforms.

Data Sources
A data source is the enterprise information system where data is retrieved from and
transactions are executed. A connection profile is a design-time connection to a data source.
Connection profiles are created to specific data source by providing connection information
such as host, port, login, and password among others. The connection profiles are used to
define MBOs and operations, and mapped to existing, or used to create new, server
connections when the package is deployed to Unwired Server..

Unwired Platform hides the interaction complexity with datasource-specific protocols, such
as JDBC for database and SOAP for Web services.

Unwired Platform currently supports these EIS connection types:

• Major databases:
• Sybase® Adaptive Server® Enterprise
• Sybase SQL Anywhere®

• Microsoft® SQL Server®

• Oracle®

• IBM® DB2®

• SAP® and SAP ECC

Introduction to Getting Started Tutorials

 4 Sybase Unwired Platform

• Web services – connect to SOAP and REST Web services in your EIS, and to supported
enterprise applications, such as Remedy.

See the Sybase Unwired Platform Installation Guide for supported version levels.

Switching Between Developer Profiles
Switch between basic and advanced developer profiles in the Mobile Application Diagram.

If you do not see an Unwired WorkSpace feature (wizard, property, or WorkSpace Navigator
item) that you expect or need, switch to the advanced developer profile, or modify developer
profile settings. To use backend data sources other than those supplied by Sybase Unwired
Platform, you must switch to the advanced developer profile to see the Server Connection
Mapping page when deploying the Mobile Business Object package.

1. Right-click in the Mobile Application Diagram and select > Basic/Advanced.

2. You can also select Window > Preferences > Sybase, Inc. > Mobile Development >
Developer Profile to directly view or modify the developer profile preference settings.
Basic is the default developer profile.

Introduction to Getting Started Tutorials

Tutorial: iPhone Application Development using Custom
Development

 5

Introduction to Getting Started Tutorials

 6 Sybase Unwired Platform

Task Flow

This tutorial shows you how to develop a device application for an Apple iPhone device.

Table 2. Eclipse tutorials

Task Goals Steps required to complete the
task

Getting Started • Install all required WorkSpace
components and external re-
sources.

• Start Unwired Server.

• Open the Mobile Development
perspective, and become famil-
iar with the views of the per-
spective, the Mobile Applica-
tion Diagram, and the Device
Application Designer.

• Installing Sybase Unwired Platform
on page 9

• Starting Unwired Server on page
9

• Starting Sybase Unwired Work-
Space on page 10

• Learning the Basics on page 11

Note: These tasks are prerequisites for
all the other tutorials. You need to per-
form them only once.

Developing a De-
vice Application

• Create an iPhone device appli-
cation, and run it on the iPhone
Simulator.

• Generating Object API Code for
iPhone on page 17

• Setting up an iPhone Client Applica-
tion in Xcode on page 19

• Registering the iPhone Simulator in
Sybase Control Center on page 22

• Creating the SUP101CallbackHan-
dler File on page 24

• Creating the User Interface on page
28

• Deploying the Device Application
on page 46

Task Flow

Tutorial: iPhone Application Development using Custom
Development

 7

Task Flow

 8 Sybase Unwired Platform

Getting Started

Goal: Install and learn about Sybase Unwired Platform and its associated components.

The following tasks are required, unless otherwise noted, for all tutorials, but you need to
perform them only once.

1. Installing Sybase Unwired Platform on page 9

2. Starting Unwired Platform Services on page 9

3. Starting Sybase Unwired WorkSpace on page 10

4. (optional) Learning the Basics on page 11

Installing Sybase Unwired Platform
Goal: Install Sybase Unwired Platform.

Install these Sybase Unwired Platform components:

• Data Tier
• Unwired Server
• Unwired WorkSpace
• Device Application Designer
• Windows Mobile .NET components (for developing device applications in Visual Studio)

If Unwired Platform is already installed and any of these components are missing:

1. Start the Sybase Unwired Platform installer.
2. Follow the instructions in the installation wizard.
3. Select the required components, and complete the installation.

For complete installation instructions, see the Sybase Unwired Platform Installation Guide
and Release Bulletin.

Starting Unwired Platform Services
Goal: Start Unwired Server and the sample database.

In Windows, select Start > Programs > Sybase > Unwired Platform<version> > Start
Unwired Platform Services .

Getting Started

Tutorial: iPhone Application Development using Custom
Development

 9

Starting Sybase Unwired WorkSpace
Goal: Start Unwired WorkSpace.

1. In Windows, select Start > Programs > Sybase > Unwired Platform<version> >
Unwired WorkSpace.

Sybase Unwired WorkSpace opens, and displays the Welcome page with links to product
information, and to the product.

2. To read more about Sybase Unwired WorkSpace concepts and tasks, select Help > Help
Contents from the main menu.

Connecting to Sybase Control Center
Goal: Open the Web-based Sybase Control Center administration console to manage
Unwired Server and its components.

From Sybase Control Center, you can:

• View servers and their status
• Start and stop a server
• View server logs
• Deploy a mobile application package
• Set role mappings

1. Select Start > Programs > Sybase > Sybase Control Center.

Note: If Sybase Control Center does not launch, make sure that the Sybase Unified Agent
service is started. See the Installation Guide for details.

2. Log in using the default login:

• User Name – supAdmin

• Password – s3pAdmin

Logging in to Sybase Control Center (SCC) allows you access to Unwired Platform
administration features that you have been authorized to use. Administrators of any
Sybase product can log into SCC. However, only users assigned to the Super
Administrator or Domain Administrator roles for Unwired Platform can log in to Unwired
Server from Sybase Control Center.

Logging in to SCC only allows you access to the SCC interface. If Unwired Server has not
been authenticated, you will not be able to see or administer any resources.

Getting Started

 10 Sybase Unwired Platform

3. Select Help > Online Documentation for additional information on configuring,
managing, and monitoring Unwired Server.

Learning the Basics
Goal: Learn about Sybase Unwired WorkSpace and how to access help.

Prerequisites
Start Unwired WorkSpace.

Task

1. From the Welcome page, select any of the links to familiarize yourself with the Unwired
WorkSpace environment.

To close this page, click the X. You can reopen this page by selecting Help > Welcome.

2. Select Start Development to access the Sybase Unwired WorkSpace development
environment. Look at the area (window or view) that you will be working in to access,
create, define, and update mobile business objects (MBOs).

View Description

WorkSpace Navigator This view displays mobile application project fold-
ers, each of which contains all project-related re-
sources in subfolders, including MBOs, data source
references to which the MBOs are bound, personal-
ization keys, and so on.

Use this view to review and modify MBO-related
properties.

Enterprise Explorer A window that provides functionality to connect to
various enterprise back-end systems; for example,
database servers, SAP servers, and Sybase Unwired
Server.

Getting Started

Tutorial: iPhone Application Development using Custom
Development

 11

View Description

Mobile Application Diagram A graphical editor where you create and define mo-
bile business objects.

Use the Mobile Application Diagram to create
MBOs (including attributes and operations), then
define relationships with other MBOs. You can:

• Create MBOs in the Mobile Application Dia-
gram using Palette icons and menu selections –
either bind or defer binding to a data source,
when creating an MBO. For example, you may
want to model your MBOs before creating the
data sources to which they bind. This is some-
times called the top-down approach.

• Drag items from Enterprise Explorer and drop
them onto the Mobile Application Diagram to
create the MBO – quickly creates the operations
and attributes automatically based on the data
source being dropped on the Mobile Application
Diagram. This is sometimes called the bottom-
up approach.

Each new mobile application project generates an
associated Mobile Application Diagram.

Palette Access the Palette from the Mobile Application Di-
agram. It provides controls, such as the ability to
create MBOs, add attributes and operations, and de-
fine relationships, by dragging and dropping the
corresponding icon onto the Mobile Application Di-
agram or existing MBO.

Properties view Select an object in the Mobile Application Diagram
to display and edit its properties in the Properties
view. You cannot create an MBO from the Properties
view, but generally, most development and configu-
ration is performed here.

Outline view Displays an outline of the file that is currently open in
the editor area, and lists structural elements. The
contents are editor-specific.

Problem view Displays problems, errors, or warnings that you may
encounter.

3. To access the online help, select Help > Help Contents from the main menu bar.

Getting Started

 12 Sybase Unwired Platform

4. Expand any of the documents that appear in the left pane. Some documents are for Sybase
Unwired Platform, while others are for the Eclipse development environment.

Getting Started

Tutorial: iPhone Application Development using Custom
Development

 13

Getting Started

 14 Sybase Unwired Platform

Developing an iPhone Application

Goal: Generate Object API code for the iPhone platform, develop an iPhone device
application with code, and test its functionality.

Prerequisites

• Getting Started on page 9
• Tutorial: Developing Database Mobile Business Objects
• Supported platforms include:

• Mac OS X Leopard (Macbook or iMac), Xcode 3.1.2
• Mac OS X Snow Leopard (Macbook or iMac), Xcode 3.2.2
• iPhone SDK up to 3.1.3

Note: Xcode 3.2.3 + iOS 4 are NOT supported.

The device application communicates with the database mobile business objects that are
deployed to Unwired Server.

Task

1. Open the SUP101 Mobile Application Project if it is not already open:

In WorkSpace Navigator, right-click the SUP101 folder and select Open in Diagram
Editor.

2. Deploying the Database Mobile Business Objects on page 16

3. Generating Object API Code for iPhone on page 17

4. Setting up an iPhone Client Application in Xcode on page 19

5. Registering the iPhone Simulator in Sybase Control Center on page 22

6. Creating the SUPCallbackHandler File on page 24

7. Adding the SubscribeController View Controller on page 28

8. Adding the CustomerListController on page 35

9. Adding the DetailController on page 40

10. Deploying the Device Application on page 46

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 15

Deploying the Database Mobile Business Objects
Goal: Deploy the project that contains the database mobile business objects to the server.

Prerequisites
Finish the Tutorial: Developing Database Mobile Business Objects. You must be connected to
both the sampledb database and Unwired Server.

Task

1. Right-click in the SUP101 Mobile Application Diagram , and select Deploy Project.

2. On the first page of the Deploy Mobile Application Project, accept the defaults, select
Message-based, and click Next.

Developing an iPhone Application

 16 Sybase Unwired Platform

3. On the Contents page, select the customer and sales_order MBOs and click Next.

4. On the Package Jars page, click Next.

Note: This window appears only if you are using the Advanced developer profile.

5. On the Target Server page, from the list of available servers, select My Unwired Server
and click Refresh.

Once connected, accept the default Domain and Security configuration settings, and click
Next.

6. If you have multiple server connections, you see the Server Connection Mapping page.
Select the sampledb server connection and click Finish.

7. When the Deployment status window shows the deployment was successful, click OK.

8. Connect to Unwired Server and view the deployed project.

a) In the Enterprise Explorer, cclick My Unwired Server.

My Unwired Server is a default Unwired Server connection profile that provides
access to Unwired Server, which you started in a previous step.

b) Expand Domains > default > Packages. The server package sup101:1.0, into which
you deployed the MBOs, appears in the Packages folder. The two MBOs appear in the
Mobile Business Objects folder.

Generating Object API Code
Goal: Launch the code generation wizard and generate the Object API code for a message-
based iPhone application.

1. Right-click in the SUP101 Mobile Application Diagram and select Generate Code.

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 17

2. In the code generation wizard, accept the default, Continue without a configuration, and
click Next.

3. Enter these configuration options and click Next:

Option Description

Language Select Objective-C.

Platform Accept the default, iPhone.

Unwired server Select My Unwired Server.

Server domain Accept default.

Name prefix The prefix for the generated files. Leave blank.

Project path Accept the default or enter a different location
for the generated project files.

Clean up destination before code generation Select this option to clean up the destination
folder before generating the device client files.

Message-based Selected by default when you select Objective-
C as the language.

Developing an iPhone Application

 18 Sybase Unwired Platform

4. In the next window, select the mobile business objects for which to generate the metadata
classes and click Finish.
This generates Objective-C code into the specified output location.

Setting Up an iPhone Client Application in Xcode
Goal: Set up an iPhone client application in the Xcode IDE.

Prerequisites
Create and deploy your mobile business objects, and generate Objective-C code into an output
location.

Note: Ensure the directory where Sybase Unwired Platform is installed is a shared directory
so you can access it from your Mac.

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 19

Note: This tutorial was developed using Xcode 3.1.4 and iPhone SDK 3.1.2. If you use a
different version of Xcode, some steps may vary. For more information on Xcode, refer to the
Apple Developer Connection: http://developer.apple.com/tools/Xcode/.

Task

1. In the Xcode IDE, select Menu > New Project, then select the Windows-based
Application template.

The project you create sets up the basic application environment.

2. In the new SUP101 project, in Active SDK, select iPhoneSimulator 3.1.2 and set the
Active Configuration to Debug.

3. Connect to the Microsoft Windows machine where Sybase Unwired Platform is installed:

a) From the Apple menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, smb://<machine DNS

name> or smb://<IP Address>.

You will see the shared directory.

4. In the Home directory on your Mac, create a new folder named SUP101.

5. Copy the includes and libs folders from <Unwired Platform
Installation>\Servers\UnwiredServer\ClientAPI\ObjectiveC to
the Home/SUP101 directory on your Mac.

6. Copy the generated code for the SUP101 mobile application project from your Microsoft
Windows environment, for example, C:\Documents and Settings
\administrator\workspace\SUP101\Generated Code, to the Home/
SUP101 directory on your Mac.

7. Add the generated *.h and *.m files to the Xcode project.

a) In the Xcode Groups & Files pane, right-click the SUP101 project and select Add >
Existing Files.

b) Select the Generated Code folder you copied to your Home directory (Home/
SUP101/Generated Code) and click Add.

c) Select the Copy items into destination group's folder (if needed) option and click
Add.

Developing an iPhone Application

 20 Sybase Unwired Platform

http://developer.apple.com/tools/Xcode/

8. Add the libclientrt.a, libSUPObj.a, and libMO.a to your Xcode project:

a) In the Xcode Groups & Files pane, right-click SUP101 and select Add > Existing
Files.

b) Navigate to the directory where you copied the libraries, Home/SUP101/libs.

c) Open the Debug-iphonesimulator folder, select the libclientrt.a,
libSUPObj.a, and libMO.a libraries and click Add.

Note: The library version should correspond to the configuration you are building. For
example, if you are building a configuration for a debug version of the simulator, then
add the libraries to libs/Debug-iphonesimulator/.

d) Select the Copy items into destination group's folder (if needed) option and click
Add.

9. Add Settings.bundle to the Xcode project.

This allows the iPhone device client user to use the Settings application to input his or her
user preference information such as server name, server port, user name, and activation
code.

a) In the Xcode Groups & Files pane, right-click Resources, and select Add > Existing
Files.

b) Navigate to the includes directory, select Settings.bundle, and click Add.

c) Select the Copy items into destination group's folder (if needed) option and click
Add.

10. Enter the Xcode project Header Search Paths:

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 21

a) Select Project > Edit Active Target SUP101.
b) Click Build.
c) Scroll down to the Search Paths section and in Header Search Paths, verify the

location where you copied the include files, Home/SUP101/includes/**.

11. Click General, then click the + icon at the bottom-left corner of the window to add these
libraries from the SDK to the project:

• Security.framework
• AddressBook.framework
• QuartzCore.framework
• CoreFoundation.framework
• libicucore.A.dylib
• libz.1.2.3.dylib
• libstdc++.6.dylib

Registering the iPhone Simulator in Sybase Control Center
Goal: Register the iPhone Simulator in Sybase Control Center.

Prerequisites
Complete Connecting to Sybase Control Center on page 10.

Task

1. Log in to Sybase Control Center using the supAdmin/s3pAdmin user name and password.

Developing an iPhone Application

 22 Sybase Unwired Platform

2. In Sybase Control Center, select View > Select > Unwired Server Cluster Management
View.

3. In the left pane, select Device Users.

4. In the right pane, click Devices.

5. Click Register.

6. In the Register Device window, enter the required information:

• User name
• Server name
• Port
• Farm ID
• Activation code

Note: The information should match the input on the client and "localhost.sybase.com"
should be the actual name of your machine and domain.

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 23

Creating the SUP101CallbackHandler File
Goal: Configure the SUP101CallBackHandler file.

There are two threads involved in the SUP101 application—the main thread, which is driven
by the client application user interface controller, and the mobile object client access thread,
which takes charge of message transportation with the server and synchronization with the
application through the mobile object.

1. In the SUP101 Xcode project, select File > New File.

2. Select Objective-C Class and click Next.

3. In File Name, enter SUP101CallbackHandler, select the Also create
SUP101CallbackHandler.h option, and click Finish.

4. In the new SUP101CallbackHandler.h file, enter the code for the callback handler.
For example:
#import "SUPDefaultCallbackHandler.h"

@interface SUP101CallbackHandler:SUPDefaultCallbackHandler
{
 SUPInt field_importCount;
 SUPInt field_replaySuccessCount;
 SUPInt field_replayFailureCount;
 SUPInt field_searchSuccessCount;
 SUPInt field_searchFailureCount;
 SUPInt field_loginSuccessCount;
 SUPInt field_importSuccessCount;
}

+ (SUP101CallbackHandler*)newInstance;
- (SUPInt)importCount;
- (void)setImportCount:(SUPInt)_importCount;
@property(assign) SUPInt importCount;
- (SUPInt)replaySuccessCount;
- (void)setReplaySuccessCount:(SUPInt)_replaySuccessCount;
@property(assign) SUPInt replaySuccessCount;
- (SUPInt)replayFailureCount;
- (void)setReplayFailureCount:(SUPInt)_replayFailureCount;
@property(assign) SUPInt replayFailureCount;
- (SUPInt)searchSuccessCount;
- (void)setSearchSuccessCount:(SUPInt)_searchSuccessCount;
@property(assign) SUPInt searchSuccessCount;
- (SUPInt)searchFailureCount;
- (void)setSearchFailureCount:(SUPInt)_searchFailureCount;
@property(assign) SUPInt searchFailureCount;
- (SUPInt)loginSuccessCount;
- (void)setLoginSuccessCount:(SUPInt)_loginSuccessCount;
@property(assign) SUPInt loginSuccessCount;
- (SUPInt)importSuccessCount;
- (void)setImportSuccessCount:(SUPInt)_importSuccessCount;
@property(assign) SUPInt importSuccessCount;

Developing an iPhone Application

 24 Sybase Unwired Platform

- (void)onImport:(id)theObject;
- (void)onReplayFailure:(id)theObject;
- (void)onReplaySuccess:(id)theObject;
- (void)onSearchFailure:(id)theObject;
- (void)onSearchSuccess:(id)theObject;
- (void)onLoginSuccess;
- (void)onSubscribeSuccess;
- (void)onUnsubscribeSuccess;
- (void)onImportSuccess;
- (void)dealloc;

@end

5. In the new SUP101CallbackHandler.m file, enter the code for the callback handler.
For example:
#import "SUP101CallbackHandler.h"

@implementation SUP101CallbackHandler

+ (SUP101CallbackHandler*)newInstance
{
 SUP101CallbackHandler* _me_1 = [[SUP101CallbackHandler alloc]
init];
 [_me_1 autorelease];
 return _me_1;
}

- (SUPInt)importCount
{
 return field_importCount;
}

- (void)setImportCount:(SUPInt)_importCount
{
 field_importCount = _importCount;
}

- (SUPInt)replaySuccessCount
{
 return field_replaySuccessCount;
}

- (void)setReplaySuccessCount:(SUPInt)_replaySuccessCount
{
 field_replaySuccessCount = _replaySuccessCount;
}

- (SUPInt)replayFailureCount
{
 return field_replayFailureCount;
}

- (void)setReplayFailureCount:(SUPInt)_replayFailureCount
{
 field_replayFailureCount = _replayFailureCount;

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 25

}

- (SUPInt)searchSuccessCount
{
 return field_searchSuccessCount;
}

- (void)setSearchSuccessCount:(SUPInt)_searchSuccessCount
{
 field_searchSuccessCount = _searchSuccessCount;
}

- (SUPInt)searchFailureCount
{
 return field_searchFailureCount;
}

- (void)setSearchFailureCount:(SUPInt)_searchFailureCount
{
 field_searchFailureCount = _searchFailureCount;
}

- (SUPInt)loginSuccessCount
{
 return field_loginSuccessCount;
}

- (void)setLoginSuccessCount:(SUPInt)_loginSuccessCount
{
 field_loginSuccessCount = _loginSuccessCount;
}
- (SUPInt)importSuccessCount
{
 return field_importSuccessCount;
}

- (void)setImportSuccessCount:(SUPInt)_importSuccessCount
{
 field_importSuccessCount = _importSuccessCount;
}
- (void)onImport:(id)theObject
{
 self.importCount = self.importCount + 1;
}

- (void)onReplayFailure:(id)theObject
{
 self.replayFailureCount = self.replayFailureCount + 1;
}

- (void)onReplaySuccess:(id)theObject
{
 self.replaySuccessCount = self.replaySuccessCount + 1;

MBOLogInfo(@"==");

Developing an iPhone Application

 26 Sybase Unwired Platform

 MBOLogInfo(@"Replay Successful");

MBOLogInfo(@"===");

}

- (void)onSearchFailure:(id)theObject
{
 self.searchFailureCount = self.searchFailureCount + 1;
}

- (void)onSearchSuccess:(id)theObject
{
 self.searchSuccessCount = self.searchSuccessCount + 1;
}

- (void)onLoginSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Login Successful");

MBOLogInfo(@"===");
 self.loginSuccessCount++;
}
- (void)onSubscribeSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Subscribe Successful");

MBOLogInfo(@"===");

}

- (void)onUnsubscribeSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"Unsubscribe Successful");

MBOLogInfo(@"===");

}
- (void)onImportSuccess
{

MBOLogInfo(@"==");
 MBOLogInfo(@"import ends Successful");

MBOLogInfo(@"===");
 self.importSuccessCount++;
}

- (void)dealloc
{

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 27

 [super dealloc];
}

@end

6. Save the SUP101CallbackHandler.m and SUP101CallbackHandler.h files.

Creating the User Interface
Use Interface Builder to create and configure the user interface for the SUP101 application.

Adding the SubscribeController View Controller
Goal: Create a view controller that functions as the root view screen for the SUP101 mobile
application.

When you create the user interface, you assign a target action to a control object—in this
example a Subscribe button so that a message (the action) is sent to another object (the target)
in response to a user event, for example, a touch on the button. The view controller manages
and configures the view when asked.

1. In the SUP101 Xcode project, select File > New File.

2. Select Cocoa Touch Class, UIViewController subclass, and With XIB for user
interface. Then click Next.

Developing an iPhone Application

 28 Sybase Unwired Platform

The "With XIB for user interface" option creates a NextStep Interface Builder (nib) file to
go with the view controller and adds it to the SUP101 Xcode project.

3. In the next window, in File Name, enter SubscribeController.m, ensure Also
create SubscribeController.h is selected, and click Finish.
The new source files contain stub implementations of various methods.

Configuring the SUP101Appdelegate Files
Goal: The SUP101Appdelegate.h and SUP101Appdelegate.m files are created
when you create the Xcode project, but you must add the view controller property and create
the view controller instance.

The delegate file extends the functionality of reusable objects. A delegate allows one object to
send messages to another object specified as its delegate to ask for input, or to be notified when
an event occurs.

1. Add the view controller property to the application delegate:
a) Open the SUPAppdelegate.h file and add this code:

@interface SUP101AppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 UINavigationController *navController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet UINavigationController
*navController;
- (void)showNoTransportAlert:(NSInteger) ret;
@end

b) Save the SUP101Appdelegate.h file.

2. Create an instance of the view controller and set it as the value for the property, import the
view controller's header file, synthesize the accessor methods, and make sure the view
controller is released in the dealloc method:
a) In the SUP101 Xcode project, open the SUP101Appdelegate.m file and enter this

code:
#import "SUP101AppDelegate.h"
#import "SUPMessageClient.h"
#import "SUP101_SUP101DB.h"
#import "SUP101CallbackHandler.h"

@implementation SUP101AppDelegate

@synthesize window;
@synthesize navController;

- (void)showNoTransportAlert:(NSInteger) ret
{
 NSString *message = nil;
 if (ret == kSUPMessageClientNoSettings) {
 message = [[NSString alloc] initWithString:@"No required

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 29

settings, use the Settings app to enter the provisioning
information."];
 } else if (ret == kSUPMessageClientKeyNotAvailable) {
 message = [[NSString alloc] initWithString:@"Unable to
access the key."];
 } else {
 message = [[NSString alloc] initWithString:@"Operation
fails."];
 }
 UIAlertView * noTransportAlert = [[[UIAlertView alloc]
initWithTitle:@"Messaging Client Fails to Start"
message:message delegate:self
cancelButtonTitle:NSLocalizedString(@"OK", @"Label for alert
button OK") otherButtonTitles:nil] autorelease];
 [noTransportAlert show];
}
- (void)applicationDidFinishLaunching:(UIApplication
*)application {

 // Override point for customization after application launch
 NSInteger result = [SUPMessageClient start];

 if (result == kSUPMessageClientSuccess) {

 // Create database (and delete any old one)
 [SUP101_SUP101DB deleteDatabase];

 // Set log level
 [MBOLogger setLogLevel:LOG_INFO];
 // Set up connection profile (server, user, password,
cid)

 SUP101CallbackHandler* databaseCH =
[SUP101CallbackHandler newInstance];
 [SUP101_SUP101DB registerCallbackHandler:databaseCH];

 [SUP101_SUP101DB createDatabase];

 [SUP101_SUP101DB startBackgroundSynchronization];
 sleep(1);
 [SUP101_SUP101DB asyncOnlineLogin:@"supuser"
password:@"s3pUser"];
 //sleep(3);

 while([databaseCH loginSuccessCount] < 1)
 {
 sleep(1);
 }

 [window addSubview:navController.view];
 [window makeKeyAndVisible];

 } else {
 [self showNoTransportAlert:result];
 }

Developing an iPhone Application

 30 Sybase Unwired Platform

}
- (void)applicationWillTerminate:(UIApplication *)application
{
 [SUP101_SUP101DB unsubscribe];
 [SUPMessageClient stop];

}

- (void)dealloc {
 [navController release];
 [window release];
 [super dealloc];
}
- (void)alertView:(UIAlertView *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex {

 //button index 0 is the cancel button
 if (buttonIndex == 0){
 exit (0);
 }
}
@end

b) Save the SUP101Appdelegate.m file.

Configuring the SubscribeController View
Goal: Use Interface Builder to configure the SubscribeController.xib file and
create the user interface.

1. Double-click the SubscribeController.xib file to open Interface Builder.

The file contains three objects:
• File's Owner – the object that is set to be the owner of the user interface, which is

typically the object that loads the interface. In this tutorial, this is the
SubscribeController.

• First Responder – the first responder proxy object handles events. Connecting an
action to the first responder means that when the action is invoked, it is dynamically
sent to the responder chain.

• View – displayed in a separate window to allow you to edit it.

2. To make connections to and from the File's Owner, you must use the Identity Inspector to
tell Interface Builder the class of the object:

a) In the SubscribeController.xib document window, select the File's Owner icon, then
select Tools > Identity Inspector.

b) In the Class field, select SubscribeController.
c) Select the View icon, then select Tools > Identity Inspector.
d) In the Identity Inspector Class field, select UIView.

3. Add the user interface elements to the View. In this case, you will be adding a button.

a) In Interface Builder, select Tools > Library.

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 31

b) Scroll through the Library and select the Button icon, then drag and drop it onto the
View window.
You can resize the button using the resize handles and position the button by dragging it
to the desired location.

c) Double-click inside the button and type: Subscribe.

4. To make connections to the user interface from the view controller, you must specify
outlets in the SubscribeController.h file. You must also add property
declarations for the instance variables and a declaration for the action method:
a) Open the SubscribeController.h file and add this code:

#import <UIKit/UIKit.h>
#import "CustomerListController.h"

@interface SubscribeController : UIViewController {
 CustomerListController *listController;
}
-(IBAction)buttonPressed:(id)sender;
@end

Note: This code references a view controller (CustomerListController) you will create
later in this tutorial. This code says that when the user touches the Subscribe button, the
CustomerList view is called.

b) Save the SubscribeController.h file.

5. In the SubscribeController.m file, add the implementation code:
a) Open the SubscribeController.m file and add:

#import "SubscribeController.h"
#import "SUP101_SUP101DB.h"
#import "SUP101CallbackHandler.h"
#import "SUP101AppDelegate.h"

@implementation SubscribeController

- (IBAction)buttonPressed:(id)sender
{

 [SUP101_SUP101DB subscribe];
 while ([(SUP101CallbackHandler *)[SUP101_SUP101DB
callbackHandler] importSuccessCount] < 1)
 {
 sleep(1);
 }
 if (listController == nil)
 {
 listController = [[CustomerListController alloc]
initWithStyle:UITableViewStylePlain];
 }
 SUP101AppDelegate *delegate = [[UIApplication
sharedApplication] delegate];
 [delegate.navController pushViewController:listController
animated:YES];
}

Developing an iPhone Application

 32 Sybase Unwired Platform

/*
 // The designated initializer. Override if you create the
controller programmatically and want to perform customization
that is not appropriate for viewDidLoad.
 - (id)initWithNibName:(NSString *)nibNameOrNil bundle:
(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
 }
 */

// Implement viewDidLoad to do additional setup after loading
the view, typically from a nib.
- (void)viewDidLoad {
 self.title = @"Subscribe";
 [super viewDidLoad];
}

/*
 // Override to allow orientations other than the default
portrait orientation.
 - (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
UIInterfaceOrientationPortrait);
 }
 */

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)dealloc {
 if (listController)
 {
 [listController release];
 listController = nil;
 }
 [super dealloc];
}

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 33

@end

b) Save the SubscribeController.m file.

Making Connections
Goal: Add a Navigation Controller to the MainWindow.xib and create a connection from the
AppDelegate to the Navigation Controller .

1. Double-click the the MainWindow.xib file.

2. In the Interface Builder Tools > Library menu, drag and drop the Navigation Controller
onto the MainWindow.xib documents window.

3. Create a connection from the AppDelegate to the Navigation Controller.

a) Control-click the AppDelegate icon to show available outlets and actions.
b) In the MainWindow.xib, Control-drag from the AppDelegate icon to the new

Navigation Controller icon and select the navController outlet.
c) Select the Navigation Controller icon and change the View Mode to list view (click the

middle icon).
d) From the Navigation Controller list, select UIViewController and open the Identity

Inspector in Tools > Identity Inspector.
e) In the Identity Inspector, in Class, select SubscribeController.

UIViewController changes to SubscribeController.
f) Save the MainWindow.xib file.

Developing an iPhone Application

 34 Sybase Unwired Platform

4. Establish a connection between the Subscribe button you added to the
SubscribeController.xib and the button's action method.

a) Open the SubscribeController.xib file.

b) In the View window, control-click the Subscribe button to show the inspector, then
drag from the open circle in the Touch Up Inside Events list to the File's Owner icon
and select buttonPressed.

This shows the way the button is connected to the buttonPressed event.

c) Save the SubscribeController.xib file.

Adding the CustomerListController
Goal: Create the customer list view.

1. In the SUP101 Xcode project, select File > New File.

2. In the new File window, select the Cocoa Touch Class group, the UIViewController
subclass and the UITableViewController subclass option. Unselect With XIB for user
interface, then click Next.

3. In the next window, in File Name, enter CustomerListController.m, ensure that
Also create CustomerListController.h is selected, and click Finish.

The new source files contain stub implementations of various methods.

4. Open the CustomerListController.m file, and add this code:

#import "CustomerListController.h"
#import "SUP101AppDelegate.h"
#import "DetailController.h"

#import "SUP101_Customer.h"

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 35

@implementation CustomerListController
@synthesize customerList;

- (id)initWithStyle:(UITableViewStyle)style {
 // Override initWithStyle: if you create the controller
programmatically and want to perform customization that is not
appropriate for viewDidLoad.
 if (self = [super initWithStyle:style]) {
 }
 return self;
}

- (void)viewDidLoad {
 // Uncomment the following line to display an Edit button in
the navigation bar for this view controller.
 // self.navigationItem.rightBarButtonItem =
self.editButtonItem;
 [super viewDidLoad];
}

- (void)viewWillAppear:(BOOL)animated {

 self.title = @"Customers";
 NSMutableArray *array = [[NSMutableArray alloc] init];

 SUP101_CustomerList *customers = [SUP101_Customer findAll];
 if ([customers length] > 0)
 {
 for (SUP101_Customer * oneRec in customers)
 {
 [array addObject:oneRec];
 }
 }
 self.customerList = array;
 [array release];
 [[self tableView] reloadData];
 [super viewWillAppear:animated];

}

/*
- (void)viewWillAppear:(BOOL)animated {
 [super viewWillAppear:animated];
}
*/
/*
- (void)viewDidAppear:(BOOL)animated {
 [super viewDidAppear:animated];
}
*/
/*
- (void)viewWillDisappear:(BOOL)animated {

Developing an iPhone Application

 36 Sybase Unwired Platform

 [super viewWillDisappear:animated];
}
*/
/*
- (void)viewDidDisappear:(BOOL)animated {
 [super viewDidDisappear:animated];
}
*/

/*
// Override to allow orientations other than the default portrait
orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
UIInterfaceOrientationPortrait);
}
*/

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

#pragma mark Table view methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 return 1;
}

// Customize the number of rows in the table view.
- (NSInteger)tableView:(UITableView *)tableView
numberOfRowsInSection:(NSInteger)section {
 return [self.customerList count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @"Cell";

 UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 37

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier] autorelease];
 }

 // Set up the cell...
 NSUInteger row = [indexPath row];
 SUP101_Customer *customer = [customerList objectAtIndex:row];
 cell.textLabel.text = [NSString stringWithFormat:@"%@%@%@",
[customer fname], @" ", [customer lname]];
 cell.accessoryType =
UITableViewCellAccessoryDisclosureIndicator;
 return cell;
}

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

 [self tableView:tableView
accessoryButtonTappedForRowWithIndexPath:indexPath];

}

/*
// Override to support conditional editing of the table view.
- (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:
(NSIndexPath *)indexPath {
 // Return NO if you do not want the specified item to be
editable.
 return YES;
}
*/

/*
// Override to support editing the table view.
- (void)tableView:(UITableView *)tableView commitEditingStyle:
(UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:
(NSIndexPath *)indexPath {

 if (editingStyle == UITableViewCellEditingStyleDelete) {
 // Delete the row from the data source
 [tableView deleteRowsAtIndexPaths:[NSArray
arrayWithObject:indexPath] withRowAnimation:YES];
 }
 else if (editingStyle == UITableViewCellEditingStyleInsert) {
 // Create a new instance of the appropriate class, insert it
into the array, and add a new row to the table view
 }
}
*/

Developing an iPhone Application

 38 Sybase Unwired Platform

/*
// Override to support rearranging the table view.
- (void)tableView:(UITableView *)tableView moveRowAtIndexPath:
(NSIndexPath *)fromIndexPath toIndexPath:(NSIndexPath
*)toIndexPath {
}
*/

/*
// Override to support conditional rearranging of the table view.
- (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:
(NSIndexPath *)indexPath {
 // Return NO if you do not want the item to be re-orderable.
 return YES;
}
*/
/*
- (UITableViewCellAccessoryType)tableView:(UITableView
*)tableView accessoryTypeForRowWithIndexPath:(NSIndexPath
*)indexPath
{
 return UITableViewCellAccessoryDisclosureIndicator;
}
*/
- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath
{
 if (childController == nil)
 childController = [[DetailController alloc]
 initWithNibName:@"DetailController"
bundle:nil];

 NSUInteger row = [indexPath row];

 SUP101_Customer *selectedCustomer = [customerList
objectAtIndex:row];
 childController.title = [NSString stringWithFormat:@"%d",
[selectedCustomer id]];
 childController.originalObj = selectedCustomer;

 SUP101AppDelegate *delegate = [[UIApplication
sharedApplication] delegate];
 [delegate.navController pushViewController:childController
animated:YES];

}

- (void)dealloc {
 [customerList release];
 [childController release];
 [super dealloc];
}

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 39

@end

5. Save the CustomerListController.m file.

6. Open the CustomerListController.h file, and add this code:

#import <UIKit/UIKit.h>
#import "DetailController.h"

@interface CustomerListController : UITableViewController
 <UITableViewDelegate, UITableViewDataSource> {
 NSArray *customerList;
 DetailController *childController;
}
@property (nonatomic, retain) NSArray *customerList;
@end

7. Save the CustomerListController.h file.

Adding the DetailController
Goal: Create the DetailController.xib.

1. In the SUP101 Xcode project, select File > New File.

2. Select Cocoa Touch Class, UIViewController subclass, and With XIB for user
interface. Then click Next.

Developing an iPhone Application

 40 Sybase Unwired Platform

The "With XIB for user interface" option creates a NextStep Interface Builder (nib) file to
go with the view controller and adds it to the SUP101 Xcode project.

3. In the next window, in File Name, enter DetailController.m, ensure that Also
create DetailController.h is selected, and click Finish.

The new source files contain stub implementations of various methods.

Configuring the DetailController View
Goal: Add the user interface to the customer detail view and specify the outlets in the
DetailController.m and DetailController.h files.

1. Double-click the DetailController.xib file to open Interface Builder.

2. Add the user interface elements to the View. In this case, you will be adding three text fields
with labels, and a button.

a) In Interface Builder, select Tools > Library.
b) Scroll through the Library and select the Text field icon (UITextField), then drag and

drop it onto the View window. Repeat this step until you have three text fields on the
View.

You can resize the text fields using the resize handles and position the button by
dragging it to the desired location.

c) From the Library, drag and drop the Label (UILabel) onto the View window next to the
text fields. Replace the text "Label" with:

• First Name
• Last Name
• Phone

d) From the Library, drag and drop the Button (UIButton) control onto the View window.
e) Double-click inside the button and type: Submit.

3. To make connections to the user interface from the view controller, you must specify
outlets in the DetailController.h file. You must also add property declarations for
the instance variables and declaration for the action method:

a) Open the DetailController.h file and add this code:

#import <UIKit/UIKit.h>
#import "SUP101_Customer.h"

@interface DetailController : UIViewController {
 IBOutlet UITextField *fname;
 IBOutlet UITextField *lname;
 IBOutlet UITextField *phone;
 SUP101_Customer * originalObj;
}
@property (nonatomic, retain) UITextField *fname;
@property (nonatomic, retain) UITextField *lname;
@property (nonatomic, retain) UITextField *phone;
@property (nonatomic, retain) SUP101_Customer *originalObj;
- (SUP101_Customer *)originalObj;
- (void)setOriginalObj: (SUP101_Customer *)newObj;

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 41

-(IBAction)buttonPressed:(id)sender;
@end

b) Save the DetailController.h file.

4. In the DetailController.m file, add the implementation code:

a) Open the DetailController.m file and add:

#import "DetailController.h"
#import "SUP101_SUP101DB.h"
#import "SUP101AppDelegate.h"
@implementation DetailController
@synthesize fname;
@synthesize lname;
@synthesize phone;

- (SUP101_Customer *)originalObj
{
 return originalObj;
}
- (void)setOriginalObj: (SUP101_Customer *)newObj
{
 if (originalObj != newObj) {
 [originalObj release];
 originalObj = [newObj retain];
 }
}

 // The designated initializer. Override if you create the
controller programmatically and want to perform customization
that is not appropriate for viewDidLoad.
- (id)initWithNibName:(NSString *)nibNameOrNil bundle:
(NSBundle *)nibBundleOrNil {
 if (self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil]) {
 // Custom initialization
 }
 return self;
}

- (IBAction)buttonPressed:(id)sender
{

 if (([lname.text compare:originalObj.fname] !=
NSOrderedSame) ||
 ([fname.text compare:originalObj.lname] !=
NSOrderedSame) ||
 ([phone.text compare:originalObj.phone] !=
NSOrderedSame))
 {
 SUP101_Customer *newCustomer = [SUP101_Customer find:
[originalObj id]];
 if (newCustomer) {
 newCustomer.lname = lname.text;
 newCustomer.fname = fname.text;
 newCustomer.phone = phone.text;

Developing an iPhone Application

 42 Sybase Unwired Platform

 [newCustomer save];
 [newCustomer submitPending];
 while ([SUP101_SUP101DB hasPendingOperations])
 {
 sleep(1);
 }
SUP101AppDelegate *delegate = [[UIApplication
sharedApplication] delegate];
[delegate.navController popViewControllerAnimated:YES];
 }

 }

}

/*
// Implement viewDidLoad to do additional setup after loading
the view, typically from a nib.
- (void)viewDidLoad {
 [super viewDidLoad];
}
*/

// Override to allow orientations other than the default
portrait orientation.
- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return (interfaceOrientation ==
UIInterfaceOrientationPortrait);
}

- (void)viewWillAppear:(BOOL)animated {

 fname.text = originalObj.fname;
 lname.text = originalObj.lname;
 phone.text = originalObj.phone;
 [super viewWillAppear:animated];
}

- (void)didReceiveMemoryWarning {
 // Releases the view if it doesn't have a superview.
 [super didReceiveMemoryWarning];

 // Release any cached data, images, etc that aren't in use.
}

- (void)viewDidUnload {
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)dealloc {

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 43

 [fname release];
 [lname release];
 [phone release];
 [originalObj release];

 [super dealloc];

- (IBAction)touchedEnded:(NSSet*)touches withEvent:
(UIEvent*)event
{
 UITextView* fname1 = (UITextView*) [[self view] viewWithTag:
1];
 UITextView* lname1 = (UITextView*) [[self view] viewWithTag:
2];
 UITextView* phone1 = (UITextView*) [[self view] viewWithTag:
3];

 [fname1 resignFirstResponder];
 [lname1 resignFirstResponder];
 [phone1 resignFirstResponder];
}

@end

b) Save the DetailController.m file.

5. Change the tags in the DetailController.xib file:

a) Double-click the DetailController.xib file to open it in Interface Builder.

b) In the View window, select the First Name text field.
c) Select the Tools > Attributes Inspector to open the Atrributes Inspector for the text

box.
d) In Attributes Inspector, scroll to the View section and in the Tag field, enter 1.

Developing an iPhone Application

 44 Sybase Unwired Platform

e) Repeat the same steps for the Last Name and Phone text fields respectively, and in the
Tag field in the Text Field Attributes, for the Last Name text field, enter 2 and for the
Phone text field, enter 3.

6. Add the connections between the text fields and the outlets defined in the
DetailController.m file (fname, lname, phone).

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 45

Inside the Main Window, Control-drag a connection from File's Owner to each of the text
fields and select fname, lname, and phone outlets, respectively. This will ensure outlets
are linked to the text fields. The end result looks like this:

7. Add the connection for the Submit button:

a) Control-drag a connectin from File's Owner to Submit.
b) Select Touch up Inside for the button.

8. Save the DetailController.xib file.

Deploying the Device Application
Goal: Deploy the SUP101 application to the iPhone Simulator for testing.

Prerequisites
Have a registered device user in Sybase Control Center.

You must be connected to the server where the mobile application project is deployed.

Task

1. In XCode, select Build > Build and Run.

The project builds and the iPhone Simulator starts.

2. In the Settings screen of the iPhone simulator, choose SUP101 and enter the connection
settings:

• ServerNameSetting – the machine that hosts the server where the SUP101 mobile
application project is deployed.

• ServerPortSetting – Unwired Server port number. The default is 5001.

Developing an iPhone Application

 46 Sybase Unwired Platform

• CompanyIDSetting – the company ID you entered when you registered the device in
Sybase Control Center.

• UserNameSetting – the user you registered in Sybase Control Center, user1.

• ActivationCodeSetting – the activation code for the user, 123.

3. In the iPhone applications screen, open the SUP101 application.

4. Click Subscribe.

Developing an iPhone Application

Tutorial: iPhone Application Development using Custom
Development

 47

The customer list appears.

5. Select a customer record from the customer list and double-click to open the detail view.
The customer detail shows the fields: First Name, Last Name, and Phone.

6. Change the First Name to something else, and click Submit.

7. You return to the customer list screen, where the changed record appears with an indicator.

Developing an iPhone Application

 48 Sybase Unwired Platform

Learn More about Sybase Unwired Platform

Once you have finished, try some of the other samples or tutorials, or refer to other
development documents in the Sybase Unwired Platform documentation set.

Getting Started Tutorials
Try out some of the other getting started tutorials to get a broad view of the development tools
available to you.

Advanced Tutorials
Tutorials are available that demonstrate how to use some of Sybase Unwired Platform
advanced features.

Check the Sybase Product Manuals Web site regularly for updates: http://
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title.html.

Samples
Sample applications are fully developed, working applications that demonstrate the features
and capabilities of Sybase Unwired Platform.

Check the Sybase Web site regularly for updates. Navigate to the Sybase Web site, then select
Products > Sybase Unwired Platform > Use tab: http://www.sybase.com/products/
mobileenterprise/sybaseunwiredplatform?htab=USE.

Online Help
See the online help that is installed with the product, or the Product Manuals Web site.

Check the Sybase Product Manuals Web site regularly for updates: http://
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title.html.

Developer References
See the Developer References to learn about using the API to custom code device applications
using the API.

• Developer Reference for BlackBerry
• Developer Reference for iPhone
• Developer Reference for Mobile Workflow Packages
• Developer Reference for Windows and Windows Mobile

Javadocs are also available in the installation directory.

Learn More about Sybase Unwired Platform

Tutorial: iPhone Application Development using Custom
Development

 49

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://www.sybase.com/products/mobileenterprise/sybaseunwiredplatform?htab=USE
http://www.sybase.com/products/mobileenterprise/sybaseunwiredplatform?htab=USE
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html

Check the Sybase Product Manuals Web site regularly for updates: http://
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title.html.

Programmer References
See the Programmer References to learn how to use the Administration API and Server API to
extend functionality.

• Reference: Administration APIs – integrate your own administrative tools with Unwired
Platform to monitor and manage Unwired Platform.

• Reference: Custom Development for Unwired Server – customize some Unwired Server
features.

Check the Sybase Product Manuals Web site regularly for updates: http://
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title.html.

Javadocs are also available in the installation directory.

Learn More about Sybase Unwired Platform

 50 Sybase Unwired Platform

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html

Index
B
basics, learning 11

C
callback handler 24
configuring

SubscribeController view 31
SUP101Appdelegate 29

connecting to Sybase Control Center 10
connection, creating 34
creating

SUP101CallbackHandler file 24
creating connections 34
customer list view 35
CustomerListController 35

D
data sources 4
delegate file 29
deploying 46
DetailController view 41
DetailController.xib 40
developer profile

switching 5
developing

device application 15
device application, developing 15

E
Eclipse Studio Edition

Sybase Unwired WorkSpace 10
EIS

data sources 4
Enterprise Explorer, defined 11

F
File's Owner 31
First Responder 31

G
generating Object API code 17

getting started
Sybase Unwired Platform 9
Sybase Unwired WorkSpace 11

getting started tutorials
development environment 2
overview 1

Getting Started tutorials
developing a device application 15
introduction 1
mobility concepts 3

H
help, online 11

I
installing

Sybase Unwired Platform 9
Interface Builder 31
iPhone Simulator 46

L
linking outlets 41

M
MainWindow.xib 34
MBOs

overview 3
message-based synchronization

factors 4
Mobile Application Diagram, defined 11

N
Navigation Controller 34

O
Objective-C code, generating 17
online help, accessing 11
outlets, linking 41

Index

Tutorial: iPhone Application Development using Custom
Development

 51

P
Palette, defined 11
Properties view, defined 11

R
registering the iPhone simulator 22
replication-based synchronization

factors 4

S
servers

Unwired Server, starting 9
starting

Sybase Control Center 10
Sybase Unwired WorkSpace 10
Unwired Server 9

SubscribeController view 31
SUP101Appdelegate files, configuring 29
SUP101CallbackHandler file 24

Sybase Control Center 10, 22
connecting to 10

Sybase Unwired Platform
getting started 9
installing 9

Sybase Unwired WorkSpace
getting started 11
starting 10

U
UIViewController subclass 28
Unwired Server 9

V
View 31
view controller, adding 28

W
WorkSpace Navigator, defined 11

Index

 52 Sybase Unwired Platform

	Tutorial: iPhone Application Development using Custom Development
	Contents
	Introduction to Getting Started Tutorials
	Overview of Getting Started Tutorials
	Understanding the Unwired Platform Development Environment
	Development in Eclipse

	Understanding Fundamental Mobile Development Concepts
	Mobile Business Objects
	Synchronization Methods
	Application Types
	Data Sources
	Switching Between Developer Profiles

	Task Flow
	Getting Started
	Installing Sybase Unwired Platform
	Starting Unwired Platform Services
	Starting Sybase Unwired WorkSpace
	Connecting to Sybase Control Center
	Learning the Basics

	Developing an iPhone Application
	Deploying the Database Mobile Business Objects
	Generating Object API Code
	Setting Up an iPhone Client Application in Xcode
	Registering the iPhone Simulator in Sybase Control Center
	Creating the SUP101CallbackHandler File
	Creating the User Interface
	Adding the SubscribeController View Controller
	Configuring the SUP101Appdelegate Files
	Configuring the SubscribeController View
	Making Connections

	Adding the CustomerListController
	Adding the DetailController
	Configuring the DetailController View

	Deploying the Device Application

	Learn More about Sybase Unwired Platform
	Index

