
New Features

Sybase Unwired Platform 1.2.2

DOCUMENT ID: DC01092-01-0122-01
LAST REVISED: March 2010
Copyright © 2010 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page. Sybase and the marks listed are trademarks of Sybase, Inc. ®

indicates registration in the United States of America.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

New Features 1.2.2 ..1
New Features ..1

Cascade Delete ...1
Data Change Notification Interface2
New APIs ...11

Documentation Updates12
Backup and Restore Overview12

New Features 1.2.1 ..19
New Features - Eclipse Edition19

New Features ..21
Documentation Updates42
Troubleshooting64

New Features - Visual Studio Edition69
New Features ..70
Documentation Updates98
Troubleshooting 101

New Features - Sybase Control Center and Unwired
Server ...103

New Features .. 106
Enhanced Features122
Documentation Updates 125
Troubleshooting 133

Index ..141

New Features iii

Contents

 iv Sybase Unwired Platform

New Features 1.2.2

The Sybase® Unwired Platform 1.2.2 New Features guide includes a description of the new
features and a section for documentation updates.

New Features
These new features are included in Sybase® Unwired Platform version 1.2.2.

Cascade Delete
Cascade-delete operations on a parent mobile business object (MBO) automatically cascade
changes to the child entity.

Relationships

Cascade-delete behavior is controlled by the types of relationships defined for the MBOs:

• Composition – a relationship where the target MBO is a child/detail datatype. A
composition relationship can be one-to-one, or one-to-many, but not many-to-one. That is,
an MBO can be the child of only one parent MBO.

• Reference – a relationship where the target MBO is a master/lookup datatype. A reference
relationship is typically many-to-many.

For MBOs that have existing relationships, when an instance of the source (parent) MBO is
deleted, all the associated instances (children) of the target MBO are also deleted. This
deletion occurs in the consolidated database (CDB) and is reflected when the device is next
synchronized. It can also be reflected with the current synchronization if the deletion is caused
by a synchronization request. The cascade deletion is recursive in the sense that when an MBO
instance is deleted from the CDB as a cascade deletion, that MBO’s associations are processed
and any composition associations trigger additional cascade deletes of second-level MBOs.

Deployment unit

The relationship element has an additional optional attribute type, with values of either
composition or reference, as shown:

<association name="items" mobile_object_name="order_item" type=”composition”
x_to_many="true">

<association name="product" mobile_object_name="product" type=”reference”
x_to_many="true">

New Features 1.2.2

New Features 1

Admin API

To specify the relationship type, use the HTTP API with a URL in this format:
http://host:port/onepage/servlet/UWPServlet?
app=uep&cmd=MobileObjectAdmin.setAssociationType&package_name=packa
ge_name&mobile_object_name=mbo_name&association_name=assoc_name&
association_type=type&authenticate.user=userName&authenticate.passw
ord=password

Deployment default

During redeployment, if the deployment unit does not specify the relationship type and the
relationship already exists in the CDB, then its previous known relationship type is applied.
This means you need not set the relationship type after every deployment.

Data Change Notification Interface
Data change notification (DCN) provides an HTTP interface by which enterprise information
system (EIS) changes can immediately be propagated to Unwired Server.

All DCN commands support both GET and POST methods. The EIS developer creates and
sends a DCN to Unwired Server through HTTP GET or POST operations. The portion of the
DCN command parameters that come after http://host:port/onepage/
servlet/UWPServlet? can all be in POST, or any var=name can be in either the URL
(GET) or in the POST. The authenticate.password parameter is an especially good candidate
for including in the POST method, as well as any sensitive data provided for attributes and
parameters because the HTTP POST method is more secure than HTTP GET methods.

Note: Enter the HTTP request on a single line.

You can use DCN with or without payload:

1. To instruct Unwired Server to invoke an operation without payload, the DCN instructs
Unwired Server to do something, based on the Unwired Server configuration or MBO
settings as shown here.

New Features 1.2.2

 2 Sybase Unwired Platform

Figure 1: DCN without payload

• (1) EIS data changes, which triggers the DCN.
• (2) The DCN issues instructions to Unwired Server.
• (3) Unwired Server performs the DCN task, for example, invalidating and refreshing

an MBO.
2. In the method shown here, the Unwired Server cache is udpated directly. The actual data

(payload) is applied to the cache, through either an :upsert (update or insert) or a :delete
operation.

New Features 1.2.2

New Features 3

Figure 2: DCN with payload

• (1) EIS data changes, which triggers the DCN.
• (2) The DCN applies data changes, for example deleting a data row, directly to the

cache (CDB).

Be familiar with the EIS data source from which the DCN is issued. DCNs can be created and
sent based on:

• Database triggers
• EIS system events
• External integration processes

Invoking Operations Through Data Change Notification
Data change notifications (DCNs) can instruct Unwired Server to invoke a mobile business
object (MBO) operation with a set of specified parameters. Changes to the Unwired Server
cache are dependent on the operation’s specified behavior, which was defined during MBO
development.

These examples show DCN without payload.

Syntax

DCNs that invoke operations require a JavaScript Object Notation (JSON) string
(dcn_request) that contains information about the MBO operation:
http://unwired_server.sybase.com:unwired_server_port/onepage/
servlet/UWPServlet?

New Features 1.2.2

 4 Sybase Unwired Platform

&cmd=dcn
&username=userName
&password=password
&package=unwired_server_PackageName
&dcn_request={"pkg":“TestPackage",
 "messages":[{"id":"1","mbo":"mboName","op":“operationName",
 "cols":{"operationParameters"}}]}
&dcn_filter=fully_qualified_name_of_dcn_filter

Parameters

• unwired_server – Unwired Server host name to which the DCN is issued.
• unwired_server_port – Unwired Server port number
• &username – authorized Unwired Server user with permission to modify the MBO.
• &password – authorized user's password.
• &package – Unwired Server package that contains the MBO. The format is

package:version. For example, e2e_package:1.0.
• &dcn_request – the JSON string that contains operation name and parameters, which

must include:

• Package name (pkg)
• A list of messages (messages), where each message includes:

• A message ID (id) used to report back the status.
• Mobile business object name (mbo).
• Operation name (op): an operation name of the specified MBO, or an alternate read

operation.
• Bindings (cols): operation parameter names and values covering at least all

primary key attributes of the MBO.
• (Optional) &dcn_filter – custom filter used to convert any JSON strings. By default,

Unwired Server expects all DCN requests to be a valid JSON string. Use the DCN filter to
convert incoming DCN request strings to a valid JSON string.

Examples

• MBO operation invocation – This JSON string (included in a DCN request) invokes the
Department MBO's UpdateDepartment operation to update the department ID, Name, and
HeadID:

{"pkg":“TestPackage",
 "messages":[{"id":"1","mbo":"Department","op":
“UpdateDepartment",
 "cols":{“UpdateDepartment_department_DepartmentID":"3333",
 “UpdateDepartment_department_DepartmentName":“My
Department",
 “UpdateDepartment_department_DepartmentHeadID":"501"}}]}

New Features 1.2.2

New Features 5

• Multiple operations in one DCN – This example includes multiple messages within one
DCN included in the JSON message array:

dcn_request={"pkg":“TestPackage",
 "messages":[
 {"id":"1","mbo":"Department","op":“UpdateDepartment",
 "cols":{“UpdateDepartment_department_DepartmentID":"3333",
 “UpdateDepartment_department_DepartmentName":“My
Department",
 “UpdateDepartment_department_DepartmentHeadID":"501"}}
 {"id":“2","mbo":“AnotherMBO","op":":upsert",
 "cols":{“AnotherMBOID":“99",
 “MyColumn":“Test ValueMy”}}]}

Usage

A DCN that invokes an operation follows these rules:

• All parameters used in the MBO operation must be included.
• All columns used in the operation must use the MBO parameter name.
• Any explicit value specified in the DCN request takes precedence over a personalized

value. To use a personalized value in DCN processing, do not include the personalized
parameter name and its value in the DCN request. The personalized value is then inferred
by Unwired Server and added to the supplied bindings. Similarly, omit parameters with
default values to use previously specified default values.

Modifying Data Using Data Change Notification
Data change notifications (DCNs) with payload update Unwired Server cache directly,
through either an :upsert (update or insert) or a :delete operation.

Syntax

DCN with payload requires a JavaScript Object Notation (JSON) string (dcn_request) that
contains one or more :upsert and/or :delete operations that are applied to the Unwired Server
cache (CDB).
http://unwired_server.sybase.com:unwired_server_port/onepage/
servlet/UWPServlet?
&cmd=dcn
&username=userName
&password=password
&package=unwired_server_PackageName
&dcn_request={"pkg":"dummy","messages":
[{"id":"1","mbo":"CustomerWithParam","op":":upsert","cols":
{"id":"10001","fname":"Adam"}}]}
&dcn_filter=fully_qualified_name_of_dcn_filter

New Features 1.2.2

 6 Sybase Unwired Platform

Parameters

• unwired_server – Unwired Server host name to which the DCN is issued.
• unwired_server_port – Unwired Server port number.
• &username – authorized Unwired Server user with permission to modify the MBO.
• &password – authorized user's password.
• &package – Unwired Server package that contains the MBO. The format is

package:version. For example, e2e_package:1.0.
• &dcn_request – the JSON string that contains the data, which must include:

• Package name (pkg)
• A list of messages (messages), where each message includes:

• A message ID (id) used to report back the status.
• Mobile business object name (mbo).
• Operation name (op): ":upsert", ":delete", or an operation name of the specified

MBO. ":upsert" and ":delete" are special operation names to specify payload data.
• Bindings (cols): a list of name/value pairs covering at least all primary key

attributes of the MBO. For payload data, the bindings contain the payload specified
as MBO attribute/parameter names and their values.

• (Optional) &dcn_filter – custom filter used to convert any JSON strings. By default,
Unwired Server expects all DCN requests to be a valid JSON string. Use the DCN filter to
convert incoming DCN request strings to a valid JSON string.

Examples

• Upsert example – This JSON string included in a DCN contains a single :upsert
operation that updates or inserts (upserts) data in the Unwired Server cache for the
Department MBO.

dcn_request={"pkg":“TestPackage",
"messages":
 [{"id":"1","mbo":"Department",
 "op":":upsert",
 "cols":{"DepartmentID":"3333",
 "DepartmentName":"Test Value",
 "DepartmentHeadID":"501"}}]
}

• Delete example – Example JSON string included in the DCN sent to Unwired Server used
to delete a row of data from the Unwired Server cache for the Department MBO:
dcn_request={"pkg":“TestPackage",
 "messages":[{"id":"1","mbo":"Department",
"op":":delete",
 "cols":{"DepartmentID":"3333"}}]}

New Features 1.2.2

New Features 7

Usage

Follow these guidelines when constructing a DCN:

• The format of non string data is the same as parameter default values in Unwired
WorkSpace. For example, specify timestamp values in a format similar to
2009-03-04T17:03:00+05:30.

• Base binding names on MBO names rather than EIS names.
• The :upsert operation requires:

• All MBO Primary key attributes to properly upsert the data.
• Any other MBO attributes used in the upsert.
• All columns used in the operation must use attribute names (not column names to

which it is mapped).
• The :delete operation requires:

• The MBO Primary key attribute to properly delete the data.
• That all columns used in the operation must use attribute names (not the column names

to which it is mapped).

Data Change Notification Results
Each binding in a data change notification (DCN) request is associated with an ID. The result
status of the DCN request is returned in JavaScript Object Notation (JSON) format, and
includes a list of IDs followed by a Boolean success field and status message, in case of error.

In response to payload and MBO operation DCNs, Unwired Server sends the requestor a
JSON string containing details about the success and or failure of the operations. This example
shows the JSON format for a DCN result for a request of three IDs (recID1, recID2, recID3).
The example has been formatted using new lines, and indentations, which are not present in an
actual response:
[
 {
 "recordIDs":
 [
 "recID1",
 "recID2"
],
 "success":true,
 "statusMessage":""
 },
 {
 "recordIDs":
 [
 "recID3"
],
 "success":false,
 "statusMessage":"bad msg2
 "}
]

This example is unformatted:

New Features 1.2.2

 8 Sybase Unwired Platform

• Successful operation:
[{"recordIDs“:["1"],"success“:true,"statusMessage“:""}]

• Failed operation using tildas instead of colons:
[{"recordIDs"~["1"],
 "success"~false,"statusMessage"~"Error inferring attribute
bindings from EIS bindings {DepartmentID\u003d10000,
 DepartmentAlias\u003dTest,
 DepartmentHeadID\u003d501}"}]

Data Change Notification Filters
Data change notification (DCN) requests need not always be in the format Unwired Server
expects. You can deploy a DCN filter to Unwired Server and reference it in the DCN request.
Unwired Server allows the filter to preprocess the submitted DCN. The filter converts raw data
in the DCN request to the required JavaScript Object Notation (JSON) format. The filter can
also postprocess the JSON response returned by the Unwired Server into the format preferred
by the back end (which is governed by the implementation in the filter class).

The filter interface DCNFilter is located in the com.sybase.sup.dcn package in the
onepage.jar file. All classes that implement a DCN filter should implement this interface.
The functions available in the interface are:

• String preprocess(String blobDCNRequest, Map<String, String> requestHeaders);
– takes the DCN request as a binary large object (BLOB), converts it into a valid JSON
DCN request format, and returns the same.

• String postprocess(String jsonDCNResult, Map<String, String> responseHeaders);
– takes the DCN result in a valid JSON format, converts it to the EIS-specific format, and
returns the same.

New Features 1.2.2

New Features 9

Figure 3: DCN filter flow

1. Changed data is sent from the EIS to Unwired Server via a DCN request, where any
preprocessing of the data occurs. For example, the EIS data could be sent to Unwired
Server as XML where the preprocess filter converts the data to JSON.

2. The DCN executes. For example, apply data changes directly to the Unwired Server cache.
3. Postprocessed DCN response is sent to the originating EIS as an HTTP response to the

original DCN request. For example, the JSON response is converted to XML.

Implementing a Data Change Notification Filter
Write and deploy preprocess and postprocess DCN filters to Unwired Server.

When specifying filters, add a dcn_filter parameter to the base URL, and to the parameters
specified in the DCN request section. The dcn_filter parameter specifies the fully
qualified name of the filter class, which must be in a valid CLASSPATH location so Unwired
Server can locate it using its fully qualified name. If the filter class is in an Unwired Platform
root folder, it is automatically propagated across a cluster.

JSON requires colons to define the object structure, but since colons have a special function in
HTTP URLs, use the tilda character "~" instead of colons ":" when implementing the DCN
filter, so the JSON dcn_request string can be passed as an HTTP GET or POST parameter:
dcn_request={"pkg"~“TestPackage",
 "messages"~[{"id"~"1","mbo"~"Department","op"~"~upsert",
 "cols"~{"DepartmentID"~"3333",
 "DepartmentName"~“My Department",
 "DepartmentHeadID"~"501"}}]}

New Features 1.2.2

 10 Sybase Unwired Platform

The dcn_request is in a format that is specific to the back end. The filter class can
preprocess to the JSON format expected by Unwired Server.

1. Write the filter. For example:
import java.util.map;
import com.onepage.fw.uwp.shared.uwp.UWPLogger;
import com.sybase.sup.dcn.DCNFilter;

public class CustomDCNFilter implements DCNFilter
{
 String preprocess(String blobDCNRequest, Map<String,String>
headers) {
 String result = blobDCNRequest.replace(‘~’,’:’);
 return result;
 }

 String postprocess(String jsonDCNResult, Map<String,String>
responseHeaders) {
 String result = jsonDCNResult.replace(‘:’,’~’);
 return result;
 }

 public static void main(String[] args) { }
}

2. Shut down Unwired Server and deploy the DCN filter:

a) Package your DCN filter class in a JAR file.
b) Copy the JAR file to Sybase

\UnwiredPlatform_installation_directory\Servers
\UnwiredServer\lib.

Note: The JAR file will not be propagated automatically across cluster nodes. You
must stop the node to which you want to propagate the JAR file, then copy the JAR file
manually.

3. Restart Unwired Server.

New APIs
Several new device client APIs in Sybase Unwired Platform version 1.2.2 enhance
performance.

See the Sybase Unwired Platform 1.2.2 Client Object API Cookbook at http://
www.sybase.com/developer/library/suptechcorner for information about these APIs, which
include:

• Evict – removes orphan mobile business object instances.

• IsPendingOverwritten – checks to see if the record to be updated is overwritten
after the sync.

• <MBO>PendingState – returns the updated and saved state of the object.

New Features 1.2.2

New Features 11

http://www.sybase.com/developer/library/suptechcorner
http://www.sybase.com/developer/library/suptechcorner

• FindByOperationId – helps identify which record each error message in the sync log
refers to when changes made on the client side are uploaded to the server.

• GetDataCount(Query query) – public static int called by the client to learn in
advance the number of mobile business objects this query will fetch if it is passed to the
Find(Query) method.

• Load[relationship_name](List<parent_mbo_name>) – this batch
preload API improves performance by batching and preloading all relationship data in
mobile business objects into memory so that multiple calls to the database for relationship
data are not necessary.

Documentation Updates
These documentation updates apply to Sybase Unwired Platform version 1.2.2.

Document Update

Sybase Unwired Platform 1.2.1 > Sybase Un-
wired Platform 1.2.1 New Features > New Fea-
tures - Eclipse Edition > Documentation Up-
dates > Preparing the Unwired Platform En-
vironment for SAP Connections

Step 4: For the component Eclipse Unwired
Workspace, copy librfc32.dll and
sapjcorfc.dll into the following target
directories:

• C:\WINDOWS\system32
• <SUP Installation root>\UnwiredPlat-

form-1_2\JDK1.6.0_12\bin

Backup and Restore Overview on page 12 The Backup and Restore topics provide informa-
tion for backing up and restoring the installation
file system, consolidated database, and transac-
tion logs for SUP 1.2.2.

Backup and Restore Overview
Learn how to plan Sybase Unwired Platform backup schedules to support disaster recovery
planning. Provides information for backing up and restoring the installation file system,
consolidated database, and transaction logs; and related information for mobile device client
users.

Backup of the Installation File System
Make sure to create regular and complete backups of the Sybase Unwired Platform
installation files and directories, which are modified as part of regular operation and with
configuration changes.

Examples of these Sybase Unwired Platform installation files and directories include:

• <SUP_HOME>\Servers\UnwiredServer\Repository

New Features 1.2.2

 12 Sybase Unwired Platform

• <SUP_HOME>\Servers\UnwiredServer\config

• <SUP_HOME>\Servers\UnwiredServer\bin

• <SUP_HOME>\ Servers\UnwiredServer\SQLAnywhere11

• <SUP_HOME>\ Servers\UnwiredServer\logs

• <SUP_HOME>\Servers\UnwiredServer\tomcat\webapps\onepage
\config

• <SUP_HOME>\Servers\UnwiredServer\tomcat\conf

Additionally, batch scripts (for example, <SUP_HOME>\Servers\UnwiredServer
\bin) may be automatically modified by the Sybase Unwired Platform installer, or manually
modified later by a Sybase Unwired Platform administrative user. Make sure these files are
also backed up.

Instead of backing up these individual artifacts, Sybase recommends that you perform regular
backups of the entire Sybase Unwired Platform installation folder. Ideally, include the Sybase
Unwired Platform installation directory in your disk backup schedule. At the same time the
folder and disk backup is performed, update the Windows registry so it matches the state of the
backup.

Plan the frequency of the file system backups to coincide with any changes made to the
system, including metadata changes (such as deployment of new Mobile Business Object
packages to the server), or configuration changes (such as new enterprise information system
connection). To maintain a consistent backup state, Sybase recommends you back up the
consolidated database at these times as well.

Backup of the Consolidated Database
Create regular and complete backups of the Sybase Unwired Platform consolidated database
(CDB) and its transaction logs. These instructions assume you are using SQL Anywhere as
your Sybase Unwired Platform database server.

SQL Anywhere provides backup and recovery tools. Determine your tolerance for data loss,
and your expectations for recovery time, then design a backup and recovery plan for your
specific enterprise needs.

Following are basic instructions for making your databases recoverable in case of a disk crash
or catastrophic computer failure. If you require more comprehensive recovery policies,
Sybase offers professional services specifically related to this topic.

The Sybase Unwired Platform consolidated database contains the metadata of deployed
applications, and transient and cached data that is sent to mobile devices.

Frequent backups of the consolidated database are required to maintain the deployed
applications metadata. The backups may also help restore the transient and cached data (to a
large degree) in case of crashes or corruption, and may help mobile device clients from having
to perform a full refresh.

New Features 1.2.2

New Features 13

Sample Backup and Recovery Plan
Provides a basic backup and recovery plan.

This diagram shows the architecture for a reasonably reliable backup and recovery strategy.
Only Sybase Unwired Platform components related to database recovery are included.

Figure 4: Sample backup and recovery plan

Shown in the diagram:

• Computer A is where the SQL Anywhere database server is installed and runs under
Sybase Unwired Platform. There are three physical disks on this computer:
• The C: drive has the SQL Anywhere server and the database files (uaml.db,

clusterdb.db), which hold critical data that Sybase Unwired Platform requires to
function.

• The D: and E: drives hold identical copies of the transaction log files (uaml.log, and
clusterdb.log). Using SQL Anywhere terminology, the D: drive holds the
regular transaction log, and the E: drive holds the mirrored transaction log.

• Computer B is for long term backup, and requires only one drive (or backup tapes). Run the
dbbackup utility from this computer periodically to obtain a full backup of the *.db and
*.log files from Computer A.

Failure and Recovery Scenarios
Describes several failure scenarios (using the Sample Backup and Recovery Plan setup), how
recovery works, and implications for Sybase Unwired Platform operation.

Disk C has an unrecoverable error. The *.db files have been lost.

Recovery: Install a replacement disk, and use standard file restore procedures to reinstall the
SQL Anywhere software, and whatever else is needed. If the restore returns the *.db files,

New Features 1.2.2

 14 Sybase Unwired Platform

there is no harm, but do not rely on these files to be valid. Instead, copy the last backup version
of the *.db files across from Computer B.

Next, start the SQL Anywhere server, which detects that the *.db files are not up-to-date with
the checkpoints in the *.log files on drives D: and E: (which are unaffected by the C: drive
failure). The server automatically replays transactions recorded in the transaction log to bring
the database back to the state of all committed transactions at the time of the C: drive failure.

Sybase Unwired Platform can then start up and run normally. Sybase Unwired Platform
mobile device clients are not affected except by the inability to sync between the time of the
failure, and the time at which the recovery process has completed.

Disk D: or E: failure. One of the *.log files has been lost.

Recovery: Install a replacement disk and restore from backups.

Once the disk has been restored, copy the *.log files from the drive that did not fail to the one
that failed. Restart the failed drive.

Complete failure of Computer A, and disks lost.

Recovery: See Restore the Consolidate Database for instructions. This should be a very
infrequent event.

In this scenario, the database has lost all transactions since the previous backup to Computer
B. Any Sybase Unwired Platform mobile device clients that synchronized between the time of
the previous backup and the time of the failure cannot now sync. Clients must delete their
UltraLite database and start fresh. Any pending operations on these clients are lost. Clients
that have not synchronized since the previous backup are unaffected.

Configuring Your Databases for Transaction Logs on Separate Drives
Use SQL Anywhere tools to configure and manage your consolidated databases for
transaction logs and mirrored transaction logs on separate drives.

These tools are located in the <SUP_HOME>\Servers\UnwiredServer
\SQLAnywhere11\BIN32 directory. Add this directory to your PATH.

1. Shut down the SQL Anywhere server.

2. From the SQLAnywhere11 directory, run:

dblog -t D:\logs\uaml.log -m E:\logs\uaml.log uaml.db

Output from a successful run of this command will look similar to:

SQL Anywhere Transaction Log Utility Version 11.0.1.2250
"uaml.db" was using log file "uaml.log"
"uaml.db" was using no log mirror file
"uaml.db" is now using log file "D:\logs\uaml.log"
"uaml.db" is now using log mirror file "E:\logs\uaml.log"

New Features 1.2.2

New Features 15

Transaction log starting offset is 0000746294
Transaction log current relative offset is 0001015441

3. Repeat this command for the clusterdb database:

dblog -t D:\logs\clusterdb.log -m E:\logs\clusterdb.log
clusterdb.db

4. Restart SQL Anywhere server to start using these logs on other disks.

Performing a Remote Backup
Perform a remote backup using the sample recovery plan as an example.

Once your database is properly mirrored with transaction logs on separate disks, perform an
initial backup of the consolidated database. Use the tools in the <SUP_HOME>\Servers
\UnwiredServer\SQLAnywhere11\BIN32 directory. Add this directory to your
PATH.

Note: In some configurations, the dbvalid and dbbackup commands do not work remotely.

1. Use the dbvalid utility to validate the integrity of the database. The validation must be
performed when there are no active connections to the server. Use the dblocate utility to
locate the actual name of the database server in a particular installation. Typical names take
the form of <clustername>_primary. The clusterdb is present if Unwired
Server has been configured to run as a cluster.

dbvalid.exe -c "DBF=uaml.db;UID=dba;PWD=SQL"

dbvalid.exe -c "DBF=clusterdb.db;UID=dba;PWD=SQL"

2. On Computer B, verify that SQL Anywhere software is installed, and the PATH is set. If
you are running Sybase Unwired Platform as a cluster, you already have that software
installed under the Sybase Unwired Platform installation directory. Otherwise, install
another copy of Sybase Unwired Platform there. You need not add this installation to your
cluster; you can even use a Developer Edition installation if you like.

3. Once Computer B is set up with the SQL Anywhere tools, run:

dbbackup -c "ENG=<clusterName>_primary;DBN=uaml;UID=dba;PWD=SQL"
\SQLAnybackup

dbbackup -c
"ENG=<clusterName>_primary;DBN=clusterdb;UID=dba;PWD=SQL"
\SQLAnybackup

This creates uaml.db, uaml.log, clusterdb.db, and clusterdb.log in the
\SQLAnybackup directory on Computer B.

4. As a precaution, validate the backups are suitable for recovery:

a) On Computer B, create a temporary working directory (such as \tmp).

b) Under the temporary directory, create an identical directory structure for the two log
locations. You may need to use the subst command to map local directories to drive
letters used on Computer A.

New Features 1.2.2

 16 Sybase Unwired Platform

c) Copy *.log to these locations.

d) Run dbvalid on the \tmp copy of the .db file.

WARNING: Do not run dbvalid on the backup copy itself (in the \SQLAnybackup
directory of this example). The command runs, but corrupts your .db file so it cannot
be used in recovery.

e) If validation succeeds, you are assured that your backup in \SQLAnybackup can be
used for recovery. You can delete the files in the \tmp and log directories.

If validation fails, the backup is not usable for recovery and you should try again.

Next
Sybase makes these recommendations for setting up your backup schedule:

• Schedule backups from Computer B for some reasonable frequency so that, in the worst-
case failure of a complete failure of Computer A, you do not lose too many transactions.

• Perform adhoc backups when there has been some major deployment of new Mobile
Business Object packages to Sybase Unwired Platform. Otherwise you may lose those
packages and have to redeploy them.

Restoration of the Installation File System
Restore the Sybase Unwired Platform installation file system from a backup.

To perform a normal restoration, use the file or disk backup utilities used to perform the
backup. Sybase recommends that you save the current installation directory before you restore
from backup.

Note: You may also need to restore the Windows registry from the backup done at the same
time.

Restoration of the Consolidated Database
Restore the Sybase Unwired Platform consolidated database and transaction logs from
backup after complete failure.

As discussed in Failure and Recovery Scenarios, if only one of C:, D:, or E: drives fail,
recovery should be automatic once you have completed the appropriate tasks.

These steps are required in case of complete failure of all three drives:

1. Restore the computer's C:, D:, and E: drives from backup.
2. Delete the *.db, *.log files from their normal places after you have restored the file

system.
3. Copy the *.db and *.log files from Computer B's backup directory to the normal

locations on Computer A.

Note: Copy the *.log files twice—once to the normal transaction logs directory, and once
to the mirrored transaction logs directory.

New Features 1.2.2

New Features 17

4. Restart Sybase Unwired Platform.
5. If there have been package deployments or other cluster-affecting operations since the last

database backups, the file-system data corresponding to the packages may be out-of-sync
with the database contents related to these packages. If this has occurred, the Sybase
Unwired Platform servers cannot fully start. The ml.log file indicates a mismatch
between the local cluster version and that of the current cluster. To recover from this:
a. Choose one of the Unwired Servers.
b. Shut down that server.
c. Edit the sup.properties file (UnwiredServer directory), and change the

cluster.version property value to match that of the current cluster as reported in
the logs.

d. Run updateProps -r from the same directory to apply the change into the
clusterdb.

e. Restart that Unwired Server.

Note: This server should be able to take over as the Sybase Unwired Platform primary.
Sybase recommends you redeploy all your packages (using the UPDATE option) to make
sure all the packages you expect to be available really are. All of your Sybase Unwired
Platform clients should delete their UltraLite databases, and perform full
synchronizations.

New Features 1.2.2

 18 Sybase Unwired Platform

New Features 1.2.1

This document includeds the Sybase Unwired Platform new features for 1.2.1, for both the
Eclipse and Visual Studio editions.

New Features - Eclipse Edition
New and enhanced features, updated documentation, and new troubleshooting topics.

The tables below provide a brief description of each feature and links to associated topics.

New Sybase Unwired Platform features

Feature Topics

A multilevel (chained) insert operation allows Web service in-
sert operations between mobile business objects that have a
defined relationship during one synchronization.

Creating Multilevel Insert Opera-
tions for Web-Service Mobile
Business Objects on page 22

Optimize device application and Unwired Server performance
by including a cache update policy when developing mobile
business objects.

Cache Update Policy on page 25

Specify custom result checking logic for SAP mobile business
objects.

Adding an SAP Result Checker on
page 35

Import Visual Studio projects into Unwired WorkSpace
(Eclipse).

Importing Visual Studio Projects
into Eclipse on page 41

Configure an SAP operation, so if it is successful, it always
commits.

Configuring an SAP Operation to
Commit on page 41

Use enterprise information system (EIS) properties as mobile
business object (MBO) parameters when making direct con-
nections from an SAP MBO to an EIS.

Modifying SAP Direct Connection
Properties on page 42

Documentation updates

Description Topics

Updated playback and synchronization parameter
documentation.

Playback and Synchronization Parameters
on page 43

New Features 1.2.1

New Features 19

Description Topics

Corrected formatting to display entire path for the
location of the driver.

Configuring Your Environment to Use a
JDBC Driver on page 47

Updated to reflect the automatic screen creation fea-
ture.

Using Drag and Drop to Add Mobile Busi-
ness Objects to the Flow Design on page
48

Updated to correct the description of how the Delete
Operation Screen option in Device Application De-
signer preferences works.

Automatic Screen Creation on page 50

Added the new Save Context and PIM actions. Screen Design Palette Options on page 50

Added the Logical Type and Data Type properties. Choice Properties on page 54

Radio Group Properties on page 55

Added the Launch PIM Application option. Adding a BlackBerry PIM Action on page
56

Removed the note about linked parameters not being
supported.

Generating a Windows Mobile Device Ap-
plication on page 58

Replaced "Configuring Your Environment for SAP"
with "Preparing the Unwired Platform Environment
for SAP Connections."

Preparing the Unwired Platform Environ-
ment for SAP Connections on page 45

Added new topic for developing a device application
for the Win32 .NET platform.

Developing Device Applications for
Win32 .NET Platforms on page 61

Corrected the implementation class names that are
documented in "Writing a Custom Result Set Filter."

Correction to Writing a Custom Result Set
Filter on page 64

Troubleshooting

Feature Topics

Configure Unwired Server properties only from the Ad-
ministration Console or by editing the sup.properties
file.

Restrictions for Configuring Unwired
Server Properties on page 64

Mobile business object (MBO) argument and column
names have no character length limits.

Argument and Column Name Length
Limitations on page 65

If you cannot preview mobile business objects that use a
JDBC driver, set automommitPreviewTran-
saction to true .

Cannot Preview Data on page 65

New Features 1.2.1

 20 Sybase Unwired Platform

Feature Topics

A Web service that contains a parent and a child hier-
archical data structure with the same column names
cannot be deployed.

Troubleshooting Mobile Business Object
Web Service Deployment Failure on page
65

In some cases, the default value supplied by the device
application is not recognized as a sync value in Unwired
Server.

Default Values are not Recognized as Syn-
chronization Values on page 66

SQLE_TOO_MANY_PUBLICATIONS error received
when synchronizing mobile business objects.

SQLE_TOO_MANY_PUBLICATIONS
Error on page 66

Device Application Designer does not generate GUI
fields for enterprise information system connection
property parameters so mobile users cannot configure
connection properties value in runtime.

Device Application Designer Does Not
Generate GUI Fields on page 66

Trailing space causes synchronization failure. Trailing Space Causes Synchronization
Failure on page 67

BlackBerry devices encounter out of memory errors if
trying to display more than 6000 records (rows) of data.

BlackBerry Devices Display a Maximum
of 6000 Records on page 67

When trying to open a device application on a Windows
Mobile device, a Cannot instantiate Ctl_image.FormUn-
titled1(application name) error is received.

Troubleshooting Windows Mobile Device
Applications on page 67

When synchronizing in the child screen of a device ap-
plication, if the parent data is missing, then old data still
displays in the child screen.

Synchronizing Device Applications that
Reference Related Mobile Business Ob-
jects on page 67

When generating a device application that uses locali-
zation in the Device Application Designer, a "Genera-
tion Failed: The locale that contains the basic locale of
locale must be included " error is received.

Generation Failed Error When Generating
a Device Application on page 67

After generating the device application code in the De-
vice Application Designer, launching the BlackBerry
Simulator, and synchronizing the device application, a
"Missing Sync Parameter" error is received.

Missing Sync Parameter Error Message on
the BlackBerry Simulator on page 68

New Features
These new features are included in Sybase® Unwired Platform version 1.2.1.

New Features 1.2.1

New Features 21

Creating Multilevel Insert Operations for Web Service Mobile Business Objects
Create a multilevel insert operation for two Web service mobile business objects (MBOs).

In this example, you have two MBOs, Order and OrderItem, that both have defined insert
operations: the OrderItem.insert operation requires the Order.id, but Order.id is assigned by
the enterprise information system (EIS) and not available until the order is created in the EIS.
You can create a multilevel insert operation to address this problem. When creating the
multilevel insert operation:

• Ensure that Order.insert operation returns a resultSet that has the newly created Order.Id as
one of the columns.

• Chain the two insert operations by creating the appropriate relationship.
• Ensure the association from Order to OrderItem is from Order.id.
• Ensure consistent naming: the Find By attribute of Order (ID) must match the ID

parameter of OrderItem.insert.

1. Create a Web service connection profile to the data source from which you created the
MBOs.

2. Create attributes of the parent MBO (Order). For example, you can drag and drop the Web
service data source onto the Mobile Application Diagram, and use the Quick Create
wizard to define the MBO.

Define the MBO operation (insert).

Note: Web service multilevel inserts support SOAP bindings only.

3. Click Finish.

4. Set or verify the Fill from attribute setting:

a) In the Mobile Application Diagram, double-click the operation that serves as the insert
operation for the parent MBO.

b) From the left side of the Properties view, select the Parameters tab.
c) Verify that each parameter name has a corresponding Fill from Attribute value

defined.

All parameters of the create operation in the parent MBO and the child MBO must be
set to the related Fill from attribute value. By default, the related value is set
automatically, but in some cases the value cannot be found, so double check the values.

d) From the left side of the Properties view, select the Attributes tab located on the left,
then the Attributes Mapping tab located on the top. Locate and select the Find by
check box for the attribute that serves as the primary-key equivalent for the parent
MBO (for example, Id).

5. Create the child MBO (OrderItem) the same way you created the parent – drag and drop
the data source onto the Mobile Application Diagram, and follow the Quick Create wizard
instructions to create the attributes and operations.

New Features 1.2.1

 22 Sybase Unwired Platform

6. From the Properties view, verify that each operation's (insert) parameter name has a
corresponding Fill from attribute setting.

7. In the Mobile Application Diagram, click Relationship, and use the wizard to define a
relationship between the MBOs. For example, link the Source object Order "Id" attribute
to the Target object OrderItem "Id".

Verify that the child MBO is not syncable, unless you are sure that the child MBO will be
synchronized either independently, or through the parent MBO. When the device
application designed from these MBOs runs, the child MBOs appear on the Synchronize
screen. If the device-application user attempts to synchronize any of the child MBOs, a
Missing-Sync-Param exception occurs.

8. Verify that Filter by is selected for the child MBO's attribute/parameter used in the
relationship.

Understanding Multilevel Insert Operations
In a multilevel insert, multiple mobile business objects are synchronized in a single operation.
The mobile business objects must have a defined relationship, and the insert parameters must
support the relationship.

Some business processes require multiple related enterprise information system (EIS)
operations; for example, creating a sales order with line items. The parent/child relationship is
often represented by primary key(PK) / foreign key(FK) attributes in the parent and child
mobile business objects (MBOs). When you construct these types of MBOs in an offline client
application, the primary-key and foreign-key values are transitory. When EIS operations are
called to create real data, the EIS systems generate the actual key values, and the primary key
of the parent is copied to the related child MBO creation operations. These types of operations
are known as "chained insert" or "multilevel insert."

• For JDBC MBOs using Sybase databases, dragging and dropping a table that contains
autoincrement columns (one mechanism for generating primary keys) automatically
creates the appropriate operations for obtaining the parent's generated keys and applying
them to the children.

• For other EIS types (non-Sybase databases, and applications where key generation does
not use the autoincrement technique), you must define the insert operations in such a way
that allows the child to obtain the generated keys.

Typically, in a chained-insert operation, you:

1. Create the parent MBO, and indicate the attributes that constitute that MBO's primary
key.

2. Create the child MBO and draw a relationship from the parent MBO's primary-key
attributes to the child's foreign-key attributes.
Unselect the child MBO's Syncable property, unless you are sure that the child MBO will
be synchronized either independently or through the parent MBO. Otherwise, when the
device application designed from these MBOs runs, the child MBOs display on the

New Features 1.2.1

New Features 23

"Synchronize" screen. If the device application user invokes "Synchronize" on any of the
child MBOs, a Missing-Sync-Param exception occurs.

3. Define the insert operations for the parent and child MBOs.
The insert operation for the parent MBO must return a single row that contains the
primary-key values. The column labels must match the attribute names of the parent MBO.
With this information, and the relationship-mapping data, Unwired WorkSpace modifies
the input parameters for the insert operation of the child MBOs by replacing the foreign-
key attributes with the ones returned from the parent MBO's insert operation. For example:
CREATE TABLE parent(pk int autoincrement primary key, p1
varchar(30),...)
CREATE TABLE child(fk int references parent.pk, ...)

The parent insert MBO is defined as:
INSERT INTO parent(p1, ...) VALUES(?, ...); SELECT * FROM parent
WHERE pk = @@IDENTITY;

This batch query inserts the new parent row, and returns a single row containing the newly
generated primary-key value.

You must understand the key-generation mechanism used by the EIS application from which
you are developing, and be able to determine how to retrieve the newly generated keys during
the insert operation (frequently, this logic is wrapped in a stored procedure).

This same technique applies to Web service, SAP, and other EIS systems, though the insert-
operation definitions differ.

Note:

• The from attribute of the insert operation parameter is used to infer the foreign-key
information of the insert operation parameter. So the name of the attribute (which is the
target of the association from the primary key of the parent) and parameter of the insert
operation need not be the same.

• The insert query returns the complete newly generated row, not just the identity column.
The single row that is returned must contain all of the columns referenced in the
relationship between the parent MBO and the child MBO, and the labels of the columns
must match the from attribute names of the parent MBO.
Not all columns in the inserted row are required. For example, not all columns are selected
or required for a drag-and-drop database operation.

• A multilevel insert records all logs under the parent MBO. All pending actions are also
listed under the parent MBO.

Errors may occur if:

• The client sends the parent ID, which does not correspond to the server’s interpretation of
the parameters of the insert operation.

• The customer's primary key consists of more than one attribute.
If the child has multiple foreign-key attributes pointing to the parent, the relationship
should list all relevant parent-to-child attributes. As long as the row returned from the

New Features 1.2.1

 24 Sybase Unwired Platform

parent insert contains all those columns, the child insert should work; all the foreign-key
fields are populated from the parent insert result set.

• The insert operation of the parent fails at the back end.
• There is no association relationship between customer and order in which the source

attribute/parameter in customer is a primary key and the target parameter in order is a
foreign key to customer.

• The result set generated by the parent’s insert operation does not have the required single
row with the newly created primary key of that operation.

Note: Unwired Server does not report the specific reason of a multilevel insert failure. If you
receive errors, or if the insert fails, check each of these items to try and identify the problem.

Cache Update Policy
Fine-tune device application and Unwired Server performance by defining a cache update
policy for mobile business object operations.

Setting a cache update policy for mobile business object (MBO) operations gives you more
control of both Unwired Server interactions with the enterprise information system (EIS) to
which the MBO is bound, and consolidated database updates. Fine-tuning these interactions
and updates improves both Unwired Server and device application performance.

Note: Consolidated database, CDB, and cache all refer to the same thing, and the terms are
used interchangeably.

• MBO operations perform specific functions based on their definition:
• Primary read operation – the EIS operation used to define and initially populate the

CDB (from the EIS) for the MBO.
• Create, update, delete (CUD operations) – modify EIS data depending on the definition

of the operation. Unwired Server maintains a cache (CDB) of back-end EIS data to
provide differential synchronization and to minimize EIS interaction. When an
operation is submitted from a device application to the EIS, the cache must be
refreshed.
While these types of bulk-fetch and CDB caching are effective in reducing the number
of interactions required with the back-end EIS, and work well in some other cases
(where MBO data is occasionally updated in the back-end), performance suffers if
changes are initiated from Unwired Server (by way of MBO operations), or if changes
are frequent.
The cache update policy introduces alternative methods of updating the cache at finer
granularity, which improves performance.

• Alternate read operations – can be invoked either from:
• A chained read cache policy to augment CUD operations by chaining an alternate

read operation to a CUD operation.

New Features 1.2.1

New Features 25

• A data change notification, which provides a mechanism to invoke MBO
operations, including alternate read operations. This mechanism is independent of
a cache update policy.

• Cache update policy – determines how the CDB is updated after an operation. You can set
the cache update policy for operations, with these exceptions:
• Operations defined as "Other" do not support alternate read or a cache update policy.
• When invoked, alternate read operations always use the apply operation results cache

update policy.
Versions of Sybase Unwired Platform earlier than 1.2.1 supported only the invalidate
cache policy—any CUD or other operation issued from a device application invalidated
the cache and required a primary read operation to refresh the cache.
In Unwired Platform version 1.2.1, these are the five cache update policies you can
associate with MBO CUD operations:
• Invalidate cache
• No invalidate cache
• Apply operation result
• Apply operation parameters
• Chained read
When an MBO CUD operation is called, its cache update policy determines how operation
results are applied to the consolidated database. Generally, there are two ways of calling an
MBO operation:
1. Device client calls the operation.
2. A data change notification (DCN) request contains the operation.

Note: Other methods used to update the CDBs that are external to MBO operations, and not
associated with cache update policies include:

1. EIS-initiated DCN – an HTTP request to Unwired Server, in which the DCN request
contains the payload (information about the changed data).

Note: EIS-initiated DCN also supports HTTP POST requests which provides a higher
level of security.

2. Scheduled data refresh – defined in Sybase Control Center; polls the EIS for changes at
specified intervals.

Setting a Cache Update Policy
A Cache Update Policy establishes criteria for updating the Unwired Server cache (also called
the consolidate database, or CDB) for a given mobile business object (MBO) operation at a
finer granularity than the primary read operation.

Controlling how create, update, and delete (CUD) operation results are applied from the
enterprise information system (EIS) to the CDB maximizes efficiency and performance for
both Unwired Server, and device applications.

New Features 1.2.1

 26 Sybase Unwired Platform

1. Access the Cache Update Policy tab from an existing operation by either double-clicking
the operation or right-clicking and selecting Edit.

2. From the Properties view for the operation, or from the Cache Policy tab in the Operation
edit dialog, select the cache update policy:

Cache Update
Policy

Description

Apply operation re-
sult policy

Updates the CDB based on the returned result set of the called MBO
operation.

Apply operation pa-
rameters policy

Updates the CDB based on the operation’s parameters.

Invalidate cache poli-
cy

Invalidates the CDB after the client calls the MBO operation, and re-
quires a primary read operation to fetch all data again from the EIS. This
is the default cache update policy.

No invalidate cache
policy

The CDB remains unchanged after the client calls the MBO operation.

Chained read policy Chain an alternate read operation to the MBO operation. The CDB is
updated with the results returned by the alternate read operation. Choose
an existing alternate read operation or create a new one by selecting
Create.

The alternate read operation is no different from an operation with an
apply operation result cache update policy. Specifying an alternate read
type operation enables chaining it to the MBO operations to get the
desired result. The difference is that they are used only in conjunction
with an MBO CUD operation.

Apply Operation Result Policy
Use the apply operation result policy to update the consolidated database (CDB) based on the
returned result set of the called MBO operation.

The operation returns a record set that is processed and applied to the CDB.

This example uses the customer table from the sampledb database, which is accessible from
the "My Sample Database" connection profile.

1. To create an MBO, drag and drop the sampledb customer table onto the Mobile
Application Diagram. In the Quick Create wizard, accept the default operations.

2. In the Properties view, double-click the create operation to open the operation.
3. Select the Definition tab, and click Edit to update the SQL statement to:

INSERT INTO sampledb.dba.customer
(id,
fname,
lname,
address,
city,

New Features 1.2.1

New Features 27

state,
zip,
phone,
company_name)
VALUES
(@OP["id"=""],
'@OP["fname"=""]',
'@OP["lname"=""]',
'@OP["address"=""]',
'@OP["city"=""]',
'@OP["state"=""]',
'@OP["zip"=""]',
'@OP["phone"=""]',
'@OP["company_name"=""]'
)
SELECT * FROM customer where id = @OP["id"=""]

4. Select the Cache Update Policy tab, and select Apply operation result.
5. CDB and client data updates are based on the operation definition and the apply operation

result policy; other enterprise information system (EIS) changes are ignored.

Apply Operation Parameters Policy
Use the apply operation parameters policy to apply the values of an operation's parameters
directly to the cache (CDB).

This example uses the department table from the sampledb database, which is accessible from
the "My Sample Database" connection profile.

1. To create a mobile business object (MBO), drag and drop the department table from the
sampledb onto the Mobile Application Diagram.

2. Set the update operation's cache update policy to Apply Operation Parameter.
3. Deploy the MBO.
4. From Sybase Control Center (SCC) Administration Console, set the MBO's Cache

Interval to one hour (or any value long enough to complete this test).
5. Sync the MBO from a test client or device application. The client, CDB, and EIS all have

the same data:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

6. Call the MBO's update operation from the test client or device application to update this
record:
dept_id=400, dept_name="QA", dept_head_id=1576

The EIS is modified:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501

New Features 1.2.1

 28 Sybase Unwired Platform

 200 Sales 902
 300 Finance 1293
 400 QA 1576
 500 Shipping 703

7. Sync the MBO. Based on the apply operation parameters policy associated with this
operation:
1. The dept_id=400 record is updated using the update operation's parameter values (an

inferred read), and becomes:
dept_id=400, dept_name=QA, dept_head_id=1576

2. The CDB and client are updated, resulting in a client and CDB that contains:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 QA 1576
 500 Shipping 703

Invalidate Cache Policy
Use the invalidate cache policy only when other policies cannot be implemented or
performance is not an important consideration.

An operation that uses the invalidate cache policy:

1. Performs the create, update, or delete (CUD) operation. For example, insert a new record
in the enterprise information system (EIS).

2. Invalidates the cache (CDB) for that mobile business object (MBO) instance.
3. Requires the MBO instance in the CDB to be refreshed from the EIS (this is known as

playback). Internally, the MBO's primary read operation executes to retrieve data from the
EIS and repopulates the cache.
Invalidate cache is the default cache update policy for any CUD operation for which there
is no cache update policy set.

No Invalidate Cache Policy
Use the no invalidate cache policy when changes to the enterprise information system (EIS) do
not need to be immediately passed to the consolidated database (CDB).

An operation that uses the no invalidate cache policy updates the EIS without invalidating the
cache (CDB) for that instance of the MBO. Because cache is not invalidated, it may be
different from the EIS. The cache is updated later, for example, based on the Cache Interval
set on Unwired Server. The no invalidate cache policy eliminates nonessential CDB refreshes,
which improves performance.

Note: Consolidated database, CDB, and cache all refer to the same thing, and the terms are
used interchangeably.

This example uses the department table from the sampledb database, which is accessible from
the "My Sample Database" connection profile.

New Features 1.2.1

New Features 29

1. To create a mobile business object (MBO), drag and drop the sampledb's "department"
table onto the Mobile Application Diagram.

2. Set the update operation's cache update policy to No Invalidate Cache.
3. Deploy the MBO.
4. From Sybase Control Center (SCC) Administration Console, set the MBO's Cache

Interval to one hour (or any value long enough to complete this test).
5. Sync the MBO from a test client or device application. The client, CDB, and EIS all have

the same data:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

6. Call the MBO's update operation from the test client or device application to update this
record:
dept_id=100, dept_name="SUPQA", dept_head_id=501

Sync the MBO. The EIS is modified:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 SUPQA 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

Based on the no invalidate policy associated with this operation, the CDB and client
remain unchanged because the cache (CDB) remains valid:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

Chained Read Policy
Use the chained read policy to chain an alternate read operation to a create, update, or delete
(CUD) operation. This updates the consolidated database (CDB) at a finer granularity than
could be achieved with just the CUD operation.

The parameters of the alternate read operation should be a subset of the parameters of
operation to which it is chained. The parameter values of the chaining operation are passed to
the alternate read operation, and the results returned from the alternate read operation are
applied to the CDB.

This example uses the department table from the sampledb database, which is accessible from
the "My Sample Database" connection profile.

New Features 1.2.1

 30 Sybase Unwired Platform

1. To create a mobile business object (MBO), drag and drop the sampledb table department
onto the Mobile Application Diagram and accept the default operations, when prompted in
the Quick Create wizard.

2. Double-click the create operation to open the operation in the Properties view.
3. Select the Cache Update Policy tab, and select Chained read.
4. Select create to launch the New Operation wizard to define and add the alternate read

operation:
• Name – AR
• Operation type – ALTERNATE READ
• Specify data source – My Sample Database

Select Next and enter the SQL definition:
select * from department where dept_id < 400

5. Click Finish.
6. Deploy the MBO to Unwired Server.
7. The result is an MBO that when accessed from a device application or test client (assuming

that the MBO's Cache interval is long enough to complete the test without requiring a
cache refresh) behaves as follows:
a. The create operation inserts records into the EIS.
b. The alternate read operation updates the CDB only for records where dept_id < 400,

and is called after the create operation.

From an end-to-end perspective:

1. The initial synchronization of this MBO from a test client or a device application results in
the client, CDB, and EIS with the same data:
dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703

2. This record is inserted into the EIS (using some method other than the MBO operation):
dept_id=1000, dept_name="QA", dept_head_id=501

The EIS now contains:
dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703
1000 QA 501

3. The client and CDB are not updated with the new record.
4. The client invokes the create operation to insert the record:

New Features 1.2.1

New Features 31

dept_id=350, dept_name="QA", dept_head_id=501

5. The client invokes the alternate read operation and sync's the MBO. While the EIS
contains dept_id=1000 and dept_id=350:
dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703
1000 QA 501
350 QA 501

Based on the alternate read operation's definition, the only new record retrieved from the
EIS and updated in the CDB and client is dept_id=350 record:
dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703
350 QA 501

Defining Alternate Read Operations
Define alternate read operations that augment mobile business object (MBO) operations when
used with a chained read policy.

A primary read operation is the enterprise information system (EIS) operation for an MBO
that defines how the MBO is populated. In Sybase Unwired Platform 1.2.1, a new operation of
type "read" has been introduced. A read operation, also called an alternate read operation,
always uses the apply operation result cache policy when it returns a record set that is applied
to the consolidated database (CDB, or cache). You can define any number of alternate read
operations for an MBO. In general alternate read operations return data corresponding to a
finer granularity than a primary read of the MBO, enabling the cache to be updated at a finer
granularity. Alternate read operations can be chained to any create, update, or delete (CUD)
operation of an MBO. The Device API does not directly support calling the alternate read
operations, but you can invoked them independently using data change notification (DCN)
requests.

1. Define an alternate read operation using one of these methods :

• Select the Operation icon from the Mobile Application Diagram palette and click the
Operations portion of the MBO.

• Select Add from the Operations tab of the Properties view.
• You can also create alternate read operations when you assign a chained read cache

policy to an MBO operation.

2. From the New Operation wizard, name the operation, and specify the Alternate Read as the
Operation type.

New Features 1.2.1

 32 Sybase Unwired Platform

3. Specify the data source type and connection profile from which you are creating the
operation, and click Next.

4. Complete the operation definition according to the data source type to which you are
binding the operation.

For example:
• Database datasource – select any of the operations.
• Web service datasource – from the XSLT Definition screen, select Configure XSLT to

access the XSLT.

5. Modify the operation to meet the intended need. For example, you may have an MBO
operation that inserts a record into the database, then the alternate read operation retrieves
the record only if it affects a particular user.

Alternate Read and Cache Update Policy Validation Rules
Validation rules are enforced when you define an alternate read operation, set a cache update
policy, and, in some cases, when you deploy the mobile business object (MBO) to Unwired
Server.

Table 1. Alternate read and cache update policy validation error messages

Severity and mes-
sage

Description Occurs when:

Error: No ''Find By'' at-
tributes set for the mo-
bile business object,
cannot create alternate
read type operation.

While a primary key for the
data source is not necessary
(Web service data sources do
not have primary keys), the
MBO must have Find by set
for at least one attribute.

Creating an alternate read operation

Error: The columns of
the alternate read opera-
tion "{0}" must contain
the ''Find By'' attributes
of the associated mobile
business object.

The result set columns in the
alternate read operation do not
contain all the necessary Find
by attributes.

Creating an alternate read operation

Error: Cache update pol-
icy of operation ''{0}'' is
set to ''{1}'', but there are
no attributes with ''Find
By'' set for the mobile
business object.

The MBO must have at least
one Find by attribute.

When setting an operation's cache update
policy to apply operation result, apply
operation parameter, or chained read

New Features 1.2.1

New Features 33

Severity and mes-
sage

Description Occurs when:

Error: Operation ''{0}'':
when the cache update
policy is ''Apply Opera-
tion Parameters'', the op-
eration parameters' ''Fill
From Attribute'' must
have ''Find By'' set.

The Fill from attibute property
of the operation's parameter
must contains all of the MBO's
key attbributes (Find by attrib-
utes). This can be done in Pa-
rameter tab of the Opeartion's
Properties view.

Setting the cache update policy to apply
operation parameter

Error: Must specify an
alternate read operation
for operation ''{0}''
when the cache update
policy is ''{1}''.

No alternate read operation is
specified in a CUD operation
whose cache update policy is
"chained read."

Defining a create, update, or delete
(CUD) operation's cache update policy to
chained read, or when a chained alternate
read operation is deleted

Error: Parameters of the
chained operation ''{0}''
should be a subset of the
parameters of the chain-
ing operation ''{1}''.

The parameters of the chained
operation must be a subset of
the parameters of the chaining
operation.

Selecting an alternate read operation
while defining a chained read policy

Warning: The columns
of the read operation
"{0}" must cover 'filter
by' parameters of the as-
sociated mobile busi-
ness object.

The resultset of the alternate
read operation does not con-
tain all of the MBO's "Filter
by" attributes or parameters.

Defining an alternate read operation

Warning: Alternate read
operation ''{0}'' must
cover all mobile busi-
ness object attributes
with ''Filter By'' set.

Alternate Read Requirements
Mobile business objects must meet certain requirements before you can add alternate read
operations to them.

Before you can add an alternate read operation to a mobile business object (MBO), the MBO
must meet these requirements:

• The MBO must be bound to a data source that has one or more Find by attributes set.
• All columns in the record set returned by the alternate read operation should contain all key

attributes.

New Features 1.2.1

 34 Sybase Unwired Platform

• The result set of the alternate read operation must contain all MBO playback and sync
parameters (Filter by parameters and attributes).

Alternate read operations are filtered from MBO code and not passed to the Device
Application Designer.

Covering the Playback and Synchronization Parameters of a Primary Read Operation
The result set of an alternate read operation must contain the playback and sync parameters of
the mobile business object (MBO).

For an alternate read to be valid, its result set must include any MBO playback and sync
parameters.

For example, create three MBOs by dragging and dropping the sampledb.dba.customer data
source onto the Mobile Application Diagram. Modify the MBO definition with the following
SQL statement, and set Filter by for both the "state" parameter and the "company_name"
attribute.
SELECT id, fname, lname, address, city, state, zip, phone,
company_name FROM
sampledb.dba.customer WHERE state=@OP["state"="CA"]

This simple example illustrates a validation error. Create an alternate read operation for each
MBO using the SQL statements:

• Customer1 MBO
select * from customer

This is valid, since the alternate read result set contains the "state" and "company_name"
playback and sync parameters.

• Customer2 MBO
select id, fname, lname, phone, company_name from customer where
company_name=@OP["company_name"="AAA"]

A warning displays since "id, fname, lname, phone, company_name" does not contain the
"state" playback and sync parameter.

Note: Data in the @OP clause is not used for validation.

• Customer3 MBO
select id, lname, fname, phone, company_name from customer where
state=@OP["state"="CA"]

This query also generates a warning. Although the read operation's parameter contains
"state," the result set does not contain the "state" playback and sync parameter. It contains
another sync parameter "company_name."

Adding an SAP Result Checker
Create or add an SAP result checker when you edit Attribute or Operation properties for a
mobile business object derived from an SAP data source under the Definitions tab. You can

New Features 1.2.1

New Features 35

also configure SAP result checkers when you create an object. You can choose a predefined or
a custom SAP result checker, if you have created one.

1. In the New Attributes or New Operation wizard, in the Result checker section, select from
these options:

Option Description

Default If there is a RETURN parameter found in the
currently selected BAPI operation, this option
is automatically selected. This option uses the
com.sybase.sap.DefaultSAPResultCheck re-
sult checker.

None If there is not a RETURN field found in the
currently selected BAPI operation, this option
is automatically selected. This option uses the
com.sybase.sap.NoOpSAPResultCheck result
checker.

Custom Select this option to specify a custom SAP re-
sult checker.

2. (Optional) If you have not yet created the result checker classes, then in the Result checker
area of the New Attributes or New Operation dialog, select Custom and click Create to
run the New Java Class wizard.

3. If prompted, add a Java nature.

a) Click Yes to add a Java nature. In Eclipse, a Java nature adds Java-specific behavior to
projects. A Java nature is recommended because you are adding a Java class to it. By
default Unwired Platform projects do not include all the required behaviors for Java
development.

In the New Java Class wizard, enter:

Option Description

Source Folder By default, this is the Filters folder from your
project. Click Browse to locate the source
folder for the Java class.

Package Click Browse to locate the package for the
new Java class.

Note: Sybase recommends that you specify
the package and do not leave this field blank
as the JDK 1.4 Java class in the default pack-
age cannot be resolved in other packages.

New Features 1.2.1

 36 Sybase Unwired Platform

Option Description

Enclosing type Select to choose a type in which to enclose the
new class. You can select either this option or
the Package option, above. Either enter a val-
id name or click Browse.

Name Enter a name for the SAP result checker class.

Modifiers Select the Java class modifiers.

Superclass By default, this is filled in with java.lang.Ob-
ject.
1. Click Browse.
2. In the Superclass Selection dialog, enter:

• Choose a Type
• Matching Items

3. Click OK.

Interfaces By default, this is populated with the
com.sybase.sap.SAPResultChecker inter-
face. Click Add to select interfaces imple-
mented by the new class.

Which Method Stubs Would You Like to
Create

• Public Static Void Main
• Constructors From Superclass
• Inherited Abstract Methods

Do You Want to Add Comments Select Generate Comments to add com-
ments.

Note: If you set the Java project compiler
compliance level to later than 1.4, you receive
comments about missing classes. Set the Java
project compiler compliance level to 1.4 or
earlier. Java projects that are configured to
compile with a compiler compliance level
later than 1.4, have a known issue, where Java
files referring to the RIM API have missing
class errors.

Note: The wizard generates a skeleton Java source file only.
b) Click No if you do not want to add the Java nature to the selected Mobile Application

Project.
c) Click Finish in the wizard to compile the java skeleton source file and add the skeleton

java checker class to the MBO.
The SAP result checker you created appears next to the Custom option.

4. In the Result checker section, next to the Custom option, click Search to find an existing
SAP result checker class.

New Features 1.2.1

New Features 37

a) In the Select SAP Result Checker Class dialog, select the SAP result checker class and
click OK.

The SAP result checker class appears next to the Custom option.

Note: A valid SAP result checker is a Java class that implements
com.sybase.sup.sap.SAPResultChecker. Only classes implementing the correct
interface appear in the search dialog.

5. Implement the new class by writing the implementation on top of the skeleton, as
documented in the topic, Writing a Custom SAP Result Checker.

6. Test and preview the result of your result checker:

a) To reuse input values you have already saved for previous previews, select Existing
Configuration. Otherwise, load defaults, or create a new set of input values expressly
for this preview instance.

b) Click Preview.

If the data runs successfully, Execution Succeeded appears at the top of the Preview
dialog and data appears in the Preview Result window.

Writing a Custom SAP Result Checker
An SAP result checker is a custom Java class that implements error checking for SAP mobile
business objects.

Since not all SAP BAPIs or RFCs use the "standard" error reporting technique, you can
implement your own custom SAP result checker. This allows you to check any field for errors,
or implement logic that determines what constitutes an error, and the severity of the error.

1. Provide a Java class that implements the SAPResultChecker interface:

package com.sybase.sup.sap;
public interface SAPResultChecker
{
 /**
 *
 * @param f - JCO function that has already been executed.
 * Use the JCO API to retrieve returned values and determine if
the RFC has executed
 * successfully.
 * @return a single Map.Entry. The boolean "key" value should
be set to true if the
 * RFC is deemed to have succeeded. Normal result processing
will ensue.<P>
 * If the String value is not empty/null, that value will be
treated as a warning message,
 * which will be logged on the server,
 * and returned as a warning in transaction logs to the
client.<P>
 * Set the key value to false if it is deemed the RFC has
failed. The String value will
 * be thrown in the body of an exception. The error will be
logged on the server, and the

New Features 1.2.1

 38 Sybase Unwired Platform

 * client will receive a transaction log indicating failure,
including the string value.
 */
 Map.Entry<Boolean, String> checkReturn(JCO.Function f);
}

There are two SAPResultChecker implementations located in %SUP_HOME%
\Servers\UnwiredServer\uep\tomcat\webapps\onepage\samples
\sap directory, which you can modify and reuse as custom result checkers:

• DefaultSAPResultCheck – the default SAP result checker.

• NoOpSAPResultCheck – this result checker always returns a successful result.

2. Save any classes you create to an accessible Unwired WorkSpace location. This allows
you to select the class when you configure the SAP result checker for your mobile business
object.

Deploying SAP Result Checker Classes to Unwired Server
Before deploying SAP mobile business objects that use result checker classes, copy the
compiled classes to <Unwired-Server-install>\lib\filters
\<packageName> on the primary Unwired Server machine.

You can also place result checker classes into a directory structure; the root of which should
start at packageName. During cluster synchronization, the SAP result checker classes are
automatically distributed to other Unwired Servers in the cluster.

1. (Optional) To maintain and deploy a single file, create a Java archive of all your
classes.

2. Choose the Unwired Server target location for the result checker classes, dependencies,
and third-party JARs:

• To avoid restarting Unwired Server, copy either the JAR file or the individual class files
to:
<Unwired-Server-install>\lib\filters
\<DeploymentPackageName>.

For example, if you have a ResultChecker_1.0.0 package and a
com.acme.filters.ResultChecker result checker class, create
<Unwired-Server-install>\lib\filters
\ResultChecker_1.0.0\com\acme\filters
\ResultChecker.class. Or, create acmeFilters.jar from the
com.acme.filters.ResultChecker classes, and copy it to <Unwired-
Server-install>\lib\filters
\ResultChecker_1.0.0\acmeFilters.jar.

• To restart Unwired Server after deployment, copy the classes to:
<Unwired-Server-install>\lib\filters\.

3. Deploy the SAP mobile business object to Unwired Server.

New Features 1.2.1

New Features 39

Editing the SAP Result Checker
Change the SAP result checker settings using the Change Definition dialog.

1. Right-click inside the Mobile Application Diagram and select Show Properties View, or
select Window > Show View > Properties.

2. In the Properties view, click the Attributes or Operations tab, then the Definition tab.

3. Click Edit.

4. Make your changes in the Change Definition dialog, and click OK.

Refactoring an SAP Result Checker
When an SAP result checker is deleted, renamed, or moved, update its references
automatically.
Deleting References to an SAP Result Checker
Delete all references to an SAP result checker from the workspace.

1. In WorkSpace Navigator, select the mobile application project that contains the SAP result
checker, and expand the Filters folder.

2. Right-click the SAP result checker and select Refactor > Delete.

3. In the Confirm Delete dialog, verify the selected references, and click OK.

Renaming an SAP Result Checker
Rename an SAP result checker, and update its references in the workspace.

1. In WorkSpace Navigator, select the mobile application project that contains the SAP result
checker you want to rename, and expand the Filters folder.

2. Right-click the SAP result checker, and select Refactor > Rename.

3. In the Rename Type dialog, verify the changes, and click Finish.

Moving an SAP Result Checker
Move an SAP result checker to another location, and update its references in the workspace.

1. In WorkSpace Navigator, select the mobile application project that contains the SAP result
checker you want to move, and expand the Filters folder.

2. Right-click the SAP result checker, and select Refactor > Move.

3. In the Move dialog, confirm the changes, and click OK.

Searching for References to an SAP Result Checker
Search for mobile business objects that reference SAP result checker classes.

SAP mobile business objects can share SAP result checker classes, within a single project or
across multiple projects.

1. In WorkSpace Navigator, in the mobile application project, expand the Filters folder.

New Features 1.2.1

 40 Sybase Unwired Platform

2. Right-click the SAP result checker, and from the context menu, select References >
Mobile Business Object.

The search results appear in the Search pane.

Importing Visual Studio Projects into Eclipse
Use the native Eclipse Import feature to import exported Visual Studio Unwired WorkSpace
projects into Unwired WorkSpace (Eclipse).

1. Select File > Import.

2. Expand the General folder, select Existing Projects into Workspace, and click Next.

3. Select the root directory—or archive file—that contains the projects you are importing.

4. Projects display in the Projects section. Select the projects you want to import, select
Copy projects into workspace, and click Finish.

The imported projects appear in WorkSpace Navigator.

Updating Imported Projects
After importing a Visual Studio project into Eclipse,you must manually perform several tasks.
This is due to differences between Visual Studio and Eclipse models (for example, different
levels of feature support for each platform), after importing a Visual Studio project into
Eclipse you must manually perform some steps to correct warnings and errors.

Issue Solution

Web service method information is not imported. Manually define the Web service methods after
importing the project.

SAP BAPI definitions are not imported. Manually set the BAPI definitions after importing
the project.

Configuring the SAP AutoCommit Feature
Configure an SAP operation, so commit is always called after the operation succeeds.

For an SAP operation, if the AutoCommit feature is enabled (requireCommit property is
set to true), commit is always called following a successful operation; if the operation fails,
changes are rolled back. By default, the AutoCommit feature is enabled; if disabled, you must
explicitly call commit after the operation succeeds.

1. In the Mobile Business Object Properties diaglog, select Attributes or Operation, then
click the Definition tab.

2. Click Edit.

3. To enable the AutoCommit feature, check Commit SAP Operation; to disable, uncheck
Commit SAP Operation.

4. Click OK.

New Features 1.2.1

New Features 41

Modifying SAP Connection Properties
Use SAP connection properties as mobile business object (MBO) parameters when making
connections from an SAP MBO to an enterprise information system (EIS).

Modify SAP Java connector (JCo) connection properties when creating or editing an SAP
mobile business object. You can then use these connection properties as parameters, for
example, as personalization keys or default values.

Modify connection properties either from the Mobile Business Object Creation wizard or the
Properties view.

1. In the Definition Window of the Mobile Business Object Creation wizard, expand
Runtime Data Source Credential and Connection Properties.

2. The Connection Properties table displays the configurable connection properties. The
Property column is read-only, but you can modify SAP JCo connection properties:

• You can either input a value or select a personalization key from the drop down list for
the property. You can also create a new personalization key for any property except the
language property, which does not support personalization.

• The codepage property does not appear in the table; it is calculated from the language
and cannot be modified.

• Set the Unicode property to either true or false.

3. To modify connection properties after the MBO is created:

a) From the Properties view, select the Attributes tab on the left, then the Definition
tab.

b) Click Edit.
c) Modify as required and click OK.

Once you have created or modified your MBO, you can use these parameters as default values
and personalization keys as needed.

At runtime, you can manage SAP connection properties as parameters. For example, if you
have an SAP SalesOrder.CreateFromData1 operation that inserts a sales order for a
particular user that occurs in the context of a known SAP user, the user's credentials can be
used in the insert operation.

Documentation Updates
These documentation updates apply to Sybase Unwired Platform version 1.2.1.

New Features 1.2.1

 42 Sybase Unwired Platform

Playback and Synchronization Parameters
Combine playback (refresh) and synchronization (sync) parameters to control the way that
data is cached in the consolidated database (CDB) in Unwired Server, and filtered and
returned to a device application.

Mobile business object (MBO) playback and sync parameters affect the data returned from the
enterprise information system (EIS) to the Unwired Server cache, called the consolidated
database, or CDB, as well as filtering the data before it is returned to the device application.

Parameters Result

Playback=none

sync=none

The entire table is downloaded to the device. For example:

select * from sampledb.dba.customer

Playback=none

sync=region

Only customers of a specific region are downloaded to the device.
Typically, region is paired with a personalization key. For exam-
ple, a sales representative living and working in the western region
is interested only in customers from that region, which can also be
set as the default value:

select cust_id, cust_name, region from
sampledb.dba.customer where re-
gion=@OP["region"="western"]

Playback=region

sync=region

Occurs if customer playback requires a region parameter (which is
also the sync parameter). This scenario is more likely for Web
service and SAP MBOs than for database MBOs.

Playback=username, password

sync=region

Playback only for a particular user (with proper authentication)
using the username and password parameters, but synchronize
based on the region:

select cust_id, cust_name, region from
sampledb.dba.customer where re-
gion=@OP["region"="western"], for user A.

Overriding the Default Filter by Setting
You may want to override the default attribute/parameter Filter by setting defined in Unwired
WorkSpace.

By default:

• Filter by is unselected for profile arguments.
• Filter by is selected for non profile arguments.

New Features 1.2.1

New Features 43

You may want to change the default Filter by setting after dragging and dropping a data source
to create the MBO, then editing the MBO definition by adding any result-affecting parameter
(which must have Filter by selected), for example:

select * from sampledb.dba.sales_order where sales_rep =
'@OP["sales_rep"=""]

Since different values of "sales_rep" generate different result sets, the parameter "sales_rep" is
result-affecting.

An operation that includes user name and password parameters does not affect the results; in
this case leave Filter by unselected.

Note: Sometimes profile parameters affect results, for example, a Web service that returns
different results for different users. Unwired Server cannot determine (either at deployment or
runtime) whether a parameter is incorrectly marked, you must override the default.

In summary, when developing MBOs, you must select Filter for MBO parameters that affect
results and leave it unselected for MBO parameters that do not affect results. Do not change
the default Filter by setting for an MBO parameter unless you have a profile parameter for
which different values of the parameter return different results.

Table 2. Attribute/parameter usage and Filter by settings

Type Playback? Sync? Description

Attribute No Yes An attribute is a sync parameter and the table must
be filtered further by that column for downloading
to the device.

Profile parame-
ter

Yes No A playback parameter is not a sync parameter if it
does not affect the playback results. This is typical
of profile parameters such as user name and pass-
word. However, some profile parameters, such as
an e-mail object, do affect results.

When developing MBOs, profile parameters that
do not affect playback results have a default setting
of unselected for Filter by. If a different login pro-
duces different results, unselect Filter by.

New Features 1.2.1

 44 Sybase Unwired Platform

Type Playback? Sync? Description

Operation pa-
rameter

Yes Yes Playback parameters, for example region, almost
always affect the results and as such are also sync
parameters.

Operation-specific parameters, such as a custId
parameter in an orders MBO, are invariably result-
affecting. The default setting for Filter by for these
parameters is selected, and there is rarely a reason
to change that setting.

An example of an operation parameter: Say you have a "WorkOrder" MBO that includes an
"assigned_to" parameter and a "customer" parameter. Users can search for work orders that
have been assigned to themselves, but only to retrieve work orders related to a particular
customer. While defining this MBO:

• Select the "assigned_to" parameter as Filter by because it partitions the "WorkOrder"
MBO data by user.

• Associate the "login_name" personalization key to this parameter so it does not have to be
explicitly passed from the client for each sync.

If you want the device application to have work order data for only one customer at a time,
unselect Filter by for "customer". Each time a user changes their customer parameter,
Unwired Server reads back work orders for only that customer. Since the work orders are all
different from the previous customer, a differential calculation deletes all previous work order
rows in the Consolidated Database (CDB) for the current user, and inserts new rows with the
new work orders. The differential sync deletes all old rows and insert new ones on the client.

If you unselect Filter by for both the user and customer, the entire CDB table is emptied each
time a user syncs. This behavior is almost never desired.

Preparing the Unwired Platform Environment for SAP Connections
The SAP JCO connector is used by all Unwired Platform components. Therefore, Sybase
recommends that you make all changes concurrently in a distributed environment for
development and production installations of Unwired Platform.

Prerequisites
Before you can access the SAP Web site, you must have an SAP account.

These steps describe the common tasks for setting up an SAP environment. Other details, such
as where to copy files, differ by component.

1. Go to the SAP Web site at http://service.sap.com/connectors and download the latest SAP
JavaConnector, for example, sapjco-ntintel-2.1.8.

2. Unzip the file, which contains:

New Features 1.2.1

New Features 45

http://service.sap.com/connectors

• sapjco.jar

• librfc32.dll

• sapjcorfc.dll

3. Shut down all Unwired Platform components, including Unwired WorkSpace and all
Unwired Servers on your network.

4. Copy librfc32.dll and sapjcorfc.dll into the following target directories:

Component Targets

Eclipse Unwired WorkSpace • C:\WINDOWS\system32
• <SUP Installation root>\Unwired-

Platform\JDK1.6.0_12\bin

Visual Studio Unwired Work-
Space

• \Program Files\Microsoft Visual
Studio 9.0\Common7\IDE

• <SUP Installation root>\Unwired-
Platform\Unwired_WorkSpace\Visu-
alStudio\toolingapi\lib

Unwired Server • <SUP Installation root>\Unwired-
Platform\Servers\UnwiredServer
\dll

5. Copy sapjco.jar into the following target directories:

Component Targets

Eclipse Unwired WorkSpace • <SUP Installation root>\Unwired-
Platform\Unwired_WorkSpace
\Eclipse\sybase_workspace\mobile
\eclipse\plugins\com.syb-
ase.uep.com.sap.mw.jco_1.2.0.<ver-
sion>\lib

Visual Studio Unwired Work-
Space

• \UnwiredPlatform\Unwired_Work-
Space\VisualStudio\toolingapi\lib

Unwired Server • <SUP Installation root>\Unwired-
Platform\Server\UnwiredServer\lib

6. In a clustered production environment, you must also enable SAP mobile business objects
to connect to an SAP R/3 system that uses a router:

a) Change to \UnwiredPlatform-1_2\Servers\UnwiredServer
\Repository\Instance\com\sybase\sap.

b) In a text editor, open <SAPprofile>.properties, where SAPprofile is the
name of the connection profile that is used to deploy SAP mobile business objects from
Unwired WorkSpace to the server.

New Features 1.2.1

 46 Sybase Unwired Platform

c) Set the value of the jco.client.ashost property to /H/proxyHost/H/
applicationServer , where:

• proxyHost is the name of the proxy-server machine, and
• applicationServer is the name of the application server

7. After copying the files, restart all components and all Unwired Servers.

Configuring Your Environment to Use a JDBC Driver
Download the appropriate JDBC driver and configure your environment to connect to Oracle,
DB2, and SQL Server databases.

1. Download the driver.

JDBC driver for: URL

Oracle http://www.oracle.com/technology/software/tech/java/
sqlj_jdbc/index.html

DB2 http://www-306.ibm.com/software/data/db2/express/down-
load.html

SQL Server http://msdn.microsoft.com/en-us/data/aa937724.aspx

2. For Unwired WorkSpace, put the driver in the correct location.

JDBC driver for: Action

Oracle Place the JDBC driver in:

<SUP installation root>\Unwired_Work-
Space\Eclipse\sybase_workspace\mobile
\eclipse\plugins\com.syb-
ase.uep.com.oracle.<plugin version
number>\lib

DB2 Unzip the db2JdbcJars.zip file and copy the JAR files
to:

<SUP installation root>\Unwired_Work-
Space\Eclipse\sybase_workspace\mobile
\eclipse\plugins\com.syb-
ase.uep.com.db2_1.0.0.<timestamp>\lib

SQL Server Copy the sqljdbc.jar file to:

<SUP installation root>\Unwired_Work-
Space\Eclipse\sybase_workspace\mobile
\eclipse\plugins\com.syb-
ase.uep.com.sqlserver_1.0.0.<time-
stamp>\lib

New Features 1.2.1

New Features 47

3. Copy the appropriate JAR file to the specified server location.

JAR file for: Action

Oracle Copy ojdbc14.jar to the server location: <SUP Installa-
tion root>\UnwiredPlatform\Servers\Un-
wiredServer\lib

DB2 Copy the JAR files to the server location: <SUP Instal-
lation root>\UnwiredPlatform\Servers
\UnwiredServer\lib

SQL Server Copy the JAR files to the server location: <SUP Instal-
lation root>\UnwiredPlatform\Servers
\UnwiredServer\lib

Note: If you do not copy the JAR files to the server location, you will encounter runtime
errors due to the missing JDBC driver.

4. Restart Unwired Server.

5. If Unwired Server is running as a Windows service:

a) Shut down the server.
b) Open a command window and change to <installation_directory>

\Servers\UnwiredServer, and run:

mlservice.bat install

c) Restart the service.

Device Application Designer
These Device Application Designer topics have been updated for Unwired Platform 1.2.1:

Using Drag and Drop to Add Mobile Business Objects to the Flow Design
Drag and drop mobile business objects onto the Flow Design canvas to create screens that are
populated with data from the mobile business object.

1. In the Device Application Designer, open the Flow Design.

2. In WorkSpace Navigator, locate the mobile business object for which you want to create a
screen, select the mobile business object and drag and drop it onto the Flow Design page.
Screens and connections are created automatically for the mobile business object if the
Automatic Creation preference in the Preferences > Device Application Designer
dialog is selected, which, by default, it is.

3. You can manually create screens by clicking the mobile business object icon in the upper-
right corner of the initial screen to see the options for creating additional screens. Double-
click your selection to create the screen.

New Features 1.2.1

 48 Sybase Unwired Platform

The screen is added to the Flow Design canvas.

New Features 1.2.1

New Features 49

Automatic Screen Creation
Automatically create screens that are populated with data from the data source by dragging
and dropping a mobile business object onto the Flow Design.

Set the preferences for automatic screen creation in the Device Application Designer
Preferences. These preferences allow you to decide which screens to create when you drop a
mobile business object onto the Flow Design canvas.

The Relationship Automatic Screens option means that all sub screens are created after the
initial relationship screen is created.

By default, Delete Operation Screen is unselected, which means the Device Application
Designer:

• Creates the main screen with a table for the mobile business object.
• Adds a Delete menu item to the main screen.
• Adds an alert action of the question type, which goes back to the main screen to the menu

item. Adding this action means the user is prompted to confirm before deleting.
• Adds a save context action to the menu item.
• Adds an operation action that performs the delete operation to the menu item.

If Delete Operation Screen is selected, a Delete screen is created.

If you drop more than one mobile business object onto the Flow Design canvas, only the main
screens are created. If a screen has multiple related screens that can be created, use the assist

option at the top of the screen to create the screens.

Screen Design Palette Options
Design the screen for a device application.

Controls

Option Description

Header Create a header on the screen.

Footer Create a footer on the screen (if there is no header
on the screen, creating a footer automatically
creates a header as well).

Label Display text.

Edit Box Enter a line of text and assign values to strings,
dates, decimals, integers, and so on.

Choice Display a collection of items as a drop-down list.

New Features 1.2.1

 50 Sybase Unwired Platform

Option Description

Hyperlink Display a label that is underlined like a link and
that can be attached to an action for screen tran-
sitions.

Checkbox Assign or display Boolean values.

Spacer Create a defined space on the screen. This allows
for vertical spanning as well as horizontal span-
ning.

Radio Button Assign predefined options.

List Item Similar to buttons, list items are grouped in the
List Group container and can have styles and ac-
tions assigned to them.

Button Trigger actions such as screen transitions.

Image You can place an image into the display as widg-
ets (button, label, and so on). There are two types
of images—one type uses the image references to
display the image, the other type uses table con-
text variables that are of image types. You can
also assign actions to images.

Separator Visually isolate parts of the screen.

Table The existing table widget that displays grid data
in a table.

List Detail Show property details for columns.

Containers

Option Description

Region A general purpose container that can be used to
group any controls.

Radio Group A region in which to group radio buttons.

List Group A container for list items.

Tab Folder A container for tab panels.

New Features 1.2.1

New Features 51

Option Description

Tab Panel Used to organize information in a tabular format.
For example, you can break a long form into sec-
tions represented by tab panels. Table and List
Detail controls that are related to each other can
also be grouped with tab panels.

Menu

Option Description

Menu Item Performs the assigned action, for example Re-
fresh or Synchronize.

Menu Separator Drag and drop menu separators from the Palette
onto the screen menu to visually organize the
menu using horizontal lines. You can use multiple
menu separators, which you can move and delete.
Menu separators are not tied to actions.

Actions

Option Description

Alert Alerts the user. You can create new alerts using
the Alert Action dialog.

Connection Navigates to a different screen.

Note: If there are multiple actions assigned to one
control or menu, the connection action must be
the last action performed.

Exit Adds the exit action to the action list, which exits
the client application.

Logout Logs the user out of the client.

Persist Works with user variables created in the Variable
section. Allows you to save values from the
screen controls or literals to set values on varia-
bles created in the Variable section when the ac-
tion is performed.

New Features 1.2.1

 52 Sybase Unwired Platform

Option Description

Refresh Adds a refresh action to the list of actions, which
refreshes the current screen based on updated da-
ta. You may want to refresh, for example, after
you have synchronized a mobile business object.

Operation Enables you to create an action based on the op-
eration of a mobile business object.

Synchronize When the action is executed, the associated mo-
bile business object is synchronized.

Tab Activation Brings a specified tab to the front. There are three
modes for the tab activation action:

• Specific

• Previous

• Next

The tab activation action can wrap, which means
if the current tab is the first tab, clicking the Pre-
vious tab goes to the last tab.

When the current tab is the last tab, clicking the
Next tab goes to the first tab.

Save Context Adds an action to the menu so that context is
maintained when navigating between screens.

BlackBerry PIM This action is available only if the selected plat-
form for the screen is BlackBerry. Adding the
BlackBerry PIM action to a control with the log-
ical type assigned allows you to fully integrate
BlackBerry applications such as calendar, ad-
dress book, tasks, and memo.

Validation

Assign rule validation to the Edit Box control to validate user input.

New Features 1.2.1

New Features 53

Option Description

Rule Validation Drag and drop onto the Edit Box control to add
pattern-matching rule validation. You can assign
these pattern-matching datatypes:

• Numerical

• String

• Date/Time

Choice Properties
Use the Choice control to display a collection of items as a drop-down list.

Table 3. Choice control properties

Property Description

Mobile Business Object Click Search to find the mobile business object
with which to associate the selected control.

Display Name Attribute This option is enabled when this control is asso-
ciated with a mobile business object. It is popu-
lated with the selected mobile business object
attributes. This provides content to the control
during run time.

Value Attribute This field is enabled when the Mobile Business
Object field is not empty. It is populated with the
mobile business object attributes. By default, the
first attribute is selected. This attribute can be the
same as the Display Name Attribute.

Linked Value Enter a value for linking this choice to other
choice elements on the screen. The value must be
from the data available in the "display_name"
attribute of the mobile business object.

The linked value is cleared and disabled if the
mobile business object does not contain the nec-
essary attributes with which to link parameters.

The device display shows the link decorator for
any choice fields that are linked.

Items Click Add to add the items for the choice drop-
down list.

Click Edit to edit the selected item.

Click Remove to remove the selected item.

New Features 1.2.1

 54 Sybase Unwired Platform

Property Description

Initial Value Select the initial value for the choice drop-down
menu. The choices in this drop-down list are set in
the Items section.

Use Variable Use a variable for the Choice text. Click Browse
to find available variables.

Read Only Select if the choices displayed on the screen
should be read-only.

Data Type Select the data type from the drop-down list. Use
this option on the device to give menu assistance
to inputs, for example, selecting a calendar for
date. The device retrieves the information and
performs validation on the input, for example,
INT must be a number. It is also used to map the
control to the operation parameter correctly.

Logical Type Sets the logical type for the choice. This is used on
the device to give menu assistance to input fields,
for example, task, calendar, e-mail, or phone.

Style Select the choice style from the drop-down menu,
or click Search to search available styles.

Click Edit to edit the selected choice style.

Click Clear to clear the choice style.

Span Choose:

• Horizontal – enter the number of columns the
widget will occupy. The number must be
greater than zero, and less than or equal to the
number of columns in the screen display.

• Vertical – enter the number of rows the widget
will occupy.

Radio Group Properties
Use the Properties page to edit the attributes for the Radio Group container control.

Property Description

Number of Columns The number of columns in the radio group. You
can separate tabs in to 1 – 3 columns. The default
is 1.

New Features 1.2.1

New Features 55

Property Description

Assign Percentages The width of each column in the radio group, in
percentages. The defaults are:

• 1 Column – 100%.
• 2 Columns – 35% for the first column, 65%

for the second column.
• 3 Columns – 33% for the first column, 34%

for the second column, and 33% for the third
column.

Select Radio Select the radio button to set initially. The selec-
ted radio button appears as selected on the device
display.

Use Variable Select to associate the selected radio button with
an existing variable so that all the radio buttons on
the display appear disabled. Click Browse to find
existing variables.

Data Type Select the data type from the drop-down list. Use
this option on the device to give menu assistance
to inputs, for example, selecting a calendar for
date. The device retrieves the information and
performs validation on the input, for example,
INT must be a number. It is also used to map the
control to the operation parameter correctly.

Logical Type Sets the logical type for the choice. This is used on
the device to give menu assistance to input fields,
for example, task, calendar, e-mail, or phone.

Span Choose:

• Horizontal – enter the number of columns the
radio group will occupy. The number must be
greater than zero, and less than or equal to the
number of columns in the screen display.

• Vertical – enter the number of rows the radio
group will occupy.

Adding a BlackBerry PIM Action
Add the BlackBerry PIM action to a control to select a BlackBerry PIM application.

You can assign only one BlackBerry PIM action per control.

1. Drag and drop the BlackBerry PIM action from the Palette onto a control or menu item that
accepts an action. You can also add the BlackBerry PIM action using the Properties view
for the selected control:

New Features 1.2.1

 56 Sybase Unwired Platform

a) Select the control to which you want to add the BlackBerry PIM action.
b) In the Properties view for the control, select Actions from the left pane.
c) In the Actions dialog, click New and select BlackBerry PIM.

2. In the BlackBerry PIM Action dialog, select from these configuration options:

Option Description

BlackBerry PIM Application Select the BlackBerry PIM application with
which the action will interact.

Read from Application By default, this option is selected, and indicates
that the action should retrieve information from
the BlackBerry PIM application. When selec-
ted, the PIM application is launched and a cus-
tom menu called "Import to <client name>" is
added to all the PIM applications. This menu
appears on the context menu of each PIM ap-
plication on the device.

When the PIM action is called, the specified
PIM application is launched. The user selects a
specific contact, calendar, memo, or task and
clicks the "Import to <client name>" menu
item, which activates the PIM action on the
Device Application Designer, where it loops
through the list of PIM controls on the current
screen. PIM controls that have valid and com-
patible PIM fields and attributes are populated
with the corresponding value from the PIM ap-
plication in which the menu was clicked.

New Features 1.2.1

New Features 57

Option Description

Write to Application Select this option for the action to save infor-
mation to the BlackBerry PIM application.

Values are taken from the PIM controls, table,
or list detail layout. The logical types are then
checked to see which PIM fields and attributes
are valid. The information is then saved into the
corresponding PIM application.

Data Source When writing information to the BlackBerry
PIM application, this option indicates where
the client should get information from. For ex-
ample, if you select Display, the client searches
the entire screen display for controls that have
logical datatypes mapped. If you select Table,
the client searches only in the table. You can
select Data Source only if Write to Application
is also selected.

Launch PIM Application This option is available only if Write to Appli-
cation is selected. If selected, the corresponding
application is launched after writing the PIM
action.

3. Click OK.

4. Select File > Save.

Generating a Windows Mobile Device Application
Use the Generate Device Application wizard to generate a Windows Mobile Device
Application, launch the Windows Mobile emulator, and run the Windows Mobile device
application on the emulator.

Prerequisites
You must have Visual Studio installed.

1. Click the Verify icon on the toolbar to verify the device application has no errors.

2. Click the code generation icon on the toolbar.

3. In the Generate Device Application wizard, select Windows Mobile and click Next.

4. Enter the information for the code generation options:

Option Description

Favorite Configurations Select a configuration.

New Features 1.2.1

 58 Sybase Unwired Platform

Option Description

Device • Target device – select the device.
• Library version – choose the Micro-

soft .NET version of the library used to
compile the generated code.

• Deploy to an ActiveSync connected device
or emulator – select this option to deploy
the generated code to a Windows Mobile
device or emulator. ActiveSync enables the
transferring and installation of the applica-
tion on the mobile device.

Note: On Windows Vista, ActiveSync has
been replaced with Windows Mobile De-
vice Center.

Code Generation • Visual Studio solutions folder – accept the
default or click Browse to enter the location
for the Visual Studio Solutions folder.

• Solution name – enter the name of the Vis-
ual Studio solution.

• Client project name – enter the name of the
project that contains the user interface.

New Features 1.2.1

New Features 59

Option Description

Advanced When you generate the device application, two
projects are generated—the client project,
which contains the user interface screens, and
the mobile application project, which contains
the mobile business objects that are used to ac-
cess and update the data.
• Client project namespace – enter the name-

space to use for the generated UI classes.
• Client project assembly name – the name of

the generated .exe file for the project.
This is the name that appears on the mobile
device.

• Mobile application project name – the
name of the Mobile Application Project
that contains the mobile business objects
used in the device application.

• Mobile application project namespace –
accept the default or enter the name for the
mobile application project.

• Mobile application project assembly name
– accept the default or enter the name for
the .dll of the mobile application project.

• Client project icon – click Browse to select
an icon with which to associate the gener-
ated .exe file. This is the icon that ap-
pears on the mobile device.

• Deployment timeout (minutes) – the max-
imum time to wait for deployment to the
device.

• Silent install – use this option only when
you are deploying to the emulator (not the
device itself). This enables deployment to
proceed with no user input.

• Generate metadata access classes – select to
generate additional metadata classes that
describe the attributes and parameters of
the generated MBO classes.

• Generate base classes in a DLL – select so
the base classes are generated in a .dll file,
which means you can view the source code,
but you cannot edit it. If you do not select
this option, base classes are generated as .cs
files, along with the other generated .cs
files, which can be edited.

New Features 1.2.1

 60 Sybase Unwired Platform

Option Description

• Delete solution folder prior to generation –
remove existing source folders before re-
generating the Visual Studio solution.

5. Click Finish.

Rebuilding the Generated Solution in Visual Studio
After generating code for a Mobile Windows device, you can modify the code in Visual
Studio.

Prerequisites
Visual Studio must be installed.

When you generate the code for a Windows Mobile device using the Device Application
Designer, the Visual Studio solution is saved to the folder you designated in the Code
Generation section of the Generate Mobile Windows Application wizard.

1. In Visual Studio, select File > Open > Project/Solution.

2. Browse to the solution file (.sln) you want to open and double-click the file.

3. In Solution Explorer, right-click the solution and select Rebuild Solution.

4. Select File > Save.
You can now open the form for which you want to modify the code.

Developing Device Applications for Win32 .NET Platforms
Build a device application that runs on Win32 .NET platforms.

Prerequisites
If you are using a File mobile business object (MBO), Afaria must be installed. See the Sybase
Unwired Platform Installation Guide.

1. Verify that the Projects and Solutions General preferences are set for the template location:

New Features 1.2.1

New Features 61

This location determines the templates that appear, and that you can select from when you
create a new project.

2. Select File > New > Project.

New Features 1.2.1

 62 Sybase Unwired Platform

3. From Templates, select Win32ProjectTemplate.

4. Develop the mobile business objects (MBOs) that implement the business logic.

See these online help topics:
• Sybase Unwired Platform 1.2 > Sybase Unwired Workspace 1.2 – Visual Studio

Edition > Develop > Developing a Mobile Business Object
• Sybase Unwired Platform 1.2 > Sybase Unwired Workspace 1.2 – Eclipse Edition >

Develop > Developing a Mobile Business Object

Note: If you build the mobile business objects in Eclipse, follow the procedure in the
help topic Sybase Unwired Platform 1.2 > Sybase Unwired Workspace 1.2 – Visual
Studio Edition > Develop > Developing a Mobile Business Object > Creating a Mobile
Application Project > Importing an Eclipse Project, then build the code for the device
application in Visual Studio.

5. (Optional) If you are using a File MBO, select Add > Existing Item to add these files as
items in the Visual Studio project:

• Interop.XeClientLib.dll

• Sybase.UnwiredPlatform.Data.Afaria.dll

6. Generate the Win32 client code for the mobile business object.

7. Add the generated code to the new project you created from the template.

New Features 1.2.1

New Features 63

For more information, see the Sybase Unwired Platform 1.2 Client Object API
Cookbook.

Correction to Writing a Custom Result Set Filter
The implementation class names that are documented in the topic "Writing a Custom Result
Set Filter" are incorrect.

The Sybase Unwired Platform 1.2 topic "Writing a Custom Result Set Filter" incorrectly
refers to these class names:

• com.sybase.eis.ResultSetFilter
• com.sybase.eis.ResultSetFilterMetaData

The correct class names are:

• com.sybase.uep.eis.ResultSetFilter
• com.sybase.uep.eis.ResultSetFilterMetaData

Troubleshooting
This troubleshooting information is new for Sybase Unwired Platform version 1.2.1.

Restrictions for Configuring Unwired Server Properties
Configure Unwired Server properties only from the Administration Console or by editing the
sup.properties file.

Problem: Do not modify Unwired Server settings by editing the configure-sup.xml
file. Doing so can cause unforseen problems, such as losing configuration information after
upgrading.

Solution: Perform configuration tasks directly from the Sybase Control Center (SCC)
Administration Console whenever possible, or by editing the sup.properties file, if the
configuration property is not available from SCC.

For example, change the default synchronization protocol used by Unwired Server from
HTTP to HTTPS by modifying the sup.sync.protocol entry in the sup.properties file to
sup.sync.protocol=https.

If you modify the sup.properties file directly, you must run the command
updateProps.bat -r for your changes to take effect.

The -r flag indicates the values from the sup.properties file are applied to clusterdb
(which is the actual location from which Unwired Server values are retrieved, not directly
from sup.properties). If you do not run updateProps.bat -r, before restarting Unwired
Server, old property values are retrieved from clusterdb and these values overwrite the
changes you made to sup.properties.

Make a back-up copy of sup.properties before making any changes to it.

New Features 1.2.1

 64 Sybase Unwired Platform

Argument and Column Name Length Limitations
Mobile business object (MBO) argument and column names have no character length limits.

While there is a 100 character maximum for MBO parameter and attribute names, there is no
such limitation for argument or column names.

Cannot Preview Data
Problem: In some cases, Unwired WorkSpace cannot extract the metadata that is required for
a preview through the JDBC driver. In these cases, Unwired WorkSpace either executes the
mobile business object's SQL statement to extract the metadata from the preview results, or
executes a remote procedure call to get the results.

Solution: In UnwiredWorkSpace.bat, set the
autocommitPreviewTransaction property to true:

1. Shut down Unwired WorkSpace.
2. Go to the Unwired WorkSpace Eclipse subdirectory; for example: C:\Sybase

\UnwiredPlatform-1_2\Eclipse.

3. Use a text editor to open UnwiredWorkSpace.bat, and add this line, following -
vmargs:
-D "autocommitPreviewTransaction=true"

For example:
start "Sybase Unwired WorkSpace" "%ECLIPSE_ROOT%\eclipse.exe"
%ADDITIONAL_ARGS% -vm "%JAVA_HOME%\bin\javaw.exe" -vmargs
-D "autocommitPreviewTransaction=true"
-D"java.endorsed.dirs=%ECLIPSE_ROOT%\endorsed" -Xmx512M -
DSampleObject=true
-DPureJava=PureJava -Declipse.product=com.sybase.sup.SUPproduct
...
goto
EXIT

4. Restart Unwired WorkSpace.

Troubleshooting Mobile Business Object Web Service Deployment Failures
Problem: If a Web service contains a parent and a child hierarchical data structure, and the
parent and child have columns that have the same name, the mobile business object using this
interface cannot be deployed on the server. An error message displays during deployment.

Solution: Avoid using a Web service that contains a parent and child that have columns with
the same names.

New Features 1.2.1

New Features 65

Default Values are not Recognized as Synchronization Values
Set the sync parameter value before every synchronization from the device application if the
default value is not recognized as a sync value.

Problem: A deployed MBO contains a parameter with Filter by unselected, and the default or
personalization value is not NULL, and the MBO definition contains an operator that is not
equal to the user defined default value for the parameter, as this code segment illustrates:

"id > @OP["id"=""]"

If you do not set a sync parameter value from the device application, and instead expect
Unwired WorkSpace to use the default value as the sync parameter value, the default value is
not recognized as a sync parameter.

Solution: Set the sync parameter value before every synchronization from the device
application in this scenario.

SQLE_TOO_MANY_PUBLICATIONS Error
Problem: If there are more than 30 syncable mobile business objects (MBOs) in a package,
and fewer than 30 syncable MBOs in the Device Application Designer file, a
SQLE_TOO_MANY_PUBLICATIONS error may occur when you synchronize the MBOs
on Windows Mobile.

Solution:

1. In Unwired WorkSpace, open Program.cs, which is located in %Visual Studio
solution folder%\%Client project name% .

2. Set the value of
Sybase.UnwiredPlatform.Data.DatabaseUtilities.UseDynamicPu
blication to true.

3. Rebuild and redeploy the project to your Windows Mobile device.

Device Application Designer Does Not Generate GUI Fields
Problem: The Device Application Designer does not generate graphical user interface (GUI)
fields for enterprise information system (EIS) connection property parameters in device
applications (especially for SAP applications).

Without the generated fields in the device application GUI, the mobile client user cannot
configure those parameters.

Solution: Edit the mobile business object (MBO) in the development environment by setting
personalization keys for the connection properties. During runtime, configure the
personalization key values.

New Features 1.2.1

 66 Sybase Unwired Platform

Trailing Space Causes Synchronization Failure
Problem: If you attempt to synchronize a mobile business object (MBO), and its key column
includes values that differ only by a space; for example, "test" versus "test ", synchronization
fails.

The Enterprise Information System interprets "test" and "test " as different values, and two
rows are created. When you synchronize the MBO, the trailing space is stripped from the value
"test ", which creates a conflict, and generates an error.

Solution: Do not insert key values that differ only by a space.

BlackBerry Devices Display a Maximum of 6000 Records
Problem: BlackBerry devices encounter out-of-memory errors when trying to display more
than 6000 records (rows) of data.

Solution: Design your mobile business objects (MBOs) and device applications to restrict the
number of rows displayed to less than 6000.

Troubleshooting Windows Mobile Device Applications
Problem: When trying to open a device application on a Windows Mobile device, a Cannot
instantiate Ctl_image.FormUntitled1(application name) [Can not instantiate Form of type
FormUntitled1] error is received.

Solution: This error is received if the device application references an image that is larger than
5mb. Do not reference images that are larger than 5mb in size in device applications for the
Windows Mobile platform.

Synchronizing Device Applications that Reference Related Mobile Business
Objects
Problem: If you synchronize from a child screen of a device application, and if the parent data
is missing, old data still appears in the child screen. (Parent data may be missing either because
back-end data has been deleted, or because of a changed synchronization condition, such as
modified personalization keys.)

Solution: Always synchronize data on the top-level (parent) MBO screen.

Generation Failed Error When Generating a Device Application
Problem: When generating a device application that uses localization in the Device
Application Designer, a "Generation Failed: The locale that contains the basic locale of locale
must be included " error is received.

Solution:

• When you specify a country for the language, the basic language locale must also be
available. For example, if you create a locale and specify English as the language, then
there must also be a locale for English (the basic language).

New Features 1.2.1

New Features 67

• If you create a locale that specifies language, country, and variant, the locale for the basic
language and the locale for the basic language and the country must be available. For
example, if you create a locale and specify English as the language, United States as the
country, and WIN as the variant, then English (United States) and English locales must
also be available.

When you select a locale with language and country specified, the basic language is also
automatically selected. If the basic language locale is not available, you receive the error
message.

Missing Sync Parameter Error Message on the BlackBerry Simulator
Problem: After generating the device application code in the Device Application Designer,
launching the BlackBerry Simulator, and synchronizing the device application, a "Missing
Sync Parameter" error appears.

Solution: The server does not save the default value for sync-only parameters during
deployment. The behavior for sync-only parameters is:

1. When a personalization key is defined for sync-only parameters, the default value is
ignored.

2. When a personalization key is not defined and a default value is defined, then the default
value is used if you select the Use server default value for initial

New Features 1.2.1

 68 Sybase Unwired Platform

synchronization when you create the device application in the Device Application
Designer.

The other situation in which this error is received is when there is a relationship defined for the
MBO you are syncing. If you synchronize the second level MBO from the synchronization
screen, the second MBO does not get the value that is defined for the relationship parameter.

New Features - Visual Studio Edition
New features, updated documentation, and new troubleshooting topics are described.

The tables below briefly describe each feature, and provide links to associated topics.

New Sybase Unwired Platform features

Feature Topics

For SAP mobile business objects, you can add a predefined or
customized result checker.

Adding an SAP Result Checker
on page 71

Optimize device application and Unwired Server performance by
defining a cache-update policy when you develop mobile business
objects.

Cache Update Policy

If the SAP AutoCommit feature is enabled, a successful operation
is always committed.

Configuring the SAP Auto-
Commit Feature on page 85

Linked parameters use the dynamic format of mobile business
objects to determine the content in device applications.

Creating a Data Source for
Linked Parameters

Multilevel (chained) insert operations allow you to synchronize
multiple Web-service mobile business objects that have a defined
relationship.

Creating Multilevel Insert Op-
erations for Web Service Mo-
bile Business Objects

You can modify SAP Java connector (JCo) properties, and use the
property values as parameters.

Modifying SAP Connection
Properties on page 98

Documentation updates

Feature Topics

Corrected information in steps 1 and 2. In step 1, the directory
name is BIN32, not win32. In step 2 , call createcert, not

gencert.

Generating Certificates to Enable
HTTPS Synchronization

New Features 1.2.1

New Features 69

Feature Topics

Replaced the topic "Configuring Your Environment for SAP"
with the topic "Preparing the Unwired Platform Environment for
SAP Connections."

Preparing the Unwired Platform
Environment for SAP Connec-
tions

Troubleshooting

Problem Topic

If a mobile business object has more than one operation of
type "Other," the generated code GetCalledOperations re-
turns only one operation.

Codegen.GetCalledOperations Re-
turns Only One Operation on page
101

If the sum of the column sizes for attributes and parameters
exceeds 64K, the default page size of the device database is
too small.

Device Database Page Size on page
101

If you cannot connect to SAP from the Visual Studio devel-
opment environment, and an Open file C:\WIN-
DOWS\sapmsg.ini failed message appears, add

the missing sapmsg.ini file to your environment.

SAP Connection Error on page 102

When you use the Detailed Properties dialog to edit SAP
operation parameters, parameter-to-argument linking may
be lost.

SAP Parameter-to-Argument Linking
on page 102

If you choose to let the system generate the user interface
when you generate client code for a project, it may take five
minutes or more.

Slow Code Generation on page 102

If there are more than 30 MBOs in a package, and less than 30
MBOs in the Device Application Designer file, a
SQLE_TOO_MANY_PUBLICATIONS error may occur
when you synchronize the MBOs on Windows Mobile.

SQLE_TOO_MANY_PUBLICA-
TIONS Error

If you attempt to synchronize a mobile business object, and
there are two rows in the EIS with key values that differ only
by a trailing space, synchronization fails.

Trailing Space Causes Synchroniza-
tion Failure

If you are using the Chinese Edition of Visual Studio 2008,
you must manually move some files for the installation to
work with Sybase Unwired Platform.

Visual Studio 2008 Chinese Edition
on page 103

New Features
These new features are included in Sybase® Unwired Platform version 1.2.1.

New Features 1.2.1

 70 Sybase Unwired Platform

Adding an SAP Result Checker
Add or create an SAP result checker for a mobile business object. You can add a predefined
result checker, or create a new one.

1. In the Mobile Business Object Properties dialog, select the Definition tab.

2. For the SAP Result Checker, select one of these options:

Option Description

Default If there is a RETURN parameter in the currently selected BAPI operation, this option is
automatically selected. This option uses the com.sybase.sap.Default-
SAPResultCheck result checker.

None If there is not a RETURN parameter in the currently selected BAPI operation, this
option is automatically selected. This option uses the com.syb-
ase.sap.NoOpSAPResultCheck result checker.

Custom To specify a custom SAP result checker, select this option, and enter the Java class
name.

3. Implement the new class by writing the implementation on top of the skeleton, as
documented in the topic, Writing a Custom SAP Result Checker.

4. Test and preview the results of your result checker:

a) To reuse input values you have previously saved, select Existing Configuration.
Otherwise, load the defaults, or create a new set of input values expressly for this
preview instance.

b) Click Preview.

If the data runs successfully, Execution Succeeded appears in the dialog, and data
appears in the Preview Results window.

Writing a Custom SAP Result Checker
An SAP result checker is a custom Java class that implements error checking for SAP mobile
business objects.

Since not all SAP BAPIs or RFCs use the "standard" error reporting technique, you can
implement your own custom SAP result checker. This allows you to check any field for errors,
or implement logic that determines what constitutes an error, and the severity of the error.

1. Provide a Java class that implements the SAPResultChecker interface:

package com.sybase.sup.sap;
public interface SAPResultChecker
{
 /**
 *
 * @param f - JCO function that has already been executed.
 * Use the JCO API to retrieve returned values and determine if
the RFC has executed

New Features 1.2.1

New Features 71

 * successfully.
 * @return a single Map.Entry. The boolean "key" value should
be set to true if the
 * RFC is deemed to have succeeded. Normal result processing
will ensue.<P>
 * If the String value is not empty/null, that value will be
treated as a warning message,
 * which will be logged on the server,
 * and returned as a warning in transaction logs to the
client.<P>
 * Set the key value to false if it is deemed the RFC has
failed. The String value will
 * be thrown in the body of an exception. The error will be
logged on the server, and the
 * client will receive a transaction log indicating failure,
including the string value.
 */
 Map.Entry<Boolean, String> checkReturn(JCO.Function f);
}

There are two SAPResultChecker implementations located in %SUP_HOME%
\Servers\UnwiredServer\uep\tomcat\webapps\onepage\samples
\sap directory, which you can modify and reuse as custom result checkers:

• DefaultSAPResultCheck – the default SAP result checker.

• NoOpSAPResultCheck – this result checker always returns a successful result.

2. Save any classes you create to an accessible Unwired WorkSpace location. This allows
you to select the class when you configure the SAP result checker for your mobile business
object.

Deploying SAP Result Checker Classes to Unwired Server
Before deploying SAP mobile business objects that use result checker classes, copy the
compiled classes to <Unwired-Server-install>\lib\filters
\<packageName> on the primary Unwired Server machine.

You can also place result checker classes into a directory structure; the root of which should
start at packageName. During cluster synchronization, the SAP result checker classes are
automatically distributed to other Unwired Servers in the cluster.

1. (Optional) To maintain and deploy a single file, create a Java archive of all your
classes.

2. Choose the Unwired Server target location for the result checker classes, dependencies,
and third-party JARs:

• To avoid restarting Unwired Server, copy either the JAR file or the individual class files
to:
<Unwired-Server-install>\lib\filters
\<DeploymentPackageName>.

For example, if you have a ResultChecker_1.0.0 package and a
com.acme.filters.ResultChecker result checker class, create

New Features 1.2.1

 72 Sybase Unwired Platform

<Unwired-Server-install>\lib\filters
\ResultChecker_1.0.0\com\acme\filters
\ResultChecker.class. Or, create acmeFilters.jar from the
com.acme.filters.ResultChecker classes, and copy it to <Unwired-
Server-install>\lib\filters
\ResultChecker_1.0.0\acmeFilters.jar.

• To restart Unwired Server after deployment, copy the classes to:
<Unwired-Server-install>\lib\filters\.

3. Deploy the SAP mobile business object to Unwired Server.

Configuring an SAP Result Checker
Configure an SAP result checker for a mobile business object.

1. In the Mobile Application Diagram, select Show Properties View.

2. In the Properties view, click the Attributes or Operations tab, then the Definition tab.

3. Click Edit.

4. Make your changes in the Change Definition dialog, and click OK.

Refactoring an SAP Result Checker
When an SAP result checker is deleted, renamed, or moved, update its references
automatically.
Deleting References to an SAP Result Checker
Delete all references to an SAP result checker from the workspace.

1. Open the mobile application project that contains the SAP result checker you want to
delete, and expand the Filters folder.

2. Right-click the SAP result checker and select Refactor > Delete.

3. In the Confirm Delete dialog, verify the selected references, and click OK.

Moving an SAP Result Checker
Move an SAP result checker to another location, and update its references in the workspace.

1. Open the mobile application project that contains the SAP result checker you want to
move, and expand the Filters folder.

2. Right-click the SAP result checker, and select Refactor > Move.

3. In the Move dialog, confirm the changes, and click OK.

Renaming an SAP Result Checker
Rename an SAP result checker, and update its references in the workspace.

1. Open the mobile application project that contains the SAP result checker you want to
rename, and expand the Filters folder.

2. Right-click the SAP result checker, and select Refactor > Rename.

New Features 1.2.1

New Features 73

3. In the Rename Type dialog, verify the changes, and click Finish.

Searching for References to an SAP Result Checker
Search for mobile business objects that reference SAP result checker classes.

SAP mobile business objects can share SAP result checker classes, within a single project or
across multiple projects.

1. In WorkSpace Navigator, in the mobile application project, expand the Filters folder.

2. Right-click the SAP result checker, and from the context menu, select References >
Mobile Business Object.

The search results appear in the Search pane.

Cache Update Policy
Fine-tune device application and Unwired Server performance by defining a cache update
policy for mobile business object operations.

Setting a cache update policy for mobile business object (MBO) operations gives you more
control of both Unwired Server interactions with the enterprise information system (EIS) to
which the MBO is bound, and consolidated database updates. Fine-tuning these interactions
and updates improves both Unwired Server and device application performance.

Note: Consolidated database, CDB, and cache all refer to the same thing, and the terms are
used interchangeably.

• MBO operations perform specific functions based on their definition:
• Primary read operation – the EIS operation used to define and initially populate the

CDB (from the EIS) for the MBO.
• Create, update, delete (CUD operations) – modify EIS data depending on the definition

of the operation. Unwired Server maintains a cache (CDB) of back-end EIS data to
provide differential synchronization and to minimize EIS interaction. When an
operation is submitted from a device application to the EIS, the cache must be
refreshed.
While these types of bulk-fetch and CDB caching are effective in reducing the number
of interactions required with the back-end EIS, and work well in some other cases
(where MBO data is occasionally updated in the back-end), performance suffers if
changes are initiated from Unwired Server (by way of MBO operations), or if changes
are frequent.
The cache update policy introduces alternative methods of updating the cache at finer
granularity, which improves performance.

• Alternate read operations – can be invoked either from:
• A chained read cache policy to augment CUD operations by chaining an alternate

read operation to a CUD operation.

New Features 1.2.1

 74 Sybase Unwired Platform

• A data change notification, which provides a mechanism to invoke MBO
operations, including alternate read operations. This mechanism is independent of
a cache update policy.

• Cache update policy – determines how the CDB is updated after an operation. You can set
the cache update policy for operations, with these exceptions:
• Operations defined as "Other" do not support alternate read or a cache update policy.
• When invoked, alternate read operations always use the apply operation results cache

update policy.
Versions of Sybase Unwired Platform earlier than 1.2.1 supported only the invalidate
cache policy—any CUD or other operation issued from a device application invalidated
the cache and required a primary read operation to refresh the cache.
In Unwired Platform version 1.2.1, these are the five cache update policies you can
associate with MBO CUD operations:
• Invalidate cache
• No invalidate cache
• Apply operation result
• Apply operation parameters
• Chained read
When an MBO CUD operation is called, its cache update policy determines how operation
results are applied to the consolidated database. Generally, there are two ways of calling an
MBO operation:
1. Device client calls the operation.
2. A data change notification (DCN) request contains the operation.

Note: Other methods used to update the CDBs that are external to MBO operations, and not
associated with cache update policies include:

1. EIS-initiated DCN – an HTTP request to Unwired Server, in which the DCN request
contains the payload (information about the changed data).

Note: EIS-initiated DCN also supports HTTP POST requests which provides a higher
level of security.

2. Scheduled data refresh – defined in Sybase Control Center; polls the EIS for changes at
specified intervals.

Setting the Cache Update Policy
The cache update policy defines how the consolidated database is updated after calling a
mobile business object operation at a finer granularity than the primary read operation.

To maximize Unwired Platform efficiency and performance, set the cache update policy,
which determines how create, update, and delete operation results from the Enterprise
Information System (EIS) are applied to the consolidated database (CDB).

Note: These terms all represent the same thing: consolidated database, CDB, and cache.

New Features 1.2.1

New Features 75

1. In the Mobile Application Diagram, double-click the operation.

2. In the Operation Properties dialog, select the Cache Policy tab.

3. Select the cache update policy:

Cache Update
Policy

Description

Invalidate Invalidates and refreshes the CDB after the client calls the mobile business
object (MBO) operation. This is the default cache update policy.

No invalidate The CDB remains unchanged after the client calls the MBO operation.

Apply operation
result

Updates the CDB based on the result set that is returned from the MBO
operation.

Apply operation
parameters

Updates the CDB based on the operation’s parameters.

Chained operation Chain an alternate read operation to the MBO operation. The CDB is up-
dated with the results returned by the alternate read operation. If you select
this option, a Chained Operation drop-down list appears, which allows you
to either choose an existing operation, or create a new one by selecting New.
Define the chained operation the same as other operations; set the operation
type to "Read."

Note: Find by must be selected for at least one attribute.

The alternate read operation is no different from an operation that uses the
apply operation result cache update policy. Specifying a different read type
operation enables chaining it to the MBO operations to get the desired
results.

Apply Operation Result Cache Policy
Use the apply operation result cache policy to update the consolidated database, based on the
results returned by the operation..

The record set that is returned from the operation is processed and applied to the consolidated
database.

This example uses the "customer" table, which is in the sampledb database:

1. Drag and drop the "customer" table onto the Mobile Application Diagram to create a
mobile business object.

2. Double-click the Create operation to open the Operation Properties dialog.
3. Select the Definition tab, and update the SQL query to:

INSERT INTO sampledb.dba.customer
(id,
fname,
lname,
address,
city,
state,

New Features 1.2.1

 76 Sybase Unwired Platform

zip,
phone,
company_name)
VALUES
(@OP["id"=""],
'@OP["fname"=""]',
'@OP["lname"=""]',
'@OP["address"=""]',
'@OP["city"=""]',
'@OP["state"=""]',
'@OP["zip"=""]',
'@OP["phone"=""]',
'@OP["company_name"=""]'
)
SELECT * FROM customer where id = @OP["id"=""]

4. Select the Cache Policy tab, and select Apply operation result.
5. Click Apply.
6. CDb and client data updates are based on the operation definition and the apply operation

result policy; other changes to the Enterprise Information System are ignored.

Apply Operation Parameters Cache Policy
Use the apply operation parameters cache policy to apply the operation's parameters to the
consolidated database.

The values of the operation parameters are directly applied to the consolidated database
(CDB).

Note: These terms all represent the same thing: consolidated database, CDb, and cache.

This example uses the department table, in the sampledb database:

1. Drag and drop the department table onto the Mobile Application Diagram to create a
mobile business object (MBO).

2. In the MBO, double-click the Update operation. The Operation Properties dialog opens.
3. Select the Cache Policy tab, and select Apply operation parameters for the Cache

Update Policy.
4. Deploy the MBO to Unwired Server.
5. In Sybase Control Center, set the MBO's Cache Interval to one hour (or any value

sufficiently long to complete this test).
6. Synchronize the MBO from a test client or device application. The client, the CDb, and the

EIS all have the same data:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

7. Call the MBO's update operation from the test client or device application to update this
record:

New Features 1.2.1

New Features 77

dept_id=400, dept_name="QA", dept_head_id=1576

The EIS is modified:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 QA 1576
 500 Shipping 703

8. Synchronize the MBO. Based on the apply operation parameters policy, which is
associated with this operation:
1. The dept_id=400 record is updated using the update operation's parameter values

(an inferred read), and becomes:
dept_id=400, dept_name=QA, dept_head_id=1576

2. The CDb and the client are updated, and contain:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 QA 1576
 500 Shipping 703

Chained Operation Cache Policy
The chained operation cache update policy allows you to chain a read operation to create,
update, or delete operations, and update the consolidated database (CDB) at a finer
granularity.

The chained operation cache policy allows chaining of an alternate read operation to a create,
update, or delete (CUD) operation. The parameters of the alternate read operation should be a
subset of the parameters of the chaining operation. The parameter values of the chaining
operation are passed to the alternate read operation and the results returned from the alternate
read operation are then applied to the CDB.

Note: These terms all represent the same thing: consolidated database, CDB, and cache.

This example uses the department table, which is in the sampledb database:

1. Drag and drop the department table onto the Mobile Application Diagram to create a
mobile business object (MBO).

2. In the MBO, double-click the Create operation to open the Operation Properties dialog.
3. Select the Cache Policy tab, and select Chained operation.
4. Select New to launch the Mobile Business Operation Creation wizard, and define the

chained operation:
• Name – ChainedRead.

• Operation type – Read.

• Connection type – Database.

New Features 1.2.1

 78 Sybase Unwired Platform

• Connection name – select a connection to the sampledb database.
• Define the SQL query – select * from department where dept_id <

400.

• Click Finish.
5. Deploy the MBO to Unwired Server.

The result is an MBO that when accessed from a device application or test client behaves as
follows (assuming the MBO's Cache interval is sufficiently long to complete the test without
requiring a cache refresh):

1. The create operation inserts records into the sampledb database.
2. The read operation is called after the create operation, and updates the CDB with records

where dept_id < 400.

From an end-to-end perspective:

1. Initially, synchronizing this MBO from a test client or a device application results in the
client, CDB, and EIS with the same data:
dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703

2. This record is inserted into the EIS (using some method other than the MBO operation):
dept_id=1000, dept_name="QA", dept_head_id=501

The EIS now contains:
dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703
1000 QA 501

Neither the client nor the CDB are updated with the new record.
3. The client invokes the create operation to insert the record:

dept_id=350, dept_name="QA", dept_head_id=501

4. The chained read operation is invoked.
5. The client synchronizes the MBO. While the EIS contains dept_id=1000 and

dept_id=350:

dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293

New Features 1.2.1

New Features 79

400 Marketing 1576
500 Shipping 703
1000 QA 501
350 QA 501

Based on the read operation's definition, the only new record retrieved from the EIS and
updated in the CDB and the client is the dept_id=350 record:

dept_id dept_name dept_head_id
------- ----------- ------------
100 R & D 501
200 Sales 902
300 Finance 1293
400 Marketing 1576
500 Shipping 703
350 QA 501

Defining Chained Operations
A chained operation acts upon the results from a previous operation, and applies the results to
the consolidated database (CDB) using the apply operation results policy.

Primary read is the EIS operation for an MBO that defines how it is populated. A new
operation of type "read" is introduced whose cache update policy is always apply operation
result. It returns a record set that is applied to the CDB. These kind of operations are called as
chained read operations. There can be any number of chained read operations defined on an
MBO. Chained read operations generally return data corresponding to a finer granularity than
the primary read of the MBO. This enables updating the cache at finer granularity. The chained
read operations can be chained to any create, update, delete (CUD) operations of the MBO to
achieve the desired results. The Device API does not support calling chained read operations
directly, but can be invoked independently using DCN request.

Note: These terms all represent the same thing: consolidated database, CDB, and cache.

1. In the Mobile Application Diagram, double-click the operation to which you want to chain
the operation.

2. In the Operation Properties dialog, select the Cache Policy tab.

3. For Cache Update Policy, select Chained operation.

4. For the Chained Operation, select New.

5. In the Mobile Business Operation Creation wizard, enter a name for the operation, and
select Read as the operation type.

6. Select the connection type, and either select the connection name, or click New, and create
a new connection. Click Next.

7. Complete the operation definition according to the data source type to which you are
binding the operation. For example, for a Web-service data source, from the XSLT
Definition screen, select Configure XSLT to access the XSLT.

New Features 1.2.1

 80 Sybase Unwired Platform

8. Modify the operation to meet the intended need. For example, you may have an MBO
operation that inserts records into the database. The chained operation filters the results, so
that only those for a particular user are inserted into the CDB.

Chained Operation Requirements
Mobile business objects must meet certain requirements before you can add chained
operations to them.

To add a chained operation to a mobile business object (MBO), the MBO must meet these
requirements:

• Be bound to a data source that has a primary key, and has one or more Find by attributes
set.

• The record set returned by the chained read operation must have all columns mapped to
key attributes (Find by attributes). You can map these either when you create the chained
operation, or by editing the operation in the Properties view.

• The result set of the chained operation must contain all MBO playback and sync
parameters (Filter by parameters and attributes).

Playback and Synchronization Parameters
The result set of a chained operation must contain the playback and synchronization
parameters of the operation to which it is chained.

For a chained operation to be valid, its result set must contain the playback and sync
parameters of the chaining mobile business object (MBO) operation.

For example, create three MBOs by dragging-and-dropping the "sampledb.dba.customer"
data source. For each MBO, set Filter by for both the "state" parameter and the
"company_name" attribute, so "state" is a playback and sync parameter in all three MBOs:

SELECT id, fname, lname, address, city, state, zip, phone,
company_name
FROM sampledb.dba.customer
WHERE state=@OP["state"="CA"]

This simple example illustrates validation errors. Create a chained operation for each MBO
using these SQL statements:

• Customer1 MBO
SELECT * from customer

This is valid, since the result set of the chained operation contains the "state" and
"company_name" playback and sync parameters.

• Customer2 MBO
SELECT id, fname, lname, phone, company_name
FROM customer
WHERE company_name=@OP["company_name"="AAA"]

New Features 1.2.1

New Features 81

This is an error, since the result set does not contain the "state" playback and sync
parameter. It contains a different sync parameter, "company_name."

• Customer3 MBO
SELECT id, lname, fname, phone, company_name
FROM customer
WHERE state=@OP["state"="CA"]

This is an error. Even though the operation's parameter is "state," the result set does not
contain the "state" playback and sync parameter. It contains another sync parameter,
"company_name."

Invalidate Cache Policy
Use the invalidate cache policy only when other policies cannot be implemented or
performance is not an important consideration.

An operation that uses the invalidate cache policy:

1. Performs the create, update, or delete (CUD) operation. For example, insert a new record
in the enterprise information system (EIS).

2. Invalidates the cache (CDB) for that mobile business object (MBO) instance.
3. Requires the MBO instance in the CDB to be refreshed from the EIS (this is known as

playback). Internally, the MBO's primary read operation executes to retrieve data from the
EIS and repopulates the cache.
Invalidate cache is the default cache update policy for any CUD operation for which there
is no cache update policy set.

No Invalidate Cache Policy
Use the no invalidate cache policy when changes to the enterprise information system (EIS) do
not need to be immediately passed to the consolidated database (CDB).

An operation that uses the no invalidate cache policy updates the EIS without invalidating the
cache (CDB) for that instance of the MBO. Because cache is not invalidated, it may be
different from the EIS. The cache is updated later, for example, based on the Cache Interval
set on Unwired Server. The no invalidate cache policy eliminates nonessential CDB refreshes,
which improves performance.

Note: Consolidated database, CDB, and cache all refer to the same thing, and the terms are
used interchangeably.

This example uses the department table from the sampledb database, which is accessible from
the "My Sample Database" connection profile.

1. To create a mobile business object (MBO), drag and drop the sampledb's "department"
table onto the Mobile Application Diagram.

2. Set the update operation's cache update policy to No Invalidate Cache.
3. Deploy the MBO.

New Features 1.2.1

 82 Sybase Unwired Platform

4. From Sybase Control Center (SCC) Administration Console, set the MBO's Cache
Interval to one hour (or any value long enough to complete this test).

5. Sync the MBO from a test client or device application. The client, CDB, and EIS all have
the same data:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

6. Call the MBO's update operation from the test client or device application to update this
record:
dept_id=100, dept_name="SUPQA", dept_head_id=501

Sync the MBO. The EIS is modified:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 SUPQA 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

Based on the no invalidate policy associated with this operation, the CDB and client
remain unchanged because the cache (CDB) remains valid:
dept_id dept_name dept_head_id
 ------- ------------------ ------------
 100 R & D 501
 200 Sales 902
 300 Finance 1293
 400 Marketing 1576
 500 Shipping 703

Cache Update Policy Validation Rules
Validation rules are enforced when you set the cache update policy.

The following error messages may appear when you define a cache update policy:

Severity and message Meaning Occurs when you

Must specify a read operation for op-
eration ''{0}'' when the cache update
policy is 'Chained operation'

The type of a chained operation
must be "Read."

Create a chained op-
eration

New Features 1.2.1

New Features 83

Severity and message Meaning Occurs when you

Error: No ''Find By'' attributes set for
the mobile business object, cannot cre-
ate alternate read type operation

While a primary key for the data
source is not necessary (Web-serv-
ice data sources do not have primary
keys), the mobile business object
(MBO) must have Find by set for at
least one attribute.

Create a chained op-
eration

Error: The columns of the alternate
read operation '{0}' must contain the
''Find By'' attributes of the associated
mobile business object

The result-set columns in the
chained operation do not contain all
Find by attributes.

Create a chained op-
eration

Error: Cache update policy of opera-
tion ''{0}'' is set to ''{1}'', but there is no
attributes with ''Find By'' set for the
mobile business object

The MBO must have at least one
Find by attribute.

Set the cache update
policy to "apply op-
eration result," "ap-
ply operation param-
eters," or "chained
operation"

Error: Operation ''{0}'': when the cache
update policy is ''Apply Operation Pa-
rameters'', the operation parame-
ters' ''Fill From Attribute'' must have
''Find By'' set

All of the MBO's key attributes
(Find by attributes) must have the
Fill from attribute property set to
the column of the operation's pa-
rameters.

Set the cache update
policy to "apply op-
eration parameters"

Error: Must specify an alternate read
operation for operation ''{0}'' when the
cache update policy is ''{1}''

No chained operation is specified,
and the cache update policy is
"chained operation."

Set the cache update
policy to "chained
operation," or delete
the chained opera-
tion

Error: Parameters of the chained oper-
ation ''{0}'' should be a subset of the
parameters of the chaining operation
''{1}''

The parameters of the chained op-
eration must be a subset of the pa-
rameters of the chaining operation.

Select a chained op-
eration while defin-
ing the "chained op-
eration" policy

Error: The columns of the read opera-
tion "{0}" must cover 'filter by' param-
eters of the associated mobile business
object"

The result set of a chained operation
must contain the playback and syn-
chronization parameters of the mo-
bile business object operation to
which it is chained.

Define a chained op-
eration

New Features 1.2.1

 84 Sybase Unwired Platform

Severity and message Meaning Occurs when you

Warning: Alternate read operation
''{0}'' must cover all mobile business
object attributes with ''Filter By'' set.

The result set of a chained operation
must contain the playback and syn-
chronization parameters of the mo-
bile business object operation to
which it is chained.

Define a chained op-
eration

Configuring the SAP AutoCommit Feature
The SAP AutoCommit feature determines whether commit is always called after an
operation succeeds.

For an SAP operation, if the AutoCommit feature is enabled, commit is always called
following a successful operation; if the operation fails, changes are rolled back. By default, the
AutoCommit feature is enabled; if you disable it, you must explicitly call commit after the
operation succeeds.

1. In the Mobile Business Object Properties dialog, select the Definition tab.

2. To enable the AutoCommit feature, check Commit SAP Operation; to disable, uncheck
Commit SAP Operation.

3. Click Apply, and click OK.

4. If the SAP operation is bound to a mobile business object (MBO) operation:

a) Double-click the MBO operation to open the Operation Properties dialog, and select
the Definition tab.

b) Repeat steps 2 and 3.

Creating a Data Source for Linked Parameters
To implement linked parameters, you must first build a mobile business object that contains all
of the dependent values, and a relationship between the values.

The mobile business object can use any data source, for example:

• A database table
• A Web service
• Result-set filter generated

You must convert the data output from these data sources into a table of a specific format by
using a transformation method, for example, using an XSLT template for the Web-service
output, or using a stored procedure, or a formatted SQL query.

Required attribute names for linked parameters are:

• "index"
• "display_name"
• "value_data"

New Features 1.2.1

New Features 85

• "value_name"
• "link"

For example, a correctly formatted SQL table looks like this:
CREATE TABLE "dba" . "linked_params" (
"index" INT NOT NULL ,
"display_name" VARCHAR (50) NOT NULL ,
"value_data" VARCHAR (50) NOT NULL ,
"value_name" VARCHAR (50) NOT NULL ,
"link" INT NOT NULL ,
)
IN SYSTEM
;
ALTER TABLE "dba" . "linked_params"
 ADD CONSTRAINT "ASA105" PRIMARY KEY CLUSTERED ("index")
;
ALTER TABLE "dba" . "linked_params"
 ADD CONSTRAINT "ASA106" UNIQUE NONCLUSTERED ("index")
;

Linked Parameters
Linked parameters use the dynamic format of the mobile business object to drive the content
of the drop-down values on the device application.

Many applications have drop-down lists of values you can choose, and the values you select
can affect the choices in other lists.

Linked parameters make it easier to build entry forms for device applications that allow
dependent drop-down choices. For example, if a user selects "California" for the state field,
the country field is automatically set to "USA." This makes the input data consistent, with less
chance of errors. For example:

Field name Values

Field 1 Accepts values A, B, or C

Field 2 Allows values dependent on Field 1:

A–>1,2,3
B–>4, 5, 6
C–>7, 8, 9

Field 3 Allows values dependent on Field 1:

A–>100, 101, 102
B–>200, 201, 202
C–>300, 301, 302

New Features 1.2.1

 86 Sybase Unwired Platform

Field name Values

Field 4 Allows values dependent on Field 2:

1–>11,111
2->22,222
3–>33,333
4–>44,444
5->55,555
6–>66,666
7–>77,777
8–>88,888
9–>99,999

When the user selects value "A" in Field 1, the allowed values listed in Field 2 change to 1, 2, 3;
the Field 3 choices become 100, 101, 102.

Note: For each change to Field 2, there is a cascading effect to Field 4.

If the user chooses value C in Field 1, the Field 2 choices become 7, 8, 9; Field 3 choices
become 300, 301, 302; Field 4 choices become 77,777, 88,888, 99,999.

Transforming a Data Source for Linked Parameters
You must transform, or generate, the data source to produce data in the required format for
linked parameters.

Sybase Unwired Platform includes two XSLT files (CategoryTypeItem.xsl and
RegionSiteDepartment.xsl) located in <SUP Installation Directory>
\UnwiredPlatform\Unwired_Workspace\samples, which you can modify and
use with Remedy Web Services. Use these XSLT files to build mobile business objects to
produce the Category-Type-Item or Region-Site-Department dependent field values (linked
parameters) that are common in the Remedy HelpDesk and other applications.

If you use a different application or data source, you can use your own transformation or
generation techniques to produce the data in a similar format to that required for linked
parameters.

This example shows the CategoryTypeItem XSLT:

New Features 1.2.1

New Features 87

This is a preview of a mobile business object that uses linked parameters:

New Features 1.2.1

 88 Sybase Unwired Platform

Example of a database source

This sample creates a linked table using Remedy data.
CREATE TABLE "dba"."linked_params" (
"index" INT NOT NULL,
"display_name" VARCHAR(50) NOT NULL,
"value_data" VARCHAR(50) NOT NULL,
"value_name" VARCHAR(50) NOT NULL,
"link" INT NULL,
)
IN SYSTEM
;

New Features 1.2.1

New Features 89

ALTER TABLE "dba"."linked_params"
 ADD CONSTRAINT "ASA105" PRIMARY KEY CLUSTERED ("index")
;
INSERT INTO dba.linked_params
 ("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (1,
 'Category',
 'default',
 'Default',
 null);
INSERT INTO dba.linked_params
 ("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (2,
 'Category',
 'hardware',
 'Hardware',
 null);
INSERT INTO dba.linked_params
 ("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (3,
 'Category',
 'software',
 'Software',
 null);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (4,
 'Type',
 'default',
 'Default',
 1);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",

New Features 1.2.1

 90 Sybase Unwired Platform

 "link")
 VALUES
 (5,
 'Type',
 'drive',
 'Drive',
 2);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (6,
 'Type',
 'laptop',
 'Laptop',
 2);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (7,
 'Type',
 'memory',
 'Memory',
 2);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (8,
 'Type',
 'email',
 'Email',
 3);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (9,
 'Type',
 'internet',
 'Internet',
 3);
INSERT INTO dba.linked_params

New Features 1.2.1

New Features 91

("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (10,
 'Item',
 'default',
 'Default',
 4);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (11,
 'Item',
 'dvd drive',
 'DVD Drive',
 5);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (12,
 'Item',
 'hard drive',
 'Hard Drive',
 5);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (13,
 'Item',
 'zip drive',
 'Zip Drive',
 5);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (14,
 'Item',

New Features 1.2.1

 92 Sybase Unwired Platform

 'apple',
 'Apple',
 6);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (15,
 'Item',
 'deli',
 'Deli',
 6);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (16,
 'Item',
 'ibm',
 'IBM',
 6);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (17,
 'Item',
 'memory',
 'Memory',
 7);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (18,
 'Item',
 'outlook',
 'MS Outlook',
 8);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",

New Features 1.2.1

New Features 93

 "link")
 VALUES
 (19,
 'Item',
 'outlook express',
 'MS Outlook Express',
 8);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (20,
 'Item',
 'access',
 'Access',
 9);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (21,
 'Item',
 'ftp',
 'FTP',
 9);
INSERT INTO dba.linked_params
("index",
 "display_name",
 "value_data",
 "value_name",
 "link")
 VALUES
 (22,
 'Item',
 'other',
 'Other',
 9);

Creating Multilevel Insert Operations for Web Service Mobile Business Objects
Create a multilevel insert operation for two Web service mobile business objects (MBOs).

In this example, you have two MBOs, Order and OrderItem, that both have defined insert
operations: the OrderItem.insert operation requires the Order.id, but Order.id is assigned by
the enterprise information system (EIS) and not available until the order is created in the EIS.
You can create a multilevel insert operation to address this problem. When creating the
multilevel insert operation:

New Features 1.2.1

 94 Sybase Unwired Platform

• Ensure that Order.insert operation returns a resultSet that has the newly created Order.Id as
one of the columns.

• Chain the two insert operations by creating the appropriate relationship.
• Ensure the association from Order to OrderItem is from Order.id.
• Ensure consistent naming: the Find By attribute of Order (ID) must match the ID

parameter of OrderItem.insert.

1. Create a Web service connection profile to the data source from which you created the
MBOs.

2. Create attributes of the parent MBO (Order). For example, you can drag and drop the Web
service data source onto the Mobile Application Diagram, and use the Quick Create
wizard to define the MBO.

Define the MBO operation (insert).

Note: Web service multilevel inserts support SOAP bindings only.

3. Click Finish.

4. Set or verify the Fill from attribute setting:

a) In the Mobile Application Diagram, double-click the operation that serves as the insert
operation for the parent MBO.

b) From the left side of the Properties view, select the Parameters tab.
c) Verify that each parameter name has a corresponding Fill from Attribute value

defined.

All parameters of the create operation in the parent MBO and the child MBO must be
set to the related Fill from attribute value. By default, the related value is set
automatically, but in some cases the value cannot be found, so double check the values.

d) From the left side of the Properties view, select the Attributes tab located on the left,
then the Attributes Mapping tab located on the top. Locate and select the Find by
check box for the attribute that serves as the primary-key equivalent for the parent
MBO (for example, Id).

5. Create the child MBO (OrderItem) the same way you created the parent – drag and drop
the data source onto the Mobile Application Diagram, and follow the Quick Create wizard
instructions to create the attributes and operations.

6. From the Properties view, verify that each operation's (insert) parameter name has a
corresponding Fill from attribute setting.

7. In the Mobile Application Diagram, click Relationship, and use the wizard to define a
relationship between the MBOs. For example, link the Source object Order "Id" attribute
to the Target object OrderItem "Id".

Verify that the child MBO is not syncable, unless you are sure that the child MBO will be
synchronized either independently, or through the parent MBO. When the device
application designed from these MBOs runs, the child MBOs appear on the Synchronize

New Features 1.2.1

New Features 95

screen. If the device-application user attempts to synchronize any of the child MBOs, a
Missing-Sync-Param exception occurs.

8. Verify that Filter by is selected for the child MBO's attribute/parameter used in the
relationship.

Understanding Multilevel Insert Operations
In a multilevel insert, multiple mobile business objects are synchronized in a single operation.
The mobile business objects must have a defined relationship, and the insert parameters must
support the relationship.

Some business processes require multiple related enterprise information system (EIS)
operations; for example, creating a sales order with line items. The parent/child relationship is
often represented by primary key(PK) / foreign key(FK) attributes in the parent and child
mobile business objects (MBOs). When you construct these types of MBOs in an offline client
application, the primary-key and foreign-key values are transitory. When EIS operations are
called to create real data, the EIS systems generate the actual key values, and the primary key
of the parent is copied to the related child MBO creation operations. These types of operations
are known as "chained insert" or "multilevel insert."

• For JDBC MBOs using Sybase databases, dragging and dropping a table that contains
autoincrement columns (one mechanism for generating primary keys) automatically
creates the appropriate operations for obtaining the parent's generated keys and applying
them to the children.

• For other EIS types (non-Sybase databases, and applications where key generation does
not use the autoincrement technique), you must define the insert operations in such a way
that allows the child to obtain the generated keys.

Typically, in a chained-insert operation, you:

1. Create the parent MBO, and indicate the attributes that constitute that MBO's primary
key.

2. Create the child MBO and draw a relationship from the parent MBO's primary-key
attributes to the child's foreign-key attributes.
Unselect the child MBO's Syncable property, unless you are sure that the child MBO will
be synchronized either independently or through the parent MBO. Otherwise, when the
device application designed from these MBOs runs, the child MBOs display on the
"Synchronize" screen. If the device application user invokes "Synchronize" on any of the
child MBOs, a Missing-Sync-Param exception occurs.

3. Define the insert operations for the parent and child MBOs.
The insert operation for the parent MBO must return a single row that contains the
primary-key values. The column labels must match the attribute names of the parent MBO.
With this information, and the relationship-mapping data, Unwired WorkSpace modifies
the input parameters for the insert operation of the child MBOs by replacing the foreign-
key attributes with the ones returned from the parent MBO's insert operation. For example:

New Features 1.2.1

 96 Sybase Unwired Platform

CREATE TABLE parent(pk int autoincrement primary key, p1
varchar(30),...)
CREATE TABLE child(fk int references parent.pk, ...)

The parent insert MBO is defined as:
INSERT INTO parent(p1, ...) VALUES(?, ...); SELECT * FROM parent
WHERE pk = @@IDENTITY;

This batch query inserts the new parent row, and returns a single row containing the newly
generated primary-key value.

You must understand the key-generation mechanism used by the EIS application from which
you are developing, and be able to determine how to retrieve the newly generated keys during
the insert operation (frequently, this logic is wrapped in a stored procedure).

This same technique applies to Web service, SAP, and other EIS systems, though the insert-
operation definitions differ.

Note:

• The from attribute of the insert operation parameter is used to infer the foreign-key
information of the insert operation parameter. So the name of the attribute (which is the
target of the association from the primary key of the parent) and parameter of the insert
operation need not be the same.

• The insert query returns the complete newly generated row, not just the identity column.
The single row that is returned must contain all of the columns referenced in the
relationship between the parent MBO and the child MBO, and the labels of the columns
must match the from attribute names of the parent MBO.
Not all columns in the inserted row are required. For example, not all columns are selected
or required for a drag-and-drop database operation.

• A multilevel insert records all logs under the parent MBO. All pending actions are also
listed under the parent MBO.

Errors may occur if:

• The client sends the parent ID, which does not correspond to the server’s interpretation of
the parameters of the insert operation.

• The customer's primary key consists of more than one attribute.
If the child has multiple foreign-key attributes pointing to the parent, the relationship
should list all relevant parent-to-child attributes. As long as the row returned from the
parent insert contains all those columns, the child insert should work; all the foreign-key
fields are populated from the parent insert result set.

• The insert operation of the parent fails at the back end.
• There is no association relationship between customer and order in which the source

attribute/parameter in customer is a primary key and the target parameter in order is a
foreign key to customer.

New Features 1.2.1

New Features 97

• The result set generated by the parent’s insert operation does not have the required single
row with the newly created primary key of that operation.

Note: Unwired Server does not report the specific reason of a multilevel insert failure. If you
receive errors, or if the insert fails, check each of these items to try and identify the problem.

Modifying SAP Connection Properties
Edit connection properties for an SAP mobile business object, and define the property values
as parameters.

You can modify Java connector (JCo) properties in SAP mobile business objects (MBOs), and
use the property values as parameters; for example, as personalization keys or default values.

1. In the Mobile Business Object Properties dialog, select the Connection tab.

2. Select Override default authentication.

3. Under Connection Properties, select Configure as Parameters.

4. The table displays the configurable connection properties:

• For each property, you can either enter a value or select a personalization key. You can
also create a new personalization key for any property, except the language property,
which does not support personalization.

• The codepage property does not appear in the table; it is calculated from the
language, and cannot be modified.

• Set the Unicode property to either true or false.

5. Click Apply, then click OK.

At runtime, you can use SAP connection properties as parameters. For example, if the
SalesOrder.CreateFromData1 operation inserts a sales order for a particular user,
and it occurs in the context of a known SAP user, the user's credentials can be passed to the
operation.

Documentation Updates
These documentation updates apply to Sybase Unwired Platform version 1.2.1.

Generating Certificates to Enable HTTPS Synchronization
Generate public, private, and identity keys by running the createcert command line utility.

Unwired Server and the Afaria server can share a certificate if both products are installed on
the same host, or if you create a wildcard certificate (certificate DN is *.<domain>). Wildcard
certificates may not be accepted by all clients.

1. At a command prompt, change to <UnwiredPlatform-installDir>\servers
\UnwiredServer\SQLAnywhere11\BIN32.

2. Run:

New Features 1.2.1

 98 Sybase Unwired Platform

createcert

3. When prompted, enter 1024 as the RSA key length. For all remaining prompts, enter
appropriate values for your deployment; for example:

Note: Make a note of your private-key password and identity-key file path; you will need
these values again.

Preparing the Unwired Platform Environment for SAP Connections
The SAP JCO connector is used by all Unwired Platform components. Therefore, Sybase
recommends that you make all changes concurrently in a distributed environment for
development and production installations of Unwired Platform.

Prerequisites
Before you can access the SAP Web site, you must have an SAP account.

These steps describe the common tasks for setting up an SAP environment. Other details, such
as where to copy files, differ by component.

1. Go to the SAP Web site at http://service.sap.com/connectors and download the latest SAP
JavaConnector, for example, sapjco-ntintel-2.1.8.

2. Unzip the file, which contains:

New Features 1.2.1

New Features 99

http://service.sap.com/connectors

• sapjco.jar

• librfc32.dll

• sapjcorfc.dll

3. Shut down all Unwired Platform components, including Unwired WorkSpace and all
Unwired Servers on your network.

4. Copy librfc32.dll and sapjcorfc.dll into the following target directories:

Component Targets

Eclipse Unwired WorkSpace • C:\WINDOWS\system32
• <SUP Installation root>\Unwired-

Platform\JDK1.6.0_12\bin

Visual Studio Unwired Work-
Space

• \Program Files\Microsoft Visual
Studio 9.0\Common7\IDE

• <SUP Installation root>\Unwired-
Platform\Unwired_WorkSpace\Visu-
alStudio\toolingapi\lib

Unwired Server • <SUP Installation root>\Unwired-
Platform\Servers\UnwiredServer
\dll

5. Copy sapjco.jar into the following target directories:

Component Targets

Eclipse Unwired WorkSpace • <SUP Installation root>\Unwired-
Platform\Unwired_WorkSpace
\Eclipse\sybase_workspace\mobile
\eclipse\plugins\com.syb-
ase.uep.com.sap.mw.jco_1.2.0.<ver-
sion>\lib

Visual Studio Unwired Work-
Space

• \UnwiredPlatform\Unwired_Work-
Space\VisualStudio\toolingapi\lib

Unwired Server • <SUP Installation root>\Unwired-
Platform\Server\UnwiredServer\lib

6. In a clustered production environment, you must also enable SAP mobile business objects
to connect to an SAP R/3 system that uses a router:

a) Change to \UnwiredPlatform-1_2\Servers\UnwiredServer
\Repository\Instance\com\sybase\sap.

b) In a text editor, open <SAPprofile>.properties, where SAPprofile is the
name of the connection profile that is used to deploy SAP mobile business objects from
Unwired WorkSpace to the server.

New Features 1.2.1

 100 Sybase Unwired Platform

c) Set the value of the jco.client.ashost property to /H/proxyHost/H/
applicationServer , where:

• proxyHost is the name of the proxy-server machine, and
• applicationServer is the name of the application server

7. After copying the files, restart all components and all Unwired Servers.

Troubleshooting
This troubleshooting information is new for Sybase Unwired Platform version 1.2.1.

Codegen.GetCalledOperations Returns Only One Operation
Problem: In the Client API, Codegen.GetCalledOperations returns a list that contains only
the first operation.

Solution: Call FindAll instead of GetCalledOperations.

Device Database Page Size
Problem: For a mobile business object, the sum of the maximum sizes for attributes and
parameters cannot exceed 64K; this restriction does not apply to long binary or long varchar
datatypes.

If you synchronize metadata from a .NET client to create UltraLite® database tables for a
mobile business object with large column sizes, you may see an error similar to Max row
size of UA_10001_10002_param table exceeded. This is analogous to a
SQLE_MAX_ROW_SIZE_EXCEEDED (-1132) error.

On BlackBerry UltraLite (Java) clients, you can synchronize metadata and create database
tables, but you may see end of stream errors when you synchronize after an insert
transaction.

Solution: To work around this problem, try one of these options:

• Increase the page size of the device database, up to 16K. The default size is 4K. You can set
the page size using either:
• An API – see the Client Object API Cookbook 1.2 on Sybase Unwired Platform Tech

Corner, or
• The Device Application Designer – in the Flow Design Properties view.

• Decrease the size of string datatype columns that are less than 8191 and binary datatype
columns that are less than 32767.

• For string columns with a size close to 8191, increase the size to more than 8191, so a long
varchar datatype is used instead. For binary columns with a size close to 32767, increase
the size to greater than 32767, so a long binary datatype is used instead.

Note: Increasing column sizes may degrade performance.

New Features 1.2.1

New Features 101

SAP Connection Error
Problem: When you attempt to connect to an SAP server from the Visual Studio development
environment, you may see Open file C:\WINDOWS\sapmsg.ini failed, which
indicates that the file is missing, and you cannot connect to the SAP system.

Solution: Add sapmsg.ini to your Visual Studio environment:

1. In C:\WINDOWS\, use a text editor to create a file called sapmsg.ini file, and insert
this line:

<SAP_System_Number>=<IP_Address>

Where:
• SAP_System_Number is the value of the SAP system number connection property

(jco.client.sysnr), and
• IP_Address is the IP address of the Unwired Platform machine.

2. Using a text editor, open C:\WINDOWS\system32\drivers\etc\services,
and add a service that has this format:

sapms<SAP_System_Number> <Message_Server_Port>\tcp

For example:

sapmsC27 3602\tcp

3. Restart the system.

4. Verify that group public is enabled for the SAP application. See your SAP documentation.

SAP Parameter-to-Argument Linking
Problem: In an SAP mobile business object, when you use the Detailed Properties dialog to
edit operation parameters, arguments and parameter-to-argument links may be lost.

Solution:

1. In the Mobile Application Diagram, right-click Operation in the mobile business object,
and select Edit with Wizard.

2. Restore any missing arguments or links.

Slow Code Generation
Problem: Generating client code for a project with several mobile business objects may take
five minutes if you select to automatically generate the user interface.

Solution: On the first page of the Client Code Generation wizard, unselect Generate GUI
frontend from template.

SQLE_TOO_MANY_PUBLICATIONS Error
Problem: If there are more than 30 syncable mobile business objects (MBOs) in a package,
and fewer than 30 syncable MBOs in the Device Application Designer file, a

New Features 1.2.1

 102 Sybase Unwired Platform

SQLE_TOO_MANY_PUBLICATIONS error may occur when you synchronize the MBOs
on Windows Mobile.

Solution:

1. In Unwired WorkSpace, open Program.cs, which is located in %Visual Studio
solution folder%\%Client project name% .

2. Set the value of
Sybase.UnwiredPlatform.Data.DatabaseUtilities.UseDynamicPu
blication to true.

3. Rebuild and redeploy the project to your Windows Mobile device.

Trailing Space Causes Synchronization Failure
Problem: If you attempt to synchronize a mobile business object (MBO), and its key column
includes values that differ only by a space; for example, "test" versus "test ", synchronization
fails.

The Enterprise Information System interprets "test" and "test " as different values, and two
rows are created. When you synchronize the MBO, the trailing space is stripped from the value
"test ", which creates a conflict, and generates an error.

Solution: Do not insert key values that differ only by a space.

Visual Studio 2008 Chinese Edition
Problem: If you are using the Visual Studio 2008 Chinese Edition, you must manually copy
some files for the installation to work with Sybase Unwired Platform.

Solution:

1. In the Windows Registry, find your locale ID at HKEY_CURRENT_USER\Control
Panel\International\Locale.

2. Convert the value of locale ID from hexadecimal to decimal.
3. Copy the files in:

C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE
\ProjectTemplates\CSharp\Sybase Unwired WorkSpace\1033

to:
C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE
\ProjectTemplates\CSharp\Sybase Unwired WorkSpace\localeID

Where localeID is the decimal value of your locale ID.

New Features - Sybase Control Center and Unwired Server
New and enhanced features, updated documentation, and new troubleshooting topics are
described.

The tables below provide a brief description of each feature and links to associated topics.

New Features 1.2.1

New Features 103

New Sybase Unwired Platform features

Feature Topics

Install a dedicated consolidated database (CDB, or cache) in an
Unwired Server cluster.

Installing a Dedicated Consolidated
Database on an Unwired Server
Cluster on page 106

Set up client-side certificates to secure synchronization be-
tween Microsoft IIS Server and device clients in a Relay Server
configuration. Two new synchronization parameters have been
added to support this feature: identity and identity_pass-
word.

Set Up Client-Side Certificates on
page 108

Optimize device application and Unwired Server performance
by including a cache update policy when developing mobile
business objects.

Cache Update Policy

See New Features – Eclipse Edition
and New Features – Visual Studio
Edition for information about set-
ting cache update policies for
MBOs.

Update the consolidated database with changed Enterprise In-
formation System (EIS) using a data change notification
(DCN) request. This section provides examples.

Data Change Notification Requests
on page 119

Enhanced Sybase Unwired Platform features

Feature Topics

New Unwired Server configuration properties are available in Sybase
Control Center.

Sybase Control Center New
Server Configuration Prop-
erties on page 122

Updated command line utilities allow you to create and deploy pack-
ages from the command line rather than using Sybase Control Center
(or Unwired WorkSpace in the development environment).

Command Line Package
and Deploy Utilities on
page 123

Server-side logging enhancements allow you to configure a separate
log4j logger (EISInteractionLogger) to send output to a separate log
file (eis.log) or to the consolidated uep.log.

Server Side Logging En-
hancement on page 124

New Features 1.2.1

 104 Sybase Unwired Platform

Documentation updates

Feature Topics

Corrected information in steps 1 and 2. In step 1, the directory name
is BIN32, not win32. In step 2 , call createcert, not gencert

Generating Certificates to Ena-
ble HTTPS Synchronization on
page 125

Replace the topic "Configuring Your Environment for SAP" with
the topic "Preparing the Unwired Platform Environment for SAP
Connections."

Preparing the Unwired Plat-
form Environment for SAP
Connections

Deployment Edition postinstallation configuration updates to the
topic "Configuring an LDAP Provider for Sybase Control Center"
to include information about anonymous log ins and "Setting Up
Roles and Passwords in Sybase Control Center" to add role map-
ping for the Anonymous Login Module to the uafAnonymous role.

Configuring an LDAP Provider
for Sybase Control Center on
page 127

Setting Up Roles and Pass-
words in Sybase Control Center
on page 128

These Afaria® reference documents, available from the Sybase
Unwired Platform topic "Afaria Documentation," have been upda-
ted: :

• Installing Afaria

• Afaria Reference Manual Platform

• Afaria Reference Manual Components

Note: Bandwidth throttling notice to all customers

Throughout these documents may be textual and graphical refer-
ences to the bandwidth throttling feature. Although these repre-
sentations are included in this document, and also appear in the
Afaria application, this version of Afaria disables the feature and
does not support its use.

On the Sybase Control Center
bookshelf, select Administer >
Afaria > Afaria Reference >
Afaria Documentation.

This topic contains information about how to implement end-to-
end security on a device client with HTTPS.

Implementing End-to-End Se-
curity for Device Clients on
page 129

This topic contains information for how to set the CDB thread count
manually.

Setting the CDB Server Thread
Count Manually on page 130

Describes counters used in current Unwired Server logging and
tracing.

Unwired Server Performance
Counter Reference on page
131

New Features 1.2.1

New Features 105

Troubleshooting

Feature Topics

Inability to access the clusterdb results in an incorrect
service name for Unwired Server.

Changing Service Names on page 133

Troubleshoot cluster and relay server issues. Cluster and Relay Server Issues on page
133

AddCOMMUNICATION_ERROR_CODE to client ap-

plications to debug synchronization errors.

Troubleshooting Communication Errors
Between Client Applications and Un-
wired Server on page 136

Sybase Control Center does not function if it cannot re-
trieve its list of servers.

Sybase Control Center Issues Retrieving
Server List on page 137

Unwired Server reports ODBC errors. Unwired Server Reports ODBC Connec-
tion Problems on page 137

When trying to run a device client with a client-side cer-
tificate, errors may be reported, such as -403 HTTP or
-413 HTTP.

Resolving Client-Side Certificate Errors
on page 138

If you attempt to insert data that exceeds the maximum
size defined for the column, an error occurs.

Inserting Data That Exceeds Maximum
Size Causes Errors on page 139

New Features
These new features are included in Sybase® Unwired Platform version 1.2.1.

Installing a Dedicated Consolidated Database Within an Unwired Server Cluster
Install a consolidated database (CDB) so that it is independent of any Unwired Server instance
in the cluster.

To improve performance, you may want to install a dedicated CDB in a cluster of Unwired
Servers so that it is independent of any Unwired Server within that cluster. Typically, as client
load increases, the CDB becomes a bottleneck. If a single Unwired Server becomes a
bottleneck, you can always add more servers to your cluster, and the load is balanced between
all servers. However, you cannot add more CDBs—one CDB handles the entire load for
database-related work. A dedicated CDB improves performance because it does not compete
with other Unwired Server components for CPU and I/O resources.

See the Sybase Unwired Platform Installation Guide for additional information.

1. Install the first Unwired Server in the cluster (using either the Personal Developer Edition
or the Enterprise Developer Edition), as a Windows Service. This is the dedicated CDB
node.

New Features 1.2.1

 106 Sybase Unwired Platform

2. Select the Create new cluster option.

This Unwired Server serves as the dedicated CDB for the Unwired Server cluster.

3. After installing the CDB node, disable starting of non-CDB services on the dedicated CDB
host:

a) From Windows, select Start > Settings > Control Panel.
b) Select Administrative Tools > Services.
c) Disable all Unwired Server services except the CDB database (identified as

SybaseUnwiredPlaform<hostname>Database1, where hostname is the name of the
host system), including:

• WatchDog – SybaseUnwiredPlaformhostnameWatchdog1
• Server – SybaseUnwiredPlaformhostnameServer1
• Sybase Unified Agent
• OpenDS LDAP server (for Unwired Server Developer Edition installations)

4. Install other instances of Unwired Server (Deployment Edition) on the other hosts in the
cluster.

5. Select Add to existing cluster when prompted, and join the cluster to which the dedicated
CDB belongs.

Troubleshooting Dedicated Consolidated Database Installation
These instructions are for situations where the procedure for installing a dedicated CDB was
not followed in the initial installation resulting in the installation of Sybase Unwired Platform
servers with unwanted CDBs attached.

The information about the primary CDB you do not want attached to the SUP installation must
be removed from the cluster configuration data (clusterdb) so the SUP service entry can be
rebuilt without the CDB dependency.

In this procedure you will remove the CDB in the initial SUP installation (machine A) from the
clusterdb, then you will install SUP on a different machine (machine B) and add the new CDB
to the existing cluster on machine A.

1. To remove the CDB from the clusterdb configuration on the initial Unwired Server
installation (machine A):

a) Verify the SQLAnywhere database is running and that the clusterdb databases are
active.

b) Go to the Unwired Server installation directory; for example, C:\Sybase
\UnwiredPlatform-1_2\Servers\UnwiredServer and run
updateProps.bat -x.

The -x flag removes this installation from the cluster configuration data.
c) Run:

mlservice.bat remove
uadbservice.bat remove

New Features 1.2.1

New Features 107

2. Install Sybase Unwired Platform on the machine where you want to run the dedicated CDB
(machine B). See Performing a Custom Installation in the Sybase Unwired Platform
Installation Guide.

a) In Additional Installation Options, choose Select to specify cluster configuration
options to add the new CDB to the existing cluster from the initial SUP installation on
machine A.

b) Choose Select to run Unwired Server as a service to start Unwired Server
automatically when Windows starts up.

Note: Do not start the SUP servers on machine B at this point.

3. On machine A, shut down the SUP server, including the SQLAnywhere database.

4. Copy *.log and *.db from %SUP_Installation%\UnwiredServer
\SQLAnywhere11 on machine A to the same location on the new installation on
machine B, overwriting files that have the same name.

5. On machine B, open the Windows Service Manager and set these services:

a) Open the Windows Control Panel and click Administrative Tools > Services.
b) Find SybaseUnwiredPlatform<clustername>Server<number> and set it to Disabled:

1. Open Services.
2. Right-click the service that you want to enable or disable, and then click

Properties.
3. On the Log On tab, click the profile that you want to configure, and click

Disable.
4. Click OK.

c) Find SybaseUnwiredPlatform<clustername>Database<number> and set it to
Autostart.

6. Start the database service.

7. On machine A, use a text editor to open the sup.properties file, and set
sqlany.mode=none. Delete the property sqlany.serverport entirely. This
disables the local CDB.

8. Run config.bat.

This adds the initial installation on Machine A back into the cluster. Since the Machine B
CDB is already registered, the CDB on Machine A is not added back and its dependencies
are removed.

Client-Side Certificates
Set up client-side certificates to secure synchronization between Microsoft IIS server and
device clients in a Relay Server configuration. Two synchronization parameters support this
feature: identity and identity_password.

Device clients cannot directly authenticate to Unwired Server using client-side certificates.
The client-side certificates can be used only to authenticate to third-party servers and proxies
that have been configured to accept client-side certificate authentication.

New Features 1.2.1

 108 Sybase Unwired Platform

These synchronization parameters support client-side certificates:

• identity – identifies the file that contains the client's identity. An identity consists of the
client certificate, the corresponding private key, and, optionally, the certificates of the
intermediary certificate authorities. This parameter is equivalent to MobiLink server's
'identity' parameter.

• (Optional) identity_password – specifies the password used to encrypt the private key
found in the identity file. identify_passwored is only required if the private key in the
identity file is encrypted. This parameter is equivalent to MobiLink server's
'identity_password' parameter.

Note: Client-side authentication is not supported in UltraLiteJ (RIM Blackberry) devices.

To set up client-side authentication:

1. Set up client authentication for the Virtual Directory/Web Extension that contains the
rs_client.dll. Request client-side certificates only for connections to the
rs_client.dll. There should be no request for client-side certificates on the
rs_server.dll because this is a server connection.

2. Copy the client-side certificate, generated by the Certificate Manager, to the client device.
3. If everything is configured correctly with IIS, then specifying identity on the MobiLink

client connection parameter should work.

Configure Relay Server with Microsoft IIS using SSL
To use client-side certificates with Sybase Unwired Platform, configure Relay Server with
Microsoft Internet Information Services Web server using SSL.

You need to have these installed on your Windows 2003 Server:

• Application server
• Certificate services

You also need to complete these steps from "Configuring the Relay Server with Microsoft
Internet Information Services" in the Configuring the Relay Server With Microsoft IIS using
SSL white paper available on http://www.sybase.com/detail?id=1059277:

1. Deploying the Relay Server Web Extensions.
2. Creating an Application Pool.
3. Enabling the Relay Server Web Extensions.

Note: Sybase also recommends that you start the Relay Server as a Windows service.

Generating Client-Side Certificates
Generate a client-side certificate, which is not the same as the one you configure for Unwired
Server HTTPS encrypted synchronization.

New Features 1.2.1

New Features 109

Prerequisites
These instructions assume you have already configured Unwired Server-side certificates
correctly, and that the Unwired Server client will provide a trusted certificate. Windows IIS
should be set up with Relay Server for server-side certificates, and should have Application
Server and Certificate Services installed as described in Configure Relay Server with
Microsoft IIS using SSL available on http://www.sybase.com/detail?id=1059277.

Create a new client-side certificate.

1. At a command prompt, change to <UnwiredPlatform-installDir>\servers
\UnwiredServer\SQLAnywhere11\BIN32.

2. Run:

createcert

3. When prompted, enter 1024 as the RSA key length. For all remaining prompts, enter
appropriate values for your deployment; for example:

C:>createcert
SQL Anywhere X.509 Certificate Generator Version 11.0.1.2250
Enter RSA key length (512-16384): 1024
Generating key pair...
Country Code: CA
State/Province: ON
Locality: Waterloo
Organization: ClientCert
Organizational Unit: ClientCert
Common Name: ClientCert
Enter file path of signer's certificate:
Certificate will be a self-signed root
Serial number [generate GUID]:
Generated serial number: 6d2f67d5a21c4d95a604b701afd37789
Certificate valid for how many years (1-100): 10
Certificate Authority (Y/N) [N]: Y
1. Digital Signature
2. Nonrepudiation
3. Key Encipherment
4. Data Encipherment
5. Key Agreement
6. Certificate Signing
7. CRL Signing
8. Encipher Only
9. Decipher Only
Key Usage [6,7]:
Enter file path to save certificate: rsa_client.crt
Enter file path to save private key: rsa_client.key
Enter password to protect private key: pwd
Enter file path to save identity: id_client.pem

Note: You must use an RSA Transport Layer Security (TLS) certificate, and not a
certificate generated from ECC TLS or from another source such as openssl or createcert
in an SQL Anywhere installation.

New Features 1.2.1

 110 Sybase Unwired Platform

Note: Make a note of your private-key file path and password values
(rsa_client.key and pwd), and the certificate and identity file paths
(rsa_client.crt and id_client.pem). You will need these values again.

Installing the CA Certificate
Install the root CA certificate (rsa_client.crt) on the Web server machine to enable the
Web server to trust the Web site certificate installed on the IIS Web site.

Install the root CA certificate in the Trusted Root Certification Authorities store on the Web
server machine (this is the rsa_client.crt file that you created in the Generating Client-
Side Certificate step). This enables the Web server to trust the Web site certificate installed on
the IIS Web site.

Install the root CA certificate into the Web server certificate store:

1. Click Start > Run, and enter mmc. Click OK.

2. In the Console1 window, select File > Add/Remove Snap-in.

3. In the Add/Remove Snap-in dialog, click Add.

4. In the Add Standalone Snap-in dialog, select Certificates, and click Add.

5. On the Certificates snap-in page, select Computer account, and click Next.

6. On the Select Computer page, select Local computer, and click Finish.

7. Click Close, and then OK.

8. Import the certificates:

a) Expand the Certificates node, and then expand the Trusted Root Certification
Authorities node.

b) Right click Certificates, select All Tasks, and click Import.

9. Click Next on the Welcome to the Certificate Import Wizard page.

10. On the File to Import page, click Browse, and specify the rsa_client.crt file path.
This is the rsa_client.crt file that you created in the Generating Client-Side
Certificate step.

New Features 1.2.1

New Features 111

Figure 5: Client Properties – Secure Communications

New Features 1.2.1

 112 Sybase Unwired Platform

Click Next.

11. On the Certificate Store page, accept the default setting, Place All Certificates In The
Following Store, and click Next.

12. Click Finish on the Completing the Certificate Import page.

13. Click OK in the Certificate Import Wizard dialog box informing you that the import was
successful.

Setting Up RS_Client with Client-Side Certificates
Set up rs_client properties in Microsoft Internet Information Services (IIS). These properties
are required for client-side certificate authentication.

1. Click Start > Settings > Control Panel > Administrative Tools, and select Internet
Information Services (IIS) Manager.

2. Right click the client folder under ias_relay_server, and select Properties.

3. Select the Directory Security tab.

4. Select Edit.

5. Select:

• Require Secure Channel (SSL)
• Require 128-bit Encryption
• Require Client Certificates

New Features 1.2.1

New Features 113

Click OK.

6. Click Apply, and then click OK.

7. To use client-side certificate authentication:

a) Go to Client Properties > Directory Security > Authentication and Access Control
> Edit.

b) Unselect Integrated Windows Authentication.

Running the Client
To run the client using the certificate, copy the certificate files to your client machine, laptop,
or device, and add client-side certificate related information to the user profile.

Note: This procedure is typical in a production environment. In a development or test
environment, you could also configure the profile from Unwired WorkSpace. See Configuring
a Profile from a Generated Project.

New Features 1.2.1

 114 Sybase Unwired Platform

1. Copy the certificate files rsa_root.crt and id_client.pem to your client
machine, laptop, or device. These files were created in the Generating Client-side
Certificates step. This example shows the Win32 client.

Note: Client-side certificates are not supported in UltraLiteJ (BlackBerry devices).

2. On the client machine, laptop, or device, access the New Profile dialog.

3. Include the client-side certificate information in the profile, including:

• MobiLink Port – this example shows 443.
• ML Protocol – this example uses HTTPS (this is equivalent to the MobiLink Stream

Type).
• Stream Parameter – this example uses the .NET Win32TestClient:

“url_suffix=/ias_relay_server/client/rs_client.dll/
[SUP_FARM_ID];tls_type=RSA;trusted_certificates=rsa_root
.crt;identity=id_client.pem;identity_password=pwd;”

For this example, you would also copy the rsa_root.crt and id_client.pem files
into ...\Win32TestClient\bin\Debug.

4. If you encounter an error, take action based on the error reported. See Resolving Client-
Side Certificate Errors.

New Features 1.2.1

New Features 115

Configuring a Profile from a Generated Project
In a development or test environment, you can set up the client-side certificate by configuring
the profile from the generated Windows Mobile project in Visual Studio Edition, instead of
from the client machine, laptop, or device.

You can also copy the certificates to the client, and set up or modify the profile to use the
certificates, from Unwired WorkSpace instead of from the client machine. Keep in mind the
following guidelines:

• HTTPS is only established between HTTPS endpoints. The example values entered in
WorkSpace for a generated project would only be used in the development or test
environment. These values would not automatically deploy into a production
environment.

• A Relay Server is used as an HTTPS endpoint in the example below, and would make a
convenient endpoint for a development or test environment. But your production
environment may vary (for example, you may use a third-party HTTPS solution that
includes hardware load balancers, reverse proxies, and others).

Note: Client-side certificates are not supported in UltraLiteJ (BlackBerry devices).

1. Change the connection profile:

1. Open the generated Windows Mobile project.
2. Open the ApplicationInit.cs file.

3. Locate the InitializeProfiles method.

2. Configure the profile:
profile1.MobiLinkPort = Int32.Parse("443");
profile1.MobiLinkStreamType =
Sybase.UnwiredPlatform.Data.MobiLinkStreamType.Https;
profile1.MobiLinkStreamParams = "url_suffix=/ias_relay_server/
client/rs_client.dll/[SUP_FARM_ID];
tls_type=RSA;trusted_certificates=[Output_File_Folder]\
\rsa_root.crt;identity=[Output_File_Folder]\\id_client.pem;
identity_password=pwd;";

Note: The Output_File_Folder is where the project is deployed to an emulator or device. If
the project output file folder is "%CSIDL_PROGRAM_FILES%\WinMobile_Sol", then
set trusted_certificates equals "\\Program Files\\WinMobile_Sol\\rsa_root.crt".

New Features 1.2.1

 116 Sybase Unwired Platform

3. Add the certificate files:

1. Right-click the project, and select Add > Existing Item.
2. Find the two files rsa_root.crt and id_client.pem, and add them to the

project.
3. In Solution Explorer, choose the two files, open the Properties window, and change

Build Action to "Content" and Copy to Output Directory to "Copy always."

4. If you encounter an error, take action based on the error reported. See Resolving Client-
Side Certificate Errors.

Cache Update Policy
Fine-tune device application and Unwired Server performance by defining a cache update
policy for mobile business object operations.

Setting a cache update policy for mobile business object (MBO) operations gives you more
control of both Unwired Server interactions with the enterprise information system (EIS) to
which the MBO is bound, and consolidated database updates. Fine-tuning these interactions
and updates improves both Unwired Server and device application performance.

Note: Consolidated database, CDB, and cache all refer to the same thing, and the terms are
used interchangeably.

• MBO operations perform specific functions based on their definition:
• Primary read operation – the EIS operation used to define and initially populate the

CDB (from the EIS) for the MBO.
• Create, update, delete (CUD operations) – modify EIS data depending on the definition

of the operation. Unwired Server maintains a cache (CDB) of back-end EIS data to
provide differential synchronization and to minimize EIS interaction. When an

New Features 1.2.1

New Features 117

operation is submitted from a device application to the EIS, the cache must be
refreshed.
While these types of bulk-fetch and CDB caching are effective in reducing the number
of interactions required with the back-end EIS, and work well in some other cases
(where MBO data is occasionally updated in the back-end), performance suffers if
changes are initiated from Unwired Server (by way of MBO operations), or if changes
are frequent.
The cache update policy introduces alternative methods of updating the cache at finer
granularity, which improves performance.

• Alternate read operations – can be invoked either from:
• A chained read cache policy to augment CUD operations by chaining an alternate

read operation to a CUD operation.
• A data change notification, which provides a mechanism to invoke MBO

operations, including alternate read operations. This mechanism is independent of
a cache update policy.

• Cache update policy – determines how the CDB is updated after an operation. You can set
the cache update policy for operations, with these exceptions:
• Operations defined as "Other" do not support alternate read or a cache update policy.
• When invoked, alternate read operations always use the apply operation results cache

update policy.
Versions of Sybase Unwired Platform earlier than 1.2.1 supported only the invalidate
cache policy—any CUD or other operation issued from a device application invalidated
the cache and required a primary read operation to refresh the cache.
In Unwired Platform version 1.2.1, these are the five cache update policies you can
associate with MBO CUD operations:
• Invalidate cache
• No invalidate cache
• Apply operation result
• Apply operation parameters
• Chained read
When an MBO CUD operation is called, its cache update policy determines how operation
results are applied to the consolidated database. Generally, there are two ways of calling an
MBO operation:
1. Device client calls the operation.
2. A data change notification (DCN) request contains the operation.

Note: Other methods used to update the CDBs that are external to MBO operations, and not
associated with cache update policies include:

1. EIS-initiated DCN – an HTTP request to Unwired Server, in which the DCN request
contains the payload (information about the changed data).

New Features 1.2.1

 118 Sybase Unwired Platform

Note: EIS-initiated DCN also supports HTTP POST requests which provides a higher
level of security.

2. Scheduled data refresh – defined in Sybase Control Center; polls the EIS for changes at
specified intervals.

Data Change Notification Requests
The consolidated database (or cache) can be updated by changed data at the enterprise
information system (EIS) level using a data change notification (DCN) request. DCN requests
can invoke arbitrary MBO operations, including alternate read operations. DCN requests are
typically initiated by the EIS back end.

A DCN request is primarily meant to supply the changed data (at the back end) to Unwired
Server as payload to enable updating of Unwired Server cache. The payload can contain
inserts, updates, and deletions from the back end.

Unwired Server expects a DCN request via HTTP or HTTPS. The base URL for the request
is:

http://<host>:<port>/onepage/servlet/UWPServlet

The mandatory parameters for this URL are:

• app=uep
• cmd=ServerAdmin.dcn
• authenticate.user=<username>
• authenticate.password=<password>
• dcn_request=<dcn request>

Though the authenticate.user. authenticate.password and dcn_request parameters can be
provided as URL parameters, Sybase recommends that, for security purposes, you instead
embed them in the POST body.

DCN requests must be in a specified in a JavaScript Object Notation (JSON) format, which
must include:

• Package name (pkg)
• A list of messages (messages), where each message includes:

• A message ID (id) used to report back the status.
• Mobile business object name (mbo).
• Operation name (op): ":upsert", ":delete", or an operation name of the specified MBO.

":upsert" and ":delete" are special operation names to specify payload data.
• Bindings (cols): a list of name/value pairs covering at least all primary key attributes of

the MBO. For payload data, the bindings contain the payload specified as MBO
attribute/parameter names and their values. For an MBO operation, bindings contain
operation parameter names and values.

New Features 1.2.1

New Features 119

The format of non-string data is same as the one used in providing default values of parameters
in tooling. For example, specify timestamp values in a format similar to
2009-03-04T17:03:00+05:30. Base binding names on MBO names rather than EIS names.

For MBO operations that are executed using DCN, any explicit value specified in the DCN
request takes precedence over a personalized value. To use a personalized value in DCN
processing, do not include the personalized parameter name and its value in the DCN request.
The personalized value is then inferred by the server and added to the supplied bindings.
Similarly, omit parameters with default values if the intent is to use previously specified
default values.

This sample DCN includes new lines and indentation only for clarity; you need not include
them in an actual request:
dcn_request=
 {"pkg":"Mobile Studio",
"messages":[
{
"id":"1",
"mbo":"company",
"op":":upsert",
"cols":
 {
"company_id":"6",
"name":"Sonia",
"so_user":"cjobson"
}
},

{
"id":"2",
"mbo":"contact",
"op":":upsert",
"cols":
 {
"company_id":"7",
"first_name":"Diana",
"contact_id":"5"
}
}
]
}

For providing null values to parameters, the special value null
should be user, note the absence of quotes -

"cols":
 {
"company_id":"6",
"name":null,
"so_user":"cjobson"
}

New Features 1.2.1

 120 Sybase Unwired Platform

The old value parameters can be provided in the DCN request by
prepending the parameter name with "old:" as follows (marked in
italics) -
"cols":
 {
"company_id":"6",
"name":"Changed",
"old:name":"Diana"
"so_user":"cjobson"
}

Data Change Notification Results
Each binding in a data change notification (DCN) request is associated with an ID. The result
status of the DCN request is returned in JavaScript Object Notation (JSON) format. Basically
it is a list of IDs followed by a Boolean success field and status message, in case of error.

This example shows The exact JSON format for a DCN result for a request of three IDs
(recID1, recID2, recID3). The example has been formatted using new lines, and indentations,
which are not present in an actual response:
[
 {
 "recordIDs":
 [
 "recID1",
 "recID2"
],
 "success":true,
 "statusMessage":""
 },
 {
 "recordIDs":
 [
 "recID3"
],
 "success":false,
 "statusMessage":"bad msg2
 "}
]

Data Change Notification Filters
Data change notification (DCN) requests need not always be in the format Unwired Server
expects. You can deploy a DCN filter to Unwired Server and reference it in the DCN request.
Unwired Server allows the filter to preprocess the submitted DCN. The filter converts raw data
in the DCN request to the required JavaScript Object Notation (JSON) format. The filter can
also postprocess the JSON response returned by the Unwired Server into the format preferred
by the back end (which is governed by the implementation in the filter class).

The filter interface DCNFilter is located in the com.sybase.sup.dcn package in the
onepage.jar file. All classes that implement a DCN filter should implement this interface.
The functions available in the interface are:

New Features 1.2.1

New Features 121

• String preprocess(String blobDCNRequest, Map<String, String> requestHeaders);
– takes the DCN request as a binary large object (blob), converts it into a valid JSON DCN
request format and returns the same.

• String postprocess(String jsonDCNResult, Map<String, String> responseHeaders);
– takes the DCN result in a valid JSON format, converts it to the EIS-specific format and
returns the same.

When specifying filters, a dcn_filter parameter to the base URL, and to the parameters
specified in the DCN request section. The dcn_filter parameter specifies the fully
classified name of the filter class, which must be in a valid CLASSPATH location so Unwired
Server can locate it using its fully qualified name. If the filter class is in Unwired Platform's
root folder, it is automatically propogated across a cluster. The complete URL for specifying a
DCN request with a filter is:

http://<host>:<port>/onepage/servlet/UWPServlet?
app=uep&cmd=ServerAdmin.dcn&authenticate.user=<username>
&authenticate.password=<password>&dcn_filter=
<fully qualified name of the filter class>&dcn_request=
<dcn request>

The dcn_request is in a format that is specific to the back end. The filter class can
preprocess to the JSON format expected by Unwired Server.

Data Change Notification, Push Notification, and Filter by Partitioning Examples
User scenarios illustrate how Data Change Notification (DCN) and Unwired Server Push
Notifications work together to playback and filter data.

Enhanced Features
These feature are enhanced in Sybase Unwired Platform version 1.2.1.

Sybase Control Center New Server Configuration Properties
Beginning in version 1.2.1, you can use Sybase Control Center to configure poperties for
MobiLink server and SQL Anywhere.

These two properties are in the Server Configuration section in Sybase Control Center. Click
the relevant tab to see the option.

Optional property Server Configuration tab Description

sqlany.useroptions CDB Allows free-form specification
of additional command line op-
tions for SQL Anywhere server.

sup.sync.useroptions Synchronization Allows free-form specification
of additional command line op-
tions for the MobiLink server.

New Features 1.2.1

 122 Sybase Unwired Platform

Command Line Package and Deploy Utilities
Create and deploy packages from the command line rather than using either Unwired
WorkSpace or Sybase Control Center.

You need JDK1.6.0_10 or higher to use these utilities. Also ensure that you have set the
JAVA_HOME environment variable to the installation location of this JDK version.
Otherwise, you must use a text editor to modify the existing JDK path in the batch file itself.

• Use the package.bat utility to create a package on the Unwired Server or Unwired
WorkSpace host.

• Use the deploy.bat utility to deploy a deployment unit to Unwired Server.

deploy.bat and package.bat have been changed for SUP. These changes include:

• The readme.txt file has been replaced with DeployReadMe.txt, which describes
the utilities.

• The utilities are available in uep-server.zip, UEPAdminClient.zip and
uep12ebf1.zip files.

• A new class, com.sybase.uep.admin.common.CommandLineDeployment has been
added.

• deploy.bat automatically creates the specified package name in the Deployment Unit
(DU) if it does not exist.

• The default deployment mode is REPLACE.

Packaging and Deploying MBOs from the Unwired Server Host
Use command line utilities to package and deploy mobile business objects (MBOs) as an
alternative to Sybase Control Center (SCC).

1. Open a command prompt.

2. Change to the <unwired-platform>\bin folder.

3. Run the batch file.

4. Supply utility property values as required.

Packaging and Deploying MBOs from Unwired WorkSpace
Use command line utilities as an alternative to using Unwired WorkSpace to package and
deploy mobile business objects (MBOs).

1. From Unwired WorkSpace, create a mobile deployment package that contains the MBOs
you want to deploy.

There are several methods you can use (for example, select File > New > Mobile
Deployment Package), as long as the result is a deployment package (a file with
a .suppkgdef extension) in the mobile application's project Deployment subfolder.

2. From WorkSpace Navigator, expand the Project folder and Deployment folder, right-
click .suppkgdef and select Build Package (Full).

New Features 1.2.1

New Features 123

The build process generates a file named <deployment_name>.suppkg, where
<deployment_name> is the name of the deployment package, that contains two files:
• deployment_descriptor.xml

• deployment_unit.xml

3. Unzip the <deployment_name>.suppkg file.

For command line packaging and deployment, you need only the
deployment_unit.xml file.

4. Modify the deployment_unit.xml file as needed.

For example, to change the package name to provide version information, change:
package_name="CustomerTest_1.0.0"

5. To create the package from the command line, go to the directory where package.bat
resides and run:
package <packagename> <host> <port> <loginid> <password>

6. To deploy the package name that contains the deployment_unit.xml file, go to the
directory where deploy.bat resides and run:

deploy <deploymentUnitFileName> <host> <port> <loginid>
<password> <deployMode>

Server-Side Logging
Server-side logging allows configuration of a separate log4j logger (EISInteractionLogger) to
send output to a separate log file (eis.log) or to the consolidated uep.log.

This feature allows administrators and developers to correlate server side log4j logs to the
user request.

The configuration of the logger is managed by directly editing the log4j.properties
file. By default, log4j.properties logs in the eis.log at the WARN level.

A synchronization request can have zero or more enterprise information system (EIS)
interactions depending on playback policy, uncommitted transactions, and mobile business
object (MBO) associations spidering. One logging statement is written for each EIS
interaction (both MBO and operations) using the new logger. If the EIS request is successful,
logging is done in INFO mode, for example:

INFO: SUCCESS:<Userid>:<MBO name>[.Operation name]:<effective
parameter-value pairs>: [Warning message from EIS]

When an EIS request fails, a WARNING is logged, for example:

WARN: FAILED:<Userid>:<MBO name>[.Operation name]:<effective
parameter-value pairs>: <Error message from EIS>

An error message from the EIS means that the request failed, while the warning means that the
EIS request succeeded but with warnings. A failure log is always accompanied by an error
message from the EIS, while a success log may optionally have a warning message. Currently,
only the warnings from the SAP EIS are processed.

New Features 1.2.1

 124 Sybase Unwired Platform

Documentation Updates
These documentation updates apply to Sybase Unwired Platform version 1.2.1.

Generating Certificates to Enable HTTPS Synchronization
Generate public, private, and identity keys by running the createcert command line utility.

Unwired Server and the Afaria server can share a certificate if both products are installed on
the same host, or if you create a wildcard certificate (certificate DN is *.<domain>). Wildcard
certificates may not be accepted by all clients.

1. At a command prompt, change to <UnwiredPlatform-installDir>\servers
\UnwiredServer\SQLAnywhere11\BIN32.

2. Run:

createcert

3. When prompted, enter 1024 as the RSA key length. For all remaining prompts, enter
appropriate values for your deployment; for example:

Note: Make a note of your private-key password and identity-key file path; you will need
these values again.

New Features 1.2.1

New Features 125

Preparing the Unwired Platform Environment for SAP Connections
The SAP JCO connector is used by all Unwired Platform components. Therefore, Sybase
recommends that you make all changes concurrently in a distributed environment for
development and production installations of Unwired Platform.

Prerequisites
Before you can access the SAP Web site, you must have an SAP account.

These steps describe the common tasks for setting up an SAP environment. Other details, such
as where to copy files, differ by component.

1. Go to the SAP Web site at http://service.sap.com/connectors and download the latest SAP
JavaConnector, for example, sapjco-ntintel-2.1.8.

2. Unzip the file, which contains:

• sapjco.jar

• librfc32.dll

• sapjcorfc.dll

3. Shut down all Unwired Platform components, including Unwired WorkSpace and all
Unwired Servers on your network.

4. Copy librfc32.dll and sapjcorfc.dll into the following target directories:

Component Targets

Eclipse Unwired WorkSpace • C:\WINDOWS\system32
• <SUP Installation root>\Unwired-

Platform\JDK1.6.0_12\bin

Visual Studio Unwired Work-
Space

• \Program Files\Microsoft Visual
Studio 9.0\Common7\IDE

• <SUP Installation root>\Unwired-
Platform\Unwired_WorkSpace\Visu-
alStudio\toolingapi\lib

Unwired Server • <SUP Installation root>\Unwired-
Platform\Servers\UnwiredServer
\dll

5. Copy sapjco.jar into the following target directories:

New Features 1.2.1

 126 Sybase Unwired Platform

http://service.sap.com/connectors

Component Targets

Eclipse Unwired WorkSpace • <SUP Installation root>\Unwired-
Platform\Unwired_WorkSpace
\Eclipse\sybase_workspace\mobile
\eclipse\plugins\com.syb-
ase.uep.com.sap.mw.jco_1.2.0.<ver-
sion>\lib

Visual Studio Unwired Work-
Space

• \UnwiredPlatform\Unwired_Work-
Space\VisualStudio\toolingapi\lib

Unwired Server • <SUP Installation root>\Unwired-
Platform\Server\UnwiredServer\lib

6. In a clustered production environment, you must also enable SAP mobile business objects
to connect to an SAP R/3 system that uses a router:

a) Change to \UnwiredPlatform-1_2\Servers\UnwiredServer
\Repository\Instance\com\sybase\sap.

b) In a text editor, open <SAPprofile>.properties, where SAPprofile is the
name of the connection profile that is used to deploy SAP mobile business objects from
Unwired WorkSpace to the server.

c) Set the value of the jco.client.ashost property to /H/proxyHost/H/
applicationServer , where:

• proxyHost is the name of the proxy-server machine, and
• applicationServer is the name of the application server

7. After copying the files, restart all components and all Unwired Servers.

Configuring an LDAP Provider for Sybase Control Center
Configure an LDAP Provider for Sybase Control Center (Deployment Edition) by editing the
security properties file to point to the correct LDAP server.

1. Open the <UAF-install-dir>\conf\csi.properties file.

2. Add the production server to this section. Replace <com.mySybProductPkg> with the
package prefix that is appropriate for you Sybase product.

For example:
CSI.loginModule.
7.options.AuthenticationSearchBase=UO=users,dc=example,dc=com

CSI.loginModule.7.options.BindDN=cn=Directory Manager
CSI.loginModule.7.options.BindPassword=secret
CSI.loginModule.7.options.DefaultSearchBase=dc=example,dc=com

CSI.loginModule.7.options.ProviderURL=ldap://localhost:10389
CSI.loginModule.
7.options.RoleSearchBase=ou=groups,dc=example,dc=com

New Features 1.2.1

New Features 127

CSI.loginModule.7.options.ServerType=openldap
CSI.loginModule.7.options.moduleName=LDAP Login Module
CSI.loginModule.7.provider=<com.mySybProductPkg>.LDAPLoginModule

3. To allow anonymous logins, include the Anonymous Login Module in the <UAF-
install-dir>\conf\csi.properties file:

Anonymous Login Module
CSI.loginModule.
0.provider=com.sybase.ua.services.security.anonymous.AnonymousLog
inModule
CSI.loginModule.0.controlFlag=sufficient
CSI.loginModule.0.options.moduleName=Anonymous Login Module
CSI.loginModule.0.options.roles=uaAnonymous

4. Save the file.

Next
Configure the Sybase Unwired Platform users and passwords for Sybase Control Center.

Setting Up Roles and Passwords in Sybase Control Center
Set the initial user roles and passwords required for Sybase Control Center administrator
login.

1. Comment out this line if it exists:

CSI.loginModule.7.options.roles=SUP Administrator

Otherwise, anyone that authenticates with a valid user name and password (including
those mapped to supUser) obtains the SUP Administrator role.

2. Ensure that the roles defined in the LDAP repository match the roles defined in the
<UAF_InstallDir>\conf\roles-map.xml file.

By default, the role mapping file contains the following roles in the LDAP Login
Module definition:

<role-mapping modRole="SUP Administrator"
uafRole="uaAgentAdmin" />
<role-mapping modRole="SUP Developer" uafRole="uaGuest" />
<role-mapping modRole="SUP User" uafRole="uaGuest" />

3. To add role mapping for the Anonymous Login Module to the uaAnonymous role:

a) Add the uaAnonymous role to the <uaf-roles> section of the roles-map.xml
file:
<role name="uaAnonymous" description="Anonymous role" />

b) Add the role mapping in the <security-modules> section of the roles-
map.xml file:

<module name=''Anonymous Login Module''>
 <role-mapping modRole=''uaAnonymous''
uafRole=''uaAnonymous'' />
 </module>

New Features 1.2.1

 128 Sybase Unwired Platform

4. Set the BindPassword and ProviderURL properties with values used in your deployment.

5. To encrypt sensitive values inside this file, use the CSI tool utility. For example, you could
use the following command to encode the password "ldapPwd".
java -jar <UnwiredPlatform_InstallDir>\Servers\
UnwiredServer\SQLAnywhere10\java\csi-tool.jar
csi.encmessage @tomcat\conf\csibootstrap.properties
--text %ldapPwd%

The encrypted password displays on the screen.

6. Cut and paste this into the CSI configuration file.

For example, if you supply a real password as represented by "ldapPwd" in the example for
step 4, the tool might display the following result:

CSITool 3.1 ©) Copyright 2005-2007 Sybase, Inc. (3.1M5/2008/07/29
14:40:08PDT)
Running task: csi.encmessage
Successfully encrypted message. The output was sent to stdout.
1-AAAAEgQQOLL
+LpXJO8fO9T4SrQYRC9lRT1w5ePfdczQTDsP8iACk9mDAbm3F3p5a1wXWKK8+NdJu
kn
c7w2nw5aGJlyG3xQ==

The string you copy is bolded in the output above.

Implementing End-to-End Security for Device Clients
Use the createkey utility to create a key pair, then edit the configure-sup.xml file to
implement end-to-end encryption on device clients with HTTPS.

1. Create a key pair for use end-to-end encryption by running createkey.exe, located in
Sybase\UnwiredPlatform-1_2\Servers\UnwiredServer
\SQLAnywhere11\BIN32.

For more information go to Sybase Product Manuals () SQL Anywhere 11.0.1 > SQL
Anywhere Server - Database Administration > Administering Your Database > Database
Administration Utilities > Key Pair Generator Utility (createkey)

2. Use a text editor to modify configure-sup.xml, located in Sybase
\UnwiredPlatform1_2\Servers\UnwiredServer:

<target name="mlserver.xoptions.https" if="is.https.protocol"
depends="import_encrypted_supprops">
 <property name="mlserver.xoptions" value="$
{sup.sync.protocol}(port=${sup.sync.httpsport};identity=$
{sup.sync.certificate};
identity_password=$
{decrypted.sup.sync.certificate_password};e2ee_type=rsa;e2ee_priv
ate_key=<location_of_generated_private_key>;
e2ee_private_key_password=sybase)" />

3. Use the ConnectionManager API to add the trusted certificate for the device client, for
example:

New Features 1.2.1

New Features 129

Connection c = new Connection();
c.MobiLinkHost = "sup.sybase.com";
c.MobiLinkPort = 2440;
c.MobiLinkStreamType = MobiLinkStreamType.Https;
c.MobiLinkStreamParams=""trusted_certificates=full_path_to_Public
cert.crt;e2ee_type=rsa;e2ee_public_key=
<location of generated public key>";
c.Name = "supAdmin";
c.Package = "Customer_1.0.0";
c.UserName = "supAdmin";
c.Password = "supAdmin";
c.Save()

See Sybase Unwired Platform 1.2 > Sybase Control Center 1.2 > Administer > Unwired
Server > Manage > Server Configuration > Configuring Unwired Server Properties >
Synchronization > Generating Certificates for HTTPS-Enabled Synchronization >
Connection to Unwired Server Using Windows-based Mobile Device Clients.

4. Synchronize the MBOs.

Setting the CDB Server Thread Count Manually
If the CDB is not installed on the same machine as Unwired Server, you must set the thread
count for the CDB manually. There may also be other situations when you want to set the
thread count manually, outside of Sybase Control Center.

Setting the CDB thread count in the sup.properties file

1. Use a text editor to open the sup.properties file, located in Sybase
\UnwiredPlatform1_2\Servers\UnwiredServer, and set the thread count in
the sqlany.threadcount property.

Note: This value must be 5 units higher than ml.threadcount.

2. Save and close sup.properties.

3. To register the changes in the clusterdb, change to Sybase
\UnwiredPlatform1_2\Servers\UnwiredServer, and run:

updateProps.bat -r

4. From the Windows Start menu, select Settings > Control Panel > Administrative Tools
> Services, and shut down the Sybase services.

5. If the CDB is running as a service, reinstall the service by running:
uadbservice.bat install

6. Restart Unwired Platform services:
a. From the Windows Start menu, select Settings > Control Panel > Administrative

Tools > Services.
b. For each service, click Start.

Note: Restart Unwired Platform services in this order:

New Features 1.2.1

 130 Sybase Unwired Platform

1. SybaseUnwiredPlatformDatabase<install_number> (Main (consolidated)
database for Sybase Unwired Platform runtime)

2. SybaseUnwiredPlatformServer<install_number>
3. SybaseUnwiredPlatformRSOE<install_number>

Unwired Server Performance Counter Reference
This topic covers counters used in current logging and tracing done by Unwired Server.

The counters are by default logged in the log file <SUP_HOME>/logs/counters.log.
This can be changed by modifying <SUP_HOME>/config/log4j.properties. The
general format of counters is:
<timestamp>|<thread-id>|<counter-name>:<counter-specific-info>

Unwired Server generates a trace log message at specific points during processing, called
counters. Some of the counters list time spent at various stages of activity. The counters logs
can be post-processed to generate aggregate numbers also. The counters can be enabled or
disabled in sup.properties. The property names are counter.<counter-name> ,
for example, counter.sync.time.

You enable counters in the sup.properties file. The following counters are most likely to
be useful in troubleshooting:

• sync.time: Complete synchronization. Note that this is the time spent inside the Unwired
Server. The ML Server may add some overhead. This counter prints two lines. At the
beginning of sync the following line is printed:
• sync.time:+:queue-size:remote-id

2009-04-13 20:09:40,234|Thread-52|sync.time:+:
1:df28289b-2275-490b-9e0a-fd524d0ff47f

At the beginning of a sync:
• queue-size is the total number of sync requests in progress, including the current

one.
• sync.time:-:queue-size:time-spent:record-count:char-count

2009-04-13 20:09:42,625|Thread-52|sync.time:-:0:2391:40:520

At the end of the sync:
• queue-size is the total number of sync requests in progress, excluding the current

one.
• time-spent is the time in milliseconds spent in processing the request.
• record-count and char-count are approximate number of records and characters

downloaded to the device respectively. Note that these numbers are inaccurate and
are only good for comparison with other lines printed by the same counter.

• sync.download: Writing data to download cursors. One line is printed:
• sync.download:time-spent:record-count:char-count

New Features 1.2.1

New Features 131

sync.download:31:40:520

• handle.download.data: Download phase of MobiLink sync. Unwired Server in this
phase does EIS interaction for MBOs (but not operations), CDB Update, and writes to
download cursors. The counter prints several lines, but only three are relevant:
• handle_download_data:+

2009-04-13 20:09:40,328|Thread-52|handle_download_data:+

Beginning of download phase.
• handle_download_data:m:free-memory

2009-04-13 20:09:40,328|Thread-52|handle_download_data:m:
250642128

Also at the beginning of download phase; free memory is in bytes.
• handle_download_data:-:time-spent

2009-04-13 20:09:42,578|Thread-52|handle_download_data:-:2250

• uascripts.getPlaybackTree: Processing for each top level MBO request, includes EIS
Interaction and CDB Update. Two lines are printed, one at the beginning and one at the
end.
• uascripts.getPlaybackTree:+

2009-04-13 20:09:40,421|Thread-52|uascripts.getPlaybackTree:+

Beginning of download phase.
• uascripts.getPlaybackTree:-:time-spent

2009-04-13 20:09:42,406|Thread-52|uascripts.getPlaybackTree:-:
1985

• push.init: Initializing data structures for push processing. Several lines are printed, but
only the beginning and end lines are important.

• push.process: Initializing data structures for push processing. Several lines are printed,
but only the beginning and end lines are important

• lock.wait: While a single property in the sup.properties file is provided, the counter
names used are cdb_lock.read for reading cdb, playback_lock.write for
doing a playback, and cdb_lock.write for updating cdb. Prints one line each when
lock is requested and acquired.
2009-04-13 20:09:41,062|Thread-52|cdb_lock.read.wait:+
2009-04-13 20:09:41,062|Thread-52|cdb_lock.read.wait:-:0
2009-04-13 20:09:41,078|Thread-52|playback_lock.write.wait:+
2009-04-13 20:09:41,078|Thread-52|playback_lock.write.wait:-:0
2009-04-13 20:09:41,640|Thread-52|cdb_lock.write.wait:+
2009-04-13 20:09:41,640|Thread-52|cdb_lock.write.wait:-:0

• lock.held: A single property listing the time for which the lock was held. A single line is
printed when releasing the lock. The end of lock.wait is the beginning of
lock.held.

2009-04-13 20:09:42,390|Thread-52|cdb_lock.held:-:750
2009-04-13 20:09:42,390|Thread-52|playback_lock.held:-:1312

New Features 1.2.1

 132 Sybase Unwired Platform

• eis.time: Two lines are printed, one at the beginning and one at the end of every EIS
Interaction, both for MBO read and operation replay.

Troubleshooting
This troubleshooting information is new for Sybase Unwired Platform version 1.2.1.

Changing Service Names
Problem: If the ClusterRegistration utility cannot connect to the cluster database
when you install and configure Unwired Server, an incorrect service name may be created for
the server.

The service name should be "SybaseUnwiredPlatform<cluster>Server<n>," where cluster is
the name of the cluster, and n indicates the order in which the server was added to the cluster.

Solution:

1. Verify that the cluster database (clusterdb) is running.

2. Change to <Install_Dir>\UnwiredPlatform-1_2\Servers
\UnwiredServer.

3. To remove the service name, open a command window, and run:

mlservice remove

4. To uninstall the service, run:

updateProps -x

5. To reregister the service, run:

updateProps -r

An appropriate value is assigned to the sup.install.number property.

6. To re-create the service with the correct name, run:

mlservice install

Cluster and Relay Server Issues
Improve the performance of clusters and relay servers, and troubleshoot known issues.

Cluster Naming Conventions
Follow these cluster naming conventions.

During installation of Sybase Unwired Platform (SUP), if Unwired Server is to be installed as
a node in a cluster, you are given the option to change the default name of the cluster (assuming
this is the first node of the cluster). The default name is the computer name on which you are
installing.

If the cluster is to be part of a hosted Relay Server, use only alphanumeric names, since Relay
Server does not allow underbars, spaces, hyphens, and so on.

New Features 1.2.1

New Features 133

Each Unwired Server that joins the cluster assumes the name of the cluster incrementally. For
example, the first server is named SybaseUnwiredPlatformMYHOSTServer1, the second
SybaseUnwiredPlatformMYHOSTServer2, and so on.

Synchronizing an Unwired Server Cluster
Use HTTP to synchronize Unwired Server nodes within a cluster.

Description: Using HTTPS to synchronize Unwired Server nodes in a cluster is ineffective
because the Relay Server Outbound Enabler (RSOE), which is used by Unwired Server to
communicate with a relay server, does not support HTTPS.

Solution: Verify that each Unwired Server in a cluster uses HTTP as the synchronization
protocol, which is the default. Since clusters (including RSOEs) exist behind a firewall, they
use the firewall's network security. For each server:

1. In Sybase Control Center, expand Unwired Server.
2. Select Server Configuration.
3. Select the Synchronization tab.
4. Verify HTTP is selected.

Setting the Recovery Level for the Relay Server Outbound Enabler
Use Windows administrative tools to set the the recovery level of the Relay Server Outbound
Enabler (RSOE) service to automatically start after a failure.

Description: In some cases the RSOE service may time out due to unforseen issues (network
latency for example) before it connects to Relay Server.

Solution: For each RSOE, configure the RSOE service so it automatically restarts after any
failure.

1. Assuming that Relay Server is installed as a Windows Service, from Windows select Start
> Settings > Control Panel.

2. Select Administrative Tools > Services.

3. Double-click the RSOE service (for example,
SybaseUnwiredPlaformclusternameRSOE1, where clustername is the name of the
cluster).

4. Select the Recovery tab, and select Restart the Service for each failure level:

• First failure
• Second failure
• Subsequent failures

5. Set the Restart service after level to one minute.

New Features 1.2.1

 134 Sybase Unwired Platform

Cluster Synchronization Exceptions
Cluster synchronization exceptions are reported after shutting down the primary Unwired
Server.

Problem: This typically happens after shutting down the primary Unwired Server, soon after
performing a cluster-changing operation [such as updating the Schedule property for a Mobile
Business Object (MBO)]. The shut down occurs before any of the secondary servers received
the updated clusterdata.zip file. The secondary severs detect the version difference in
the clusterdata.zip files, shuts down RSOE, and issues an HTTP GET to download the
newer file version. Since the primary server was shutdown, the file cannot be downloaded, a
secondary cluster cannot become the primary, and cluster sync exceptions are reported in the
ML.log file in this format:

ML.log
======
 E. 2009-06-22 10:09:56. < Main > [-10133] SEVERE: This SUP cluster
member is
at version 14 while the cluster is at version 15
I. 2009-06-22 10:09:59. < Main > The primary server in the server
farm is now:
'GOLDENGATESUPServer3'
I. 2009-06-22 10:09:59. < Main > < SISI > < SISManager > : This is a
secondary
MobiLink server
E. 2009-06-22 10:10:00. < Main > [-10133] Jun 22, 2009 10:10:00 AM
com.sybase.ep.utils.ClusterUtils$1 invoke
E. 2009-06-22 10:10:00. < Main > [-10133] SEVERE: This SUP cluster
member is
at version 14 while the cluster is at version 15
E. 2009-06-22 10:10:00. < Main > [-10133] Jun 22, 2009 10:10:00 AM
com.sybase.ep.utils.ClusterUtils isVersionCorrect

Workaround:If the primary Unwired Server cannot be restarted, you can fix the broken
cluster manually:

1. Shut down the primary Unwired Server.

2. Copy across the clusterdata. < version > .zip.

3. Edit sup.properties manually to set cluster.version and
sup.cluster.version to the new value (for this example, this value would be 15).

4. Run updateProps -r to load the new version information into the clusterdb.

5. Run updateFiles to unzip the clusterdata.zip.

6. Start Unwired Server. Since its version now matches the cluster version in clusterdb, it will
take over as the primary server.

Any other secondary servers that are still trying to sync will detect the new primary server
and will initiate the HTTP GET for the clusterdata.zip from the new primary
server.

New Features 1.2.1

New Features 135

Troubleshooting Communication Errors Between the Client Application and
Unwired Server
Add COMMUNICATION_ERROR_CODE code to your client applications to gather
communication error details.

While the Unwired Server ml.log file logs communication errors when there are
synchronization errors between Unwired Server and the client, adding
COMMUNICATION_ERROR_CODE code to the client application provides more detailed
information about the types of errors encountered (unable to locate host, timeout,
authentication) and is useful in isolating the problem, as this code example illustrates:
 public void Sync()
 {
 try
 {
 Product.Synchronize();
 MessageBox.Show("Sync Done");
 }
 catch (SUPClientException ex)
 {
 if (ex.ErrorCode ==
SUPClientException.COMMUNICATION_ERROR)
 {
 COMMUNICATION_ERROR_CODE code =
ex.CommunicationErrorCode;
 if (code ==
COMMUNICATION_ERROR_CODE.SOCKET_HOST_NAME_NOT_FOUND)
 {
 MessageBox.Show("Server not found. Check host
name.");
 }
 else if (code ==
COMMUNICATION_ERROR_CODE.CONNECT_TIMEOUT)
 {
 MessageBox.Show("Connection timed out. Try again
later.");
 }
 else if (code ==
COMMUNICATION_ERROR_CODE.AUTHENTICATION_FAILED)
 {
 MessageBox.Show("Authentication failed. Check
credentials.");
 }
 else
 {
 MessageBox.Show(code.ToString());
 }
 }
 else
 {
 MessageBox.Show(ex.ToString());
 }
 }

New Features 1.2.1

 136 Sybase Unwired Platform

 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 }
 }

Sybase Control Center Issues Retrieving Server List

Problem: Sybase Control Center is not functioning because it cannot retrieve its list of
Unwired Servers.

Solution: Check the agent.log for any related error messages. If there are no related
errors, or several 404 errors, this indicates the error occurred outside of the SCC
administration console. If there is a related error, it may indicate a caching error. To clear the
cache:

1. Delete the contents of:

<install_dir>\Sybase\UAF-2_6\services\EmbeddedWebContainer
\container\Jetty-6.1.6\work

2. Restart the UAF service.

Unwired Server Reports ODBC Connection Problems
Performance tuning may be required to correct Unwired Server ODBC connection errors.

Problem: If Unwired Server reports ODBC errors similar to the following, this means
Unwired Server cannot communicate with the consolidated database:

I. 2009-05-06 00:00:17. Old output file "C:\www\Sybase
\UnwiredPlatform-1_2\Servers\UnwiredServer\logs\ml.log"
has been renamed to file "C:\www\Sybase\UnwiredPlatform-1_2\Servers
\UnwiredServer\logs\ml.log.old"
E. 2009-05-06 00:00:17. < 7382 > [-10279] Connection was dropped due
to lack of network activity
E. 2009-05-06 00:05:18. < 7388 > [-10279] Connection was dropped due
to lack of network activity
E. 2009-05-06 00:10:18. < 7394 > [-10279] Connection was dropped due
to lack of network activity
E. 2009-05-06 00:12:10. < Main > [-10002] Consolidated database
server or ODBC error: ODBC: [Sybase][ODBC Driver][SQL Anywhere]
Connection was terminated (ODBC State = HY000, Native error code =
-308)
E. 2009-05-06 00:12:10. < Main > [-10002] Consolidated database
server or ODBC error: ODBC: [Sybase][ODBC Driver][SQL Anywhere]
Connection was terminated (ODBC State = HY000, Native error code =
-308)
I. 2009-05-06 00:12:10. < Main > java.sql.SQLException: [Sybase]
[ODBC Driver][SQL Anywhere]Connection was terminated

Solution: Try changing the setting in the ml_property table to a higher value. For
example, changing the property from the default 60 (seconds) to 150 lengthens the window of

New Features 1.2.1

New Features 137

opportunity for Unwired Server to communicate with the consolidated database, and should
correct the ODBC connection error.

1. See whether the property row exists, using this dbisql query:

SELECT * FROM ml_property WHERE property_name = 'liveness'

If nothing returns, then the row does not exist.

2. Take action based on whether the row exists.

• If the row exists, the property has been set. Use the following stored procedure to set a
higher value:
exec ml_add_property 'MLS', 'ml_server_farm',
'liveness', '150' ;

• If the row does not exist, the property has not been set. Use the following INSERT
statement to set the property, which adds the row to the table:

Begin
INSERT INTO ml_property (component_name, property_set_name,
property_name, property_value)
VALUES('MLS', 'ml_server_farm', 'liveness', '150')
End
COMMIT

Resolving Client-Side Certificate Errors
Problem: A remote client does not run when using a client-side certificate, and an error is
reported, such as -403 HTTP or -413 HTTP.

Workaround:

1. Take action based on the error reported:

• -403 HTTP error – the IIS server reports this Unauthorised Error if you do not supply
the identity and identity_password correctly.

Verify that you provided the correct values for the Stream parameter as described in
Running the Client on page 114.

• - 413 HTTP error – the IIS server may not have the entire certificate.
Try running this script:
cscript adsutil.vbs set w3svc/1/uploadreadaheadsize 65536

• StreamErrorCode=SECURE_TRUSTED_CERTIFICATE_FILE_NOT_FOUND.
Verify that the certificate files have been correctly copied to the emulator or device, and
that the value of Output_File_Folder is correct.

• StreamErrorCode=SECURE_CERTIFICATE_NOT_TRUSTED.
Verify that the certificate files are correct. If they are correct, the IIS server may not be
configured correctly for client-side certificate authentication.

• Other errors – these may indicate the IIS server is not configured correctly for client-
side certificate authentication.

New Features 1.2.1

 138 Sybase Unwired Platform

Check the IIS configuration as described in Setting Up RS_Client for Client-Side
Certificate Authentication on page 113.

2. To learn more about Microsoft IIS-related errors, see:

http://technet.microsoft.com/en-us/library/cc737382(WS.10).aspx

Inserting Data That Exceeds Maximum Size Causes Errors
Problem: If you insert or update data whose size is greater than the maximum size defined for
the column, an error occurs.

The following table describes the errors that occur when the data size exceeds the column's
maximum size (maxlen):

Datatype Column maximum
size

If the data size exceeds maxlen, the result is

Binary Less than 2K Data is silently truncated in the field

Binary Greater than 2K and
less than 32K

MobiLink server throws an exception; you see a trans-
action failure message in ml.log

Binary Greater than 32K You receive a synchronization exception; parameter length
mismatch error in SyncResult

String Less than 8K Data is silently truncated in the field

String Greater than 8K You receive a synchronization exception; parameter length
mismatch error in SyncResult

Workaround: Use the client API to verify that the size of data entered by users is within
limits. See the Client Object API Cookbook, available on Sybase Unwired Platform Tech
Corner at http://www.sybase.com/developer/library/suptechcorner.

New Features 1.2.1

New Features 139

New Features 1.2.1

 140 Sybase Unwired Platform

Index
A
actions

BlackBerry PIM action 56
admin api 1
alternate read

covering playback and sync parameters 35
requirements 34

API
<MBO>PendingState 11
evict 11
FindByOperationID 11
GetDataCount (Query query) 11
isPendingOverwritten 11
Load[relationship_name]

(List<parent_mbo_name>) 11
apply operation parameters cache policy 77
apply operation result cache policy 76
AutoCommit feature, SAP 85
autocommitPreviewTransaction property 65

B
backup

consolidated database 13, 16
installation file system 12
transaction log 13, 16

backup and recovery plan 14
BlackBerry PIM action, adding 56

C
cache update policies

apply operation parameters 77
apply operation result 76
chained operation 78
defined 25, 74, 117
invalidate 29, 82
no invalidate 29, 82
setting 75
validation rules 83

cascade delete
admin API 1
deployment default 1

deployment unit 1
MBO relationships 1

certificates
client-side, errors 138
generating for client-side synchronization 109
generating for HTTPS synchronization 98,

125
chained operation cache policy 78
chained operations

defining 80
playback and sync parameters 81
requirements 81

changing service names 133
choice control properties 54
client-side certificate errors, resolving 138
client-side certificates 116
clusterdb.db 14
clusterdb.log file 14
clusters

synchronizing 134
composition relationship 1
configure Microsoft IIS 109
configuring

SAP AutoCommit feature 85
SAP environment 45, 99, 126

configuring logs on separate drives 15
connection properties

SAP, modifying 98
consolidated database

backup 13, 16
clusterdb.db 14
dedicated for a cluster 106
restore 17
setting the thread count manually 130
uaml.db 14

covering playback and sync parameters 35
crash and recovery scenarios 14
createcert, command line utility 98, 109, 125

D
data change notification

filters 9, 121
data change notification filter

example 10

Index

New Features 141

implementing 10
data change notification interface 2
data change notification parameters 6
data change notification syntax 6
data change notification with payload 6
data change notification, results 8
dbbackup utility 14, 16
dblocate utility 16
dbvalid utility 16, 17
deploying

SAP result checker classes 39, 72
deployment unit 1
Device Application Designer

automatic screen creation 50
creating 50
device application screens 50
documentation updates 48

device database page size 101
disaster recovery planning 12
documentation updates

Unwired WorkSpace Visual Studio Edition 69

E
errors

data that exceeds size limits 139
exceeding maximum size errors 139

F
file system

backup 12
restore 17

filters
data change notification 9, 121

G
generating code

troubleshooting slow performance 102
GetCalledOperations method 101
GUI is not generated for EIS connection properties

troubleshooting 66

H
HTTP interface for data change notification 2
HTTPS

generating certificates for 98, 125
generating certificates for client-side 109

I
installation file system

backup 12
restore 17

invalidate cache policy 29, 82

L
LDAP provider

Sybase Control Center 127
linked parameters 86

transforming a data source for 87
linking SAP parameters to arguments 102

M
mobile business objects

attribute and parameter size restrictions 101
troubleshooting synchronization errors 67,

103
mobile device client recovery 12, 13, 16, 17
multilevel insert operations

creating for Web-service MBOs 22, 94

N
new features

Unwired WorkSpace Eclipse Edition 19
Unwired WorkSpace Visual Studio Edition 69

no invalidate cache policy 29, 82

P
parameters

linked 86
playback and sync for chained operations 81

parameters, data change notification
dcn_request 6
domain 6
package 6
password 6
unwired_server 6
unwired_server_port 6

Index

 142 Sybase Unwired Platform

username 6
performing remote backup 16
playback and synchronization parameters 81
policies

apply operation parameters for cache updates
77

apply operation results to cache 76
cache updates, defining 75
chained operation cache update 78
invalidate cache 29, 82
no invalidate cache 29, 82

previews
trouble extracting metadata 65

properties
choice control 54

R
refactoring an SAP result checker 40, 73
reference relationship 1
registering a service 133
relationship, composition 1
relationship, reference 1
Relay Server 109
remote backup 16
removing a service 133
restore

consolidated database 17
installation file system 17
transaction log 17
Windows registry 17

result set filter, creating 64

S
SAP

AutoCommit feature, configuring 85
configuring Unwired Platform components for

45, 99, 126
connection properties, modifying 98
operations, committing 41
parameter-to-argument linking 102
result checker classes, deploying 39, 72
result checker, customizing 38, 71

SAP connection errors
missing sapmsg.ini file 102

SAP result checkers
configuring 73

creating 71
deleting 40, 73
moving 40, 73
references, finding 40, 74
renaming 40, 73

sapmsg.ini file is missing 102
services

changing the name 133
SQLE_TOO_MANY_PUBLICATIONS error,

troubleshooting 66, 102
Sybase Control Center

configuring server properties 122
LDAP provider 127
new features 103

synchronization
exception, data size exceeds maxlen 139
troubleshooting 67, 103

synchronizing
cluster 134

T
thread count, setting for the CDB 130
transaction failure message 139
transaction log

backup 13, 16
clusterdb.log 14
configuring logs on separate drives 15
configuring mirrored logs on separate drives

15
restore 17
uaml.log 14

transforming a data source 87
troubleshooting

BlackBerry device applications 67
cannot preview data 65
client-side certificate errors 138
Codegen.GetCalledOperations 101
GUI is not generated for EIS connection

properties as parameters 66
SAP connection errors 102
slow code generation, Visual Studio 102
SQLE_TOO_MANY_PUBLICATIONS error

66, 102
synchronization 67, 103
Visual Studio 2008 Chinese Edition 103
Windows Mobile device applications 67

troubleshooting topics
Unwired WorkSpace Visual Studio Edition 69

Index

New Features 143

U
uaml.db database file 14
uaml.log file 14
Unwired Server

new features 103
Unwired WorkSpace

Eclipse Edition, new features 19
Visual Studio Edition, new features 69

utilities
dbbackup 14, 16
dblocate 16
dbvalid 16, 17

V
validation rules for cache update policies 83

Visual Studio
Chinese Edition, troubleshooting 103

W
Web service MBOs

deployment fails, troubleshooting 65
multilevel insert operations, creating for 22,

94
Windows registry

restore 17
writing a custom result set filter, correction 64

Index

 144 Sybase Unwired Platform

	New Features
	Contents
	New Features 1.2.2
	New Features
	Cascade Delete
	Data Change Notification Interface
	Invoking Operations Through Data Change Notification
	Modifying Data Using Data Change Notification
	Data Change Notification Results
	Data Change Notification Filters
	Implementing a Data Change Notification Filter

	New APIs

	Documentation Updates
	Backup and Restore Overview
	Backup of the Installation File System
	Backup of the Consolidated Database
	Sample Backup and Recovery Plan
	Failure and Recovery Scenarios
	Configuring Your Databases for Transaction Logs on Separate Drives
	Performing a Remote Backup

	Restoration of the Installation File System
	Restoration of the Consolidated Database

	New Features 1.2.1
	New Features - Eclipse Edition
	New Features
	Creating Multilevel Insert Operations for Web Service Mobile Business Objects
	Understanding Multilevel Insert Operations

	Cache Update Policy
	Setting a Cache Update Policy
	Apply Operation Result Policy
	Apply Operation Parameters Policy
	Invalidate Cache Policy
	No Invalidate Cache Policy
	Chained Read Policy
	Defining Alternate Read Operations

	Alternate Read and Cache Update Policy Validation Rules
	Alternate Read Requirements
	Covering the Playback and Synchronization Parameters of a Primary Read Operation

	Adding an SAP Result Checker
	Writing a Custom SAP Result Checker
	Deploying SAP Result Checker Classes to Unwired Server
	Editing the SAP Result Checker
	Refactoring an SAP Result Checker
	Deleting References to an SAP Result Checker
	Renaming an SAP Result Checker
	Moving an SAP Result Checker

	Searching for References to an SAP Result Checker

	Importing Visual Studio Projects into Eclipse
	Updating Imported Projects

	Configuring the SAP AutoCommit Feature
	Modifying SAP Connection Properties

	Documentation Updates
	Playback and Synchronization Parameters
	Overriding the Default Filter by Setting

	Preparing the Unwired Platform Environment for SAP Connections
	Configuring Your Environment to Use a JDBC Driver
	Device Application Designer
	Using Drag and Drop to Add Mobile Business Objects to the Flow Design
	Automatic Screen Creation
	Screen Design Palette Options
	Choice Properties
	Radio Group Properties
	Adding a BlackBerry PIM Action
	Generating a Windows Mobile Device Application
	Rebuilding the Generated Solution in Visual Studio

	Developing Device Applications for Win32 .NET Platforms
	Correction to Writing a Custom Result Set Filter

	Troubleshooting
	Restrictions for Configuring Unwired Server Properties
	Argument and Column Name Length Limitations
	Cannot Preview Data
	Troubleshooting Mobile Business Object Web Service Deployment Failures
	Default Values are not Recognized as Synchronization Values
	SQLE_TOO_MANY_PUBLICATIONS Error
	Device Application Designer Does Not Generate GUI Fields
	Trailing Space Causes Synchronization Failure
	BlackBerry Devices Display a Maximum of 6000 Records
	Troubleshooting Windows Mobile Device Applications
	Synchronizing Device Applications that Reference Related Mobile Business Objects
	Generation Failed Error When Generating a Device Application
	Missing Sync Parameter Error Message on the BlackBerry Simulator

	New Features - Visual Studio Edition
	New Features
	Adding an SAP Result Checker
	Writing a Custom SAP Result Checker
	Deploying SAP Result Checker Classes to Unwired Server
	Configuring an SAP Result Checker
	Refactoring an SAP Result Checker
	Deleting References to an SAP Result Checker
	Moving an SAP Result Checker
	Renaming an SAP Result Checker

	Searching for References to an SAP Result Checker

	Cache Update Policy
	Setting the Cache Update Policy
	Apply Operation Result Cache Policy
	Apply Operation Parameters Cache Policy
	Chained Operation Cache Policy
	Defining Chained Operations
	Chained Operation Requirements
	Playback and Synchronization Parameters

	Invalidate Cache Policy
	No Invalidate Cache Policy

	Cache Update Policy Validation Rules

	Configuring the SAP AutoCommit Feature
	Creating a Data Source for Linked Parameters
	Linked Parameters
	Transforming a Data Source for Linked Parameters

	Creating Multilevel Insert Operations for Web Service Mobile Business Objects
	Understanding Multilevel Insert Operations

	Modifying SAP Connection Properties

	Documentation Updates
	Generating Certificates to Enable HTTPS Synchronization
	Preparing the Unwired Platform Environment for SAP Connections

	Troubleshooting
	Codegen.GetCalledOperations Returns Only One Operation
	Device Database Page Size
	SAP Connection Error
	SAP Parameter-to-Argument Linking
	Slow Code Generation
	SQLE_TOO_MANY_PUBLICATIONS Error
	Trailing Space Causes Synchronization Failure
	Visual Studio 2008 Chinese Edition

	New Features - Sybase Control Center and Unwired Server
	New Features
	Installing a Dedicated Consolidated Database Within an Unwired Server Cluster
	Troubleshooting Dedicated Consolidated Database Installation

	Client-Side Certificates
	Configure Relay Server with Microsoft IIS using SSL
	Generating Client-Side Certificates
	Installing the CA Certificate
	Setting Up RS_Client with Client-Side Certificates
	Running the Client
	Configuring a Profile from a Generated Project

	Cache Update Policy
	Data Change Notification Requests
	Data Change Notification Results
	Data Change Notification Filters
	Data Change Notification, Push Notification, and Filter by Partitioning Examples

	Enhanced Features
	Sybase Control Center New Server Configuration Properties
	Command Line Package and Deploy Utilities
	Packaging and Deploying MBOs from the Unwired Server Host
	Packaging and Deploying MBOs from Unwired WorkSpace

	Server-Side Logging

	Documentation Updates
	Generating Certificates to Enable HTTPS Synchronization
	Preparing the Unwired Platform Environment for SAP Connections
	Configuring an LDAP Provider for Sybase Control Center
	Setting Up Roles and Passwords in Sybase Control Center

	Implementing End-to-End Security for Device Clients
	Setting the CDB Server Thread Count Manually
	Unwired Server Performance Counter Reference

	Troubleshooting
	Changing Service Names
	Cluster and Relay Server Issues
	Cluster Naming Conventions
	Synchronizing an Unwired Server Cluster
	Setting the Recovery Level for the Relay Server Outbound Enabler
	Cluster Synchronization Exceptions

	Troubleshooting Communication Errors Between the Client Application and Unwired Server
	Sybase Control Center Issues Retrieving Server List
	Unwired Server Reports ODBC Connection Problems
	Resolving Client-Side Certificate Errors
	Inserting Data That Exceeds Maximum Size Causes Errors

	Index

