User-Defined Functions

SAP Sybase 1Q 16.0 SP04

DOCUMENT ID: DC01034-01-1604-01

LAST REVISED: May 2014

Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.

These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see Atip.//www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

AUAIBNCE . 1
Understanding User-Defined FUNCLIONScccooevvvvviiineeennne. 3
Learning Roadmap: Types of UDFS.........ccccovvevviviininnnnn. 5
Learning Roadmap: Types of External C and C++
UD S .t 6
User-Defined Functions Compliance with SAP
Sybase IQ Databasescccovvvviiiiiiiiiiiiiie e 7
Practices t0 AVOIdeuuuviiiiiiiiiiiiiienre e 8
Naming Conventions for User-Defined Functions............ 8
SQL Data TYPES oveiiiiiieeiei ettt 9
Unsupported Data TYPeSccooeeeeeeeeiiiiiiiiiiiiiiins 14
BUilding UDFS ...coooiiiiiii, 15
Design Basics of User-Defined Functions..................... 15
Sample Codeooovvviiiiiiiieeeeee e 15
Setting the Dynamic Library Interfacecccccevvvne. 15
Upgrading to the v4 APloovvviiiiiiiie e, 16
Library Version (extfn_get_library_version).................. 17
Library Version Compatibility
(extfn_check_version_compatibility)cccceeeeee 17
License Information (extfn_get_license_info)............... 18
Adding the extfn_get_license_info Method........... 19
Compile and Link Source Code to Build Dynamically
Linkable Librariesccooveeiiiiiiiiiiieeieeeiee e, 19
Compiling and Linking the Sample UDFs for
WINAOWS ...t 20
Compiling and Linking the Sample UDFs for
UNDX e e 21
ADX SWILCNES ... 21
HP-UX SWItCheSoiiiiiiiiiiiii e 22
LinUX SWItChES ... 22
Solaris SWItChescoviiiiiiiii e, 23

User-Defined Functions iii

Contents

WiINdOWS SWILChESccovvviiiiiiiie e 24
Testing User-Defined FUNCLioNSccccceeeiiiiieeeeeennee, 25
Enabling and Disabling User-Defined Functions
... 25
Initially Executing a User-Defined Function......... 26
Controlling Error Checking and Call Tracing......... 27
Viewing SAP Sybase IQ Log Files............ccccc...... 28
Using Microsoft Visual Studio Debugger for
User-Defined Functionsccccciiiiinnnnnne 28
Modifying the UDF at RuNtimeccccoeeeeeeevivvveeeiinnns 28
Granting the Privilege To Run a Procedure................... 29
Dropping User-Defined Functions................ccccveeveeeennn. 30
Scalar and Aggregate UDFSccoovvviiiiiiiiiecceeee e, 31
Scalar and Aggregate UDF Restrictions.............cccc....... 31
Creating a Scalar or Aggregate UDFcovvvvvinnnees 32
Declaring and Defining Scalar User-Defined
FUNCHIONS ... 32
Declaring and Defining Aggregate UDFs............. 46
Calling Scalar and Aggregate UDFs..............cuvvvviiinnnnee 81
Scalar and Aggregate UDF Calling Patterns................ 82
Scalar and Aggregate UDF Callback Functions
... 82
Scalar UDF Calling Pattern.............ccccccvvvvininnnee. 84
Aggregate UDF Calling Patterns................cc....... 84
Table UDFs and TPFS ..., 97
USEI ROIES ...oooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 97
Learning Roadmap for Table UDF Developers............. 97
Learning Roadmap for SQL Analysts..........cccceeeeeeeennen. 98
Table UDF ReSIICHONSvvieiiieiiiiiieeeeeeeeeeiiie e 99
Get Startedooooveieeee 99
Sample FileSuuuiiiiiiiiiiiiiiiiiiiie 99
Understanding Producers Versus Consumers...101
Developing a Table UDF ..., 103
Table UDF Implementation Examples............... 105
Query Processing Statescccovvvveeeeeeeiiiieiiiiiiiiiiiienns 121

iv SAP Sybase 1Q

Contents

INitial Stateooeeeeeeeiie e 121
ANNOtation Stateuvvvvviiiiiiiiiie e 122
Query Optimization Statecoevveiiiieeeiennnns 124
Plan Building Statecccoooevviiiiiiieeeeiee e, 127
Execution Stateoooovvviiiiiiiiiiiii e 128
Row Block Data Exchangecccccceeeeeevieiiiinieceeennnnn, 128
Fetch Methods for Row Blocks..............cccevveeee. 129
Using a Row Block to Produce Data.................. 131
Row Block Allocationccooeevveeiiiiiiiiiieicie e, 132
Table UDF Query Plan Objects..........cccccceeiiiiiieeeennnn. 134
Enabling Memory Trackingccooooeviviiiiiiiiiniieeee, 135
Table Parameterized Functionsccccoooeevvveviinnnnnn. 136
Learning Roadmap for TPF Developers............ 136
Developing a TPF ..o, 136
Consume TABLE Parameters........ccccooeveveeeennn. 137
Order Input Table Data.............cccccoeeevvvviieeeeeennnn. 140
Partitioning Input Dataccooeeeeeiiiiiiiiiiiiiins 140
TPF Implementation Examples...........cccccceeeennn. 156
SQL Reference for Table UDF and TPF Queries......... 166
ALTER PROCEDURE Statement...................... 167
CREATE PROCEDURE Statement (Table UDF)
... 169
CREATE FUNCTION Statement.............cccueeee. 173

DEFAULT_TABLE_UDF_ROW_COUNT Option 179
TABLE_UDF_ROW_BLOCK_CHUNK_SIZE K

B OPLioN ..o 180

FROM ClauSeoiiiiiiiiiiiiiiiie et 180

SELECT Statement..........cccoovveiviieiiiiieeeeieeeeenn 188

APl Reference for a v4 _extfncccoooveiiiiiiiicieeece, 199
Blob (a_v4_extfn_blob)cccoovieiiiiiiiii e, 199
blob_length ... 200

(o] o1=T o I 511 (=7 1o [P 201
Close_iStreamuuveiiiiiiiiiieeeeeeee 201

T[T T 202

Blob Input Stream (a_v4_extfn_blob_istream) 203

User-Defined Functions %

Contents

[0] TP 203
Column Data (a_v4_extfn_column_data)................... 204
Column List (a_v4_extfn_column_list)c..cceuunnene. 206
Column Order (a_v4_extfn_order_el)............ccoceeenn... 206
Column Subset (a_v4_extfn_col_subset_of _input)....207
Describe APl ... 208

*describe_column_get ..., 209

*describe_column_set.......cccccooeeiiiiiiiiiiiiii, 225

*describe_parameter_get..........ccccvvviiiiiinnneeenn. 242

*describe_parameter_set.............ccevviiiiieneeen, 261

*describe_udf get.....cccooveiiiiiiiiii 277

*describe_udf Set.......cccccciiiiiiiii 279
Describe Column Type

(a_v4_extfn_describe_col_type).......ccccovveveiieennnnn. 281
Describe Parameter Type

(a_v4_extfn_describe_parm_type)........cccceeeeernnnnn.. 282
Describe Return (a_v4_extfn_describe_return).......... 284
Describe UDF Type (a_v4_extfn_describe_udf_type)

.. 286
Execution State (a_v4_extfn_state)............cccceeeeeennnn.. 287
External Function (a_v4_extfn_proc)ccccceeeevernnnn.. 288

_start extfn ... 289

_finish_extfin ... 289

_evaluate_extfn........cccceveiiiiiiee e 290

_describe_extfncccccoviiiiiii 290

_enter_state_extfn........ccccoeeeiiiiiiiii 291

_leave_state_extfn.........ccccceviiiiiiiiiiiiiii e 291
External Procedure Context

(a_v4_extfn_proc_context)ccceevviveeieeiiiineeennnnnn. 292

get ValUeoovvviiiie e 294

get_value_is_constant..........ccccceeveeveeiiinieeeeinnnnn. 296

Set Valuevviiiciieeee 297

get_is_cancelled...........cooovviiiiiiiiiiiiie e 298

STy =] (o] PP PPN 298

|0g_MESSAQEooviiiiiiiiiiiiieee e 299

Vi

SAP Sybase 1Q

Contents

CONVEIt_ValUeooeiieiiiiieeeeee e 300
(o= 0 o] 011 0] o PPN 301
AOC . 301
FrEE e 302
0open_result_Set.......ccoeviviiiiiiiiiiii s 303
close_result_Set........ccccevviiiiiiiiiie e, 304
get_DBlob ... 304
set_cannot_be_distributedcooviiiiiiinnnn. 305
License Information (a_v4_extfn_license_info)........... 305
Optimizer Estimate (a_v4_extfn_estimate) 306
Order By List (a_v4_extfn_orderby_list)..................... 307
Partition By Column Number
(a_v4_extfn_partitionby_col_num)....................... 307
Row (a_Vv4_extfn_row)ccccovvvviiiiiiiiieie e 309
Row Block (a_v4_extfn_row_block)ccceeeeeneen. 309
Table (a_v4_extfn_table)..........cccovviiiiiiiiii, 310
Table Context (a_v4_extfn_table_context) 311
fetch _iNtOoovveiei i 313
fetch_BIOCKccooeeiiiee 316
FEWING ... eeaeeeees 318
get_DBlob ... 318
Table Functions (a_v4_extfn_table_func) 319
_OPEN_EXEIN (i 321
_fetch_into_extfn ..., 322
_fetch_block_extfn ... 322
_rewind_extin ..., 323
_Close_exXtineeiiieeie e 324
API Troubleshooting for a_v4_extfn..........ccccceeveiiiiiinnnns 325
Generic describe_column Errorscccoeeveeeevveveeeinnnns 325
Generic describe_udf Errorscccceeeveeeeeeeeeveiiiiinnn, 326
Generic describe_parameter Errors..........ccceeeeeeeeennns 326
Missing UDF Returns an Error..........ccccoeevvvvieeieeeennnns 327
External Environment for UDFS ..., 329
Executing UDFs from an External Environment......... 330
External Environment Restrictionsccccceeeeeeeeees 331

User-Defined Functions Vi

Contents

The ESQL and ODBC External Environments........... 331
The Java External Environment............cccccceeveeeeeeeennn, 341
Java External Environment in a Multiplex.......... 346
Java External Environment Restrictions............. 347
Java VM Memory OptionScovveeevvviininnneennn. 347
SQL Data Type Conversions for Java UDFs...... 348
Creating a Java Scalar UDF...............ccccevviennnne 350
Example: Executing a Java Scalar UDF............ 351
Creating a Java Scalar UDF Version of the SQL
Substr FUNCLIONcoooeeiiiiiiicee e, 352
Creating a Java Table UDFccoovviiiiiiiinnnnnns 354
Example: Executing a Java Table UDF.............. 356
Example: Executing a Java Table UDF with Java
Result Set Constructionccccceeeiiiieeeeeenn. 357
Java External Environment SQL Statement
Reference ..o 358
PERL External Environment............cccccoeeviiieiiiiiineeenn, 369
PHP External Environmentccccevviiiiieeeeeeeiinnnnn, 373
INAEX 379

viii SAP Sybase 1Q

Audience

Audience

The User-Defined Functions guide is intended for SQL analysts, C developers, C++
developers, and Java developers who want to extend the functionality of SAP® Sybase® 1Q.

As a developer, use the tasks, concepts, and API reference material to program non-SQL
external user-defined functions.

As a SQL analyst, use this guide to develop SQL queries that reference non-SQL external
user-defined functions.

User-Defined Functions 1

Audience

2 SAP Sybase 1Q

Understanding User-Defined Functions

Understanding User-Defined Functions

Learn how user-defined functions are used within SAP Sybase 1Q.

SAP Sybase 1Q allows user defined functions (UDFs), which execute within the database
container. The UDF execution feature is available as an optional component for use within
SAP Sybase 1Q.

You must be specifically licensed to use these external C/C++ UDFs interfaces.

These external C/C++ UDFs differ from the Interactive SQL UDFs available in earlier
versions of SAP Sybase 1Q. Interactive SQL UDFs are unchanged and do not require a special
license.

UDFs that execute within SAP Sybase IQ take advantage of the extreme performance of the
server, while also providing users the flexibility of analyzing their data with the flexibility of a
programmatic solution. User-Defined Functions consist of two components:

« UDF declaration, and
* UDF executable code

A UDF isdeclared in the SQL environment through a SQL function or stored procedure which
describes the parameters and provides a reference to the external library.

The actual executable portion of the UDF is contained within an external (shared object or
dynamic load) library file, which is automatically loaded by the server upon the first
invocation of a UDF Declaration function or stored procedure associated with that library.
Once loaded, the library remains resident in the server for rapid access through subsequent
invocations of SQL functions or stored procedures that reference the library.

The SAP Sybase 1Q user-defined function architecture is represented in the diagram below.

User-Defined Functions 3

Understanding User-Defined Functions

SAP Sybase 1Q

v

SAL Client

Executable User-Defined Function code,
contained within external library files,
dynamically loaded into 1Q upon first use

SAP Sybase 1Q supports high-performance in-process external C/C++ user-defined
functions. This style of UDF supports functions written in C or C++ code that adhere to the
interfaces described in this guide.

The C/C++ source code for the UDFs is compiled into one or more external libraries that are
subsequently loaded into the server's process space when needed. The UDF calling

mechanism is defined to the server through a SQL function. When the SQL function is invoked
from a SQL query, the server loads the corresponding library if it has not already been loaded.

For simplicity of managing the UDF installation, package many UDF functions within a
single library.

To facilitate the construction of UDFs, SAP Sybase 1Q includes a C-based API. The API
comprises a set of predefined entry points for the UDFs, a well-defined context data structure,
and a series of SQL callback functions that provide a communication mechanism from the
UDF back to the server. The SAP Sybase 1Q UDF API allows software vendors and expert
end-users to develop, package, and sell their own UDFs.

4 SAP Sybase IQ

Understanding User-Defined Functions

Learning Roadmap: Types of UDFs

The types of user-defined functions (UDFs) available in SAP Sybase 1Q.

used as a table expression in the
FROM clause of a SQL statement

UDF Type Description Required Li- [See
cence
UDF (SQL) A user-defined function written | none Administration.: Da-
in SQL. tabase > Create Pro-
cedures and Batches
> [ntroduction to
User-Defined Func-
tions
Scalar C or C++ V3 external C or C++ procedure | 1Q_UDF Learning Roadmap.
UDF that operates on a single value. Types of External C
and C++ UDFson
page 6
Scalar C or C++ V4 external C or C++ procedure | 1Q_IDA Learning Roadmap:
UDF that operates on a single value. Types of External C
and C++ UDFson
page 6
Aggregate C or C++ | V3 external C or C++ procedure | 1Q_UDF Learning Roadmap:
UDF that operates on multiple values. Types of External C
Aggregate UDFs are also some- and C++ UDFson
times known as UDAs or page 6
UDAFs. The context structure
for coding aggregate UDFs is
slightly different than the context
structure used for coding scalar
UDFs.
Aggregate C or C++ | V4 external C or C++ procedure | 1Q_IDA Learning Roadmap:
UDF that operates on multiple values. Types of External C
Aggregate UDFs are also some- and C++ UDFson
times known as UDAs or page 6
UDAFs. The context structure
for coding aggregate UDFs is
slightly different than the context
structure used for coding scalar
UDFs.
Table UDF External C or C++ procedure that | 1Q_IDA Learning Roadmap:
produces a set of rows and can be Types of External C

and C++ UDFson
page 6

User-Defined Functions

Understanding User-Defined Functions

vironment) table UDF imple-
mented in Java code.

UDF Type Description Required Li- | See
cence
Table parameterized | A table UDF that accepts table | IQ_IDA Learning Roadmap.
function (non-scalar) parameters in addi- Types of External C
tion to scalar parameters, and can and C++ UDFson
be executed in parallel over par- page 6
titions of row-sets. Also known
as table parameterized user-de-
fined functions.
Java scalar UDF An out-of-process (external en- | none The Java External
vironment) scalar user-defined Environmenton page
function implemented in Java 341
code.
Java table UDF An out-of-process (external en- | none The Java External

Environmenton page
341

Learning Roadmap: Types of External C and C++ UDFs

The high-performance, in-process, external C and C++ user-defined functions available with

the 1Q_IDA license.

The v3 API requires either the IQ_UDF or IQ_IDA license. The v4 API requires the IQ_IDA

license.
UDF Type Input Param- [Return API See:
eters
Scalar UDF Scalar Single scalar val- | v3, v4 Declaring and
ue Defining Scalar
User-Defined
Functions on
page 32
Aggregate UDF | Scalar Single scalar val- | v3, v4 Declaring and
ue Defining Aggre-
gate UDFson
page 46
Table UDF Scalar Table V4 Table UDFs and
TPFson page
97
Table parameter- | Scalar and table | Table v4 Table Parameter-
ized function ized Functions
(TPF) on page 136

SAP Sybase 1Q

Understanding User-Defined Functions

These UDFs can be deterministic or nondeterministic. The result of a function can be
determined by the input parameters and data (deterministic), or by some random behavior
(nondeterministic). Parameters of nondeterministic UDFs typically need a random seed as
one of the input parameters.

User-Defined Functions Compliance with SAP Sybase 1Q
Databases

Develop user-defined functions to work with SAP Sybase 1Q databases.

* Seamless Execution — UDFs must run seamlessly within the database container.
Although SAP Sybase IQ is a complex product consisting of many files, the main user
interaction is through a server process (igsrv16.0), using industry-standard Structured
Query Language (SQL). Execution of UDFs should be accomplished entirely through
SQL commands; the user does not need to understand the underlying implementation
method to use the UDFs.

The EXTEN_ V3 API and EXTFN_ V4 API provide callback functions enabling the
UDF to write to the message file (. igmsg).

UDFs should manage memory and temporary results as defined by the EXTFN_ V3 API
and EXTFN V4 APT.

SAP Sybase I1Q is a multiuser application. Many users can simultaneously execute the
same UDF. Certain OLAP queries cause a UDF to be executed multiple times within the
same query, sometimes in parallel. For details on setting UDFs to run in parallel, see
Aggregate UDF calling patterns on page 84.

e Internationalization — SAP Sybase 1Q has been internationalized for global use. Error
messages are in external files, which allows you to localize error messages to new
languages without having to make extensive code changes.

To support multiple languages, UDFs should also be internationalized. In general, most
UDFs operate on numeric data. In some cases, a UDF may accept string keywords as one
or more of the parameters. Place these keywords in external files, in addition to any
exception text and log messages used by the UDF.

SAP Sybase I1Q has also been localized for a few non-English languages. To support
localization to the same languages that SAP Sybase 1Q supports, internationalize UDFs so
that an independent organization can localize them at a later date.

For details about international language support in SAP Sybase 1Q, see /nternational
Languages and Character Setsin Administration: Globalization .

See also Debugging Using Cross-Character-Set Maps at www.Sybase.com. This paper
discusses how to debug with multi byte data, as opposed to input keywords, exception
messages, and log entries.

User-Defined Functions 7

Understanding User-Defined Functions

Platfor m Differences—Develop UDFs to run on a variety of platforms supported by SAP
Sybase 1Q. The SAP Sybase 1Q 16.0 server runs on 64-bit architectures, and is supported
under several platforms of the MS Windows (64-bit) family of operating systems. SAP
Sybase 1Q is also supported on versions of UNIX (64-bit), including Solaris, HP-UX,
AlX, and Linux.

Practices to Avoid

Learn good practices for creating user-defined functions.

Do not write ambiguous code, or constructs that can unexpectedly loop forever, without
providing a mechanism for the user to cancel the UDF invocation (see the function
'‘get_is_cancelled()'.

Do not perform complex, or memory-intensive operations that are repeated every
invocation. When a UDF call is made against a table that contains many thousands of rows,
efficient execution becomes paramount. Allocate blocks of memory for a thousand to
several thousand rows at a time, rather than on a row-by-row basis.

Do not open a database connection, or perform database operations from withina UDF. All
parameters and data required for UDF execution must be passed as parameters to the UDF.
Do not use reserved words when naming UDFs.

Note: Use source control software for C++ UDFs and Java UDFs to track changes to:

The source code (. java files/. cpp files)

Theclass/jar/d11/sofilesthat may be deployed to the database or mentioned in the
UDF stored procedure definition.

The Syntax for the UDF stored procedure definition itself.

Deployment instructions, 3rd party library versions and special deployment notes such as
security specifics.

See also

get_is_cancelled on page 298

Naming Conventions for User-Defined Functions

UDF names must follow the same restrictions as other identifiers in SAP Sybase 1Q.

SAP Sybase 1Q identifiers have a maximum length of 128 bytes. For simplicity of use, UDF
names should start with an alphabetic character. Alphabetic characters as defined by SAP
Sybase 1Q include the letters of the alphabet, plus underscore (), at sign (@), number or
pound sign (#) and dollar sign ($). UDF names should consist entirely of these alphabetic
characters as well as digits (the numbers 0 through 9). UDF names should not conflict with

SAP Sybase 1Q

Understanding User-Defined Functions

SQL reserved words. For a list of SQL reserved words in SAP Sybase 1Q see Reserved Word's
in Reference: Building Blocks, Tables, and Procedures.

Although UDF names (as other identifiers) may also contain reserved words, spaces,
characters other than those listed above, and may start with a non-alphabetic character, this is
not recommended. If UDF names have any of these characteristics, you must enclose them in
quotes or square brackets, which makes it more difficult to use them.

The UDFs reside in the same name space as other SQL functions and stored procedures. To
avoid conflicts with existing stored procedures and functions, preface UDFs with a unique
short (2-letter to 5-letter) acronym and underscore. Choose UDF names that do not conflict
with other SQL functions or stored procedures already defined in the local environment.

These are some of the prefixes that are already in use:

« debugger_tutorial — a stored procedure delivered with the native SAP Sybase 1Q
installation.

* ManageContacts —a stored procedure delivered with the SAP Sybase 1Q demo database.

* Show — stored procedures used to display data from the SAP Sybase 1Q demo database.

e sp_Detect_MPX_DDL_conflicts — a stored procedure delivered with the native SAP
Sybase 1Q installation.

* sp_igevbegintxn — a stored procedure delivered with the native SAP Sybase 1Q
installation.

* sp_igmpx — functions and stored procedures provided by SAP Sybase 1Q to assist in
multiplex administration.

» ts_—optional financial time series and forecasting functions.

SQL Data Types
UDF declarations support only certain SQL data types.

You can use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

SQL Data C or C++ [C or C++ |[Description
Type Data Typedef
Type
Identifier
UNSIGNED DT_UN- a_sql_uinté | An unsigned 64-bit integer, requiring 8 bytes of
BIGINT SBIGINT 4 storage.
BIGINT DT_BI- a_sql_int64 | A signed 64-bit integer, requiring 8 bytes of stor-
GINT age.

User-Defined Functions

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef
Type
Identifier
UNSIGNED DT_UN- a_sqgl_uint3 | Anunsigned 32-bit integer, requiring 4 bytes of
INT SINT 2 storage.
INT DT_INT a_sql_int32 | A signed 32-bit integer, requiring 4 bytes of stor-
age.
SMALLINT DT_SMAL | short A signed 16-bit integer, requiring 2 bytes of stor-
LINT age.
TINYINT DT_TI- unsigned An unsigned 8-bit integer, requiring 1 byte of stor-
NYINT char age.
DOUBLE DT_DOU- | double A signed 64-bit double-precision floating point
BLE number, requiring 8 bytes of storage.
REAL DT_FLOA | float A signed 32-bit floating point number, requiring 4
T bytes of storage.
FLOAT DT_FLOA | float In SQL, depending on the associated precision, a
T FLOAT is either a signed 32-bit floating point
number requiring 4 bytes of storage, or a signed
64-bit double-precision floating point number re-
quiring 8 bytes of storage. You can use the SQL
data type FLOAT only in a UDF declaration if the
optional precision for FLOAT data types is not
supplied. Without a precision, FLOAT is a syno-
nym for REAL.
CHAR(<n>) DT_FIX- char A fixed-length blank-padded character string, in
CHAR the database default character set. The maximum
possible length, “<n>", is 32767. The data is not
null-byte terminated.
VARCHAR(<n>) | DT_VAR- | char A varying-length character string, in the database
CHAR default character set. The maximum possible
length, “<n>", is 32767. The data is not null-byte
terminated. For UDF input arguments, the actual
length, when the value is not NULL, must be re-
trieved from the fotal /en field within the
an_extfn value structure. Similarly, for a
UDF result of this type, the actual length must be
set in the fotal_/enfield.

10 SAP Sybase IQ

Understanding User-Defined Functions

SQL Data
Type

Cor C++
Data
Type
Identifier

Cor C++
Typedef

Description

LONG VAR-
CHAR(<n>) or
CLOB

DT_VAR-
CHAR

char

A varying-length character string, in the database
default character set. Use the LONG VARCHAR
data type only as an input argument, notasareturn-
value data type. The maximum possible length,
“<n>", is 4GB (gigabytes) for v3 UDFs. The data
is not null-byte terminated. LONG VARCHAR
data type can have a WD or TEXT index. For UDF
input arguments, the actual length, when the value
is not NULL, must be retrieved from the zotal _fen
field within the an_extfn_value structure.

You need not rebuild or recompile an existing sca-
lar or aggregate UDF to use a LOB data type as an
input parameter, if the function contains a loop that
reads pieces of the value viathe get _value ()

and get piece () methods. The loop contin-
ues until remain_/len> 0 or until 4GB is reached for
v3 UDFs (there is no 4GB limit in v4).

Table UDFs and TPFs do not use the

get piece () method to process and retrieve
data. Table UDFs and TPFs must use the B1ob
(a_v4 extfn blob) APIinstead. Use
blob length to determine length of input
parameters.

Large object data support requires a separately li-
censed SAP Sybase 1Q option.

BINARY(<n>)

DT_BINA-
RY

unsigned
char

A fixed-length null-byte padded binary, value with
a maximum possible binary length, “<n>”", of
32767. The data is not null-byte terminated.

VARBINA-
RY(<n>)

DT_BINA-
RY

unsigned
char

A varying-length binary value, for which the max-
imum possible length, “<n>", is 32767. The data is
not null-byte terminated. For UDF input argu-
ments, the actual length, when the value is not
NULL, must be retrieved from the fofal_lenfield
within the an_extfn_value structure. Similarly, for
a UDF result of this type, you must set the actual
length in the fotal_/enfield. The data is not null-
byte terminated.

User-Defined Functions

11

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef

Type

Identifier
LONG BINA- | DT_BINA- | unsigned A fixed-length null-byte padded binary, value with
RY(<n>) or RY char amaximum possible binary length, “<n>", of 4GB
BLOB (gigabytes) for v3 UDFs. Use the LONG BI-

NARY datatype only as an input argument, notasa
return-value data type.

You need not rebuild or recompile an existing sca-
lar or aggregate UDF to use a LOB data type as an
input parameter, if the function contains a loop that
reads pieces of the value viathe get _value ()

and get piece () methods. The loop contin-
ues until remain_Jlen> 0 or until 4GB is reached for
v3 UDFs (there is no 4GB limit in v4).

Table UDFs and TPFs do not use the

get piece () method to process and retrieve
data. Table UDFs and TPFs must use the B1ob
(a_v4 extfn blob) APIinstead. Use
blob length to determine length of input
parameters.

Large object data support requires a separately li-
censed SAP Sybase 1Q option.

12

SAP Sybase 1Q

Understanding User-Defined Functions

SQL Data
Type

Cor C++
Data
Type
Identifier

Cor C++
Typedef

Description

DATE

DT_TIME-
STAMP_S
TRUCT

unsigned in-
teger

A calendar date value, which is passed to or from a
UDF as an unsigned integer. The value given to the
UDF is guaranteed to be usable in comparison and
sorting operations. A larger value indicates a later
date. If the actual date components are required,
the UDF must invoke the convert value
function in order to convert to the type DT_TIME-
STAMP_STRUCT. This date type represents date
and time with this structure:

typedef struct sgldatetime {
unsigned short
year; /* e.qg.
unsigned char
month; /* 0-11
w/

1992%/

unsigned char
day of week; /* 0-6
1=Monday, ... */
unsigned short
day of year; /* 0-365
*
/

0=Sunday,

unsigned char
day; /% 1=31
w4

unsigned char
hour; /* 0-23
w/

unsigned char mi-
nute; /* 0-59
*/
unsigned char sec-—

/* 0-59 =/

a sgl uint32 microsec-—
ond; /* 0-999999 */
} SQLDATETIME;

ond;

DT_TIME-
STAMP_S
TRUCT

unsigned bi-
gint

A value that precisely describes amoment within a
given day. . The value given to the UDF is guar-
anteed to be usable in comparison and sorting op-
erations. A larger value indicates a later time. If the
actual time components are required, the UDF
must invoke the convert wvalue function to
convert to the type DT TIME-

STAMP STRUCT

User-Defined Functions

13

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef
Type
Identifier
DATETIME, DT_TIME- | unsigned bi- | A calendar date and time value. The value given to
SMALLDATE- | STAMP_S | gint the UDF is guaranteed to be usable in comparison
TIME, or TRUCT and sorting operations. A larger value indicates a
TIMESTAMP later datetime. If the actual time components are
required, the UDF must invoke the con-
vert value function to convert to the type
DT TIMESTAMP STRUCT.
TABLE DT_EXTF | a_v4_extfn_ | Represents an input TABLE parameter result set.
N_TABLE | table This datatype is only available on TPFs.
See also

Blob (a_v4_extfn_blob) on page 199

Blob Input Stream (a_v4_extfn_blob_istream) on page 203
convert_value on page 300

Table (a_v4_extfn_table) on page 310

Unsupported Data Types

Certain SQL data types cannot be used in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types.

BIT —Should typically be handled in the UDF declaration as a TINYINT data type, and
then the implicit data type conversion from BIT automatically handles the value
translation.

DECIMAL —(<precision>, <scale>) or NUMER I C(<precision>, <scale>) —depending on
the usage, DECIMAL is typically handled as a DOUBLE data type, but various conventions
may be imposed to enable the use of INT or BIGINT data types.

LONG VARCHAR — (CLOB) — supported only as an input argument, not as a return-
value data type. An exception exists for pass-through TPFs, where LONG VARCHAR is
supported as a return-value data type.

LONG BINARY - (BLOB) — supported only as an input argument, not as a return-value
data type. An exception exists for pass-through TPFs, where LONG BINARY issupported
as a return-value data type.

TEXT —not currently supported.

14

SAP Sybase 1Q

Building UDFs
Building UDFs
Design, build, and test UDFs.

Design Basics of User-Defined Functions

There are some basic considerations to keep in mind while developing UDFs.

This document assumes that the UDF developer is familiar with the basics of developing
software, including good program design and development and independent testing.

In addition to standard software development practices, developers of non-Java UDFs should
remember that they are developing code to be executed within the SAP Sybase 1Q database
container, and to understand the limitations imposed by the database container.

Developers of aggregate UDFs should also be familiar with OLAP queries, and how they
translate into UDF calling patterns.

Because the UDFs may be invoked by several threads simultaneously, they must be
constructed to be thread-safe.

Sample Code

Sample UDF source code is delivered with the product. The newest version of the sample code
is always delivered with the most current version of SAP Sybase 1Q.

On UNIX platforms, the sample UDF code is in $SYBASE/IQ-16.0/samples/udf
(where $SYBASE is the installation root).

On Windows platforms, the sample UDF code is in C: \Documents and Settings
\All Users\SybaseIQ\samples\udf.

The sample UDF code documented in the User-Defined Functionsguide may not be the latest
version as delivered with the SAP Sybase 1Q product. Last-minute changes to the sample UDF
source code are documented in the Release Bulletin for your operating system platform.

Setting the Dynamic Library Interface
Specify the interface style to be used in the dynamically linkable library.

Each dynamically loaded library must contain exactly one copy of this definition:

extern "C" a sql uint32 extfn use new api(void)
{

return EXTFN V4 API;
}

User-Defined Functions 15

Building UDFs

This definition informs the server of which interface style is being used, and therefore how to
access the UDFs defined in this dynamically linkable library. For high-performance UDFs,
only new interface styles EXTFN V3 APT and EXTFN V4 API are supported.

Upgrading to the v4 API

Upgrade to the v4 API included with 16.0.

Prerequisites
Install SAP Sybase 1Q server version 16.0.

Task

If you have existing scalar or aggregate UDFs developed for SAP Sybase IQ server versions
15.1, 15.2, or 15.3, those UDFs use the V3 API interface style and reference the
extfnapiv3.h header file. Modify your legacy C or C++ external library files to reference
the ext fnapiv4.h header file.

Existing v3 scalar and aggregate functions continue to work as designed. However, to take
advantage of scalar and aggregate distribution in PlexQ, you must upgrade the header file and
library version to v4. You need not change the name of the typedefs for your scalar or
aggregate function.

1. Open the C or C++ external library file defining the scalar or aggregate user-defined
function.

2. Locate all instances of #include 'extfnapiv3.h' andchangeto #include
'extfnapiv4d.h'.

3. Set the dynamic library interface to EXTFN V4 APIT.

4. Rebuild.

Next
Partners must ensure the library exports extfn_get license info asan entry point.

See also

e External Function Prototypes on page 93

e License Information (a_v4_extfn_license_info) on page 305
o Defining an Aggregate UDF on page 53

» Defining a Scalar UDF on page 37

» Developing a Table UDF on page 103

» Developing a TPFon page 136

16

SAP Sybase 1Q

Building UDFs

Library Version (extfn_get_library version)

Usethe extfn get library version method to extract the library version from the
current multiplex node. The server considers partitioning a query across multiplex nodes only
if the installed library is compatible with the other nodes.

Implementation
A v4 library can define this optional entry point:

size t extfn get library version(uint8 *buff, size t len);

Description
Library versioning methods are at the library level, and do not have the a_v4 prefix in their
method name.

If the v4 library defines the optional entry point, the server allows query distribution to other
nodes. The entry point populates the supplied buffer with the library version string (a C-style
character string containing only ASCII characters, terminated with \0) and returns the actual
size of the populated version string, which is constrained to a maximum of 256 bytes.

If an entry point is not defined, the server does not distribute the UDF to the other nodes in the
multiplex.

See also
o Library Version Compatibility (extfn_check version_compatibility) on page 17
» Setting the Dynamic Library Interface on page 15

Library Version Compatibility
(extfn_check version compatibility)

Usethe extfn check version compatibility method to define compatibility
criteria for library versions across nodes in a multiplex.

Implementation
A v4 library can define this optional entry point:

a bool extfn check version compatibility(uint8 *buff, size t
len);

Description
Library versioning methods are at the library level, and do not have the a_v4 prefix in their

method name.

User-Defined Functions 17

Building UDFs

This optional entry point accepts a buffer containing the version string and the version string
length. It returns whether or not the library version on the target node is compatible with the
version string parameter. The library developer defines the compatibility criteria.

Interaction with extfn get library version

The leader node calls extfn get library version before checking version
compatibility. If extfn get library version is notimplemented on the leader
node, then there isno distribution. Ifext fn_get library versionisimplementedon
the leader node, then the UDF or TPF is eligible for distribution. Being eligible for distribution
is not a guarantee that distributed query processing will occur.

Theextfn get library version method can returna0O-length string; however, this
does not mean that extfn_get library version isnotimplemented

Note: A TPF or UDF is still eligible for distribution if ext fn_get library version
returns a O-length string.

Ifextfn get library version returnsa 0-length string, whether or not the worker
node accepts the distributed work depends on the

extfn check version compatibility implementation on the worker node. A
worker node requires a compatible library to process distributed work.

See also
e Library Version (extfn_get library version)on page 17
o Setting the Dynamic Library Interface on page 15

License Information (extfn get license info)

If you are a design partner, implement the extfn get license info library-level
function to enable the server to obtain licensing information from a v4 UDF.

Data Type

an_extfn license info

Implementation

(_entry an extfn get license info) (an _extfn license info
**license_info) 8

Parameters

license_info is an output parameter that returns the license information as received from the
library. You define the license information inthe a_v4 extfn license info
structure.

18

SAP Sybase 1Q

Building UDFs

Description

Design partners must specify the SAP-supplied license key in the

a v4 extfn license info structure, and must ensure that the library exports
extfn get license info asan entry point.

Adding the extfn get license info Method

If you are a design partner, populate stringsina v4 extfn license info and define
extfn get license info asav4 entry point.

1. Inthea v4 extfn license info structure, specify your company name. The
maximum length is 255 characters.

2. Inthea_v4 extfn license info structure, specify additional library information
such as library version and build numbers. The maximum length is 255 characters.

3. Inthea_v4 extfn license_ infostructure, enterthe license key provided by SAP.
4. Ensure the library exports extfn _get license info asan entry point.

a v4 extfn license info my info = {
1,
"Company Name",
"Library Info String",
(void *)"KEY STRING"
i

void SQL CALLBACK extfn get license info(an extfn license info
**license info)

/

KAk kA A kA Ak hhkhkhk Ak kA hhk A kA A hhk kA Ak kA hkdk Ak hkhkhhkhkhkhkhkhkhkhkhkrhkhkrkhkkhkhkhkkhkkkkxkkxkk*
************************/

{
*license info = (an_extfn license info *)& my info;

}

Compile and Link Source Code to Build Dynamically
Linkable Libraries

Use compile and link switches when building dynamically linkable libraries for any user-
defined function.

Warning! Use fully-qualified path names for UDF libraries. In multiplex implementations,
ensure the relative path is the same for all nodes.

1. A UDF dynamically linkable library must include an implementation of the function
extfn_use_new_api(). The source code for this function is in Setting the dynamic library
interface on page 15. This function informs the server of the API style that all functions in

User-Defined Functions 19

Building UDFs

the library adhere to. The sample source file my main.cxx contains this function; you
can use it without modification.
2. A UDF dynamically linkable library must also contain object code for at least one UDF
function. A UDF dynamically linkable library may optionally contain multiple UDFs.
3. Link together the object code for each UDF as well as the extfn_use_new_api() to form a
single library.
For example, to build the library "libudfex:"
« Compile each source file to produce an object file:

my main.cxx

my bit or.cxx

my bit xor.cxx

my interpolate.cxx
my plus.cxx

my plus counter.cxx
my Sum.CxX

my byte length.cxx
my md5.cxx

my toupper.cxx

tpf agg.cxx

tpf blob.cxx

tpf dt.cxx

tpf filt.cxx

tpf oby.cxx

tpf pby.cxx
tpf rg l.cxx
tpf rg 2.cxx

udf blob.cxx

udf main.cxx
udf rg 1l.cxx
udf rg 2.cxx
udf rg 3.cxx

udf utils.cxx

« Link together each object produced into a single library.
After the dynamically linkable library has been compiled and linked:

e Update the CREATE FUNCTION ... EXTERNAL NAME or CREATE PROCEDURE ..
EXTERNAL NAME to include an explicit path name for the UDF library.

4, Runigdirlé/samples/udf/build.bat on Windows. Run igdirl16/
samples/udf/build.sh on UNIX.

Compiling and Linking the Sample UDFs for Windows

Runthe build.bat scriptto compile and link the sample scalar and aggregate UDFs, table
UDFs, and TPFs found in the samples\udf directory.

1. Navigate to $ALLUSERSPROFILE%\samples\udf.
2. Runbuild.bat:

20 SAP Sybase IQ

Building UDFs

Parameter Description

-clean Deletes the object and the build directory

-v3 Builds sample scalar and aggregate UDFs with
the v3 API

-v4 (Default) Builds sample table UDFs and TPFs
with the v4 API

Compiling and Linking the Sample UDFs for UNIX

Run the build. sh script to compile and link the sample scalar and aggregate UDFs, table
UDFs, and TPFs found in the samples/udf directory.

1. Navigate to SIQDIR15/samples/udf.

2. Runbuild. sh:

Parameter Description
-clean Deletes the object and the build directory
-v3 Builds sample scalar and aggregate UDFs with
the v3 API
-v4 (Default) Builds sample table UDFs and TPFs
with the v4 API
AlIX Switches

Use the following compile and link switches when building shared libraries on AlX.

xIC 10.0 on a PowerPC

Important: Include the code for extfn_use _new_api() in each UDF library.

Note: To compile on AlX 6.1 systems, the minimum level of the xIC compiler is 10. 0.

compile switches

-gq64 -garch=ppc64 -gtbtable=full -gsrcmsg -galign=natural -

gnoansialias

-gmaxmem=-1 -genum=int -ghalt=e -gflag=w -gthreaded -

gxflags=NLOOPING
-gtmplinst=none -gthreaded

link switches

-brtl -G -1g -lpthreads compat -lpthreads -1lm r -1dl -bnolibpath -

v

User-Defined Functions

21

Building UDFs

HP-UX Switches

Use the following compile and link switches when building shared libraries on HP-UX.

aCC 6.24 on Itanium

Important: Include the code for extfn_use new_api() in each UDF library.

compile switches

+noeh -ext +W740,749,829 +Wl1l031 +DD64 +DSblended +FPD -Aa +tub
-U_HP INSTANTIATE T IN LIB -Wc,-ansi for scope,on -mt -z

link switches

-b -W1l,+s

Linux Switches

Use the following compile and link switches when building shared libraries on Linux.

g++ 4.1.1 on x86

Important: Include the code for extfn_use new api() in each UDF library.

compile switches

-fPIC -fsigned-char -fno-exceptions -pthread -fno-omit-frame-
pointer
-Wno-deprecated -Wno-ctor-dtor-privacy -02 -Wall

Note: When compiling C++ applications for building shared libraries on Linux, adding the
-02 and -Wall switches to the list of compile UDF switches decreases computation time.

link switches
-1dl -1nsl -1lm -lpthread -shared -Wl,-Bsymbolic -Wl,-shared

Note: You can use gcc on Linux as well. While linking with gcc, link in the C++ run time
library by adding -1 stdc++ to the link switches.

Examples

e Example 1

g++ -c my interpolate.cxx -fPIC -fsigned-char -fno-exceptions -
pthread

-fno-omit-frame-pointer -Wno-deprecated -Wno-ctor-dtor-
privacy

-IS$S{IQDIR16}/sdk/include/

e Example 2

g++ -c my main.cxx -fPIC -fsigned-char -fno-exceptions -pthread
-fno-omit-frame-pointer -Wno-deprecated -Wno-ctor-dtor-

22

SAP Sybase 1Q

Building UDFs

privacy
-I${IQDIR16}/sdk/include/

e Example 3

1d -G my main.o my interpolate.o -1dl -1lnsl -1m -lpthread -shared
-o my udf library.so

xIC 10. 0 on a PowerPC
compile switches
-gq64 -garch=ppc64 -gcheck=nullptr -ginfo=gen -gtbtable=full -
gsrcmsg
-gnoansialias -gminimaltoc -gmaxmem=-1 -genum=int -ghalt=e -gflag=w
-gthreaded
-gxflags=NLOOPING -gtmplinst=none
link switches
—-gmkshrobj -1dl -1g -gthreaded -1lnsl -1m

Solaris Switches
Use the following compile and link switches when building shared libraries on Solaris.

Sun Studio 12 on SPARC

Important: Include the code for extfn_use _new api() in each UDF library.

compile switches

-mt -noex +w -KPIC -1 -instances=explicit -V -xtarget=ultra3cu -m64
-xlibmopt

-x1libmil -features=no%conststrings

-erroff=truncwarn, nokeyworddefine,diffenumtype

link switches
-z defs -G -1dl -1nsl -lsocket -ladm -lposix4 -1Crun -1Cstd -lc -1m
-lefi

-liostream -lkstat

Sun Studio 12 on x86

compile switches

+w2 -m64 -features=no%conststrings

-erroff=truncwarn, nokeyworddefine,diffenumtype,doubunder -errtags -
mt -noex

-KPIC -instances=explicit -xlibmopt -xlibmil

link switches
-z defs -G -1dl -1nsl -lsocket -ladm -lposix4 -1Crun -1Cstd -lc -1m
-lefi

-liostream -lkstat -m64

User-Defined Functions 23

Building UDFs

Windows Switches

Use the following compile and link switches when building shared libraries on Windows.

Visual Studio 2008 on x86

Important: Include the code for extfn_use new_api() in each UDF library.

compile and link switches

This example is for a DLL containing the my_plus function. You must include an EXPORT
switch for the descriptor function for each UDF contained in the DLL.

cl /zi /LD /I includefilepath my main.cxx my plus.cxx /link /
map

/INCREMENTAL:NO -EXPORT:extfn use new api -EXPORT:my plus /
out:libiqudfex.dll

Example

Environment setup

set VCBASE=c:\dev\vc?9
set MSSDK=C:\dev\mssdk6.0a
set IQINSTALLDIR=C:\Sybase\IQ
set OBJ DIR=%IQINSTALLDIR%\IQ-16 O\samples\udf\objs
set SRC_DIR=%IQINSTALLDIR%\IQ-16 O\samples\udf\src
call $VCBASE%\VC\bin\vcvars32.bat

e Example 1

$VCBASES$\VC\bin\amd64\cl -c -nologo -DNDEBUG -DWINNT -D USRDLL
-D WINDLL -D WIN64 -DWING4 -

D WIN32 WINNT= WIN32 WINNT WINXP
-DWINVER= WIN32 WINNT WINXP -D MBCS -GS -W3 -Zi -favor:AMD64
-DSYB LP64 -D LARGEFILE SOURCE -D FILE OFFSET BITS=64 -

DHMSWNT
-D CRT SECURE NO DEPRECATE -D CRT NONSTDC NO DEPRECATE
-DPOINTERS ARE 64BITS -DLONG IS 64BITS -

D _RWSTD NO EXCEPTIONS

-I"$VCBASE%$\VC\include" -I"$MSSDK%\include "-I"$MSSDK%\Lib
\AMD64"
-I"%VCBASE%\VC\lib\amd64" -DMSDCXX -DINT64 WORKAROUND
-DSUPPORTS_UDAF -0d -Zi -MD -I"$IQINSTALLDIR$\IQ-16 0\sdk
\include"
-Fo"%0BJ DIR%$\my interpolate.o" $SRC_DIR%\my interpolate.cxx
o Example 2

$VCBASES$\VC\bin\amd64\cl -c -nologo -DNDEBUG -DWINNT -D USRDLL
-D WINDLL -D WIN64 -DWIN64 -
D WIN32 WINNT= WIN32 WINNT WINXP
-DWINVER= WIN32 WINNT WINXP -D MBCS -GS -W3 -Zi -favor:AMD64
-DSYB LP64 -D LARGEFILE SOURCE -D FILE OFFSET BITS=64 -
DHMSWNT
-D_CRT SECURE NO DEPRECATE -D CRT NONSTDC NO DEPRECATE
-DPOINTERS ARE 64BITS -DLONG IS 64BITS -

24

SAP Sybase 1Q

Building UDFs

D_RWSTD NO EXCEPTIONS
-I"$VCBASE%\VC\include" -I"%MSSDK%\include "-I"$MSSDK%\Lib
\AMD64"
-I"$VCBASE%\VC\lib\amd64" -DMSDCXX -DINT64 WORKAROUND
-DSUPPORTS_ UDAF -0d -Zi -MD —I"%IQINSTALLDIR%\IQ—]_670\sdk
\include"
-Fo"%0BJ DIR%$\my main.o" %SRC_DIR%\my main.cxx
e Example 3
$VCBASE$\VC\bin\amd64\1link /LIBPATH:%VCBASE%\VC\lib\amd64
/LIBPATH:%MSSDK%\1ib\bin64 kernel32.lib -manifest -DLL -
nologo
-MAP:"%0BJ DIR%\libudfex.map deco" /OUT:"%0BJ DIR%
\libudfex.dll"
"$0BJ DIR%\my interpolate.o" "$OBJ DIR%\my main.o" /DLL
-EXPORT:extfn use new api -EXPORT:my interpolate
e Example 4
$MSSDK%\bin\mt -nologo -manifest "%OBJ DIR%
\libudfex.dll.manifest"
-outputresource:"$0BJ DIR%\libudfex.dll;2"

Testing User-Defined Functions

After UDF external code has been coded, compiled and linked, and the corresponding SQL
functions and stored procedures have been defined, the UDFs are ready to be tested.

The reliability required by a database is extremely high. UDFs running within a database
environment must maintain this high level of reliability. With the first implementation of the
UDF API, UDFs run within the SAP Sybase 1Q server. If a UDF aborts prematurely or
unexpectedly, the SAP Sybase 1Q server may abort. Ensure via thorough testing in a
development or test environment, that UDFs do not terminate prematurely or abort
unexpectedly under any circumstances.

Enabling and Disabling User-Defined Functions

Use the inmemory external procedure security feature to enable or disable the
server's ability to make use of high performance in-process UDFs.

A database should maintain data integrity. Under no circumstances should data be lost,
modified, augmented, or corrupted. Since UDF execution happens within the SAP Sybase 1Q
server, there is a risk of corrupting data; practice caution with memory management and any
other use of pointers. Install and execute UDFs within a read-only multiplex node. For
additional protection, use the secured feature (-sf) startup option with each server to enable or
disable the execution of UDF.

Note: By default, UDF execution on a multiplex writer and coordinator nodes is disabled. All
other nodes are enabled by default.

User-Defined Functions 25

Building UDFs

Administrators can enable v3 and v4 UDFs for any server by specifying this in the server
startup command or in the configuration file:

-sf -inmemory external procedure

Administrators can disable v3 and v4 UDFs for any server by specifying this in the server
startup command or in the configuration file:

-sf inmemory external procedure

Initially Executing a User-Defined Function

To ensure the safest environment possible, install and invoke UDFs from a read-only server
node in a multiplex installation.

The SAP Sybase 1Q server does not load the library containing the UDF code until the first
time the UDF is invoked. The first execution of a UDF residing in a library that has not yet been
loaded may be unusually slow. After the library is loaded, the subsequent invocation of the
same UDF or another UDF contained in the same library have the expected performance.

* Librariesusingthe stored procedure SA_EXTERNAL_LIBRARY_UNLOAD — These
libraries are not reloaded when the SAP Sybase 1Q server is stopped and restarted.

In environments where after-hours maintenance operations require a shutdown and restart of
the server, run some test queries after the server has been restarted. This ensures that the
appropriate libraries are loaded in memory for optimal query performance during business
hours.

Managing External Libraries

Each external library is loaded the first time a UDF that requires it is invoked. A loaded library
remains loaded for the life of the server. It is not loaded when a CREATE FUNCTION or
CREATE PROCEDURE call is made, nor is it automatically unloaded when a DROP
FUNCTION or DROP PROCEDURE call is made.

If the library version must be updated, the dbo.sa_external_library_unload procedure forces
the library to be unloaded without restarting the server. The call to unload the external library
is successful only if the library in question is not currently in use. The procedure takes one
optional parameter, a long varchar, that specifies the name of the library to be unloaded. If no
parameter is specified, all external libraries not in use are unloaded.

Note: Unload existing libraries from a running SAP Sybase 1Q server before replacing the
dynamic link library. The server may fail, if you do not unload the library. Before replacing a
dynamically linkable library, either shut down the SAP Sybase 1Q server or use the
sa_external_library_unload function to unload the library.

For Windows, unload an external function library using:

call sa external library unload('library.dll')

For UNIX, unload an external function library using:
call sa external library unload('library.so')

26

SAP Sybase 1Q

Building UDFs

If a registered function uses a complete path, for example, /abc/def/library, first
unregister the function.

In Windows, use
call sa external library unload('\abc\def\library.dll"')

In UNIX, use

call sa external library unload('/abc/def/library.so')

Note: The library path is required in the SQL function declaration only if the library is not
already located within a directory in the library load path.

Controlling Error Checking and Call Tracing

The external_UDF_execution_mode option controls the amount of error checking and call
tracing that is performed when statements involving v3 and v4 external user-defined functions
are evaluated.

You can use external_UDF_execution_mode during development of a UDF to aid in
debugging while you are developing UDFs.

Allowed Values
0,1,2

Default Value
0

Scope
Can be set as public, temporary, or user.

Description
When set to 0, the default, external UDFs are evaluated in a manner that optimizes the
performance of statements using UDFs.

When set to 1, external UDFs are evaluated to validate the information passed back and forth
to each UDF. This setting is intended for scalar and aggregate UDFs.

When set to 2, external UDFs are evaluated to not only validate the information passed back
and forth to the UDF, but also to log, in the i gmsg file, every call to the functions provided by
the UDFs and every callback from those functions back into the server. This setting is intended
for all C or C++ external UDFs. Memory tracing is turned on for table UDFs and TPFs.

User-Defined Functions 27

Building UDFs

Viewing SAP Sybase I1Q Log Files

SAP Sybase 1Q provides extensive logging and tracing capabilities. UDFs should provide the
same or better level of detailed logging, in the event of problems in the UDF code.

Log files for the database are generally located with the database file and configuration file.
On UNIX platforms, there are two files named after the database instance, one with

a . stderr extension and one with a . stdout extension. On Windows, by default, the
stderr file is not generated.

To capture the st derr messages along with the st dout messages under Windows, redirect
the stdout and stderr:

igsrvl6.exe @igdemo.cfg igdemo.db 2>&1 > igdemo.stdout

The Windows output messages are slightly different from the output messages generated on
UNIX platforms.

Using Microsoft Visual Studio Debugger for User-Defined Functions

Microsoft Visual Studio 2008 developers use Microsoft Visual Studio Debugger to step
through the user-defined function code.

1. Attach the debugger to a running server:
devenv /debugexe "$IQDIR16%\Bin64\igsrvl6.exe"
2. Goto Debug | Attach to Process
3. To start the server and debugger together:
devenv /debugexe "$IQDIR16%\bin32\igsrvl6.exe" [commandline

options for your server]

Each platform will have a debugger and each will have their own command line syntax.
SAP Sybase 1Q source code is not required. The msvs debugger will recognize when the
user-defined functions source is executed and break at the set breakpoints. When control
returns from the user-defined functions to the server, you will only see machine code.

Modifying the UDF at Runtime

Many SAP Sybase 1Q installations are in mission-critical environments, where customers
require an extremely high level of availability. System Administrators must be able to install
and upgrade UDFs with little or no impact to the SAP Sybase 1Q server.

An application must not attempt to access an external library while the associated library file is
being moved, overwritten, or deleted. Since libraries are automatically loaded whenever an
associated SQL function is invoked, it is important to follow these steps in the exact order
whenever performing any type of maintenance on existing UDF libraries:

1. Ensure all users who invoke UDFs do not have any pending queries in progress

28

SAP Sybase 1Q

Building UDFs

2. Revoke the execute privilege from users, and drop the SQL functions and stored
procedures which reference external UDF code modules

3. Unload the library from the SAP Sybase 1Q server, using the call
sa_external_library_unload command (shutting down the 1Q server also automatically
unloads the library).

4. Perform the desired maintenance on the external library files (copy, move, update, delete).

5. Edit SQL function and stored procedure definitions in the registration scripts to reflect
external library locations, if the libraries were moved.

6. Grant the execute privilege to users, and run registration scripts to re-create the SQL
functions and stored procedures which reference external UDF code modules.

7. Invokea SQL function or stored procedure that references the external UDF code to ensure
the SAP Sybase 1Q server can dynamically load the external library.

Granting the Privilege To Run a Procedure

Grant the privilege to execute or call a procedure.

Prerequisites
At least one of these conditions:

* You created the table.

« You have been granted privileges on the table with the ADMIN OPTION.

* You have been granted the EXECUTE ANY PROCEDURE system privilege.

« You have been granted LOAD and TRUNCATE object privileges.

* You have been granted the MANAGE ANY OBJECT PRIVILEGE system privilege. If the
LOAD or TRUNCATE object privilege is granted using the WITH GRANT OPTION clause,
the grantee can then grant the object privilege to other users, but is limited to those tables
specified in the original GRANT statement. Under this scenario, the grantee does not need
the MANAGE ANY OBJECT PRIVILEGE system privilege.

Task

Procedures execute with the privileges of their owner. Any procedure that updates information
on a table executes successfully only if the owner of the procedure has UPDATE privileges on
the table.

As long as the procedure owner has the proper privileges, the procedure executes successfully
when called by any user assigned privilege to execute it, whether or not he or she has privileges
on the underlying table. You can use procedures to allow users to carry out well-defined
activities on a table, without having any general privileges on the table.

To grant the EXECUTE privilege, enter:

GRANT EXECUTE ON procedure name
TO usrelID

User-Defined Functions 29

Building UDFs

Dropping User-Defined Functions

Once you create a user-defined function, it remains in the database until it is explicitly
removed. Only the owner of the function or procedure, or a user with the DROP ANY
PROCEDURE or DROP ANY OBJECT system privilege, can drop a function or procedure
from the database.

For example, to remove the scalar or aggregate function fu//name from the database, enter:
DROP FUNCTION fullname

To remove a table UDF or TPF named fu/lname from the database, enter:
DROP PROCEDURE fullname

30

SAP Sybase 1Q

Scalar and Aggregate UDFs

Scalar and Aggregate UDFs

Scalar and aggregate user-defined functions return a single value to the calling environment.

Note: Scalar and aggregate UDFs are a licensable option, and require the IQ_UDF or 1Q_IDA
license. Installing the license enables user-defined functions.

You can install SAP Sybase I1Q in a wide variety of configurations. UDFs must be easily
installed within this environment, and must be able to run within all supported configurations.
The SAP Sybase 1Q installer provides a default installation directory, but allows users to select
a different installation directory. UDF developers should consider providing the same
flexibility when installing the UDF libraries and associated SQL function definition scripts.

Scalar and Aggregate UDF Restrictions

External C/C++ scalar and aggregate user-defined functions have some restrictions.

Write all UDFs in a manner that allows them to be called simultaneously by different users
while receiving different context functions.

If a UDF accesses a global or shared data structure, the UDF definition must implement the
appropriate locking around its accesses to that data, including the releasing of that locking
under all normal code paths and all error handling situations.

UDFs implemented in C++ may provide overloaded "new" operators for their classes, but
they should never overload the global "new" operator. On some platforms, the effect of
doing so is not limited to the code defined within that specific library.

Write all aggregate UDFs and all deterministic scalar UDFs such that the receipt of the
same input values always produces the same output values. Any scalar function for which
this is not true must be declared as NONDETERMINISTIC to avoid the potential for
incorrect answers.

Users can create a standard SQL functions without the CREATE EXTERNAL
REFERENCE system privilege. This system privilege only required to create a function
which will invoke an external library. Attempting to create a function of this type without
sufficient permissions results in an error message "'You do not have permission to use the
create function statement."

User-Defined Functions 31

Scalar and Aggregate UDFs

Creating a Scalar or Aggregate UDF

Learn how to create and configure external C or C++ scalar and aggregate user-defined
functions.

1. Declare the UDF to the server by using the CREATE FUNCTION or CREATE AGGREGATE
FUNCTION statements. Write and execute these statements as commands, or use Sybase
Control Center.

The external C/C++ form of the CREATE FUNCTION statement requires the CREATE
EXTERNAL REFERENCE system privilege. Therefore, standard users do not have the
authority to declare any UDFs of this type.

2. Write the UDF library identification function on page 15.

3. Define the UDF as a set of C or C++ functions. See Defining a scalar UDF on page 37 or
Defining an aggregate UDF on page 53.

4. Implement the function entry points in C/C++.

5. Compile the UDF functions and the library identification functions on page 19.

6. Link the compiled file into a dynamically linkable library.

Any reference to a UDF in a SQL statement first, if necessary, links the dynamically linkable
library. The calling patterns on page 82 are then called.

Because these high-performance external C/C++ user-defined functions involve the loading
of non-server library code into the process space of the server, there are potential risks to data
integrity, data security, and server robustness from poorly or maliciously written functions. To
manage these risks, each SAP Sybase 1Q server can explicitly enable or disable this
functionality on page 25.

Declaring and Defining Scalar User-Defined Functions

SAP Sybase 1Q supports simple scalar user-defined functions (UDFs) that can be used
anywhere the SQRT function can be used.

These scalar UDFs can be deterministic, which means that for a given set of argument values
the function always returns the same result value, or they can be nondeterministic scalar
functions, which means that the same arguments can return different results.

Note: The scalar UDF examples referenced in this chapter are installed with the 1Q server, and
can be found as .cxx files in SIQDIR16/samples/udf. You can also find them in the
SIQDIR16/1ib64/1ibudfex dynamically linkable library.

32

SAP Sybase 1Q

Scalar and Aggregate UDFs

Declaring a Scalar UDF

The system privileges required to declare an in-process external UDF vary depending on the
owner of the UDF. There is also a server startup option that allows an administrator to enable
or disable this style of user-defined function.

To declare an in-process external UDF owned by themselves, a user requires both the
CREATE PROCEDURE and CREATE EXTERNAL REFERENCE system privileges. To
declare an in-process external UDF which is owned by another user requires either the
CREATE ANY PROCEDURE or CREATE ANY OBJECT system privilege, as well as the
CREATE EXTERNAL REFERENCE system privilege.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

By default, all user-defined functions use the access permissions of the owner of the UDF.

Note: To declare a UDF function owned by themselves, a user must have the CREATE
PROCEDURE system privilege. To declare a UDF function owned by others requires either
the CREATE ANY PROCEDURE or CREATE ANY OBJECT system privilege . If the UDF
function contains an external reference, the CREATE EXTERNAL REFERENCE system
privilege is also required, regardless of who declares the UDF function.

The syntax for creating a scalar UDF is:

scalar-udf-declaration:
CREATE FUNCTION [owner.]function-name
([parameter , ...])
RETURNS data-type
[routine-characteristics ...]
EXTERNAL NAME library-and-entry-point-name-string

parameter:
param-name data-type [DEFAULT value]

routine-characteristics:
[NOT] DETERMINISTIC
| { IGNORE | RESPECT } NULL VALUES
| SQL SECURITY { INVOKER | DEFINER }

The defaults for the characteristics in the above syntax are:

DETERMINISTIC
RESPECT NULL VALUES
SQL SECURITY DEFINER

To minimize potential security concerns, use a fully qualified path name to a secure directory
for the library name portion of the EXTERNAL NAME clause.

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

User-Defined Functions 33

Scalar and Aggregate UDFs

SQL SECURITY INVOKER uses additional memaory, because each user that calls the procedure
requires annotation. Additionally, name resolution is performed on both the user name and the
INVOKER. Qualify all object names (tables, procedures, and so on) with their appropriate
owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following the
RETURNS clause. The library name may include the file extension, which is typically .d11
on Windows and . so on UNIX. In the absence of the extension, the software appends the
platform-specific default file extension for libraries.

You can start the server with a library load path that includes the location of the UDF library.
On UNIX variants, modify the LD_LIBRARY_PATH inthe start iqg startup script.
While LD_LIBRARY_PATH is universal to all UNIX variants, SHLIB_PATH is preferred on
HP, and LIB_PATH is preferred on AIX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
e Defining a Scalar UDF on page 37

UDF Example: my plus Declaration
The “my_plus” example is a simple scalar function that returns the result of adding its two
integer argument values.

my_plus declaration

When my_plus resides within the dynamically linkable library my_shared_lib, the
declaration for this example looks like this:
CREATE FUNCTION my plus (IN argl INT, IN arg2 INT)

RETURNS INT

DETERMINISTIC

IGNORE NULL VALUES
EXTERNAL NAME 'my plus@libudfex'

This declaration says that my_plus is a simple scalar UDF residing in my_shared_lib with a
descriptor routine named describe_my_plus. Since the behavior of a UDF may require more
than one actual C/C++ entry point for its implementation, this set of entry points is not directly
part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure that is defined in detail in the next

34

SAP Sybase 1Q

Scalar and Aggregate UDFs

section. That descriptor structure contains the required and optional function pointers that
embody the implementation of this UDF.

This declaration says that my_plus accepts two INT arguments and returns an INT result
value. If the function is invoked with an argument that is notan INT, and if the argument can be
implicitly converted into an INT, the conversion happens before the function is called. If this
function is invoked with an argument that cannot be implicitly converted into an INT, a
conversion error is generated.

Further, the declaration states that this function is deterministic. A deterministic function
always returns the identical result value when supplied the same input values. This means the
result cannot depend on any external information beyond the supplied argument values, or on
any side effects from previous invocations. By default, functions are assumed to be
deterministic, so the results are the same if this characteristic is omitted from the CREATE
statement.

The last piece of the above declaration is the IGNORE NULL VALUES characteristic. Nearly
all built-in scalar functions return a NULL result value if any of the input arguments are
NULL. The IGNORE NULL VALUES states that the my_plus function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values are NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

In the following example query, my_plus appears in the SELECT list along with the
equivalent arithmetic expression:
SELECT my plus(t.x, t.y) AS x plus y one, (t.x + t.y)AS x plus y two

FROM t
WHERE t.z = 2

Inthe following example, my_plusis used in several different places and different ways within
the same query:

SELECT my plus(t.x, t.y), count(*)

FROM t

WHERE t.z = 2

AND my plus(t.x, 5) > 10

AND my plus(t.y, 5) > 10

GROUP BY my plus(t.x, t.y)

UDF Example: my plus counter Declaration
Themy plus_ counter example is a simple nondeterministic scalar UDF that takes a
single integer argument, and returns the result of adding that argument value to an internal

User-Defined Functions 35

Scalar and Aggregate UDFs

integer usage counter. If the input argument value is NULL, the result is the current value of
the usage counter.

my_plus_counter declaration

Assuming that my_plus_counter also resides within the dynamically linkable library
my_shared_lib, the declaration for this example is:
CREATE FUNCTION my plus counter (IN argl INT DEFAULT O0)

RETURNS INT

NOT DETERMINISTIC

RESPECT NULL VALUES
EXTERNAL NAME 'describe my plus counter@my shared 1lib'

The RESPECT NULL VALUES characteristic means that this function is called even if the
input argument value is NULL. This is necessary because the semantics of my_plus_counter
includes:

< Internally keeping a usage count that increments even if the argument is NULL.
e A non-null value result when passed a NULL argument.

Because RESPECT NULL VALUES is the default, the results are the same if this clause is
omitted from the declaration.

SAP Sybase 1Q restricts the usage of all nondeterministic functions. They are allowed only
within the SELECT list of the top-level query block or in the SET clause of an UPDATE
statement. They cannot be used within subqueries, or withina WHERE, ON, GROUP BY, or
HAVING clause. This restriction applies to nondeterministic UDFs as well as to the
nondeterministic built-in functions like GETUID and NUMBER.

The last detail in the above declaration is the DEFAULT qualifier on the input parameter. The
qualifier tells the server that this function can be called with no arguments, and that when this
happens the server automatically supplies a zero for the missing argument. If a DEFAULT
value is specified, it must be implicitly convertible into the data type of that argument.

In the following example, the first SELECT list item adds the running counter to the value of
t.x for each row. The second and third SELECT list items each return the same value for each
row as the NUMBER function.

SELECT my plus counter (t.x),
my plus counter (0),
my plus counter (),
NUMBER ()

FROM t

UDF Example: my byte length Declaration
my_byte_length is a simple scalar user-defined function that returns the size of a column in
bytes.

my_byte_length declaration

When my_byte_length resides within the dynamically linkable library my_shared_lib, the
declaration for this example is:

36

SAP Sybase 1Q

Scalar and Aggregate UDFs

CREATE FUNCTION my byte length (IN argl LONG BINARY)
// RETURNS UNSIGNED INT

// DETERMINISTIC

// IGNORE NULL VALUES

// EXTERNAL NAME 'my byte length@libudfex'

This declaration says that my_byte_length is a simple scalar UDF residing in my_shared_lib
with a descriptor routine named describe_my_byte_length. Since the behavior of a UDF may
require more than one actual C/C++ entry point for its implementation, this set of entry points
is not directly part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION
statement EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure. That descriptor structure contains the
required and optional function pointers that embody the implementation of this UDF.

This declaration also says that my_byte_length accepts one LONG BINARY argument and
returns an UNSIGNED INT result value.

Note: Large object data support requires a separately licensed SAP Sybase 1Q option.

The declaration states that this function is deterministic, which always returns the identical
result value when supplied the same input values. This means the result cannot depend on any
external information beyond the supplied argument values, or on any side effects from
previous invocations. By default, functions are assumed to be deterministic, so the results are
the same if this characteristic is omitted from the CREATE statement.

The last piece of this declaration is the IGNORE NULL VALUES characteristic. Nearly all
built-in scalar functions return a NULL result value if any of the input arguments are NULL.
The IGNORE NULL VALUES states that the my_byte_length function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values is NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

This example query with my_byte_length in the SELECT list returns a column with one row
for each row in exTable, with an INT representing the size of the binary file:

SELECT my byte length (exLOBColumn)

FROM exTable

Defining a Scalar UDF
The C/C++ code for defining a scalar user-defined function includes four mandatory pieces.

e extfnapivd.h —inclusion of the UDF interface definition header file.
e _evaluate_extfn — An evaluation function. All evaluation functions take two arguments:
« an instance of the scalar UDF context structure that is unique to each usage of a UDF
that contains a set of callback function pointers, and a pointer where a UDF can store
UDF-specific data.

User-Defined Functions 37

Scalar and Aggregate UDFs

a pointer to a data structure that allows access to the argument values and to the result
value through the supplied callbacks.

a_v3_extfn_scalar — an instance of the scalar UDF descriptor structure that contains a
pointer to the evaluation function.
Descriptor function — returns a pointer to the scalar UDF descriptor structure.

These parts are optional:

_start_extfn — an initialization function generally invoked once per SQL usage. If
supplied, you must also place a pointer to this function into the scalar UDF descriptor
structure. All initialization functions take one argument, a pointer to the scalar UDF
context structure that is unique to each usage of a UDF. The context structure passed is the
same one that is passed to the evaluation routine.

_finish_extfn —a shutdown function generally invoked once per SQL usage. If supplied, a
pointer to this function must also be placed into the scalar UDF descriptor structure. All
shutdown functions take one argument, a pointer to the scalar UDF context structure that is
unique to each usage of a UDF. The context structure passed is the same one that is passed
to the evaluation routine.

See also

Declaring a Scalar UDF on page 33

Scalar UDF Descriptor Structure

The scalar UDF descriptor structure, a_v3_extfn_scalar, is defined as:

typedef struct a v3 extfn scalar { //

// Metadata descriptor for a scalar UDF

// supplied by the UDF library to the server

// An optional pointer to an initialize function

void (* start extfn) (a v3 extfn scalar context * cntxt);

//

// An optional pointer to a shutdown function

void (* finish extfn) (a_v3 extfn scalar context * cntxt);
//

// A required pointer to a function that will be

// called for each invocation of the UDF on a

// new set of argument values

void (* evaluate extfn) (a v3 extfn scalar context * cntxt, void

*args_handle) ;

// RESERVED FIELDS MUST BE INITIALIZED TO NULL

void “*reservedl must be null;
void “*reserved2 must be null;
void “*reserved3 must be null;
void “*reserved4 must be null;
void “*reserved5 must be null;

} a v3 extfn scalar;

There should always be a single instance of a_v3_extfn_scalar for each defined scalar UDF. If
the optional initialization function is not supplied, the corresponding value in the descriptor

38

SAP Sybase 1Q

Scalar and Aggregate UDFs

structure should be the null pointer. Similarly, if the shutdown function is not supplied, the
corresponding value in the descriptor structure should be the null pointer.

The initialization function is called at least once before any calls to the evaluation routine, and
the shutdown function is called at least once after the last evaluation call. The initialization and
shutdown functions are normally called only once per usage.

Scalar UDF Context Structure
The scalar UDF context structure, a_v3_extfn_scalar_context that is passed to each of the
functions specified within the scalar UDF descriptor structure, is defined as:

typedef struct a v3 extfn scalar context ({

[/ ———————= Callbacks available via the context --------
//
short (SQL CALLBACK *get value) (
void *arg handle,
a sgl uint32 arg num,

an_extfn value *value
);
short (SQL CALLBACK *get piece) (

void * arg handle,
a sgl uint32 arg num,
an_extfn value *value,

a sqgl uint32 offset

)i

short (SQL CALLBACK *get_value_is_constant)(
void * arg handle,
a_sgl uint32 arg num,
a sgl uint32 * wvalue is constant
)

short (SQL CALLBACK *set value) (

void * arg_handle,
an_extfn value *value,
short append

);

a sql uint32 (SQL CALLBACK *get is cancelled) (
a v3 extfn scalar context * cntxt
)7

short (SQL CALLBACK *set error) (
a v3 extfn scalar context * cntxt,
a sgl uint32 error number,
const char * error desc string
);

void (SQL CALLBACK *log message) (
const char *msg,
short msg length

)
short (SQL CALLBACK *convert value) (

an_extfn value *input,

an_extfn value *output
[[|===——mm=s= Data available from the context ----------
void * user data; // read-write field
[/=—————————— For Server Internal Use Only —--———————————-—

User-Defined Functions 39

Scalar and Aggregate UDFs

void * for server internal use;
} a v3 extfn scalar context;

Note: The get_piece callback is valid in v3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

The _user_data field within the scalar UDF context structure can be populated with data the
UDF requires. Usually, it is filled in with a heap allocated structure by the _start_extfn
function, and deallocated by the _finish_extfn function.

The rest of the scalar UDF context structure is filled with the set of callback functions,
supplied by the engine, for use within each of the user's UDF functions. Most of these callback
functions return a success status through a short result value; a true return indicates success.
Well-written UDF implementations should never cause a failure status, but during
development (and possibly in all debug builds of a given UDF library), check that the return
status values from the callbacks. Failures can come from coding errors within the UDF
implementation, such as asking for more arguments than the UDF is defined to take.

The common set of arguments used by most of the callbacks includes:

e arg_handle— A pointer received by all forms of the evaluation methods, through which the
values for input arguments passed to the UDF are available, and through which the UDF
result value can be set.

e arg_num—Aninteger indicating which input argument is being accessed. Input arguments
are numbered left to right in ascending order starting at one.

e cntxt — A pointer to the context structure that the server passes to all UDF entry points.

« value—A pointer to an instance of the an_extfn_value structure that is used to either get an
input argument value from the server or to set the result value of the function. The
an_extfn_value structure has this form:

typedef struct an extfn value ({
void * data;
a SQL uint32 piece len;
union
a SQL uint32 total len;
a SQL uint32 remain len;
} len;
a_SQL data type type;
} an_extfn value;

40

SAP Sybase 1Q

Scalar and Aggregate UDFs

Table 1. Scalar External Function Context: a_v3_extfn_scalar_context

Method of Description
a v3_extfn_sca-
lar_context struc-

ture
void set_cannot_be_dis- Distribution can be disabled at the UDF level, even if distribution cri-
tributed(a_v3_extfn_sca- | teria are met at the library level. By default, the UDF is assumed to be
lar_context * cntxt) distributable if the library is distributable. It is the responsibility of the
UDF to push the decision to disable distribution to the server.
See also

e Blob (a_v4_extfn_blob)on page 199
e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Example: my plus Definition
The definition for the my_plus scalar UDF example.

my_plus definition

Because this UDF needs no initialization or shutdown function, those values within the
descriptor structure are set to 0. The descriptor function name matches the EXTERNAL
NAME used in the declaration. The evaluate method does not check the data type for
arguments, because they are declared as INT.

#include "extfnapiv3.h"
#include <stdlib.h>

// A simple deterministic scalar UDF that just adds
// two integer arguments and then returns the result.
//

// Corresponding SQL declaration:

//

// CREATE FUNCTION my plus(IN argl INT, IN arg2 INT)

// RETURNS INT
// DETERMINISTIC
// IGNORE NULL VALUES

// EXTERNAL NAME
'my plus@libudfex'

//

#1f defined cplusplus
extern "C" ({
#endif

static void my plus evaluate(a v3 extfn scalar context *cntxt,
void *arg handle)
{
an_extfn value arg;
an_extfn value outval;
a sgl int32 argl, arg2, result;

User-Defined Functions 41

Scalar and Aggregate UDFs

// Get first argument

(void) cntxt->get value(arg handle, 1, &arg);

if (arg.data == NULL)
{

return;

}
argl = *((a_sqgl int32 *)arg.data);

// Get second argument

(void) cntxt->get value(arg handle, 2, &arg);

if (arg.data == NULL)
{

return;

}
arg2 = *((a_sqgl int32 *)arg.data);

// Set the result value
outval.type = DT INT;

outval.piece len = sizeof(a sql int32);
result = argl + arg2;
outval.data = &result;

cntxt->set value(arg handle, &outval, 0);

static a v3 extfn scalar my plus descriptor =

{

0,

0,

&my plus evaluate,

0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL

NULL // _for server internal use

}i

a v3 extfn scalar *my plus()

{

return &my plus descriptor;

}

#1if defined cplusplus

}
#endif

42

SAP Sybase 1Q

Scalar and Aggregate UDFs

Example: my plus counter Definition

This scalar UDF example checks the argument value pointer data to see if the input argument
value is NULL. It also has an initialization function and a shutdown function, each of which
can tolerate multiple calls.

my_plus _counter definition

#include "extfnapiv3.h"
#include <stdlib.h>

// A simple non-deterministic scalar UDF that adds

// an internal integer usage counter to its integer

// argument and then returns the resulting integer.

//

// Here, the start function creates a little structure for
// the counter, and then the finish function deallocates it.

//

// Corresponding SQL declaration:

//

// CREATE FUNCTION plus_ counter (IN argl INT)

// RETURNS INT

// NOT DETERMINISTIC

// RESPECT NULL VALUES

// EXTERNAL NAME 'my plus counter@libudfex'

typedef struct my counter ({
a sgl int32 counter;
} my counter;

#1f defined cplusplus
extern "C" ({
#endif

static void my plus counter start(a v3 extfn scalar context *cntxt)

{

my counter *cptr = (my counter *)cntxt-> user data;

// If we have not already allocated the

// counter structure, then do so now

if (!cptr) {
cptr = (my counter *)malloc(sizeof(my_counter));
cntxt-> user data = cptr;

}

cptr-> counter = 0;

static void my plus counter finish(a v3 extfn scalar context *cntxt)
{

// If we still have an allocated the

// counter structure, then free it now

if (cntxt-> user data) {

free (cntxt-> user data);
cntxt-> user data = 0;

User-Defined Functions

43

Scalar and Aggregate UDFs

static void my plus counter evaluate(a v3 extfn scalar context
*cntxt,
void *arg handle)
{
an_extfn value arg;
an_extfn value outval;
a sqgl int32 argl, result;

// Increment the usage counter
my counter *cptr = (my counter *)cntxt-> user data;
cptr-> counter += 1;

// Get the one argument
(void) cntxt->get value(arg handle, 1, &arg);
if (larg.data) {

// argument value was NULL;

argl = 0;
} else {
argl = *((a_sqgl int32 *)arg.data);

}

outval.type = DT INT;

outval.piece len = sizeof(a sql int32);
result = argl + cptr-> counter;
outval.data = &result;

cntxt->set value(arg handle, &outval, 0);

static a v3 extfn scalar my plus counter descriptor =
{ &my plus counter start,
&émy plus counter finish,
&émy plus counter evaluate,

NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // _for server internal use

2

a v3 extfn scalar *my plus_ counter ()

{

return &my plus counter descriptor;

}

#if defined cplusplus
}
#endif

44 SAP Sybase IQ

Scalar and Aggregate UDFs

Example: my byte length Definition

The my_byte_length scalar UDF example computes the size of a column by streaming the
data in piece by piece, then returns the size of the column in bytes.

my_byte length definition

Note: Large object data support requires a separately licensed SAP Sybase 1Q option.

#include "extfnapiv4.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>

// A simple function that returns the size of a cell value in bytes

//
//
//
/7
//
//

CREATE FUNCTION my byte length(IN argl LONG BINARY)
RETURNS UNSIGNED INT
DETERMINISTIC
IGNORE NULL VALUES
EXTERNAL NAME 'my byte length@libudfex'

#if defined _ cplusplus
extern "C" ({
#endif

static void my byte length evaluate(a v3 extfn scalar context
*cntxt,

{

void *arg handle)

if (cntxt == NULL || arg handle == NULL)
{

return;

}

an_extfn value arg;
an_extfn value outval;

a sql uint64 total len;

// Get first argument
a sgl uint32 fetchedLength = 0;
(void) cntxt->get value(arg handle, 1, &arg);
if (arg.data == NULL)
{
return;

}
fetchedLength += arg.piece len;

// saving total length as it loses scope inside get piece
total len = arg.len.total len;

User-Defined Functions 45

Scalar and Aggregate UDFs

while (fetchedLength < total len)
{

(void) cntxt->get piece(arg handle, 1, &arg, fetchedLength);

fetchedLength += arg.piece len;
}

//1if this fails, the function did not get the full data from the

cell
assert (fetchedLength == total len);

outval.type = DT UNSINT;

outval.piece len = 4;

outval.data = &fetchedLength;
cntxt->set value (arg handle, &outval, 0);

}

static a v3 extfn scalar my byte length descriptor = {

0,

0,

&my byte length evaluate,

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

NULL // _for server internal use

)z

a v3 extfn scalar *my byte length()
{

return &my byte length descriptor;
}

#if defined _ cplusplus
}
#endif

See also
o Example: my byte length Definition on page 45

Declaring and Defining Aggregate UDFs

SAP Sybase 1Q supports aggregate UDFs. The SUM function is an example of a built-in
aggregate function. A simple aggregate function produces a single result value from a set of

argument values. You can write aggregate UDFs that can be used anywhere the SUM
aggregate can be used.

Note: The aggregate UDF examples referenced here are installed with the server, and can be

found as .cxx files in SIQDIR16/samples/udf. You can also find them in the
SIQDIR16/1ib64/1ibudfex dynamically linkable library.

46

SAP Sybase 1Q

Scalar and Aggregate UDFs

An aggregate function can produce either asingle result, or a set of results. The number of data
points in the output result set may not necessarily match the number of data points in the input
set. Multiple-output aggregate UDFs must use a temporary output file to hold the results.

Declaring an Aggregate UDF
Aggregate UDFs are more powerful and more complex to create than scalar UDFs.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

When implementing an aggregate UDF, you must decide:

* Whether it will operate only across an entire data set or partition as an online analytical
processing (OLAP) -style aggregate, like RANK.

« Whether it will operate as either a simple aggregate or an OLAP-style aggregate, like
SUM.

* Whether it will operate only as a simple aggregate over an entire group.
The declaration and the definition of an aggregate UDF reflects these usage decisions.

The syntax for creating user-defined aggregate functions is:

aggregate-udf-declaration:
CREATE AGGREGATE FUNCTION [owner.]function-name

([parameter , ... 1)
RETURNS data-type
[aggregate-routine-characteristics ...]

EXTERNAL NAME library-and-entry-point-name-string

parameter:
param-name data-type [DEFAULT value]

aggregate-routine-characteristics:
DUPLICATE { SENSITIVE | INSENSITIVE }
-- 1is the server allowed to eliminate DISTINCT
| SQL SECURITY {INVOKER | DEFINER}
| OVER restrict
| ORDER order-restrict
| WINDOW FRAME
{ { ALLOWED | REQUIRED }
[window-frame-constraints ...]
| NOT ALLOWED }
| ON EMPTY INPUT RETURNS { NULL | VALUE }
-- Call or skip function on NULL inputs

window-frame-constraints:
VALUES { [NOT] ALLOWED }
| CURRENT ROW { REQUIRED | ALLOWED }
| [UNBOUNDED] { PRECEDING | FOLLOWING } restrict

restrict: { [NOT] ALLOWED } | REQUIRED

order-restrict:
{ NOT ALLOWED | SENSITIVE | INSENSITIVE | REQUIRED

User-Defined Functions 47

Scalar and Aggregate UDFs

The handling of the return data type, arguments, data types, and default values are identical to
that in the scalar UDF definition.

If an aggregate UDF can be used as a simple aggregate, then it can potentially be used with the
DISTINCT qualifier. The DUPLICATE clause in the aggregate UDF declaration determines:

» Whether duplicate values can be considered for elimination before the aggregate UDF is
called because the results are sensitive to duplicates (such as for the built-in
“COUNT(DISTINCT T.A)”) or,

« Whether the results are insensitive to the presence of duplicates (such as for
“MAX(DISTINCT T.A)").

The DUPLICATE INSENSITIVE option allows the optimizer to consider removing the
duplicates without affecting the result, giving the optimizer the choice on how to execute the
query. Write the aggregate UDF to expect duplicates. If duplicate elimination is required, the
server performs it before starting the set of _next_value_extfn calls.

Most of the remaining clauses that are not part of the scalar UDF syntax allow you to specify
the usages for this function. By default, an aggregate UDF is assumed to be usable as both a
simple aggregate and as an OLAP-style aggregate with any kind of window frame.

For an aggregate UDF to be used only as a simple aggregate function, declare it using:
OVER NOT ALLOWED

Any attempt to then use this aggregate as an OLAP-style aggregate generates an error.

For aggregate UDFs that allow or require an OVER clause, the UDF definer can specify
restrictions on the presence of the ORDER BY clause within the OVER clause by specifying
“ORDER?” followed by the restriction type. Window-ordering restriction types:

e REQUIRED — ORDER BY must be specified and cannot be eliminated.

* SENSITIVE — ORDER BY may or may not be specified, but cannot be eliminated when
specified.

e INSENSITIVE — ORDER BY may or may not be specified, but the server can do ordering
elimination for efficiency.

* NOT ALLOWED — ORDER BY cannot be specified.

Declare an aggregate UDF that makes sense only as an OLAP-style aggregate over an entire
set or partition that has been ordered, like the built-in RANK, with:

OVER REQUIRED
ORDER REQUIRED
WINDOW FRAME NOT ALLOWED

Declare an aggregate UDF that makes sense only as an OLAP-style aggregate using the
default window frame of UNBOUNDED PRECEDING to CURRENT ROW, with:

OVER REQUIRED

ORDER REQUIRED

WINDOW FRAME ALLOWED
RANGE NOT ALLOWED

48

SAP Sybase 1Q

Scalar and Aggregate UDFs

UNBOUNDED PRECEDING REQUIRED
CURRENT ROW REQUIRED
FOLLOWING NOT ALLOWED

The defaults for the all various options and restriction sets are:

DUPLICATE SENSITIVE

SQL SECURITY DEFINER

OVER ALLOWED

ORDER SENSITIVE

WINDOW FRAME ALLOWED
CURRENT ROW ALLOWED
PRECEDING ALLOWED

UNBOUNDED PRECEDING ALLOWED
FOLLOWING ALLOWED

UNBOUNDED FOLLOWING ALLOWED

* SQL Security —Defines whether the function is executed as the INVOKER, (the user who
is calling the function), or as the DEFINER (the user who owns the function). The default
is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because each user that
calls the procedure requires annotation. Also, when SQL SECURITY INVOKER is
specified, name resolution is performed on both the user name and the INVOKER. Qualify
all object names (tables, procedures, and so on) with their appropriate owner.

» External Name— A function using the EXTERNAL NAME clause is a wrapper around a
call to a function in an external library. A function using EXTERNAL NAME can have no
other clauses following the RETURNS clause. The library name may include the file
extension, which is typically . d11 on Windows and . so on UNIX. In the absence of the
extension, the software appends the platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions.

The server can be started with a library load path that includes the location of the UDF library.
On UNIX variants, this can be done by modifying the LD_LIBRARY _PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AlX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
» Defining an Aggregate UDF on page 53
» Context Storage of Aggregate User-Defined Functions on page 81

User-Defined Functions 49

Scalar and Aggregate UDFs

Example: my sum Declaration
The “my_sum” example is similar to the built-in SUM, except it operates only on integers.

my_sum declaration

Since my_sum, like SUM, can be used in any context, it has a relatively brief declaration:

CREATE AGGREGATE FUNCTION my sum(IN argl INT)
RETURNS BIGINT
ON EMPTY INPUT RETURNS NULL
EXTERNAL NAME 'describe my integer sum@my shared 1lib'

The various usage restrictions all default to ALLOWED to specify that this function can be
used anywhere in a SQL statement that any aggregate function is allowed.

Without any usage restrictions, my_sum is usable as a simple aggregate across an entire set of
rows, as shown here:

SELECT MIN(t.x), COUNT (*), my sum(t.y)
FROM t

Without usage restrictions, my_sum is also usable as a simple aggregate computed for each
group as specified by a GROUP BY clause:

SELECT t.x, COUNT(*), my sum(t.y)
FROM t
GROUP BY t.x

Because of the lack of usage restrictions, my_sum is usable as an OLAP-style aggregate with
an OVER clause, as shown in this cumulative summation example:

SELECT t.x,
my sum(t.x)
OVER (ORDER BY t.x ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)
AS cumulative x,
COUNT (*)
FROM t
GROUP BY t.x
ORDER BY t.x

Example: my bit xor Declaration
The “my_bit_xor” example is analogous to the SAP Sybase SQL Anywhere® built-in
BIT_XOR, except it operates only on unsigned integers.

my_bit_xor declaration

The resulting declaration is:

CREATE AGGREGATE FUNCTION my bit xor (IN argl UNSIGNED INT)
RETURNS UNSIGNED INT

ON EMPTY INPUT RETURNS NULL

EXTERNAL NAME 'describe my bit xor@my shared 1lib'

50

SAP Sybase 1Q

Scalar and Aggregate UDFs

Like the my_sum example, my_bit_xor has no associated usage restrictions, and is therefore
usable as a simple aggregate or as an OLAP-style aggregate with any kind of a window.

Example: my bit or Declaration
The “my_bit_or” example is similar to the SQL Anywhere built-in BIT_OR except it operates
only on unsigned integers and can be used only as a simple aggregate.

my_bit_or declaration

The resulting declaration looks like:

CREATE AGGREGATE FUNCTION my bit or (IN argl UNSIGNED INT)
RETURNS UNSIGNED INT
ON EMPTY INPUT RETURNS NULL
OVER NOT ALLOWED
EXTERNAL NAME 'describe my bit or@ my shared 1lib'

Unlike the my_bit_xor example, the OVER NOT ALLOWED phrase in the declaration
restricts the use of this function to a simple aggregate. Because of that usage restriction,
my_bit_or is only usable as a simple aggregate across an entire set of rows, or as a simple
aggregate computed for each group as specified by a GROUP BY clause shown in the
following example:

SELECT t.x, COUNT(*), my bit or(t.y)

FROM t
GROUP BY t.x

Example: my interpolate Declaration

The “my_interpolate” example is an OLAP-style UDAF that attempts to fill in any missing
values in a sequence (where missing values are denoted by NULLS) by performing linear
interpolation across any set of adjacent NULL values to the nearest non-NULL value in each
direction.

my_interpolate declaration

If the input at a given row is not NULL, the result for that row is the same as the input value.

User-Defined Functions 51

Scalar and Aggregate UDFs

Figure 1: my_interpolate results

t.tran_time t.price my_interpolate(t.price)
4/12/08 1:40 29.50 29.50
4/12/08 1:45 29.60 29.60
4(12/08 1.50 NULL 29.70

4/12/08 1:55 2080 29.80
4/12/08 200 20.65 I 29.65

4/12/08 205 NULL 29.60
4/12/08 210 NULL 29.55
4/12/08 215 29.50 29.50

To operate at a sensible cost, my_interpolate must run using a fixed-width, row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values he or she expects to see. This function takes a set of double-precision floating point
values and produces a resulting set of doubles.

The resulting UDAF declaration looks like this:

CREATE AGGREGATE FUNCTION my interpolate (IN argl DOUBLE)
RETURNS DOUBLE
OVER REQUIRED
WINDOW FRAME REQUIRED
RANGE NOT ALLOWED
PRECEDING REQUIRED
UNBOUNDED PRECEDING NOT ALLOWED
FOLLOWING REQUIRED
UNBOUNDED FOLLOWING NOT ALLOWED
EXTERNAL NAME 'describe my interpolate@my shared 1lib'

OVER REQUIRED means that this function cannot be used as a simple aggregate (ON
EMPTY INPUT, if used, is irrelevant).

WINDOW FRAME details specify that you must use a fixed-width, row-based window that
extends both forward and backward from the current row when using this function. Because of
these usage restrictions, my_interpolate is usable as an OLAP-style aggregate with an OVER
clause similar to:

SELECT t.x,
my interpolate (t.x)
OVER (ORDER BY t.x ROWS BETWEEN 5 PRECEDING AND 5 FOLLOWING)
AS x with gaps filled,
COUNT (*)
FROM t
GROUP BY t.x
ORDER BY t.x

52

SAP Sybase 1Q

Scalar and Aggregate UDFs

Within an OVER clause for my_interpolate, the precise number of preceding and following
rows may vary, and optionally, you can use a PARTITION BY clause; otherwise, the rows
must be similar to the example above given the usage restrictions in the declaration.

Defining an Aggregate UDF
The C/C++ code for defining an aggregate user-defined function includes eight mandatory
pieces.

» extfnapiv3.h — the UDF interface definition header file. The file isext fnapiv4.h for
the v4 API.

e _start_extfn —an initialization function invoked once per SQL usage. All initialization
functions take one argument: a pointer to the aggregate UDF context structure that is
unique to each usage of an aggregate UDF. The context structure passed is the same one
that is passed to all the supplied functions for that usage.

« _finish_extfn —a shutdown function invoked once per SQL usage. All shutdown functions
take one argument: a pointer to the aggregate UDF context structure that is unique to each
usage of an aggregate UDF.

* _reset_extfn —a reset function called once at the start of each new group, new partition,
and if necessary, at the start of each window motion. All reset functions take one argument:
a pointer to the aggregate UDF context structure that is unique to each usage of an
aggregate UDF.

e _next_value_extfn —a function called for each new set of input arguments.
_next_value_extfn takes two arguments:

« A pointer to the aggregate UDF context, and

e Anargs_handle.

As in scalar UDFs, the arg_handle is used with the supplied callback function pointers to
access the actual argument values.

e _evaluate_extfn — an evaluation function similar to the scalar UDF evaluation function.
All evaluation functions take two arguments:
< A pointer to the aggregate UDF context structure, and
e Anargs_handle.

e a v3_extfn_aggregate — an instance of the aggregate UDF descriptor structure that
contains the pointers to all of the supplied functions for this UDF.

e Descriptor function — a descriptor function that returns a pointer to that aggregate UDF
descriptor structure.

In addition to the mandatory pieces, there are several optional pieces that enable more
optimized access for specific usage situations:

e _drop_value_extfn — an optional function pointer that is called for each input set of
argument values that has fallen out of a moving window frame. This function should not
set the result of the aggregation. Use the get_value callback function to access the input
argument values, and, if necessary, through repeated calls to the get_piece callback
function.

Set the function pointer to the null pointer if:

User-Defined Functions 53

Scalar and Aggregate UDFs

» This aggregate cannot be used with a window frame,

» The aggregate is not reversible in some way, or

e The user is not interested in optimal performance.

If _drop_value_extfn is not supplied and the user has specified a moving window, each

time the window frame moves, the reset function is called and each row within the window

is included by a call to the next_value function, and finally the evaluate function is called.

If _drop_value_extfn is supplied, then each time the window frame moves, this drop value

function is called for each row falling out of the window frame, then the next_value

function is called for each row that has just been added into the window frame, and finally

the evaluate function is called to produce the aggregate result.

_evaluate_cumulative_extfn — an optional function pointer that may be called for each

new input set of argument values. If this function is supplied, and the usage is in a row-

based window frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then

this function is called instead of calling the next value function immediately followed by

calling the evaluate function.

_evalutate_cumulative_extfn must set the result of the aggregation through the set_value

callback. Access to its set of input argument values is through the usual get_value callback

function. This function pointer should be set to the null pointer if:

» This aggregate will never be used is this manner, or

e The user is not worried about optimal performance.

_next_subaggregate_extfn — an optional callback function pointer that works together

with an _evaluate_superaggregate_extfn to enable some usages of this aggregate to be

optimized by running in parallel.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style

aggregates with an OVER clause) can be partitioned by first producing a set of

intermediate aggregate results where each intermediate result is computed from a

disjointed subset of the input rows.

Examples of such partitionable aggregates include:

e SUM, where the final SUM can be computed by performing a SUM for each disjointed
subset of the input rows and then performing a SUM over the sub-SUMs; and

e COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the

computation of that aggregate parallel. For aggregate UDFs, this parallel optimization can

be applied only if both the _next subaggregate extfn function pointer and the

_evaluate_superaggregate_extfn pointer are supplied.

The _reset_extfn function does not set the final result of the aggregation, and by definition,

has exactly one input argument value that is the same data type as the defined return value

of the aggregate UDF.

Access to the subaggregate input value is through the normal get_value callback function.

Direct communication between subaggregates and the superaggregate is impossible; the

server handles all such communication. The sub-aggregates and the super-aggregate do

54

SAP Sybase 1Q

Scalar and Aggregate UDFs

not share a context structure. Instead, individual sub-aggregates are treated exactly the
same as nonpartitioned aggregates. The independent super-aggregate sees a calling pattern
that looks like this:

_start extfn

_reset extfn
next subaggregate extfn (repeated 0 to N times)
“evaluate __superaggregate extfn

7f1nlsh extfn

Or like this:

_start extfn

_reset extfn

_next subaggregate extfn (repeated 0 to N times)
_evaluate superaggregate extfn

_reset extfn

_next subaggregate extfn (repeated 0 to N times)
_evaluate superaggregate extfn

reset extfn

_next subaggregate extfn (repeated 0 to N times)
_evaluate superaggregate extfn

_finish extfn

If neither _evaluate _superaggregate_extfn or _next subaggregate extfn is supplied, then
the aggregate UDF is restricted, and not allowed as a simple aggregate within a query
block containing GROUP BY CUBE or GROUP BY ROLLUP.

e _evaluate_superaggregate_extfn —the optional callback function pointer that works with
the _next_subaggregate extfn to enable some usages as a simple aggregate to be
optimized through parallelization. _evaluate_superaggregate_extfn is called to return the
result of a partitioned aggregate. The result value is sent to the server using the normal
set_value callback function from the a_v3_extfn_aggregate_context structure.

See also

» Declaring an Aggregate UDF on page 47

» Context Storage of Aggregate User-Defined Functions on page 81
» Blob (a_v4_extfn_blob)on page 199

e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Aggregate UDF Descriptor Structure
The aggregate UDF descriptor structure comprises several pieces.

e typedef struct a_v3_extfn_aggregate — the metadata descriptor for an aggregate UDF
function supplied by the library.

e _start_extfn —required pointer to an initialization function for which the only argument is
apointertoa_v3_extfn_aggregate_context. Typically, used to allocate some structure and
store its address in the _user_data field within the a_v3_extfn_aggregate_context.
_start_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (* start extfn) (a v3 extfn aggregate context *);

User-Defined Functions 55

Scalar and Aggregate UDFs

_finish_extfn — required pointer to a shutdown function for which the only argument is a
pointer to a_v3_extfn_aggregate_context. Typically, used to deallocate some structure
with the address stored within the _user_data field in the a_v3_extfn_aggregate_context.
_finish_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (* finish extfn) (a v3 extfn aggregate context *);

_reset_extfn — required pointer to a start-of-new-group function, for which the only
argument is a pointer to a_v3_extfn_aggregate_context. Typically, used to reset some
values in the structure for which the address was stashed within the _user_data field in the
a_v3_extfn_aggregate_context. _reset_extfn is called repeatedly.

void (* reset extfn) (a _v3 extfn aggregate context *);
_next_value_extfn — required function pointer to be called for each new input set of
argument values. The function does not set the result of the aggregation. Access to input
argument values are through the get_value callback function and, if necessary, through
repeated callsto the get_piece callback function, which is required only if piece_leniis less
than total_len.

void (* next value extfn) (a v3 extfn aggregate context *cntxt,
void *args handle) ;

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

_evaluate_extfn — required function pointer to be called to return the resulting aggregate
result value. _evaluate_extfn is sent to the server using the set_value callback function.

void (* evaluate extfn) (a v3 extfn aggregate context *cntxt, void
*args_handle) ;

_drop_value_extfn —Optional function pointer that is called for each input set of argument
values that has fallen out of a moving window frame. Do not use this function to set the
result of the aggregation. Access to input argument values are through the get_value
callback function and, if necessary, through repeated calls to the get_piece callback
function; however, access is required only if piece_len is less than total_len. Set
_drop_value_extfn to the null pointer if:

» The aggregate cannot be used with a window frame.

« The aggregate is not reversible in some way.

e The user is not interested in optimal performance.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

If this function is not supplied, and the user has specified a moving window, then each time
the window frame moves, the reset function is called and each row now within the window
is included by a call to the next_value function. Finally, the evaluate function is called.
However, if this function is supplied, each time the window frame moves, this drop_value
function is called for each row falling out of the window frame, then the next_value

56

SAP Sybase 1Q

Scalar and Aggregate UDFs

function is called for each row that has just been added into the window frame. Finally, the
evaluate function is called to produce the aggregate result.

void (* drop value extfn) (a v3 extfn aggregate context *cntxt,
void *args handle) ;

e _evaluate_cumulative_extfn — optional function pointer to be called for each new input
set of argument values. If this function is supplied, and the usage is in a row-based window
frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then this function is
called instead of next_value, immediately followed by calling evaluate.

_evaluate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to inputargument values are through the get_value callback function and,
if necessary, through repeated calls to the get_piece callback function, which is only
required if piece_len is less than total_len.

void (* evaluate cumulative extfn) (a v3 extfn aggregate context
*cntxt, void *args_ handle);

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

e _next_subaggregate_extfn — optional callback function pointer that, with the
_evaluate_superaggregate_extfn function (and in some usages also with the
_drop_subaggregate_extfn function), enables some usages of the aggregate to be
optimized through parallel and partial results aggregation.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style

aggregates with an OVER clause) can be partitioned by first producing a set of

intermediate aggregate results where each of the intermediate results is computed from a

disjoint subset of the input rows. Examples of such partitionable aggregates include:

e SUM, where the final SUM can be computed by performing a SUM for each disjoint
subset of the input rows and then performing a SUM over the sub-SUMs; and

e COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the

computation of that aggregate parallel. For aggregate UDFs, this optimization can be

applied only if both the _next_subaggregate extfn callback and the

_evaluate_superaggregate_extfn callback are supplied. This usage pattern does not

require _drop_subaggregate_extfn.

Similarly, if an aggregate can be used with a RANGE-based OVER clause, an optimization

can be applied if _next_subaggregate_extfn, drop_subaggregate_extfn, and

_evaluate_superaggregate_extfn) functions are all supplied by the Aggregate UDF

implementation.

_next_subaggregate_extfn does not set the final result of the aggregation, and by
definition, has exactly one input argument value that is the same data type as the return
value of the aggregate UDF. Access to the sub-aggregate input value is through the

User-Defined Functions 57

Scalar and Aggregate UDFs

get_value callback function and, if necessary, through repeated calls to the get_piece
callback function, which is required only if piece_len is less than total_len.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

Direct communication between sub-aggregates and the super-aggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share the context structure. Individual sub-aggregates are treated exactly the same as
nonpartitioned aggregates. The independent super-aggregate sees a calling pattern that
looks like this:

_start extfn

_reset extfn
_next subaggregate extfn (repeated 0 to N times)

_evaluate superaggregate extfn
_finish extfn

void (* next subaggregate extfn) (a v3 extfn aggregate context
*cntxt, void *args_ handle);

_drop_subaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn and _evaluate_superaggregate_extfn, enables some usages
involving RANGE-based OVER clauses to be optimized through a partial aggregation.
_drop_subaggregate_extfn is called whenever a set of rows sharing a common ordering
key value have collectively fallen out of a moving window. This optimization is applied
only if all three functions are provided by the UDF.

void (* drop subaggregate extfn) (a v3 extfn aggregate context
*cntxt, void *args_ handle) ;

_evaluate_superaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn (and in some cases also with _drop_subaggregate_extfn),
enables some usages to be optimized by running in parallel.
_evaluate_superaggregate_extfn is called, as described above, when it is time to return the
result of a partitioned aggregate. The result value is sent to the server using the set_value
callback function from the a_v3_extfn_aggregate_context structure:

void (* evaluate superaggregate extfn)
(a_v3 extfn aggregate context *cntxt, void *args handle);

NULL fields — initialize these fields to NULL.:

void * reservedl must be null;

void * reservedZimust:be:null;
void * reserved3 must be null;
void * reserved4 must be null;
void * reserved5 must be null;

Status indicator bit field — a bit field containing indicators that allow the engine to
optimize the algorithm used to process the aggregate.

a sgl uint32 indicators;

_calculation_context_size — the number of bytes for the server to allocate for each UDF
calculation context. The server may allocate multiple calculation contexts during query

58

SAP Sybase 1Q

Scalar and Aggregate UDFs

processing. The currently active group context is available in
a_v3_extfn_aggregate_context_user_calculation_context.
short calculation context size;

e _calculation_context_alignment — specifies the alignment requirement for the user's
calculation context. Valid values include 1, 2, 4, or 8.
short calculation context alignment;

e External memory requirments — the following fields allow the optimizer to consider the
cost of externally allocated memory. With these values, the optimizer can consider the
degree to which multiple simultaneous calculations can be made. These counters should
be estimates based on a typical row or group, and should not be maximum values. If no
memory is allocated by the UDF, set these fields to zero.

» external_bytes per_group — The amount of memory allocated to a group at the start of
each aggregate. Typically, any memory allocated during the reset() call.

« external_bytes per_row — The amount of memory allocated by the UDF for each row
of a group. Typically, the amount of memory allocated during next_value().

double external bytes per group;
double external bytes per row;
* Reserved fields for future use — initialize these fields:
a sqgl uinte4 reserved6 must be null;
a sgl uinté4 reserved’7 must be null;
a_sgl uinté4 reserved8 must be null;
a_sgl uinte4 reserved9 must be null;
a sqgl uinte4 reservedl0 must be null;
* Closing syntax — Complete the descriptor with this syntax:
e For Server Internal Use Only -----—-----

void * for server internal use;
} a extfn aggregate;

See also
e Blob (a_v4_extfn_blob)on page 199
» Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Calculation Context
The _user_calculation_context field allows the server to concurrently execute calculations on
multiple groups of data.

An Aggregate UDF must keep intermediate counters for calculations as it is processing rows.
The simple model for managing these counters is to allocate memory at the start API function,
store a pointer to it in the aggregate context's _user_data field, then release the memory at the
aggregate’s finish API. An alternative method, based on the _user_calculation_context field,
allows the server to concurrently execute calculations on multiple groups of data.

The _user_calculation_context field is a server-allocated memory pointer, created by the
server for each concurrent processing group. The server ensures that the
_user_calculation_context always points to the correct calculation context for the group of
rows currently being processed. Between UDF API calls, depending on the data, the server

User-Defined Functions 59

Scalar and Aggregate UDFs

may allocate new _user_calculation_context values. The server may save and restore
calculation context areas to disk while processing a query.

The UDF stores all intermediate calculation values in this field. This illustrates a typical
usage:

struct my average context
{

int sum;

int count;

}i

reset (a_v3 aggregate context *context)
{

mycontext = (my average context *) context-
> user calculation context;

mycontext->count = 0;

mycontext->sum = 0;

next value (a v3 aggregate context *context, void *args handle)

{

mycontext = (my average context *) context-
> user calculation context;

mycontext->count++;

}

Inthismodel, the _user_datafield can still be used, but no values relating to intermediate result
calculations can be stored there. The _user_calculation_context is NULL at both the start and
finish entry points.

To use the _user_calculation_context to enable concurrent processing, the UDF must specify
the size and alignment requirements for its calculation context, and define a structure to hold
its values and set a_v3_extfh_aggregate and _calculation_context_size to the sizeof() of that
structure.

The UDF must also specify the data alignment requirements of _user_calculation_context
through _calculation_context_alignment. If user_calculation_context memory contains only
a character byte array, no particular alignment is necessary, and you can specify an alignment
of 1. Likewise, double floating point values might require an 8-byte alignment. Alignment
requirements vary by platform and data type. Specifying a larger alignment than necessary
always works; however, using the smallest alignment uses memory more efficiently.

Aggregate UDF Context Structure
The aggregate UDF context structure, a_v3_extfn_aggregate_context, has exactly the same
set of callback function pointers as the scalar UDF context structure.

In addition, it has a read/write _user_data pointer just like the scalar UDF context, and a set of
read-only data fields that describe the current usage and location. Each unique instance of the
UDF within a statement has one aggregate UDF context instance that is passed to each of the

60

SAP Sybase 1Q

Scalar and Aggregate UDFs

functions specified within the aggregate UDF descriptor structure when they are called. The
aggregate context structure is defined as:

e typedef struct a_v3_extfn_aggregate_context — One created for each instance of an
external function referenced within a query. If used within a parallelized subtree within a
query, there is a separate context for parallel subtree.

e Callbacks available via the context — Common arguments to the callback routines
include:

e arg_handle — A handle to function instance and arguments provided by the server.
e arg_num - The argument number. Return values are 0..N.

* data— The pointer to argument data.

The context must call get_value before get_piece, but needs to call get_piece only if
piece_len is less than total_len.

short (SQL CALLBACK *get value) (
void * arg handle,
a sgl uint32 arg_num,
an_extfn value *value
);
short (SQL CALLBACK *get piece) (

void * arg handle,
a_sgl uint32 arg_num,
an_extfn value *value,

a sgl uint32 offset

)i
e Determining whether an argument is a constant — The UDF can ask whether a given
argument is a constant. This can be useful, for example, to allow work to be done once at
the first call to the _next_value function rather than for every call to the _next_value

function.
short (SQL CALLBACK *get_value_is_constant)(
void * arg handle,

a sql uint32 arg num,
a sgl uint32 * wvalue is constant
);

e Returning anull value —To return a null value, set "data" to NULL inan_extfn_value. The
total_len field is ignored on calls to set_value, the data supplied becomes the value of the
argument if append is FALSE; otherwise, the data is appended to the current value of the
argument. It is expected that set_value is called with append=FALSE for an argument
before being called with append=TRUE for the same argument. The append field is
ignored for fixed-length data types (in other words, all numeric data types).

short (SQL CALLBACK *set value) (

void * arg handle,
an _extfn value *value,
short append

) i
e Determining whether the statement was interrupted — If a UDF entry point performs
work for an extended period of time (many seconds), then it should, if possible, call the
get_is_cancelled callback every second or two to see if the user has interrupted the current
statement. If the statement has been interrupted, a nonzero value is returned, and the UDF

User-Defined Functions 61

Scalar and Aggregate UDFs

entry point should then immediately perform. Eventually, the _finish_extfn function is
called to do any necessary cleanup, but no other UDF entry points are subsequently called.
a sgl uint32 (SQL CALLBACK *get is cancelled)
(a_v3 extfn aggregate context * cntxt);
Sending error messages — If a UDF entry point encounters some error that should result
in an error message being sent back to the user and the current statement being shut down,
the set_error callback routine should be called. set_error causes the current statement to
roll back; theuserseesError from external UDF: <error desc string>
and the SQLCODE is the negated form of <error_number>. After a call to set_error, the
UDF entry point immediately performs a return. Eventually, _finish_extfn is called to
perform any necessary cleanup, but no other UDF entry points are subsequently called.

void (SQL CALLBACK *set error) (
a v3 extfn aggregate context * cntxt,

a sgl uint32 error number,
// use error number values >17000 & <100000
const char * error desc string

) i
Writing messages to the message log — Messages longer than 255 bytes may be
truncated.
void (SQL CALLBACK *log message) (
const char *msg,
short msg length
) i
Converting one data type to another — for input:
e an_extfn_value.data — input data pointer.
e an_extfn_value.total_len — length of input data.
* an_extfn_value.type — DT_ datatype of input.
For output:
e an_extfn_value.data — UDF-supplied output data pointer.
e an_extfn_value.piece_len — maximum length of output data.
e an_extfn_value.total_len — server set length of converted output.
e an_extfn_value.type — DT_ datatype of desired output.
short (SQL CALLBACK *convert value) (
an_extfn value *input,
an_extfn value *output
) i
Fields reserved for future use — These are reserved for future use:
void * reservedl;
void reserved?2;
void reserved3;

*

*
void * reserved4;
void * reserved5;

Data available from the context — This data pointer can be filled in by any usage with any
context data the external routine requires. The UDF allocates and deallocates this memory.
A single instance of _user_data is active for each statement. Do not use this memory for
intermediate result values.

62

SAP Sybase 1Q

Scalar and Aggregate UDFs

void * user data;

* Currently active calculation context — UDFs should use this memory location to store
intermediate values that calculate the aggregate. This memory is allocated by the server
based on the size requested in the a_v3_extfn_aggregate. Intermediate calculations must
be stored in this memory, since the engine may perform simultaneous calculations over
more than one group. Before each UDF entry point, the server ensures that the correct
context data is active.
void * user calculation context;

e Other available aggregate information — Available at all external function entry points,
including start_extfn. Zero indicates an unknown or not-applicable value. Estimated
average number of rows per partition or group.

* a_sql_uinté4 _max_rows_in_frame; — Calculates the maximum number of rows
defined in the window frame. For range-based windows, this indicates unique values.
Zero indicates an unknown or not-applicable value.

e a_sqgl_uint64 _estimated_rows_per_partition; — Displays the estimated average
number of rows per partition or group. 0 indicates an unknown or not-applicable value.

e a_sgl_uint32 is_used_as_a_superaggregate; — ldentifies whether this instance is a
normal aggregate or a superaggregate. Returns a result of O if the instance is a normal
aggregate.

e Determining window specifications — Window specifications if a window is present on
the query:

* a_sql_uint32 _is_window_used; — Determines if the statement is windowed.

e a_sqgl_uint32 _window_has_unbounded_preceding; — A return value of 0 indicates
the window does not have unbounded preceding.

e a_sgl_uint32 _window_contains_current_row; — A return value of 0 indicates the
window does not contain the current row.

* a_sgl_uint32 _window_is_range_based; — If the return code is 1, the window is
range-based. If the return code is 0, the window is row-based.

e Available at reset_extfn() calls — Returns the actual number of rows in current partition, or
0 for nonwindowed aggregate.

a sgl uint64 num rows in partition;

e Available only at evaluate_extfn() calls for windowed aggregates — Currently evaluated
row number in partition (starting with 1). This is useful during the evaluation phase of
unbounded windows.

a sqgl uint64 result row from start of partition;

e Closing syntax — Complete the context with:

e For Server Internal Use Only —------—----
void * for server internal use;
} a v3 extfn aggregate context;

User-Defined Functions 63

Scalar and Aggregate UDFs

Aggregate External Function Context: a_v3_extfn_aggregate context

Method of Description
a v3_extfn_aggre-
gate_context struc-
ture

void set_cannot_be_distrib- | Distribution can be disabled at the UDF level, even if distribution
uted(a_v3_extfn_aggre- criteria are met at the library level. By default, the UDF is assumed to
gate_context * cntxt) be distributable if the library is distributable. It is the responsibility of
the UDF to push the decision to disable distribution to the server.

See also
» Blob (a_v4_extfn_blob)on page 199
e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Example: my sum Definition
The aggregate UDF my_sum example operates only on integers.

my_sum definition

Since my_sum, like SUM, can be used in any context, all the optimized optional entry points
have been supplied. In this example, the normal _evaluate_extfn function can also be used as
the _evaluate_superaggregate_extfn function.

#include "extfnapiv4.h"
#include <stdlib.h>
#include <assert.h>

// Simple aggregate UDF that adds up a set of

// integer arguments, and whenever asked returns

// the resulting big integer total. For int

// arguments, the only difference between this

// UDF and the SUM built-in aggregate is that this
// UDF will return NULL if there are no input rows.
//

// The start function creates a little structure for
// the running total, and the finish function then
// deallocates it.

//

// Since there are no aggregate usage restrictions
// for this aggregate UDF, the corresponding SQL declaration
// will look like:

//

// CREATE AGGREGATE FUNCTION my sum(IN argl INT)
// RETURNS BIGINT

// ON EMPTY INPUT RETURNS NULL

// EXTERNAL NAME 'my integer sum@libudfex'

64 SAP Sybase IQ

Scalar and Aggregate UDFs

typedef struct my total ({

a sgl int64 _total;
a sgl uint64 num nonnulls seen;
} my total;

extern "C"

void my integer sum start(a v3 extfn aggregate context *cntxt)
{

}

extern "C"

void my integer sum finish(a v3 extfn aggregate context *cntxt)
{

}

extern "C"
void my integer sum reset(a v3 extfn aggregate context *cntxt)

{

my total *cptr = (my total *)cntxt-> user calculation context;
cptr-> total = 0;
cptr-> num nonnulls seen = 0;

}

extern "C"
void my integer sum next value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value arg;
a sgl int32 argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then add it to the total
//
if (cntxt->get value(arg handle, 1, &arg) && arg.data) {

argl = *((a_sqgl int32 *)arg.data);

cptr-> total += argl;

cptr-> num nonnulls seen++;

}

extern "C"
void my integer sum drop value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value arg;
a sql int32 argl;
my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then subtract it from the
total

User-Defined Functions 65

Scalar and Aggregate UDFs

if (cntxt->get value(arg handle, 1,
argl = *((a_sqgl int32 *)arg.data);
cptr-> total -= argl;
cptr-> num nonnulls seen--;

}

extern "C"

&arqg)

&& arg.data) {

void my integer sum evaluate(a v3 extfn aggregate context *cntxt,
void *arg handle)

{

an_extfn value outval;

my total *cptr = (my total *)cntxt-> user calculation context;

// Set the output result value. If the inputs
// were all NULL, then set the result as NULL.

//
outval.type = DT BIGINT;

outval.piece len = sizeof (a sql inté64);

if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> total;

} else {
outval.data = 0;

}

cntxt->set value(arg handle, &outval, 0);

extern "C"
void my integer sum cum evaluate (

a v3 extfn aggregate context *cntxt,
void *arg handle)

an_extfn value outval;
an_extfn value arg;
int argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then add it into the

total.
//

if (cntxt->get value(arg handle, 1,
argl = *((a_sqgl int32 *)arg.data);

cptr-> total += argl;
cptr-> num nonnulls seen++;

}

// Then set the output result value.

//
outval.type = DT BIGINT;

&arg)

&& arg.data) {

If the inputs
// were all NULL, then set the result as NULL.

outval.piece len = sizeof(a_sql inté4);

if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> total;
} else {

66

SAP Sybase 1Q

Scalar and Aggregate UDFs

outval.data = 0;
}

cntxt->set value(arg handle, &outval, 0);

}

extern "C"

void my integer sum next subagg value (
a v3 extfn aggregate context *cntxt,
void *arg handle)

an_extfn_value arg;
a sgl int64 argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then add it to the total

//

if (cntxt->get value(arg handle, 1, &arg) && arg.data) {
argl = *((a_sqgl int64 *)arg.data);
cptr-> total += argl;
cptr-> num nonnulls seen++;

}

extern "C"

void my integer sum drop subagg value (
a v3 extfn aggregate context *cntxt,
void *arg handle)

an_extfn_value arg;
a sgl int64 argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then subtract it from the

total
//
if (cntxt->get value(arg handle, 1, &arg) && arg.data) {
argl = *((a_sqgl int64 *)arg.data);
cptr-> total -= argl;
cptr-> num nonnulls seen--;

}

a v3 extfn aggregate my integer sum descriptor =
{

&my integer sum start,

&my integer sum finish,

&my integer sum reset,

&my integer sum next value,

&my integer sum evaluate,

&my integer sum drop value,

User-Defined Functions

67

Scalar and Aggregate UDFs

&my integer sum cum evaluate,

&my integer sum next subagg value,
&my integer sum drop subagg value,
&émy integer sum evaluate,

NULL, // reservedl must be null
NULL, // reserved2 must be null
NULL, // reserved3 must be null
NULL, // reserved4 must be null
NULL, // reserved5 must be null

0, // indicators

(short)sizeof(my total), // context size
, // context alignment

.0, //external bytes per group

0, // external bytes per row

, // reserved6 must be null

, // reserved7 must be null

, // reserved8 must be null

, // reserved9 must be null

, // reservedl0 must be null
NULL // _for server internal use

}i

extern "C"
a v3 extfn aggregate *my integer sum()
{

return &my integer sum descriptor;

}

Example: my bit xor Definition
The aggregate UDF my_bit_xor example is similar to the SQL Anywhere built-in BIT_XOR,
except my_bit_xor operates only on unsigned integers.

my_bit_xor definition

Because the input and the output data types are identical, use the normal _next_value_extfn
and _evaluate_extfn functions to accumulate subaggregate values and produce the
superaggregate result.

#include "extfnapiv4.h"
#include <stdlib.h>
#include <assert.h>

// Generic aggregate UDF that exclusive-ORs a set of
// unsigned integer arguments, and whenever asked

// returns the resulting unsigned integer result.

//

// The start function creates a little structure for
// the running result, and the finish function then
// deallocates it.

//

// Since there are no aggregate usage restrictions
// for this aggregate UDF, the corresponding SQL declaration
// will look like:

//

68 SAP Sybase IQ

Scalar and Aggregate UDFs

// CREATE AGGREGATE FUNCTION my bit xor (IN argl UNSIGNED
INT)

// RETURNS UNSIGNED INT

// ON EMPTY INPUT RETURNS NULL

// EXTERNAL NAME 'my bit xor@libudfex'

typedef struct my xor result ({
a sgl uint64 num nonnulls_ seen;
a sgl uint32 xor result;

} my xor result;

#1f defined cplusplus
extern "C" {
#endif

static void my xor start(a v3 extfn aggregate context *cntxt)
{
}

static void my xor finish(a v3 extfn aggregate context *cntxt)
{
}

static void my xor reset(a v3 extfn aggregate context *cntxt)

{

my xXor result *cptr = (my xor result *)cntxt-
> user calculation context;

cptr-> xor result = 0;

cptr-> num nonnulls seen = 0;

}

static void my xor next value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value arg;
a sqgl uint32 argl;

my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

// Get the one argument, and add it to the total

if (cntxt->get value(arg handle, 1, &arg) && arg.data) {
argl = *((a_sqgl uint32 *)arg.data);
cptr-> xor result "= argl;
cptr-> num nonnulls seent+;

}

static void my xor drop value(a v3 extfn aggregate context *cntxt,
void *arg handle)

{

User-Defined Functions 69

Scalar and Aggregate UDFs

an_extfn value arg;

a sgl uint32 argl;

my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

// Get the one argument, and remove it from the total
if (cntxt->get value(arg handle, 1, &arg) && arg.data) {

argl = *((a_sqgl uint32 *)arg.data);
cptr-> xor result "= argl;
cptr-> num nonnulls seen--;

}

static void my xor evaluate(a v3 extfn aggregate context *cntxt,

void *arg handle)
{
an_extfn value outval;
my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

outval.type = DT UNSINT;
outval.piece len = sizeof(a sql uint32);
if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> xor result;
} else {
outval.data = 0;
}

cntxt->set value(arg handle, &outval, 0);

}

static void my xor cum evaluate(a v3 extfn aggregate context

*cntxt,
void *arg handle)

{

an_extfn value outval;

an_extfn value arg;

a sgl uint32 argl;

my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

// Get the one argument, and include it in the result,

// unless that input value is null.

//

if (cntxt->get value(arg handle, 1, &arg) && arg.data) {

argl = *((a_sqgl uint32 *)arg.data);
cptr-> xor result "= argl;
cptr-> num nonnulls seent+;

}

// Then set the output result value
outval.type = DT UNSINT;
outval.piece len = sizeof(a_sql uint32);
if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> xor result;

70

SAP Sybase 1Q

Scalar and Aggregate UDFs

} else {
outval.data = 0;
}
cntxt->set value(arg handle, &outval, 0);

}

static a v3 extfn aggregate my xor descriptor =
{

&my xor start,

&my xor finish,

&my xor reset,

&my xor next value,

&my xor evaluate,

&my xor drop value,

&my xor cum evaluate,

&my xor next value,

&my xor drop value,

&my xor evaluate,

NULL, // reservedl must be null

NULL, // reserved2 must be null

NULL, // reserved3 must be null

NULL, // reserved4 must be null

NULL, // reserved5 must be null

0, // indicators

(short)sizeof(my xor result), // context size
// context alignment
// external bytes per group
// external bytes per row
// reserved6 must be null
// reserved7 must be null
// reserved8 must be null
// reserved9 must be null
// reservedlO must be null
// _for server internal use

~

[oNe]
~ 0~

~ N 0~ 0~

cNeoNoNoNoNeNoNe

~

=
(@}
[
[

2

a v3 extfn aggregate *my bit xor ()
{

return &my xor descriptor;

}

#if defined _ cplusplus
}
#endif

Example: my bit or Definition

The aggregate UDF my_bit_or example is similar to the SQL Anywhere built-in BIT_OR,
except my_bit_or operates only on unsigned integers, and can be used only as a simple
aggregate.

my_bit_or definition

The my_bit_or definition is somewhat simpler than the my_bit_xor example.

User-Defined Functions 71

Scalar and Aggregate UDFs

#include "extfnapiv4.h"
#include <stdlib.h>
#include <assert.h>

// A simple (non-OLAP) aggregate UDF that ORs a set
// of unsigned integer arguments, and whenever asked
// returns the resulting unsigned integer result.

//

// The start function creates a little structure for
// the running result, and the finish function then
// deallocates it.

//

// The aggregate usage restrictions for this aggregate UDF
// only allow its use as a simple aggregate, so the
// corresponding SQL declaration will look like:

//

// CREATE AGGREGATE FUNCTION my bit or (IN argl UNSIGNED INT)
// RETURNS UNSIGNED INT

// ON EMPTY INPUT RETURNS NULL

// OVER NOT ALLOWED

// EXTERNAL NAME 'my bit or@libudfex'

typedef struct my or result ({
a sgl uint32 or result;
a_sgl uint32 non null seen;
} my or result;

#if defined cplusplus
extern "C" {
#endif

static void my or start(a v3 extfn aggregate context *cntxt)
{
}

static void my or finish(a v3 extfn aggregate context *cntxt)
{
}

static void my or reset(a v3 extfn aggregate context *cntxt)

{

my or result *cptr = (my or result *)cntxt-
> user calculation context;

cptr-> or result = 0;

cptr-> non null seen = 0;

}

static void my or next value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{

an_extfn value arg;

72 SAP Sybase IQ

Scalar and Aggregate UDFs

a sgl uint32 argl;

my or result *cptr = (my or result *)cntxt-
> user calculation context;

// Get the one argument, and add it to the total
if (cntxt->get value(arg handle, 1, &arg) && arg.data)
{

argl = *((a_sqgl uint32 *)arg.data);

cptr-> or result |= argl;

cptr-> non null seen = 1;

static void my or evaluate(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value outval;
my or result *cptr = (my or result *)cntxt-
> user calculation context;

outval.type = DT UNSINT;
outval.piece len = sizeof(a sql uint32);
if (cptr-> non null seen)
{
outval.data = &cptr-> or result;
}
else
{
// Return null if no values seen
outval.data = 0;
}
cntxt->set value(arg handle, &outval, 0);

}

static a v3 extfn aggregate my or descriptor =
{

&my or start,

&my or finish,

&my or reset,

&émy or next value,

&my or evaluate,

NULL, // drop val extfn

NULL, // cume_eval,

NULL, // next subaggregate extfn

NULL, // drop subaggregate extfn

NULL, // evaluate superaggregate extfn

NULL, // reservedl must be null

NULL, // reserved2 must be null

NULL, // reserved3 must be null

NULL, // reserved4 must be null

NULL, // reserved5 must be null

0, // indicators

User-Defined Functions 73

Scalar and Aggregate UDFs

short)sizeof(my or result), // context size
, // context alignment
//external bytes per group

// external bytes per row

, // reserved6 must be null

, // reserved] must be null

14

r

-0p
507

// reserved8 must be null

// reserved9 must be null
, // reservedlO must be null
NULL // _for server internal use

(
8
0
0
0
0
0
0
0

}i

extern "C"
a v3 extfn aggregate *my bit or()
{

return &my or descriptor;

}

#1f defined cplusplus
}
#endif

Example: my interpolate definition

The aggregate UDF my_interpolate example is an OLAP-style aggregate UDF that attempts
to fill in NULL values within a sequence by performing linear interpolation across any set of
adjacent NULL values to the nearest non-NULL value in each direction.

my_interpolate definition

To operate at a sensible cost, my_interpolate must run using a fixed-width, row-based
window, but the user can set the width of the window based on the maximum number of
adjacent NULL values expected. If the input ata given row is not NULL, the result for that row
is the same as the input value. This function takes a set of double-precision floating-point
values and produces a resulting set of doubles.

#include "extfnapiv4.h"

#include <stdlib.h>
#include <assert.h>

// MY INTERPOLATE

//
// OLAP-style aggregate UDF that accepts a double precision
// floating point argument. If the current argument value is

// not NULL, then the result value is the same as the

// argument value. On the other hand, if the current row's

// argument value is NULL, then the result, where possible,

// will be the arithmetic interpolation across the nearest

// preceding and nearest following values that are not NULL.
// In all cases the result is also a double precision value.
//

// The start function creates a structure for maintaining the
// argument values within the window including their NULLness.

74 SAP Sybase IQ

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Scalar and Aggregate UDFs

The finish function then deallocates this structure.

Since there are some strict aggregate
for this aggregate (must be used with
frame that includes the current row),
SQL declaration will look like:

usage restrictions
a row-based window
the corresponding

CREATE AGGREGATE FUNCTION my interpolate (IN argl DOUBLE)

RETURNS DOUBLE
OVER REQUIRED

WINDOW FRAME REQUIRED

RANGE NOT
PRECEDING
UNBOUNDED
FOLLOWING
UNBOUNDED
EXTERNAL NAME

typedef struct my window {

int _allocated elem;
int _first used;

int _next insert loc;
int *_is_null;

double * dbl val;

int _num_rows_in frame;

my window;

#if defined _ cplusplus
extern "C" {
#endif

ALLOWED
REQUIRED
PRECEDING NOT ALLOWED
REQUIRED
FOLLOWING NOT ALLOWED

'my interpolate@libudfex'

static void my interpolate reset(a v3 extfn aggregate context
*cntxt)

{

assert (cntxt-> user data);
my window *cptr

cptr-> first used = 0;
cptr-> next insert loc = 0;
cptr-> num rows in frame

0l

(my window *)cntxt-> user data;

for (th i=0; iZcpEr—> allocated elem; i++) {

cptr-> is null[i] = 1;

}

static void my interpolate start(a v3 extfn aggregate context
*cntxt)

{

my window *cptr

(my window *)cntxt-> user data;

// Make sure function was defined correctly

User-Defined Functions

75

Scalar and Aggregate UDFs

if (!cntxt-> is window used)

{
cntxt->set error (cntxt, 20001, "Function requires window");
return;

}
if (cntxt-> window has unbounded preceding | |
cntxt-> window has unbounded following)

{

cntxt->set error (cntxt, 20002, "Window cannot be unbounded");
return;

if (cntxt-> window is range based)

cntxt->set error (cntxt, 20003, "Window must be row based");
return;

}

if (!cptr) {
//
cptr = (my window *)malloc (sizeof (my window)) ;
if (cptr) |
cptr-> is null = 0;

cptr-> dbl val = 0;
cptr-> num rows in frame = 0;
cptr-> allocated elem = (int)cntxt-> max rows_ in frame;
cptr-> is null = (int *)malloc(cptr-> allocated elem
* sizeof (int));
cptr-> dbl val = (double *)malloc(cptr-> allocated elem
* sizeof (double)) ;
cntxt-> user data = cptr;
}
}
if (!cptr || !cptr-> is null || !cptr-> dbl val) {

// Terminate this query
cntxt->set error (cntxt, 20000, "Unable to allocate memory");
return;

}

my interpolate reset (cntxt);

static void my interpolate finish(a v3 extfn aggregate context
*cntxt)
{
if (cntxt-> user data) {
my window *cptr = (my window *)cntxt-> user data;
if (cptr-> is null) {
free (cptr-> is null);
cptr-> is null = 0;
}
if (cptr-> dbl val) {
free (cptr-> dbl val);
cptr-> dbl val = 0;
}
free (cntxt-> user data);
cntxt-> user data = 0;

76 SAP Sybase IQ

Scalar and Aggregate UDFs

static void my interpolate next value(a v3 extfn aggregate context
*cntxt,
void *arg handle)
{
an_extfn value arg;
double argl;
my window *cptr = (my window *)cntxt-> user data;

// Get the one argument, and stash its value
// within the rotating window arrays

//
int curr cell num = cptr-> next insert loc % cptr-
> allocated elem;

if (cntxt->get value(arg handle, 1, &arg) && arg.data != NULL) {
argl = *((double *)arg.data):;
cptr-> dbl val[curr cell num] = argl;
cptr-> is null[curr cell num] = 0;

} else {

cptr-> is null[curr cell num]

}

1;

// Then increment the insertion location and number of rows in
frame
cptr-> next insert loc = ((cptr-> next insert loc + 1)
% cptr-> allocated elem);
cptr-> num rows in frame++;

}

static void my interpolate drop value(a v3 extfn aggregate context
*cntxt,

void * /*arg handle*/)
{

my window *cptr = (my window *)cntxt-> user data;

// Drop one value from the window by incrementing past it and
// decrement the number of rows in the frame
cptr-> first used = ((cptr-> first used + 1) % cptr-
> allocated elem);
cptr-> num rows in frame--;

}

static void my interpolate evaluate(a v3 extfn aggregate context
*cntxt,
void *arg handle)

{

an_extfn value outval;

my window *cptr = (my window *)cntxt-> user data;
double result;
int result is null = 1;

User-Defined Functions 77

Scalar and Aggregate UDFs

double preceding value;

int preceding value is null = 1;
double preceding distance = 0;
double following value;

int following value is null = 1;
double following distance = 0;

int j;

// Determine which cell is the current cell
int curr cell num =
((int) (cntxt-> result row from start of partition-1)) %cptr-
> allocated elem;
int tmp cell num;

int result row offset from start of frame = cptr-> first used <=
curr cell num ?
(curr cell num - cptr-> first used)
(curr cell num + cptr-> allocated elem - cptr-
> first used);

// Compute the result value
if (cptr-> is null[curr cell num] == 0) {
//
// If the current rows input value is not NULL, then there is
// no need to interpolate, just use that input value.
//
result = cptr-> dbl val[curr cell num];
result is null = 0;

// If the current rows input value is NULL, then we do
// need to interpolate to find the correct result value.
// First, find the nearest following non-NULL argument
// value after the current row.

int rows following = cptr-> num rows in frame -
result row offset from start of frame - 1;
for (3j=0; Jj<rows following; Jj++) {
tmp_cell num = ((curr_cell num + j + 1) % cptr-
> allocated elem);
if (cptr-> is null[tmp cell num] == 0) {
following value = cptr-> dbl val[tmp cell num];

following value is null = 0;
following distance = j + 1;
break;

// Second, find the nearest preceding non-NULL

// argument value before the current row.

//

int rows before = result row offset from start of frame;
for (3=0; j<rows before; j++) {

78 SAP Sybase IQ

Scalar and Aggregate UDFs

tmp cell num = ((curr cell num + cptr-> allocated elem - j - 1)
% cptr-> allocated elem);
if (cptr-> is null[tmp cell num] == 0) {
preceding value = cptr-> dbl val[tmp cell num];
preceding value is null = 0;
preceding distance = j + 1;
break;

}

// Finally, see what we can come up with for a result value

//

if (preceding value is null && !following value is null) {
//
// No choice but to mirror the nearest following non-NULL value
// Example:

//
// Inputs: NULL Result of my interpolate: 40.0
// NULL 40.0
// 40.0 40.0
//
result = following value;
result is null = 0;
//
} else if (!preceding value is null && following value is null) {
//

// No choice but to mirror the nearest preceding non-NULL value
// Example:

//

// Inputs: 10.0 Result of my interpolate: 10.0

// NULL 10.0

//

result = preceding value;

result is null = 0;

//

} else if (!preceding value is null && !following value is null)

//

// Here we get to do real interpolation based on the

// nearest preceding non-NULL value, the nearest following
// non-NULL value, and the relative distances to each.

// Examples:

//

// Inputs: 10.0 Result of my interpolate: 10.0
// NULL 20.0
// NULL 30.0
// 40.0 40.0
//

// Inputs: 10.0 Result of my interpolate: 10.0
// NULL 25.0
// 40.0 40.0
//

result = (preceding value

+ ((following value - preceding value)
* (preceding distance

/ (preceding distance +
following distance))));

User-Defined Functions 79

Scalar and Aggregate UDFs

result is null = 0;
}
}

// And last, pass the result value out
outval.type = DT DOUBLE;
outval.piece len = sizeof (double);
if (result is null) {

outval.data = 0;
} else {

outval.data = &result;
}

cntxt->set value(arg handle, &outval, 0);

static a v3 extfn aggregate my interpolate descriptor =
{
&my interpolate start,
&my interpolate finish,
&my interpolate reset,
&my interpolate next value, //(timeseries expression)
&my interpolate evaluate,
&my interpolate drop value,
NULL, // cume eval,
NULL, // next subaggregate extfn
NULL, // drop_subaggregate extfn
NULL, // evaluate superaggregate extfn
NULL, // reservedl must be null
NULL, // reserved2 must be null
NULL, // reserved3 must be null
NULL, // reserved4 must be null
NULL, // reserved5 must be null
0, // indicators
// context size
// context alignment
.0, //external bytes per group
double)sizeof(double), // external bytes per row
// reserved6 must be null
// reserved7 must be null
// reserved8 must be null
reserved9 must be null
, // reservedlO must be null
NULL // _for server internal use

~

~

~ N~ 0~ N

OO OO O ~0O OO
~
~

}i

a v3 extfn aggregate *my interpolate ()
{ return &my interpolate descriptor; }

#if defined cplusplus
}
#endif

80 SAP Sybase IQ

Scalar and Aggregate UDFs

Context Storage of Aggregate User-Defined Functions
The context area is used to transfer or communicate data between multiple invocations of the
UDF within the same query (particularly within OLAP-style queries).

Context variables control whether the intermediate results of aggregate functions are to be
managed by the UDF itself (forcing the SAP Sybase 1Q server to run the UDFs serially), or
whether the memory is to be managed by the SAP Sybase 1Q server.

If the _calculation_context_size is set to 0, then the UDF is required to manage all interim
results in memory, (forcing the SAP Sybase 1Q server to invoke the UDF sequentially over the
data (instead of being able to invoke many instances of the UDF in parallel during an OLAP
query).

Ifthe calculation_context_size is set to a nonzero value, the SAP Sybase 1Q server manages a
separate context area for each invocation of the UDF, allowing multiple instances of the UDF
to be invoked in parallel. To make the most efficient use of memory, consider setting the
_calculation_context_alignment a value smaller than the default (depending on the size of the
context storage needed).

For details on context storage, refer to the description of _calculation_context_size and
_calculation_context_alignment in the section Aggregate UDF descriptor structure on page
55. These variables are near the end of the descriptor structure.

For a detailed discussion about the use of context storage, see Calculation contexton page
59.

Important: To store intermediate results in memory within an aggregate UDF, initialize the
memory with the _start_extfn function, and clean up and de-allocate any memory with the
_finish_extfn function.

See also
» Declaring an Aggregate UDF on page 47
» Defining an Aggregate UDF on page 53

Calling Scalar and Aggregate UDFs

You can use a user-defined function, subject to permissions, any place you use a built-in
nonaggregate function.

This Interactive SQL statement returns a full name from two columns containing a first and
last name:

SELECT fullname (GivenName, LastName)
FROM Employees;

User-Defined Functions 81

Scalar and Aggregate UDFs

fullname (Employees.GivenName,Employees.SurName)

Fran Whitney

Matthew Cobb

Philip Chin

The following statement returns a full name from a supplied first and last name:

SELECT fullname ('Jane', 'Smith');

fullname (‘Jane','Smith")

Jane Smith

Any user who has been granted Execute permissions for the function can use the fullname
function.

Scalar and Aggregate UDF Calling Patterns

Calling patterns are steps the functions perform as results are gathered.

Scalar and Aggregate UDF Callback Functions

The set of callback functions are supplied by the engine through the
a v3 extfn scalar context structure and used within the user's UDF functions.

* get_value—The function used within an evaluation method to retrieve the value of each
input argument. For narrow argument data types (smaller than 256 bytes), a call to
get_value is sufficient to retrieve the entire argument value. For wider argument data types,
if the piece_len field within the an_extfn_value structure passed to this callback comes
back with a value smaller than the value in the total_len field, use the get_piece callback to
retrieve the rest of the input value.

* get_piece—The function used to retrieve subsequent fragments of a long argument input
value.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

* (get_is constant — A function that determines whether the specified input argument value
is a constant. This can be useful for optimizing a UDF, for example, where work can be
performed once during the first call to the _evaluate_extfn function, rather than for every
evaluation call.

82

SAP Sybase 1Q

Scalar and Aggregate UDFs

» set_value—The function used within an evaluation function to tell the server the result
value of the UDF for this call. If the result data type is narrow, one call to set_value is
sufficient. However, if the result data value is wide, then multiple calls to set_value are
required to pass the entire value, and the append argument to the callback should be true for
each fragment except the last. To return a NULL result, the UDF should set the data field
within the result value's an_extfn_value structure to the null pointer.

* get_is cancelled —A function to determine whether the statement has been cancelled. If a
UDF entry point is performing work for an extended period of time (many seconds), then it
should, if possible, call the get_is_cancelled callback every second or two to see if the user
has interrupted the current statement. The return value is 0 if the statement has not been
interrupted.

SAP Sybase 1Q can handle extremely large data sets, and some queries can run for long
periods of time. Occasionally, a query takes an unusually long time to execute. The SQL
client lets the user cancel a query if it is taking too long to complete. Native functions track
when a user has canceled a query. UDFs must also be written in a manner that tracks
whether a query has been canceled by the user. In other words, UDFs should support the
ability for users to cancel long-running queries that invoke UDFs.

* set_error — A function that can be used to communicate an error back to the server, and
eventually to the user. Call this callback routine if a UDF entry point encounters an error
that should result in an error message being sent back to the user. When called, set_error
rolls back the current statement, and the user receives Error from external UDF:
error desc_string, and the SQLCODE is the negated form of the supplied
error_number. To avoid collisions with existing errors, UDFs should use error_number
values between 17000 and 99999. The maximum length of “error_desc_string” is 140
characters.

* log_message—The function used to send a message to the server's message log. The string
must be a printable text string no longer than 255 bytes.

« convert_value—The function allows data conversion between data types. The primary use
is the conversion between DT_DATE, DT_TIME, and DT_TIMESTAMP, and
DT_TIMESTAMP_STRUCT. An input and output an_extfn_value is passed to the
function.

See also

e Scalar UDF Calling Pattern on page 84

» Aggregate UDF Calling Patterns on page 84

* Blob (a_v4_extfn_blob)on page 199

e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

User-Defined Functions 83

Scalar and Aggregate UDFs

Scalar UDF Calling Pattern

Expected calling pattern for supplied function pointers for a scalar UDF calling pattern.

_start extfn(if supplied)
_evaluate extfn (repeated 0 to numerous times)
_finish extfn(if supplied)

See also
o Scalar and Aggregate UDF Callback Functions on page 82
» Aggregate UDF Calling Patterns on page 84

Aggregate UDF Calling Patterns

The calling patterns for the user-supplied aggregate UDF functions are more complex and
varied than the scalar calling patterns.

The examples that follow this table definition;

create table t (a int, b int, c int)

insert into t wvalues (1, 1, 1)
insert into t wvalues (2, 1, 1)
insert into t wvalues (3, 1, 1)
insert into t values (4, 2, 1)
insert into t values (5, 2, 1)
insert into t wvalues (6, 2, 1)

The following abbreviation is used:

RR = a_v3_extfn_aggregate_context. _result_row_offset_from_start_of_partition — This
value indicates the current row number inside the current partition for which a value is
calculated. The value is set during windowed aggregates and is intended to be used during the
evaluation step of unbounded windows; it is available at all evaluate calls.

SAP Sybase 1Q is a multi user application. Many users can simultaneously execute the same
UDF. Certain OLAP queries excute UDFs multiple times within the same query, sometimes in
parallel.

See also
e Scalar and Aggregate UDF Callback Functions on page 82
o Scalar UDF Calling Pattern on page 84

Simple Aggregate Ungrouped
The simple aggregate ungrouped calling pattern totals the input values of all rows and
produces a result.

Query

select my sum(a) from t

84

SAP Sybase 1Q

Scalar and Aggregate UDFs

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn(cntxt, args) -- input a=l1
_next value extfn(cntxt, args) -- input a=2
_next value extfn(cntxt, args) -- input a=3
_next value extfn(cntxt, args) -- input a=4
_next value extfn(cntxt, args) -- input a=5
_next value extfn(cntxt, args) -- input a=6
evaluate extfn(cntxt, args) -- returns 21

_finish extfn (cntxt)

Result

my sum(a)
21

Simple Aggregate Grouped
The simple aggregate grouped calling pattern totals the input values of all rows in the group
and produces a result. _reset_extfn identifies the beginning of a group.

Query
select b, my sum(a) from t group by b order by b

Calling pattern

_start extfn(cntxt)
_reset extfn (cntxt)

_next value extfn(cntxt, args) -- input a=1
_next value extfn(cntxt, args) -- input a=2
_next value extfn(cntxt, args) -- input a=3
_evaluate extfn (cntxt, args) -—- returns ©6
_reset extfn(cntxt)
_next value extfn(cntxt, args) -- input a=4
_next value extfn(cntxt, args) -- input a=5
_next value extfn(cntxt, args) -- input a=6
evaluate extfn (cntxt, args) -- returns 15

7finish7e§tfn(cntxt)

Result

b, my sum(a)
1, 6

2, 15

OLAP-Style Aggregate Calling Pattern with Unbounded Window

Partitioning on “b” creates the same partitions as grouping on “b”. An unbounded window
causes the “a” value to be evaluated for each row of the partition. Because this is an unbounded
query, all values are fed to the UDF first, followed by an evaluation cycle. Context indicators

User-Defined Functions 85

Scalar and Aggregate UDFs

are set to 1 for _window_has_unbounded_preceding and
_window_has_unbounded_following

Query

select b, my sum(a) over (partition by b rows between
unbounded preceding and

unbounded following)

from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn (cntxt, args) input a=1

_next value extfn(cntxt, args) input a=2

_next value extfn(cntxt, args) input a=3
_evaluate extfn (cntxt, args) rr=1 returns 6
_evaluate extfn(cntxt, args) rr=2 returns 6
_evaluate extfn(cntxt, args) rr=3 returns 6
_reset extfn(cntxt)

_next value extfn(cntxt, args) input a=4

_next value extfn (cntxt, args) input a=5

_next value extfn(cntxt, args) input a=6
_evaluate extfn (cntxt, args) rr=1 returns 15
_evaluate extfn (cntxt, args) rr=2 returns 15
_evaluate extfn (cntxt, args) rr=3 returns 15

_finish extfn (cntxt)

Result

b, my sum(a)
1, o

1, o

1, ©

2, 15

2, 15

2, 15

OLAP-Style Unoptimized Cumulative Window Aggregate
If evaluate_cumulative_extfn is not supplied, this cumulative sum is evaluated through this
calling pattern, which is less efficient than _evaluate_cumulative_extfn.

Query

select b, my sum(a) over (partition by b

rows between unbounded preceding and current row)
from t

order by b

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)
_next value extfn(cntxt, args) -— input a=1

86

SAP Sybase 1Q

Scalar and Aggregate UDFs

_evaluate extfn (cntxt, args) -— returns 1
_next value extfn(cntxt, args) -- input a=2
_evaluate extfn (cntxt, args) -- returns 3
_next value extfn(cntxt, args) -- input a=3
_evaluate extfn(cntxt, args) -- returns 6
_reset extfn(cntxt)
_next value extfn(cntxt, args) -- input a=4
_evaluate extfn(cntxt, args) -- returns 4
_next value extfn(cntxt, args) -- input a=5
_evaluate extfn (cntxt, args) -- returns 9
_next value extfn(cntxt, args) -- input a=6
evaluate extfn (cntxt, args) -- returns 15

:finishiegtfn(cntxt)

Result

b, my sum(a)
1, 1

1, 3

1, 6

2, 4

2, 9

2, 15

OLAP-Style Optimized Cumulative Window Aggregate

If _evaluate_cumulative_extfn is supplied, this cumulative sum is evaluated where the
next_value/evaluate sequence is combined into a single _evaluate _cumulative_extfn call for
each row within each partition.

Query

select b, my sum(a) over (partition by b rows between unbounded
preceding and current row)

from t

order by b

Calling pattern

_start extnfn (cntxt)
_reset extfn(cntxt)

_evaluate cumulative extfn(cntxt, args) -- input a=1 returns 1

_evaluate cumulative extfn(cntxt, args) -- input a=2 returns 3

_evaluate cumulative extfn(cntxt, args) -- input a=3 returns 6

_reset extfn(cntxt)

_evaluate cumulative extfn(cntxt, args) -- input a=4 returns 4

_evaluate cumulative extfn(cntxt, args) -- input a=5 returns 9
evaluate cumulative extfn(cntxt, args) -- input a=6 returns 15

_finish extfn(cntxt)

Result
b, my sum(a)
1, 1
1, 3
1, 6

User-Defined Functions 87

Scalar and Aggregate UDFs

2, 4
2, 9
2, 15

OLAP-Style Unoptimized Moving Window Aggregate
If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
this significantly less efficient than using _drop_value_extfn.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and
current row)

from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn(cntxt, args) input a=1
_evaluate extfn (cntxt, args) returns 1
_reset extfn(cntxt)
_next value extfn(cntxt, args) input a=1
_next value extfn(cntxt, args) input a=2
_evaluate extfn (cntxt, args) returns 3
_reset extfn(cntxt)
_next value extfn(cntxt, args) input a=2
_next value extfn(cntxt, args) input a=3
_evaluate extfn (cntxt, args) returns 5
_reset extfn(cntxt)
_next value extfn(cntxt, args) input a=4
_evaluate extfn (cntxt, args) returns 4
_reset extfn (cntxt)
_next value extfn(cntxt, args) input a=4
_next value extfn(cntxt, args) input a=5
_evaluate extfn (cntxt, args) returns 9
_reset extfn (cntxt)
_next value extfn(cntxt, args) input a=5
_next value extfn(cntxt, args) input a=6
evaluate extfn(cntxt, args) returns 11

_finish extfn(cntxt)

Result

b, my sum(a)
1, 1

1, 3

1, 5

2, 4

2, 9

2, 11

88 SAP Sybase IQ

Scalar and Aggregate UDFs

OLAP-Style Optimized Moving Window Aggregate
If the _drop_value_extfn function is supplied, this moving window sum is evaluated using this
calling pattern, which is more efficient than using _drop_value_extfn.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and
current row)
from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_evaluate aggregate extfn (cntxt, args) -- returns 1
_evaluate aggregate extfn(cntxt, args) -- returns 3
_drop value extfn(cntxt) -— input a=1
_next value extfn(cntxt, args) -- input a=3

_evaluate aggregate extfn (cntxt, args) -- returns 5
_reset extfn (cntxt)

_next value extfn(cntxt, args) -— input a=4

_evaluate aggregate extfn (cntxt, args) -- returns 4
_next value extfn(cntxt, args) -- input a=5

_evaluate aggregate extfn(cntxt, args) -- returns 9
_drop value extfn(cntxt) -- input a=4

_next value extfn(cntxt, args) -- input a=6

_evaluate aggregate extfn (cntxt, args) -- returns 11

_finish extfn (cntxt)

Result
b, my sum(a)
1, 1
1, 3
1, 5
2, 4
2, 9
2, 11

OLAP-Style Unoptimized Moving Window Following Aggregate

If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
the following calling pattern. This case is similar to the previous moving window example, but
the row being evaluated is not the last row given by next value function.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and
1 following)
from t

User-Defined Functions 89

Scalar and Aggregate UDFs

Calling pattern

_start extfn(cntxt)

_reset extfn(cntxt)

_next value extfn (cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn (cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_finish extfn (cntxt)

Result

b, my sum(a)
1, 3

1, o

1, 5

2, 9

2, 15

2, 11

OLAP-Style Optimized Moving Window Following Aggregate

input a=1
input a=2
returns 3

input a=1
input a=2
input a=3
returns 6

input a=2
input a=3
returns 5

input a=4
input a=5
returns 9

input a=4
input a=5
input a=6
returns 15

input a=5
input a=6
returns 11

If drop_value_extfn function is supplied, this moving window sum is evaluated through the
following calling pattern. Again, this case is similar to the previous moving window example,
but the row being evaluated is not the last row given by next value function.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and

1 following)
from t

90

SAP Sybase 1Q

Scalar and Aggregate UDFs

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn(cntxt, args) input a=1

_next value extfn(cntxt, args) input a=2

_evaluate extfn(cntxt, args) returns 3

_next value extfn(cntxt, args) input a=3

_evaluate extfn (cntxt, args) returns 6

_dropvalue extfn (cntxt) input a=1

_evaluate extfn(cntxt, args) returns 5

_reset extfn(cntxt)

_next value extfn (cntxt, args) input a=4

_next value extfn(cntxt, args) input a=5

_evaluate extfn(cntxt, args) returns 9

_next value extfn(cntxt, args) input a=6

_evaluate extfn (cntxt, args) returns 15

_dropvalue extfn (cntxt) input a=4
evaluate extfn(cntxt, args) returns 11

_finish extfn (cntxt)

Result

b, my sum(a)
i1, 3

1, 6

1, 5

2, 9

2, 15

2, 11

OLAP-Style Unoptimized Moving Window without Current

Assume the UDF my_sum works like the built-in SUM. If _drop_value_extfn function is not
supplied, this moving window count is evaluated through the following calling pattern. This
case is similar to the previous moving window examples, but the current row is not part of the
window frame.

Query
select b, my sum(a) over (rows between 3 preceding and 1 preceding)
from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_evaluate extfn (cntxt, args) returns NULL
_reset extfn (cntxt)

_next value extfn(cntxt, args) input a=1
_evaluate extfn (cntxt, args) returns 1
_reset extfn(cntxt)

_next value extfn (cntxt, args) input a=1
_next value extfn(cntxt, args) input a=2

User-Defined Functions 91

Scalar and Aggregate UDFs

_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn (cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_next value extfn (cntxt, args)
_evaluate extfn(cntxt, args)
_finish extfn(cntxt)

Result

12

returns 3

input a=1

input a=2

input a=3
returns 6

input a=2

input a=3

input a=4
returns 9

input a=3

input a=4

input a=>5
returns 12

OLAP-Style Optimized Moving Window without Current

If _drop_value_extfn function is supplied, this moving window count is evaluated through the
following calling pattern. This case is similar to the previous moving window examples, but

the current row is not part of the window frame.

Query

select b, my sum(a) over (rows between 3 preceding and 1 preceding)

from t

Calling pattern

_start extfn(cntxt)

_reset extfn(cntxt)
_evaluate extfn (cntxt, args)
_next value extfn (cntxt, args)
_evaluate extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_next value extfn (cntxt, args)
_evaluate extfn(cntxt, args)
_dropvalue extfn(cntxt)

_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_dropvalue extfn (cntxt)

_next value extfn(cntxt, args)

returns NULL
input a=1
returns 1
input a=2
returns 3
input a=3
returns 6
input a=1
input a=4
returns 9
input a=2
input a=5

92

SAP Sybase 1Q

Scalar and Aggregate UDFs

_evaluate extfn (cntxt, args) returns 12
_finish extfn(cntxt)

Result

External Function Prototypes

Define the API by a header file named ext fnapiv3.h (extfnapiv4.h for the v4 API)
in the subdirectory of your SAP Sybase 1Q installation directory. This header file handles the
platform-dependent features of external function prototypes.

To notify the database server that the library is not written using the old API, provide a
function as follows:

uint32 extfn use new api()

This function returns an unsigned 32-bit integer. If the return value is nonzero, the database
server assumes that you are using the new API.

If the DLL does not export this function, the database server assumes that the old APl is in use.
When using the new API, the returned value must be the API version number defined in
extfnapi.vih.

Each library should implement and export this function as:

unsigned int extfn use new api (void)

{
return EXTFN V4 API;

}

The presence of this function, and that it returnsEXTFN_v4 APT informsthe SAP Sybase 1Q
engine that the library contains UDFs written to the new APl documented in this book.

Function prototypes
The name of the function must match that referenced in the CREATE PROCEDURE or
CREATE FUNCTION statement. Declare the function as:

void function-name (an extfn api *api, void *argument-handle)

The function must return void, and must take as arguments a structure used to pass the
arguments, and a handle to the arguments provided by the SQL procedure.

The an_extfn_ api structure has this form:

User-Defined Functions 93

Scalar and Aggregate UDFs

typedef struct an extfn api {
short (SQL CALLBACK *get value) (
void * arg_handle,
a sqgl uint32 arg_ num,
an_extfn value *value
) i
short (SQL CALLBACK *get_piece)(

void * arg handle,
a sql uint32 arg num,
an_extfn value *value,
a_sgl uint32 offset
)7
short (SQL CALLBACK *set value) (

void * arg handle,
a_sgl uint32 arg_num,
an_extfn value *value
short append
)7

void (SQL CALLBACK *set cancel) (
void * arg handle,
void * cancel handle

)

} an _extfn api;

Note: The get_piece callback is valid in v3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

The an_extfn_value structure has this form:

typedef struct an extfn value ({

void * data;
a sql uint32 piece len;
union {
a sgl uint32 total len;
a sgl uint32 remain len;
} len;
a sql data type type;

} an_extfn value;

Notes
Calling get_value onan OUT parameter returns the data type of the argument, and returns
data as NULL.

The get_piece function for any given argument can be called only immediately after the
get_value function for the same argument.

To return NULL, set datato NULL in an_extfn value.

The append field of set value determines whether the supplied data replaces (false) or
appends to (true) the existing data. You must call set value with append=FALSE before
calling it with append=TRUE for the same argument. The append field is ignored for fixed-
length data types.

94

SAP Sybase 1Q

Scalar and Aggregate UDFs
The header file itself contains additional notes.
See also

» Blob (a_v4_extfn _blob)on page 199
e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

User-Defined Functions 95

Scalar and Aggregate UDFs

96 SAP Sybase IQ

Table UDFs and TPFs

Table UDFs and TPFs

Table UDFs are external user-defined C, C++, or Java table functions. Unlike scalar and
aggregate UDFs, table UDFs produce row sets as output. SQL queries consume a table UDF's
output sets as table expressions.

Scalar and aggregate UDFs can use either the v3 or v4 API, but table UDFs can use only v4.

Declare a table UDF SQL function using the CREATE PROCEDURE statement. Scalar and
aggregate UDFs use the CREATE FUNCTION statement.

Table parameterized functions (TPFs) are enhanced table UDFs that accept either scalar
values or row sets as input.

See also

e Table Parameterized Functions on page 136

» Declaring and Defining Scalar User-Defined Functions on page 32
» Declaring and Defining Aggregate UDFs on page 46

e Learning Roadmap. Types of External C and C++ UDF5s on page 6
e Creating a Java Table UDF on page 354

User Roles
Two types of users work with table UDFs: UDF developers, and SQL analysts.

* UDF developer —develops the table UDF in C or C++,

e SQL analyst —develops and analyzes the SQL queries that reference the table expression
in the FROM clause. The table expression is the set of rows produced by the table UDF.

See also
« Learning Roadmap for Table UDF Developers on page 97
e Learning Roadmap for SQL Analysts on page 98

Learning Roadmap for Table UDF Developers

Use annotated examples to learn how to develop a C or C++ table UDF. After completing the
development tasks, the SQL analyst can then reference your UDF in a SQL query.

This roadmap assumes:

* You have a C or C++ development environment on your machine.

User-Defined Functions 97

Table UDFs and TPFs

< You are familiar with standard programming practices.

Task

See

Become familiar with table UDF and TPF re-
strictions.

Table UDF Restrictions on page 99

Create a table UDF.

Developing a Table UDF on page 103

(Optional) Define the library version validators
for distributed query processing (DQP).

Library \Version (extfn_get_library_version) on
page 17

Library Version Compatibility (extfn_check ver-
sion_compatibility) on page 17

Compile and link source code.

Compile and Link Source Code to Build Dynam-
ically Linkable Libraries on page 19

Declare the UDF to the server using the CREATE
PROCEDURE statement. Write and execute these
statements as commands, or use Sybase Control
Center.

Learning Roadmap for SQL Analysts on page
98

Learning Roadmap for SQL Analysts

Reference a C or C++ table UDF in your SQL query.

Task

See:

Obtain the .d11 or . so file (for example,
myudf .d11) from the UDF developer.

Place the .d11 file inthe bin64 directory;
place the . so fileinthe 1ib64 or LD LI-
BRARY PATH directory.

Not applicable.

Define the CREATE PROCEDURE statement, ref-
erencing the . d11 file and the callback function.

For example:

CREATE PROCEDURE my_udf(IN
num_row INT)

RESULT (id INT)

EXTERNAL NAME

'udf rg proc@myudf.dll’'

CREATE PROCEDURE Statement (Table UDF)
on page 169

Select rows from the UDF.

For example:
SELECT * FROM my_ udf (5)

SELECT Statement on page 188
FROM Clause on page 180

98

SAP Sybase 1Q

Table UDFs and TPFs

See also

SQL Reference for Table UDF and TPF Queries on page 166

Table UDF Restrictions

Table UDFs and TPFs have some restrictions.

The TEMPORARY PROCEDURE clause is not allowed for any external procedures.
Attempting to create a temporary external procedure results in an error at creation time.
The NO RESULT SET clause is not allowed. Table UDFs and TPFs must explicitly declare
the contents of their results.

If the optional DYNAMIC RESULT SETS integer-expression clause is specified, the value
must be set to 1. Table UDFs and TPFs do not return multiple result sets.

A table UDF or TPF cannot be referenced in a CALL SQL statement or EXEC embedded
SQL statement. A table UDF or TPF can be referenced only in a FROM clause of a SQL
statement.

The LANGUAGE clause cannot be used for table UDFs or TPFs. If the LANGUAGE clause
is present, syntax errors are reported at execution time.

The parameter clause is limited to keyword IN; INOUT and OUT keywords are not
supported for table UDFs or TPFs.

The EXTERNAL NAME clause has the same syntax as scalar and aggregate UDFs.

Get Started

Familiarize yourself with sample files, concepts, and restrictions before developing table
UDFs and TPFs.

Sample Files

Sample table UDF files are installed with the server. Use the samples as models when defining
your own table UDFs.

Sample files are located in:

%ALLUSERSPROFILE%\SybaselQ\samples\udf (Windows)
$SYBASE/IQ-16_0/samples/udf (UNIX)

User-Defined Functions 99

Table UDFs and TPFs

File

Description

apache log reader.cxx

Implementation of a table UDF that reads an
Apache log file and presents the rows from the file
in table format. This UDF illustrates a real-world
example of how you can use a UDF to make
computer-generated data available to a SQL
query writer in real time.

build.sh / build.bat

Script that compiles and links the sample scalar
and aggregate UDFs, table UDFs, and TPFs
found in the samples/udf directory.

my md5.cxx

A simple deterministic scalar UDF that calculates
the MD5 hash value of an input file (a LOB binary
argument).

tpf agg.cxx

Consumes rows from an input table, performs an
aggregation on the input data, and returns rows
back to the server.

tpf blob.cxx

Implementation of a TPF that reads LOB data
from an input table and passes the data to the
result set, if an even number of the specified
character or digit is present. This TPF illustrates
how to read LOB data and how a user can pass
LOB datatypes through to the result set.

tpf dt.cxx

tpf filt.cxx

Ilustrates how a TPF can be used to filter rows.
The example uses the row block provided by
caller and passes it to the input TABLE parameter.
The input table schema must match the output
result set of this function.

tpf oby.cxx

Illustrates how a TPF can generate ordered output
and pass it along.

tpf pby.cxx

Illustrates how a TPF can generate partitioned
output and pass it along.

tpf rg l.cxx

Similar to the table UDF sample
udf rg 2.cxx. Itproduces rows of data
based on an input parameter.

tpf rg 2.cxx

Builds upon the sample in tpf rg 1.cxx,
but uses fetch into instead of

fetch block toread rows from the input
table.

100

SAP Sybase 1Q

Table UDFs and TPFs

File Description

udf main.cxx This file is linked into all of the examples and
includes a common set of required entry points
for the v4 API. This allows you to reuse the code
rather than including it in each example.

udf rg l.cxx Asimple table UDF that generates rows of integer
data.
udf rg 2.cxx Asimple table UDF that generates rows of integer

data that uses describes to ensure the sche-
ma defined in SQL matches the UDF's imple-
mentation. It also describes some optimizer at-

tributes.

udf rg 3.cxx A simple table UDF that generates integer data in
blocksof 100 usingthe fetch blockfetch
method.

udf utils.cxx A set of utility functions and macros that are use-

ful to UDF/TPF developers. The examplesrely on
items in this file.

udf utils.h A set of utility functions and macros that are use-
ful to UDF/TPF developers. The examples rely on
items in this file.

Understanding Producers Versus Consumers

The server and UDF form a producer and consumer relationship when exchanging rows of
data.

Production and consumption refer to table row data. The producer produces table rows; the
consumer consumes table rows.

The server executes scalar and aggregate UDFs once for each matching row of a query. These
UDFs consume input scalar parameters and produce, and return, a single scalar parameter.
This data exchange occurs during the evaluate method using the get value () and
set _value () APIs.

However, scalar production and consumption is an inefficient method of data exchange if your
UDF must produce or consume a table. Table UDFs that produce a table, and TPFs that
consume atable, use the row block datastructure of the v4 API. Row blocks allow for bulk
row and column data exchange. The row block is populated by a producer, and read from by a
consumer.

Inthis example, the table UDFmy table udf () isaproducer of data. SAP Sybase I1Q, the
server, is the consumer of the data:
SELECT * FROM my table udf ()

User-Defined Functions 101

Table UDFs and TPFs

In general, a table UDF is always a producer of data. The server, however, may not always be
the consumer:

SELECT * FROM my tpf (TABLE(SELECT * FROM my table udf()))

The outer TPF, my tpf (), is the consumer for the table input parameter specified by
SELECT *from my_table_udf(). SAP Sybase IQ is the consumer of the table produced by the
my tpf () TPF. A TPF, therefore, can be both a consumer and a producer.

The TPF does not have to consume from a table UDF. In this example, the TPF consumes the
table data produced by the inner query, which is produced by the SAP Sybase 1Q server:

SELECT * FROM my tpf (TABLE (SELECT * FROM my table where my table.cl
< 10))

In a TPF, therefore, SAP Sybase 1Q can be both the consumer and producer of table data.

In the v4 API, a row block defines a memory area where data is produced to, and consumed
from. In general, the layout of a row block conceptually matches the row and column format of
the table; a row block consists of a number of rows, and each row consists of a number of
columns. Either the producer or consumer must allocate the row block, and must also
deallocate it when the time comes.

Rows and column have their own specific attributes that only apply to them. For example,
rows have a status flag which indicates if the row is present or not. This flag lets a TPF change
the row status without having to move the column data. Columns have a null mask that
indicates if the data value is null or not. Row blocks also have some additional attributes:
maximum number of rows, and current number of rows, for example. These row block
attributes are useful when a UDF wants to create a row block to handle a large set of rows, but
produce a smaller number of rows as required.

The process of consuming a row is handled via one of the two fetch APIs:

e fetch into
e fetch block

The fetch into is called when the consumer allocates the row block and passes it to the
producer. The producer is then requested to populate as many rows as possible, up to the
maximum number of rows. The fetch block is called when the consumer wants the
producer to allocate the row block. Fetch block is efficient if you are developing a TPF
that filters rows of data. The server (consumer) allocates the row block and fetches from the
TPF using the fetch into API. The TPF can then pass the same row block to the input
parameter using the fetch block API.

See also
e Row Block Data Exchange on page 128

102

SAP Sybase 1Q

Table UDFs and TPFs

Developing a Table UDF

The general steps for developing a table UDF include determining input and output, declaring
the v4 library, defining the a v4 extfn proc descriptor, defining a library entry point
function, defining how the server gets row information, implementing the

a v4 extfn proc structure functions, and implement the

a v4 extfn table func structure functions.

1. Determine the input and output for the table UDF.

The input is defined by the parameters the procedure accepts, and the output is defined by
how the RESULT clause for the procedure is declared. The declaration of the table UDF in
SQL is separate from the implementation of the table UDF. This means that a particular
implementation of a table UDF may be bound to a specific declaration. When developing a
table UDF, ensure that the implementation and declaration match.

2. Declare the library as a v4 Library.

For SAP Sybase 1Q to recognize the library as a v4 library, the library must include the
extfnapiv4.h header file located in the subdirectory of your SAP Sybase 1Q
installation directory.

This header defines the v4 API features and functions and is a superset of the v3 API;
extfnapivd.hincludes extfnapiv3.h.

To create table UDF or TPFs, the library must provide the extfn_use new_api ()
entry point. For v4 libraries, extfn_use new_api () must return
EXTFN V4 API.

3. Definethe a_v4 extfn proc descriptor.

When developing a v4 table UDF or TPF, the library must declare what functions are
available for the server to call.

Create a variable of type a_v4 extfn proc and set each member of this structure to
the address of the function within the table UDF that implements the function. The
information in this variable is made available to the server via a library entry pointer. Not
allmembersofa_v4 extfn procarerequiredand thereare two reserved fields which
you must set to NULL.

Use this descriptor function as a model when developing your own function:

static a v4 extfn proc udf proc descriptor =

{

udf proc start, // optional
udf proc finish, // optional
udf proc_evaluate, // required
udf proc describe, // required

udf proc enter state,// optional
udf proc leave state,// optional

User-Defined Functions 103

Table UDFs and TPFs

NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL
}i

. Define a library entry-point function.

The table UDF library must provide a function entry point that returns an
a_v4 extfn proc descriptor pointer. This is the same descriptor as described in step
3.

This callback function is the main required entry point for the library.

Use this function as a model when developing your own library entry point:

extern "C"

a v4 extfn proc * SQL CALLBACK udf rg proc /()
/?**?*****?**********?************?**?*****/
{

return &udf proc descriptor;
}

. Define how the server gets row information from the table UDF.

When developing a v4 table UDF or TPF, the library must declare how row information is
transferred to the server.

Create a variable of type a_v4 extfn table func and set each member of this
structure to the address of the function within the table UDF that implements the function.
The information in this variable is made available to the server at runtime.

Not all members of a_v4 extfn table func are required and there are two
reserved fields which must be set to NULL.

Use this descriptor as a model when developing your own table UDF:

{

udf table func open, // required

udf table func fetch into, // one of fetch into or
fetch block required

udf table func fetch block, // one of fetch into or
fetch block required

udf table func rewind, // optional
udf table func close, // required
NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL

}i

At the start of execution, the server callsthe a v4 extfn proc function
_evaluate extfn to give the table UDF an opportunity to tell the server what table
functions it is implementing. To do this, the table UDF must create an instance of

a v4 extfn table thatis given to the server. This structure contains a pointer to the
a v4 extfn table func descriptor and the number of columns in the result set.

Use this descriptor as a model when developing your own table UDF:

104

SAP Sybase 1Q

Table UDFs and TPFs

static a v4 extfn table udf rg table = {
&udf table funcs, // Table function descriptor
1 // number of columns

bi

Implementthe a v4 extfn proc structure functions.

The table UDF must provide an implementation for each of the a_v4 extfn proc
functions that it declares inthe a_v4 extfn proc descriptor in step 3.
Implementthe a v4 extfn table func structure functions.

The table UDF must provide an implementation for each of the

a v4 extfn table func functions that it declares in the
a v4 extfn table func descriptorinstep 5.

See also

Scalar and Aggregate UDF Calling Patterns on page 82
udf rg 2on page 111

udf rg 3on page 115

Implementing Sample Table UDF udf rq 1 on page 106
Table UDF Implementation Examples on page 105
External Function (a_v4_extfn_proc) on page 288

Table Functions (a_v4_extfn_table_func)on page 319
_evaluate extfnon page 290

Table UDF Implementation Examples

Implementation examples start with a simple table UDF and increase in complexity.

The table UDF implementation examples are included in the samples directory. These
examples start with a simple table UDF and build upon its complexity and functionality as the
examples progress.

The examples are available in a precompiled dynamic library called 1ibv4apiex. (The
extension of this library name is platform dependent.) This library has linked in the functions
defined in udf_main.cxx, which contains the library level functions, such as
extfn_use_new_api. Put 1ibv4apiex in a directory the server can read.

See also

Running the Sample Table UDF in udf _rg_1.cxxon page 111
Running the Sample Table UDF in udf rq 2.cxxon page 114
Running the Sample Table UDF in udf rg 3.cxxon page 118

User-Defined Functions 105

Table UDFs and TPFs

Implementing Sample Table UDF udf rg 1

The sample table UDF called udf_rg_1 illustrates how a v4 Table UDF can generate n rows of
data. The implementation of the table UDF is in the samples directory inudf rg 1.cxx.

1

Determine the input and output for the table UDF.

This example produces /7rows of data based on the value of an input parameter. The input
is a single integer parameter and the output is rows that consist of a single column of type
integer.

The CREATE PROCEDURE statement required to define this procedure is:

CREATE OR REPLACE PROCEDURE udf rg 1(IN num INT)
RESULT (¢l INT)
EXTERNAL NAME ‘udf rg 1Q@libv4apiex’

Declare the library as a v4 library.
In this example, udf _rg 1.cxx includes the extfnapiv4.h header file:

#include “extfnapiv4.h”

To inform the server that this library contains v4 table UDFs, this function export is defined
inudf main.cxx:

a sgl uint32 SQL CALLBACK extfn use new api(void)

/;*****k****k*k*k**k*k*k**k*k*k*k*k**k*k************************/
return EXTFN V4 API;

Definethe a v4 extfn proc descriptor.

This declares the necessary descriptor in udf rg 1.cxx:

static a v4 extfn proc udf rg descriptor =
{
NULL, // _start_extfn
NULL, // _finish extfn
udf rg evaluate, // evaluate extfn
udf rg describe, // _describe extfn

NULL, // _leave state extfn
NULL, // _enter state extfn
NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL

}7
Define a library entry point function.

This callback function declares the main entry point function. It simply returns a pointer to
thea v4 proc descriptor variable udf rg descriptor.

extern "C"
a v4 extfn proc * SQL CALLBACK udf rg 1 proc()
KKK KK K ok KK KK kK kK Rk Kk Kk K Rk Kk Kk K ok kKK Kk K KK KKk

{

106

SAP Sybase 1Q

Table UDFs and TPFs

return &udf rg descriptor;

}
5. Define how the server gets row information from the table UDF.

This declaresthe a_v4 extfn table func descriptor that is used to tell the server
how to retrieve row data from the table UDF:

static a v4 extfn table func udf rg table funcs =

{

udf rg open, // _open _extfn

udf rg fetch into, // _fetch into extfn
NULL, // _fetch block extfn
NULL, // _rewind extfn

udf rg close, // _close _extfn

NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL

}i

In this example, the fetch into_extfn function transfers row data to the server.
Thisis the easiest data transfer method to understand and implement. This document refers
to data transfer methods as rowblock data exchange. There are two rowblock data
exchange functions: fetch into extfnand fetch block extfn.

Atruntime, whenthe evaluate extfn function is called, the UDF publishes the
table functions descriptor by setting the result set parameter. To do this, the UDF must
create an instance of a_v4 extfn table:
static a v4 extfn table udf rg table = {

&udf rg table funcs, // Table function descriptor

1 // number of columns
}i
This structure contains a pointer to the udf rg table funcs structure and the
number of columns in the result set. This table UDF produces a single column in its result
set.

6. Implement the a_v4_extfn_proc structure functions.

In this example, the required function describe extfn function does not do
anything. Other examples demonstrate how a table UDF can use the de scribe function:

static void UDF_ CALLBACK udf rg describe (
a v4 extfn proc context *ctx)

/

R R b I b I R S R S S e S b S I S S b b b R I SE I b b b b S b I b S b I S 2 b IE e S 2 I b b S b I 2b 4

/
{

// This required function is not needed in this simple example.

}

The evaluate extfn method sends the server information about getting the result
set from the UDF. This is done by callingthe a_v4 extfn proc_ context method
set_value on argument 0. Argument O represents the return value, which for a table

User-Defined Functions 107

Table UDFs and TPFs

UDF isa DT_EXTFN_TABLE. This method constructs an_extfn value structure,
setting the data type to DT_EXTFN_TABLE and setting the value pointer of this to point
tothea v4 extfn table object created in step 5. For table UDFs, the type must
always be DT_EXTFN_TABLE.

static void UDF CALLBACK udf rg evaluate(
a v4 extfn proc context *ctx,

void *args handle)
/***********************************/

{
an_extfn value result table = { &udf rg table,
sizeof (udf rg table),
sizeof (udf rg table),
DT _EXTEFN TABLE };

// Tell the server what functions table functions are being
// implemented and how many columns are in our result set.
ctx->set value(args handle, 0, &result table);

}
7. Implementthe a v4 extfn table func structure functions.

In this example, the table UDF needs to read in the parameter passed in that contains the
number of rows to generate, and cache this information to be used later. Because the
_open_extfn method is called for each new value that the parameter has, this is an
appropriate place to get this information.

In addition to the total number of rows to generate, the table UDF must also remember the
next row to generate. When the server begins fetching rows from the table UDF, it may

need to repeatedly call the fetch into extfn method. This means that the table

UDF must remember the last row that was generated.

This structure is created in udf _rg 1.cxx to contain the state information between

calls:
struct udf rg state {
a sqgl int32 next row; // The next row to produce
a sgl int32 max row; // The number of rows to generate.

}i

The open method first reads in the value of argument Lusingthea v4 proc context
method get _value. An instance of udf rg state is allocated using the

a v4 proc_context function alloc. table UDFs should use the memory
management functions (alloc and free)onthe a v4 proc context structure
whenever possible to manage their memory. The state object is then saved in the user_data
fieldof a v4 proc context. Memory stored in this field is available to the table
UDF until execution finishes.

static short UDF CALLBACK udf rg open(
a v4 extfn table context * tctx)
% Xk kX ok ok kK kK K kK K ok ok K ok X ok ok X Kk Xk ok ok Kk kK Kk kK k[

{

an_extfn value value;

108 SAP Sybase IQ

Table UDFs and TPFs

udf rg state * state = NULL;

// Read in the value of the input parameter and store it away in a
// state object. Save the state object in the context.
if (!tctx->proc context->get value(tctx->args handle,

1/

&value)) |

// Send an error to the client if we could not get the value.
tctx->proc _context->set error (

tctx->proc context,

17001, B

"Error: Could not get the value of parameter 1");

return 0;

}

// Allocate memory for the state using the a v4 extfn proc context
// function alloc.

state = (udf rg state *)
tctx->proc_context->alloc(tctx->proc_context,
sizeof (udf rg state));

// Start generating at row zero.
state->next row = 0;

// Save the value of parameter 1
state->max row = *(a_sqgl int32 *)value.data;

// Save the state on the context
tctx->user data = state;

return 1;

The fetch info_ extfnmethod returns row data to the server. This method is called
repeatedly until it returns false. For this example, the table UDF retrieves the state
information from the user_datafield of thea v4 extfn proc context object to
determine the next row to generate and the total number of rows to generate. This method is
free to generate up to the maximum number of rows indicated in the rowblock structure
passed in.

For this example, the table UDF generates a single column of type INT. It copies the data
for the next_rowsaved in the state into the data pointer of the first column. Each time
through the loop, the table UDF copies a new value into the data pointer and stops when
either the maximum number of rows to produce is reached or the row block is full.

static short UDF CALLBACK udf rg fetch into(

a_v4_e§tfn_table_coﬁtext *tctx,
a v4 _extfn row block *rb)

/**********I**I*****************************/

{

udf_rg_state *state = (udf rg state *)tctx->user data;

// Because we are implementing fetch into, the server has provided
// us with a row block. We need to inform the server how many rows
// this call to fetch into has produced.

rb->num rows = 0;

User-Defined Functions 109

Table UDFs and TPFs

// The server provided row block structure contains a max_rows

// field. This field is the maximum number of rows that this row

// block can handle. We can not exceed this number. We will also

// stop producing rows when we have produced the number of rows

// required as per the max row in the state.

while(rb->num rows < rb->max rows && state->next row < state->max row) {

// Get the current row from the row block data.
a v4 extfn row &row = rb->row data[rb->num rows];

// Get the column data for the current row.
a v4 extfn column data &col0 row.column data[0];

// Copy the integer value for the next row to generate
// into the column data for the current row.
memcpy (colO.data, &state->next row, col0O.max piece len);

state->next row++;
rb->num_rows++;

}

// 1If we produced any rows, return true.
return(rb->num rows > 0);

The table UDF callsthe _close extfn method once per new value for the parameters,
after all the rows have been fetched. In other words, foreach open_extfn call, there is
asubsequent close extfncall. Inthisexample, the table UDF must free the memory
allocated during the open extfn call which it does by retrieving the state from the

user_datafieldofa v4 extfn proc context objectand calling the £ree method.

static short UDF CALLBACK udf rg close(

a vd extfn table context *tctx)
/**~k***~k*~k*~k**************************/

{
udf rg state * state = NULL;

// Retrieve the state that was saved in user data
state = (udf rg state *)tctx->user data;

// Free the memory for the state using the
a v4 extfn proc context
// function free.
tctx->proc_context->free(tctx->proc context, state);
tctx->user data = NULL;

return 1;

See also

e udf rg 2on page 111

e udf rg_3on page 115

» Row Block Data Exchange on page 128
» Describe AP/ on page 208

e _evaluate extfnon page 290

110 SAP Sybase IQ

Table UDFs and TPFs

e fetch_intoon page 313

o Table (a_v4_extfn_table) on page 310

e External Procedure Context (a_v4_extfn_proc_context) on page 292
* _open_extfnon page 321

e _close _extfnon page 324

Running the Sample Table UDF in udf rg 1.cxx

The sample udf rg 1 isincluded in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in
udf rg 1.cxx

1. Putthe library 1ibv4apiex in a directory that can be read by the server.
2. To declare the table UDF to the server, issue:

CREATE PROCEDURE udf rg 1(IN num INT)
RESULT (cl INT)
EXTERNAL NAME ‘udf rg 1@libvé4apiex’

3. Select rows from the table UDF:

SELECT * FROM udf rg 1(5);

udf rg 2

The sample table UDF udf rg 2 builds on the sample in udf rg 1.cxx and has the
same behavior. The procedure is called udf_rg_2 and its implementation is in the samples
directory inudf rg 2.cxx.

The table UDF udf_rg_2 provides an alternate implementation of the describe extfn
method inthe a_v4 extfn proc descriptor.

static void UDF CALLBACK udf rg describe(

a v4 extfn proc context *ctx)

/*k*******;**;**********;****k************k**************************/

{

a sgl int32 desc_rc;

// The following describes will ensure that the schema defined
// by the user matches the schema supported by this table udf.
// This is achieved by telling the server what our schema is
// using describe xxxx set methods.

if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a_sql data type type = DT NOTYPE;

a sgl uint32 num_cols = 0g

a sgl uint32 num_parms = 03

// Inform the server that we support a single input
// parameter.

num parms = 1;
desc_rc = ctx->describe udf set
(ctx,

User-Defined Functions 111

Table UDFs and TPFs

EXTFNAPIV4 DESCRIBE UDF NUM PARMS,
&num_parms,
sizeof (num parms));

// Checks the return code and sets an error if the
// describe was unsuccessful for any reason.
UDF_CHECK_DESCRIBE (ctx, desc_rc);

// Inform the server that the type of parameter 1 is int.
type = DT_INT;
desc_rc = ctx->describe parameter set
(ctx,

1,

EXTFNAPIV4 DESCRIBE PARM TYPE,

&type,

sizeof (type))

UDF_CHECK_DESCRIBE (ctx, desc_rc);

// Inform the server that the number of columns in our
// result set is 1.

num cols = 1;
desc_rc = ctx->describe parameter set
(ctx,

0,
EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS,
&num_cols,

sizeof (num cols));

UDF_CHECK_DESCRIBE(ctx, desc_rc);

// Inform the server that the type of column 1 in our
// result set is int.
type = DT_INT;
desc_rc = ctx->describe column_ set
(ctx,

0,

1,
EXTFNAPIV4 DESCRIBE COL TYPE,
&type,
sizeof (type))

UDF_CHECK DESCRIBE(ctx, desc_rc);

}

// The following describes will inform the server of various
// optimizer related characteristics.

1f(ctx->current state == EXTFNAPIV475TATE70PTIMIZATION) |
an_extfn value pl value;
a vd extfn estimate num rows;

// If the value of parameter 1 was constant, then we can
// inform the server how many distinct values will be.
desc rc = ctx->describe parameter get

112

SAP Sybase 1Q

Table UDFs and TPFs

(ctx,
1,
EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE,
&pl value,
sizeof (pl value));

UDF_CHECK DESCRIBE(ctx, desc_rc);
if(desc_rc != EXTFNAPIV4 DESCRIBE NOT AVAILABLE) {

// Inform the server that this UDF will produce n rows.

num rows.value = *(a sql int32 *)pl value.data;
num_rows.confidence = 1;
desc_rc = ctx->describe parameter set
(ctx,
0

4
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS,
&num_rows,
sizeof (num rows));

UDF CHECK DESCRIBE (ctx, desc rc);

// Inform the server that this UDF will produce n distinct
// values for column 1 of its result set.
desc_rc = ctx->describe column_set
(ctx,
0,
1,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
&num_rows,
sizeof (num rows));

UDF CHECK DESCRIBE (ctx, desc rc);

This describe method has two primary functions:

« Inform the server what schema it supports.
« Inform the server of some known optimization attributes.

The describe function is called during several states. However, not all describe
attributes are usable in every state. The describe method determines the state in which it is
executing by checking the current state variable onthe a_v4 extfn proc structure.

During the Annotation state, the udf_rg_2 table udf informs the server that it has one
parameter of type INTEGER and its result set contains a single column of type INTEGER.
This is accomplished by setting these attributes:

 EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS

User-Defined Functions 113

Table UDFs and TPFs

 EXTFNAPIV4_DESCRIBE_PARM_TYPE
* EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS
 EXTFNAPIV4_DESCRIBE_COL_TYPE

If the information set in these describe methods does not match the procedure definition
from the CREATE PROCEDURE statement, the describe parameter set and
describe column_ set methods return

EXTFNAPIV4 DESCRIBE_INVALID ATTRIBUTE VALUE. The describe method then
sets an error to indicate to the client there is a mismatch.

This example uses the macro UDF_CHECK_DESCRIBEdefinedinudf utils.htocheck
the return value from a describe and set an error, if it is not successful.

During optimization, the udf_rg_2 table udf informs the server that it returns the same number
of rows indicated in parameter one. Since the generated rows increment, the values are also
unique. During optimization, only parameters that have a constant value are available. Use the
describe attribute EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE to obtain
the value of a constant parameter. Once the table udf determines that the attribute value is
available, udf_rg_2 sets EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS and
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES to the value obtained.

See also
e udf rg _3on page 115
o Implementing Sample Table UDF udf rg 1 on page 106

Running the Sample Table UDF in udf rg 2.cxx

Thesample udf rg 2isincluded in a pre-compiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

udf rg 2.cxx.

1. To declare the table UDF to the server, issue:

CREATE OR REPLACE PROCEDURE udf rg 2(IN num INT)
RESULT (cl INT)
EXTERNAL NAME 'udf rg 2@libvdapiex'

2. Select rows from the table UDF:
SELECT * FROM udf rg 2(5);

3. Tosee howthe describe affects behavior, issue a CREATE PROCEDURE statement that
has a different schema than the one published by the table UDF. For example:

CREATE OR REPLACE PROCEDURE udf rg 2(IN num INT, IN extra INT)
RESULT (cl INT)
EXTERNAL NAME 'udf rg 2@libvéapiex'

4. Select rows from the table UDF:

SELECT * FROM udf rg 2(5);

114

SAP Sybase 1Q

Table UDFs and TPFs

1Q returns an error.

udf rg 3

The sample table UDF udf_rg_3 builds upon udf_rg_2 and has similar behavior. The
procedure is called udf_rg_3 and its implementation is in the samples directory in
udf rg 3.cxx

The difference between the behavior of table UDFs udf_rg_3 and udf_rg_2 is that udf_rg_3
generates only 100 unique values from 0 to 99, then repeats the sequence as necessary. This
table UDF provides start extfnand finish extfn methodsand has a modified
version of describe extfn to account for the different semantics of the function.

Using fetch blockinstead of fetch into allows the table UDF to own the row block
structure and use its own data layout. To illustrate this, the numbers generated are pre-
allocated in an array. When a fetch is performed, rather than copying data into the server
provided row block, the table UDF points the row block data pointers directly to the memory
containing the data, thus preventing additional copies.

The following ancillary structure stores the numbers array. This structure also keeps a pointer
to the allocated row block, which deallocates the row block.

#define MAX ROWS 100
struct RowData {

a sgl int32 numbers [MAX ROWS];
a sgl uint32 piece len;
a_v4_extfn_row_block * rows;

void Init ()

{
rows = NULL;

piece len = sizeof(a sql int32);
for(int i = 0; i < MAX ROWS; i++) {
numbers[i] = i;

}

This structure is allocated when execution of the table UDF starts, and deallocated when
execution finishes, by providing start extfnand finish extfn methods inthe
a v4 extfn proc context.

static void UDF CALLBACK udf rg start(
a v4 extfn proc context *ctx)
/**********?**?*****?****?************/
{
// The start extfn method is a good place to allocate our row
// data. This method is called only once at the beginning of
// execution.
RowData *row data = (RowData *)
ctx->alloc(ctx, sizeof(RowData));
row data->Init();

User-Defined Functions 115

Table UDFs and TPFs

ctx-> user data = row data;

The finish method performs two functions:

» Deallocates the RowData structure.
» Destroys the row block, if the table UDF encounters an error during fetch and cannot
destroy the row block.

static void UDF CALLBACK udf rg finish(

a v4 extfn proc context *ctx)
/*‘k*‘k*‘k***‘k*‘k*‘k***‘k********************/

{
if (ctx-> user data != NULL) {

RowData *row data = (RowData *)ctx-> user data;

// If rows is non-null here, it means an error occurred and
// fetch block did not complete.
if (row data->rows != NULL) {

DestroyRowBlock (ctx, row data->rows, 0, false);

}

ctx->free(ctx, ctx-> user data);
ctx-> user data = NULL;

The fetch block method is:

static short UDF_CALLBACK udf rg fetch block(
a v4 extfn table context *tctx,
a v4 extfn row block **rows)
KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KK |

{
udf rg state * state = (udf_rg state*)tctx->user data;
RowData * row_data = (RowData *)tctx->proc_context-> user data;

// First call, we need to build the row block
if(*rows == NULL) {

// This function will build a row block structure that holds
// MAX_ROWS rows of data. See udf utils.cxx for details.
*rows = BuildRowBlock(tctx->proc context, 0, MAX ROWS, false);

// This pointer gets saved here because in some circumstances
// when an error occurs, its possible we may have allocated

// the rowblock structure but then never called back into

// fetch block to deallocate it. In this case, when the finish
// method is called, we will end up deallocating it there.
row_data->rows = *rows;

}
(*rows) ->num_rows = 0;

// The row block we allocated contains a max_ rows member that was
// set to the macro MAX ROWS (100 in this case). This field is the
// maximum number of rows that this row block can handle. We can
// not exceed this number. We will also stop producing rows when

116 SAP Sybase IQ

Table UDFs and TPFs

// we have produced the number of rows required as per the max row
// in the state.

while((*rows)->num rows < (*rows)->max rows &&
state->next row < state->max row) |
a v4 extfn row &row = (*rows)->row _data[(*rows)->num rows];
a v4 extfn column data &col0 = row.column datal 0];

// Row generation here is a matter of pointing the data

// pointer in the rowblock to our pre-allocated array of

// integers that was stored in the proc context.

col0.data = &row_data->numbers|[(*rows)->num rows % MAX ROWS];
col0.max piece len = sizeof(a sgl int32);

colO.piece len = &row data->piece len;

state->next row++;

(*rows)->num_rows++;

}

if ((*rows)->num rows > 0) {
return 1;
} else {

// When we are finished generating data, we can destroy the
// row block structure.

DestroyRowBlock (tctx->proc context, *rows, 0, false);

row data->rows = NULL; -

return 0;

The first time this method is called, a row block is allocated using the helper function
BuildRowBlock, which isin udf utils.cxx. A pointer to this row block is saved in the
RowData structure for later use.

Row generation is achieved by setting the data pointer for the column data to the address of the
next number in sequence in the previously allocated numbers array. The piece len pointer
for the column data must also be initialized, by setting it to the address of the piece len
member of RowData. Since the rows are a fixed data length, this number is the same for all
rows.

When fetch is called the last time and there is no more data to produce, the row block structure
is destroyed using the DestroyRowBlock helper function in udf utils.cxx.

To accommodate this table UDF generating only 100 unique values,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES issetto avalue of 100. This code
excerpt from the describe method demonstrates this:

static void UDF CALLBACK udf rg describe (

a v4 extfn proc context *ctx)
/***/

{

a v4 extfn estimate distinct = {
MAX ROWS, 1.0
}i

User-Defined Functions 117

Table UDFs and TPFs

// Inform the server that this UDF will produce MAX ROWS
// distinct values for column 1 of its result set.

desc rc = ctx->describe column set
(ctx,
0,
1,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
&distinct,

sizeof (distinct));

UDF CHECK DESCRIBE(ctx, desc rc);

See also
e udf rg 2on page 111
» Implementing Sample Table UDF udf rg 1 on page 106

Running the Sample Table UDF in udf rg 3.cxx

The sample udf _rg 3 isincluded in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

udf rg 3.cxx.

1. To declare the Table UDF to the server, issue:

CREATE OR REPLACE PROCEDURE udf rg 3(IN num INT)
RESULT (cl INT)
EXTERNAL NAME 'udf rg 3@libvé4apiex'

2. Select rows from the table UDF:
SELECT * FROM udf rg 3(200);

This query produces values for c1 from 0...99 followed by 0...99.

apache log reader

The sample table UDF apache log reader reads the contents of an Apache access log
or an Apache error log into table data. It is implemented in the file
apache log reader.cxx inthe samples directory.

A sample access log (apache access.log) and sample error log
(apache error.log) are included in the samples directory.

The apache log reader sample opens the log file inthe open extfn method. It
reads in the data and parses it into the schema supported by the procedure in the

_fetch into_extfn method. It then closes the log file using the close extfn
method.

118

SAP Sybase 1Q

Table UDFs and TPFs

See also

e _open_extfnon page 321

e _fetch into_extfnon page 322
e _close extfnon page 324

Running the Sample Table UDF in apache log reader.cxx

The sample apache log reader is included in a precompiled dynamic library called
libv4apiex (extension is platform-dependent). Its implementation is in the samples
directory in apache log reader.cxx.

1. To declare the table UDF to the server, issue:

create procedure apache log reader
(
in file name varchar (4000),
in log format varchar (32),
in ip padding varchar (1)
)

result

(
ip address varchar(15),
log name varchar (4000),
user name varchar (4000),
access_time datetime,
time zone int,
request varchar (4000),
response int,
bytes sent int,
referer varchar (4000),
browser varchar (4000),
error type varchar (4000),
error msg varchar (4000)

)

external name 'apache log reader@libv4apiex'
2. Selectrows from the table UDF. Use the full path to the access log when executing the SQL
query.

SELECT * FROM apache log reader('apache access.log', 'access',
null);

udf blob
The sample table UDF udf blob illustrates how a table UDF or TPF can read LOB input
parameters using the b1ob API.

udf blob counts the number of occurrences of a letter in the first input parameter. The data
type of parameter 1 can be LONG VARCHAR Or VARCHAR (64) . If the type is LONG
VARCHAR, the table UDF uses the b1ob API to read in the value. If the type is

VARCHAR (64), the entire value is available using get value.

This code snippett fromthe open extfn method illustrates how parameter 1 is read using
the blob API:

User-Defined Functions 119

Table UDFs and TPFs

static short UDF CALLBACK udf blob open (

a vd extfn table context * tctx)
/***************************************/

{

a v4 extfn blob *blob = NULL;
ret = tctx->proc context->get value(tctx->args handle, 2,
&value) ;

UDF SQLERROR RT (tctx->proc context,
"get value for argument 2 failed",
ret == 1,
0)

letter to find = *(char *)value.data;

ret = tctx->proc_context->get value(tctx->args handle, 1,
&value),
UDF SQLERROR RT (tctx->proc context,
"get value for argument 1 failed",

ret == 1,
0)7
1f(EXTFNilsiNULL(value) || EXTFNilsiEMPTY(value)) {
state->return value = 0;
return 1;
}
if(EXTFN IS INCOMPLETE (value)) {

// If the value is incomplete, then that means we
// are dealing with a blob.
tctx->proc_context->get blob(tctx->args handle, 1, &blob);
return value = ProcessBlob(tctx->proc context,
blob,
letter to find);
blob->release(blob);

} else {
// The entire value was put into the value pointer.
return value = CountNum((char *)value.data,

value.piece len,
letter to find);
}

Parameter 1 is retrieved using get value. If the value is empty or NULL, then no further
processing is required. If the value is determined to be a b1 ob using the macro

EXTFN_ IS INCOMPLETE, then the Table UDF gets an instance of a_v4 extfn blob
using the get blob method of a_v4 extfn proc context.The ProcessBlob

120

SAP Sybase 1Q

Table UDFs and TPFs

method reads from the b1 ob to determine how many occurrences of the specified letter are
present.

See also

» Blob (a_v4_extfn_blob)on page 199

e open _extfnon page 321

e get blobon page 304

e External Procedure Context (a_v4_extfn_proc_context) on page 292

Running the Sample Table UDF udf blob.cxx

The sample udf Dblob is included in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

udf blob.cxx.

1. ITo declare the table UDF to the server, issue:

CREATE PROCEDURE udf blob(IN data long varchar, letter char(l))
RESULT (cl BIGINT)
EXTERNAL NAME 'udf blob@libvi4apiex'

2. Select rows from the table UDF:

set temporary option Enable LOB Variables = 'On';
create variable testblob long varchar;

set testblob = 'aaaaaaaaaabbbbbbbbbbbb';

select * from udf blob(testblob, 'a');

The supplied string contains the letter "a™ 10 times.

Query Processing States

The SQL statement that references a UDF goes through query processing states in the SAP
Sybase 1Q server. In each of these states, the server uses the v4 API to communicate and
negotiate with the UDF.

See also

e Generic describe_column Errors on page 325

o EXTFNAPIV4 DESCRIBE COL _TYPE (Set)on page 228
o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211

Initial State

Initial state on the server. The only UDF method called during the Initial state is
_start extfn.

The server calls the start method for each instance of the UDF created. If a query is executed by
a single server thread, then the start method is called once. If a query is handled by several

User-Defined Functions 121

Table UDFs and TPFs

threads, or distributed across several nodes, the server creates different UDF instances and, as
a result, the start method is called several times.

UDFs can set function instance level data within the user data field of the
a v4 extfn proc context structure, which is the argument to the start method.

Annotation State

During the annotation state the server updates the parse tree with the metadata necessary for
efficient and correct query optimization.

The [enter state], describe extfn,and [leave state] methods are
called. The enter stateand leave state methods are optional and called if
provided by the UDF.

The annotation state is represented in the v4 APl by EXTFNAPIV4 STATE ANNOTATION
fromthea v4 extfn state enumeration:

typedef enum a v4 extfn state {
. EXTFNAPIV4 STATE ANNOTATION, ..
} a v4 extfn state;

As a UDF developer, you can perform some initial schema negotiation in this phase. Schema
negotiation can occur either through the UDF describing to the server what it supports, or the
UDF asking the server how it was declared.

When the UDF describes itself to the server, the server detects mismatches and returns SQL
errors back to the client. For example, if a UDF describes that it requires four parameters and
the SQL writer only declared the UDF with two, the server detects this and returns a SQL error
back to the client.

When the UDF itself performs the validation by asking the server how it was declared, it
adjusts its runtime execution accordingly: it either matches the declaratio, or it returns an error
viathe set error v4 API. For example, assume you build a UDF that returns the maximum
value of up to five input scalar integers. At runtime, the UDF determines how many input
parameters were provided and adjusts its internal logic accordingly. SQL analysts could then
create the procedure as:

CREATE PROCEDURE my sum 2(IN a INT, IN b INT) EXTERNAL

"my sum@my lib"

CREATE PROCEDURE my sum 3(IN a INT, IN b INT, IN c INT) EXTERNAL
"my_sum@my_ lib"

Both functions use the same underling implementation of my sum. The UDF recognizes that
there are only two parameters for my sum 2, and attempts to sum parameters 1 and 2. For
my sum_3, the UDF sums parameters 1, 2 and 3.

As a UDF developer, you can obtain values for constant literal parameters only in the
Annotation state. No other values are available until the Execution state. To get parameter

122

SAP Sybase 1Q

Table UDFs and TPFs

values during the annotation state use the describe parameter get method with the
PARM CONSTANT VALUE and PARM IS CONSTANT attributes.

In the Annotation state, UDFs have access to schema describe attributes:

« EXTFNAPIV4 DESCRIBE UDF NUM PARMS

¢ EXTFNAPIV4 DESCRIBE PARM NAME

e EXTFNAPIV4 DESCRIBE PARM TYPE

¢ EXTFNAPIV4 DESCRIBE PARM WIDTH

¢ EXTFNAPIV4 DESCRIBE PARM SCALE

o EXTFNAPIV4 DESCRIBE PARM IS CONSTANT

¢ EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE
« EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS
¢ EXTFNAPIV4 DESCRIBE COL NAME

¢ EXTFNAPIV4 DESCRIBE COL TYPE

¢ EXTFNAPIV4 DESCRIBE COL WIDTH

e EXTFNAPIV4 DESCRIBE COL SCALE

¢ EXTFNAPIV4 DESCRIBE COL IS CONSTANT

e EXTFNAPIV4 DESCRIBE COL_CONSTANT VALUE

During the Annotation phase the UDF can set the above values to define its schema to the
server. If the server detects a mismatch between what the UDF describes and the SQL
procedure declaration, it returns an error. This technique is referred to as se/f-describing.

An alternative technique, schema validation, can be employed by the UDF. This involves the
UDF getting the values for the schema describe types, and then setting an error if amismatch is
detected. With this approach, validation is left to the UDF, but the UDF can choose to support
multiple schemas with a single implementation (for example, the ability to support multiple
datatypes for a given parameter or being able to support varying number of parameters).

See also

o EXTFNAPIV4_DESCRIBE UDF NUM_FARMS Attribute (Get) on page 278

o EXTFNAPIV4_DESCRIBE UDF NUM_FARMS Attribute (Set) on page 280

o EXTFNAPIV4 _DESCRIBE PARM_NAME Attribute (Get) on page 243

o EXTFNAPIV4_DESCRIBE PARM_NAME Attribute (Set) on page 262

o EXTFNAPIV4_DESCRIBE PARM _TYPE Attribute (Get) on page 244

e EXTFNAPIV4 _DESCRIBE PARM_TYPE Attribute (Set) on page 263

» EXTFNAPIV4_DESCRIBE PARM_WIDTH Attribute (Get) on page 245

o EXTFNAPIV4 DESCRIBE PARM_WIDTH Attribute (Set) on page 264

o EXTFNAPIV4_DESCRIBE PARM_SCALE Attribute (Get) on page 246

o EXTFNAPIV4_DESCRIBE PARM SCALE Attribute (Set) on page 265

o EXTFNAPIV4_DESCRIBE PARM_IS CONSTANT Attribute (Get) on page 251
o EXTFNAPIV4 DESCRIBE PARM IS CONSTANT Attribute (Set) on page 267

User-Defined Functions 123

Table UDFs and TPFs

EXTENAPIV4_DESCRIBE PARM_CONSTANT_VALUE Attribute (Get) on page

252

EXTFNAPIVA4_DESCRIBE_PARM_CONSTANT _VALUE Attribute (Set) on page

268

EXTFNAPIV4_DESCRIBE COL NAME (Get)on page 210
EXTFNAPIV4_DESCRIBE COL_NAME (Set) on page 227
EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211
EXTFNAPIV4_DESCRIBE COL _TYPE (Set)on page 228
EXTFNAPIV4_DESCRIBE COL_WIDTH (Get) on page 212
EXTFNAPIV4_DESCRIBE COL_WIDTH (Set)on page 229
EXTFNAPIV4_DESCRIBE COL_SCALE (Get) on page 212
EXTFNAPIV4 DESCRIBE COL _SCALE (Set) on page 230
EXTFNAPIV4_DESCRIBE COL_IS CONSTANT (Get) on page 217
EXTFNAPIV4_DESCRIBE COL IS CONSTANT (Set)on page 234
EXTENAPIV4_DESCRIBE COL_CONSTANT _VALUE (Get) on page 218
EXTFNAPIV4_DESCRIBE COL_CONSTANT _VALUE (Set)on page 234

Query Optimization State

During the Optimization state, the server is in the initial process of constructing a query plan.
The server collects schema information and some preliminary statistical information.

The [_enter state], describe extfn,and [leave state] methods are
called. The enter stateand leave state methods are optional, and called if
provided by the UDF.

The query optimization state is represented in the v4 APl by
EXTFNAPIV4 STATE OPTIMIZATION fromthea v4 extfn state enumeration:

typedef enum a v4 extfn state {

. EXTFNAPIV4 STATE OPTIMIZATION, ..

} a v4 extfn state;

Negotiations during the query optimization state include:

The server and UDF determine the partitioning/ordering/clustering already specified for
input tables.

The server and UDF determine the partitioning/ordering required for input tables.

The UDF declares physical properties (such as an ordering property) for the result table.

The UDF describes any properties and statistics (for example, cost estimates) which can be

used during the query optimization process.

« Table scope estimates include:

e Number of rows— the total number of rows present in the UDF during the

execution state. This value is available for both the input TABLE parameter and the
returned table.

124

SAP Sybase 1Q

Table UDFs and TPFs

* Row size—an estimate of the average number of bytes in each row.
e Column scope estimates include:
« Distinct count —the number of distinct values in a column over the total number of
rows in a table. This value is available for both the input TABLE parameter and the
returned table.

In the Optimization state, UDFs have access to describe attributes:

EXTFNAPIV4 DESCRIBE PARM NAME

EXTFNAPIV4 DESCRIBE PARM TYPE

EXTFNAPIV4 DESCRIBE PARM WIDTH

EXTFNAPIV4 DESCRIBE PARM SCALE
EXTFNAPIV4 DESCRIBE PARM IS CONSTANT
EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE
EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS
EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY
EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND
EXTFNAPIV4 DESCRIBE PARM TABLE HAS REWIND
EXTFNAPIV4 DESCRIBE COL NAME

EXTFNAPIV4 DESCRIBE COL TYPE

EXTFNAPIV4 DESCRIBE_ COL WIDTH

EXTFNAPIV4 DESCRIBE COL SCALE
EXTFNAPIV4 DESCRIBE COL CAN BE NULL
EXTFNAPIV4 DESCRIBE COL IS CONSTANT
EXTFNAPIV4 DESCRIBE COL CONSTANT VALUE
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER
EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT

See also

DEFAULT TABLE UDF ROW COUNT Optionon page 179
EXTFNAPIV4_DESCRIBE _PARM_NAME Attribute (Get) on page 243
EXTFNAPIV4_DESCRIBE PARM_NAME Attribute (Set) on page 262
EXTFNAPIV4_DESCRIBE PARM_TYPE Attribute (Get) on page 244
EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Set) on page 263
EXTFNAPIV4_DESCRIBE PARM_WIDTH Aftribute (Get) on page 245
EXTFNAPIV4_DESCRIBE PARM_WIDTH Afttribute (Set) on page 264
EXTFNAPIV4 DESCRIBE PARM _SCALE Attribute (Get) on page 246
EXTFNAPIV4_DESCRIBE _PARM_SCALE Attribute (Set) on page 265
EXTFNAPIV4_DESCRIBE PARM IS CONSTANT Attribute (Get) on page 251

User-Defined Functions 125

Table UDFs and TPFs

o EXTFNAPIV4_DESCRIBE PARM_IS CONSTANT Attribute (Set) on page 267

« EXTFNAPIV4 DESCRIBE PARM_CONSTANT VALUE Attribute (Get) on page
252

o EXTFNAPIV4_DESCRIBE PARM_CONSTANT_VALUE Attribute (Set) on page
268

o EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Get) on
page 253

EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Set) on
page 268

« EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Attribute (Get) on page
254

« EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Attribute (Set) on page
269

o EXTFNAPIV4 DESCRIBE PARM_TABLE ORDERBY Attribute (Get) on page 255
o EXTFNAPIV4_DESCRIBE PARM_TABLE ORDERBY Attribute (Set)on page 270
» EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Get)on page 256
EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Set)on page 272

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Get) on
page 258

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Afttribute (Set)on
page 273

o EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Get) on page
259

« EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Set) on page
275

« EXTFNAPIV4_DESCRIBE COL_NAME (Get)on page 210

« EXTFNAPIV4_DESCRIBE COL_NAME (Set) on page 227

« EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211

« EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 228

« EXTFNAPIV4 DESCRIBE COL_WIDTH (Get) on page 212

« EXTFNAPIV4 DESCRIBE COL_WIDTH (Set)on page 229

« EXTFNAPIV4_DESCRIBE COL_SCALE (Get)on page 212

« EXTFNAPIV4_DESCRIBE COL_SCALE (Set)on page 230

« EXTFNAPIV4_DESCRIBE COL_CAN_BE NULL (Get)on page 213
EXTFNAPIV4_DESCRIBE COL_CAN_BE_NULL (Set)on page 231

« EXTFNAPIV4 DESCRIBE COL_IS CONSTANT (Get)on page 217

« EXTFNAPIV4 DESCRIBE COL_IS CONSTANT (Set)on page 234

« EXTFNAPIV4_DESCRIBE COL_CONSTANT VALUE (Get)on page 218
« EXTFNAPIV4_DESCRIBE COL_CONSTANT VALUE (Set)on page 234
« EXTFNAPIV4_DESCRIBE COL_IS USED BY CONSUMER (Get)on page 219

126 SAP Sybase IQ

Table UDFs and TPFs

« EXTFNAPIV4_DESCRIBE COL_IS USED BY CONSUMER (Set)on page 235
« EXTFNAPIV4_DESCRIBE COL_VALUES SUBSET_OF_INPUT (Get)on page
225

- EXTENAPIV4 DESCRIBE COL_VALUES SUBSET OF INPUT (Set)on page
240

Plan Building State

During the plan building state, the server builds the query execution plan based on the best plan
found during the query optimization state.

The [_enter state], describe extfn,and [leave state] methods are
called. The enter stateand leave state methods are optional and called if
provided by the UDF.

The plan building state is represented in the v4 API by
EXTFNAPIV4 STATE PLAN BUILDING fromthea v4 extfn state
enumeration:

typedef enum a v4 extfn state {
. EXTFNAPIV4 STATE PLAN BUILDING, ..
} a v4 extfn state;

At this point in query processing, the server determines what columns are needed from the
UDF, and requests information about the columns needed from the TABLE parameters.

If the UDF supports parallel processing, and if the server agrees that the query is eligible for
parallelism, the server creates multiple instances of the UDF for distributed query processing.

In the Plan Building state, UDFs have access to all describe attributes.

As an example, the following code fragment queries the server to determine which columns

are used:

a sqgl int32 EQg

rg udf *rgUdf = (rg udf *)ctx-> user data;

rg table *rgTable = rgUdf->rgTable;

a sgl uint32 buffer size = 0;

buffer size = sizeof(a v4 extfn column list) (rgTable-
>number of columns - 1) * sizeof(a sgl uint32);

a v4 extfn column list *ulist = (a_v4 extfn column list *)ctx-
>alloc (

ctx,
buffer size);
memset (ulist, 0, buffer size);

rc = ctx->describe parameter get(ctx,
0,

EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS,

ulist,

buffer size);

if(rc != buffer size) {

User-Defined Functions 127

Table UDFs and TPFs

ctx->free(ctx, ulist);
UDF_SQLERROR(PC(ctx), "Describe parameter type get failure.",
rc == buffer size);
} else {
rgTable->unused col list = ulist;

}

Assuming the above code fragment is from a Table UDF that produces 4 result set columns,
and assuming the SQL statement was
SELECT cl, c2 FROM my table proc();

thenthe describe APl returns only c1 and c2. This lets the UDF optimize the production of
the result set values.

See also
» Describe AP/ on page 208

Execution State
During the execution state, the server makes an execution call into the UDF.

The execution plan, created in the plan building state, is used in the execution state to compute
the result set of the SQL query.

These methods can be called: [enter state], describe extfn,
evaluate extfn, open extfn, fetch into extfn,
_fetch block extfn, close extfn, [leave state], and
_finish extfn.

The execution state is represented inthe a_v4 extfn state API by this enumeration:

typedef enum a v4 extfn state {
. EXTFNAPIV4 STATE EXECUTING, ..
} a v4 extfn state;

In the execution state:

* Input TABLE parameter rows and nonconstant scalar input parameter values are available.
* The UDF can open a result set on input TABLE parameters, and fetch rows.

Executing Partition State
If an input TABLE parameter exists, and if a PARTITION BY clause exists in the SQL query,
then the server invokes the UDF once per available partition.

Row Block Data Exchange

A row block is the data transfer area between the producer and the consumer.

A table UDF can only produce rows. It can use an existing row block, or it can build its own
row block.

128 SAP Sybase IQ

Table UDFs and TPFs

A TPF can both produce and consume rows. A TPF produces rows in the same way a table
UDF produces rows and can use an existing row block or build its own row block. A TPF can
consume rows from an input table and can provide the producer with a row block, or request
the producer to create its own row block.

See also

e Row Block (a_v4_extfn_row_ block) on page 309

o Table (a_v4_extfn_table) on page 310

» Table Functions (a_v4_extfn_table func)on page 319
e _open _extfnon page 321

_fetch _into_extifn on page 322

e fetch block extfnon page 322

e _rewind extfnon page 323

e _close _extfnon page 324

Fetch Methods for Row Blocks
The fetch methods for row blocks are _fetch into extfnand
_fetch block extfn. These methods are part of the a v4 extfn table func
structure.

When producing data, if the table UDF or TPF builds its own row block, the UDF must provide
the fetch_block API method. If the UDF does not build its own row block, the UDF must
provide the fetch into API method.

When consuming data, if the TPF builds its own row block, the UDF callsthe fetch _into
method on the producer. If the TPF does not build its own row block, the TPF must call the
fetch block method on the producer.

The UDF can select which fetch method to use for data production and consumption. In
general, these guidelines apply:

« fetch_into—Use this APl when the consumer owns the memory for the data transfer area
and requests that the producer use this area. In this scenario, the consumer cares about how
the data transfer area is set up, and the producer performs the necessary data copies into
this area.

« fetch_block —Use this API when the consumer does not care about the format of the data
transfer area. fetch block requests the producer to create a data transfer area and
provides a pointer to that area. The consumer owns the memory and the consumer is
responsible for copying data from this area.

See also

o Table Parameterized Functions on page 136
e fetch_intoon page 313

o fetch block on page 316

User-Defined Functions 129

Table UDFs and TPFs

The fetch block Method
Use the fetch block method for underlying data storage.

The fetch block method is used as an entry point when the consumer does not need the
data in a particular format. fetch block requests that the producer create a data transfer
area and provide a pointer to that area. The consumer owns the memory and takes
responsibility for copying data from this area.

The fetch block method is more efficient than fetch into, if the consumer does not
need a specific layout. The fetch block call provides a row block that can be populated,
and this block is passed on the next fetch block call. This method is part of the

a v4 extfn table context structure.

If the underlying data storage does not map easily to the row block structure, the UDF can
simply point the row block to addresses in its memory. This prevents unnecessary data copies
to satisfy another memory layout scheme.

The API uses a data transfer area that is defined by the structure

a v4 extfn row block,whichisdefined as aset of rows, where each row is defined as
a set of columns. The row block creator can allocate enough storage to hold a single row or a
set of rows. The producer can fill the rows, but cannot exceed the maximum number of rows
allocated for the row block. If the producer has additional rows, the producer informs the
consumer by returning the numeric value 1 from the fetch method.

Fetch is executed against a table object, which is either the object produced as the result set of a
table UDF or the object consumed as a result set of an input TABLE parameter.

See also
» Using a Row Block to Produce Data on page 131
e fetch_blockon page 316

The fetch_into Method
Use the fetch into APl when the consumer owns the memory for the data transfer area
and requests that the producer use this area.

The fetch into method is useful when the producer does not know how data should be
arranged in memory. This method is used as an entry point when the consumer has a transfer
area with a specific format. The fetch into () function writes the fetched rows into the
provided row block. This method is partofthea v4 extfn table context structure.

The API uses a data transfer area that is defined by the structure

a v4 extfn row block,whichisdefined asaset of rows, where each row is defined as
a set of columns. The creator of the row block can allocate enough storage to hold a single row
or a set of rows. The producer can fill the rows, but cannot exceed the maximum number of
rows allocated for the row block. If the producer has additional rows, the producer informs the
consumer by returning the numeric value 1 from the fetch method.

130

SAP Sybase 1Q

Table UDFs and TPFs

This API enables consumers to optionally construct the row block, such that the data pointers
refer to its own data structures. This allows the producer to directly populate memory within
the consumer. A consumer may not want to do this, if data cleansing or validation checks are
required first.

Fetchis executed against a table object, which is either the object produced as the result set of a
table UDF or the object consumed as a result set of an input TABLE parameter.

See also
» Using a Row Block to Produce Dataon page 131
» fetch_intoon page 313

Using a Row Block to Produce Data
A table UDF or TPF can use row block structures to produce data.

Thea v4 extfn row_ block row block has three fields:

* max_rows—How many table rows the row block can store in a piece of memory.

e num_rows—The number of rows actually produced or available for consumption. Cannot
be larger than max_rows.

* row_data—The array of rows produced or available for consumption. Each row is an
a v4 extfn row structure.

See also

o Table UDF Implementation Examples on page 105

e fetch_intoon page 313

e fetch_blockon page 316

» Row Block (a_v4_extfn_row_block) on page 309

* Row (a_v4_extfn_row)on page 309

e Column Data (a_v4_extfn_column_adata) on page 204

Producing Data Using fetch into
Use the fetch into API method to produce data.

1. Set num_ rows to a value based on the number of rows produced in the fetch call.

2. Foreachrowproduced,setthe row statusflagofa v4 extfn rowtol (available)
or 0 (not available). The default value is 1.

3. Foreachcolumn(a_v4 extfn column data) inthe row set:

Options | Description

is_null Set to true, if the value returned is NULL. The default is false.

User-Defined Functions 131

Table UDFs and TPFs

Options | Description

data The data returned must be copied into this pointer

piece_len | The actual length of data returned. For fixed-length data types, this cannot
exceed max_piece len. Defaults to max piece len for fixed data types.

4. For each column, return 1 to indicate rows produced, and return 0 to indicate otherwise.

Producing Data Using fetch block
Use the fetch block APl method to produce data.

1. Setmax rows to the number of rows the producer-allocated row block structure can
hold.

2. On the first fetch call, allocate a row block structure that can hold max_rows.

3. Setnum_rows to a value based on the number of rows produced in the fetch call.

4. Foreachrowproduced, setthe row statusflagofa v4 extfn rowtol (available)
or 0 (not available). The default value is 1.

5. Foreach column (a_v4 extfn column data) in the row set:

null_value | Indicates the value is used to indicate NULL

null_mask | Identifies the bits that represent the NULL value.

is_null If the value is NULL, set is_null to a value such that (* (cd-
>is null) & cd->null mask) == cd->null value).
data Set this pointer to the area in the producer's memory containing the data to

be returned.

piece_len | The actual length of data being returned. For fixed-length data types, this
cannot exceed max_piece_len. This value defaults to max_piece len for
fixed data types.

6. Return1from fetch into to indicate rows were produced, and return 0 to indicate
otherwise. On the last fetch call, deallocate any memory that is allocated for the row block
structure.

Row Block Allocation

Row block allocation is required when a producer produces data using the fetch block
method or when the consumer uses the fetch into method to retrieve data.

udf utils.cxx contains sample code thatillustrates how to allocate and deallocate a row
block.

132

SAP Sybase 1Q

Table UDFs and TPFs

These relevant data structures in the ext fnapiv4 . h header file are used when allocating a

row block:

typedef struct a v4 extfn column data {
a_sql byte *is null;
a_sql byte null mask;
a sql byte null value;
void *data;
a_sgl uint32 *piece len;
size t max piece len;
void *blob_handle;

} a v4 extfn column data;

typedef struct a v4 extfn row {
a sql uint32 *row_status;
a v4 extfn column data *column data;
} a v4 extfn row;

typedef struct a v4 extfn row block {

a_sgl uint32 max rows;
a sgl uint32 num_ rows;
a v4 extfn row *row_data;

} a_ v4 extfn row block;

When allocating a row block, the developer must decide how many rows the row block is
capable of holding, how many columns each row has, and the number of bytes required for
each of those columns.

For arow block of size m, where each row has n7columns, the developer must allocate an array
ofm a_v4 extfn rowstructures. Foreach row inthis array, the developer must allocate 77
a v4 extfn column_ data structures.

These tables outline allocation requirements for each member of the row block structures:

Table 2. a_ v4_extfn_row_block Structure

Field Requirement
max_rows Set to the number of rows this row block can hold
num_rows Initialize to zero. Is set to the number of actual

rows a row block contains during usage

*row_data Allocate an array containing max_rows of
a v4 extfn row structures

Table 3. a_v4 _extfn_row Structure

Field Requirement

*row_status Allocate enough memory to hold ana_sql_uint32

User-Defined Functions 133

Table UDFs and TPFs

Field Requirement

*column_data Allocate an array containing the number of col-
umnsintheresultsetofa v4 extfn col-
umn_data structures

Table 4. a_v4_extfn_column_data Structure

Field Requirement

*is_null Allocate enough memory to hold an a_sql_byte

null_mask Set to a value such that the formula (*is_null &
null_mask) == null_value indicates a column
value is NULL

null_value Set to a value such that the formula (*is_null &
null_mask) == null_value indicates a column
value is NULL

*data Allocate an array of bytes large enough to hold
the data for the data type of the column

*piece_len Allocate enough memoryto holdana_sql_uint32

max_piece_len Set to the maximum width for the column

*plob_handle Always owned by the server. Initialize to NULL.

See also

SQL Data Typeson page 9
External Procedure Context (a_v4_extfn_proc_context) on page 292

Table UDF Query Plan Objects

The table UDF values and TPF values visible in the query plan.

BlocksFetched —shows the number of chunks used to transfer all the data produced by the
UDF. This value equates to the number of times the server called the fetch method of the
UDF.

Maximum rowsper _fetch into_extfn —(visible ony if the UDF is using
_fetch into_extfn.)Displaysthe maximum number of rows a UDF can produce on
eachcallto fetch into extfn asdetermined by the server.

Minimum/M aximum values for an output column —displays minimum/maximum
values per column if the UDF has set them via

extfnapiv4 describe col maximum value. Minimum/maximum appear
only for arithmetic data type columns.

134

SAP Sybase 1Q

Table UDFs and TPFs

* ORDERBY node(TPF only) —fora TPF, the query plan shows an ORDER BY node as a
child of the TPF SubQuery node. The ORDER BY node indicates that the data is ordered
as it flows into the TABLE parameter.

» Output Row Width—(visible only ifthe UDF isusing fetch into extfn.) Shows
the width of an output column in bytes. This value is used in calculating the maximum
number of rows.

* TableUDF node—represents an instance of a table UDF in the query. The TableUDF node
is a leaf node.

* TPF node(TPF only) —same as the TableUDF node except that TPF node permits use of
an input TABLE parameter. Unlike a TableUDF node which is a leaf node, the TPF is an
interior node with at most one child.

* TPF SubQuery node(TPF only)—child of the TPF node. Represents the subquery for the
input table argument.

e UDF Library — UDF library file name. Shows the full path on disk from which the
dynamic library implementing the UDF was loaded.

* Uniqueness of an output column — reflects the value set by
extfnapiv4 describe col is unique.

« TABLE _UDF_ROW_BLOCK_SIZE_KB —option value displays in query plan
statistics if you specify a value other than 128KB.

Enabling Memory Tracking

Enable memory tracking to help you locate memory leaks in your UDFs, and to free the leaked
memory. Memory tracking imposes a performance penalty.

Enabling memory tracking tracks all invocations of a_v4 extfn proc context
allocanda v4 extfn proc context free. An allocations without a matching
free is logged to the i gmsg file.

1. Ensure the external_UDF_execution_mode is set to 1 or 2 (validation mode or tracing
mode).

2. Usethe alloc and free methodsof a v4 extfn proc context.

See also
e allocon page 301
e freeon page 302

User-Defined Functions 135

Table UDFs and TPFs

Table Parameterized Functions

A Table parameterized function (TPF) is an extension of a table UDF that accepts table input
parameters in addition to scalar input parameters.

You can configure user-specified partitioning for your TPF. The UDF developer can declare a
partitioning scheme that breaks down the dataset into smaller pieces of query processing that
you distribute across multiplex nodes. This enables you to execute the TPF in parallel in a

distributed server environment over partitions of row sets. The query engine supports massive

parallelization of TPF processing.

Note: Multiplex requires a separate license. See Administration: Multiplex.

Learning Roadmap for TPF Developers

Develop a C or C++ TPF.

This roadmap assumes:

* You have a C or C++ development environment on your machine.
« For the optional data partitioning capability, you have a multiplex environment. See

Administration: Multiplex.

Task

See

Familiarize yourself with table UDF develop-
ment.

Learning Roadmap for Table UDF Developerson
page 97

Follow the recommended procedure for creating
aTPF.

Developing a TPF on page 136
TPF Implementation Examples on page 156

Establish a table context for the input table and
consume table rows from it.

Consume TABLE Parameters on page 137

(Optional) Order incoming data.

Order Input Table Data on page 140

(Optional) Partition the incoming data to enable
parallel TPF processing in your multiplex.

Partitioning Input Data on page 140

Developing a TPF

Review the major steps required to develop a TPF.

Consume input parameters.
. (Optional) Order input table data.
. (Optional) Partition input table data.

INIEAR S

Perform the same steps required to develop a table UDF.

136

SAP Sybase 1Q

Table UDFs and TPFs
5. (Optional) Enable parallel TPF processing.

See also

e Consume TABLE Parameters on page 137
e Order Input Table Data on page 140

e Partitioning Input Data on page 140

e _gpen _extfnon page 321

e _fetch into_extfnon page 322

e _fetch block extfnon page 322

» _rewind_extfnon page 323

e _evaluate extfnon page 290

» Developing a Table UDF on page 103

Consume TABLE Parameters

A TABLE parameter is a non-constant parameter. This means that the TPF must be in the
execution state to retrieve TABLE parameters.

The TPF can retrieve the TABLE parameter from these methods:

e open_extfn

e fetch into extfn
e fetch block extfn
e rewind extfn

e evaluate extfn

To consume a TABLE parameter, the TPF must:
Obtain a Table Object

The TPF obtains a table object for the TABLE parameter using the get value method of
a v4d extfn proc context.

Atableobject (a_v4 extfn table) can initiate retrieving rows from an input table. The
following code snippet illustrates how get value obtains a table object for parameter 1.
For simplicity, this code assumes that parameter 1 is a table.

a v4 extfn value value;
a v4 extfn table * table;

ctx->get value(args handle,
1,
&value) ;

table = (a_v4 extfn table *)value.data;

User-Defined Functions 137

Table UDFs and TPFs

See also
e get valueon page 294

Open the Result Set

Once a table object has been obtained using get value, the TPF must open a result set on
the table object using the open result set method of

a v4 extfn proc context before it can fetch any rows.

Calling open result set returnsaninstance of a v4 extfn table context
that the TPF can use to process table data. It also saves the table object in the table member of
thea v4 extfn table context object.

The following code snippet illustrates how open result set gets an instance of
a v4 extfn table context for fetching rows:

a v4 extfn table context * rs = NULL;

ctx->open result set(ctx,
(a_v4 extfn table *)value.data,
&rs));

See also
e open result seton page 303
o Table Context (a_v4_extfn_table _context) on page 311

Fetch from the Result Set
The TPF fetches table data from an input table using an open result set.

Fetching is accomplished by calling either fetch blockor fetch into onthe

a v4 extfn table context object returned from open result set. The TPF
can choose which fetch method touse. If fetch_blockisused, the server is responsible for
rowblock allocation. If fetch into is used, the TPF is responsible for row block
allocation.

Each call to the fetch method returns either nothing, which is indicated by a return value of
false, or returns a populated row block structure. The row block structure can then be used to
consume the table data.

See also

e fetch_intoon page 313

» fetch blockon page 316

» Row Block Data Exchange on page 128

138

SAP Sybase 1Q

Table UDFs and TPFs

Consume Table Data Using a Row Block
The TPF consumes table data using the fetch into or fetch block row block
structures.

Each successful call to either fetch into or fetch block populates a
a_v4 extfn row block structure.

Thea v4 extfn row block members are:

* max_rows—the number of table rows the row block can store in a piece of memory.

e num_rows—the number of rows actually produced or available for consumption. Cannot
be larger than max _rows.

¢ row_data—the array of rows produced or available for consumption. Each row is an
a_v4 extfn row structure.

Each row of table data in row_data has these members:

* row_stats—indicates whether values for this row are present. A value of 1 means the
values are present; 0 means the values are not.
¢ column_data—the column data associated with this row.

The column_data members are:

Member Description

null value The value representing NULL

null mask One or more bits used to represent the NULL
value

data Pointer to the data for the column. Depending on

the type of fetch mechanism, either points to an
address in the consumer, or an address where the
data is stored in the UDF.

piece len The actual length of data for variable-length data
types
blob A non-NULL value means that the data for this

column must be read using the b1 ob API

See also

e Column Data (a_v4_extfn_column_adata) on page 204
e Row Block (a_v4_extfn_row_block) on page 309

e Row (a_v4_extfn_row)on page 309

e get blobon page 318

User-Defined Functions 139

Table UDFs and TPFs

Close the Result Set
Once the TPF is finished processing table data, it closes the open result set using the
close result set methodofa v4 extfn proc context.

This code snippet illustrates close result set closing a result set.

ctx->close result set(ctx,
rs))i

Order Input Table Data

Either a SQL Analyst or the UDF developer can order incoming data.
A SQL Analyst controls ordering by including the ORDER BY clause in a SELECT statement.

The UDF developer controls ordering by using the DESCRIBE_PARM_TABLE_ORDERBY
attribute.

Both methods result in the server ordering the incoming data, the results of which can be see in
the query plan in the Order node.

See also
o EXTFNAPIV4 DESCRIBE PARM_TABLE ORDERBY Alttribute (Get)on page 255
o EXTFNAPIV4 _DESCRIBE PARM_TABLE ORDERBY Attribute (Set)on page 270

Partitioning Input Data

Use the PARTITION BY clause to express and declare invocation partitioning in your parallel
TPF.

As a SQL analyst, you can efficiently utilize system resources by leveraging the server query
parallelism and distribution features available with the PARTITION BY clause in your SQL
queries. Depending on the clause specified, the server may partition data into distinct value-
based sets of rows or by row-range sets of rows.

* Value-based partitions —determined by key values on an expression. These partitions
provide value when a computation depends on seeing all rows of the same value for
aggregation.

* Row-based partitions—simple and efficient means to divide a computation into multiple
streams of work. Used when a query must be executed in parallel.

You can express a design for partition via the PARTITION BY <expr> clause on the TABLE
parameter to a TPF. UDF developers can utilize the TABLE parameter metadata attribute
EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY to programmatically declare that
the UDF requires partitioning before invocation can proceed. The UDF can inquire to the
partition to enforce it, or to dynamically adapt the partitioning.

140

SAP Sybase 1Q

Table UDFs and TPFs

See also

e Parallel TPF PARTITION BY Examples Using
EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 143

« EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Get)on page 256
. EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Set)on page 272

» V4 API describe_parameter and
EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 141

V4 APIl describe parameter and

EXTENAPIV4 DESCRIBE PARM _TABLE PARTITIONBY

You can use describe parameter set and describe parameter get for
partitioning an input TABLE parameter for required columns.

Declaration
The describe parameter API has two declarations.

describe_parameter_set Declaration
a sgl int32 (SQL CALLBACK *describe parameter set) (

a v4 extfn proc context *cntxt,

a sql uint32 arg_num,

a v4 extfn describe parm type describe type,
void *describe buffer,
size t describe buffer

)

describe_parameter_get Declaration
a sgl int32 (SQL CALLBACK *describe parameter get) (

a v4 extfn proc context *cntxt,

a sqgl uint32 arg num,

a v4 extfn describe parm type describe type,
const void *describe buffer,
size t describe buffer

)

Usage
In order to use these APIs, the arg_num must refer to a TABLE parameter, and the
describe_buffer must refer to the type of memory block a v4 extfn column list

structure.

typedef struct a v4 extfn column list ({
a sql int32 number of columns;
a_sgl uint32 column_ indexes[1];

} a_v4_efon_column_list;
The structure field number_of_columns must have one of these values:

 Positive integer N, where N indicates the number of columns present in the partition by
list.

User-Defined Functions 141

Table UDFs and TPFs

¢ 0, which indicates PARTITION BY ANY.
« -1, which indicates NO PARTITION BY.

This enumerated type is defined in the ext fnapiv4.h header file:

typedef struct a v4 extfn column list ({
a sql int32 number of columns;
a_sgl uint32 column_ indexes[1];
} a v4 extfn column list;

Youcanusethe v4 extfn partitionby col numenumerated type to build the
column list structure and execute the describe parameter set and

describe parameter get API to inform the server of its requirements and to
determine which input columns have been partitioned. The execution of

describe parameter set and describe parameter get APIscan have
following scenarios:

describe_parameter_set Scenarios

column Index Description

Scenarios

{11} Input table column #1 is partitioned as per UDF request.

{2,3,1} Input table columns #3 and #1 are partitioned as per UDF request.

{0} UDF can support any form of input table partitioning as per UDF request.

describe_parameter_get Scenarios

column Index Scenarios Description

{12} Input table column #2 is being partitioned on.

{2,1,2} Input table columns #1 and #2 are being partitioned on.
{0} Input table being partitioned by a noncolumn based scheme.
NULL No runtime partitioning is provided.

Note: A PARTITION BY expression other than PARTITION BY ANY or PARTITION BY NONE
must appear in the select list for the input query.

See also

« Describe AP/ on page 208

Partition By Column Number (a_v4_extfn_partitionby col num)on page 307
o EXTFNAPIV4_DESCRIBE PARM_TYPE Attribute (Get) on page 244

142

SAP Sybase 1Q

Table UDFs and TPFs

o EXTFNAPIV4 DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Get) on
page 253

o EXTFNAPIV4 DESCRIBE PARM_TYPE Alttribute (Set) on page 263

o EXTFNAPIV4 DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Set) on
page 268

e« EXTFNAPIV4 DESCRIBE COL _TYPE (Get)on page 211

o EXTFNAPIV4 DESCRIBE COL _TYPE (Set)on page 228

Parallel TPF PARTITION BY Examples Using

EXTENAPIV4 DESCRIBE PARM TABLE PARTITIONBY

Develop partitioning using the PARTITION BY <expr> clause on the TABLE parameter to a
TPF function. As a UDF developer, use the TABLE parameter metadata attribute
EXTFNAPIV4 DESCRIBE_PARM TABLE PARTITIONBY toprogrammatically declare
that the UDF requires partitioning before invoking it.

The examples illustrate:

» Various SQL writer scenarios where the UDF describes partitioning requirements to the
server

» Valid queries and invalid queries (SQL exceptions) for each scenario
* How the server detects mismatches

« Thevarious possible combinations that arise from usage of the PARTITION BY SQL clause
and the EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY UDF attribute

See also
e Partitioning Input Data on page 140

Example Procedure Definition
An example procedure definition that supports TPF PARTITION BY clause examples.

All TPF PARTITION BY clause examples in this section assume that you first execute this
procedure definition:

CREATE PROCEDURE my tpf(argl TABLE(cl INT, c2 INT))
RESULTS (rl INT, r2 INT, r3 INT)
EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

See also

» describe_parameter_set Example # 1: One-Column Partitioning on Column 1 on page
144

* describe_parameter_set Example # 2: Two-Column Partitioning on page 146
* describe_parameter_set Example # 3: Any-Column Partitioning on page 148

» describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause on
page 150

User-Defined Functions 143

Table UDFs and TPFs

o describe_parameter_set Example # 5. No Partitioning Support on page 151

e describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

describe _parameter_set Example # 1: One-Column Partitioning on Column 1
An example UDF that informs the server to perform partitioning on column 1 (c1).

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context

*ctx)
{
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sql int32 rel =0
a v4 extfn column list pbcol =
{1, // 1 column in the partition by list
1} // column index 1 requires partitioning
// Describe partitioning for argument 1 (the table)
rc = ctx->describe parameter set(
CE%,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));
if(rc ==) |
ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}
}
See also

» Example Procedure Definition on page 143

» describe_parameter_set Example # 2. Two-Column Partitioning on page 146

* describe_parameter_set Example # 3: Any-Column Partitioning on page 148

e describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause on
page 150

e describe_parameter_set Example # 5. No Partitioning Support on page 151

* describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

144 SAP Sybase IQ

Table UDFs and TPFs

SQL Writer Semantics for One-Column Partitioning on Column 1
Example queries valid for one-column partitioning on column 1 (c1).

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x))

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer also explicitly requests partitioning on the same column. When the
two columns match, the above query proceeds without any errors using this negotiated query:
my tpf(TABLE(SELECT T.x, T.y FROM T)

OVER (PARTITION BY T.x))
V4 describe parameter get API returns: { 1, 1 }

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY))

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer only wants the query engine to execute the UDF on partitions. The
server uses the UDF's preference for partitioning and as a result the same effective query in
Example 1 is executed.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T))

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY DEFAULT))

This example shows that the SQL writer does not include the PARTITION BY clause or the
PARTITION BY DEFAULT clause as part of the input table query specification. In this case, the
specification requested by the UDF applies, which is to perform partitioning on column T.x.

SQL Exceptions for One Column Partitioning on Column 1
Example queries not valid for one column partitioning on column 1 (c1). Each example raises
a SQL exception.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y))

User-Defined Functions 145

Table UDFs and TPFs

In this example the UDF describes to the server that the data is partitioned by the first column
(T.x) and that the SQL writer is also explicitly requesting partitioning on a different column
(T.y) which conflicts with what the UDF is requesting and as a result the server returns a SQL
error.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(NO PARTITION BY))

This example conflicts with the request made by the UDF because the SQL writer does not
want the input table partitioned and as a result the server returns a SQL error.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x, T.y))

In this example the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer requests partitioning on columns (T.x and T.y) which conflicts with
what the UDF is requesting and as a result the server returns a SQL error.

describe parameter set Example # 2: Two-Column Partitioning

An example UDF that informs the server to perform partitioning on column 1 (c1) and column
2 (c2).

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
*ctx)

{

if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sqgl int32 e = 03
a v4 extfn column list pbcol =

{ EXTFNAPIV4 PARTITION BY COLUMN ANY };

// Describe partitioning for argument 1 (the table)

rc = ctx->describe parameter set(
CER,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));
if(re == 0) {

ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}

146

SAP Sybase 1Q

Table UDFs and TPFs

See also

e Example Procedure Definition on page 143

o describe_parameter_set Example # 1. One-Column Partitioning on Column 1 on page
144

e describe_parameter_set Example # 3. Any-Column Partitioning on page 148

e describe_parameter_set Example # 4. No Support for PARTITION BY ANY Clause on
page 150

o