
In-Memory Database Users Guide

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC01186-01-1570-01

LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

In-Memory Database Users Guide iii

CHAPTER 1 In-Memory Databases ... 1
Cache and buffer support... 4
Durability levels .. 6

Temporary databases and in-memory temporary databases.... 7
Multidatabase transactions and database types 8

Template databases... 8
Altering the database to use a new template 10

Minimally logged commands.. 10
Limits for in-memory and relaxed-durability databases.................. 11

Changed system procedures .. 12

CHAPTER 2 Managing In-Memory and Relaxed-Durability Databases 15
Specifying named caches for in-memory databases...................... 15
Verifying changes to the configuration file 16

Changing static configuration parameters for in-memory
databases ... 17

Creating in-memory devices... 17
Creating in-memory databases .. 18
Creating disk-resident databases with relaxed durability 19
Administering in-memory databases.. 19

Resizing in-memory storage caches 19
Deleting in-memory storage caches.. 20
Increasing the size of in-memory databases........................... 20
Dumping and loading in-memory databases........................... 20
Dropping in-memory databases .. 22
Dropping in-memory devices... 22

CHAPTER 3 Minimally Logged DML ... 23
Types of DML logging settings ... 23

Database-level logging.. 24
Table-level logging .. 25
Session-level logging .. 26
Additional minimal logging rules.. 27

Contents

iv Adaptive Server Enterprise

Transactional semantics .. 28
Logging concurrent transactions .. 29
Minimal logging with ddl in tran set to true 30
Effect of referential integrity constraints ... 31
Multistatement transactions in minimally logged mode.................. 31
Stored procedures and minimally logged DML 33
Including set dml_logging in a trigger... 36
Using deferred updates.. 38
Obtaining diagnostic information.. 38

CHAPTER 4 Performance and Tuning for In-Memory Databases 39
Configuring in-memory storage cache ... 39

Cache layout ... 40
sp_sysmon output for in-memory databases 42
Monitoring the default data cache performance............................. 43
Organizing physical data for in-memory devices 45
Performance optimization for low-durability databases.................. 45

Tuning checkpoint intervals... 48
Minimally logged DML.. 49
Dumping and loading in-memory databases.................................. 52
Tuning for spinlock contention and network connections............... 53

Improving contention for lock manager hashtable spinlock ratios
53

Determining the number of network connections 55

Index ... 59

In-Memory Database Users Guide 1

C H A P T E R 1 In-Memory Databases

In-memory databases run entirely in a named cache (that is, in the
Adaptive Server® memory space), without using disk storage for data or
logs. Because an in-memory database does not require I/O, its
performance can be much better than a traditional, disk-resident database.
In-memory databases are not designed for recovery: their transaction logs
are written to the cache and not to disk, and any data changes are lost if
the database fails. In-memory databases perform transactional logging for
runtime rollback, and for other operations such as firing triggers, deferred
mode updates, replication, and so on.

Disk-resident databases write to disk, and ensure that the transactional
properties of atomicity, consistency, integrity, and durability (known as
the ACID properties) are maintained. Durability refers to the persistence
of transactions after they have committed. A traditional Adaptive Server
database, also known as disk-resident, operates at full durability by
writing its transaction log to disk when a transaction commits. This, along
with data pages being written periodically to disk, ensures that all
committed transactions are durable.

In-memory databases do not write data or log to disk, and trade the
guarantee of transaction durability for performance improvements. In the
event of a database failure, in-memory databases cannot be recovered. If
your applications require data recoverability following a server failure or
a normal shutdown, consider using a traditional Adaptive Server database.

Topic Page
Cache and buffer support 4

Durability levels 6

Template databases 8

Minimally logged commands 10

Limits for in-memory and relaxed-durability databases 11

2 Adaptive Server Enterprise

With support for relaxed durability, Sybase® extends the performance benefits
of an in-memory database to disk-resident databases. A disk-resident database
operates at full durability to guarantee transactional recovery from a server
failure. Relaxed-durability databases trade the full durability of committed
transactions for enhanced runtime performance for transactional workloads.

The performance benefits of in-memory and relaxed-durability databases
include:

• An in-memory database does not wait for I/O.

• Improved buffer and user log cache management, so you need incure the
overhead of user log cache flushes and buffer management when Adaptive
Server performs concurrent updates to the same data.

• Runtime strategies that may avoid flushing in the user-log cache to the
transaction log when the transaction commits or aborts. These strategies
reduce the contention on in-memory log pages.

• Support for minimally-logged DML operations that use in-memory
logging techniques improves the performance of large-volume DML
operations.

Adaptive Server version 15.5 and later allows you to create these types of
databases (illustrated in Figure 1-1, below):

• Disk-resident databases with durability set to full (this is the default, or
traditional, Adaptive Server database)

• User-created disk-resident temporary databases

• In-memory user databases with durability set to no_recovery

• User-created in-memory temporary databases with durability set to
no_recovery

• Disk-resident relaxed-durability databases with durability set to
no_recovery or at_shutdown

CHAPTER 1 In-Memory Databases

In-Memory Database Users Guide 3

Figure 1-1: Attributes of in-memory, relaxed-durability and disk-
resident databases

*Greater than or equal to the cache size

Note See your Replication Server® documention for information about using
in-memory and relaxed-durability databases and DML logging in a replicated
environment.

In-memory
storage cache

Database fits
in cache

No disk I/O

In-memory
devices

Durability set

Minimally
-logged DML

to no_recovery

Large I/O

Disk DevicesDisk I/O

Database,
Object, and

cache binding

Buffer pools

Durability set
to full

Intersection contains
the attributes for a relaxed-
durability and temporary

In-memory and
temporary in-
memory databases

Disk-resident and
temporary disk
-resident databases

relaxed-durability database

Asynchronous
prefetch

Database size
greater than*
cache size

Named
caches

Durability set
to at_shutdown

Template
databases

Other
performance
improvements

Cache and buffer support

4 Adaptive Server Enterprise

Cache and buffer support
Caches that host in-memory databases must be large enough to contain the
entire database, and every page in the database must reside in the cache,
without any buffer replacement or I/O to disk. You cannot use caches that have
been created:

• To host in-memory databases to bind other databases or other objects.

• For binding other databases or objects to host in-memory databases.
Named caches used to host an in-memory database use a different
structure, and are dedicated to in-memory databases.

Use sp_cacheconfig to create the cache for the in-memory database. Use disk
init to divide the cache into in-memory devices, which are similar to disk
devices, and support segments. You can bind one or more logical segments to
in-memory devices, allowing you to bind objects to individual segments.

Consider the following before you bind any objects to a cache for in-memory
or relaxed durability databases:

• Use named caches to bind entire relaxed-durability or full durability
database. You may bind

• Individual objects in an relaxed-durability database to a named cache,
similar to binding individual objects in a regular database

• Relaxed-durability database to a named cache (for example, the
default data cache)

• In-memory storage caches are similar to named caches, but are
configured for efficient in-memory access. Individual objects in the
relaxed-durability database to different caches

• Caching behavior for in-memory storage caches is similar to the caching
behavior for regular caches.

• Use the same monitoring tools and tuning techniques you use to improve
the performance of named caches to improve the performance of relaxed-
durability databases bound to named caches.

• Because a single in-memory storage cache hosts the entire database, you
do not bind a database or object to individual caches. Most existing cache
manager monitoring and tuning apply to in-memory caches. See Chapter
2, “Monitoring Performance with sp_sysmon,” in Performance and
Tuning Series: Monitoring Adaptive Server with sp_sysmon.

CHAPTER 1 In-Memory Databases

In-Memory Database Users Guide 5

In-memory databases must be hosted by a single cache, but can reside on
multiple in-memory devices created from that cache. Figure 1-2 shows
imdb_cache cache, which contains a single in-memory storage device,
imdb_dev:

Figure 1-2: Single cache hosting a single device

Figure 1-3 shows imdb_cache2 cache, which includes two in-memory data
devices, imdb_dev1 and imdb_dev2, and a log device, imdb_logdev1:

Figure 1-3: Single cache hosting multiple devices

Use create inmemory database to create the in-memory database directly on the
logical devices. If your installation does not use segments to limit space for
objects, create the database on the in-memory device to be used for the entire
in-memory storage cache. For finer granularity in space management for
individual objects and threshold procedure support, create the database and log
on separate in-memory devices.

Use ddlgen to generate database and object definitions for in-memory and
relaxed-durability databases. See the Utility Guide.

Use alter database to change the layout of existing in-memory databases. See
the Reference Manual: Commands.

imdb_dev

imdb_cache

imdb_dev1 imdb_dev2 imdb_logdev1

imdb_cache2

Durability levels

6 Adaptive Server Enterprise

Durability levels
Data that you change in a committed, durable transaction survives after you
restart the server following a system failure or shutdown with nowait. The
durability of a transaction in a traditional disk-resident database results from
flushing the transaction log and the database pages to disk. In-memory
databases provide no transactional durability after a server fails or impolite
shutdown.

A relaxed-durability database offers two levels of durability from which you
can select. The first level of durability is similar to an in-memory database: if
the server fails, data is lost. The second level of durability is between that of a
disk-resident database and that of an in-memory database: all transactions are
completed and are persisted to disk only with a polite shutdown. This enables
relaxed-durability databases to take advantage of many performance
optimizations of in-memory databases.

Databases with a durability set to no_recovery or at_shutdown—whether they
are in-memory or disk-resident—are referred to as low-durability databases.
Data in low durability databases survives after a commit (provided you do not
restart the server).

Use create database with durability=durability_level to set a database’s durability
level. Adaptive Server supports full, no_recovery, and at_shutdown durability
levels. See the Reference Manual: Commands.

Table 1-1 describes the operations you can perform at each durability level:

CHAPTER 1 In-Memory Databases

In-Memory Database Users Guide 7

Table 1-1: Durability levels for databases

Reduced durability and improved performance applies only to relaxed-
durability databases using at_shutdown and no_recovery. You can bind relaxed-
durability databases to named caches, for which the cache size can be smaller
than the database size.

Temporary databases and in-memory temporary databases
Temporary databases implicitly use a durability of no_recovery. You may
create temporary databases with an explicit no_recovery durability to enhance
performance, and you may alter existing temporary databases to explicitly set
their durability to no_recovery after upgrade.

Temporary databases that you use entirely in-memory explicitly use a
durability of no_recovery.

Adaptive Server allows you to create and manage user-created tempdb groups
in addition to managing the default tempdb group. User-created tempdb groups
may include other user-created temporary databases, and support application
and login binding.

You cannot remove the system tempdb from the default temporary database
group. You cannot add system tempdb to any other user-created tempdb group.

Operation no_recovery at_shutdown full

Create disk-resident
databases

Yes Yes Yes

Create in-memory
databases

Yes No No

Runtime rollback Yes Yes Yes

Failure recovery No No Yes

Database restored
after a polite
shutdown and
restart.

No Yes Yes

Dump database to
and load from
archive.

Yes Yes Yes

Dump transaction
log from device to
archive. Load
transaction log from
archive to device.

No No Yes

Template databases

8 Adaptive Server Enterprise

Temporary database groups can mix disk-resident or in-memory temporary
databases.

You can designate and administer user-created tempdb groups to contain only
disk-resident or only in-memory temporary databases. Although Adaptive
Server does not explicitly impose any restrictions, by controlling the
membership to the tempdb groups, you can assign specific disk-only or in-
memory-only tempdb groups to specific logins or applications.

Multidatabase transactions and database types
A database’s durability affects transactions that span multiple databases.

Low-durability databases—user-created temporary databases, in-memory
databases, or disk-resident relaxed-durability databases—can participate in a
multi-database transaction, even if the coordinating database uses full
durability. However, if the coordinating database uses low durability,
transactions that span other full-durability databases are not allowed.

Table 1-2: Database participants in a multidatabase transaction

Template databases
You can use a database other than model as the template for an in-memory
database to load reference data (for example, tables and stored procedures) into
the database created with the template. The template database must be an
existing disk-resident user database with full durability. Using templates to
create a database and minimally logged DML are supported only on low
durability databases.

Coordinating database Participant database Multidatabase transaction

Full durability database Temporary, in-memory, relaxed-
durability, or temporary in-memory
database

Allowed

Temporary, in-memory,
relaxed-durability, or
temporary in-memory database

Temporary, in-memory, relaxed-
durability, or temporary in-memory
database

Allowed

Temporary, in-memory,
relaxed-durability, or
temporary in-memory database

Full-durability database Not allowed

CHAPTER 1 In-Memory Databases

In-Memory Database Users Guide 9

You cannot use templates to create relaxed-durability databases that use a
durabilty of at_shutdown. You can use templates only for databases that have a
durability of no_recovery.

Use the create database use database_name as template command to specify a
database other than model as a template for any database that has been created
with the no_recovery parameter.

Once you create a database that uses a database other than model as its
template, Adaptive Server re-creates the dependent database, using data from
the template database, when the server restarts.

When you restart Adaptive Server, template databases are recovered before
databases that use them as templates. If Adaptive Server cannot recover a
template database, databases that depend on that template database cannot be
re-created.

Adaptive Server applies the attributes of the template database when you create
the dependent database. Attributes you specify as part of the create database
command override the template database’s attributes. Database options and
attributes for databases you create using the template persist when Adaptive
Server restarts, and when Adaptive Server re-creates the database from its
template. Any changes you make to attributes of the template database are not
used when Adaptive Server re-creates the dependent database during
subsequent restarts.

You cannot drop a database if any databases uses it as a template. You must
first drop all databases that use this database as a template, or use alter database
to detach the template database from all its dependent databases.

Note User-defined segments in template database may not function as
expected after they are copied from the template database into an in-memory
or relaxed-durability database. Segments direct space allocation onto specific
database devices (or device fragments) by mapping the syssegments table to
the sysuages table in the master database. Template databases may use a
different mapping than the in-memory or relaxed-durability databases for
which they are providing a template since the device layout for these databases
may use a different number of devices and differently sized fragments. You
must carefully plan and define the template database’s user-defined segments
before using these segments for in-memory or relaxed-durability databases.

Run sp_helpdb to report information about templates for:

Minimally logged commands

10 Adaptive Server Enterprise

• User databases – determine if, and for which databases, the user database
has been used as a template. This section of sp_helpdb output shows that
the pubs2 database was used as a template for the pubs3 and pubs5 in-
memory databases:

template_for
--
pubs3
pubs5

• Databases created from a template – determine which database was used
as a template during creation (if it was not model). This section of
sp_helpdb output shows that you used the pubs2 database as the template
for the pubs3 database:

template
--
pubs2

Altering the database to use a new template
Adaptive Server does not change a database’s existing data when you use alter
database to change the template. Adaptive Server uses data from the new
template to re-create the database when you restart Adaptive Server.

You can change the template only for in-memory databases and for databases
that use a durability of no_recovery; you cannot change the templates for
system or traditional disk-resident databases using full durability.

Minimally logged commands
In Adaptive Server version 15.5, you can perform minimal logging for data
manipulation language (DML commands) on a per-database, per-table, and
session-specific basis so that minimal row and page changes, as well as page
allocations and deallocations, are logged.

You can control DML logging at the database, table, and session levels by
configuring commands such as create database, alter database, create table,
select into, set DML logging, and alter table.

See Chapter 3, “Minimally Logged DML.”

CHAPTER 1 In-Memory Databases

In-Memory Database Users Guide 11

Limits for in-memory and relaxed-durability databases
In-memory and relaxed-durability databases include these limits:

• The Cluster Edition does not currently support in-memory databases,
relaxed-durability databases, template databases, or minimally-logged
DML.

• Replication Server does not currently support replication of in-memory
databases, or databases with durability set to no_recovery.

• You cannot use an in-menory database as an archive database.Sybase
reommends that you do not use an in-memory database as a scratch
database.

• In-memory databases do not support queries using compatibility mode.
Use compatibility mode in Adaptive Server only on regular disk-resident
database tables. See the Migration Technology Guide about enabling
compatibility mode.

If you have enabled compatibility mode and a query touches a table in an
in-memory database, Adaptive Server reverts to the native version 15.0
query optimizer and execution engine using the “restricted compatibility
mode.” Generally, this mode produces query plans similar to the plans in
Adaptive Server version 12.5. If you notice a degradation in performance,
Sybase recommends that you disable compatibility mode for this query.

• You cannot change the durability or logging level of in-memory or low-
durability databases in the same command in which you are increasing the
size of the database.

• alter database, when used to change either the durability or minimal_logging
attribute of the database, automatically puts a database into single-user
mode, and the command fails if it cannot acquire exclusive access to the
database. To avoid this failure, manually put the database in single-user
mode before running alter database.

• In-memory and relaxed-durability databases cannot participate in
distributed transactions.

• In-memory and relaxed-durability databases cannot coordinate
multidatabase transactions involving databases with full durability. When
you execute system procedures that perform transactional updates when
you run a stored procedure from an in-memory or relaxed-durability
database, you see this error:

Msg 3952, Level 16, State 2:
Procedure 'sp_XX', Line 258:

Limits for in-memory and relaxed-durability databases

12 Adaptive Server Enterprise

Command not allowed. You cannot start a
multidatabase operation in database 'master'
after starting the master transaction in 'imdb1' as
it may render the database 'master' unrecoverable.

To run the system procedure:

a Execute it from a fully durable database. For example, to run sp_XX
in master, enter:

use master
go
exec sp_XX

b Use this formate to reference the stored procedure from the current
database (in-memory or relaxed-durability):
database_name.owner.sp_name.

For example, to run sp_XX in the imdb_1 in-memory database, enter:

use imdb_1
go
exec master.dbo.sp_XX

• From an in-memory database, you cannot use a proxy table or database to
map to another in-memory database or disk-resident database object.

• From a disk-resident database, you cannot use a proxy table or database to
map to an in-memory database or table.

Changed system procedures
Table 1-3 lists the stored procedures that have been changed to support in-
memory storage caches, in-memory devices, and in-memory databases.

Table 1-3: System procedures changed for in-memory databases

System procedure Comments

sp_addsegment Updated to manage space in in-memory
databases.

sp_addthreshold Updated to manage space in in-memory
databases.

sp_bindcache You cannot bind objects or databases to
in-memory storage caches, and you
cannot bind an in-memory database or
objects in an in-memory database to any
cache.

CHAPTER 1 In-Memory Databases

In-Memory Database Users Guide 13

sp_cacheconfig Creates, extends the size of, or drops, an
in-memory storage cache.

sp_cachestrategy The prefetch and MRU parameters do not
apply to tables and indexes in in-memory
databases.

sp_dbextend Automatic database expansion is
currently not supported for in-memory
databases.

sp_deviceattr The directio and dsync device attributes
do not apply to in-memory devices.

sp_diskdefault You cannot use sp_diskdefault to specify
in-memory devices as a default device.

sp_downgrade Supports downgrading an Adaptive
Server containing in-memory or relaxed-
durability databases, or databases using
templates or minimal logging to an
earlier version.

sp_dropdevice Drops an in-memory device created from
an in-memory storage cache.

sp_dropsegment Updated to manage space in in-memory
databases.

sp_dropthreshold Updated to manage space in in-memory
databases.

sp_extendsegment Updated to manage space in in-memory
databases.

sp_help Reports properties, such as minimal
logging attribute, for a table.

sp_helpcache Displays properties of the in-memory
storage cache, the in-memory database
created on it, and details of free space on
this cache.

sp_helpdb Reports database properties such as
durability, DML logging level, in-
memory or not, use, if any, of a template
database or as a template database.

sp_helpdevice Reports the in-memory device properties
created from an in-memory storage
cache.

sp_modifythreshold Updated to manage space in in-memory
databases.

System procedure Comments

Limits for in-memory and relaxed-durability databases

14 Adaptive Server Enterprise

sp_plan_dbccdb Sets up dbccdb for checkstorage
execution in an in-memory database.

sp_poolconfig Large I/O buffer pools are not supported
in an in-memory database.

sp_post_xpload Supports cross-platform operations for
in-memory databases.

sp_tempdb Supports login or application bindings
for an in-memory temporary database.

sp_unbindcache, sp_unbindcache_all You cannot unbind objects to the in-
memory database itself from the host in-
memory storage cache.

System procedure Comments

In-Memory Database Users Guide 15

C H A P T E R 2 Managing In-Memory and
Relaxed-Durability Databases

Specifying named caches for in-memory databases
Sybase recommends that you use huge pages for in-memory storage
cache. See the Configuration Guide for your platform.

Caches that hold in-memory databases must be large enough to contain the
entire database. A cache that contains an in-memory database is called in-
memory storage, and disables:

• I/O during runtime operations

• Buffer washing

• Buffer replacement and washing

Once created, divide the in-memory storage cache into one or more
pieces, each of which holds a fragment of the database or log. See “Cache
and buffer support” on page 4.

Topic Page
Specifying named caches for in-memory databases 15

Verifying changes to the configuration file 16

Creating in-memory devices 17

Creating in-memory databases 18

Creating disk-resident databases with relaxed durability 19

Administering in-memory databases 19

Verifying changes to the configuration file

16 Adaptive Server Enterprise

Use sp_cacheconfig with the inmemory_storage parameter to create the in-
memory storage cache. See the Reference Manual: Procedures.

Note Before you create the in-memory storage cache, verify that the value for
max memory is sufficient for the specified cache size. If max memory is
insufficient, Adaptive Server issues an error message.

For example, to create an in-memory storage cache named imdb_cache, enter:

sp_cacheconfig imdb_cache, '2G', inmemory_storage

Note For regular named cache, if the available memory size is less than the
requested memory size for the cache, Adaptive Server creates the cache with
the reduced memory size. That means the cache is created sucessfully, but with
a smaller size. However, if there is insufficient space to create the cache for an
in-memory database, the command fails.

Verifying changes to the configuration file
Verify that the configuration file ($SYBASE/server_name.cfg) correctly
specifies in-memory storage cache information. Each in-memory storage
cache includes a heading in the configuration file that is labelled “Named
Cache: cache_name.” The Named Cache entries include:

• cache size – size of the cache must be large enough to hold the entire
in-memory database.

• cache status – set to “in-memory storage cache.”

• cache replacement policy – set to “DEFAULT” or “none.”

• local cache partition number – number of the local cache
partitions or “DEFAULT.”

An entry for a cache named imdb_cache looks similar to:

[Named Cache:imdb_cache]
cache size = 2G
cache status = in-memory storage cache
cache replacement policy = none
local cache partition number = 8

CHAPTER 2 Managing In-Memory and Relaxed-Durability Databases

In-Memory Database Users Guide 17

Changing static configuration parameters for in-memory databases
Adaptive Server makes changes to static configuration parameters when you
restart it. Because in-memory databases are re-created when you restart the
server (and any changes to them are lost), perform either of the following to
make sure the data in the in-memory database is not lost when you restart
Adaptive Server:

• Make all static configuration changes before the in-memory databases are
created, or,

• Dump the in-memory database to an archive, make the static configuration
change, restart the server, and load the in-memory database from the
archive.

Creating in-memory devices
Use disk init to divide an in-memory storage cache into smaller pieces called in-
memory devices, which are used to create in-memory databases. Sybase
suggests that you use the same naming convention for in-memory devices that
you use for disk-resident devices. Bind user- or system-defined segments with
in-memory device logical names to control the space usage for objects bound
to these segments.

Note You cannot use regular named caches to create an in-memory device.
That is, you must use the type=inmemory parameter for disk init to create in-
memory devices.

The syntax to create an in-memory device is:

disk init name = device_name
physname = {“physical_name” | “cache_name”}

. . .
[, type = “inmemory”]

where device_name is the logical name of the in-memory device, cache_name
is the name of the in-memory storage cache created with sp_cacheconfig, and
inmemory indicates the device is used for an in-memory database.

For example:

disk init name = imdb_cache_dev,
physname = "imdb_cache" ,

Creating in-memory databases

18 Adaptive Server Enterprise

size = "50M",
type = "inmemory"

Creating in-memory databases
Use create inmemory database to create an in-memory database, using model or
another user database as its template.

You can also create temporary databases as in-memory databases that reside
entirely in in-memory storage. However, you cannot specify a template
database for an in-memory temporary database.

When you use a user-database template to create an in-memory database, all
users, permissions, objects, and procedures are copied from the template
database to the in-memory database.

When you create an in-memory temporary database:

• The guest user is added to the temporary database.

• create table privileges are granted to public.

You cannot create system databases (for example, sybsecurity) as in-memory
databases, because these databases must be updated in the event of an Adaptive
Server failure.

When you create in-memory databases, you can specify that insert, update,
delete and some bulk-copy-in operations are minimally or fully logged on a
per-database, per-object, or a session-specific basis. See Chapter 3,
“Minimally Logged DML.”

This example creates an in-memory database on a 2GB in-memory device. with
override allows you to create the data and log segments on the same in-memory
device (the only durability level supported for in-memory databases is
no_recovery: attempts to use another durability level result in an error):

create inmemory database imdb1
on imdb_data_dev1 = '1.0g'
log on imdb_data_dev1 = '0.5g'
with override, durability = no_recovery

CHAPTER 2 Managing In-Memory and Relaxed-Durability Databases

In-Memory Database Users Guide 19

Creating disk-resident databases with relaxed
durability

Set the durability level for relaxed-durability databases to no_recovery or
at_shutdown. See “Durability levels” on page 6.

You can create a relaxed-durability database on existing disks. A relaxed-
durability database uses disk storage, so you must use disk init to create the
device on which it resides.

This example creates the pubs6 database with a durability level of at_shutdown:

create database pubs6
on pubs6_dev
with override, durability=at_shutdown

Administering in-memory databases
Once you create in-memory databases, administer them by resizing and
deleting the in-memory storage caches, increasing their size, and performing
dumps and loads.

Resizing in-memory storage caches
Use sp_cacheconfig to increase the size of an in-memory storage cache at
runtime. For example, to increase the size of imdb_cache to 3GB, enter:

sp_cacheconfig imdb_cache, '3G', inmemory_storage

You can reduce the size of an in-memory storage cache using the same
procedure. You can reduce the size of the in-memory storage cache only by the
amount of space on the cache that is currently unused by an in-memory
database—in other words, the in-memory storage cache cannot be smaller than
the in-memory database.

A reduced cache size is created when you restart the server.

Administering in-memory databases

20 Adaptive Server Enterprise

Deleting in-memory storage caches
You must drop all devices and in-memory databases before you delete the in-
memory storage cache. Delete the in-memory storage cache by setting its size
to zero:

sp_cacheconfig imdb_cache, '0g'

Increasing the size of in-memory databases
Use alter database to increase the size of an in-memory database. The devices
on which you increase the size must be part of the same cache that is currently
hosting the devices on which the database resides (that is, you cannot create an
additional in-memory storage cache and increase the size of an existing in-
memory database on this storage cache). You cannot run disk resize to increase
the size of in-memory database devices (as you would for a standard database
device).

To increase the size of an in-memory database:

1 Use sp_cacheconfig to enlarge the in-memory storage cache.

2 Use disk init to create a second in-memory device on the enlarged in-
memory storage cache.

3 Run alter database to extend the in-memory database onto the new
database device you created in step 2.

Use the same steps that you use to increase the size of a standard disk-based
database to increase the size of a relaxed-durability database.

Dumping and loading in-memory databases
Use dump database and load database to dump to or from an archive device for
in-memory and relaxed-durability databases. Dumping and loading in-memory
or relaxed-durability databases requires no special parameters for the dump or
load commands.

load database into an in-memory database loads the data directly into the in-
memory storage cache.

You can:

CHAPTER 2 Managing In-Memory and Relaxed-Durability Databases

In-Memory Database Users Guide 21

• Dump and load databases across durability levels. For example, you can
dump a database with a durability level of full to an in-memory database,
which always has a durability level of no_recovery

• Perform dumps and loads across platforms.

You cannot:

• Perform dump transaction from in-memory or relaxed-durability databases
because load transaction cannot perform required tasks using a transaction
log that may contain log records that are not ordered.

• Load a dump from a database with durability set to no_recovery or
at_shutdown into a version of Adaptive Server that does not support in-
memory or relaxed-durability databases. However, you can load a
database dump from an earlier version of Adaptive Server in to an in-
memory or relaxed-durability database.

Note You must use the version of Backup Server that ships with the version of
Adaptive Server you use to dump and load in-memory or relaxed-durability
databases.

Configuring number of backup connections

Dumping and loading an in-memory database requires the Backup Server to
connect to Adaptive Server. The load command uses the same number of
connections as there are stripes. The dump command uses same number of
connections as there are stripes, plus an additional connection. Use number of
backup connections to configure the maximum number of user connections the
Backup Server can use.

See Chapter 5, “Setting Configuration Parameters,” in the System
Administration Guide Volume 1.

Backup Server requires the following to connect to Adaptive Server:

• The Backup Server interfaces file must have an entry for Adaptive Sever.

• The user name and password used by Backup Server to connect to
Adaptive Server is the same as the user executing the dump and load
commands. If the connection is established using secure external
authentication (such as Kerberos), Backup Server cannot retrieve the
password token from Adaptive Server. Use sp_remotelogin to define a
trusted remote login for SYB_BACKUP, or Backup Server receives an
authentication failure.

Administering in-memory databases

22 Adaptive Server Enterprise

Dropping in-memory databases
Use drop database to remove an in-memory database. This example drops the
pubs6 database:

drop database pubs6

Dropping an in-memory database removes the database from the system tables,
and relinquishes the in-memory storage cache, although the buffers and data in
these devices remain. Dropping an in-memory database does not affect the in-
memory storage cache on which it was created, which can be used for other in-
memory databases.

Dropping in-memory devices
Use sp_dropdevice to remove in-memory devices. sp_dropdevice removes an
in-memory device only if it is currently unused by any database. You must first
drop the database, then drop the in-memory device. Dropping an in-memory
device deletes its entry from sysdevices and returns the memory to the cache
on which it was created, where you can use it for any other purpose, including
creating new in-memory devices. This example drops the device named
pubs6_device:

sp_dropdevice 'pubs6_device'

In-Memory Database Users Guide 23

C H A P T E R 3 Minimally Logged DML

To optimize the log records that are flushed to the transaction log on disk,
Adaptive Server can perform minimal to no logging when executing some
data manipulation language (DML) commands—insert, update, delete,
and slow bcp—on all types of low-durability databases, such as
in-memory databases and low-durability databases that use the
at_shutdown and no_recovery options. You can perform minimal logging
for DMLs on a per-database, per-table, and session-specific basis.

Types of DML logging settings
The hierarchy of control for DML logging settings are:

• Database-level logging – by default, logging for DML is enabled at
the database level for all tables. DML logging settings affect only user
and temporary tables.

• Table-level logging – overrides the level of logging set at the
database level, depending on how the table was created or altered.

• Session-level logging – overrides the logging level set at the table and
database levels.

Topic Page
Types of DML logging settings 23

Transactional semantics 28

Logging concurrent transactions 29

Minimal logging with ddl in tran set to true 30

Effect of referential integrity constraints 31

Multistatement transactions in minimally logged mode 31

Stored procedures and minimally logged DML 33

Including set dml_logging in a trigger 36

Using deferred updates 36

Obtaining diagnostic information 38

Types of DML logging settings

24 Adaptive Server Enterprise

Database-level logging
Database-level support for enabling and disabling logging is provided
primarily for temporary databases, where entire applications that do not rely on
logging can run more efficiently, without changing the code for applications or
procedures that create temporary tables

You cannot change the logging mode of system databases, including the model
database. You can change the DML logging mode of the system tempdb—and
any user temporary databases—to minimal logging. Before doing so, Sybase
recommends that learn how changing to minimal logging affects rollback
semantics on all applications that use temporary tables. See “Transactional
semantics” on page 28.

Minimally logged DML is allowed only in a database that has a durability level
set to no_recovery or at_shutdown. You must set the database’s select into option
to on for minimal logging to take effect.

You can alter the default logging mode for a database only from the master
database. In addition, the database you are altering must:

• Be in single-user mode for user databases

• Have the dbo-use only set to true (on) for temporary databases, so that only
the database owner can use the databases

If the database is not already in the required mode, the server tries to put the
database in that mode. If the attempt is unsuccessful, the server raises an error,
prompting the user to explicitly put the database in its correct mode.

Commands The syntax to change the DML logging mode at the database level is:

create [temporary] database database_name
[on {default | database_device [= size]

[, {database_device [= size]...]
[log on {database_device [= size]

[, {database_device [= size]]...]
[with {override | default_location = "pathname"
| [[,]durability = { no_recovery | at_shutdown | full}]
| [[,]dml_logging = {full | minimal}]
}...

]
[for {load | proxy_update}]

To change the database-level setting of DML logging in an existing database,
use:

alter database dbname
set dml_logging = {full | minimal}

See the Reference Manual: Commands.

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 25

Table-level logging
Setting the DML logging option at the table level overrides the database-level
setting, depending on how the table was created or altered. The default mode
is to use the same setting as the database.

If minimal logging is not enabled at the database level:

• Minimal DML logging is done for tables that have dml_logging explicitly
set to minimal via create table or alter table.

• DML is fully logged for all other tables.

If minimal logging is enabled at the database level:

• Full DML logging is done for tables that have dml_logging explicitly set to
full.

• Minimal DML logging is done for all other tables.

The default logging setting of a table allows it to inherit—when the DML is
executed—the then-current database-level setting for logging. The database
administrator may want to periodically turn logging off, then back on again, at
the database level. Then, only those tables with specific needs for full or
minimal DML logging need to be controlled through explicit table-level
settings.

You can execute minimally logged DML commands on a table only if the
database has the select into database option turned on; otherwise, all DML
commands are fully logged.

For any DML statement on a table where the corresponding trigger is enabled
(for example, if an insert trigger is enabled when you execute an insert
statement) Adaptive Server performs full logging. This avoids situations where
a trigger implements business rules and security mechanisms that need the log
records while executing the trigger. To perform minimal logging, specific
triggers must be disabled by the table owner before executing the DML
statement.

If a DML statement is executed on an view that can be updated, and it
eventually resolves to a DML statement on a base table that is eligible for
minimally logged DML operations, DML statements executed on the view
result in minimally logged DML on the base table. To control the logging mode
on base tables that are updated through views, use alter table or set dml_logging
to set the logging mode on the underlying table.

You can use alter table to change only the logging mode of user tables, and not
of views or other objects.

Types of DML logging settings

26 Adaptive Server Enterprise

Commands To create a table with full or minimal DML logging, use:

create table tablename (
<rest of the column list specifications>

)
lock lock_scheme
with { max_rows_per_page = num_rows

, exp_row_size = num_bytes
, reservepagegap = num_pages
, identity_gap = value
, dml_logging = {full | minimal}
}

on segment_name

To create a table using select into so that the target table has DML logging
enabled or disabled, use

select <column list>
into table_name

[<external table specifications>]
on segment_name
[partition_clause]
lock lock_scheme
with { max_rows_per_page = num_rows

, exp_row_size = num_bytes
, reservepagegap = num_pages
, identity_gap = value

, dml_logging = {full | minimal}
}

[from_clause]
[where_clause]
...

Note In version 15.5, you cannot unconditionally turn on logging on a table
when the table owner created the table explicitly turning off logging. This
prevents large DMLs from generating huge amounts of logging on a table that
was created to use minimal logging.

Session-level logging
Session-specific setting of the logging option overrides the table-level and
database-level setting of the logging option.

To enable or disable logging for DML in the current session, even when
database-level, or table-specific DML logging is full, use:

set dml_logging = { full | minimal | default}

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 27

See the Reference Manual: Commands.

Setting the DML logging to minimal affects only the logging mode on objects
owned by the current session user. If the session user has the sa_role, the
logging mode of all user objects is minimal.

Once you have set session-specific DML logging to minimal, set dml_logging
default returns the logging mode currently in effect for the affected tables to the
table’s default logging mode, based on the table- and database-level settings.

You can use the set dml_logging command to perform minimal logging for a
table, but you cannot use it to perform fully logged DML if the database owner
or table owner has already set up the table to run with minimal logging.

The session-specific setting for the logging mode eventually determines
whether a particular object is logged, given the various rules described earlier
and in the following sections, regarding choice of the logging mode for a
specific table.

• Upon a successful set command invocation, all tables in the current
session become candidates for consideration on choice of the logging
mode, subject to permissions and privileges.

• You can use the set command to change the logging mode only for user
tables, and not for other objects like system tables, views and so on.

• Minimal DML logging requires that the select into database option is
turned on, which requires a database owner or sa_role privilege.

Additional minimal logging rules
In addition to the basic rules related to databases, tables, and sessions, these
rules also affect minimal logging:

• You can use minimally logged DMLs only in in-memory or relaxed-
durability databases. You cannot use them in databases that have full
durability.

• The logging mode for a table in a multistatement transaction remains
unchanged throughout the entire transaction.

• All DML commands are fully logged on tables that participate in
declarative or logical referential integrity constraints.

Transactional semantics

28 Adaptive Server Enterprise

• You can export the set dml_login option from a login trigger to a client
session. However, unlike most set options, you cannot export set
dml_logging from stored procedures or issue execute immediate to their
callers, even when you enable set export_options.

• All DML commands after a savepoint is set executes with full logging even
though the table would have otherwise qualified for minimal logging.

• Full logging is performed if any active triggers exist on the table. For DML
to run in minimal-logging mode, disable any triggers before executing the
DML statement.

• An optimizer selecting deferred-mode update processing overrides the
minimal DML logging setting, and the DML is executed with full logging.

• To support log-based replication, DML on replicated tables always
performs full logging.

Transactional semantics
When operating in minimally logged mode, the atomicity of transactions is not
guaranteed after a runtime rollback.

Because logging is incomplete at runtime, you cannot completely roll back the
changes made by a failed command. All changes are applied to the database in
commit mode. For example, you cannot roll back a transaction that deleted a
number of rows; the changes to the deleted rows are already committed. If a
transaction deletes rows from a page that is then deallocated, the page remains
deallocated.

However, not logging changes does not interfere with locking the rows or
pages affected. Even if a DML command runs in minimally logged mode with
no rollback available, the locks on the affected rows and pages are acquired and
held until the end of the transaction, and are released only upon transaction
completion, be it rollback or commit.

Issuing a rollback command when the transaction was executed with minimal
logging on one or more tables raises a warning that Adaptive Server is
committing the transaction at the point where it encountered the rollback.

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 29

Logging concurrent transactions
The set dml_logging command affects the logging mode only in the current
session, and only for DML statements on tables owned by the session’s user.
This allows DML commands to execute concurrently from multiple
transactions, where full logging is employed in one session executing
concurrently with minimal logging from another session. Any rollback in the
session executing with full logging is undone, whereas the changes are not
undone in a rollback from the other session.

A common example of such a usage is the execution of a transactional system,
running small transactions concurrently with large batch updates or deletes in
minimally logged mode. Any errors in either session do not affect the
transactional consistency of the other session. In the example below, the OLTP
transaction runs with full logging, enabling complete recoverability, whereas
the batch operation runs from another session with minimal logging.

Figure 3-1: Concurrent execution of transactions with different logging
modes

begin tran oltp_tran
go

insert trade values ...
go

insert new_order values
...
go

update stock where ...
go

insert settlement values
...
go

rollback tran oltp_tran
go

set DML_LOGGING minimal
go

begin tran
batch_operation
go

delete trades
where trade_date > 100
go

update settlement
set margin = ..., profit =
..., ...
where trade_status =
'closed'
go

commit tran
batch_operation
go

Time

Minimal logging with ddl in tran set to true

30 Adaptive Server Enterprise

Minimal logging with ddl in tran set to true
If the ddl in tran database option is set to true, you cannot execute a DML
statement in minimally logged mode on a table that has already had any DDL
operations executed against it in the same transaction. The DML commands in
the transaction execute with full logging.

In the following transaction, the sp_dboption database option ddl in tran is set to
true, and table t1 is configured with minimal DML logging. However, at run-
time Adaptive Server executes the DML commands following the drop index
command with full logging because it executed the drop index command with
full logging:

sp_dboption pubs1, 'ddl in tran', on
go

begin tran
go

update t1 set ...
go

drop index t1.ind1
go

insert t1 values ...
go

insert t1 values ...
go

delete t1 where ...
go

update t1 where ...
go

rollback tran
go

The create index and drop index commands affect how minimal logging is
selected when they are executed in the same transaction (that is, either of these
commands would have caused Adaptive Server to perform full instead of
minimal logging in the script above).

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 31

Effect of referential integrity constraints
When tables are involved in referential integrity constraints, the rules for
selecting minimal logging are:

• All DML statements on a table with referential integrity constraints are
always fully logged, overriding any logging settings arrived at for the table
based on the database-level or session-specific settings.

• You cannot use alter table to change the logging mode of a table to minimal
if the table includes referential integrity constraints.

• You cannot create any referential integrity constraints between tables that
have minimal logging defined for them. For example, creating a foreign
referential integrity constraint from a table to its primary table when
minimal logging has been explicitly set on the primary table raises an
error.

Multistatement transactions in minimally logged mode
Follow these rules to use minimally logged mode DML in an explicit begin
transaction, followed by multiple batches of DML statements.

• You may use DML statements that operate on different tables that are
either in fully logged or minimally logged mode in a multi-statement
transaction. You can use the set dml_logging command to change the
logging mode partway through a transaction, but its effect on subsequent
DML statements varies, depending on what other DML operations have
already been executed in the same transaction. The following SQL
transaction is allowed, assuming that the logging mode is full when you
start the transaction:

begin tran
go
delete t1 where ...
go
set dml_logging minimal
go
insert t1 values ...
go
update t2 where ...
go
commit tran

Multistatement transactions in minimally logged mode

32 Adaptive Server Enterprise

go

delete t1 is performed with full logging, but update t2 is performed in
minimally logged mode. In the case of a rollback, the update is not undone,
but the delete is rolled back.

• Once you execute a command with full or minimal logging on a table in a
multi-statement transaction, subsequent commands on the same table must
use the same logging (full or minimal), regardless of the session’s
dml_logging setting. In example above, the insert t1 is executed with full
logging because the earlier delete on t1 which was executed with full
logging.

• Conversely, resetting the session’s logging mode to the default mode may
not resume logging for a DML statement if the table was previously
operated on in a minimally logged mode in the same transaction.

• Mixing the logging mode for different tables within the same transaction
has different results for the tables involved if the transaction is rolled back.
Changes to tables with full logging are rolled back, whereas changes to
tables with minimal logging remain committed.

• The rules for logging mode choice and use of set dml_logging command
inside stored procedures are identical to those for a multi-statement batch.
If:

• The procedure is run outside an explicit transaction, then each
statement is executed as an individual transaction.

• The procedure is run inside a transaction, then the same rules
described above apply.

• There is no restriction on changing the logging mode inside a transaction
and then executing select from a table that was previously operated on in
the same transaction in a different logging mode. The delete t1 is
performed in logged mode, while the update t2 is performed in minimally
logged mode. Referencing the same table t1, for read, which was once
operated on in fully logged mode when the logging mode is now minimal
is not an error.

begin tran
go

delete t1 where ...
go

set dml_logging minimal
go

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 33

update t2
where t2.c2 = (select c1 from t1 where ...)
go

commit tran
go

Stored procedures and minimally logged DML
The DML logging setting in a session is inherited from called system
procedures and the behavior setting for any set dml_logging command executed
in a procedure is inherited by subprocedures. After exiting from the
procedure’s scope, regardless of whether set export_options is on, the
dml_logging setting in the parent session or parent procedure is restored.

Examples These examples show how these rules are applied to affect the logging mode
of tables inside a procedure.

Example 1 In this example, the user executing the procedure is also its owner
and the owner of all tables affected by this procedure:

create procedure p1 as
begin

delete t1 where...

set dml_logging minimal

update t2 where...
end
go

set dml_logging default
go

exec p1
go
/*
** Exiting from the procedure restores the
** session's setting to what it was before
** calling the procedure, in this case, the
** logging mode will be back to DEFAULT
** (i.e. FULL).
*/

Stored procedures and minimally logged DML

34 Adaptive Server Enterprise

-- This will operate in logged mode now.
delete t2
go

1 When execution starts in the procedure p1, logging mode is full.

2 delete t1 is performed in fully logged mode, and then the procedure’s
session-level logging mode is changed to minimal.

3 update t2 is performed in minimally logged mode.

4 Upon exit from p1, when control returns to the outer SQL batch, logging
mode setting is back to full. The next delete t2 is performed in fully-logged
mode.

Example 2 This example executes procedure p1 with the session-level
logging mode set to minimal. delete t1 operates in minimally logged mode, and
so does update t2. Once p1 is done, the next delete t2 also operates in minimally
logged mode, as the logging mode has been restored to what it was before p1
was called.

set dml_logging minimal
go

exec p1
go

-- This will operate in minimally logged mode.
delete t2
go

As the logging mode for DML statements inside a procedure is affected by the
session-level setting of the calling session or procedure, Sybase recommends
that you explicitly select the desired logging mode at the start of the procedure
body. You may optionally set it back to default when the procedure finishes.

create procedure p1 as
begin

set dml_logging minimal

delete t1 where ...
update t2 where ...

-- Optionally, reset upon exit
set dml_logging default

end
go

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 35

However, if the DML statements inside a procedure are executed mostly in a
single-logging mode (for example, full) but must occasionally run in a different
(minimally logged) mode, Sybase recommends that you control the logging
DML statements with the session-level setting from the calling procedure or
isql session instead of including the logging mode inside the body of the
procedure.

Example 3 The DML logging setting affects only those tables owned by the
session’s user. This affects procedures that must perform minimally logged
DML on certain tables, but which are executed using the exec proc privilege by
a user who does not own those tables.

In this example, Joe executes the procedure mary.delete_proc, which performs
a delete on a table owned by Mary. Joe uses the set command to request
minimal logging, but doing so affects the logging mode for tables owned by
Mary in the procedure:

isql –Sservername –Umary –Pmaryspwd

create procedure mary.delete_proc as
begin

delete mary.large_table where ...
end
go

grant exec on mary.delete_proc to joe
go

isql –Sservername –Ujoe –Pjoespwd

-- User 'joe' executes the following SQL:
--
set dml_logging MINIMAL
go

exec mary.delete_proc
go

Example 4 Adaptive Server does not permit the procedure owner, Mary, to
allow minimal logging for certain statements when the procedure is executed
by a user who does not own the table. The set dml_logging command inside a
procedure applies only to those tables owned by the session’s owner.

In this example, minimal logging does not apply to delete
mary.large_table, but it dos apply to the update joe.very_large_table
when user Joe executes the procedure with default logging settings.

Including set dml_logging in a trigger

36 Adaptive Server Enterprise

isql –Sservername –Umary –Pmaryspwd

create procedure mary.delete_proc2 as
begin

set dml_logging MINIMAL

delete mary.large_table where ...

update joe.very_large_table where ...
end
go

grant exec on mary.delete_proc2 to joe
go

isql –Sservername –Ujoe –Pjoespwd

exec mary.delete_proc2
go

If a procedure performs DML statements on tables owned by multiple owners,
then, depending on which user executes the procedure, the set of tables against
which minimally logged DML is executed changes. Only the table owner or
user with sa_role can execute the procedure that performs the minimally
logged DML on specific tables.

Recompiling a running procedure, or the cached plan of a previously executed
procedure, does not affect the logging mode chosen at runtime for individual
DML commands that appear in the procedure body. Any set commands that
might change the logging mode for a table are taken into consideration at the
start of execution of the DML statement.

Including set dml_logging in a trigger
DML statements are fully logged if there is an active trigger for that DML
operation on the table. If a trigger is created and logging is disabled on the
table, a warning is raised, indicating that the DML statements will operate in
fully logged mode. However, the trigger is successfully created.

CHAPTER 3 Minimally Logged DML

In-Memory Database Users Guide 37

The logging mode of DML statements in triggers varies, depending on the user
who fired the trigger. Tables owned by the same user who fired the trigger can
be operated on in minimally logged mode. DML statements executed on tables
that are not owned by the user who fired the trigger are executed in fully logged
mode, unless these tables are explicitly set up for minimal logging.

Consider delete_trig_m1, a delete trigger on the object m1 owned by user Mary.
This trigger performs DML statements on other tables, such as Joe.j2 and
Paul.p3, in minimally logged mode. delete privilege has been granted on
Mary.m1 to user Sally.

Create trigger Mary.delete_trig_m1 FOR DELETE
On Mary.m1
as
Begin

Delete Mary.min_logged_table_t3
WHERE ...

SET DML_LOGGING MINIMAL

DELETE Paul.p3 WHERE ...
End

When user Sally executes the delete statement on Mary.m1, the trigger,
Mary.delete_trig_m1 is fired and privilege checks are performed on the
appropriate tables on behalf of Sally. Because Mary owns the trigger, Adaptive
Server peforms no permission checks for the delete
Mary.min_logged_table_t3 statement, where the DML statement is run in
minimally logged mode. (The table has been defined for minimal logging
through some other means.) Because Sally does not have the privilege to turn
off dml_logging for Paul.p3, the set command does not take effect silently. The
next statement, delete Paul.p3 where..., runs in fully logged mode. When
user Mary executes the trigger, the DML logging behavior is the same (fully
logged).

However, if user Paul executes the outer delete on Mary.m1, causing the trigger
to fire, then both the statements in the body of the trigger execute in minimally
logged mode.

Once the trigger fires, the outer DML statement must have been fully logged;
attempts to perform minimally logged DML on the same outer table in the body
of the trigger are ignored, and these DML statements are fully logged.

Using deferred updates

38 Adaptive Server Enterprise

Logging mode cannot be disabled on views, so instead of triggers, which are
currenly only supported on views, are unaffected by the logging mode of the
base tables referenced by the view, or by the session-level setting of the logging
mode when the DML statements on the view with the instead of trigger
executes. However, the rules for chosing logged or minimally logged modes on
multiple tables, using of the set command inside the trigger body, and
transactional semantics all apply for the DML statements inside the instead of
trigger.

Using deferred updates
If a query optimizer picks a deferred-mode update for a table that qualifies for
minimally logged operations, the minimally logged settings are overridden for
that statement and the statement works in deferred mode, but with full logging.
Applications that generate DML statements in deferred mode with large
transaction logging do not benefit from minimal logging. Once you execute a
deferred-mode operation for multistatement transactions on a table, all
subsequent DML statements on this table are fully logged.

Obtaining diagnostic information
Many rules interact to determine the logging mode of a table. Application
developers may need to know whether Adaptive Server is currently generating
minimally logged DML commands for a particular table, and the type of
schema, constraints, session settings, and so on.

object_attr reports the table’s current logging mode, depending on the session-
table- and database-level settings. See the Reference Manual: Building Blocks.

Use set print_minlogged_mode_override to determine whether Adaptive Server
has overwritten your logging-mode choices (see the Reference Manual:
Commands). print_minlogged_mode_override generates trace information to the
session output, reporting on the statement for which the minimally logged
mode of a table has been overwritten by other rules, such as presence of
referential integrity constraints, deferred mode choice, name of the table
affected, a description of the affecting rules, and so on. Enable this switch
server-wide to capture diagnostic output from the entire application. Redirect
this output to the error log using the print_output_to_log switch.

In-Memory Database Users Guide 39

C H A P T E R 4 Performance and Tuning for In-
Memory Databases

This chapter discusses performance and tuning characteristics of in-
memory and relaxed-durability databases, including caches, sp_sysmon
results, monitor counters, and Backup Server.

Configuring in-memory storage cache
Adaptive Server supports a wide variety of database and cache
configurations for all database types using named caches and database
bindings. Consider the following when sizing or binding a cache:

• Bind large, disk-resident databases to smaller named caches. This is
a standard Adaptive Server configuration, with only a small portion
of the database’s contents in cache. Depending on the workload,
much of the database page space may get recycled due to normal
cache replacement policies.

• Make the cache size similar to the database size, which may reduce
the recycling of cached pages. However, depending on the workload,
writes to disk may be high.

Topic Page
Configuring in-memory storage cache 39

sp_sysmon output for in-memory databases 42

Monitoring the default data cache performance 43

Organizing physical data for in-memory devices 45

Performance optimization for low-durability databases 45

Minimally logged DML 49

Dumping and loading in-memory databases 52

Tuning for spinlock contention and network connections 53

Configuring in-memory storage cache

40 Adaptive Server Enterprise

• Bind entire temporary databases to a named cache that is large enough to
host the entire temporary database. Default optimizations the server
applies to temporary databases (and using strategies such as delayed
commit) allow you to significantly improve the performance of fully
cached temporary databases.

Cache layout
Relaxed-durability databases, and objects in them, that are bound to any named
cache use the same layout as regular caches.

The access pattern of the object bound to the cache dictates the layout for a
regular cache. Adaptive Server selects the least recently used (LRU) buffer and
page pair for replacement with strict LRU cache replacement policy. Adaptive
Server loads pages for objects bound to the named cache that reside on disk
(identified by the database, table, and index ID) into the cache when they are
requested. These objects remain in the cache until Adaptive Server selects
them for replacement. Adaptive Server determines the location in the cache
where this page is read, according to the availability of free buffers or
according to which buffers are replaceable, depending on the LRU or most-
recently used (MRU) strategy. The buffer Adaptive Server uses to hold a page
in memory might vary, and the location of the buffer in the buffer cache may
also vary in this cache configuration

Databases that use in-memory storage caches are bound to the cache, and all
the objects and their indexes in this database use the same cache. The entire
database is hosted in the cache. All the pages in the database, both allocated and
unallocated, are hashed, so page searches in the cache should always find the
required page. Pages are laid out sequentially (described in Figure 4-1), and
because all the pages reside in the cache, the position of the buffer and page
pair does not change.

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 41

Figure 4-1: Pages arranged sequentially in an in-memory database

In-memory storage cache supports only the default pool (which uses the server
page size for any logical read or write on that page). In-memory storage caches
do not need large buffer pools, which are used to perform large I/O from disk.
Asynchronous prefetch, as a strategy to improve runtime I/O performance and
to reduce cache misses while searching for a page, is not supported for in-
memory storage caches.

Because they do not store any data in disk, in-memory storage caches:

• Do not use any replacement policy (the replacement policy is defined as
none for each cache). The pages in the cache never change positions.

• Do not support I/Os, so the wash region and large pools are not supported.

• Need not perform buffer replacement. Occasionally, for private buffers,
the default data cache is used.

• Need not dynamically hash buffers. All pages are loaded and hashed in the
hash table when you create the database. In memory databases may need
to hash buffers at runtime if you increase the size of the database with alter
database.

• Need not perform asynchronous prefetch, because all pages reside in the
cache memory.

Buffers pointing to pages in the array

Pages laid out sequentially (p1, p2, p3 . . .)

sp_sysmon output for in-memory databases

42 Adaptive Server Enterprise

Cache partitions are supported for in-memory storage caches, and reduce the
contention on a single spinlock by distributing subsets of pages in an in-
memory database to a partition, where each subset is controlled by a separate
spinlock.

sp_sysmon output for in-memory databases
Run sp_sysmon for in-memory databases to monitor their performance.

Cache Hits should always have a value of 100% for an in-memory database
cache, and Cache Misses should always have a value of 0:

Cache: imdb
per sec per xact count % of total

----------------------- ------------ ------------ ---------- ----------
Spinlock Contention n/a n/a n/a 50.9 %

Utilization n/a n/a n/a 99.9 %

Cache Searches
Cache Hits 16954.4 5735.8 1152897 100.0 %
Found in Wash 0.0 0.0 0 0.0 %
Cache Misses 0.0 0.0 0 0.0 %
----------------------- ------------ ------------ ---------- ----------
Total Cache Searches 16954.4 5735.8 1152897

In-memory caches should not have a wash region, as reported below:

Buffer Wash Behavior
Statistics Not Available - No Buffers Entered Wash Section Yet

Cache Strategy
Cached (LRU) Buffers 21225.3 7180.7 1443321 100.0 %
Discarded (MRU) Buffers 0.0 0.0 0 0.0 %

See Performance and Monitoring Series: Monitoring Adaptive Server with
sp_sysmon.

The following sp_sysmon sections do not apply to in-memory storage caches
because the entire database is bound to the cache and all database pages reside
in the cache:

• Utilization

• Cache Hits

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 43

• Found in Wash

• Cache Misses

• Large I/O Usage

• Pool Turnover

These sections do not apply to in-memory databases because they do not
perform buffer grabs:

• LRU Buffer Grab

• Grabbed Dirty

• Total Cache Turnover

These sections do not apply to in-memory databases because they do not define
a wash region. Disk reads and writes do not take place in a steady state:

• Buffer Wash Behavior

• Cache Strategy

These sections do not apply to in-memory databases because they do not use
large pools:

• Large I/Os Performed

• Large I/Os Denied

• Total Large I/O Requests

• Large I/O Detail

Monitoring the default data cache performance
Because all pages are hashed in an in-memory storage cache, tasks requiring a
small number of private buffers for storing intermediate pages, for example
during sorting, use the default data cache. Use the buf_imdb_privatebuffer_grab
monitor counter to determine if Adaptive Server is temporarily using the
default data cache for sort buffers:

buf_imdb_privatebuffer_grab buffer_0 244 510525

This script collects monitor counters from all monitoring groups. It first clears
all the monitor counters, samples the monitor counters for one minute, and
reports values for all monitor counters updates for that monitoring interval.

Monitoring the default data cache performance

44 Adaptive Server Enterprise

To determine the current value for buf_imdb_privatebuffer_grab, run:

dbcc monitor ('clear','all','on')
go
dbcc monitor ('sample','all','on')
go
waitfor delay "00:01:00"
go
dbcc monitor ('sample','all','off')
go
dbcc monitor ('select','all','on')
go
select * from master.dbo.sysmonitors
where field_name = 'buf_imdb_privatebuffer_grab'
go

The value for buf_imdb_privatebuffer_grab indicates the default data cache’s
buffer usage from queries that require temporary buffers for intermediate
sorting that are run against tables in an in-memory database. Evaluate the value
for buf_imdb_privatebuffer_grab according to the size of the default data cache:

• If the number of buffers grabbed is very low compared to the size of the
default data cache, queries run against tables in in-memory databases are
not heavily using temporary buffers.

• If the number of buffers grabbed is a significant portion of the number of
buffers in the default data cache, it indicates a heavy load on the default
data cache for buffers used for queries running against in-memory
databases. This generally occurs only when the default data cache is very
small, for example, if it is using the default size of 8MB.

Using a small default data cache may affect the performance of other
applications that rely on the default data cache. Increase the size of the
default data cache to accommodate both requests for temporary buffer
usage that come from in-memory databases, and to accommodate other
concurrent applications using the same cache.

See Chapter 2, “Monitoring Performance with sp_sysmon,” in Performance
and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 45

Organizing physical data for in-memory devices
Because in-memory databases do not use I/O, you need not consider device I/O
characteristics (for example, the speed of the I/O device) when organizing
physical data placement. You need not consider issues like locating frequently
accessed index pages on fast devices, or pages for other infrequently utilized
objects (for example, text and image pages) on slower devices. However,
because in-memory databases remove other bottlenecks caused by disk I/O,
other bottlenecks such as spinlock and latch contention may be high.

Consider the following when you organize physical data for in-memory
devices:

• To reduce latch contention, use separate data and log devices (that is, do
not configure in-memory databases for mixed log and data).

• To control log space consumption, use separate log devices.

• To restrict object space usage, organize devices in segments.

• To reduce contention for page allocation, use segments bound to different
devices.

Performance optimization for low-durability databases
Low-durability databases have their durability set to no_recovery and
at_shutdown. Because low-durability databases are not recovered, they provide
these performance benefits:

• Low-durability databases do not flush the user log cache (ULC) due to
unpinning, therefore increasing transaction throughput in high-transaction
systems.

ULC unpinning occurs when two transactions attempt to update the same
datarows-locked data page, causing the second transaction to flush the log
records from the first transaction’s ULC to syslogs, before the second
transaction uses the data page. Increasing ULC flushes to syslogs increases
log contention, adversely affecting transaction throughput in high-
transaction systems.

Performance optimization for low-durability databases

46 Adaptive Server Enterprise

The Transaction Management section in sp_sysmon output shows that the
values for ULC Flushes to Xact Log, by Unpin, and by Single Log Record
(all actions associated with unpinning) are noticeably lower for low-
durability databases than in full-durability databases. This increases the
transaction throughput in high-transaction systems. This sp_sysmon
output from a low-durability database shows no ULCs flushed from
unpinning:

ULC Flushes to Xact Log per sec per xact count % of total
----------------------- ---------- ------------ ------- ---------
Any Logging Mode DMLs
by End Transaction 40.3 0.0 2416 100.0 %
by Change of Database 0.0 0.0 1 0.0 %
by Unpin 0.0 0.0 0 0.0 %
by Other 0.0 0.0 0 0.0 %

• Low-durability databases do not perform transaction log flushing – during
a commit, because transactions are not written to disk.

Transaction log flushing is typically unnecessary for relaxed-durability
databases; they do not require reliably recorded committed transactions
because they are not recovered during a restart. Adaptive Server typically
flushes the transaction log when a transaction completes and, for relaxed-
durability databases, during the buffer wash.

The Device Activity Detail section in sp_sysmon output shows the number
of writes for log devices of relaxed-durability databases. This shows the
sp_sysmon output for a disk-resident, version 15.0.3 database:

Device:
/disk_resident/device/1503esd2/drdb_device.dat
drdb_device per sec per xact count % of total
------------------- ----------- ------------ --------- ----------
Reads

APF 0.0 0.0 0 0.0 %
Non-APF 14.3 0.0 2380 0.2 %

Writes 9247.3 1.5 1544304 99.8 %
------------------- ----------- ------------ --------- ----------
Total I/Os 9261.6 1.5 1546684 100.0 %

This shows the same output for a relaxed durability database from a
version 15.5 Adaptive Server. Because this is a relaxed-durability
database, the writes are about 23 percent of the writes for the disk-resident
database:

Device:
/relaxed_durability/IMDB/devices/ariesSMP/rddb_device.dat
rddb_device per sec per xact count % of total

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 47

------------------- ----------- ------------ --------- ----------
Reads

APF 0.0 0.0 0 0.0 %
Non-APF 14.7 0.0 1031 0.7 %

Writes 2106.4 0.1 147446 99.3 %
------------------- ----------- ------------ --------- ----------
Total I/Os 2121.1 0.1 148477 99.9 %

• Low-durability databases do not log transactions contained in the ULC.
Adaptive Server discards log records for transactions in low-durability
databases when it commits transactions, if all log records for each
transaction are fully contained within the ULC, and the transaction does
not require the log records for any post-commit processing.

Because you need not transfer the log records, the amount of contention
on the log decreases, which increases throughput in high-transaction
systems. Generally, logging transactions in the ULC favors smaller
transactions because large transactions cannot contain all their log records
in the ULC at commit time; large transactions that log more records than
fit in the ULC must flush the ULC to syslogs when it fills.

ULC flushing may also occur when small transactions are contained
within the ULC at commit time because Adaptive Server requires these
log records to perform post-commit work. For example, ULC flushing
occurs in any transaction that deallocates any space within the database
when the transaction requires post-commit work.

See “ULC Flushes to Xact Log” in Chapter 2, “Monitoring Performance
with sp_sysmon,” in the Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon.

• Low-durability databases do not flush partially logged changes to disk.
Adaptive Server must occasionally flush data pages for full-durability
databases to disk because the corresponding log records do not fully
describe the changes that took place. Some examples are:

• Any index- or data page split for a table with a clustered index

• A sort

• A writetext command

• Fast bcp

• alter table to change a table’s locking scheme

• alter table to change a table’s partitioning scheme or a table’s schema

• A full table reorg rebuild

Performance optimization for low-durability databases

48 Adaptive Server Enterprise

• alter table...unparition

In-memory databases need not flush data pages to disk because they do not
use disks. Relaxed-durability databases do not flush data pages to disk
because there is no need for database recovery. Not having to flush data
pages to disk can significantly improve performance when the number of
disk I/Os would be high, for example, where changed pages are flushed to
disk at the end of a sort operation.

Additional improvements to low-durability databases that are not directly
related to their durability, occur internally, and require no administration:

• Improvements for updating the database timestamp (a frequent operation
in a high-transaction database)

• Improvements to deletes using an index scan for data-only-locked tables

• Improvements for bulk inserts into a data-only-locked table with non-
unique indexes

These improvements also apply to temporary databases that have durability
explicitly set to no_recovery (through create database or alter database); they
do not apply to temporary databases with durability implicitly set to
no_recovery.

Tuning checkpoint intervals
In addition to determining the length of the recovery time, the recovery interval
in minutes configuration parameter determines how frequently Adaptive Server
checkpoints a database. In-memory databases are never checkpointed, but
Adaptive Server does checkpoint relaxed durability databases, flushing all
modified buffers from disk according to recovery interval in minutes.

Use recovery interval in minutes to reduce the pressure on buffer washing, and
to maintain replaceable buffers.

The lower the value for recovery interval in minutes, the more frequently
Adaptive Server performs a checkpoint and washes all changed buffers.
However, you must balance the benefits of performing the buffer wash with the
number of disk I/Os that occur while Adaptive Server is performing the
checkpoint.

When you set recovery interval in minutes to higher values, you must balance
the benefit of a smaller number of disk I/Os that result from less frequent
checkpoints with the possibility that a request for a buffer may find it “dirty,”
delaying its use while the buffer wash takes place.

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 49

recovery interval in minutes applies to all databases server-wide, and you should
change this parameter only after evaluating the impact this change has on full-
durability databases. If you have at least one full-durability database that
generally needs significant recovery after a server crash, continue to use the
value required for a timely recovery of this database (generally, the default
value of 5 minutes). If a change has little impact on full-durability databases
(that is, they require little recovery after a server failure), start with a recovery
interval higher than the default value of 5 minutes (for example, 30). After the
change, view the Buffers Grabbed Dirty value or the per-cache information in
the Data Cache Management sections of sp_sysmon. If the Buffer Grabbed
Dirty value is high, decrease the value for recovery interval in minutes.

To decrease the number of I/Os to disk checkpoint performs for relaxed-
durability databases without affecting the behavior of full-durability databases
(regardless of the value for recovery interval), set the no chkpt on recovery
database option to true for the relaxed-durability database. Use the method
described above to evaluate the value for Buffers Grabbed Dirty and verify that
disabling checkpoints does not negatively impact the availability of reusable
buffers.

Minimally logged DML
During minimally logged DML, insert, update, delete, and slow bcp-in
commands are performed with minimal or no logging. If a statement fails (for
example, from an internal error or a user-issued rollback), the portion of the
work already completed stays committed, and is not rolled back. However,
when configured for minimally logged DML, Adaptive Server must maintain
logical consistency for changed tables (for example, rolling back a data row
insert must result in a rollback of the related index rows). To ensure this
consistency, minimally logged DML commands are divided into elementary
unit operations named subcommands, which are all the data changes required
to perform a single row change, including those for indexes and any text,
image, or off-row columns. To maintain the logical consistency at the
subcommand level, Adaptive Server logs minimally logged DML commands
in the user log cache (ULC). Once a subcommand completes, Adaptive Server
discards the log records for the subcommand from the ULC, there is no need to
flush the ULC to syslogs.

Minimally logged DML

50 Adaptive Server Enterprise

If a ULC is not large enough to contain all of a subcommands’ log records,
Adaptive Server may be unable to discard the log records. This generally
happens if the data row affected by the DML is very large, or if a table contains
many indexes. If Adaptive Server cannot discard the ULC, it flushes the ULC
log records to syslogs, which:

• Increases log contention in a busy system

• Impedes transaction throughput

• Increases the amount of log space required, which offsets any benefits
gained by using minimally logged DMLs

Make sure that ULCs are large enough to contain the log records for most
subcommands. Sybase recommends that your ULC be twice as large as the
default server page size:

declare @ulc_size int
select @ulc_size = @@maxpagesize * 2
exec sp_configure "user log cache size", @ulc_size

For in-memory temporary databases or relaxed-durability temporary databases
for which the durability has been explicitly set, improve the efficiency of
minimal logging and avoid ULC flushes to syslogs by creating the sessions
tempdb-specific ULC twice the size as the server logical page size:

declare @ulc_size int
select @ulc_size = @@maxpagesize * 2
exec sp_configure "session tempdb log cache size", @ulc_size

Generally, these scripts configure a ULC sized to contain all changes from one
subcommand entirely in-memory, and yield significant improvement in
concurrent DML performance.

Changing the ULC size requires you to restart Adaptive Server.

To determine if minimal logging is efficient, view the Transaction
Management section of sp_sysmon output.

This example shows efficient minimally logged DML, because Adaptive
Server discards most log records generated from subcommands:

ML-DMLs ULC Efficiency per sec per xact count % of total
------------------------ ------- ------------ ---------- ----------
Discarded Sub-Commands 33383.9 11087.8 3071323 100.0
Logged Sub-Commands 0.4 0.1 37 0.0

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 51

The Transaction Detail section presents a summary of DML commands
performed in fully-logged versus minimally-logged mode for the specified
sample. In this output, Adaptive Server performed nearly all the inserts in
minimally-logged mode on a data-only locked table:

Transaction Detail per sec per xact count % of total
------------------------ ------------ ------------ ------- ----------
Inserts

Fully Logged
APL Heap Table 57.8 173.5 694 0.7 %
APL Clustered Table 0.0 0.0 0 0.0 %
Data Only Lock Table 0.7 2.0 8 0.0 %
Fast Bulk Insert 0.0 0.0 0 0.0 %

Minimally Logged
APL Heap Table 0.0 0.0 0 0.0 %
APL Clustered Table 0.0 0.0 0 0.0 %
Data Only Lock Table 7775.8 23327.5 93310 99.3 %

The Transaction management section provides details about how Adaptive
Server logs subcommands instead of discarding them. The output below shows
the events causing ULC flushes to the transaction log, with a break-up of ULC
flushes caused by fully-logged and minimally-logged DML. For the
minimally-logged DML section, nearly an equal amount of flushes were due to
a Full ULC and to the end of a sub-command:

ULC Flushes to Xact Log per sec per xact count % of total
------------------------ ------------ ------------ ------- ----------
Any Logging Mode DMLs
by End Transaction 0.3 1.0 4 11.1 %
by Change of Database 0.0 0.0 0 0.0 %
by Unpin 0.0 0.0 0 0.0 %
by Other 0.0 0.0 0 0.0 %

Fully Logged DMLs
by Full ULC 0.2 0.5 2 5.6 %
by Single Log Record 0.0 0.0 0 0.0 %

Minimally Logged DMLs
by Full ULC 1.3 4.0 16 44.4 %
by Single Log Record 0.0 0.0 0 0.0 %
by Start of Sub-Command 0.0 0.0 0 0.0 %
by End of Sub-Command 1.2 3.5 14 38.9 %

------------------------ ------------ ------------ ------- ----------
Total ULC Flushes 3.0 9.0 36

Dumping and loading in-memory databases

52 Adaptive Server Enterprise

If the value of the count column in the ULC Flushes to Xact Log by Full ULC
section for Minimally Logged DMLs is high compared with the number of
rows being affected, increase the value for the user log cache or the session
tempdb log cache size configuration parameters.

The output below indicates the efficiency of ULC operations for minimally-
logged commands: the system incurs a small amount of logging overhead from
minimal logging because nearly all the logging activity is entirely contained
within the ULC, and very little flushing to syslogs.

ML-DMLs ULC Efficiency per sec per xact count % of total
------------------------ ------------ ------------ ------- ----------
Discarded Sub-Commands 7774.7 23324.0 93296 100.0
Logged Sub-Commands 1.2 3.5 14 0.0
------------------------- ------------ ------------ -------
Total ML-DML Sub-Commands 7775.8 23327.5 93310

Dumping and loading in-memory databases
Dumping and loading relaxed-durability databases is identical to dumping and
loading full-durability databases. During a dump of a relaxed-durability
database, Backup Server reads directly from the disk-based database devices,
During a load, Backup Server writes directly to these devices by copying over
pages from the dump archive. You can improve dumping and loading
performance by using striped devices for relaxed-durability databases.

Because in-memory databases do not use disk devices, Backup Server reads
pages directly from Adaptive Server shared memory during a dump, and writes
it to the archive medium. During a load, Backup Server reads pages from the
archive medium (for example, tape) and writes the load directly to the pages of
the in-memory storage cache. Because in-memory databases do not use disk
I/O to read or write pages on the server, the dump and load performance for in-
memory databases is generally superior to that of disk-based databases of the
same specifications.

During the dump and load commands, Backup Server opens one CT-library
connection per stripe to Adaptive Server, and creates a communication channel
to read database pages directly from Adaptive Server shared memory.

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 53

Backup Server synchronizes directly with concurrent tasks active in Adaptive
Server while reading pages directly from its shared memory. To support load
database recovery, Adaptive Server disables the strategies described in
“Performance optimization for low-durability databases” on page 45 for the
duration of the dump operation. This may reduce the performance of
transactional activity during the dump database command.

Tuning for spinlock contention and network
connections

In-memory databases do not have as many latency and contention issues as
disk-resident databases because they do not use disk I/O. However, in heavy
workload situations, in-memory databases may suffer from other spinlock
contention and in-memory access issues:

• Cache spinlock contention – may become a bottleneck for in-memory
caches under a heavy workload. Consider increasing the number of cache
partitions to 64 or more. The additional memory resources required for
large number of cache partitions is insignificant and provide improved
performance by reducing the cache manager spinlock contention.

• Object manager spinlock contention – if your application frequently
accesses a small number of objects, you may observe spinlock contention
for metadata structures, which are reported by sp_sysmon.

Bind descriptors for frequently accessed objects using dbcc tune 'des_bind'
so they are never scavenged. Binding the descriptors for even a few
commonly used objects may greatly reduce the overall metadata spinlock
contention, and improve performance.

Improving contention for lock manager hashtable spinlock ratios
The throughput for in-memory databases may produce contention for the lock
manager hashtable spinlock ratios. The table lock hashtable, and the page and
row lock hashtable spinlocks may contribute considerably to the contention.

The Lock Management section of sp_sysmon shows the percentage of
contention for the spinlocks that govern hash buckets for these hashtables:

Lock Management

Tuning for spinlock contention and network connections

54 Adaptive Server Enterprise

Lock Summary per sec per xact count % of total
------------------------- ------------ ------------ -------- ------------
Total Lock Request 285063.3 43.0 17103795 n/a
Avg Lock Contention 1857.3 0.3 111435 0.7 %
Cluster Locks Retained 0.0 0.0 0 0.0 %
Deadlock Percentage 0.1 0.0 8 0.0 %

Lock Detail per sec per xact count % of total
------------------------- ------------ ------------ -------- ------------
Table Lock Hashtable

Lookups 130160.4 19.6 7809622 n/a
Avg Chain Length n/a n/a 0.00000 n/a
Spinlock Contention n/a n/a n/a 4.6 %

[...]
Page & Row Lock HashTable

Lookups 268968.1 40.6 16138085 n/a
Avg Chain Length n/a n/a 1.03330 n/a
Spinlock Contention n/a n/a n/a 4.8 %

Generally, if this contention is more than approximately 4 percent, consider
reducing the ratio of these spinlocks to hash buckets. The default value for the
configuration option controlling the number of hash buckets controlled by one
spinlock is:

• lock table spinlock ratio with a default value of 20 affects the spinlock
contention on the Table Lock Hashtable output.

• lock spinlock ratio with a default of 85 affects the spinlock contention on
the Page & Row Lock Hashtable output.

When the spinlock contention is significant, reducing the values for lock table
spinlock ratio and lock spinlock ratio may improve run-time performance. The
additional memory overhead of more spinlocks controlling fewer hash buckets
is not significant. Initially, reduce the configuration parameters by one half
their values. In cases of extreme spinlock contention (in excess of 10 percent),
reducing the appropriate configuration option to a very small value (say, .3 –
5), may help remove performance bottlenecks from spinlock overheads.

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 55

Determining the number of network connections
By default, Adaptive Server uses a single network listener, which can run on
any engine. When Adaptive Server receives a connection request, the engine
that accepts the connection becomes the network engine for that connection,
and when the corresponding task performs network I/O, it must migrate to this
engine.

If many client connections take place simultaneously, Adaptive Server may not
be able to schedule the listener between the connection requests (unless it
yields due to running out of timeslice), and accepts all connections on the same
engine. Since any of the corresponding tasks must run on this engine to
perform network I/O, this engine becomes a bottleneck. Use the sp_sysmon
Network I/O Management section to determine how Adaptive Server
distributes the network I/O. This example shows Adaptive Server not
distributing the network I/O proportionally: Engine 2 uses more than 88
percent of the network I/O, while other engines use as little as 0 percent:

Network I/O Management

Total Network I/O Requests 7301.5 1.4 438092
n/a
Network I/Os Delayed 0.0 0.0 0
0.0 %

Total TDS Packets Received per sec per xact count % of total
------------------------- ------------ ------------ -------- ------------
Engine 0 308.8 0.1 18528 7.7 %
Engine 1 163.6 0.0 9818 4.1 %
Engine 2 3558.8 0.7 213527 88.3 %
Engine 3 0.0 0.0 2 0.0 %
Engine 4 0.0 0.0 0 0.0 %
Engine 5 0.0 0.0 0 0.0 %
------------------------- ------------ -------- -------
Total TDS Packets Rec'd 4031.3 0.8 241875

Avg Bytes Rec'd per Packet n/ n/a 136
n/a

Total TDS Packets Sent per sec per xact count % of total
------------------------- ------------ ------------ -------- ------------
Engine 0 308.8 0.1 18529 7.7 %

Tuning for spinlock contention and network connections

56 Adaptive Server Enterprise

Engine 1 163.6 0.0 9818 4.1 %
Engine 2 3558.9 0.7 213531 88.3 %
Engine 3 0.0 0.0 2 0.0 %
Engine 4 0.0 0.0 0 0.0 %
Engine 5 0.0 0.0 0 0.0 %
------------------------- ----------- ------------ --------
Total TDS Packets Sent 4031.3 0.8 241880

To resolve unbalanced network I/O usage, use multiple network listeners and
bind them to different engines (typically, one listener per engine). To determine
how many clients to bind to each network listener, divide the client connections
so that each listener accepts approximately the same number of connections.
For example, if there are 6 network listeners and 60 clients, connect each group
of 10 clients to one listener.

The sp_sysmon output after balancing the network listeners above looks
similar to:

Network I/O Management

Total Network I/O Requests 8666.5 1.3 519991 n/a
n/a
Network I/Os Delayed 0.0 0.0 0 0.0 %

Total TDS Packets Received per sec per xact count % of total
------------------------- ------------ ------------ -------- ------------
Engine 0 893.4 0.1 53602 17.8 %
Engine 1 924.5 0.1 55468 18.5 %
Engine 2 701.9 0.1 42113 14.0 %
Engine 3 906.0 0.1 54358 18.1 %
Engine 4 896.1 0.1 53763 17.9 %
Engine 5 683.8 0.1 41028 13.7 %
------------------------- ------------ -------- -------
Total TDS Packets Rec'd 5005.5 0.8 300332

Avg Bytes Rec'd per Packet n/ n/a 136
n/a

Total TDS Packets Sent per sec per xact count % of total
------------------------- ------------ ------------ -------- ------------
Engine 0 893.3 0.1 53595 17.8 %
Engine 1 924.5 0.1 55467 18.5 %
Engine 2 701.9 0.1 42113 14.0 %
Engine 3 905.9 0.1 54355 18.1 %
Engine 4 896.1 0.1 53763 17.9 %

CHAPTER 4 Performance and Tuning for In-Memory Databases

In-Memory Database Users Guide 57

Engine 5 683.8 0.1 41026 13.7 %
------------------------- ----------- ----------- --------
Total TDS Packets Sent 4031.3 0.8 241880

Unbalanced network listeners are not specific to in-memory databases, but can
also occur in disk-resident databases. However, because they do not use disk
I/O, in-memory-resident databases typically have greater throughput than disk-
resident databases. The increased throughput and non-existent disk I/O latency
results in in-memory databases performing more work than disk-resident
databases, including more network I/O, which could increase the severity of
the bottleneck due to unbalanced network listener loads.

Tuning for spinlock contention and network connections

58 Adaptive Server Enterprise

In-Memory Database Users Guide 59

A
ACID properties 1
alter database

increasing the size of in-memory databases 20
asynchronous prefetch 41
attributes, applying to template databases 9

B
Backup Server

number of backup connections 21
version 21

binding
temporary databases 40
to caches 39

buf_imdb_privatebuffer_grap monitor counter 43
buffer replacement 41
buffers

support for in-memory databases 4

C
cache

configuring in-memory storage cache 39
spinlock contention 53

caches
binding restrictions 4
binding temporary databases 40
creating 15
creating in-memory databases 4
hosting in-memory databases 5
in-memory storage 15
layout for performance 40
LRU and MRU policies 40
replacement policy 40, 41
restrictions 4
size 39

size for in-memory databases 4
support for in-memory databases 4

checkpoint
relaxed-durability databases 48
tuning intervals 48

committed transactions 2
concurrent transactions 29
configuration file, verifying changes 16
configuration parameters, changing static parameters

17
contention

improving for lock manager hashtable spinlock ratios
53

log contention 49
reducing latch contention 45
tuning for spinlock contention 53

create database...durabilty= command 19
create index and minimal logging 30
create inmemory database command 18

D
data, organizing for in-memory devices 45
ddlgen 5
deferred updates with minimally-logged DML 38
devices

creating 17
in-memory storage 17

disk init
creating devices 17
creating in-memory databases 4

DML logging
overview 10, 23

drop database command 22
drop index and minimal logging 30
dropping

databases 9
in-memory databases 22

dump

Index

Index

60 Adaptive Server Enterprise

across durability levels 21
in-memory database 52
in-memory databases 20

durability
ACID properties 1
binding 7
for in-memory databases 6
levels 1, 6
multiple database transactions 8
operations possible for levels 6
relaxed-durability databases 19
restrictions 6

H
huge pages 15

I
in-memory databases

benefits 2
Cluster Edition 11
creating 18
creating devices 4
creating on logical devices 5
creating with a template database 18
dropping 22
dumping 52
dumping and loading 20
failure 1
generating object definitions 5
hosting 5
in multiple database transactions 8
increasing the size of 20
limits 11
loading 52
output for sp_sysmon 42
overview 1–12
resizing in-memory storage cache 19
using template databases 8
using with Replication Server 3

in-memory devices
binding segments 4
creating 4

creating with disk init 17
organizing data 45
supporting segments 4

in-memory storage cache 15
configuring for performance 39
deleting 20
resizing 19

in-memory storage devices
dropping 22

in-memory temporary databases
adding guest user 18

L
latch contention, reducing 45
load

across durability levels 21
in-memory database 52
in-memory databases 20

lock manager hashtable spinlock ratios
improving contention 53

log flushing
low-durability databases 46
sp_sysmon output 46

log transactions
low-durability databases 47

logging
database-level 23
session-level 23
table-level 23

logical devices
creating in-memory databases 5

low-durability databases 45, 45–48
flushing changes to disk 47
flushing ULC 45
log flushing 46
log transactions 47

M
master database, altering logging mode 24
max memory configuration parameter, setting 16
Minimally-logged DML

database-level logging 24

Index

In-Memory Database Users Guide 61

definition 23
diagnostic information 38
including set dml_logging in a trigger 36
levels of logging 23
logging concurrent transactions 29
multi-statement transactions 31
performance enhancements 49
referential integriry constraints 31
restrictions 27
session level logging 26
single user mode 24
sp_sysmon output 50
stored procedures 33
system table restrictions 24
table-level logging 25
transactional syntax 28
using deferred updates 38
with ddl in tran set to true 30

monitor counters
monitoring in-memory databases 43
script for in-memory database counters 44

multi-statement transactions
minimally-logged DML 31
restrictions 31

N
named caches

restrictions 4
network connections

determining number 55
network listeners, and network connections 55

O
object manager spinlock contention 53
objects, bound to cache 40

P
performance

configuring in-memory storage cache 39
optimization 45

R
recovery interval in minutes configuration parameter

48
referential integrity constraints and minimally-logged

DML 31
relaxed-durability databases 2, 3, 6

checkpointing 48
Cluster Edition 11
creating 19
definition 2
generating object definitions 5
in multiple database transactions 8
limits 11
restrictions for template databases 8

Replication Server, in-memory and relaxed-durability
databases 3

S
segments

binding objects 4
select into setting for Minimally-logged DML 24
session-level logging

alter table syntax 26
setting minimal DML logging 26

set dml_logging for DML logging 29
single-user mode 24
sp_cacheconfig

creating in-memory databases 4
resizing in-memory storage cache 19

sp_cacheconfig inmemory_storage 16
sp_dropdevice system procedure 22
sp_helpdb

displaying information about template databases 9
sp_sysmon

log flushing 46
minimally-logged DML output 50
network I/O output 55
output for in-memory databases 42
wash region for in-memory caches 42

spinlock contention
tuning 53

stored procedures and minimally-logged DML 33
system databases as in-memory databases 18

Index

62 Adaptive Server Enterprise

system procedures changes for in-memory databases 12

T
table-level logging

create table syntax 25
select into 25
setting minimal-logging 25
triggers 25
views 25

template databases
applying attributes 9
creating in-memory databases from templates 18
definition 8
recovery from restart 8
sp_helpdb 9

temporary in-memory databases
creating 18

transactional syntax 28
transactions 31

across multiple databases 8
dumping 21

triggers
including set dml_logging 36

U
ULC

low-durability databases 45
minimally-logged DML 49
sizing for minimally-logged DML 49
unpinning 45

	In-Memory Database Users Guide
	CHAPTER 1 In-Memory Databases
	Cache and buffer support
	Durability levels
	Temporary databases and in-memory temporary databases
	Multidatabase transactions and database types

	Template databases
	Altering the database to use a new template

	Minimally logged commands
	Limits for in-memory and relaxed-durability databases
	Changed system procedures

	CHAPTER 2 Managing In-Memory and Relaxed-Durability Databases
	Specifying named caches for in-memory databases
	Verifying changes to the configuration file
	Changing static configuration parameters for in-memory databases

	Creating in-memory devices
	Creating in-memory databases
	Creating disk-resident databases with relaxed durability
	Administering in-memory databases
	Resizing in-memory storage caches
	Deleting in-memory storage caches
	Increasing the size of in-memory databases
	Dumping and loading in-memory databases
	Configuring number of backup connections

	Dropping in-memory databases
	Dropping in-memory devices

	CHAPTER 3 Minimally Logged DML
	Types of DML logging settings
	Database-level logging
	Table-level logging
	Session-level logging
	Additional minimal logging rules

	Transactional semantics
	Logging concurrent transactions
	Minimal logging with ddl in tran set to true
	Effect of referential integrity constraints
	Multistatement transactions in minimally logged mode
	Stored procedures and minimally logged DML
	Including set dml_logging in a trigger
	Using deferred updates
	Obtaining diagnostic information

	CHAPTER 4 Performance and Tuning for In- Memory Databases
	Configuring in-memory storage cache
	Cache layout

	sp_sysmon output for in-memory databases
	Monitoring the default data cache performance
	Organizing physical data for in-memory devices
	Performance optimization for low-durability databases
	Tuning checkpoint intervals

	Minimally logged DML
	Dumping and loading in-memory databases
	Tuning for spinlock contention and network connections
	Improving contention for lock manager hashtable spinlock ratios
	Determining the number of network connections

	Index

