SYBASE

Tutorial: iPhone Application Development
using Custom Development

Sybase Unwired Platform 1.5.2

DOCUMENT ID: DC01213-01-0152-01

LAST REVISED: August 2010

Copyright © 2010 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Getting Started Tutorials...................... 1
Overview of Getting Started TutorialS..........ccccvvee... 1
Understanding the Unwired Platform Development

Environmentcooiiiiiiii e 2
Development in EClipS€....covieiiiiiiiiiiininnnnnnn.. 2
Understanding Fundamental Mobile Development
0(0] g (ol o] £ S 3
Mobile Business Objects......cccovvviiiiinnnnnennnne.. 3
Synchronization Methods..........coooviiiiiiiii 4
Application TYpeS ...cvvvriiiiiiiiiiiiiiiiie e, 4
Data SoUrCeS ...cvvviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 4
Switching Between Developer Profiles............. 5

L= 3G (o 7

Getting Started.....c.ccovvviiiiiiiiiiiiiiiiiiieeeeeeeeeeccneennees 9
Installing Sybase Unwired Platform........................ 9
Starting Unwired Platform Services........cccevvvvnnnnnn. 9
Starting Sybase Unwired WorkSpace..................... 10
Connecting to Sybase Control Center.................... 10
Learning the BasiCScvviiiiiiiiiiiiiiiiiiiieeeeeeeeennns 11

Developing an iPhone Application........cccceviiiiiiiiinnnn. 15
Deploying the Database Mobile Business Objects...... 16
Generating Object APl Code......cccvvvvevviiiininnnnnnn.. 17
Setting Up an iPhone Client Application in Xcode...... 19
Registering the iPhone Simulator in Sybase Control

O] = 22
Creating the SUP101CallbackHandler File............... 24
Creating the User Interface.......cccovvvvviiiiiiiiinnnnn 28

Adding the SubscribeController View Controller
... 28

Adding the CustomerListController................ 35

Adding the DetailController............cccvveeee... 40

Tutorial: iPhone Application Development using Custom
Development

Contents

Deploying the Device Application..........cccvveeneeenn.. 46
Learn More about Sybase Unwired Platform................ 49
T 1= 51

iv

Sybase Unwired Platform

Introduction to Getting Started Tutorials

Introduction to Getting Started Tutorials

Getting started tutorials enable users of all levels to try Sybase® Unwired Platform with

minimal setup. You can also use the tutorials to demonstrate system functionality and train
users.

Overview of Getting Started Tutorials

The getting started tutorials demonstrate how to develop, deploy, and test mobile business
objects, device applications, and message-based mobile workflow packages.

« Learn mobile business object (MBO) basics, and create a mobile device application:
o Tutorial: Mobile Business Object Development
» Tutorial: BlackBerry Application Development using Device Application Designer

e Tutorial: Windows Mobile Device Application Development using Device
Application Designer

« Create native mobile device applications:

o Tutorial: BlackBerry Application Development using Custom Development

» Tutorial: iPhone Application Development using Custom Development

o Tutorial: Windows Mobile Application Development using Custom Development
« Create a mobile workflow package:

o Tutorial: Mobile Workflow Package Development

The getting started tutorials demonstrate a cross section of basic functionality, which includes
creating MBOs that can be used in replication-based or message-based synchronization; and
using various Sybase Unwired WorkSpace development tools, independent development
environments, and device types.

Table 1. Tutorial summary

Tutorials Mobile Synchroni- |[Development |Device
business |zation types | tools types
objects
(MBOs)

Tutorial: Mobile Business Ob- | Create new | Replication- Sybase Unwired | N/A

ject Development MBOs based WorkSpace

Tutorial: BlackBerry Applica- | Reuse Replication- Device Applica- | BlackBerry

tion Development using De- | MBOs based tion Designer

vice Application Designer

Tutorial: iPhone Application Development using Custom 1
Development

Introduction to Getting Started Tutorials

Tutorials Mobile Synchroni- |Development |Device
business |zation types [tools types
objects
(MBOs)

Tutorial: BlackBerry Applica- | Create new | Replication- Sybase Unwired | BlackBerry

tion Development using Cus- | MBOs based WorkSpace

tom Development

Tutorial: iPhone Application | Create new | Message-based | Sybase Unwired | iPhone

Development using Custom MBOs WorkSpace

Development

Tutorial: Windows Mobile Reuse Replication- Device Applica- | Windows

Application Development us- | MBOs based tion Designer Mobile

ing Device Application De-

signer

Tutorial: Windows Mobile Create new | Message-based | Sybase Unwired | Windows

Device Application Develop- | MBOs WorkSpace Mobile

ment using Custom Develop-

ment

Tutorial: Mobile Workflow Create new | Message-based | Mobile Workflow | Windows

Package Development MBOs Forms Editor Mobile

Understanding the Unwired Platform Development
Environment

Learn more from the getting started tutorials by understanding basic development
environment concepts. Sybase Unwired Platform provides an Eclipse development

environment.

Development in Eclipse

Sybase Unwired WorkSpace is a plug-in to your Eclipse development environment that
provides tools for creating mobile applications.

Unwired WorkSpace includes back-end integration tools that connect Unwired Server to
enterprise data sources, allowing you to create mobile business objects (MBOs) from the
back-end business data model.

Developers can perform MBO code generation at any time and use this MBO model code
along with the user interface code in a native IDE. This makes the code available to transition
from the rapid application development (RAD) model to the fully extensible and open
development environment provided for device platforms from third-party vendors.

Sybase Unwired Platform

Introduction to Getting Started Tutorials

Optionally you can use the Device Application Designer to develop user interfaces for
BlackBerry, Windows Mobile, and Windows devices. And you can use the Mobile Workflow
Forms Editor to develop message-based workflow packages for Windows Mobile, Windows,
iPhone, and Symbian devices.

Understanding Fundamental Mobile Development Concepts

Learn more from the getting started tutorials by understanding basic mobile development
concepts.

Learn more about these concepts:
* Fundamentals
o Sybase Unwired WorkSpace — Mobile Business Object Development

Mobile Business Objects
Mobile business objects help form the business logic for mobile applications.

A mobile business object (MBO) is derived from a data source (such as a database server, Web
service, or SAP® server). MBOs are deployed to Unwired Server, and accessed from mobile
device application clients. MBOs include:

* Implementation-level details — metadata columns that include information about the data
from a data source.

« Abstract-level details — attributes that correspond to instance-level properties of a
programmable object in the mobile client, and map to data source output columns.
Parameters correspond to synchronization parameters on the mobile client, and map to
data source arguments. For example, output of a SQL SELECT query are mapped as
attributes, and the arguments in the WHERE clause are mapped as synchronization
parameters, so that the client can pass input to the query.

MBO operations include parameters that map to data source input arguments. Operation
parameters determine information a client passes to the enterprise information system
(EIS).

* Relationships —defined between MBOs by linking attributes and parameters in one MBO,

to attributes and parameters in another MBO.

You can define MBOs using either a top-down approach—first designing attributes and
parameters, then binding them to a data source; or a bottom-up approach—first specifying a
data source, then automatically generating attributes and parameters from it.

A mobile application package includes MBOs, roles. and data source connection mappings,
and other artifacts that are delivered to the Unwired Server during package deployment.

Tutorial: iPhone Application Development using Custom 3
Development

Introduction to Getting Started Tutorials

Synchronization Methods

Developers can use either replication-based or message-based synchronization to move data
and transactions between device application clients and Unwired Server.

The choice depends on the target device platform, application requirements, target platform,
and the nature of data changes and activity between Unwired Server and clients, for example,
mobile workflow forms always use message-based synchronization.

Unwired Server manages and maintains data freshness between multiple data sources and
device application through synchronization.

Application Types

Sybase Unwired Platform supports two choices for application type. First is the native
application type, and the other is the container-based business workflow type.

The native application model enables the developer to write custom code (C#, Java, or
Objective-C, depending on the platform), or to use the Device Application Designer to
generate the user interface. The native application model is supported on BlackBerry, Apple,
Windows Mobile, and Windows platforms. The choice depends on the functionality desired in
the application, and the need to access third-party and platform-provided APIs.

The business workflow model offers a fast and simple way to build applications that support
simple business workflows, such as approvals and requests. The workflow model is supported
on iPhone, Windows Mobile, Windows, and Symbian platforms.

Data Sources

A data source is the enterprise information system where data is retrieved from and
transactions are executed. A connection profile is a design-time connection to a data source.
Connection profiles are created to specific data source by providing connection information
such as host, port, login, and password among others. The connection profiles are used to
define MBOs and operations, and mapped to existing, or used to create new, server
connections when the package is deployed to Unwired Server..

Unwired Platform hides the interaction complexity with datasource-specific protocols, such
as JDBC for database and SOAP for Web services.

Unwired Platform currently supports these EIS connection types:

« Major databases:
» Sybase® Adaptive Server® Enterprise
 Sybase SQL Anywhere®
* Microsoft® SQL Server®
+ Oracle®
+ IBM®DB2®
+ SAP®and SAP ECC

4 Sybase Unwired Platform

Introduction to Getting Started Tutorials

« Web services — connect to SOAP and REST Web services in your EIS, and to supported
enterprise applications, such as Remedy.

See the Sybase Unwired Platform Installation Guide for supported version levels.

Switching Between Developer Profiles
Switch between basic and advanced developer profiles in the Mobile Application Diagram.

If you do not see an Unwired WorkSpace feature (wizard, property, or WorkSpace Navigator
item) that you expect or need, switch to the advanced developer profile, or modify developer
profile settings. To use backend data sources other than those supplied by Sybase Unwired
Platform, you must switch to the advanced developer profile to see the Server Connection
Mapping page when deploying the Mobile Business Object package.

1. Right-click in the Mobile Application Diagram and select > Basic/Advanced.

2. You can also select Window > Preferences > Sybase, Inc. > M obile Development >
Developer Profileto directly view or modify the developer profile preference settings.
Basic is the default developer profile.

Tutorial: iPhone Application Development using Custom 5
Development

Introduction to Getting Started Tutorials

6 Sybase Unwired Platform

Task Flow

Task Flow

This tutorial shows you how to develop a device application for an Apple iPhone device.

Table 2. Eclipse tutorials

Task

Goals

Steps required to complete the
task

Getting Started

 Install all required WorkSpace
components and external re-
sources.

e Start Unwired Server.

* Open the Mobile Development
perspective, and become famil-
iar with the views of the per-
spective, the Mobile Applica-
tion Diagram, and the Device
Application Designer.

Installing Sybase Unwired Platform
on page 9

Starting Unwired Server on page

9

Starting Sybase Unwired Work-
Space on page 10

Learning the Basics on page 11

Note: These tasks are prerequisites for
all the other tutorials. You need to per-
form them only once.

Developing a De-
vice Application

« Create an iPhone device appli-
cation, and run it on the iPhone
Simulator.

Generating Object API Code for
iPhone on page 17

Setting up an iPhone Client Applica-
tion in Xcode on page 19
Registering the iPhone Simulator in
Sybase Control Centeron page 22
Creating the SUP101CallbackHan-
dler File on page 24

Creating the User Interface on page
28

Deploying the Device Application
on page 46

Tutorial: iPhone Application Development using Custom

Development

Task Flow

8 Sybase Unwired Platform

Getting Started

Getting Started

Goal: Install and learn about Sybase Unwired Platform and its associated components.

The following tasks are required, unless otherwise noted, for all tutorials, but you need to
perform them only once.

1. Installing Sybase Unwired Platform on page 9
2. Starting Unwired Platform Services on page 9

3. Starting Sybase Unwired WorkSpace on page 10
4. (optional) Learning the Basics on page 11

Installing Sybase Unwired Platform
Goal: Install Sybase Unwired Platform.

Install these Sybase Unwired Platform components:

e Data Tier

e Unwired Server

e Unwired WorkSpace

« Device Application Designer

» Windows Mobile .NET components (for developing device applications in Visual Studio)

If Unwired Platform is already installed and any of these components are missing:

1. Start the Sybase Unwired Platform installer.
2. Follow the instructions in the installation wizard.
3. Select the required components, and complete the installation.

For complete installation instructions, see the Sybase Unwired Platform Installation Guide
and Release Bulletin.

Starting Unwired Platform Services

Goal: Start Unwired Server and the sample database.

In Windows, select Start > Programs > Sybase > Unwired Platform<version> > Start
Unwired Platform Services.

Tutorial: iPhone Application Development using Custom 9
Development

Getting Started

Starting Sybase Unwired WorkSpace

Goal: Start Unwired WorkSpace.

1

2.

In Windows, select Start > Programs > Sybase > Unwired Platfor m<version> >
Unwired Wor k Space.

Sybase Unwired WorkSpace opens, and displays the Welcome page with links to product
information, and to the product.

To read more about Sybase Unwired WorkSpace concepts and tasks, select Help > Help
Contents from the main menu.

Connecting to Sybase Control Center

Goal: Open the Web-based Sybase Control Center administration console to manage
Unwired Server and its components.

From Sybase Control Center, you can:

View servers and their status

Start and stop a server

View server logs

Deploy a mobile application package
Set role mappings

Select Start > Programs > Sybase > Sybase Control Center.

Note: If Sybase Control Center does not launch, make sure that the Sybase Unified Agent
service is started. See the Installation Guide for details.

Log in using the default login:

e User Name — supAdmi n

» Password —s3pAdmi n

Logging in to Sybase Control Center (SCC) allows you access to Unwired Platform
administration features that you have been authorized to use. Administrators of any
Sybase product can log into SCC. However, only users assigned to the Super

Administrator or Domain Administrator roles for Unwired Platform can log in to Unwired
Server from Sybase Control Center.

Logging into SCC only allows you access to the SCC interface. If Unwired Server has not
been authenticated, you will not be able to see or administer any resources.

10

Sybase Unwired Platform

Getting Started

3. Select Help > Online Documentation for additional information on configuring,
managing, and monitoring Unwired Server.

Learning the Basics

Goal: Learn about Sybase Unwired WorkSpace and how to access help.

Prerequisites
Start Unwired WorkSpace.

Task

1. From the Welcome page, select any of the links to familiarize yourself with the Unwired
WorkSpace environment.

To close this page, click the X. You can reopen this page by selecting Help > Welcome.

2. Select Start Development to access the Sybase Unwired WorkSpace development
environment. Look at the area (window or view) that you will be working in to access,
create, define, and update mobile business objects (MBOS).

View Description

WorkSpace Navigator This view displays mobile application project fold-
ers, each of which contains all project-related re-
sources in subfolders, including MBOs, data source
references to which the MBOs are bound, personal-
ization keys, and so on.

Use this view to review and modify MBO-related
properties.

Enterprise Explorer A window that provides functionality to connect to
various enterprise back-end systems; for example,
database servers, SAP servers, and Sybase Unwired
Server.

Tutorial: iPhone Application Development using Custom 11
Development

Getting Started

View Description

Mobile Application Diagram A graphical editor where you create and define mo-
bile business objects.

Use the Mobile Application Diagram to create
MBOs (including attributes and operations), then
define relationships with other MBOs. You can:

¢ Create MBOs in the Mobile Application Dia-
gram using Palette icons and menu selections —
either bind or defer binding to a data source,
when creating an MBO. For example, you may
want to model your MBOs before creating the
data sources to which they bind. This is some-
times called the top-down approach.

« Drag items from Enterprise Explorer and drop
them onto the Mobile Application Diagram to
create the MBO — quickly creates the operations
and attributes automatically based on the data
source being dropped on the Mobile Application
Diagram. This is sometimes called the bottom-
up approach.

Each new mobile application project generates an
associated Mobile Application Diagram.

Palette Access the Palette from the Mobile Application Di-
agram. It provides controls, such as the ability to
create MBOs, add attributes and operations, and de-
fine relationships, by dragging and dropping the
corresponding icon onto the Mobile Application Di-
agram or existing MBO.

Properties view Select an object in the Mobile Application Diagram
to display and edit its properties in the Properties
view. You cannot create an MBO from the Properties
view, but generally, most development and configu-
ration is performed here.

Outline view Displays an outline of the file that is currently openin
the editor area, and lists structural elements. The
contents are editor-specific.

Problem view Displays problems, errors, or warnings that you may
encounter.

3. To access the online help, select Help > Help Contents from the main menu bar.

12 Sybase Unwired Platform

Getting Started

4. Expand any of the documents that appear in the left pane. Some documents are for Sybase
Unwired Platform, while others are for the Eclipse development environment.

Tutorial: iPhone Application Development using Custom 13
Development

Getting Started

14 Sybase Unwired Platform

Developing an iPhone Application

Developing an iPhone Application

Goal: Generate Object API code for the iPhone platform, develop an iPhone device
application with code, and test its functionality.

Prerequisites

» Getting Started on page 9

o Tutorial: Developing Database Mobile Business Objects

« Supported platforms include:
e Mac OS X Leopard (Machook or iMac), Xcode 3.1.2
e Mac OS X Snow Leopard (Machook or iMac), Xcode 3.2.2
e iPhone SDK upto 3.1.3

Note: Xcode 3.2.3 +i0S 4 are NOT supported.

The device application communicates with the database mobile business objects that are
deployed to Unwired Server.

Task

1. Open the SUP101 Mobile Application Project if it is not already open:

In WorkSpace Navigator, right-click the SUP101 folder and select Open in Diagram
Editor.

Deploying the Database Mobile Business Objects on page 16
Generating Object API Code for iPhone on page 17

Setting up an iPhone Client Application in Xcode on page 19
Registering the iPhone Simulator in Sybase Control Center on page 22
Creating the SUPCallbackHandler File on page 24

Adding the SubscribeController View Controller on page 28

Adding the CustomerL istController on page 35

. Adding the DetailController on page 40

10. Deploying the Device Application on page 46

© o Nk WD

Tutorial: iPhone Application Development using Custom 15
Development

Developing an iPhone Application

Deploying the Database Mobile Business Objects

Goal: Deploy the project that contains the database mobile business objects to the server.

Prerequisites
Finishthe Tutorial: Developing Database Mobile Business Objects. You must be connected to
both the sampledb database and Unwired Server.

Task

1. Right-click in the SUP101 Mobile Application Diagram , and select Deploy Project.

On the first page of the Deploy Mobile Application Project, accept the defaults, select
M essage-based, and click Next.

+ 4 Deploy Mobile Application Project

Deploy Mode and Target Yersion

Specify deploy mode and target version for the deployment. The package name is case-insensitive in server.

—Deploy Mode
* Update

Updates the target package with updated objects. After deployment, objects in the
target server"s package with the same name as those being deploved are updated.

Mo Qverwrite

Deploys the package only if there are no objects in the target server's package that
have the same name as any af the objects being deployed.

" Replace

Replaces any of the target objects with those in the package. After deplovment, the
servet"s package contains only the objects being deployved.

 Verify

Do not deplow, only return errars, if any. Used to determine the effect of a
deployment using the Update setting.

Target version: | 1.0

Package name: I SUP101

~ Replication-based (* Messane-based

':7, < Back Mext = Fimish Cancel
l«;

16 Sybase Unwired Platform

Developing an iPhone Application

3. On the Contents page, select the customer and sales_order MBOs and click Next.
4. On the Package Jars page, click Next.

Note: This window appears only if you are using the Advanced developer profile.

5. On the Target Server page, from the list of available servers, select My Unwired Server
and click Refresh.
Once connected, accept the default Domain and Security configuration settings, and click
Next.

6. If you have multiple server connections, you see the Server Connection Mapping page.
Select the sampledb server connection and click Finish.

< Deploy Mobile Application Project

Server Connection Mapping —

Map connection profiles bo server connections

Conneckion profile | Server conneckion
#sampledb.sampledb sampledb Rl

=Mew Server Conneckion ... >

7. When the Deployment status window shows the deployment was successful, click OK.
8. Connect to Unwired Server and view the deployed project.
a) In the Enterprise Explorer, cclick My Unwired Server.

My Unwired Server is a default Unwired Server connection profile that provides
access to Unwired Server, which you started in a previous step.

b) Expand Domains> default > Packages. The server package suyp101.1.0, into which
you deployed the MBOs, appears in the Packages folder. The two MBQOs appear in the
Mobi | e Busi ness bj ect s folder.

Generating Object APl Code

Goal: Launch the code generation wizard and generate the Object API code for a message-
based iPhone application.

1. Right-click in the SUP101 Mobile Application Diagram and select Generate Code.

Tutorial: iPhone Application Development using Custom 17
Development

Developing an iPhone Application

2. Inthe code generation wizard, accept the default, Continuewithout a configur ation, and
click Next.

3. Enter these configuration options and click Next:

Option Description

Language Select Objective-C.

Platform Accept the default, iPhone.

Unwired server Select My Unwired Server.

Server domain Accept default.

Name prefix The prefix for the generated files. Leave blank.

Project path Accept the default or enter a different location
for the generated project files.

Clean up destination before code generation Select this option to clean up the destination
folder before generating the device client files.

Message-based Selected by default when you select Objective-
C as the language.

18 Sybase Unwired Platform

+ 4 Generate Code

Configure options

Zonfigure options for code generation

Developing an iPhone Application

=] B3

Code generation options

Language: IObjective C

PlatForm: IiPthe

Uriwired server: IMy Unwired Server

Server domain: I default

Page size:

Marne prefix:

Destination

% Project path: | 1SUP101Generated Code

" File syskem path: |

¥ Clean up destination before code generation

U— 3 | A [T I

Browse. ..

Brawise. ..

" Replication-based ¢ Message-based

[Backward compatible

Cancel |

< Back Mext = Fimisti |
l«;

4,
classes and click Finish.

In the next window, select the mobile business objects for which to generate the metadata

This generates Objective-C code into the specified output location.

Setting Up an iPhone Client Application in Xcode

Goal: Set up an iPhone client application in the Xcode IDE.

Prerequisites

Create and deploy your mobile business objects, and generate Objective-C code into an output

location.

Note: Ensure the directory where Sybase Unwired Platform is installed is a shared directory

S0 you can access it from your Mac.

Tutorial: iPhone Application Development using Custom
Development

19

Developing an iPhone Application

Note: This tutorial was developed using Xcode 3.1.4 and iPhone SDK 3.1.2. If you use a
different version of Xcode, some steps may vary. For more information on Xcode, refer to the
Apple Developer Connection: http.//developer.apple.com/tools/Xcode/.

Task

1

In the Xcode IDE, select Menu > New Project, then select the Windows-based
Application template.

The project you create sets up the basic application environment.

In the new SUP101 project, in Active SDK, select iPhoneSimulator 3.1.2 and set the
Active Configuration to Debug.

Connect to the Microsoft Windows machine where Sybase Unwired Platform is installed:

a) From the Apple menu, select Go > Connect to Server.

b) Enter the name or IP address of the machine, for example, snb: / / <machi ne DNS
name>orsnb: // <l P Addr ess>.
You will see the shared directory.

In the Horre directory on your Mac, create a new folder named SUP101.

Copy thei ncl udes and | i bs folders from <Unwi red Pl atform

Install ati on>\ Server s\ Unw redServer\ d i ent APl \ Obj ecti veCto

the Horre/ SUP101 directory on your Mac.

Copy the generated code for the SUP101 mobile application project from your Microsoft

Windows environment, for example, C. \ Docunent s and Setti ngs

\ ‘adni ni strat or\wor kspace\ SUP101\ GCener at ed Code, to the Hone/

SUP101 directory on your Mac.

Add the generated *.h and *.m files to the Xcode project.

a) Inthe Xcode Groups & Files pane, right-click the SUP101 project and select Add >
Existing Files.

b) Selectthe Gener at ed Code folder you copied to your Horre directory (Hone/
SUP101/ Gener at ed Code) and click Add.

c) Select the Copy itemsinto destination group'sfolder (if needed) option and click
Add.

20

Sybase Unwired Platform

http://developer.apple.com/tools/Xcode/

nNOe

Developing an iPhone Application

[sup101

[Simule.tor— 3.1.2 | Debug

Qv Str

ER

<

Build and Go Tasks Info

Overview Action
Croups & Files
v [sup101 | ™ Copy items into destination group’s folder (if needed)
= libclientrt.a
% [ibMO.a Reference Type: | Default i:l
K= libSUPObj.a)
w[] Classes Text Encoding: | Unicode (UTF-8) }:l

[1] SUPLO1AppDelegate.h

E| SUP101AppDelegate.m

[u] SUPLO1ViewController.h

[m] SUP101ViewController.m
v Other Sources

[1] SUPLO1_Prefix.pch

E| main.m

v Resources

71 Settings.bundle

|1| 5UP101ViewController.xib

] MainWindow.xib
[£] sUPLO1-Info.plist
v Frameworks
b‘li_,-_"".. UIKit.framework
[3 & Foundation.framework

3 E}.— CoreGraphics.framework

8 Recursively create groups for any added folders
O Create Folder References for any added folders

Add To Targets

¥ oy SUPLDL

Cancel)

Add

£

8. Addthelibclientrt.a,libSUPObj.a,andlibMO a toyour Xcode project:

a) Inthe Xcode Groups & Files pane, right-click SUP101 and select Add > Existing
Files.

b) Navigate to the directory where you copied the libraries, Horre/ SUP101/ | i bs.

c) Open the Debug- i phonesi mul at or folder, selectthe | i bclientrt. a,
| i bSUPQLj . a,and | i bMO. a libraries and click Add.
Note: The library version should correspond to the configuration you are building. For
example, if you are building a configuration for a debug version of the simulator, then
add the librariesto | i bs/ Debug- i phonesi nul at or/ .

d) Select the Copy itemsinto destination group'sfolder (if needed) option and click

Add.

9. Add Setti ngs. bundl e to the Xcode project.
This allows the iPhone device client user to use the Settings application to input his or her
user preference information such as server name, server port, user name, and activation
code.

a)

In the Xcode Groups & Files pane, right-click Resour ces, and select Add > Existing
Files.

b) Navigate to the i ncl udes directory, select Set t i ngs. bundl e, and click Add.

c)

Select the Copy itemsinto destination group'sfolder (if needed) option and click
Add.

10. Enter the Xcode project Header Search Paths:

Tutorial: iPhone Application Development using Custom 21
Development

Developing an iPhone Application

a) Select Project > Edit Active Target SUP101.
b) Click Build.

c¢) Scroll down to the Search Paths section and in Header Search Paths, verify the
location where you copied the include files, Hone/ SUP101/ i ncl udes/ **.

11. Click General, then click the + icon at the bottom-left corner of the window to add these

libraries from the SDK to the project:
e Security.framework

* AddressBook.framework

¢ QuartzCore.framework

e CoreFoundation.framework
 libicucore.A.dylib

e libz.1.2.3.dylib

e libstdc++.6.dylib

m SampleApp.m - SampleApp
[= R0 Target ‘SampleApp” Info.
Page -
| i = £
w 4 Sampleapp Name E -
" e ¥Simulator = iFfione 05 3.0 SDK I
mpledpa il Tyne: Agplication AVFoundation framework I
b :'I:‘Plaﬂ:j Direct Dependencies 1 Accalerare. framowark Sampleapn)bulld/De <
[+ calbackHand .

AddressBook framewark

& Catbackiiand

: AddressBookUl framewari
1] main.en

r yalr
ApplicationServices. framework f—. C. #. @ :

¥ Generated Code|
il AugioToolba framework
P[] includes. AudloUnit framawork
v (s CFNetwork.framework

Carban framework
Coreaudio framewark
CoreData.framewark
CoreFaundation framewark
CoreCraphics. framewor « }
CoreLocation. framewark L]
= Coreservices framawark |

s
[

[Samg DiskAsistration framewerk
i | inked Ubrarias Externalfccessory. framework ! Type

= Faundation framewark i R Required
Moot i e e v
:‘;Mdress:cbi.lmnuwvrk Kl Ramemerk; RE:uired H
§= QuartzCore. lramewark Required §
&= Security. framework Required -
bicucore.A.dylit Required § -
K= bz 1.2.3.dyib Required + =
= inellomtrs Barsiend_+
2
i s |*] =
| Samg = 5
ul Smmn}nmrl’e:‘ | =l VBB
75 Samplepn_ Serveritunl t30| /7 [self TestDelete];
_ ul SampleAnp_SessionPers, | ., T e e e et 35
[Bf MOIPRasert.hy m MBOLoGE"Print Logs");
v MOIPASSerLmm e yair
Build succeeded (1 warning) @Succesded |1 ;

Registering the iPhone Simulator in Sybase Control Center

Goal: Register the iPhone Simulator in Sybase Control Center.

Prerequisites
Complete Connecting to Sybase Control Center on page 10.

Task

1. Loginto Sybase Control Center using the supAdmin/s3pAdmin user name and password.

22

Sybase Unwired Platform

Developing an iPhone Application

2. In Sybase Control Center, select View > Select > Unwired Server Cluster M anagement
View.
3. In the left pane, select Device Users.
4. In the right pane, click Devices.
5. Click Register.
6. In the Register Device window, enter the required information:
e User name
e Server name
e Port
 FarmID
« Activation code
Register Device
Select the user name and template for the device registr-ation.
Select the user name and termplate for the device registration.
User name: userl
Template: | Default L4
Customize the following activation fields:
Server name: lacalhost.sybase.cam
Port: S001
Farrn IC: Farmil
Activation code length:
Activation expiration (hours): 72
|_p"| Specify activation code: 123
— — i
S
Note: The information should match the input on the client and "localhost.sybase.com™
should be the actual name of your machine and domain.
Tutorial: iPhone Application Development using Custom 23

Development

Developing an iPhone Application

Creating the SUP101CallbackHandler File

Goal: Configure the SUP101CallBackHandler file.

There are two threads involved in the SUP101 application—the main thread, which is driven
by the client application user interface controller, and the mobile object client access thread,
which takes charge of message transportation with the server and synchronization with the
application through the mobile object.

1
2.
3.

In the SUP101 Xcode project, select File > New File.
Select Objective-C Classand click Next.

In File Name, enter SUP101Cal | backHandl er, select the Also create
SUP101CallbackHandler.h option, and click Finish.

Inthe new SUP101Cal | backHandl er . hfile, enter the code for the callback handler.
For example:
#i mport " SUPDef aul t Cal | backHandl er . h"

@nterface SUP101Cal | backHandl er : SUPDef aul t Cal | backHandl er

{
SUPI nt f
SUPI nt f
SUPI nt f
SUPI nt f
SUPI nt f
SUPI nt f
SUPI nt f

el d_i nport Count ;

el d_repl aySuccessCount ;
el d_repl ayFai | ureCount;
el d_searchSuccessCount ;
el d_searchFai | ureCount ;
el d_| ogi nSuccessCount ;
el d_i nport SuccessCount ;

}

+ (SUPl01Cal | backHandl er *) newl nst ance;

- (SUPInt)i nmport Count ;

- (void)setlnportCount: (SUPInt) _inmport Count;

@r operty(assign) SUPInt inportCount;

- (SUPI nt)repl aySuccessCount ;

- (void)set Repl aySuccessCount: (SUPI nt) _repl aySuccessCount ;
@r operty(assign) SUPInt replaySuccessCount;

- (SUPInt)repl ayFai | ur eCount ;

- (void)set Repl ayFai | ureCount: (SUPI nt) repl ayFai | ureCount ;
@roperty(assign) SUPInt replayFail ureCount;

- (SUPI nt) sear chSuccessCount ;

- (void)set Sear chSuccessCount : (SUPI nt) _sear chSuccessCount ;
@roperty(assign) SUPInt searchSuccessCount;

- (SUPI nt) sear chFai | ureCount ;

- (void)set Sear chFai | ureCount: (SUPI nt) _sear chFai | ur eCount ;
@roperty(assign) SUPInt searchFail ureCount;

- (SUPI nt) Il ogi nSuccessCount ;

- (void)setLogi nSuccessCount: (SUPI nt) I ogi nSuccessCount ;
@r operty(assign) SUPInt | ogi nSuccessCount;

- (SUPInt)i nport SuccessCount ;

- (void)setlnportSuccessCount: (SUPInt) i nmport SuccessCount ;
@roperty(assign) SUPInt inportSuccessCount;

24

Sybase Unwired Platform

Developing an iPhone Application

- (void)onlnport: (id)theOject;

- (void)onRepl ayFai |l ure: (i d)theObj ect;
- (void)onRepl aySuccess: (i d)theObj ect;
- (void)onSearchFail ure: (id)theObject;
- (void)onSearchSuccess: (i d)theObj ect;
- (void)onLogi nSuccess;

- (void)onSubscri beSuccess;

- (void)onUnsubscri beSuccess;

- (wvoid)onl mport Success;

- (void)deall oc;

@nd

5. Inthenew SUP101Cal | backHandl er . mfile, enter the code for the callback handler.
For example:
#i nport " SUPl01Cal | backHandl er. h"

@ npl enent ati on SUP101Cal | backHandl er
+ (SUPl01Cal | backHandl er *) newl nst ance
~ SUP101Cal | backHandl er* _nme_1 = [[SUP101Cal | backHandl er all oc]
N t][;_me_l aut or el ease] ;
return _ne_1,

- (SUPI nt)i nport Count

return field_inportCount;

- (void)setlnportCount: (SUPInt) _inmport Count

field_importCount = _inport Count;

- (SUPI nt)repl aySuccessCount

return field_replaySuccessCount;

- (void)set Repl aySuccessCount : (SUPI nt) _repl aySuccessCount

field_replaySuccessCount = _replaySuccessCount;

- (SUPI nt)repl ayFai | ur eCount

return field_replayFail ureCount;

- (void)set Repl ayFai | ureCount: (SUPI nt) _repl ayFai | ur eCount

field_replayFail ureCount = _repl ayFail ureCount;

Tutorial: iPhone Application Development using Custom 25
Development

Developing an iPhone Application

—

L L ~ 1

L ~

(SUPI nt) sear chSuccessCount

return field_searchSuccessCount;

(voi d) set Sear chSuccessCount : (SUPI nt) _sear chSuccessCount

field_searchSuccessCount = _searchSuccessCount;

(SUPI nt) sear chFai | ur eCount

return field_searchFail ureCount;

(voi d) set Sear chFai | ureCount : (SUPI nt) _sear chFai | ur eCount

field searchFail ureCount = searchFail ureCount;

(SUPI nt) | ogi nSuccessCount

return field_| ogi nSuccessCount;

(voi d)set Logi nSuccessCount : (SUPI nt) _| ogi nSuccessCount
field_l ogi nSuccessCount = _| ogi nSuccessCount ;
(SUPI nt) i mpor t SuccessCount

return field_inportSuccessCount;

(void)setlnport SuccessCount: (SUPI nt) _i nport SuccessCount
field_inmportSuccessCount = _inportSuccessCount;
(voi d)onl nport: (id)thethject

sel f.inport Count = self.inportCount + 1;

(voi d) onRepl ayFai | ure: (i d)theObj ect

sel f.repl ayFai | ureCount = self.replayFail ureCount + 1;

(voi d) onRepl aySuccess: (i d)theOj ect

sel f.repl aySuccessCount = sel f.replaySuccessCount + 1;

MBOLogl nf o(@)5

26

Sybase Unwired Platform

Developing an iPhone Application

MBOLogl nf o(@ Repl ay Successful ");

MBCLogl nf o(@ ")

}
(voi d) onSear chFai | ure: (id)theOj ect

sel f.searchFai | ureCount = sel f.searchFail ureCount + 1;

(voi d) onSear chSuccess: (i d)theOj ect

sel f.searchSuccessCount = sel f.searchSuccessCount + 1;

(voi d) onLogi nSuccess

MBOLogl nf o(@ OF
MBOLogl nf o(@ Logi n Successful ");

MBCLogl nf o(@ ")
sel f. | ogi nSuccessCount ++;

- (void)onSubscribeSuccess

MBOLogl nf o(@ ")
MBOLogl nf o(@ Subscri be Successful");

MBOLogl nf o(@ "y
}

- (void)onUnsubscri beSuccess

MBOLogl nf o(@ "y
MBCOLogl nf o(@ Unsubscri be Successful ");

MBOLog! nf o(@ "y

- (void)onl mport Success

MBCLogl nf o(@ ");
MBOLogl nfo(@i nport ends Successful ");

MBCLogl nf o(@ ");
sel f.inport SuccessCount ++;
}

(void)deal | oc

Tutorial: iPhone Application Development using Custom 27
Development

Developing an iPhone Application

[super deall oc];

@nd
6. Savethe SUP101Cal | backHandl er. mand SUP101Cal | backHandl er . hfiles.

Creating the User Interface

Use Interface Builder to create and configure the user interface for the SUP101 application.

Adding the SubscribeController View Controller

Goal: Create a view controller that functions as the root view screen for the SUP101 mobile
application.

When you create the user interface, you assign a target action to a control object—in this
example a Subscribe button so that a message (the action) is sent to another object (the target)
in response to a user event, for example, a touch on the button. The view controller manages
and configures the view when asked.

1. Inthe SUP101 Xcode project, select File > New File.

2. Select Cocoa Touch Class, Ul ViewController subclass, and With XIB for user
interface. Then click Next.

ML New File

Choose a template for your new file:

u iPhone O5 i = e

ouch Class

Code Signing Objective-C class Objective-C test UlvViewController
Resource case class subclass

User Interface

‘L_. Mac 05 X

AppleScript
Cand C++ Options [UrmableViewController subclass
Carbon : :
E With XIB for user interface
Cocoa
Interface Builder SDK Description An Objective-C class which is a subclass of
UlviewController, with an optional header file which
Pure java ; v 5 :
- includes the <UIKitjUIKit.h> header. A XIB file
Pure Python k containing a view configured for this View Controller is
Ruby A also included.
Sync Services x
(Cancel) Previous Next

L

28 Sybase Unwired Platform

Developing an iPhone Application

The "With XIB for user interface" option creates a NextStep Interface Builder (nib) file to
go with the view controller and adds it to the SUP101 Xcode project.

3. In the next window, in File Name, enter Subscri beCont r ol | er. m ensure Also
create SubscribeController.h is selected, and click Finish.
The new source files contain stub implementations of various methods.

Configuring the SUP101Appdelegate Files

Goal: The SUP101Appdel egat e. h and SUP101Appdel egat e. mfiles are created
when you create the Xcode project, but you must add the view controller property and create
the view controller instance.

The delegate file extends the functionality of reusable objects. A delegate allows one object to
send messages to another object specified as its delegate to ask for input, or to be notified when
an event occurs.

1. Add the view controller property to the application delegate:
a) Open the SUPAppdel egat e. h file and add this code:
@nterface SUP101AppDel egate : NSOhj ect <Ul Appl i cati onDel egat e>

U W ndow *wi ndow,
Ul Navi gati onControl | er *navControll er;

}

@roperty (nonatonic, retain) |BCQutlet U Wndow *w ndow,
@roperty (nonatom c, retain) |IBQutlet U NavigationController
*navControl |l er;

- (void)showNoTransport Al ert: (NSl nteger) ret;

@nd

b) Save the SUP101Appdel egat e. h file.

2. Create an instance of the view controller and set it as the value for the property, import the
view controller's header file, synthesize the accessor methods, and make sure the view
controller is released in the dealloc method:

a) Inthe SUP101 Xcode project, openthe SUP101Appdel egat e. mfile and enter this
code:

#i mport " SUP101AppDel egat e. h"

#i nport " SUPMessageC ient. h"

#i nport "SUP101_SUP101DB. h"

#i mport " SUP101Cal | backHandl er. h"

@ npl enent ati on SUP101AppDel egat e

@ynt hesi ze w ndow;
@ynt hesi ze navControll er;

(voi d) showNoTr ansport Al ert: (NSl nt eger) ret
NSString *nmessage = nil;

if (ret == kSUPMessageC i ent NoSettings) {
message = [[NSString alloc] initWthString: @No required

Tutorial: iPhone Application Development using Custom 29
Development

Developing an iPhone Application

settings, use the Settings app to enter the provisioning
information."];
} else if (ret == kSUPMessaged i ent KeyNot Avai | abl e) {
message = [[NSString alloc] initWthString: @Unable to
access the key."];
} else {
nmessage = [[NSString alloc] initWthString: @ Operation
fails."];

}
U A ertView * noTransportAlert = [[[U Al ertView all oc]
initWthTitle: @Messaging Client Fails to Start"
nmessage: nessage del egat e: sel f
cancel ButtonTitl e: NSLocal i zedStri ng(@OK', @ Label for alert
button OK') otherButtonTitles:nil] autorel ease];
[noTransport Al ert showj;

}
- (void)applicationbi dFi ni shLaunchi ng: (Ul Appl i cation
*)application {

/1 Override point for custom zation after application | aunch
NSI nt eger result = [SUPMessageCl ient start];

if (result == kSUPMessageCd i ent Success) {

/| Create database (and delete any ol d one)
[SUP101_SUP101DB del et eDat abase] ;

/1 Set |og |evel

[MBOLogger set LoglLevel : LOG | NFQ ;

/1 Set up connection profile (server, user, password,
cid)

SUP101Cal | backHandl er* dat abaseCH =
[SUP101Cal | backHandl er newl nstance];
[SUP101_SUP101DB regi st er Cal | backHandl er : dat abaseCH] ;

[SUP101_SUP101DB cr eat eDat abase] ;

[SUP101_SUP101DB st art Backgr oundSynchroni zati on] ;

sl eep(1);

[SUP101_SUP101DB asyncOnl i neLogi n: @ supuser"”
password: @s3pUser"];

/1sleep(3);

whi | e([dat abaseCH | ogi nSuccessCount] < 1)

sl eep(1);
[wi ndow addSubvi ew: navControl | er. vi ew ;
[wi ndow makeKeyAndVi si bl e] ;

} else {
[sel f showNoTransportAlert:result];
}

30 Sybase Unwired Platform

Developing an iPhone Application

(void)applicationWI | Term nate: (U Application *)application

[SUP101_SUP101DB unsubscri be];
[SUPMessageC i ent stop];

- (void)dealloc {
[navControl |l er rel ease];
[w ndow rel ease] ;
[super deall oc];

- (void)alertView (U AlertView *)acti onSheet
cl i ckedBut t onAt | ndex: (NSI nt eger) but t onl ndex {

//button index O is the cancel button
if (buttonlndex == 0){
exit (0);

}
@nd
b) Save the SUP101Appdel egat e. mfile.

Configuring the SubscribeController View
Goal: Use Interface Builder to configure the Subscri beControl | er. xi b file and
create the user interface.

1. Double-click the Subscri beControl | er. xi b file to open Interface Builder.

The file contains three objects:

» File's Owner — the object that is set to be the owner of the user interface, which is
typically the object that loads the interface. In this tutorial, this is the
SubscribeController.

« First Responder — the first responder proxy object handles events. Connecting an
action to the first responder means that when the action is invoked, it is dynamically
sent to the responder chain.

* View - displayed in a separate window to allow you to edit it.

2. To make connections to and from the File's Owner, you must use the Identity Inspector to
tell Interface Builder the class of the object:

a) In the SubscribeController.xib document window, select the File's Owner icon, then
select Tools > I dentity I nspector.

b) In the Class field, select SubscribeController.

c) Select the View icon, then select Tools > | dentity | nspector.

d) In the Identity Inspector Class field, select Ul View.

3. Add the user interface elements to the View. In this case, you will be adding a button.

a) In Interface Builder, select Tools> Library.

Tutorial: iPhone Application Development using Custom 31
Development

Developing an iPhone Application

b) Scroll through the Library and select the Button icon, then drag and drop it onto the

View window.
You can resize the button using the resize handles and position the button by dragging it
to the desired location.

c) Double-click inside the button and type: Subscri be.

. To make connections to the user interface from the view controller, you must specify
outlets in the Subscri beControl | er. h file. You must also add property
declarations for the instance variables and a declaration for the action method:

a) Openthe Subscri beControl | er. h file and add this code:

#inmport <UKit/UKit.h>
#i nport " CustonerListController.h"

@nterface SubscribeController : U ViewController {
CustonerListController *listController;

}
- (1 BAction)buttonPressed: (id)sender;
@nd

Note: This code references a view controller (CustomerListController) you will create
later in this tutorial. This code says that when the user touches the Subscribe button, the
CustomerList view is called.

b) Save the Subscri beControl | er. hfile.
In the Subscri beCont r ol | er . mfile, add the implementation code:
a) Open the Subscri beControl | er. mfile and add:

#i nport "Subscri beController.h"
#i nport "SUP101_SUP101DB. h"

#i mport " SUP101Cal | backHandl er. h"
#i mport " SUP101AppDel egat e. h"

@ npl enent ati on SubscribeControll er
(I BActi on) buttonPressed: (i d)sender
[SUP101_SUP101DB subscri be];
whi l e ([(SUPl01Cal | backHandl er *)[SUP101_SUP101DB
cal | backHandl er] i nport SuccessCount] < 1)
sl eep(1);
if (listController == nil)

listController = [[CustonerListController alloc]
initWthStyl e: U Tabl eVi ewSt yl ePl ai n] ;

}

SUP101AppDel egate *del egate = [[Ul Application
shar edAppl i cati on] del egate];

[del egat e. navControl | er pushVi ewController:listController
ani mat ed: YES] ;

}

32

Sybase Unwired Platform

Developing an iPhone Application

/*

/1l The designated initializer. Override if you create the
controller programmatically and want to perform customn zation
that is not appropriate for viewD dLoad.

- (id)initWthN bNane: (NSString *)ni bNameOrNi | bundl e:
(NSBundl e *)ni bBundl eONi | {

if (self = [super initWthN bNane: ni bNameOr Ni |

bundl e: ni bBundl eOrNi l]) {

[/ Custominitialization

return self;

}
*/

/1 1 nplenent viewDi dLoad to do additional setup after | oading
the view, typically froma nib.
- (void)viewDi dLoad {

self.title = @ Subscri be";

[super vi ewDi dLoad];

/*

/1 Override to allow orientations other than the default
portrait orientation.

- (BOCQL) shoul dAut or ot at eTol nt erfaceOri ent ati on:
(UlnterfaceOrientation)interfaceOientation {

/1 Return YES for supported orientations

return (interfaceOientation ==

UlnterfaceOientati onPortrait);

}
*/

- (void)di dRecei veMenor yWar ni ng {
/!l Releases the viewif it doesn't have a superview.
[super di dRecei veMenor yWar ni ng] ;

/'l Rel ease any cached data, inmges, etc that aren't in use.

(voi d) vi ewDi dunl oad {
/'l Rel ease any retained subviews of the main view
/[l e.g. self.myQutlet = nil;

- (void)dealloc {
if (listController)

[listController rel ease];
listController = nil;

}

[super deall oc];

Tutorial: iPhone Application Development using Custom 33
Development

Developing an iPhone Application

@nd
b) Save the Subscri beControl | er. mfile.

Making Connections
Goal: Add a Navigation Controller to the MainWindow.xib and create a connection from the
AppDelegate to the Navigation Controller .

1. Double-click the the Mai nW ndow. xi b file.

2. Inthe Interface Builder Tools > Library menu, drag and drop the Navigation Controller
onto the MainWindow.xib documents window.

3. Create a connection from the AppDelegate to the Navigation Controller.

a) Control-click the AppDelegate icon to show available outlets and actions.

b) In the MainWindow.xib, Control-drag from the AppDelegate icon to the new
Navigation Controller icon and select the navController outlet.

c) Selectthe Navigation Controller icon and change the View M odeto list view (click the
middle icon).

d) From the Navigation Controller list, select Ul ViewController and open the Identity
Inspector in Tools > Identity I nspector.

e) In the Identity Inspector, in Class, select SubscribeController.

Q ¥ Class Identity
4| Date Modified | Class I -l
S R et S ¥ Ciass Actiond CustomerListController =
- e 7 MainWindow.xib — =

i | SubscribeCaontroller
Action

4 UllmagePickerController
UlNavigationController
UITabBarContraoller
UITableViewController
UViewCaontroller

Mame

| Type
File's Owner UlApplication
@ First Resp... UlResponder
& P_101 App... SUP_101lAppDelegate
| Window UlWindow
¥ & Mavigation... UINavigationController

EE

| E3 Class Qutlets

I M Type |
= System Defined

searchDisplayController UlSearchDispla...
view UlView

®9 Navigat... UlNavigationBar
¥ & Mavigat... UlNavigationController

®5 Navi... UlMavigationBar
¥ View... UlViewController
R... UlButton

b M

[

UlIViewController changes to SubscribeController.
f) Save the Mai nW ndow. xi b file.

34 Sybase Unwired Platform

Developing an iPhone Application

4. Establish a connection between the Subscribe button you added to the
Subscri beControl | er. xi b and the button's action method.

a) Openthe Subscri beControl | er. xi bfile.

b) In the View window, control-click the Subscribe button to show the inspector, then
drag from the open circle in the Touch Up I nside Eventslist to the File'sOwner icon
and select buttonPressed.

This shows the way the button is connected to the buttonPressed event.
Yo 18 o View Bl 000 Butten Connections

——— -
¥ Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Touch Cancel

Touch Down

@

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit

Ty Touch Drag Inside

r 5 |
t Subscribe (Touch Drag Outside

®O0000000000

(Touch Up Inside 3} —I": File’s Owner
| buttonPressed:
Touch Up Outside
Walue Changed

¥ Referencing Outlets
Mew Referancing Outlet

G| [OOL

c) Save the Subscri beControl | er. xi b file.

Adding the CustomerListController
Goal: Create the customer list view.

1. Inthe SUP101 Xcode project, select File > New File.

2. In the new File window, select the Cocoa Touch Class group, the Ul ViewController
subclassand the Ul TableViewController subclassoption. Unselect With XIB for user
interface, then click Next.

3. Inthe next window, in File Name, enter Cust oner Li st Cont r ol | er.. m ensure that
Also create Customer ListController.h is selected, and click Finish.

The new source files contain stub implementations of various methods.
4. Open the Cust oner Li st Cont r ol | er . mfile, and add this code:

#i nport " CustonerListController.h"
#i nmport " SUP101AppDel egat e. h"
#i mport "Detail Controller.h"

#i mport " SUP101_Cust orer. h"

Tutorial: iPhone Application Development using Custom 35
Development

Developing an iPhone Application

@ npl enent ati on CustonerListController
@ynt hesi ze cust oner Li st ;

- (id)initWthStyl e: (U Tabl eViewStyl e)style {

/1 Cverride initWthStyle: if you create the controller
programmatical ly and want to perform custom zation that is not
appropriate for viewD dLoad.

if (self = [super initWthStyle:style]) {

}

return self;

- (void)viewDi dLoad {

/1 Uncoment the following line to display an Edit button in
the navigation bar for this view controller.

/1 self.navigationltemrightBarButtonltem =
sel f. edi tButtonltem

[super vi ewDi dLoad];

- (void)viewN || Appear: (BOCL) ani mat ed {

self.title = @ Custoners";
NSMut abl eArray *array = [[NSMut abl eArray alloc] init];

SUP101_Cust oner Li st *custonmers = [SUP101_Customer findAlI];
if ([custoners |length] > 0)

for (SUP101_Customer * oneRec in customers)
[array addOnj ect: oneRec];
sel f.custonerlLi st = array;
[array rel ease];

[[self tableView rel oadData];
[super viewW | | Appear: ani mat ed] ;

/*
- (void)viewWN || Appear: (BOOL) ani mat ed {
[super viewW | | Appear: ani mat ed] ;

- (void)vi ewDi dAppear: (BOOL) ani mat ed {
[super vi ewDi dAppear: ani mat ed] ;

- (void)viewN || D sappear: (BOCL) ani mat ed {

36 Sybase Unwired Platform

Developing an iPhone Application

[super viewW || Di sappear: ani mat ed] ;

- (void)vi ewDi dDi sappear: (BOOL) ani mat ed {
[super vi ewDi dDi sappear: ani mat ed] ;
}

*/

/*
/1 Override to allow orientations other than the default portrait
orientation.
- (BOQL) shoul dAut or ot at eTol nterfaceOri entati on:
(UlnterfaceOrientation)interfaceOientation {

/1 Return YES for supported orientations

return (interfaceGrientation ==
UlnterfaceOientationPortrait);

}
*/

- (void)di dRecei veMenor yWar ni ng {

/] Releases the viewif it doesn't have a superview.

[super di dRecei veMenor yWar ni ng] ;

/'l Rel ease any cached data, inmges, etc that aren't in use.
- (void)viewbDi dunl oad {

/'l Rel ease any retained subviews of the main view
/1 e.g. self.myQutlet = nil;

#pragma nmark Tabl e vi ew net hods
- (NSI nt eger) nunber O Sect i onsl nTabl eVi ew. (Ul Tabl eVi ew *) t abl eVi ew
{

return 1;

/] Customize the nunber of rows in the table view
- (NSInteger)tabl eVi ew. (U Tabl eVi ew *)t abl eVi ew
nunmber OF Rows| nSect i on: (NSI nt eger) secti on {

return [sel f.custonmerlList count];
}

/1 Custom ze the appearance of table view cells.
- (Ul Tabl eViewCel | *)tabl eView (U Tabl eVi ew *)tabl eVi ew
cel | For RowAt | ndexPat h: (NSI ndexPat h *)i ndexPat h {

static NSString *Cellldentifier = @Cel | ";

U Tabl eViewCel I *cell = [tableView
dequeueReusabl eCel | Wthidentifier:Cellldentifier];

Tutorial: iPhone Application Development using Custom 37
Development

Developing an iPhone Application

if (cell ==nil)
cell = [[[U Tabl eViewCel | all oc]
initWthStyl e: U Tabl eVi ewCel | St yl eDef aul t
reuseldentifier:Cellldentifier] autorel ease];

}

/1 Set up the cell...
NSUI nt eger row = [i ndexPath row ;
SUP101_Cust oner *customer = [custonerList objectAtlndex:row ;
cell.textLabel.text = [NSString stringWthFornmat: @ %D ,
[custoner fnane], @ ", [customer |nane]];
cell.accessoryType =
Ul Tabl eVi ewCel | Accessor yDi scl osur el ndi cat or;
return cell;
}

- (void)tabl eView (U Tabl eVi ew *)t abl eVi ew
di dSel ect RowAt | ndexPat h: (NSI ndexPat h *)i ndexPath {

[sel f tabl eView tableView
accessor yButt onTappedFor RowW t hl ndexPat h: i ndexPat h] ;

}

/*
/1 Cverride to support conditional editing of the table view
- (BOQL)tabl eVi ew. (Ul Tabl eVi ew *)t abl eVi ew canEdi t RowAt | ndexPat h:
(NSI ndexPat h *)i ndexPath {
/1 Return NOif you do not want the specified itemto be

edi t abl e.
return YES;

}

*/

/*

/1 Cverride to support editing the table view

- (void)tabl eView (U Tabl eView *)tabl eView conm t Edi ti ngStyl e:
(Ul Tabl eVi enCel | Edi ti ngStyl e)editingStyl e for RowAt | ndexPat h:
(NSI ndexPat h *)i ndexPath {

if (editingStyle == Ul Tabl eVi enCel | Edi ti ngStyl eDel ete) {
/'l Delete the row fromthe data source
[tabl eVi ew del et eRowsAt | ndexPat hs: [NSAr r ay
arrayWt hQbj ect: i ndexPat h] wi t hRowAni mati on: YES] ;

else if (editingStyle == Ul Tabl eVi ewCel | Edi ti ngStyl el nsert) {
/1 Create a newinstance of the appropriate class, insert it
into the array, and add a new row to the table view

}
}
*/

38 Sybase Unwired Platform

Developing an iPhone Application

*
/ Override to support rearranging the table view
(voi d)tabl eView (Ul Tabl eVi ew *)tabl eVi ew noveRowAt | ndexPat h:
(NSI ndexPat h *)from ndexPat h tol ndexPat h: (NSI ndexPat h
*)t ol ndexPat h {
}
*

o~~~

/

/*
/1 Cverride to support conditional rearranging of the table view
- (BOQL)t abl eVi ew. (Ul Tabl eVi ew *)t abl eVi ew canMoveRowAt | ndexPat h:
(NSI ndexPat h *)i ndexPath {
/1 Return NOif you do not want the itemto be re-orderable.
return YES;

}

*/

/*

- (U Tabl eVi ewCel | AccessoryType)t abl eVi ew. (Ul Tabl eVi ew
*)tabl eVi ew accessor yTypeFor RowwW t hl ndexPat h: (NSI ndexPat h
*)i ndexPat h

{

return Ul Tabl eVi ewCel | AccessoryDi scl osur el ndi cat or;

}

*/

- (void)tabl eView (U Tabl eVi ew *) t abl eVi ew

accessoryBut t onTappedFor RowW t hl ndexPat h: (NSI ndexPat h *)i ndexPat h

if (childController == nil)
childController = [[Detail Controller alloc]
initWthN bNanme: @Detail Control |l er"
bundl e:nil];

NSUI nt eger row = [i ndexPath row ;

SUP101_Cust oner *sel ect edCust oner = [custonerLi st
obj ect At I ndex: row ;

childController.title = [NSString stringWthFormat: @ %",
[sel ect edCustoner id]];

childController.original Obj = sel ectedCustonmner;

SUP101AppDel egate *del egate = [[Ul Application
sharedAppl i cati on] del egate];

[del egat e. navControl | er pushVi ewControl |l er:childController
ani mat ed: YES] ;

}

- (void)deall oc {
[cust onerLi st rel ease];
[chil dController rel ease];
[super deall oc];

Tutorial: iPhone Application Development using Custom 39
Development

Developing an iPhone Application

@nd

5. Save the Cust oner Li st Contr ol | er. mfile.

6. Open the Cust oner Li st Cont rol | er. hfile, and add this code:
#inmport <UIKit/UKit.h>
#i mport "Detail Controller.h"

@nterface CustonerListController : U Tabl eVi enControll er
<Ul Tabl eVi ewDel egat e, Ul Tabl eVi ewbDat aSour ce> {
NSArray *custonerlLi st;
Detail Controller *childController;

@roperty (nonatomc, retain) NSArray *custonerlList;
@nd

7. Save the Cust oner Li st Control | er. hfile.

Adding the DetailController
Goal: Create the Det ai | Control | er. xi b.

1. Inthe SUP101 Xcode project, select File > New File.

2. Select Cocoa Touch Class, Ul ViewController subclass, and With XIB for user
interface. Then click Next.

MR New File

Choose a template for your new file:

u iPhone OS5 M - -

Code Signing Objective-C class Objective-C test UlviewController
Resource case class subclass

User Interface

":j Mac OS X

AppleScript
Cand C++ Options [UITahleViewController subclass
Carbon
E With XIB for user interface
Cocoa
Interface Builder SDK Description An Objective-C class which is a subclass of
Pure java UlviewController, with an optional header file which
o includes the <UIKit/UIKit.h> header. A XIB file
Pure Python k containing a view configured for this View Controller is
Ruby i also included.
Sync Services b4
[Cancel) Previous Next

L

40 Sybase Unwired Platform

Developing an iPhone Application

The "With XIB for user interface" option creates a NextStep Interface Builder (nib) file to
go with the view controller and adds it to the SUP101 Xcode project.

3. In the next window, in File Name, enter Det ai | Cont r ol | er . m ensure that Also
create DetailController.h is selected, and click Finish.

The new source files contain stub implementations of various methods.

Configuring the DetailController View
Goal: Add the user interface to the customer detail view and specify the outlets in the
Det ai | Control | er. mand Det ai | Control | er. hfiles.

1. Double-click the Det ai | Cont r ol | er. xi b file to open Interface Builder.

2. Addthe user interface elements to the View. In this case, you will be adding three text fields
with labels, and a button.

a) In Interface Builder, select Tools> Library.

b) Scroll through the Library and select the Text field icon (UITextField), then drag and
drop it onto the View window. Repeat this step until you have three text fields on the
View.

You can resize the text fields using the resize handles and position the button by
dragging it to the desired location.

c) Fromthe Library, drag and drop the Label (UILabel) onto the View window next to the
text fields. Replace the text "Label™ with:

e First Name

e Last Name

e Phone
d) Fromthe Library, drag and drop the Button (UIButton) control onto the View window.
e) Double-click inside the button and type: Submi t .

3. To make connections to the user interface from the view controller, you must specify
outletsinthe Det ai | Cont r ol | er . hfile. You must also add property declarations for
the instance variables and declaration for the action method:

a) Openthe Det ai | Control | er. hfile and add this code:

#import <UKit/UKit.h>
#i nport "SUP101_Cust oner. h"

@nterface Detail Controller : U ViewController {
| BQutl et Ul Text Field *fnane;
| BQutl et U TextField *I nane;
| BQutl et Ul TextField *phone;
SUP101_Cust oner * ori gi nal Obj;

@roperty (nonatomc, retain) U TextField *fnane;

@roperty (nonatomc, retain) U TextField *I nane;

@roperty (nonatom c, retain) U TextField *phone;

@roperty (nonatom c, retain) SUP101_Custoner *origi nal Qoj;
- (SUP101_Custoner *)origi nal Obj;

- (void)setOiginal Obj: (SUP101_Custoner *)newdbj ;

Tutorial: iPhone Application Development using Custom 41
Development

Developing an iPhone Application

- (1 BActi on) buttonPressed: (i d)sender;
@nd

b) Save the Det ai | Control | er. hfile.
In the Det ai | Cont r ol | er. mfile, add the implementation code:
a) Openthe Det ai | Control | er. mfile and add:

#i nport "Detail Controller.h"

#i nport "SUP101_SUP101DB. h"

#i mport " SUP101AppDel egat e. h"

@ npl enentation Detail Controller
@ynt hesi ze f nane;

@ynt hesi ze | nane;

@ynt hesi ze phone;

(SUP101_Cust omer *)ori gi nal Obj

{
return original Qoj;
}
- (void)setOiginal Obj: (SUP101_Custoner *)newdbj
{
if (original Gbj !'= newdhj) {
[original Cbj rel ease];
original Gbj = [newCbj retain];
}
}

/1 The designated initializer. Override if you create the
controller programmatically and want to perform customni zation
that is not appropriate for viewDi dLoad.
- (id)initWthN bNane: (NSString *)ni bNaneOr Ni | bundl e:
(NSBundl e *)ni bBundl eOrNi | {

if (self = [super initWthN bNane: ni bNaneOr Ni |
bundl e: ni bBundl eOrNi 1]) {

[/ Custominitialization
}

return self;
(1 BActi on) buttonPressed: (i d) sender

if (([lInane.text conpare:original Qj.fnane] !=
NSCr der edSane) | |
([fname. text conpare:original Qj.|nanme] !=
NSCr der edSane) | |
([phone. t ext conpare: ori gi nal Ooj . phone] !=
NSCOr der edSane))

SUP101_Cust oner *newCustomer = [SUP101_Custoner find:
[original Gbj id]];
i f (newCustomer) {

newCust oner . | nane = | nane. t ext;
newCust oner . f nanme = fnane. text;
newCust oner . phone = phone. text;

42

Sybase Unwired Platform

Developing an iPhone Application

[newCust oner save];
[newCust omer subni t Pendi ng] ;
whil e ([SUP101_SUP101DB hasPendi ngOper ati ons])

sl eep(1);

SUP101AppDel egate *del egate = [[Ul Application
shar edAppl i cati on] del egate];
[del egat e. navControl | er popVi ewControl | er Ani mat ed: YES] ;

}

}

/*
/1 1 nplenent viewDi dLoad to do additional setup after | oading
the view, typically froma nib.
- (void)viewDi dLoad {
[super vi ewDi dLoad];

*/

I/l Override to allow orientations other than the default
portrait orientation.
- (BOQL) shoul dAut or ot at eTol nterfaceOri entati on:
(UlnterfaceOrientation)interfaceOientation {

/1l Return YES for supported orientations

return (interfaceOrientation ==
UlnterfaceOientati onPortrait);

}
- (void)viewWN || Appear: (BOOL) ani mat ed {

fname. text = origi nal Qbj . f nane;
| nane. text = original Qbj.| nane;
phone.text = origi nal Obj. phone;
[super viewW | | Appear: ani nmat ed] ;

- (void)di dRecei veMenor yWar ni ng {
/!l Releases the viewif it doesn't have a superview.
[super di dRecei veMenor yWar ni ng] ;

/'l Rel ease any cached data, inmages, etc that aren't in use.

(voi d) vi ewDi dunl oad {
/'l Rel ease any retained subviews of the main view
/[l e.g. self.myQutlet = nil;

- (void)dealloc {

Tutorial: iPhone Application Development using Custom
Development

43

Developing an iPhone Application

[fname rel ease];
[l name rel ease];
[phone rel ease];
[origi nal Cbj rel ease];

[super deall oc];

- (1 BAction)touchedEnded: (NSSet *)t ouches wi t hEvent:
(Ul Event *) event

U Text Vi ew* fnanel (U TextView) [[self view] viewNthTag:

1]

’UI Text Vi ew* | nanel (Ul TextView) [[self view] viewNthTag:

2];
U Text Vi ew* phonel = (Ul TextView') [[self view] viewNthTag:
315

[fnanmel resignFirstResponder];
[l namel resignFirst Responder];
[phonel resi gnFirst Responder];

@nd
b) Save the Det ai | Cont r ol | er . mfile.

5. Change the tags in the Det ai | Control | er. xi b file:

a) Double-click the Det ai | Control | er. xi b file to open it in Interface Builder.
b) In the View window, select the First Name text field.

c) Select the Tools > Attributes Inspector to open the Atrributes Inspector for the text
box.

d) In Attributes Inspector, scroll to the View section and in the Tag field, enter 1.

44 Sybase Unwired Platform

Developing an iPhone Application

MO
2 o & @
R [Helustira 17 0 N
FontSize W Adjust To Fit | 17 B
Min Size
Text Input Traits
Capitalize | None 4
Correction | Default 4
Keyboard [Default I-G-]
Appearance | Default 4
2
Return Key [Default I-G-]

[} Autc-enable Return Key
[Secure

¥ Control
content [N (0| CI[B] [T OO
H. Alignment V. Alignment

[Highlighted [Selected
Enabled

¥ View

Mode [scale To Fill 4
Alpha —_— oo 2]

Tag

Drawing [Opaque [Hidden
[T Clear Context Before Drawing
[Clip Subviews
E Autoresize Subviews

Stretching 0.00] [2) 0.00] [2)
X Y
oo 2] oo 2]
Width Height

¢ »
Interaction [User Interaction Enabled s
[Multiple Touch 1
A

e) Repeat the same steps for the Last Name and Phone text fields respectively, and in the
Tag field in the Text Field Attributes, for the Last Name text field, enter 2 and for the
Phone text field, enter 3.

6. Add the connections between the text fields and the outlets defined in the
Det ai | Control | er. mfile (fname, Iname, phone).

Tutorial: iPhone Application Development using Custom 45
Development

Developing an iPhone Application

Inside the Main Window, Control-drag a connection from File'sOwner to each of the text
fields and select fname, Iname, and phone outlets, respectively. This will ensure outlets
are linked to the text fields. The end result looks like this:

o O O & View ~ || © O O Detail Controller Connections
= + [0 | ¢ | @
| [¥ outlets
|| (fname (% Round Style Text Field (@)
First Name : [| (mame (% Roundsyie Texi field @
([phone +—{® Round Style Text Field (@)
searchDisplayController @)
Last Name : (view (% View O]
| | ¥ Received Actions
(buttonPressed:)—IJH Rounded Rect Butt .. @I
Phone : | Touch Up Inside 1
¥ Referencing Outlets
Mew Referancing Outlat
Submit ’ ©
|

7. Add the connection for the Submit button:
a) Control-drag a connectin from File's Owner to Submit.
b) Select Touch up Inside for the button.

8. Savethe Det ai |l Control | er. xi bfile.

Deploying the Device Application
Goal: Deploy the SUP101 application to the iPhone Simulator for testing.

Prerequisites
Have a registered device user in Sybase Control Center.

You must be connected to the server where the mobile application project is deployed.

Task

1. In XCode, select Build > Build and Run.
The project builds and the iPhone Simulator starts.
2. In the Settings screen of the iPhone simulator, choose SUP101 and enter the connection
settings:
« ServerNameSetting — the machine that hosts the server where the SUP101 mobile
application project is deployed.
e ServerPortSetting — Unwired Server port number. The default is 5001.

46 Sybase Unwired Platform

Developing an iPhone Application

e CompanylDSetting — the company ID you entered when you registered the device in
Sybase Control Center.
« UserNameSetting — the user you registered in Sybase Control Center, user 1.

« ActivationCodeSetting — the activation code for the user, 123.

il Carrier 3:20 PM

Connection Info

ServerNameSetting sybase
ServerPortSetting 5001

CompanylDSetting 1

UserNameSetting useri

ActivationCodeSetting see

URL Prefix /tm/?cid="%:cid%

3. Inthe iPhone applications screen, open the SUP101 application.
4. Click Subscribe.

Tutorial: iPhone Application Development using Custom 47
Development

Developing an iPhone Application

The customer list appears.

5. Select a customer record from the customer list and double-click to open the detail view.
The customer detail shows the fields: First Name, Last Name, and Phone.

6. Change the First Name to something else, and click Submit.
7. Youreturnto the customer list screen, where the changed record appears with an indicator.

48 Sybase Unwired Platform

Learn More about Sybase Unwired Platform

Learn More about Sybase Unwired Platform

Once you have finished, try some of the other samples or tutorials, or refer to other
development documents in the Sybase Unwired Platform documentation set.

Getting Started Tutorials
Try out some of the other getting started tutorials to get a broad view of the development tools
available to you.

Advanced Tutorials
Tutorials are available that demonstrate how to use some of Sybase Unwired Platform
advanced features.

Check the Sybase Product Manuals Web site regularly for updates: Attp.//
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title. html.

Samples
Sample applications are fully developed, working applications that demonstrate the features
and capabilities of Sybase Unwired Platform.

Check the Sybase Web site regularly for updates. Navigate to the Sybase Web site, then select
Products > Sybase Unwired Platform > Use tab. http.//www.sybase.com/products/
mobileenterprise/sybaseunwireaplatform?htab=USE.

Online Help
See the online help that is installed with the product, or the Product Manuals Web site.

Check the Sybase Product Manuals Web site regularly for updates: Attp.//
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title. html.

Developer References
See the Developer References to learn about using the API to custom code device applications
using the API.

» Developer Reference for BlackBerry

» Developer Reference for iPhone

» Developer Reference for Mobile Workflow Packages

o Developer Reference for Windows and Windows Mobile

Javadocs are also available in the installation directory.

Tutorial: iPhone Application Development using Custom 49
Development

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://www.sybase.com/products/mobileenterprise/sybaseunwiredplatform?htab=USE
http://www.sybase.com/products/mobileenterprise/sybaseunwiredplatform?htab=USE
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html

Learn More about Sybase Unwired Platform

Check the Sybase Product Manuals Web site regularly for updates: Attp.//
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/html/title. html.

Programmer References
See the Programmer References to learn how to use the Administration API and Server API to
extend functionality.

e Reference: Administration APIs — integrate your own administrative tools with Unwired
Platform to monitor and manage Unwired Platform.

» Reference.: Custom Development for Unwired Server — customize some Unwired Server
features.

Check the Sybase Product Manuals Web site regularly for updates: Atip.//
infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-
SUP-1.5.2/doc/htmi/title. html.

Javadocs are also available in the installation directory.

50

Sybase Unwired Platform

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.pubs.docset-SUP-1.5.2/doc/html/title.html

Index
B

basics, learning 11

C

callback handler 24
configuring
SubscribeController view 31
SUP101Appdelegate 29
connecting to Sybase Control Center 10
connection, creating 34
creating
SUP101CallbackHandler file 24
creating connections 34
customer list view 35
CustomerL.istController 35

D

data sources 4
delegate file 29
deploying 46
DetailController view 41
DetailController.xib 40
developer profile
switching 5
developing
device application 15
device application, developing 15

E

Eclipse Studio Edition

Sybase Unwired WorkSpace 10
EIS

data sources 4
Enterprise Explorer, defined 11

F

File's Owner 31
First Responder 31

G
generating Object APl code 17

Index

getting started
Sybase Unwired Platform 9
Sybase Unwired WorkSpace 11
getting started tutorials
development environment 2
overview 1
Getting Started tutorials
developing a device application 15
introduction 1
mobility concepts 3

H
help, online 11

installing

Sybase Unwired Platform 9
Interface Builder 31
iPhone Simulator 46

L

linking outlets 41

M

MainWindow.xib 34
MBOs
overview 3
message-based synchronization
factors 4
Mobile Application Diagram, defined 11

N

Navigation Controller 34

o

Objective-C code, generating 17
online help, accessing 11
outlets, linking 41

Tutorial: iPhone Application Development using Custom 51

Development

Index

P

Palette, defined 11
Properties view, defined 11

R

registering the iPhone simulator 22
replication-based synchronization
factors 4

S

servers
Unwired Server, starting 9
starting
Sybase Control Center 10

Sybase Unwired WorkSpace 10

Unwired Server 9
SubscribeController view 31

SUP101Appdelegate files, configuring 29

SUP101CallbackHandler file 24

Sybase Control Center 10, 22
connecting to 10

Sybase Unwired Platform
getting started 9
installing 9

Sybase Unwired WorkSpace
getting started 11
starting 10

U

UlViewController subclass 28
Unwired Server 9

\'

View 31
view controller, adding 28

w
WorkSpace Navigator, defined 11

52

Sybase Unwired Platform

	Tutorial: iPhone Application Development using Custom Development
	Contents
	Introduction to Getting Started Tutorials
	Overview of Getting Started Tutorials
	Understanding the Unwired Platform Development Environment
	Development in Eclipse

	Understanding Fundamental Mobile Development Concepts
	Mobile Business Objects
	Synchronization Methods
	Application Types
	Data Sources
	Switching Between Developer Profiles

	Task Flow
	Getting Started
	Installing Sybase Unwired Platform
	Starting Unwired Platform Services
	Starting Sybase Unwired WorkSpace
	Connecting to Sybase Control Center
	Learning the Basics

	Developing an iPhone Application
	Deploying the Database Mobile Business Objects
	Generating Object API Code
	Setting Up an iPhone Client Application in Xcode
	Registering the iPhone Simulator in Sybase Control Center
	Creating the SUP101CallbackHandler File
	Creating the User Interface
	Adding the SubscribeController View Controller
	Configuring the SUP101Appdelegate Files
	Configuring the SubscribeController View
	Making Connections

	Adding the CustomerListController
	Adding the DetailController
	Configuring the DetailController View

	Deploying the Device Application

	Learn More about Sybase Unwired Platform
	Index

