User-Defined Functions

SAP Sybase 1Q 16.0 SP03

DOCUMENT ID: DC01034-01-1603-01

LAST REVISED: December 2013

Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.

These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see Atip.//www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

AUAIBNCE . 1
Understanding User-Defined FUNCLIONScccooevvvvviiineeennne. 3
Learning Roadmap: Types of UDFS.........ccccovvevviviininnnnn. 5
Learning Roadmap: Types of External C and C++
UD S .t 6
User-Defined Functions Compliance with SAP
Sybase IQ Databasescccovvvviiiiiiiiiiiiiie e 7
Practices t0 AVOIdeuuuviiiiiiiiiiiiiienre e 8
Naming Conventions for User-Defined Functions............ 8
SQL Data TYPES oveiiiiiieeiei ettt 9
Unsupported Data TYPeSccooeeeeeeeeiiiiiiiiiiiiiiins 14
BUilding UDFS ...coooiiiiiii, 15
Design Basics of User-Defined Functions..................... 15
Sample Codeooovvviiiiiiiieeeeee e 15
Setting the Dynamic Library Interfacecccccevvvne. 15
Upgrading to the v4 APloovvviiiiiiiie e, 16
Library Version (extfn_get_library_version).................. 17
Library Version Compatibility
(extfn_check_version_compatibility)cccceeeeee 17
License Information (extfn_get_license_info)............... 18
Adding the extfn_get_license_info Method........... 19
Compile and Link Source Code to Build Dynamically
Linkable Librariesccooveeiiiiiiiiiiieeieeeiee e, 19
Compiling and Linking the Sample UDFs for
WINAOWS ...t 20
Compiling and Linking the Sample UDFs for
UNDX e e 21
ADX SWILCNES ... 21
HP-UX SWItCheSoiiiiiiiiiiiii e 22
LinUX SWItChES ... 22
Solaris SWItChescoviiiiiiiii e, 23

User-Defined Functions iii

Contents

WiINdOWS SWILChESccovvviiiiiiiie e 24
Testing User-Defined FUNCLioNSccccceeeiiiiieeeeeennee, 25
Enabling and Disabling User-Defined Functions
... 25
Initially Executing a User-Defined Function......... 26
Controlling Error Checking and Call Tracing......... 27
Viewing SAP Sybase IQ Log Files............ccccc...... 28
Using Microsoft Visual Studio Debugger for
User-Defined Functionsccccciiiiinnnnnne 28
Modifying the UDF at RuNtimeccccoeeeeeeevivvveeeiinnns 28
Granting the Privilege To Run a Procedure................... 29
Dropping User-Defined Functions................ccccveeveeeennn. 30
Scalar and Aggregate UDFSccoovvviiiiiiiiiecceeee e, 31
Scalar and Aggregate UDF Restrictions.............cccc....... 31
Creating a Scalar or Aggregate UDFcovvvvvinnnees 32
Declaring and Defining Scalar User-Defined
FUNCHIONS ... 32
Declaring and Defining Aggregate UDFs............. 46
Calling Scalar and Aggregate UDFs..............cuvvvviiinnnnee 81
Scalar and Aggregate UDF Calling Patterns................ 82
Scalar and Aggregate UDF Callback Functions
... 82
Scalar UDF Calling Pattern.............ccccccvvvvininnnee. 84
Aggregate UDF Calling Patterns................cc....... 84
Table UDFs and TPFS ..., 97
USEI ROIES ...oooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 97
Learning Roadmap for Table UDF Developers............. 97
Learning Roadmap for SQL Analysts..........cccceeeeeeeennen. 98
Table UDF ReSIICHONSvvieiiieiiiiiieeeeeeeeeeiiie e 99
Get Startedooooveieeee 99
Sample FileSuuuiiiiiiiiiiiiiiiiiiiie 99
Understanding Producers Versus Consumers...101
Developing a Table UDF ..., 103
Table UDF Implementation Examples............... 105
Query Processing Statescccovvvveeeeeeeiiiieiiiiiiiiiiiienns 121

iv SAP Sybase 1Q

Contents

INitial Stateooeeeeeeeiie e 121
ANNOtation Stateuvvvvviiiiiiiiiie e 122
Query Optimization Statecoevveiiiieeeiennnns 124
Plan Building Statecccoooevviiiiiiieeeeiee e, 127
Execution Stateoooovvviiiiiiiiiiiii e 128
Row Block Data Exchangecccccceeeeeevieiiiinieceeennnnn, 128
Fetch Methods for Row Blocks..............cccevveeee. 129
Using a Row Block to Produce Data.................. 131
Row Block Allocationccooeevveeiiiiiiiiiieicie e, 132
Table UDF Query Plan Objects..........cccccceeiiiiiieeeennnn. 134
Enabling Memory Trackingccooooeviviiiiiiiiiniieeee, 135
Table Parameterized Functionsccccoooeevvveviinnnnnn. 136
Learning Roadmap for TPF Developers............ 136
Developing a TPF ..o, 136
Consume TABLE Parameters........ccccooeveveeeennn. 137
Order Input Table Data.............cccccoeeevvvviieeeeeennnn. 140
Partitioning Input Dataccooeeeeeiiiiiiiiiiiiiins 140
TPF Implementation Examples...........cccccceeeennn. 156
SQL Reference for Table UDF and TPF Queries......... 166
ALTER PROCEDURE Statement...................... 167
CREATE PROCEDURE Statement (Table UDF)
... 169
CREATE FUNCTION Statement.............cccueeee. 173

DEFAULT_TABLE_UDF_ROW_COUNT Option 179
TABLE_UDF_ROW_BLOCK_CHUNK_SIZE K

B OPLioN ..o 180

FROM ClauSeoiiiiiiiiiiiiiiiie et 180

SELECT Statement..........cccoovveiviieiiiiieeeeieeeeenn 188

APl Reference for a v4 _extfncccoooveiiiiiiiicieeece, 199
Blob (a_v4_extfn_blob)cccoovieiiiiiiiii e, 199
blob_length ... 200

(o] o1=T o I 511 (=7 1o [P 201
Close_iStreamuuveiiiiiiiiiieeeeeeee 201

T[T T 202

Blob Input Stream (a_v4_extfn_blob_istream) 203

User-Defined Functions %

Contents

[0] TP 203
Column Data (a_v4_extfn_column_data)................... 204
Column List (a_v4_extfn_column_list)c..cceuunnene. 206
Column Order (a_v4_extfn_order_el)............ccoceeenn... 206
Column Subset (a_v4_extfn_col_subset_of _input)....207
Describe APl ... 208

*describe_column_get ..., 209

*describe_column_set.......cccccooeeiiiiiiiiiiiiii, 225

*describe_parameter_get..........ccccvvviiiiiinnneeenn. 242

*describe_parameter_set.............ccevviiiiieneeen, 261

*describe_udf get.....cccooveiiiiiiiiii 277

*describe_udf Set.......cccccciiiiiiiii 279
Describe Column Type

(a_v4_extfn_describe_col_type).......ccccovveveiieennnnn. 281
Describe Parameter Type

(a_v4_extfn_describe_parm_type)........cccceeeeernnnnn.. 282
Describe Return (a_v4_extfn_describe_return).......... 284
Describe UDF Type (a_v4_extfn_describe_udf_type)

.. 286
Execution State (a_v4_extfn_state)............cccceeeeeennnn.. 287
External Function (a_v4_extfn_proc)ccccceeeevernnnn.. 288

_start extfn ... 289

_finish_extfin ... 289

_evaluate_extfn........cccceveiiiiiiee e 290

_describe_extfncccccoviiiiiii 290

_enter_state_extfn........ccccoeeeiiiiiiiii 291

_leave_state_extfn.........ccccceviiiiiiiiiiiiiii e 291
External Procedure Context

(a_v4_extfn_proc_context)ccceevviveeieeiiiineeennnnnn. 292

get ValUeoovvviiiie e 294

get_value_is_constant..........ccccceeveeveeiiinieeeeinnnnn. 296

Set Valuevviiiciieeee 297

get_is_cancelled...........cooovviiiiiiiiiiiiie e 298

STy =] (o] PP PPN 298

|0g_MESSAQEooviiiiiiiiiiiiieee e 299

Vi

SAP Sybase 1Q

Contents

CONVEIt_ValUeooeiieiiiiieeeeee e 300
(o= 0 o] 011 0] o PPN 301
AOC . 301
FrEE e 302
0open_result_Set.......ccoeviviiiiiiiiiiii s 303
close_result_Set........ccccevviiiiiiiiiie e, 304
get_DBlob ... 304
set_cannot_be_distributedcooviiiiiiinnnn. 305
License Information (a_v4_extfn_license_info)........... 305
Optimizer Estimate (a_v4_extfn_estimate) 306
Order By List (a_v4_extfn_orderby_list)..................... 307
Partition By Column Number
(a_v4_extfn_partitionby_col_num)....................... 307
Row (a_Vv4_extfn_row)ccccovvvviiiiiiiiieie e 309
Row Block (a_v4_extfn_row_block)ccceeeeeneen. 309
Table (a_v4_extfn_table)..........cccovviiiiiiiiii, 310
Table Context (a_v4_extfn_table_context) 311
fetch _iNtOoovveiei i 313
fetch_BIOCKccooeeiiiee 316
FEWING ... eeaeeeees 318
get_DBlob ... 318
Table Functions (a_v4_extfn_table_func) 319
_OPEN_EXEIN (i 321
_fetch_into_extfn ..., 322
_fetch_block_extfn ... 322
_rewind_extin ..., 323
_Close_exXtineeiiieeie e 324
API Troubleshooting for a_v4_extfn..........ccccceeveiiiiiinnnns 325
Generic describe_column Errorscccoeeveeeevveveeeinnnns 325
Generic describe_udf Errorscccceeeveeeeeeeeeveiiiiinnn, 326
Generic describe_parameter Errors..........ccceeeeeeeeennns 326
Missing UDF Returns an Error..........ccccoeevvvvieeieeeennnns 327
External Environment for UDFS ..., 329
Executing UDFs from an External Environment......... 330
External Environment Restrictionsccccceeeeeeeeees 331

User-Defined Functions Vi

Contents

The ESQL and ODBC External Environments........... 331
The Java External Environment............cccccceeveeeeeeeennn, 341
Java External Environment in a Multiplex.......... 346
Java External Environment Restrictions............. 347
Java VM Memory OptionScovveeevvviininnneennn. 347
SQL Data Type Conversions for Java UDFs...... 348
Creating a Java Scalar UDF...............ccccevviennnne 350
Example: Executing a Java Scalar UDF............ 351
Creating a Java Scalar UDF Version of the SQL
Substr FUNCLIONcoooeeiiiiiiicee e, 352
Creating a Java Table UDFccoovviiiiiiiinnnnnns 354
Example: Executing a Java Table UDF.............. 356
Example: Executing a Java Table UDF with Java
Result Set Constructionccccceeeiiiieeeeeenn. 357
Java External Environment SQL Statement
Reference ..o 358
PERL External Environment............cccccoeeviiieiiiiiineeenn, 369
PHP External Environmentccccevviiiiieeeeeeeiinnnnn, 373
INAEX 379

viii SAP Sybase 1Q

Audience

Audience

The User-Defined Functions guide is intended for SQL analysts, C developers, C++
developers, and Java developers who want to extend the functionality of SAP® Sybase® 1Q.

As a developer, use the tasks, concepts, and API reference material to program non-SQL
external user-defined functions.

As a SQL analyst, use this guide to develop SQL queries that reference non-SQL external
user-defined functions.

User-Defined Functions 1

Audience

2 SAP Sybase 1Q

Understanding User-Defined Functions

Understanding User-Defined Functions

Learn how user-defined functions are used within SAP Sybase 1Q.

SAP Sybase 1Q allows user defined functions (UDFs), which execute within the database
container. The UDF execution feature is available as an optional component for use within
SAP Sybase 1Q.

You must be specifically licensed to use these external C/C++ UDFs interfaces.

These external C/C++ UDFs differ from the Interactive SQL UDFs available in earlier
versions of SAP Sybase 1Q. Interactive SQL UDFs are unchanged and do not require a special
license.

UDFs that execute within SAP Sybase IQ take advantage of the extreme performance of the
server, while also providing users the flexibility of analyzing their data with the flexibility of a
programmatic solution. User-Defined Functions consist of two components:

« UDF declaration, and
* UDF executable code

A UDF isdeclared in the SQL environment through a SQL function or stored procedure which
describes the parameters and provides a reference to the external library.

The actual executable portion of the UDF is contained within an external (shared object or
dynamic load) library file, which is automatically loaded by the server upon the first
invocation of a UDF Declaration function or stored procedure associated with that library.
Once loaded, the library remains resident in the server for rapid access through subsequent
invocations of SQL functions or stored procedures that reference the library.

The SAP Sybase 1Q user-defined function architecture is represented in the diagram below.

User-Defined Functions 3

Understanding User-Defined Functions

SAP Sybase 1Q

v

SAL Client

Executable User-Defined Function code,
contained within external library files,
dynamically loaded into 1Q upon first use

SAP Sybase 1Q supports high-performance in-process external C/C++ user-defined
functions. This style of UDF supports functions written in C or C++ code that adhere to the
interfaces described in this guide.

The C/C++ source code for the UDFs is compiled into one or more external libraries that are
subsequently loaded into the server's process space when needed. The UDF calling

mechanism is defined to the server through a SQL function. When the SQL function is invoked
from a SQL query, the server loads the corresponding library if it has not already been loaded.

For simplicity of managing the UDF installation, package many UDF functions within a
single library.

To facilitate the construction of UDFs, SAP Sybase 1Q includes a C-based API. The API
comprises a set of predefined entry points for the UDFs, a well-defined context data structure,
and a series of SQL callback functions that provide a communication mechanism from the
UDF back to the server. The SAP Sybase 1Q UDF API allows software vendors and expert
end-users to develop, package, and sell their own UDFs.

4 SAP Sybase IQ

Understanding User-Defined Functions

Learning Roadmap: Types of UDFs

The types of user-defined functions (UDFs) available in SAP Sybase 1Q.

used as a table expression in the
FROM clause of a SQL statement

UDF Type Description Required Li- [See
cence
UDF (SQL) A user-defined function written | none Administration.: Da-
in SQL. tabase > Create Pro-
cedures and Batches
> [ntroduction to
User-Defined Func-
tions
Scalar C or C++ V3 external C or C++ procedure | 1Q_UDF Learning Roadmap.
UDF that operates on a single value. Types of External C
and C++ UDFson
page 6
Scalar C or C++ V4 external C or C++ procedure | 1Q_IDA Learning Roadmap:
UDF that operates on a single value. Types of External C
and C++ UDFson
page 6
Aggregate C or C++ | V3 external C or C++ procedure | 1Q_UDF Learning Roadmap:
UDF that operates on multiple values. Types of External C
Aggregate UDFs are also some- and C++ UDFson
times known as UDAs or page 6
UDAFs. The context structure
for coding aggregate UDFs is
slightly different than the context
structure used for coding scalar
UDFs.
Aggregate C or C++ | V4 external C or C++ procedure | 1Q_IDA Learning Roadmap:
UDF that operates on multiple values. Types of External C
Aggregate UDFs are also some- and C++ UDFson
times known as UDAs or page 6
UDAFs. The context structure
for coding aggregate UDFs is
slightly different than the context
structure used for coding scalar
UDFs.
Table UDF External C or C++ procedure that | 1Q_IDA Learning Roadmap:
produces a set of rows and can be Types of External C

and C++ UDFson
page 6

User-Defined Functions

Understanding User-Defined Functions

vironment) table UDF imple-
mented in Java code.

UDF Type Description Required Li- | See
cence
Table parameterized | A table UDF that accepts table | IQ_IDA Learning Roadmap.
function (non-scalar) parameters in addi- Types of External C
tion to scalar parameters, and can and C++ UDFson
be executed in parallel over par- page 6
titions of row-sets. Also known
as table parameterized user-de-
fined functions.
Java scalar UDF An out-of-process (external en- | none The Java External
vironment) scalar user-defined Environmenton page
function implemented in Java 341
code.
Java table UDF An out-of-process (external en- | none The Java External

Environmenton page
341

Learning Roadmap: Types of External C and C++ UDFs

The high-performance, in-process, external C and C++ user-defined functions available with

the 1Q_IDA license.

The v3 API requires either the IQ_UDF or IQ_IDA license. The v4 API requires the IQ_IDA

license.
UDF Type Input Param- [Return API See:
eters
Scalar UDF Scalar Single scalar val- | v3, v4 Declaring and
ue Defining Scalar
User-Defined
Functions on
page 32
Aggregate UDF | Scalar Single scalar val- | v3, v4 Declaring and
ue Defining Aggre-
gate UDFson
page 46
Table UDF Scalar Table V4 Table UDFs and
TPFson page
97
Table parameter- | Scalar and table | Table v4 Table Parameter-
ized function ized Functions
(TPF) on page 136

SAP Sybase 1Q

Understanding User-Defined Functions

These UDFs can be deterministic or nondeterministic. The result of a function can be
determined by the input parameters and data (deterministic), or by some random behavior
(nondeterministic). Parameters of nondeterministic UDFs typically need a random seed as
one of the input parameters.

User-Defined Functions Compliance with SAP Sybase 1Q
Databases

Develop user-defined functions to work with SAP Sybase 1Q databases.

* Seamless Execution — UDFs must run seamlessly within the database container.
Although SAP Sybase IQ is a complex product consisting of many files, the main user
interaction is through a server process (igsrv16.0), using industry-standard Structured
Query Language (SQL). Execution of UDFs should be accomplished entirely through
SQL commands; the user does not need to understand the underlying implementation
method to use the UDFs.

The EXTEN_ V3 API and EXTFN_ V4 API provide callback functions enabling the
UDF to write to the message file (. igmsg).

UDFs should manage memory and temporary results as defined by the EXTFN_ V3 API
and EXTFN V4 APT.

SAP Sybase I1Q is a multiuser application. Many users can simultaneously execute the
same UDF. Certain OLAP queries cause a UDF to be executed multiple times within the
same query, sometimes in parallel. For details on setting UDFs to run in parallel, see
Aggregate UDF calling patterns on page 84.

e Internationalization — SAP Sybase 1Q has been internationalized for global use. Error
messages are in external files, which allows you to localize error messages to new
languages without having to make extensive code changes.

To support multiple languages, UDFs should also be internationalized. In general, most
UDFs operate on numeric data. In some cases, a UDF may accept string keywords as one
or more of the parameters. Place these keywords in external files, in addition to any
exception text and log messages used by the UDF.

SAP Sybase I1Q has also been localized for a few non-English languages. To support
localization to the same languages that SAP Sybase 1Q supports, internationalize UDFs so
that an independent organization can localize them at a later date.

For details about international language support in SAP Sybase 1Q, see /nternational
Languages and Character Setsin Administration: Globalization .

See also Debugging Using Cross-Character-Set Maps at www.Sybase.com. This paper
discusses how to debug with multi byte data, as opposed to input keywords, exception
messages, and log entries.

User-Defined Functions 7

Understanding User-Defined Functions

Platfor m Differences—Develop UDFs to run on a variety of platforms supported by SAP
Sybase 1Q. The SAP Sybase 1Q 16.0 server runs on 64-bit architectures, and is supported
under several platforms of the MS Windows (64-bit) family of operating systems. SAP
Sybase 1Q is also supported on versions of UNIX (64-bit), including Solaris, HP-UX,
AlX, and Linux.

Practices to Avoid

Learn good practices for creating user-defined functions.

Do not write ambiguous code, or constructs that can unexpectedly loop forever, without
providing a mechanism for the user to cancel the UDF invocation (see the function
'‘get_is_cancelled()'.

Do not perform complex, or memory-intensive operations that are repeated every
invocation. When a UDF call is made against a table that contains many thousands of rows,
efficient execution becomes paramount. Allocate blocks of memory for a thousand to
several thousand rows at a time, rather than on a row-by-row basis.

Do not open a database connection, or perform database operations from withina UDF. All
parameters and data required for UDF execution must be passed as parameters to the UDF.
Do not use reserved words when naming UDFs.

Note: Use source control software for C++ UDFs and Java UDFs to track changes to:

The source code (. java files/. cpp files)

Theclass/jar/d11/sofilesthat may be deployed to the database or mentioned in the
UDF stored procedure definition.

The Syntax for the UDF stored procedure definition itself.

Deployment instructions, 3rd party library versions and special deployment notes such as
security specifics.

See also

get_is_cancelled on page 298

Naming Conventions for User-Defined Functions

UDF names must follow the same restrictions as other identifiers in SAP Sybase 1Q.

SAP Sybase 1Q identifiers have a maximum length of 128 bytes. For simplicity of use, UDF
names should start with an alphabetic character. Alphabetic characters as defined by SAP
Sybase 1Q include the letters of the alphabet, plus underscore (), at sign (@), number or
pound sign (#) and dollar sign ($). UDF names should consist entirely of these alphabetic
characters as well as digits (the numbers 0 through 9). UDF names should not conflict with

SAP Sybase 1Q

Understanding User-Defined Functions

SQL reserved words. For a list of SQL reserved words in SAP Sybase 1Q see Reserved Word's
in Reference: Building Blocks, Tables, and Procedures.

Although UDF names (as other identifiers) may also contain reserved words, spaces,
characters other than those listed above, and may start with a non-alphabetic character, this is
not recommended. If UDF names have any of these characteristics, you must enclose them in
quotes or square brackets, which makes it more difficult to use them.

The UDFs reside in the same name space as other SQL functions and stored procedures. To
avoid conflicts with existing stored procedures and functions, preface UDFs with a unique
short (2-letter to 5-letter) acronym and underscore. Choose UDF names that do not conflict
with other SQL functions or stored procedures already defined in the local environment.

These are some of the prefixes that are already in use:

« debugger_tutorial — a stored procedure delivered with the native SAP Sybase 1Q
installation.

* ManageContacts —a stored procedure delivered with the SAP Sybase 1Q demo database.

* Show — stored procedures used to display data from the SAP Sybase 1Q demo database.

e sp_Detect_MPX_DDL_conflicts — a stored procedure delivered with the native SAP
Sybase 1Q installation.

* sp_igevbegintxn — a stored procedure delivered with the native SAP Sybase 1Q
installation.

* sp_igmpx — functions and stored procedures provided by SAP Sybase 1Q to assist in
multiplex administration.

» ts_—optional financial time series and forecasting functions.

SQL Data Types
UDF declarations support only certain SQL data types.

You can use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

SQL Data C or C++ [C or C++ |[Description
Type Data Typedef
Type
Identifier
UNSIGNED DT_UN- a_sql_uinté | An unsigned 64-bit integer, requiring 8 bytes of
BIGINT SBIGINT 4 storage.
BIGINT DT_BI- a_sql_int64 | A signed 64-bit integer, requiring 8 bytes of stor-
GINT age.

User-Defined Functions

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef
Type
Identifier
UNSIGNED DT_UN- a_sqgl_uint3 | Anunsigned 32-bit integer, requiring 4 bytes of
INT SINT 2 storage.
INT DT_INT a_sql_int32 | A signed 32-bit integer, requiring 4 bytes of stor-
age.
SMALLINT DT_SMAL | short A signed 16-bit integer, requiring 2 bytes of stor-
LINT age.
TINYINT DT_TI- unsigned An unsigned 8-bit integer, requiring 1 byte of stor-
NYINT char age.
DOUBLE DT_DOU- | double A signed 64-bit double-precision floating point
BLE number, requiring 8 bytes of storage.
REAL DT_FLOA | float A signed 32-bit floating point number, requiring 4
T bytes of storage.
FLOAT DT_FLOA | float In SQL, depending on the associated precision, a
T FLOAT is either a signed 32-bit floating point
number requiring 4 bytes of storage, or a signed
64-bit double-precision floating point number re-
quiring 8 bytes of storage. You can use the SQL
data type FLOAT only in a UDF declaration if the
optional precision for FLOAT data types is not
supplied. Without a precision, FLOAT is a syno-
nym for REAL.
CHAR(<n>) DT_FIX- char A fixed-length blank-padded character string, in
CHAR the database default character set. The maximum
possible length, “<n>", is 32767. The data is not
null-byte terminated.
VARCHAR(<n>) | DT_VAR- | char A varying-length character string, in the database
CHAR default character set. The maximum possible
length, “<n>", is 32767. The data is not null-byte
terminated. For UDF input arguments, the actual
length, when the value is not NULL, must be re-
trieved from the fotal /en field within the
an_extfn value structure. Similarly, for a
UDF result of this type, the actual length must be
set in the fotal_/enfield.

10 SAP Sybase IQ

Understanding User-Defined Functions

SQL Data
Type

Cor C++
Data
Type
Identifier

Cor C++
Typedef

Description

LONG VAR-
CHAR(<n>) or
CLOB

DT_VAR-
CHAR

char

A varying-length character string, in the database
default character set. Use the LONG VARCHAR
data type only as an input argument, notasareturn-
value data type. The maximum possible length,
“<n>", is 4GB (gigabytes) for v3 UDFs. The data
is not null-byte terminated. LONG VARCHAR
data type can have a WD or TEXT index. For UDF
input arguments, the actual length, when the value
is not NULL, must be retrieved from the zotal _fen
field within the an_extfn_value structure.

You need not rebuild or recompile an existing sca-
lar or aggregate UDF to use a LOB data type as an
input parameter, if the function contains a loop that
reads pieces of the value viathe get _value ()

and get piece () methods. The loop contin-
ues until remain_/len> 0 or until 4GB is reached for
v3 UDFs (there is no 4GB limit in v4).

Table UDFs and TPFs do not use the

get piece () method to process and retrieve
data. Table UDFs and TPFs must use the B1ob
(a_v4 extfn blob) APIinstead. Use
blob length to determine length of input
parameters.

Large object data support requires a separately li-
censed SAP Sybase 1Q option.

BINARY(<n>)

DT_BINA-
RY

unsigned
char

A fixed-length null-byte padded binary, value with
a maximum possible binary length, “<n>”", of
32767. The data is not null-byte terminated.

VARBINA-
RY(<n>)

DT_BINA-
RY

unsigned
char

A varying-length binary value, for which the max-
imum possible length, “<n>", is 32767. The data is
not null-byte terminated. For UDF input argu-
ments, the actual length, when the value is not
NULL, must be retrieved from the fofal_lenfield
within the an_extfn_value structure. Similarly, for
a UDF result of this type, you must set the actual
length in the fotal_/enfield. The data is not null-
byte terminated.

User-Defined Functions

11

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef

Type

Identifier
LONG BINA- | DT_BINA- | unsigned A fixed-length null-byte padded binary, value with
RY(<n>) or RY char amaximum possible binary length, “<n>", of 4GB
BLOB (gigabytes) for v3 UDFs. Use the LONG BI-

NARY datatype only as an input argument, notasa
return-value data type.

You need not rebuild or recompile an existing sca-
lar or aggregate UDF to use a LOB data type as an
input parameter, if the function contains a loop that
reads pieces of the value viathe get _value ()

and get piece () methods. The loop contin-
ues until remain_Jlen> 0 or until 4GB is reached for
v3 UDFs (there is no 4GB limit in v4).

Table UDFs and TPFs do not use the

get piece () method to process and retrieve
data. Table UDFs and TPFs must use the B1ob
(a_v4 extfn blob) APIinstead. Use
blob length to determine length of input
parameters.

Large object data support requires a separately li-
censed SAP Sybase 1Q option.

12

SAP Sybase 1Q

Understanding User-Defined Functions

SQL Data
Type

Cor C++
Data
Type
Identifier

Cor C++
Typedef

Description

DATE

DT_TIME-
STAMP_S
TRUCT

unsigned in-
teger

A calendar date value, which is passed to or from a
UDF as an unsigned integer. The value given to the
UDF is guaranteed to be usable in comparison and
sorting operations. A larger value indicates a later
date. If the actual date components are required,
the UDF must invoke the convert value
function in order to convert to the type DT_TIME-
STAMP_STRUCT. This date type represents date
and time with this structure:

typedef struct sgldatetime {
unsigned short
year; /* e.qg.
unsigned char
month; /* 0-11
w/

1992%/

unsigned char
day of week; /* 0-6
1=Monday, ... */
unsigned short
day of year; /* 0-365
*
/

0=Sunday,

unsigned char
day; /% 1=31
w4

unsigned char
hour; /* 0-23
w/

unsigned char mi-
nute; /* 0-59
*/
unsigned char sec-—

/* 0-59 =/

a sgl uint32 microsec-—
ond; /* 0-999999 */
} SQLDATETIME;

ond;

DT_TIME-
STAMP_S
TRUCT

unsigned bi-
gint

A value that precisely describes amoment within a
given day. . The value given to the UDF is guar-
anteed to be usable in comparison and sorting op-
erations. A larger value indicates a later time. If the
actual time components are required, the UDF
must invoke the convert wvalue function to
convert to the type DT TIME-

STAMP STRUCT

User-Defined Functions

13

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef
Type
Identifier
DATETIME, DT_TIME- | unsigned bi- | A calendar date and time value. The value given to
SMALLDATE- | STAMP_S | gint the UDF is guaranteed to be usable in comparison
TIME, or TRUCT and sorting operations. A larger value indicates a
TIMESTAMP later datetime. If the actual time components are
required, the UDF must invoke the con-
vert value function to convert to the type
DT TIMESTAMP STRUCT.
TABLE DT_EXTF | a_v4_extfn_ | Represents an input TABLE parameter result set.
N_TABLE | table This datatype is only available on TPFs.
See also

Blob (a_v4_extfn_blob) on page 199

Blob Input Stream (a_v4_extfn_blob_istream) on page 203
convert_value on page 300

Table (a_v4_extfn_table) on page 310

Unsupported Data Types

Certain SQL data types cannot be used in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types.

BIT —Should typically be handled in the UDF declaration as a TINYINT data type, and
then the implicit data type conversion from BIT automatically handles the value
translation.

DECIMAL —(<precision>, <scale>) or NUMER I C(<precision>, <scale>) —depending on
the usage, DECIMAL is typically handled as a DOUBLE data type, but various conventions
may be imposed to enable the use of INT or BIGINT data types.

LONG VARCHAR — (CLOB) — supported only as an input argument, not as a return-
value data type. An exception exists for pass-through TPFs, where LONG VARCHAR is
supported as a return-value data type.

LONG BINARY - (BLOB) — supported only as an input argument, not as a return-value
data type. An exception exists for pass-through TPFs, where LONG BINARY issupported
as a return-value data type.

TEXT —not currently supported.

14

SAP Sybase 1Q

Building UDFs
Building UDFs
Design, build, and test UDFs.

Design Basics of User-Defined Functions

There are some basic considerations to keep in mind while developing UDFs.

This document assumes that the UDF developer is familiar with the basics of developing
software, including good program design and development and independent testing.

In addition to standard software development practices, developers of non-Java UDFs should
remember that they are developing code to be executed within the SAP Sybase 1Q database
container, and to understand the limitations imposed by the database container.

Developers of aggregate UDFs should also be familiar with OLAP queries, and how they
translate into UDF calling patterns.

Because the UDFs may be invoked by several threads simultaneously, they must be
constructed to be thread-safe.

Sample Code

Sample UDF source code is delivered with the product. The newest version of the sample code
is always delivered with the most current version of SAP Sybase 1Q.

On UNIX platforms, the sample UDF code is in $SYBASE/IQ-16.0/samples/udf
(where $SYBASE is the installation root).

On Windows platforms, the sample UDF code is in C: \Documents and Settings
\All Users\SybaseIQ\samples\udf.

The sample UDF code documented in the User-Defined Functionsguide may not be the latest
version as delivered with the SAP Sybase 1Q product. Last-minute changes to the sample UDF
source code are documented in the Release Bulletin for your operating system platform.

Setting the Dynamic Library Interface
Specify the interface style to be used in the dynamically linkable library.

Each dynamically loaded library must contain exactly one copy of this definition:

extern "C" a sql uint32 extfn use new api(void)
{

return EXTFN V4 API;
}

User-Defined Functions 15

Building UDFs

This definition informs the server of which interface style is being used, and therefore how to
access the UDFs defined in this dynamically linkable library. For high-performance UDFs,
only new interface styles EXTFN V3 APT and EXTFN V4 API are supported.

Upgrading to the v4 API

Upgrade to the v4 API included with 16.0.

Prerequisites
Install SAP Sybase 1Q server version 16.0.

Task

If you have existing scalar or aggregate UDFs developed for SAP Sybase IQ server versions
15.1, 15.2, or 15.3, those UDFs use the V3 API interface style and reference the
extfnapiv3.h header file. Modify your legacy C or C++ external library files to reference
the ext fnapiv4.h header file.

Existing v3 scalar and aggregate functions continue to work as designed. However, to take
advantage of scalar and aggregate distribution in PlexQ, you must upgrade the header file and
library version to v4. You need not change the name of the typedefs for your scalar or
aggregate function.

1. Open the C or C++ external library file defining the scalar or aggregate user-defined
function.

2. Locate all instances of #include 'extfnapiv3.h' andchangeto #include
'extfnapiv4d.h'.

3. Set the dynamic library interface to EXTFN V4 APIT.

4. Rebuild.

Next
Partners must ensure the library exports extfn_get license info asan entry point.

See also

e External Function Prototypes on page 93

e License Information (a_v4_extfn_license_info) on page 305
o Defining an Aggregate UDF on page 53

» Defining a Scalar UDF on page 37

» Developing a Table UDF on page 103

» Developing a TPFon page 136

16

SAP Sybase 1Q

Building UDFs

Library Version (extfn_get_library version)

Usethe extfn get library version method to extract the library version from the
current multiplex node. The server considers partitioning a query across multiplex nodes only
if the installed library is compatible with the other nodes.

Implementation
A v4 library can define this optional entry point:

size t extfn get library version(uint8 *buff, size t len);

Description
Library versioning methods are at the library level, and do not have the a_v4 prefix in their
method name.

If the v4 library defines the optional entry point, the server allows query distribution to other
nodes. The entry point populates the supplied buffer with the library version string (a C-style
character string containing only ASCII characters, terminated with \0) and returns the actual
size of the populated version string, which is constrained to a maximum of 256 bytes.

If an entry point is not defined, the server does not distribute the UDF to the other nodes in the
multiplex.

See also
o Library Version Compatibility (extfn_check version_compatibility) on page 17
» Setting the Dynamic Library Interface on page 15

Library Version Compatibility
(extfn_check version compatibility)

Usethe extfn check version compatibility method to define compatibility
criteria for library versions across nodes in a multiplex.

Implementation
A v4 library can define this optional entry point:

a bool extfn check version compatibility(uint8 *buff, size t
len);

Description
Library versioning methods are at the library level, and do not have the a_v4 prefix in their

method name.

User-Defined Functions 17

Building UDFs

This optional entry point accepts a buffer containing the version string and the version string
length. It returns whether or not the library version on the target node is compatible with the
version string parameter. The library developer defines the compatibility criteria.

Interaction with extfn get library version

The leader node calls extfn get library version before checking version
compatibility. If extfn get library version is notimplemented on the leader
node, then there isno distribution. Ifext fn_get library versionisimplementedon
the leader node, then the UDF or TPF is eligible for distribution. Being eligible for distribution
is not a guarantee that distributed query processing will occur.

Theextfn get library version method can returna0O-length string; however, this
does not mean that extfn_get library version isnotimplemented

Note: A TPF or UDF is still eligible for distribution if ext fn_get library version
returns a O-length string.

Ifextfn get library version returnsa 0-length string, whether or not the worker
node accepts the distributed work depends on the

extfn check version compatibility implementation on the worker node. A
worker node requires a compatible library to process distributed work.

See also
e Library Version (extfn_get library version)on page 17
o Setting the Dynamic Library Interface on page 15

License Information (extfn get license info)

If you are a design partner, implement the extfn get license info library-level
function to enable the server to obtain licensing information from a v4 UDF.

Data Type

an_extfn license info

Implementation

(_entry an extfn get license info) (an _extfn license info
**license_info) 8

Parameters

license_info is an output parameter that returns the license information as received from the
library. You define the license information inthe a_v4 extfn license info
structure.

18

SAP Sybase 1Q

Building UDFs

Description

Design partners must specify the SAP-supplied license key in the

a v4 extfn license info structure, and must ensure that the library exports
extfn get license info asan entry point.

Adding the extfn get license info Method

If you are a design partner, populate stringsina v4 extfn license info and define
extfn get license info asav4 entry point.

1. Inthea v4 extfn license info structure, specify your company name. The
maximum length is 255 characters.

2. Inthea_v4 extfn license info structure, specify additional library information
such as library version and build numbers. The maximum length is 255 characters.

3. Inthea_v4 extfn license_ infostructure, enterthe license key provided by SAP.
4. Ensure the library exports extfn _get license info asan entry point.

a v4 extfn license info my info = {
1,
"Company Name",
"Library Info String",
(void *)"KEY STRING"
i

void SQL CALLBACK extfn get license info(an extfn license info
**license info)

/

KAk kA A kA Ak hhkhkhk Ak kA hhk A kA A hhk kA Ak kA hkdk Ak hkhkhhkhkhkhkhkhkhkhkhkrhkhkrkhkkhkhkhkkhkkkkxkkxkk*
************************/

{
*license info = (an_extfn license info *)& my info;

}

Compile and Link Source Code to Build Dynamically
Linkable Libraries

Use compile and link switches when building dynamically linkable libraries for any user-
defined function.

Warning! Use fully-qualified path names for UDF libraries. In multiplex implementations,
ensure the relative path is the same for all nodes.

1. A UDF dynamically linkable library must include an implementation of the function
extfn_use_new_api(). The source code for this function is in Setting the dynamic library
interface on page 15. This function informs the server of the API style that all functions in

User-Defined Functions 19

Building UDFs

the library adhere to. The sample source file my main.cxx contains this function; you
can use it without modification.
2. A UDF dynamically linkable library must also contain object code for at least one UDF
function. A UDF dynamically linkable library may optionally contain multiple UDFs.
3. Link together the object code for each UDF as well as the extfn_use_new_api() to form a
single library.
For example, to build the library "libudfex:"
« Compile each source file to produce an object file:

my main.cxx

my bit or.cxx

my bit xor.cxx

my interpolate.cxx
my plus.cxx

my plus counter.cxx
my Sum.CxX

my byte length.cxx
my md5.cxx

my toupper.cxx

tpf agg.cxx

tpf blob.cxx

tpf dt.cxx

tpf filt.cxx

tpf oby.cxx

tpf pby.cxx
tpf rg l.cxx
tpf rg 2.cxx

udf blob.cxx

udf main.cxx
udf rg 1l.cxx
udf rg 2.cxx
udf rg 3.cxx

udf utils.cxx

« Link together each object produced into a single library.
After the dynamically linkable library has been compiled and linked:

e Update the CREATE FUNCTION ... EXTERNAL NAME or CREATE PROCEDURE ..
EXTERNAL NAME to include an explicit path name for the UDF library.

4, Runigdirlé/samples/udf/build.bat on Windows. Run igdirl16/
samples/udf/build.sh on UNIX.

Compiling and Linking the Sample UDFs for Windows

Runthe build.bat scriptto compile and link the sample scalar and aggregate UDFs, table
UDFs, and TPFs found in the samples\udf directory.

1. Navigate to $ALLUSERSPROFILE%\samples\udf.
2. Runbuild.bat:

20 SAP Sybase IQ

Building UDFs

Parameter Description

-clean Deletes the object and the build directory

-v3 Builds sample scalar and aggregate UDFs with
the v3 API

-v4 (Default) Builds sample table UDFs and TPFs
with the v4 API

Compiling and Linking the Sample UDFs for UNIX

Run the build. sh script to compile and link the sample scalar and aggregate UDFs, table
UDFs, and TPFs found in the samples/udf directory.

1. Navigate to SIQDIR15/samples/udf.

2. Runbuild. sh:

Parameter Description
-clean Deletes the object and the build directory
-v3 Builds sample scalar and aggregate UDFs with
the v3 API
-v4 (Default) Builds sample table UDFs and TPFs
with the v4 API
AlIX Switches

Use the following compile and link switches when building shared libraries on AlX.

xIC 10.0 on a PowerPC

Important: Include the code for extfn_use _new_api() in each UDF library.

Note: To compile on AlX 6.1 systems, the minimum level of the xIC compiler is 10. 0.

compile switches

-gq64 -garch=ppc64 -gtbtable=full -gsrcmsg -galign=natural -

gnoansialias

-gmaxmem=-1 -genum=int -ghalt=e -gflag=w -gthreaded -

gxflags=NLOOPING
-gtmplinst=none -gthreaded

link switches

-brtl -G -1g -lpthreads compat -lpthreads -1lm r -1dl -bnolibpath -

v

User-Defined Functions

21

Building UDFs

HP-UX Switches

Use the following compile and link switches when building shared libraries on HP-UX.

aCC 6.24 on Itanium

Important: Include the code for extfn_use new_api() in each UDF library.

compile switches

+noeh -ext +W740,749,829 +Wl1l031 +DD64 +DSblended +FPD -Aa +tub
-U_HP INSTANTIATE T IN LIB -Wc,-ansi for scope,on -mt -z

link switches

-b -W1l,+s

Linux Switches

Use the following compile and link switches when building shared libraries on Linux.

g++ 4.1.1 on x86

Important: Include the code for extfn_use new api() in each UDF library.

compile switches

-fPIC -fsigned-char -fno-exceptions -pthread -fno-omit-frame-
pointer
-Wno-deprecated -Wno-ctor-dtor-privacy -02 -Wall

Note: When compiling C++ applications for building shared libraries on Linux, adding the
-02 and -Wall switches to the list of compile UDF switches decreases computation time.

link switches
-1dl -1nsl -1lm -lpthread -shared -Wl,-Bsymbolic -Wl,-shared

Note: You can use gcc on Linux as well. While linking with gcc, link in the C++ run time
library by adding -1 stdc++ to the link switches.

Examples

e Example 1

g++ -c my interpolate.cxx -fPIC -fsigned-char -fno-exceptions -
pthread

-fno-omit-frame-pointer -Wno-deprecated -Wno-ctor-dtor-
privacy

-IS$S{IQDIR16}/sdk/include/

e Example 2

g++ -c my main.cxx -fPIC -fsigned-char -fno-exceptions -pthread
-fno-omit-frame-pointer -Wno-deprecated -Wno-ctor-dtor-

22

SAP Sybase 1Q

Building UDFs

privacy
-I${IQDIR16}/sdk/include/

e Example 3

1d -G my main.o my interpolate.o -1dl -1lnsl -1m -lpthread -shared
-o my udf library.so

xIC 10. 0 on a PowerPC
compile switches
-gq64 -garch=ppc64 -gcheck=nullptr -ginfo=gen -gtbtable=full -
gsrcmsg
-gnoansialias -gminimaltoc -gmaxmem=-1 -genum=int -ghalt=e -gflag=w
-gthreaded
-gxflags=NLOOPING -gtmplinst=none
link switches
—-gmkshrobj -1dl -1g -gthreaded -1lnsl -1m

Solaris Switches
Use the following compile and link switches when building shared libraries on Solaris.

Sun Studio 12 on SPARC

Important: Include the code for extfn_use _new api() in each UDF library.

compile switches

-mt -noex +w -KPIC -1 -instances=explicit -V -xtarget=ultra3cu -m64
-xlibmopt

-x1libmil -features=no%conststrings

-erroff=truncwarn, nokeyworddefine,diffenumtype

link switches
-z defs -G -1dl -1nsl -lsocket -ladm -lposix4 -1Crun -1Cstd -lc -1m
-lefi

-liostream -lkstat

Sun Studio 12 on x86

compile switches

+w2 -m64 -features=no%conststrings

-erroff=truncwarn, nokeyworddefine,diffenumtype,doubunder -errtags -
mt -noex

-KPIC -instances=explicit -xlibmopt -xlibmil

link switches
-z defs -G -1dl -1nsl -lsocket -ladm -lposix4 -1Crun -1Cstd -lc -1m
-lefi

-liostream -lkstat -m64

User-Defined Functions 23

Building UDFs

Windows Switches

Use the following compile and link switches when building shared libraries on Windows.

Visual Studio 2008 on x86

Important: Include the code for extfn_use new_api() in each UDF library.

compile and link switches

This example is for a DLL containing the my_plus function. You must include an EXPORT
switch for the descriptor function for each UDF contained in the DLL.

cl /zi /LD /I includefilepath my main.cxx my plus.cxx /link /
map

/INCREMENTAL:NO -EXPORT:extfn use new api -EXPORT:my plus /
out:libiqudfex.dll

Example

Environment setup

set VCBASE=c:\dev\vc?9
set MSSDK=C:\dev\mssdk6.0a
set IQINSTALLDIR=C:\Sybase\IQ
set OBJ DIR=%IQINSTALLDIR%\IQ-16 O\samples\udf\objs
set SRC_DIR=%IQINSTALLDIR%\IQ-16 O\samples\udf\src
call $VCBASE%\VC\bin\vcvars32.bat

e Example 1

$VCBASES$\VC\bin\amd64\cl -c -nologo -DNDEBUG -DWINNT -D USRDLL
-D WINDLL -D WIN64 -DWING4 -

D WIN32 WINNT= WIN32 WINNT WINXP
-DWINVER= WIN32 WINNT WINXP -D MBCS -GS -W3 -Zi -favor:AMD64
-DSYB LP64 -D LARGEFILE SOURCE -D FILE OFFSET BITS=64 -

DHMSWNT
-D CRT SECURE NO DEPRECATE -D CRT NONSTDC NO DEPRECATE
-DPOINTERS ARE 64BITS -DLONG IS 64BITS -

D _RWSTD NO EXCEPTIONS

-I"$VCBASE%$\VC\include" -I"$MSSDK%\include "-I"$MSSDK%\Lib
\AMD64"
-I"%VCBASE%\VC\lib\amd64" -DMSDCXX -DINT64 WORKAROUND
-DSUPPORTS_UDAF -0d -Zi -MD -I"$IQINSTALLDIR$\IQ-16 0\sdk
\include"
-Fo"%0BJ DIR%$\my interpolate.o" $SRC_DIR%\my interpolate.cxx
o Example 2

$VCBASES$\VC\bin\amd64\cl -c -nologo -DNDEBUG -DWINNT -D USRDLL
-D WINDLL -D WIN64 -DWIN64 -
D WIN32 WINNT= WIN32 WINNT WINXP
-DWINVER= WIN32 WINNT WINXP -D MBCS -GS -W3 -Zi -favor:AMD64
-DSYB LP64 -D LARGEFILE SOURCE -D FILE OFFSET BITS=64 -
DHMSWNT
-D_CRT SECURE NO DEPRECATE -D CRT NONSTDC NO DEPRECATE
-DPOINTERS ARE 64BITS -DLONG IS 64BITS -

24

SAP Sybase 1Q

Building UDFs

D_RWSTD NO EXCEPTIONS
-I"$VCBASE%\VC\include" -I"%MSSDK%\include "-I"$MSSDK%\Lib
\AMD64"
-I"$VCBASE%\VC\lib\amd64" -DMSDCXX -DINT64 WORKAROUND
-DSUPPORTS_ UDAF -0d -Zi -MD —I"%IQINSTALLDIR%\IQ—]_670\sdk
\include"
-Fo"%0BJ DIR%$\my main.o" %SRC_DIR%\my main.cxx
e Example 3
$VCBASE$\VC\bin\amd64\1link /LIBPATH:%VCBASE%\VC\lib\amd64
/LIBPATH:%MSSDK%\1ib\bin64 kernel32.lib -manifest -DLL -
nologo
-MAP:"%0BJ DIR%\libudfex.map deco" /OUT:"%0BJ DIR%
\libudfex.dll"
"$0BJ DIR%\my interpolate.o" "$OBJ DIR%\my main.o" /DLL
-EXPORT:extfn use new api -EXPORT:my interpolate
e Example 4
$MSSDK%\bin\mt -nologo -manifest "%OBJ DIR%
\libudfex.dll.manifest"
-outputresource:"$0BJ DIR%\libudfex.dll;2"

Testing User-Defined Functions

After UDF external code has been coded, compiled and linked, and the corresponding SQL
functions and stored procedures have been defined, the UDFs are ready to be tested.

The reliability required by a database is extremely high. UDFs running within a database
environment must maintain this high level of reliability. With the first implementation of the
UDF API, UDFs run within the SAP Sybase 1Q server. If a UDF aborts prematurely or
unexpectedly, the SAP Sybase 1Q server may abort. Ensure via thorough testing in a
development or test environment, that UDFs do not terminate prematurely or abort
unexpectedly under any circumstances.

Enabling and Disabling User-Defined Functions

Use the inmemory external procedure security feature to enable or disable the
server's ability to make use of high performance in-process UDFs.

A database should maintain data integrity. Under no circumstances should data be lost,
modified, augmented, or corrupted. Since UDF execution happens within the SAP Sybase 1Q
server, there is a risk of corrupting data; practice caution with memory management and any
other use of pointers. Install and execute UDFs within a read-only multiplex node. For
additional protection, use the secured feature (-sf) startup option with each server to enable or
disable the execution of UDF.

Note: By default, UDF execution on a multiplex writer and coordinator nodes is disabled. All
other nodes are enabled by default.

User-Defined Functions 25

Building UDFs

Administrators can enable v3 and v4 UDFs for any server by specifying this in the server
startup command or in the configuration file:

-sf -inmemory external procedure

Administrators can disable v3 and v4 UDFs for any server by specifying this in the server
startup command or in the configuration file:

-sf inmemory external procedure

Initially Executing a User-Defined Function

To ensure the safest environment possible, install and invoke UDFs from a read-only server
node in a multiplex installation.

The SAP Sybase 1Q server does not load the library containing the UDF code until the first
time the UDF is invoked. The first execution of a UDF residing in a library that has not yet been
loaded may be unusually slow. After the library is loaded, the subsequent invocation of the
same UDF or another UDF contained in the same library have the expected performance.

* Librariesusingthe stored procedure SA_EXTERNAL_LIBRARY_UNLOAD — These
libraries are not reloaded when the SAP Sybase 1Q server is stopped and restarted.

In environments where after-hours maintenance operations require a shutdown and restart of
the server, run some test queries after the server has been restarted. This ensures that the
appropriate libraries are loaded in memory for optimal query performance during business
hours.

Managing External Libraries

Each external library is loaded the first time a UDF that requires it is invoked. A loaded library
remains loaded for the life of the server. It is not loaded when a CREATE FUNCTION or
CREATE PROCEDURE call is made, nor is it automatically unloaded when a DROP
FUNCTION or DROP PROCEDURE call is made.

If the library version must be updated, the dbo.sa_external_library_unload procedure forces
the library to be unloaded without restarting the server. The call to unload the external library
is successful only if the library in question is not currently in use. The procedure takes one
optional parameter, a long varchar, that specifies the name of the library to be unloaded. If no
parameter is specified, all external libraries not in use are unloaded.

Note: Unload existing libraries from a running SAP Sybase 1Q server before replacing the
dynamic link library. The server may fail, if you do not unload the library. Before replacing a
dynamically linkable library, either shut down the SAP Sybase 1Q server or use the
sa_external_library_unload function to unload the library.

For Windows, unload an external function library using:

call sa external library unload('library.dll')

For UNIX, unload an external function library using:
call sa external library unload('library.so')

26

SAP Sybase 1Q

Building UDFs

If a registered function uses a complete path, for example, /abc/def/library, first
unregister the function.

In Windows, use
call sa external library unload('\abc\def\library.dll"')

In UNIX, use

call sa external library unload('/abc/def/library.so')

Note: The library path is required in the SQL function declaration only if the library is not
already located within a directory in the library load path.

Controlling Error Checking and Call Tracing

The external_UDF_execution_mode option controls the amount of error checking and call
tracing that is performed when statements involving v3 and v4 external user-defined functions
are evaluated.

You can use external_UDF_execution_mode during development of a UDF to aid in
debugging while you are developing UDFs.

Allowed Values
0,1,2

Default Value
0

Scope
Can be set as public, temporary, or user.

Description
When set to 0, the default, external UDFs are evaluated in a manner that optimizes the
performance of statements using UDFs.

When set to 1, external UDFs are evaluated to validate the information passed back and forth
to each UDF. This setting is intended for scalar and aggregate UDFs.

When set to 2, external UDFs are evaluated to not only validate the information passed back
and forth to the UDF, but also to log, in the i gmsg file, every call to the functions provided by
the UDFs and every callback from those functions back into the server. This setting is intended
for all C or C++ external UDFs. Memory tracing is turned on for table UDFs and TPFs.

User-Defined Functions 27

Building UDFs

Viewing SAP Sybase I1Q Log Files

SAP Sybase 1Q provides extensive logging and tracing capabilities. UDFs should provide the
same or better level of detailed logging, in the event of problems in the UDF code.

Log files for the database are generally located with the database file and configuration file.
On UNIX platforms, there are two files named after the database instance, one with

a . stderr extension and one with a . stdout extension. On Windows, by default, the
stderr file is not generated.

To capture the st derr messages along with the st dout messages under Windows, redirect
the stdout and stderr:

igsrvl6.exe @igdemo.cfg igdemo.db 2>&1 > igdemo.stdout

The Windows output messages are slightly different from the output messages generated on
UNIX platforms.

Using Microsoft Visual Studio Debugger for User-Defined Functions

Microsoft Visual Studio 2008 developers use Microsoft Visual Studio Debugger to step
through the user-defined function code.

1. Attach the debugger to a running server:
devenv /debugexe "$IQDIR16%\Bin64\igsrvl6.exe"
2. Goto Debug | Attach to Process
3. To start the server and debugger together:
devenv /debugexe "$IQDIR16%\bin32\igsrvl6.exe" [commandline

options for your server]

Each platform will have a debugger and each will have their own command line syntax.
SAP Sybase 1Q source code is not required. The msvs debugger will recognize when the
user-defined functions source is executed and break at the set breakpoints. When control
returns from the user-defined functions to the server, you will only see machine code.

Modifying the UDF at Runtime

Many SAP Sybase 1Q installations are in mission-critical environments, where customers
require an extremely high level of availability. System Administrators must be able to install
and upgrade UDFs with little or no impact to the SAP Sybase 1Q server.

An application must not attempt to access an external library while the associated library file is
being moved, overwritten, or deleted. Since libraries are automatically loaded whenever an
associated SQL function is invoked, it is important to follow these steps in the exact order
whenever performing any type of maintenance on existing UDF libraries:

1. Ensure all users who invoke UDFs do not have any pending queries in progress

28

SAP Sybase 1Q

Building UDFs

2. Revoke the execute privilege from users, and drop the SQL functions and stored
procedures which reference external UDF code modules

3. Unload the library from the SAP Sybase 1Q server, using the call
sa_external_library_unload command (shutting down the 1Q server also automatically
unloads the library).

4. Perform the desired maintenance on the external library files (copy, move, update, delete).

5. Edit SQL function and stored procedure definitions in the registration scripts to reflect
external library locations, if the libraries were moved.

6. Grant the execute privilege to users, and run registration scripts to re-create the SQL
functions and stored procedures which reference external UDF code modules.

7. Invokea SQL function or stored procedure that references the external UDF code to ensure
the SAP Sybase 1Q server can dynamically load the external library.

Granting the Privilege To Run a Procedure

Grant the privilege to execute or call a procedure.

Prerequisites
At least one of these conditions:

* You created the table.

« You have been granted privileges on the table with the ADMIN OPTION.

* You have been granted the EXECUTE ANY PROCEDURE system privilege.

« You have been granted LOAD and TRUNCATE object privileges.

* You have been granted the MANAGE ANY OBJECT PRIVILEGE system privilege. If the
LOAD or TRUNCATE object privilege is granted using the WITH GRANT OPTION clause,
the grantee can then grant the object privilege to other users, but is limited to those tables
specified in the original GRANT statement. Under this scenario, the grantee does not need
the MANAGE ANY OBJECT PRIVILEGE system privilege.

Task

Procedures execute with the privileges of their owner. Any procedure that updates information
on a table executes successfully only if the owner of the procedure has UPDATE privileges on
the table.

As long as the procedure owner has the proper privileges, the procedure executes successfully
when called by any user assigned privilege to execute it, whether or not he or she has privileges
on the underlying table. You can use procedures to allow users to carry out well-defined
activities on a table, without having any general privileges on the table.

To grant the EXECUTE privilege, enter:

GRANT EXECUTE ON procedure name
TO usrelID

User-Defined Functions 29

Building UDFs

Dropping User-Defined Functions

Once you create a user-defined function, it remains in the database until it is explicitly
removed. Only the owner of the function or procedure, or a user with the DROP ANY
PROCEDURE or DROP ANY OBJECT system privilege, can drop a function or procedure
from the database.

For example, to remove the scalar or aggregate function fu//name from the database, enter:
DROP FUNCTION fullname

To remove a table UDF or TPF named fu/lname from the database, enter:
DROP PROCEDURE fullname

30

SAP Sybase 1Q

Scalar and Aggregate UDFs

Scalar and Aggregate UDFs

Scalar and aggregate user-defined functions return a single value to the calling environment.

Note: Scalar and aggregate UDFs are a licensable option, and require the IQ_UDF or 1Q_IDA
license. Installing the license enables user-defined functions.

You can install SAP Sybase I1Q in a wide variety of configurations. UDFs must be easily
installed within this environment, and must be able to run within all supported configurations.
The SAP Sybase 1Q installer provides a default installation directory, but allows users to select
a different installation directory. UDF developers should consider providing the same
flexibility when installing the UDF libraries and associated SQL function definition scripts.

Scalar and Aggregate UDF Restrictions

External C/C++ scalar and aggregate user-defined functions have some restrictions.

Write all UDFs in a manner that allows them to be called simultaneously by different users
while receiving different context functions.

If a UDF accesses a global or shared data structure, the UDF definition must implement the
appropriate locking around its accesses to that data, including the releasing of that locking
under all normal code paths and all error handling situations.

UDFs implemented in C++ may provide overloaded "new" operators for their classes, but
they should never overload the global "new" operator. On some platforms, the effect of
doing so is not limited to the code defined within that specific library.

Write all aggregate UDFs and all deterministic scalar UDFs such that the receipt of the
same input values always produces the same output values. Any scalar function for which
this is not true must be declared as NONDETERMINISTIC to avoid the potential for
incorrect answers.

Users can create a standard SQL functions without the CREATE EXTERNAL
REFERENCE system privilege. This system privilege only required to create a function
which will invoke an external library. Attempting to create a function of this type without
sufficient permissions results in an error message "'You do not have permission to use the
create function statement."

User-Defined Functions 31

Scalar and Aggregate UDFs

Creating a Scalar or Aggregate UDF

Learn how to create and configure external C or C++ scalar and aggregate user-defined
functions.

1. Declare the UDF to the server by using the CREATE FUNCTION or CREATE AGGREGATE
FUNCTION statements. Write and execute these statements as commands, or use Sybase
Control Center.

The external C/C++ form of the CREATE FUNCTION statement requires the CREATE
EXTERNAL REFERENCE system privilege. Therefore, standard users do not have the
authority to declare any UDFs of this type.

2. Write the UDF library identification function on page 15.

3. Define the UDF as a set of C or C++ functions. See Defining a scalar UDF on page 37 or
Defining an aggregate UDF on page 53.

4. Implement the function entry points in C/C++.

5. Compile the UDF functions and the library identification functions on page 19.

6. Link the compiled file into a dynamically linkable library.

Any reference to a UDF in a SQL statement first, if necessary, links the dynamically linkable
library. The calling patterns on page 82 are then called.

Because these high-performance external C/C++ user-defined functions involve the loading
of non-server library code into the process space of the server, there are potential risks to data
integrity, data security, and server robustness from poorly or maliciously written functions. To
manage these risks, each SAP Sybase 1Q server can explicitly enable or disable this
functionality on page 25.

Declaring and Defining Scalar User-Defined Functions

SAP Sybase 1Q supports simple scalar user-defined functions (UDFs) that can be used
anywhere the SQRT function can be used.

These scalar UDFs can be deterministic, which means that for a given set of argument values
the function always returns the same result value, or they can be nondeterministic scalar
functions, which means that the same arguments can return different results.

Note: The scalar UDF examples referenced in this chapter are installed with the 1Q server, and
can be found as .cxx files in SIQDIR16/samples/udf. You can also find them in the
SIQDIR16/1ib64/1ibudfex dynamically linkable library.

32

SAP Sybase 1Q

Scalar and Aggregate UDFs

Declaring a Scalar UDF

The system privileges required to declare an in-process external UDF vary depending on the
owner of the UDF. There is also a server startup option that allows an administrator to enable
or disable this style of user-defined function.

To declare an in-process external UDF owned by themselves, a user requires both the
CREATE PROCEDURE and CREATE EXTERNAL REFERENCE system privileges. To
declare an in-process external UDF which is owned by another user requires either the
CREATE ANY PROCEDURE or CREATE ANY OBJECT system privilege, as well as the
CREATE EXTERNAL REFERENCE system privilege.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

By default, all user-defined functions use the access permissions of the owner of the UDF.

Note: To declare a UDF function owned by themselves, a user must have the CREATE
PROCEDURE system privilege. To declare a UDF function owned by others requires either
the CREATE ANY PROCEDURE or CREATE ANY OBJECT system privilege . If the UDF
function contains an external reference, the CREATE EXTERNAL REFERENCE system
privilege is also required, regardless of who declares the UDF function.

The syntax for creating a scalar UDF is:

scalar-udf-declaration:
CREATE FUNCTION [owner.]function-name
([parameter , ...])
RETURNS data-type
[routine-characteristics ...]
EXTERNAL NAME library-and-entry-point-name-string

parameter:
param-name data-type [DEFAULT value]

routine-characteristics:
[NOT] DETERMINISTIC
| { IGNORE | RESPECT } NULL VALUES
| SQL SECURITY { INVOKER | DEFINER }

The defaults for the characteristics in the above syntax are:

DETERMINISTIC
RESPECT NULL VALUES
SQL SECURITY DEFINER

To minimize potential security concerns, use a fully qualified path name to a secure directory
for the library name portion of the EXTERNAL NAME clause.

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

User-Defined Functions 33

Scalar and Aggregate UDFs

SQL SECURITY INVOKER uses additional memaory, because each user that calls the procedure
requires annotation. Additionally, name resolution is performed on both the user name and the
INVOKER. Qualify all object names (tables, procedures, and so on) with their appropriate
owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following the
RETURNS clause. The library name may include the file extension, which is typically .d11
on Windows and . so on UNIX. In the absence of the extension, the software appends the
platform-specific default file extension for libraries.

You can start the server with a library load path that includes the location of the UDF library.
On UNIX variants, modify the LD_LIBRARY_PATH inthe start iqg startup script.
While LD_LIBRARY_PATH is universal to all UNIX variants, SHLIB_PATH is preferred on
HP, and LIB_PATH is preferred on AIX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
e Defining a Scalar UDF on page 37

UDF Example: my plus Declaration
The “my_plus” example is a simple scalar function that returns the result of adding its two
integer argument values.

my_plus declaration

When my_plus resides within the dynamically linkable library my_shared_lib, the
declaration for this example looks like this:
CREATE FUNCTION my plus (IN argl INT, IN arg2 INT)

RETURNS INT

DETERMINISTIC

IGNORE NULL VALUES
EXTERNAL NAME 'my plus@libudfex'

This declaration says that my_plus is a simple scalar UDF residing in my_shared_lib with a
descriptor routine named describe_my_plus. Since the behavior of a UDF may require more
than one actual C/C++ entry point for its implementation, this set of entry points is not directly
part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure that is defined in detail in the next

34

SAP Sybase 1Q

Scalar and Aggregate UDFs

section. That descriptor structure contains the required and optional function pointers that
embody the implementation of this UDF.

This declaration says that my_plus accepts two INT arguments and returns an INT result
value. If the function is invoked with an argument that is notan INT, and if the argument can be
implicitly converted into an INT, the conversion happens before the function is called. If this
function is invoked with an argument that cannot be implicitly converted into an INT, a
conversion error is generated.

Further, the declaration states that this function is deterministic. A deterministic function
always returns the identical result value when supplied the same input values. This means the
result cannot depend on any external information beyond the supplied argument values, or on
any side effects from previous invocations. By default, functions are assumed to be
deterministic, so the results are the same if this characteristic is omitted from the CREATE
statement.

The last piece of the above declaration is the IGNORE NULL VALUES characteristic. Nearly
all built-in scalar functions return a NULL result value if any of the input arguments are
NULL. The IGNORE NULL VALUES states that the my_plus function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values are NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

In the following example query, my_plus appears in the SELECT list along with the
equivalent arithmetic expression:
SELECT my plus(t.x, t.y) AS x plus y one, (t.x + t.y)AS x plus y two

FROM t
WHERE t.z = 2

Inthe following example, my_plusis used in several different places and different ways within
the same query:

SELECT my plus(t.x, t.y), count(*)

FROM t

WHERE t.z = 2

AND my plus(t.x, 5) > 10

AND my plus(t.y, 5) > 10

GROUP BY my plus(t.x, t.y)

UDF Example: my plus counter Declaration
Themy plus_ counter example is a simple nondeterministic scalar UDF that takes a
single integer argument, and returns the result of adding that argument value to an internal

User-Defined Functions 35

Scalar and Aggregate UDFs

integer usage counter. If the input argument value is NULL, the result is the current value of
the usage counter.

my_plus_counter declaration

Assuming that my_plus_counter also resides within the dynamically linkable library
my_shared_lib, the declaration for this example is:
CREATE FUNCTION my plus counter (IN argl INT DEFAULT O0)

RETURNS INT

NOT DETERMINISTIC

RESPECT NULL VALUES
EXTERNAL NAME 'describe my plus counter@my shared 1lib'

The RESPECT NULL VALUES characteristic means that this function is called even if the
input argument value is NULL. This is necessary because the semantics of my_plus_counter
includes:

< Internally keeping a usage count that increments even if the argument is NULL.
e A non-null value result when passed a NULL argument.

Because RESPECT NULL VALUES is the default, the results are the same if this clause is
omitted from the declaration.

SAP Sybase 1Q restricts the usage of all nondeterministic functions. They are allowed only
within the SELECT list of the top-level query block or in the SET clause of an UPDATE
statement. They cannot be used within subqueries, or withina WHERE, ON, GROUP BY, or
HAVING clause. This restriction applies to nondeterministic UDFs as well as to the
nondeterministic built-in functions like GETUID and NUMBER.

The last detail in the above declaration is the DEFAULT qualifier on the input parameter. The
qualifier tells the server that this function can be called with no arguments, and that when this
happens the server automatically supplies a zero for the missing argument. If a DEFAULT
value is specified, it must be implicitly convertible into the data type of that argument.

In the following example, the first SELECT list item adds the running counter to the value of
t.x for each row. The second and third SELECT list items each return the same value for each
row as the NUMBER function.

SELECT my plus counter (t.x),
my plus counter (0),
my plus counter (),
NUMBER ()

FROM t

UDF Example: my byte length Declaration
my_byte_length is a simple scalar user-defined function that returns the size of a column in
bytes.

my_byte_length declaration

When my_byte_length resides within the dynamically linkable library my_shared_lib, the
declaration for this example is:

36

SAP Sybase 1Q

Scalar and Aggregate UDFs

CREATE FUNCTION my byte length (IN argl LONG BINARY)
// RETURNS UNSIGNED INT

// DETERMINISTIC

// IGNORE NULL VALUES

// EXTERNAL NAME 'my byte length@libudfex'

This declaration says that my_byte_length is a simple scalar UDF residing in my_shared_lib
with a descriptor routine named describe_my_byte_length. Since the behavior of a UDF may
require more than one actual C/C++ entry point for its implementation, this set of entry points
is not directly part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION
statement EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure. That descriptor structure contains the
required and optional function pointers that embody the implementation of this UDF.

This declaration also says that my_byte_length accepts one LONG BINARY argument and
returns an UNSIGNED INT result value.

Note: Large object data support requires a separately licensed SAP Sybase 1Q option.

The declaration states that this function is deterministic, which always returns the identical
result value when supplied the same input values. This means the result cannot depend on any
external information beyond the supplied argument values, or on any side effects from
previous invocations. By default, functions are assumed to be deterministic, so the results are
the same if this characteristic is omitted from the CREATE statement.

The last piece of this declaration is the IGNORE NULL VALUES characteristic. Nearly all
built-in scalar functions return a NULL result value if any of the input arguments are NULL.
The IGNORE NULL VALUES states that the my_byte_length function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values is NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

This example query with my_byte_length in the SELECT list returns a column with one row
for each row in exTable, with an INT representing the size of the binary file:

SELECT my byte length (exLOBColumn)

FROM exTable

Defining a Scalar UDF
The C/C++ code for defining a scalar user-defined function includes four mandatory pieces.

e extfnapivd.h —inclusion of the UDF interface definition header file.
e _evaluate_extfn — An evaluation function. All evaluation functions take two arguments:
« an instance of the scalar UDF context structure that is unique to each usage of a UDF
that contains a set of callback function pointers, and a pointer where a UDF can store
UDF-specific data.

User-Defined Functions 37

Scalar and Aggregate UDFs

a pointer to a data structure that allows access to the argument values and to the result
value through the supplied callbacks.

a_v3_extfn_scalar — an instance of the scalar UDF descriptor structure that contains a
pointer to the evaluation function.
Descriptor function — returns a pointer to the scalar UDF descriptor structure.

These parts are optional:

_start_extfn — an initialization function generally invoked once per SQL usage. If
supplied, you must also place a pointer to this function into the scalar UDF descriptor
structure. All initialization functions take one argument, a pointer to the scalar UDF
context structure that is unique to each usage of a UDF. The context structure passed is the
same one that is passed to the evaluation routine.

_finish_extfn —a shutdown function generally invoked once per SQL usage. If supplied, a
pointer to this function must also be placed into the scalar UDF descriptor structure. All
shutdown functions take one argument, a pointer to the scalar UDF context structure that is
unique to each usage of a UDF. The context structure passed is the same one that is passed
to the evaluation routine.

See also

Declaring a Scalar UDF on page 33

Scalar UDF Descriptor Structure

The scalar UDF descriptor structure, a_v3_extfn_scalar, is defined as:

typedef struct a v3 extfn scalar { //

// Metadata descriptor for a scalar UDF

// supplied by the UDF library to the server

// An optional pointer to an initialize function

void (* start extfn) (a v3 extfn scalar context * cntxt);

//

// An optional pointer to a shutdown function

void (* finish extfn) (a_v3 extfn scalar context * cntxt);
//

// A required pointer to a function that will be

// called for each invocation of the UDF on a

// new set of argument values

void (* evaluate extfn) (a v3 extfn scalar context * cntxt, void

*args_handle) ;

// RESERVED FIELDS MUST BE INITIALIZED TO NULL

void “*reservedl must be null;
void “*reserved2 must be null;
void “*reserved3 must be null;
void “*reserved4 must be null;
void “*reserved5 must be null;

} a v3 extfn scalar;

There should always be a single instance of a_v3_extfn_scalar for each defined scalar UDF. If
the optional initialization function is not supplied, the corresponding value in the descriptor

38

SAP Sybase 1Q

Scalar and Aggregate UDFs

structure should be the null pointer. Similarly, if the shutdown function is not supplied, the
corresponding value in the descriptor structure should be the null pointer.

The initialization function is called at least once before any calls to the evaluation routine, and
the shutdown function is called at least once after the last evaluation call. The initialization and
shutdown functions are normally called only once per usage.

Scalar UDF Context Structure
The scalar UDF context structure, a_v3_extfn_scalar_context that is passed to each of the
functions specified within the scalar UDF descriptor structure, is defined as:

typedef struct a v3 extfn scalar context ({

[/ ———————= Callbacks available via the context --------
//
short (SQL CALLBACK *get value) (
void *arg handle,
a sgl uint32 arg num,

an_extfn value *value
);
short (SQL CALLBACK *get piece) (

void * arg handle,
a sgl uint32 arg num,
an_extfn value *value,

a sqgl uint32 offset

)i

short (SQL CALLBACK *get_value_is_constant)(
void * arg handle,
a_sgl uint32 arg num,
a sgl uint32 * wvalue is constant
)

short (SQL CALLBACK *set value) (

void * arg_handle,
an_extfn value *value,
short append

);

a sql uint32 (SQL CALLBACK *get is cancelled) (
a v3 extfn scalar context * cntxt
)7

short (SQL CALLBACK *set error) (
a v3 extfn scalar context * cntxt,
a sgl uint32 error number,
const char * error desc string
);

void (SQL CALLBACK *log message) (
const char *msg,
short msg length

)
short (SQL CALLBACK *convert value) (

an_extfn value *input,

an_extfn value *output
[[|===——mm=s= Data available from the context ----------
void * user data; // read-write field
[/=—————————— For Server Internal Use Only —--———————————-—

User-Defined Functions 39

Scalar and Aggregate UDFs

void * for server internal use;
} a v3 extfn scalar context;

Note: The get_piece callback is valid in v3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

The _user_data field within the scalar UDF context structure can be populated with data the
UDF requires. Usually, it is filled in with a heap allocated structure by the _start_extfn
function, and deallocated by the _finish_extfn function.

The rest of the scalar UDF context structure is filled with the set of callback functions,
supplied by the engine, for use within each of the user's UDF functions. Most of these callback
functions return a success status through a short result value; a true return indicates success.
Well-written UDF implementations should never cause a failure status, but during
development (and possibly in all debug builds of a given UDF library), check that the return
status values from the callbacks. Failures can come from coding errors within the UDF
implementation, such as asking for more arguments than the UDF is defined to take.

The common set of arguments used by most of the callbacks includes:

e arg_handle— A pointer received by all forms of the evaluation methods, through which the
values for input arguments passed to the UDF are available, and through which the UDF
result value can be set.

e arg_num—Aninteger indicating which input argument is being accessed. Input arguments
are numbered left to right in ascending order starting at one.

e cntxt — A pointer to the context structure that the server passes to all UDF entry points.

« value—A pointer to an instance of the an_extfn_value structure that is used to either get an
input argument value from the server or to set the result value of the function. The
an_extfn_value structure has this form:

typedef struct an extfn value ({
void * data;
a SQL uint32 piece len;
union
a SQL uint32 total len;
a SQL uint32 remain len;
} len;
a_SQL data type type;
} an_extfn value;

40

SAP Sybase 1Q

Scalar and Aggregate UDFs

Table 1. Scalar External Function Context: a_v3_extfn_scalar_context

Method of Description
a v3_extfn_sca-
lar_context struc-

ture
void set_cannot_be_dis- Distribution can be disabled at the UDF level, even if distribution cri-
tributed(a_v3_extfn_sca- | teria are met at the library level. By default, the UDF is assumed to be
lar_context * cntxt) distributable if the library is distributable. It is the responsibility of the
UDF to push the decision to disable distribution to the server.
See also

e Blob (a_v4_extfn_blob)on page 199
e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Example: my plus Definition
The definition for the my_plus scalar UDF example.

my_plus definition

Because this UDF needs no initialization or shutdown function, those values within the
descriptor structure are set to 0. The descriptor function name matches the EXTERNAL
NAME used in the declaration. The evaluate method does not check the data type for
arguments, because they are declared as INT.

#include "extfnapiv3.h"
#include <stdlib.h>

// A simple deterministic scalar UDF that just adds
// two integer arguments and then returns the result.
//

// Corresponding SQL declaration:

//

// CREATE FUNCTION my plus(IN argl INT, IN arg2 INT)

// RETURNS INT
// DETERMINISTIC
// IGNORE NULL VALUES

// EXTERNAL NAME
'my plus@libudfex'

//

#1f defined cplusplus
extern "C" ({
#endif

static void my plus evaluate(a v3 extfn scalar context *cntxt,
void *arg handle)
{
an_extfn value arg;
an_extfn value outval;
a sgl int32 argl, arg2, result;

User-Defined Functions 41

Scalar and Aggregate UDFs

// Get first argument

(void) cntxt->get value(arg handle, 1, &arg);

if (arg.data == NULL)
{

return;

}
argl = *((a_sqgl int32 *)arg.data);

// Get second argument

(void) cntxt->get value(arg handle, 2, &arg);

if (arg.data == NULL)
{

return;

}
arg2 = *((a_sqgl int32 *)arg.data);

// Set the result value
outval.type = DT INT;

outval.piece len = sizeof(a sql int32);
result = argl + arg2;
outval.data = &result;

cntxt->set value(arg handle, &outval, 0);

static a v3 extfn scalar my plus descriptor =

{

0,

0,

&my plus evaluate,

0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, // Reserved - initialize to NULL

NULL // _for server internal use

}i

a v3 extfn scalar *my plus()

{

return &my plus descriptor;

}

#1if defined cplusplus

}
#endif

42

SAP Sybase 1Q

Scalar and Aggregate UDFs

Example: my plus counter Definition

This scalar UDF example checks the argument value pointer data to see if the input argument
value is NULL. It also has an initialization function and a shutdown function, each of which
can tolerate multiple calls.

my_plus _counter definition

#include "extfnapiv3.h"
#include <stdlib.h>

// A simple non-deterministic scalar UDF that adds

// an internal integer usage counter to its integer

// argument and then returns the resulting integer.

//

// Here, the start function creates a little structure for
// the counter, and then the finish function deallocates it.

//

// Corresponding SQL declaration:

//

// CREATE FUNCTION plus_ counter (IN argl INT)

// RETURNS INT

// NOT DETERMINISTIC

// RESPECT NULL VALUES

// EXTERNAL NAME 'my plus counter@libudfex'

typedef struct my counter ({
a sgl int32 counter;
} my counter;

#1f defined cplusplus
extern "C" ({
#endif

static void my plus counter start(a v3 extfn scalar context *cntxt)

{

my counter *cptr = (my counter *)cntxt-> user data;

// If we have not already allocated the

// counter structure, then do so now

if (!cptr) {
cptr = (my counter *)malloc(sizeof(my_counter));
cntxt-> user data = cptr;

}

cptr-> counter = 0;

static void my plus counter finish(a v3 extfn scalar context *cntxt)
{

// If we still have an allocated the

// counter structure, then free it now

if (cntxt-> user data) {

free (cntxt-> user data);
cntxt-> user data = 0;

User-Defined Functions

43

Scalar and Aggregate UDFs

static void my plus counter evaluate(a v3 extfn scalar context
*cntxt,
void *arg handle)
{
an_extfn value arg;
an_extfn value outval;
a sqgl int32 argl, result;

// Increment the usage counter
my counter *cptr = (my counter *)cntxt-> user data;
cptr-> counter += 1;

// Get the one argument
(void) cntxt->get value(arg handle, 1, &arg);
if (larg.data) {

// argument value was NULL;

argl = 0;
} else {
argl = *((a_sqgl int32 *)arg.data);

}

outval.type = DT INT;

outval.piece len = sizeof(a sql int32);
result = argl + cptr-> counter;
outval.data = &result;

cntxt->set value(arg handle, &outval, 0);

static a v3 extfn scalar my plus counter descriptor =
{ &my plus counter start,
&émy plus counter finish,
&émy plus counter evaluate,

NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, // _for server internal use

2

a v3 extfn scalar *my plus_ counter ()

{

return &my plus counter descriptor;

}

#if defined cplusplus
}
#endif

44 SAP Sybase IQ

Scalar and Aggregate UDFs

Example: my byte length Definition

The my_byte_length scalar UDF example computes the size of a column by streaming the
data in piece by piece, then returns the size of the column in bytes.

my_byte length definition

Note: Large object data support requires a separately licensed SAP Sybase 1Q option.

#include "extfnapiv4.h"
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>

// A simple function that returns the size of a cell value in bytes

//
//
//
/7
//
//

CREATE FUNCTION my byte length(IN argl LONG BINARY)
RETURNS UNSIGNED INT
DETERMINISTIC
IGNORE NULL VALUES
EXTERNAL NAME 'my byte length@libudfex'

#if defined _ cplusplus
extern "C" ({
#endif

static void my byte length evaluate(a v3 extfn scalar context
*cntxt,

{

void *arg handle)

if (cntxt == NULL || arg handle == NULL)
{

return;

}

an_extfn value arg;
an_extfn value outval;

a sql uint64 total len;

// Get first argument
a sgl uint32 fetchedLength = 0;
(void) cntxt->get value(arg handle, 1, &arg);
if (arg.data == NULL)
{
return;

}
fetchedLength += arg.piece len;

// saving total length as it loses scope inside get piece
total len = arg.len.total len;

User-Defined Functions 45

Scalar and Aggregate UDFs

while (fetchedLength < total len)
{

(void) cntxt->get piece(arg handle, 1, &arg, fetchedLength);

fetchedLength += arg.piece len;
}

//1if this fails, the function did not get the full data from the

cell
assert (fetchedLength == total len);

outval.type = DT UNSINT;

outval.piece len = 4;

outval.data = &fetchedLength;
cntxt->set value (arg handle, &outval, 0);

}

static a v3 extfn scalar my byte length descriptor = {

0,

0,

&my byte length evaluate,

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

0, // Reserved - initialize to NULL

NULL // _for server internal use

)z

a v3 extfn scalar *my byte length()
{

return &my byte length descriptor;
}

#if defined _ cplusplus
}
#endif

See also
o Example: my byte length Definition on page 45

Declaring and Defining Aggregate UDFs

SAP Sybase 1Q supports aggregate UDFs. The SUM function is an example of a built-in
aggregate function. A simple aggregate function produces a single result value from a set of

argument values. You can write aggregate UDFs that can be used anywhere the SUM
aggregate can be used.

Note: The aggregate UDF examples referenced here are installed with the server, and can be

found as .cxx files in SIQDIR16/samples/udf. You can also find them in the
SIQDIR16/1ib64/1ibudfex dynamically linkable library.

46

SAP Sybase 1Q

Scalar and Aggregate UDFs

An aggregate function can produce either asingle result, or a set of results. The number of data
points in the output result set may not necessarily match the number of data points in the input
set. Multiple-output aggregate UDFs must use a temporary output file to hold the results.

Declaring an Aggregate UDF
Aggregate UDFs are more powerful and more complex to create than scalar UDFs.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

When implementing an aggregate UDF, you must decide:

* Whether it will operate only across an entire data set or partition as an online analytical
processing (OLAP) -style aggregate, like RANK.

« Whether it will operate as either a simple aggregate or an OLAP-style aggregate, like
SUM.

* Whether it will operate only as a simple aggregate over an entire group.
The declaration and the definition of an aggregate UDF reflects these usage decisions.

The syntax for creating user-defined aggregate functions is:

aggregate-udf-declaration:
CREATE AGGREGATE FUNCTION [owner.]function-name

([parameter , ... 1)
RETURNS data-type
[aggregate-routine-characteristics ...]

EXTERNAL NAME library-and-entry-point-name-string

parameter:
param-name data-type [DEFAULT value]

aggregate-routine-characteristics:
DUPLICATE { SENSITIVE | INSENSITIVE }
-- 1is the server allowed to eliminate DISTINCT
| SQL SECURITY {INVOKER | DEFINER}
| OVER restrict
| ORDER order-restrict
| WINDOW FRAME
{ { ALLOWED | REQUIRED }
[window-frame-constraints ...]
| NOT ALLOWED }
| ON EMPTY INPUT RETURNS { NULL | VALUE }
-- Call or skip function on NULL inputs

window-frame-constraints:
VALUES { [NOT] ALLOWED }
| CURRENT ROW { REQUIRED | ALLOWED }
| [UNBOUNDED] { PRECEDING | FOLLOWING } restrict

restrict: { [NOT] ALLOWED } | REQUIRED

order-restrict:
{ NOT ALLOWED | SENSITIVE | INSENSITIVE | REQUIRED

User-Defined Functions 47

Scalar and Aggregate UDFs

The handling of the return data type, arguments, data types, and default values are identical to
that in the scalar UDF definition.

If an aggregate UDF can be used as a simple aggregate, then it can potentially be used with the
DISTINCT qualifier. The DUPLICATE clause in the aggregate UDF declaration determines:

» Whether duplicate values can be considered for elimination before the aggregate UDF is
called because the results are sensitive to duplicates (such as for the built-in
“COUNT(DISTINCT T.A)”) or,

« Whether the results are insensitive to the presence of duplicates (such as for
“MAX(DISTINCT T.A)").

The DUPLICATE INSENSITIVE option allows the optimizer to consider removing the
duplicates without affecting the result, giving the optimizer the choice on how to execute the
query. Write the aggregate UDF to expect duplicates. If duplicate elimination is required, the
server performs it before starting the set of _next_value_extfn calls.

Most of the remaining clauses that are not part of the scalar UDF syntax allow you to specify
the usages for this function. By default, an aggregate UDF is assumed to be usable as both a
simple aggregate and as an OLAP-style aggregate with any kind of window frame.

For an aggregate UDF to be used only as a simple aggregate function, declare it using:
OVER NOT ALLOWED

Any attempt to then use this aggregate as an OLAP-style aggregate generates an error.

For aggregate UDFs that allow or require an OVER clause, the UDF definer can specify
restrictions on the presence of the ORDER BY clause within the OVER clause by specifying
“ORDER?” followed by the restriction type. Window-ordering restriction types:

e REQUIRED — ORDER BY must be specified and cannot be eliminated.

* SENSITIVE — ORDER BY may or may not be specified, but cannot be eliminated when
specified.

e INSENSITIVE — ORDER BY may or may not be specified, but the server can do ordering
elimination for efficiency.

* NOT ALLOWED — ORDER BY cannot be specified.

Declare an aggregate UDF that makes sense only as an OLAP-style aggregate over an entire
set or partition that has been ordered, like the built-in RANK, with:

OVER REQUIRED
ORDER REQUIRED
WINDOW FRAME NOT ALLOWED

Declare an aggregate UDF that makes sense only as an OLAP-style aggregate using the
default window frame of UNBOUNDED PRECEDING to CURRENT ROW, with:

OVER REQUIRED

ORDER REQUIRED

WINDOW FRAME ALLOWED
RANGE NOT ALLOWED

48

SAP Sybase 1Q

Scalar and Aggregate UDFs

UNBOUNDED PRECEDING REQUIRED
CURRENT ROW REQUIRED
FOLLOWING NOT ALLOWED

The defaults for the all various options and restriction sets are:

DUPLICATE SENSITIVE

SQL SECURITY DEFINER

OVER ALLOWED

ORDER SENSITIVE

WINDOW FRAME ALLOWED
CURRENT ROW ALLOWED
PRECEDING ALLOWED

UNBOUNDED PRECEDING ALLOWED
FOLLOWING ALLOWED

UNBOUNDED FOLLOWING ALLOWED

* SQL Security —Defines whether the function is executed as the INVOKER, (the user who
is calling the function), or as the DEFINER (the user who owns the function). The default
is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because each user that
calls the procedure requires annotation. Also, when SQL SECURITY INVOKER is
specified, name resolution is performed on both the user name and the INVOKER. Qualify
all object names (tables, procedures, and so on) with their appropriate owner.

» External Name— A function using the EXTERNAL NAME clause is a wrapper around a
call to a function in an external library. A function using EXTERNAL NAME can have no
other clauses following the RETURNS clause. The library name may include the file
extension, which is typically . d11 on Windows and . so on UNIX. In the absence of the
extension, the software appends the platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions.

The server can be started with a library load path that includes the location of the UDF library.
On UNIX variants, this can be done by modifying the LD_LIBRARY _PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AlX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
» Defining an Aggregate UDF on page 53
» Context Storage of Aggregate User-Defined Functions on page 81

User-Defined Functions 49

Scalar and Aggregate UDFs

Example: my sum Declaration
The “my_sum” example is similar to the built-in SUM, except it operates only on integers.

my_sum declaration

Since my_sum, like SUM, can be used in any context, it has a relatively brief declaration:

CREATE AGGREGATE FUNCTION my sum(IN argl INT)
RETURNS BIGINT
ON EMPTY INPUT RETURNS NULL
EXTERNAL NAME 'describe my integer sum@my shared 1lib'

The various usage restrictions all default to ALLOWED to specify that this function can be
used anywhere in a SQL statement that any aggregate function is allowed.

Without any usage restrictions, my_sum is usable as a simple aggregate across an entire set of
rows, as shown here:

SELECT MIN(t.x), COUNT (*), my sum(t.y)
FROM t

Without usage restrictions, my_sum is also usable as a simple aggregate computed for each
group as specified by a GROUP BY clause:

SELECT t.x, COUNT(*), my sum(t.y)
FROM t
GROUP BY t.x

Because of the lack of usage restrictions, my_sum is usable as an OLAP-style aggregate with
an OVER clause, as shown in this cumulative summation example:

SELECT t.x,
my sum(t.x)
OVER (ORDER BY t.x ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)
AS cumulative x,
COUNT (*)
FROM t
GROUP BY t.x
ORDER BY t.x

Example: my bit xor Declaration
The “my_bit_xor” example is analogous to the SAP Sybase SQL Anywhere® built-in
BIT_XOR, except it operates only on unsigned integers.

my_bit_xor declaration

The resulting declaration is:

CREATE AGGREGATE FUNCTION my bit xor (IN argl UNSIGNED INT)
RETURNS UNSIGNED INT

ON EMPTY INPUT RETURNS NULL

EXTERNAL NAME 'describe my bit xor@my shared 1lib'

50

SAP Sybase 1Q

Scalar and Aggregate UDFs

Like the my_sum example, my_bit_xor has no associated usage restrictions, and is therefore
usable as a simple aggregate or as an OLAP-style aggregate with any kind of a window.

Example: my bit or Declaration
The “my_bit_or” example is similar to the SQL Anywhere built-in BIT_OR except it operates
only on unsigned integers and can be used only as a simple aggregate.

my_bit_or declaration

The resulting declaration looks like:

CREATE AGGREGATE FUNCTION my bit or (IN argl UNSIGNED INT)
RETURNS UNSIGNED INT
ON EMPTY INPUT RETURNS NULL
OVER NOT ALLOWED
EXTERNAL NAME 'describe my bit or@ my shared 1lib'

Unlike the my_bit_xor example, the OVER NOT ALLOWED phrase in the declaration
restricts the use of this function to a simple aggregate. Because of that usage restriction,
my_bit_or is only usable as a simple aggregate across an entire set of rows, or as a simple
aggregate computed for each group as specified by a GROUP BY clause shown in the
following example:

SELECT t.x, COUNT(*), my bit or(t.y)

FROM t
GROUP BY t.x

Example: my interpolate Declaration

The “my_interpolate” example is an OLAP-style UDAF that attempts to fill in any missing
values in a sequence (where missing values are denoted by NULLS) by performing linear
interpolation across any set of adjacent NULL values to the nearest non-NULL value in each
direction.

my_interpolate declaration

If the input at a given row is not NULL, the result for that row is the same as the input value.

User-Defined Functions 51

Scalar and Aggregate UDFs

Figure 1: my_interpolate results

t.tran_time t.price my_interpolate(t.price)
4/12/08 1:40 29.50 29.50
4/12/08 1:45 29.60 29.60
4(12/08 1.50 NULL 29.70

4/12/08 1:55 2080 29.80
4/12/08 200 20.65 I 29.65

4/12/08 205 NULL 29.60
4/12/08 210 NULL 29.55
4/12/08 215 29.50 29.50

To operate at a sensible cost, my_interpolate must run using a fixed-width, row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values he or she expects to see. This function takes a set of double-precision floating point
values and produces a resulting set of doubles.

The resulting UDAF declaration looks like this:

CREATE AGGREGATE FUNCTION my interpolate (IN argl DOUBLE)
RETURNS DOUBLE
OVER REQUIRED
WINDOW FRAME REQUIRED
RANGE NOT ALLOWED
PRECEDING REQUIRED
UNBOUNDED PRECEDING NOT ALLOWED
FOLLOWING REQUIRED
UNBOUNDED FOLLOWING NOT ALLOWED
EXTERNAL NAME 'describe my interpolate@my shared 1lib'

OVER REQUIRED means that this function cannot be used as a simple aggregate (ON
EMPTY INPUT, if used, is irrelevant).

WINDOW FRAME details specify that you must use a fixed-width, row-based window that
extends both forward and backward from the current row when using this function. Because of
these usage restrictions, my_interpolate is usable as an OLAP-style aggregate with an OVER
clause similar to:

SELECT t.x,
my interpolate (t.x)
OVER (ORDER BY t.x ROWS BETWEEN 5 PRECEDING AND 5 FOLLOWING)
AS x with gaps filled,
COUNT (*)
FROM t
GROUP BY t.x
ORDER BY t.x

52

SAP Sybase 1Q

Scalar and Aggregate UDFs

Within an OVER clause for my_interpolate, the precise number of preceding and following
rows may vary, and optionally, you can use a PARTITION BY clause; otherwise, the rows
must be similar to the example above given the usage restrictions in the declaration.

Defining an Aggregate UDF
The C/C++ code for defining an aggregate user-defined function includes eight mandatory
pieces.

» extfnapiv3.h — the UDF interface definition header file. The file isext fnapiv4.h for
the v4 API.

e _start_extfn —an initialization function invoked once per SQL usage. All initialization
functions take one argument: a pointer to the aggregate UDF context structure that is
unique to each usage of an aggregate UDF. The context structure passed is the same one
that is passed to all the supplied functions for that usage.

« _finish_extfn —a shutdown function invoked once per SQL usage. All shutdown functions
take one argument: a pointer to the aggregate UDF context structure that is unique to each
usage of an aggregate UDF.

* _reset_extfn —a reset function called once at the start of each new group, new partition,
and if necessary, at the start of each window motion. All reset functions take one argument:
a pointer to the aggregate UDF context structure that is unique to each usage of an
aggregate UDF.

e _next_value_extfn —a function called for each new set of input arguments.
_next_value_extfn takes two arguments:

« A pointer to the aggregate UDF context, and

e Anargs_handle.

As in scalar UDFs, the arg_handle is used with the supplied callback function pointers to
access the actual argument values.

e _evaluate_extfn — an evaluation function similar to the scalar UDF evaluation function.
All evaluation functions take two arguments:
< A pointer to the aggregate UDF context structure, and
e Anargs_handle.

e a v3_extfn_aggregate — an instance of the aggregate UDF descriptor structure that
contains the pointers to all of the supplied functions for this UDF.

e Descriptor function — a descriptor function that returns a pointer to that aggregate UDF
descriptor structure.

In addition to the mandatory pieces, there are several optional pieces that enable more
optimized access for specific usage situations:

e _drop_value_extfn — an optional function pointer that is called for each input set of
argument values that has fallen out of a moving window frame. This function should not
set the result of the aggregation. Use the get_value callback function to access the input
argument values, and, if necessary, through repeated calls to the get_piece callback
function.

Set the function pointer to the null pointer if:

User-Defined Functions 53

Scalar and Aggregate UDFs

» This aggregate cannot be used with a window frame,

» The aggregate is not reversible in some way, or

e The user is not interested in optimal performance.

If _drop_value_extfn is not supplied and the user has specified a moving window, each

time the window frame moves, the reset function is called and each row within the window

is included by a call to the next_value function, and finally the evaluate function is called.

If _drop_value_extfn is supplied, then each time the window frame moves, this drop value

function is called for each row falling out of the window frame, then the next_value

function is called for each row that has just been added into the window frame, and finally

the evaluate function is called to produce the aggregate result.

_evaluate_cumulative_extfn — an optional function pointer that may be called for each

new input set of argument values. If this function is supplied, and the usage is in a row-

based window frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then

this function is called instead of calling the next value function immediately followed by

calling the evaluate function.

_evalutate_cumulative_extfn must set the result of the aggregation through the set_value

callback. Access to its set of input argument values is through the usual get_value callback

function. This function pointer should be set to the null pointer if:

» This aggregate will never be used is this manner, or

e The user is not worried about optimal performance.

_next_subaggregate_extfn — an optional callback function pointer that works together

with an _evaluate_superaggregate_extfn to enable some usages of this aggregate to be

optimized by running in parallel.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style

aggregates with an OVER clause) can be partitioned by first producing a set of

intermediate aggregate results where each intermediate result is computed from a

disjointed subset of the input rows.

Examples of such partitionable aggregates include:

e SUM, where the final SUM can be computed by performing a SUM for each disjointed
subset of the input rows and then performing a SUM over the sub-SUMs; and

e COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the

computation of that aggregate parallel. For aggregate UDFs, this parallel optimization can

be applied only if both the _next subaggregate extfn function pointer and the

_evaluate_superaggregate_extfn pointer are supplied.

The _reset_extfn function does not set the final result of the aggregation, and by definition,

has exactly one input argument value that is the same data type as the defined return value

of the aggregate UDF.

Access to the subaggregate input value is through the normal get_value callback function.

Direct communication between subaggregates and the superaggregate is impossible; the

server handles all such communication. The sub-aggregates and the super-aggregate do

54

SAP Sybase 1Q

Scalar and Aggregate UDFs

not share a context structure. Instead, individual sub-aggregates are treated exactly the
same as nonpartitioned aggregates. The independent super-aggregate sees a calling pattern
that looks like this:

_start extfn

_reset extfn
next subaggregate extfn (repeated 0 to N times)
“evaluate __superaggregate extfn

7f1nlsh extfn

Or like this:

_start extfn

_reset extfn

_next subaggregate extfn (repeated 0 to N times)
_evaluate superaggregate extfn

_reset extfn

_next subaggregate extfn (repeated 0 to N times)
_evaluate superaggregate extfn

reset extfn

_next subaggregate extfn (repeated 0 to N times)
_evaluate superaggregate extfn

_finish extfn

If neither _evaluate _superaggregate_extfn or _next subaggregate extfn is supplied, then
the aggregate UDF is restricted, and not allowed as a simple aggregate within a query
block containing GROUP BY CUBE or GROUP BY ROLLUP.

e _evaluate_superaggregate_extfn —the optional callback function pointer that works with
the _next_subaggregate extfn to enable some usages as a simple aggregate to be
optimized through parallelization. _evaluate_superaggregate_extfn is called to return the
result of a partitioned aggregate. The result value is sent to the server using the normal
set_value callback function from the a_v3_extfn_aggregate_context structure.

See also

» Declaring an Aggregate UDF on page 47

» Context Storage of Aggregate User-Defined Functions on page 81
» Blob (a_v4_extfn_blob)on page 199

e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Aggregate UDF Descriptor Structure
The aggregate UDF descriptor structure comprises several pieces.

e typedef struct a_v3_extfn_aggregate — the metadata descriptor for an aggregate UDF
function supplied by the library.

e _start_extfn —required pointer to an initialization function for which the only argument is
apointertoa_v3_extfn_aggregate_context. Typically, used to allocate some structure and
store its address in the _user_data field within the a_v3_extfn_aggregate_context.
_start_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (* start extfn) (a v3 extfn aggregate context *);

User-Defined Functions 55

Scalar and Aggregate UDFs

_finish_extfn — required pointer to a shutdown function for which the only argument is a
pointer to a_v3_extfn_aggregate_context. Typically, used to deallocate some structure
with the address stored within the _user_data field in the a_v3_extfn_aggregate_context.
_finish_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (* finish extfn) (a v3 extfn aggregate context *);

_reset_extfn — required pointer to a start-of-new-group function, for which the only
argument is a pointer to a_v3_extfn_aggregate_context. Typically, used to reset some
values in the structure for which the address was stashed within the _user_data field in the
a_v3_extfn_aggregate_context. _reset_extfn is called repeatedly.

void (* reset extfn) (a _v3 extfn aggregate context *);
_next_value_extfn — required function pointer to be called for each new input set of
argument values. The function does not set the result of the aggregation. Access to input
argument values are through the get_value callback function and, if necessary, through
repeated callsto the get_piece callback function, which is required only if piece_leniis less
than total_len.

void (* next value extfn) (a v3 extfn aggregate context *cntxt,
void *args handle) ;

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

_evaluate_extfn — required function pointer to be called to return the resulting aggregate
result value. _evaluate_extfn is sent to the server using the set_value callback function.

void (* evaluate extfn) (a v3 extfn aggregate context *cntxt, void
*args_handle) ;

_drop_value_extfn —Optional function pointer that is called for each input set of argument
values that has fallen out of a moving window frame. Do not use this function to set the
result of the aggregation. Access to input argument values are through the get_value
callback function and, if necessary, through repeated calls to the get_piece callback
function; however, access is required only if piece_len is less than total_len. Set
_drop_value_extfn to the null pointer if:

» The aggregate cannot be used with a window frame.

« The aggregate is not reversible in some way.

e The user is not interested in optimal performance.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

If this function is not supplied, and the user has specified a moving window, then each time
the window frame moves, the reset function is called and each row now within the window
is included by a call to the next_value function. Finally, the evaluate function is called.
However, if this function is supplied, each time the window frame moves, this drop_value
function is called for each row falling out of the window frame, then the next_value

56

SAP Sybase 1Q

Scalar and Aggregate UDFs

function is called for each row that has just been added into the window frame. Finally, the
evaluate function is called to produce the aggregate result.

void (* drop value extfn) (a v3 extfn aggregate context *cntxt,
void *args handle) ;

e _evaluate_cumulative_extfn — optional function pointer to be called for each new input
set of argument values. If this function is supplied, and the usage is in a row-based window
frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then this function is
called instead of next_value, immediately followed by calling evaluate.

_evaluate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to inputargument values are through the get_value callback function and,
if necessary, through repeated calls to the get_piece callback function, which is only
required if piece_len is less than total_len.

void (* evaluate cumulative extfn) (a v3 extfn aggregate context
*cntxt, void *args_ handle);

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

e _next_subaggregate_extfn — optional callback function pointer that, with the
_evaluate_superaggregate_extfn function (and in some usages also with the
_drop_subaggregate_extfn function), enables some usages of the aggregate to be
optimized through parallel and partial results aggregation.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style

aggregates with an OVER clause) can be partitioned by first producing a set of

intermediate aggregate results where each of the intermediate results is computed from a

disjoint subset of the input rows. Examples of such partitionable aggregates include:

e SUM, where the final SUM can be computed by performing a SUM for each disjoint
subset of the input rows and then performing a SUM over the sub-SUMs; and

e COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the

computation of that aggregate parallel. For aggregate UDFs, this optimization can be

applied only if both the _next_subaggregate extfn callback and the

_evaluate_superaggregate_extfn callback are supplied. This usage pattern does not

require _drop_subaggregate_extfn.

Similarly, if an aggregate can be used with a RANGE-based OVER clause, an optimization

can be applied if _next_subaggregate_extfn, drop_subaggregate_extfn, and

_evaluate_superaggregate_extfn) functions are all supplied by the Aggregate UDF

implementation.

_next_subaggregate_extfn does not set the final result of the aggregation, and by
definition, has exactly one input argument value that is the same data type as the return
value of the aggregate UDF. Access to the sub-aggregate input value is through the

User-Defined Functions 57

Scalar and Aggregate UDFs

get_value callback function and, if necessary, through repeated calls to the get_piece
callback function, which is required only if piece_len is less than total_len.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

Direct communication between sub-aggregates and the super-aggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share the context structure. Individual sub-aggregates are treated exactly the same as
nonpartitioned aggregates. The independent super-aggregate sees a calling pattern that
looks like this:

_start extfn

_reset extfn
_next subaggregate extfn (repeated 0 to N times)

_evaluate superaggregate extfn
_finish extfn

void (* next subaggregate extfn) (a v3 extfn aggregate context
*cntxt, void *args_ handle);

_drop_subaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn and _evaluate_superaggregate_extfn, enables some usages
involving RANGE-based OVER clauses to be optimized through a partial aggregation.
_drop_subaggregate_extfn is called whenever a set of rows sharing a common ordering
key value have collectively fallen out of a moving window. This optimization is applied
only if all three functions are provided by the UDF.

void (* drop subaggregate extfn) (a v3 extfn aggregate context
*cntxt, void *args_ handle) ;

_evaluate_superaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn (and in some cases also with _drop_subaggregate_extfn),
enables some usages to be optimized by running in parallel.
_evaluate_superaggregate_extfn is called, as described above, when it is time to return the
result of a partitioned aggregate. The result value is sent to the server using the set_value
callback function from the a_v3_extfn_aggregate_context structure:

void (* evaluate superaggregate extfn)
(a_v3 extfn aggregate context *cntxt, void *args handle);

NULL fields — initialize these fields to NULL.:

void * reservedl must be null;

void * reservedZimust:be:null;
void * reserved3 must be null;
void * reserved4 must be null;
void * reserved5 must be null;

Status indicator bit field — a bit field containing indicators that allow the engine to
optimize the algorithm used to process the aggregate.

a sgl uint32 indicators;

_calculation_context_size — the number of bytes for the server to allocate for each UDF
calculation context. The server may allocate multiple calculation contexts during query

58

SAP Sybase 1Q

Scalar and Aggregate UDFs

processing. The currently active group context is available in
a_v3_extfn_aggregate_context_user_calculation_context.
short calculation context size;

e _calculation_context_alignment — specifies the alignment requirement for the user's
calculation context. Valid values include 1, 2, 4, or 8.
short calculation context alignment;

e External memory requirments — the following fields allow the optimizer to consider the
cost of externally allocated memory. With these values, the optimizer can consider the
degree to which multiple simultaneous calculations can be made. These counters should
be estimates based on a typical row or group, and should not be maximum values. If no
memory is allocated by the UDF, set these fields to zero.

» external_bytes per_group — The amount of memory allocated to a group at the start of
each aggregate. Typically, any memory allocated during the reset() call.

« external_bytes per_row — The amount of memory allocated by the UDF for each row
of a group. Typically, the amount of memory allocated during next_value().

double external bytes per group;
double external bytes per row;
* Reserved fields for future use — initialize these fields:
a sqgl uinte4 reserved6 must be null;
a sgl uinté4 reserved’7 must be null;
a_sgl uinté4 reserved8 must be null;
a_sgl uinte4 reserved9 must be null;
a sqgl uinte4 reservedl0 must be null;
* Closing syntax — Complete the descriptor with this syntax:
e For Server Internal Use Only -----—-----

void * for server internal use;
} a extfn aggregate;

See also
e Blob (a_v4_extfn_blob)on page 199
» Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Calculation Context
The _user_calculation_context field allows the server to concurrently execute calculations on
multiple groups of data.

An Aggregate UDF must keep intermediate counters for calculations as it is processing rows.
The simple model for managing these counters is to allocate memory at the start API function,
store a pointer to it in the aggregate context's _user_data field, then release the memory at the
aggregate’s finish API. An alternative method, based on the _user_calculation_context field,
allows the server to concurrently execute calculations on multiple groups of data.

The _user_calculation_context field is a server-allocated memory pointer, created by the
server for each concurrent processing group. The server ensures that the
_user_calculation_context always points to the correct calculation context for the group of
rows currently being processed. Between UDF API calls, depending on the data, the server

User-Defined Functions 59

Scalar and Aggregate UDFs

may allocate new _user_calculation_context values. The server may save and restore
calculation context areas to disk while processing a query.

The UDF stores all intermediate calculation values in this field. This illustrates a typical
usage:

struct my average context
{

int sum;

int count;

}i

reset (a_v3 aggregate context *context)
{

mycontext = (my average context *) context-
> user calculation context;

mycontext->count = 0;

mycontext->sum = 0;

next value (a v3 aggregate context *context, void *args handle)

{

mycontext = (my average context *) context-
> user calculation context;

mycontext->count++;

}

Inthismodel, the _user_datafield can still be used, but no values relating to intermediate result
calculations can be stored there. The _user_calculation_context is NULL at both the start and
finish entry points.

To use the _user_calculation_context to enable concurrent processing, the UDF must specify
the size and alignment requirements for its calculation context, and define a structure to hold
its values and set a_v3_extfh_aggregate and _calculation_context_size to the sizeof() of that
structure.

The UDF must also specify the data alignment requirements of _user_calculation_context
through _calculation_context_alignment. If user_calculation_context memory contains only
a character byte array, no particular alignment is necessary, and you can specify an alignment
of 1. Likewise, double floating point values might require an 8-byte alignment. Alignment
requirements vary by platform and data type. Specifying a larger alignment than necessary
always works; however, using the smallest alignment uses memory more efficiently.

Aggregate UDF Context Structure
The aggregate UDF context structure, a_v3_extfn_aggregate_context, has exactly the same
set of callback function pointers as the scalar UDF context structure.

In addition, it has a read/write _user_data pointer just like the scalar UDF context, and a set of
read-only data fields that describe the current usage and location. Each unique instance of the
UDF within a statement has one aggregate UDF context instance that is passed to each of the

60

SAP Sybase 1Q

Scalar and Aggregate UDFs

functions specified within the aggregate UDF descriptor structure when they are called. The
aggregate context structure is defined as:

e typedef struct a_v3_extfn_aggregate_context — One created for each instance of an
external function referenced within a query. If used within a parallelized subtree within a
query, there is a separate context for parallel subtree.

e Callbacks available via the context — Common arguments to the callback routines
include:

e arg_handle — A handle to function instance and arguments provided by the server.
e arg_num - The argument number. Return values are 0..N.

* data— The pointer to argument data.

The context must call get_value before get_piece, but needs to call get_piece only if
piece_len is less than total_len.

short (SQL CALLBACK *get value) (
void * arg handle,
a sgl uint32 arg_num,
an_extfn value *value
);
short (SQL CALLBACK *get piece) (

void * arg handle,
a_sgl uint32 arg_num,
an_extfn value *value,

a sgl uint32 offset

)i
e Determining whether an argument is a constant — The UDF can ask whether a given
argument is a constant. This can be useful, for example, to allow work to be done once at
the first call to the _next_value function rather than for every call to the _next_value

function.
short (SQL CALLBACK *get_value_is_constant)(
void * arg handle,

a sql uint32 arg num,
a sgl uint32 * wvalue is constant
);

e Returning anull value —To return a null value, set "data" to NULL inan_extfn_value. The
total_len field is ignored on calls to set_value, the data supplied becomes the value of the
argument if append is FALSE; otherwise, the data is appended to the current value of the
argument. It is expected that set_value is called with append=FALSE for an argument
before being called with append=TRUE for the same argument. The append field is
ignored for fixed-length data types (in other words, all numeric data types).

short (SQL CALLBACK *set value) (

void * arg handle,
an _extfn value *value,
short append

) i
e Determining whether the statement was interrupted — If a UDF entry point performs
work for an extended period of time (many seconds), then it should, if possible, call the
get_is_cancelled callback every second or two to see if the user has interrupted the current
statement. If the statement has been interrupted, a nonzero value is returned, and the UDF

User-Defined Functions 61

Scalar and Aggregate UDFs

entry point should then immediately perform. Eventually, the _finish_extfn function is
called to do any necessary cleanup, but no other UDF entry points are subsequently called.
a sgl uint32 (SQL CALLBACK *get is cancelled)
(a_v3 extfn aggregate context * cntxt);
Sending error messages — If a UDF entry point encounters some error that should result
in an error message being sent back to the user and the current statement being shut down,
the set_error callback routine should be called. set_error causes the current statement to
roll back; theuserseesError from external UDF: <error desc string>
and the SQLCODE is the negated form of <error_number>. After a call to set_error, the
UDF entry point immediately performs a return. Eventually, _finish_extfn is called to
perform any necessary cleanup, but no other UDF entry points are subsequently called.

void (SQL CALLBACK *set error) (
a v3 extfn aggregate context * cntxt,

a sgl uint32 error number,
// use error number values >17000 & <100000
const char * error desc string

) i
Writing messages to the message log — Messages longer than 255 bytes may be
truncated.
void (SQL CALLBACK *log message) (
const char *msg,
short msg length
) i
Converting one data type to another — for input:
e an_extfn_value.data — input data pointer.
e an_extfn_value.total_len — length of input data.
* an_extfn_value.type — DT_ datatype of input.
For output:
e an_extfn_value.data — UDF-supplied output data pointer.
e an_extfn_value.piece_len — maximum length of output data.
e an_extfn_value.total_len — server set length of converted output.
e an_extfn_value.type — DT_ datatype of desired output.
short (SQL CALLBACK *convert value) (
an_extfn value *input,
an_extfn value *output
) i
Fields reserved for future use — These are reserved for future use:
void * reservedl;
void reserved?2;
void reserved3;

*

*
void * reserved4;
void * reserved5;

Data available from the context — This data pointer can be filled in by any usage with any
context data the external routine requires. The UDF allocates and deallocates this memory.
A single instance of _user_data is active for each statement. Do not use this memory for
intermediate result values.

62

SAP Sybase 1Q

Scalar and Aggregate UDFs

void * user data;

* Currently active calculation context — UDFs should use this memory location to store
intermediate values that calculate the aggregate. This memory is allocated by the server
based on the size requested in the a_v3_extfn_aggregate. Intermediate calculations must
be stored in this memory, since the engine may perform simultaneous calculations over
more than one group. Before each UDF entry point, the server ensures that the correct
context data is active.
void * user calculation context;

e Other available aggregate information — Available at all external function entry points,
including start_extfn. Zero indicates an unknown or not-applicable value. Estimated
average number of rows per partition or group.

* a_sql_uinté4 _max_rows_in_frame; — Calculates the maximum number of rows
defined in the window frame. For range-based windows, this indicates unique values.
Zero indicates an unknown or not-applicable value.

e a_sqgl_uint64 _estimated_rows_per_partition; — Displays the estimated average
number of rows per partition or group. 0 indicates an unknown or not-applicable value.

e a_sgl_uint32 is_used_as_a_superaggregate; — ldentifies whether this instance is a
normal aggregate or a superaggregate. Returns a result of O if the instance is a normal
aggregate.

e Determining window specifications — Window specifications if a window is present on
the query:

* a_sql_uint32 _is_window_used; — Determines if the statement is windowed.

e a_sqgl_uint32 _window_has_unbounded_preceding; — A return value of 0 indicates
the window does not have unbounded preceding.

e a_sgl_uint32 _window_contains_current_row; — A return value of 0 indicates the
window does not contain the current row.

* a_sgl_uint32 _window_is_range_based; — If the return code is 1, the window is
range-based. If the return code is 0, the window is row-based.

e Available at reset_extfn() calls — Returns the actual number of rows in current partition, or
0 for nonwindowed aggregate.

a sgl uint64 num rows in partition;

e Available only at evaluate_extfn() calls for windowed aggregates — Currently evaluated
row number in partition (starting with 1). This is useful during the evaluation phase of
unbounded windows.

a sqgl uint64 result row from start of partition;

e Closing syntax — Complete the context with:

e For Server Internal Use Only —------—----
void * for server internal use;
} a v3 extfn aggregate context;

User-Defined Functions 63

Scalar and Aggregate UDFs

Aggregate External Function Context: a_v3_extfn_aggregate context

Method of Description
a v3_extfn_aggre-
gate_context struc-
ture

void set_cannot_be_distrib- | Distribution can be disabled at the UDF level, even if distribution
uted(a_v3_extfn_aggre- criteria are met at the library level. By default, the UDF is assumed to
gate_context * cntxt) be distributable if the library is distributable. It is the responsibility of
the UDF to push the decision to disable distribution to the server.

See also
» Blob (a_v4_extfn_blob)on page 199
e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

Example: my sum Definition
The aggregate UDF my_sum example operates only on integers.

my_sum definition

Since my_sum, like SUM, can be used in any context, all the optimized optional entry points
have been supplied. In this example, the normal _evaluate_extfn function can also be used as
the _evaluate_superaggregate_extfn function.

#include "extfnapiv4.h"
#include <stdlib.h>
#include <assert.h>

// Simple aggregate UDF that adds up a set of

// integer arguments, and whenever asked returns

// the resulting big integer total. For int

// arguments, the only difference between this

// UDF and the SUM built-in aggregate is that this
// UDF will return NULL if there are no input rows.
//

// The start function creates a little structure for
// the running total, and the finish function then
// deallocates it.

//

// Since there are no aggregate usage restrictions
// for this aggregate UDF, the corresponding SQL declaration
// will look like:

//

// CREATE AGGREGATE FUNCTION my sum(IN argl INT)
// RETURNS BIGINT

// ON EMPTY INPUT RETURNS NULL

// EXTERNAL NAME 'my integer sum@libudfex'

64 SAP Sybase IQ

Scalar and Aggregate UDFs

typedef struct my total ({

a sgl int64 _total;
a sgl uint64 num nonnulls seen;
} my total;

extern "C"

void my integer sum start(a v3 extfn aggregate context *cntxt)
{

}

extern "C"

void my integer sum finish(a v3 extfn aggregate context *cntxt)
{

}

extern "C"
void my integer sum reset(a v3 extfn aggregate context *cntxt)

{

my total *cptr = (my total *)cntxt-> user calculation context;
cptr-> total = 0;
cptr-> num nonnulls seen = 0;

}

extern "C"
void my integer sum next value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value arg;
a sgl int32 argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then add it to the total
//
if (cntxt->get value(arg handle, 1, &arg) && arg.data) {

argl = *((a_sqgl int32 *)arg.data);

cptr-> total += argl;

cptr-> num nonnulls seen++;

}

extern "C"
void my integer sum drop value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value arg;
a sql int32 argl;
my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then subtract it from the
total

User-Defined Functions 65

Scalar and Aggregate UDFs

if (cntxt->get value(arg handle, 1,
argl = *((a_sqgl int32 *)arg.data);
cptr-> total -= argl;
cptr-> num nonnulls seen--;

}

extern "C"

&arqg)

&& arg.data) {

void my integer sum evaluate(a v3 extfn aggregate context *cntxt,
void *arg handle)

{

an_extfn value outval;

my total *cptr = (my total *)cntxt-> user calculation context;

// Set the output result value. If the inputs
// were all NULL, then set the result as NULL.

//
outval.type = DT BIGINT;

outval.piece len = sizeof (a sql inté64);

if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> total;

} else {
outval.data = 0;

}

cntxt->set value(arg handle, &outval, 0);

extern "C"
void my integer sum cum evaluate (

a v3 extfn aggregate context *cntxt,
void *arg handle)

an_extfn value outval;
an_extfn value arg;
int argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then add it into the

total.
//

if (cntxt->get value(arg handle, 1,
argl = *((a_sqgl int32 *)arg.data);

cptr-> total += argl;
cptr-> num nonnulls seen++;

}

// Then set the output result value.

//
outval.type = DT BIGINT;

&arg)

&& arg.data) {

If the inputs
// were all NULL, then set the result as NULL.

outval.piece len = sizeof(a_sql inté4);

if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> total;
} else {

66

SAP Sybase 1Q

Scalar and Aggregate UDFs

outval.data = 0;
}

cntxt->set value(arg handle, &outval, 0);

}

extern "C"

void my integer sum next subagg value (
a v3 extfn aggregate context *cntxt,
void *arg handle)

an_extfn_value arg;
a sgl int64 argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then add it to the total

//

if (cntxt->get value(arg handle, 1, &arg) && arg.data) {
argl = *((a_sqgl int64 *)arg.data);
cptr-> total += argl;
cptr-> num nonnulls seen++;

}

extern "C"

void my integer sum drop subagg value (
a v3 extfn aggregate context *cntxt,
void *arg handle)

an_extfn_value arg;
a sgl int64 argl;

my total *cptr = (my total *)cntxt-> user calculation context;

// Get the one argument, and if non-NULL then subtract it from the

total
//
if (cntxt->get value(arg handle, 1, &arg) && arg.data) {
argl = *((a_sqgl int64 *)arg.data);
cptr-> total -= argl;
cptr-> num nonnulls seen--;

}

a v3 extfn aggregate my integer sum descriptor =
{

&my integer sum start,

&my integer sum finish,

&my integer sum reset,

&my integer sum next value,

&my integer sum evaluate,

&my integer sum drop value,

User-Defined Functions

67

Scalar and Aggregate UDFs

&my integer sum cum evaluate,

&my integer sum next subagg value,
&my integer sum drop subagg value,
&émy integer sum evaluate,

NULL, // reservedl must be null
NULL, // reserved2 must be null
NULL, // reserved3 must be null
NULL, // reserved4 must be null
NULL, // reserved5 must be null

0, // indicators

(short)sizeof(my total), // context size
, // context alignment

.0, //external bytes per group

0, // external bytes per row

, // reserved6 must be null

, // reserved7 must be null

, // reserved8 must be null

, // reserved9 must be null

, // reservedl0 must be null
NULL // _for server internal use

}i

extern "C"
a v3 extfn aggregate *my integer sum()
{

return &my integer sum descriptor;

}

Example: my bit xor Definition
The aggregate UDF my_bit_xor example is similar to the SQL Anywhere built-in BIT_XOR,
except my_bit_xor operates only on unsigned integers.

my_bit_xor definition

Because the input and the output data types are identical, use the normal _next_value_extfn
and _evaluate_extfn functions to accumulate subaggregate values and produce the
superaggregate result.

#include "extfnapiv4.h"
#include <stdlib.h>
#include <assert.h>

// Generic aggregate UDF that exclusive-ORs a set of
// unsigned integer arguments, and whenever asked

// returns the resulting unsigned integer result.

//

// The start function creates a little structure for
// the running result, and the finish function then
// deallocates it.

//

// Since there are no aggregate usage restrictions
// for this aggregate UDF, the corresponding SQL declaration
// will look like:

//

68 SAP Sybase IQ

Scalar and Aggregate UDFs

// CREATE AGGREGATE FUNCTION my bit xor (IN argl UNSIGNED
INT)

// RETURNS UNSIGNED INT

// ON EMPTY INPUT RETURNS NULL

// EXTERNAL NAME 'my bit xor@libudfex'

typedef struct my xor result ({
a sgl uint64 num nonnulls_ seen;
a sgl uint32 xor result;

} my xor result;

#1f defined cplusplus
extern "C" {
#endif

static void my xor start(a v3 extfn aggregate context *cntxt)
{
}

static void my xor finish(a v3 extfn aggregate context *cntxt)
{
}

static void my xor reset(a v3 extfn aggregate context *cntxt)

{

my xXor result *cptr = (my xor result *)cntxt-
> user calculation context;

cptr-> xor result = 0;

cptr-> num nonnulls seen = 0;

}

static void my xor next value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value arg;
a sqgl uint32 argl;

my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

// Get the one argument, and add it to the total

if (cntxt->get value(arg handle, 1, &arg) && arg.data) {
argl = *((a_sqgl uint32 *)arg.data);
cptr-> xor result "= argl;
cptr-> num nonnulls seent+;

}

static void my xor drop value(a v3 extfn aggregate context *cntxt,
void *arg handle)

{

User-Defined Functions 69

Scalar and Aggregate UDFs

an_extfn value arg;

a sgl uint32 argl;

my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

// Get the one argument, and remove it from the total
if (cntxt->get value(arg handle, 1, &arg) && arg.data) {

argl = *((a_sqgl uint32 *)arg.data);
cptr-> xor result "= argl;
cptr-> num nonnulls seen--;

}

static void my xor evaluate(a v3 extfn aggregate context *cntxt,

void *arg handle)
{
an_extfn value outval;
my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

outval.type = DT UNSINT;
outval.piece len = sizeof(a sql uint32);
if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> xor result;
} else {
outval.data = 0;
}

cntxt->set value(arg handle, &outval, 0);

}

static void my xor cum evaluate(a v3 extfn aggregate context

*cntxt,
void *arg handle)

{

an_extfn value outval;

an_extfn value arg;

a sgl uint32 argl;

my xor result *cptr = (my xor result *)cntxt-
> user calculation context;

// Get the one argument, and include it in the result,

// unless that input value is null.

//

if (cntxt->get value(arg handle, 1, &arg) && arg.data) {

argl = *((a_sqgl uint32 *)arg.data);
cptr-> xor result "= argl;
cptr-> num nonnulls seent+;

}

// Then set the output result value
outval.type = DT UNSINT;
outval.piece len = sizeof(a_sql uint32);
if (cptr-> num nonnulls seen > 0) {
outval.data = &cptr-> xor result;

70

SAP Sybase 1Q

Scalar and Aggregate UDFs

} else {
outval.data = 0;
}
cntxt->set value(arg handle, &outval, 0);

}

static a v3 extfn aggregate my xor descriptor =
{

&my xor start,

&my xor finish,

&my xor reset,

&my xor next value,

&my xor evaluate,

&my xor drop value,

&my xor cum evaluate,

&my xor next value,

&my xor drop value,

&my xor evaluate,

NULL, // reservedl must be null

NULL, // reserved2 must be null

NULL, // reserved3 must be null

NULL, // reserved4 must be null

NULL, // reserved5 must be null

0, // indicators

(short)sizeof(my xor result), // context size
// context alignment
// external bytes per group
// external bytes per row
// reserved6 must be null
// reserved7 must be null
// reserved8 must be null
// reserved9 must be null
// reservedlO must be null
// _for server internal use

~

[oNe]
~ 0~

~ N 0~ 0~

cNeoNoNoNoNeNoNe

~

=
(@}
[
[

2

a v3 extfn aggregate *my bit xor ()
{

return &my xor descriptor;

}

#if defined _ cplusplus
}
#endif

Example: my bit or Definition

The aggregate UDF my_bit_or example is similar to the SQL Anywhere built-in BIT_OR,
except my_bit_or operates only on unsigned integers, and can be used only as a simple
aggregate.

my_bit_or definition

The my_bit_or definition is somewhat simpler than the my_bit_xor example.

User-Defined Functions 71

Scalar and Aggregate UDFs

#include "extfnapiv4.h"
#include <stdlib.h>
#include <assert.h>

// A simple (non-OLAP) aggregate UDF that ORs a set
// of unsigned integer arguments, and whenever asked
// returns the resulting unsigned integer result.

//

// The start function creates a little structure for
// the running result, and the finish function then
// deallocates it.

//

// The aggregate usage restrictions for this aggregate UDF
// only allow its use as a simple aggregate, so the
// corresponding SQL declaration will look like:

//

// CREATE AGGREGATE FUNCTION my bit or (IN argl UNSIGNED INT)
// RETURNS UNSIGNED INT

// ON EMPTY INPUT RETURNS NULL

// OVER NOT ALLOWED

// EXTERNAL NAME 'my bit or@libudfex'

typedef struct my or result ({
a sgl uint32 or result;
a_sgl uint32 non null seen;
} my or result;

#if defined cplusplus
extern "C" {
#endif

static void my or start(a v3 extfn aggregate context *cntxt)
{
}

static void my or finish(a v3 extfn aggregate context *cntxt)
{
}

static void my or reset(a v3 extfn aggregate context *cntxt)

{

my or result *cptr = (my or result *)cntxt-
> user calculation context;

cptr-> or result = 0;

cptr-> non null seen = 0;

}

static void my or next value(a v3 extfn aggregate context *cntxt,
void *arg handle)
{

an_extfn value arg;

72 SAP Sybase IQ

Scalar and Aggregate UDFs

a sgl uint32 argl;

my or result *cptr = (my or result *)cntxt-
> user calculation context;

// Get the one argument, and add it to the total
if (cntxt->get value(arg handle, 1, &arg) && arg.data)
{

argl = *((a_sqgl uint32 *)arg.data);

cptr-> or result |= argl;

cptr-> non null seen = 1;

static void my or evaluate(a v3 extfn aggregate context *cntxt,
void *arg handle)
{
an_extfn value outval;
my or result *cptr = (my or result *)cntxt-
> user calculation context;

outval.type = DT UNSINT;
outval.piece len = sizeof(a sql uint32);
if (cptr-> non null seen)
{
outval.data = &cptr-> or result;
}
else
{
// Return null if no values seen
outval.data = 0;
}
cntxt->set value(arg handle, &outval, 0);

}

static a v3 extfn aggregate my or descriptor =
{

&my or start,

&my or finish,

&my or reset,

&émy or next value,

&my or evaluate,

NULL, // drop val extfn

NULL, // cume_eval,

NULL, // next subaggregate extfn

NULL, // drop subaggregate extfn

NULL, // evaluate superaggregate extfn

NULL, // reservedl must be null

NULL, // reserved2 must be null

NULL, // reserved3 must be null

NULL, // reserved4 must be null

NULL, // reserved5 must be null

0, // indicators

User-Defined Functions 73

Scalar and Aggregate UDFs

short)sizeof(my or result), // context size
, // context alignment
//external bytes per group

// external bytes per row

, // reserved6 must be null

, // reserved] must be null

14

r

-0p
507

// reserved8 must be null

// reserved9 must be null
, // reservedlO must be null
NULL // _for server internal use

(
8
0
0
0
0
0
0
0

}i

extern "C"
a v3 extfn aggregate *my bit or()
{

return &my or descriptor;

}

#1f defined cplusplus
}
#endif

Example: my interpolate definition

The aggregate UDF my_interpolate example is an OLAP-style aggregate UDF that attempts
to fill in NULL values within a sequence by performing linear interpolation across any set of
adjacent NULL values to the nearest non-NULL value in each direction.

my_interpolate definition

To operate at a sensible cost, my_interpolate must run using a fixed-width, row-based
window, but the user can set the width of the window based on the maximum number of
adjacent NULL values expected. If the input ata given row is not NULL, the result for that row
is the same as the input value. This function takes a set of double-precision floating-point
values and produces a resulting set of doubles.

#include "extfnapiv4.h"

#include <stdlib.h>
#include <assert.h>

// MY INTERPOLATE

//
// OLAP-style aggregate UDF that accepts a double precision
// floating point argument. If the current argument value is

// not NULL, then the result value is the same as the

// argument value. On the other hand, if the current row's

// argument value is NULL, then the result, where possible,

// will be the arithmetic interpolation across the nearest

// preceding and nearest following values that are not NULL.
// In all cases the result is also a double precision value.
//

// The start function creates a structure for maintaining the
// argument values within the window including their NULLness.

74 SAP Sybase IQ

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Scalar and Aggregate UDFs

The finish function then deallocates this structure.

Since there are some strict aggregate
for this aggregate (must be used with
frame that includes the current row),
SQL declaration will look like:

usage restrictions
a row-based window
the corresponding

CREATE AGGREGATE FUNCTION my interpolate (IN argl DOUBLE)

RETURNS DOUBLE
OVER REQUIRED

WINDOW FRAME REQUIRED

RANGE NOT
PRECEDING
UNBOUNDED
FOLLOWING
UNBOUNDED
EXTERNAL NAME

typedef struct my window {

int _allocated elem;
int _first used;

int _next insert loc;
int *_is_null;

double * dbl val;

int _num_rows_in frame;

my window;

#if defined _ cplusplus
extern "C" {
#endif

ALLOWED
REQUIRED
PRECEDING NOT ALLOWED
REQUIRED
FOLLOWING NOT ALLOWED

'my interpolate@libudfex'

static void my interpolate reset(a v3 extfn aggregate context
*cntxt)

{

assert (cntxt-> user data);
my window *cptr

cptr-> first used = 0;
cptr-> next insert loc = 0;
cptr-> num rows in frame

0l

(my window *)cntxt-> user data;

for (th i=0; iZcpEr—> allocated elem; i++) {

cptr-> is null[i] = 1;

}

static void my interpolate start(a v3 extfn aggregate context
*cntxt)

{

my window *cptr

(my window *)cntxt-> user data;

// Make sure function was defined correctly

User-Defined Functions

75

Scalar and Aggregate UDFs

if (!cntxt-> is window used)

{
cntxt->set error (cntxt, 20001, "Function requires window");
return;

}
if (cntxt-> window has unbounded preceding | |
cntxt-> window has unbounded following)

{

cntxt->set error (cntxt, 20002, "Window cannot be unbounded");
return;

if (cntxt-> window is range based)

cntxt->set error (cntxt, 20003, "Window must be row based");
return;

}

if (!cptr) {
//
cptr = (my window *)malloc (sizeof (my window)) ;
if (cptr) |
cptr-> is null = 0;

cptr-> dbl val = 0;
cptr-> num rows in frame = 0;
cptr-> allocated elem = (int)cntxt-> max rows_ in frame;
cptr-> is null = (int *)malloc(cptr-> allocated elem
* sizeof (int));
cptr-> dbl val = (double *)malloc(cptr-> allocated elem
* sizeof (double)) ;
cntxt-> user data = cptr;
}
}
if (!cptr || !cptr-> is null || !cptr-> dbl val) {

// Terminate this query
cntxt->set error (cntxt, 20000, "Unable to allocate memory");
return;

}

my interpolate reset (cntxt);

static void my interpolate finish(a v3 extfn aggregate context
*cntxt)
{
if (cntxt-> user data) {
my window *cptr = (my window *)cntxt-> user data;
if (cptr-> is null) {
free (cptr-> is null);
cptr-> is null = 0;
}
if (cptr-> dbl val) {
free (cptr-> dbl val);
cptr-> dbl val = 0;
}
free (cntxt-> user data);
cntxt-> user data = 0;

76 SAP Sybase IQ

Scalar and Aggregate UDFs

static void my interpolate next value(a v3 extfn aggregate context
*cntxt,
void *arg handle)
{
an_extfn value arg;
double argl;
my window *cptr = (my window *)cntxt-> user data;

// Get the one argument, and stash its value
// within the rotating window arrays

//
int curr cell num = cptr-> next insert loc % cptr-
> allocated elem;

if (cntxt->get value(arg handle, 1, &arg) && arg.data != NULL) {
argl = *((double *)arg.data):;
cptr-> dbl val[curr cell num] = argl;
cptr-> is null[curr cell num] = 0;

} else {

cptr-> is null[curr cell num]

}

1;

// Then increment the insertion location and number of rows in
frame
cptr-> next insert loc = ((cptr-> next insert loc + 1)
% cptr-> allocated elem);
cptr-> num rows in frame++;

}

static void my interpolate drop value(a v3 extfn aggregate context
*cntxt,

void * /*arg handle*/)
{

my window *cptr = (my window *)cntxt-> user data;

// Drop one value from the window by incrementing past it and
// decrement the number of rows in the frame
cptr-> first used = ((cptr-> first used + 1) % cptr-
> allocated elem);
cptr-> num rows in frame--;

}

static void my interpolate evaluate(a v3 extfn aggregate context
*cntxt,
void *arg handle)

{

an_extfn value outval;

my window *cptr = (my window *)cntxt-> user data;
double result;
int result is null = 1;

User-Defined Functions 77

Scalar and Aggregate UDFs

double preceding value;

int preceding value is null = 1;
double preceding distance = 0;
double following value;

int following value is null = 1;
double following distance = 0;

int j;

// Determine which cell is the current cell
int curr cell num =
((int) (cntxt-> result row from start of partition-1)) %cptr-
> allocated elem;
int tmp cell num;

int result row offset from start of frame = cptr-> first used <=
curr cell num ?
(curr cell num - cptr-> first used)
(curr cell num + cptr-> allocated elem - cptr-
> first used);

// Compute the result value
if (cptr-> is null[curr cell num] == 0) {
//
// If the current rows input value is not NULL, then there is
// no need to interpolate, just use that input value.
//
result = cptr-> dbl val[curr cell num];
result is null = 0;

// If the current rows input value is NULL, then we do
// need to interpolate to find the correct result value.
// First, find the nearest following non-NULL argument
// value after the current row.

int rows following = cptr-> num rows in frame -
result row offset from start of frame - 1;
for (3j=0; Jj<rows following; Jj++) {
tmp_cell num = ((curr_cell num + j + 1) % cptr-
> allocated elem);
if (cptr-> is null[tmp cell num] == 0) {
following value = cptr-> dbl val[tmp cell num];

following value is null = 0;
following distance = j + 1;
break;

// Second, find the nearest preceding non-NULL

// argument value before the current row.

//

int rows before = result row offset from start of frame;
for (3=0; j<rows before; j++) {

78 SAP Sybase IQ

Scalar and Aggregate UDFs

tmp cell num = ((curr cell num + cptr-> allocated elem - j - 1)
% cptr-> allocated elem);
if (cptr-> is null[tmp cell num] == 0) {
preceding value = cptr-> dbl val[tmp cell num];
preceding value is null = 0;
preceding distance = j + 1;
break;

}

// Finally, see what we can come up with for a result value

//

if (preceding value is null && !following value is null) {
//
// No choice but to mirror the nearest following non-NULL value
// Example:

//
// Inputs: NULL Result of my interpolate: 40.0
// NULL 40.0
// 40.0 40.0
//
result = following value;
result is null = 0;
//
} else if (!preceding value is null && following value is null) {
//

// No choice but to mirror the nearest preceding non-NULL value
// Example:

//

// Inputs: 10.0 Result of my interpolate: 10.0

// NULL 10.0

//

result = preceding value;

result is null = 0;

//

} else if (!preceding value is null && !following value is null)

//

// Here we get to do real interpolation based on the

// nearest preceding non-NULL value, the nearest following
// non-NULL value, and the relative distances to each.

// Examples:

//

// Inputs: 10.0 Result of my interpolate: 10.0
// NULL 20.0
// NULL 30.0
// 40.0 40.0
//

// Inputs: 10.0 Result of my interpolate: 10.0
// NULL 25.0
// 40.0 40.0
//

result = (preceding value

+ ((following value - preceding value)
* (preceding distance

/ (preceding distance +
following distance))));

User-Defined Functions 79

Scalar and Aggregate UDFs

result is null = 0;
}
}

// And last, pass the result value out
outval.type = DT DOUBLE;
outval.piece len = sizeof (double);
if (result is null) {

outval.data = 0;
} else {

outval.data = &result;
}

cntxt->set value(arg handle, &outval, 0);

static a v3 extfn aggregate my interpolate descriptor =
{
&my interpolate start,
&my interpolate finish,
&my interpolate reset,
&my interpolate next value, //(timeseries expression)
&my interpolate evaluate,
&my interpolate drop value,
NULL, // cume eval,
NULL, // next subaggregate extfn
NULL, // drop_subaggregate extfn
NULL, // evaluate superaggregate extfn
NULL, // reservedl must be null
NULL, // reserved2 must be null
NULL, // reserved3 must be null
NULL, // reserved4 must be null
NULL, // reserved5 must be null
0, // indicators
// context size
// context alignment
.0, //external bytes per group
double)sizeof(double), // external bytes per row
// reserved6 must be null
// reserved7 must be null
// reserved8 must be null
reserved9 must be null
, // reservedlO must be null
NULL // _for server internal use

~

~

~ N~ 0~ N

OO OO O ~0O OO
~
~

}i

a v3 extfn aggregate *my interpolate ()
{ return &my interpolate descriptor; }

#if defined cplusplus
}
#endif

80 SAP Sybase IQ

Scalar and Aggregate UDFs

Context Storage of Aggregate User-Defined Functions
The context area is used to transfer or communicate data between multiple invocations of the
UDF within the same query (particularly within OLAP-style queries).

Context variables control whether the intermediate results of aggregate functions are to be
managed by the UDF itself (forcing the SAP Sybase 1Q server to run the UDFs serially), or
whether the memory is to be managed by the SAP Sybase 1Q server.

If the _calculation_context_size is set to 0, then the UDF is required to manage all interim
results in memory, (forcing the SAP Sybase 1Q server to invoke the UDF sequentially over the
data (instead of being able to invoke many instances of the UDF in parallel during an OLAP
query).

Ifthe calculation_context_size is set to a nonzero value, the SAP Sybase 1Q server manages a
separate context area for each invocation of the UDF, allowing multiple instances of the UDF
to be invoked in parallel. To make the most efficient use of memory, consider setting the
_calculation_context_alignment a value smaller than the default (depending on the size of the
context storage needed).

For details on context storage, refer to the description of _calculation_context_size and
_calculation_context_alignment in the section Aggregate UDF descriptor structure on page
55. These variables are near the end of the descriptor structure.

For a detailed discussion about the use of context storage, see Calculation contexton page
59.

Important: To store intermediate results in memory within an aggregate UDF, initialize the
memory with the _start_extfn function, and clean up and de-allocate any memory with the
_finish_extfn function.

See also
» Declaring an Aggregate UDF on page 47
» Defining an Aggregate UDF on page 53

Calling Scalar and Aggregate UDFs

You can use a user-defined function, subject to permissions, any place you use a built-in
nonaggregate function.

This Interactive SQL statement returns a full name from two columns containing a first and
last name:

SELECT fullname (GivenName, LastName)
FROM Employees;

User-Defined Functions 81

Scalar and Aggregate UDFs

fullname (Employees.GivenName,Employees.SurName)

Fran Whitney

Matthew Cobb

Philip Chin

The following statement returns a full name from a supplied first and last name:

SELECT fullname ('Jane', 'Smith');

fullname (‘Jane','Smith")

Jane Smith

Any user who has been granted Execute permissions for the function can use the fullname
function.

Scalar and Aggregate UDF Calling Patterns

Calling patterns are steps the functions perform as results are gathered.

Scalar and Aggregate UDF Callback Functions

The set of callback functions are supplied by the engine through the
a v3 extfn scalar context structure and used within the user's UDF functions.

* get_value—The function used within an evaluation method to retrieve the value of each
input argument. For narrow argument data types (smaller than 256 bytes), a call to
get_value is sufficient to retrieve the entire argument value. For wider argument data types,
if the piece_len field within the an_extfn_value structure passed to this callback comes
back with a value smaller than the value in the total_len field, use the get_piece callback to
retrieve the rest of the input value.

* get_piece—The function used to retrieve subsequent fragments of a long argument input
value.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

* (get_is constant — A function that determines whether the specified input argument value
is a constant. This can be useful for optimizing a UDF, for example, where work can be
performed once during the first call to the _evaluate_extfn function, rather than for every
evaluation call.

82

SAP Sybase 1Q

Scalar and Aggregate UDFs

» set_value—The function used within an evaluation function to tell the server the result
value of the UDF for this call. If the result data type is narrow, one call to set_value is
sufficient. However, if the result data value is wide, then multiple calls to set_value are
required to pass the entire value, and the append argument to the callback should be true for
each fragment except the last. To return a NULL result, the UDF should set the data field
within the result value's an_extfn_value structure to the null pointer.

* get_is cancelled —A function to determine whether the statement has been cancelled. If a
UDF entry point is performing work for an extended period of time (many seconds), then it
should, if possible, call the get_is_cancelled callback every second or two to see if the user
has interrupted the current statement. The return value is 0 if the statement has not been
interrupted.

SAP Sybase 1Q can handle extremely large data sets, and some queries can run for long
periods of time. Occasionally, a query takes an unusually long time to execute. The SQL
client lets the user cancel a query if it is taking too long to complete. Native functions track
when a user has canceled a query. UDFs must also be written in a manner that tracks
whether a query has been canceled by the user. In other words, UDFs should support the
ability for users to cancel long-running queries that invoke UDFs.

* set_error — A function that can be used to communicate an error back to the server, and
eventually to the user. Call this callback routine if a UDF entry point encounters an error
that should result in an error message being sent back to the user. When called, set_error
rolls back the current statement, and the user receives Error from external UDF:
error desc_string, and the SQLCODE is the negated form of the supplied
error_number. To avoid collisions with existing errors, UDFs should use error_number
values between 17000 and 99999. The maximum length of “error_desc_string” is 140
characters.

* log_message—The function used to send a message to the server's message log. The string
must be a printable text string no longer than 255 bytes.

« convert_value—The function allows data conversion between data types. The primary use
is the conversion between DT_DATE, DT_TIME, and DT_TIMESTAMP, and
DT_TIMESTAMP_STRUCT. An input and output an_extfn_value is passed to the
function.

See also

e Scalar UDF Calling Pattern on page 84

» Aggregate UDF Calling Patterns on page 84

* Blob (a_v4_extfn_blob)on page 199

e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

User-Defined Functions 83

Scalar and Aggregate UDFs

Scalar UDF Calling Pattern

Expected calling pattern for supplied function pointers for a scalar UDF calling pattern.

_start extfn(if supplied)
_evaluate extfn (repeated 0 to numerous times)
_finish extfn(if supplied)

See also
o Scalar and Aggregate UDF Callback Functions on page 82
» Aggregate UDF Calling Patterns on page 84

Aggregate UDF Calling Patterns

The calling patterns for the user-supplied aggregate UDF functions are more complex and
varied than the scalar calling patterns.

The examples that follow this table definition;

create table t (a int, b int, c int)

insert into t wvalues (1, 1, 1)
insert into t wvalues (2, 1, 1)
insert into t wvalues (3, 1, 1)
insert into t values (4, 2, 1)
insert into t values (5, 2, 1)
insert into t wvalues (6, 2, 1)

The following abbreviation is used:

RR = a_v3_extfn_aggregate_context. _result_row_offset_from_start_of_partition — This
value indicates the current row number inside the current partition for which a value is
calculated. The value is set during windowed aggregates and is intended to be used during the
evaluation step of unbounded windows; it is available at all evaluate calls.

SAP Sybase 1Q is a multi user application. Many users can simultaneously execute the same
UDF. Certain OLAP queries excute UDFs multiple times within the same query, sometimes in
parallel.

See also
e Scalar and Aggregate UDF Callback Functions on page 82
o Scalar UDF Calling Pattern on page 84

Simple Aggregate Ungrouped
The simple aggregate ungrouped calling pattern totals the input values of all rows and
produces a result.

Query

select my sum(a) from t

84

SAP Sybase 1Q

Scalar and Aggregate UDFs

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn(cntxt, args) -- input a=l1
_next value extfn(cntxt, args) -- input a=2
_next value extfn(cntxt, args) -- input a=3
_next value extfn(cntxt, args) -- input a=4
_next value extfn(cntxt, args) -- input a=5
_next value extfn(cntxt, args) -- input a=6
evaluate extfn(cntxt, args) -- returns 21

_finish extfn (cntxt)

Result

my sum(a)
21

Simple Aggregate Grouped
The simple aggregate grouped calling pattern totals the input values of all rows in the group
and produces a result. _reset_extfn identifies the beginning of a group.

Query
select b, my sum(a) from t group by b order by b

Calling pattern

_start extfn(cntxt)
_reset extfn (cntxt)

_next value extfn(cntxt, args) -- input a=1
_next value extfn(cntxt, args) -- input a=2
_next value extfn(cntxt, args) -- input a=3
_evaluate extfn (cntxt, args) -—- returns ©6
_reset extfn(cntxt)
_next value extfn(cntxt, args) -- input a=4
_next value extfn(cntxt, args) -- input a=5
_next value extfn(cntxt, args) -- input a=6
evaluate extfn (cntxt, args) -- returns 15

7finish7e§tfn(cntxt)

Result

b, my sum(a)
1, 6

2, 15

OLAP-Style Aggregate Calling Pattern with Unbounded Window

Partitioning on “b” creates the same partitions as grouping on “b”. An unbounded window
causes the “a” value to be evaluated for each row of the partition. Because this is an unbounded
query, all values are fed to the UDF first, followed by an evaluation cycle. Context indicators

User-Defined Functions 85

Scalar and Aggregate UDFs

are set to 1 for _window_has_unbounded_preceding and
_window_has_unbounded_following

Query

select b, my sum(a) over (partition by b rows between
unbounded preceding and

unbounded following)

from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn (cntxt, args) input a=1

_next value extfn(cntxt, args) input a=2

_next value extfn(cntxt, args) input a=3
_evaluate extfn (cntxt, args) rr=1 returns 6
_evaluate extfn(cntxt, args) rr=2 returns 6
_evaluate extfn(cntxt, args) rr=3 returns 6
_reset extfn(cntxt)

_next value extfn(cntxt, args) input a=4

_next value extfn (cntxt, args) input a=5

_next value extfn(cntxt, args) input a=6
_evaluate extfn (cntxt, args) rr=1 returns 15
_evaluate extfn (cntxt, args) rr=2 returns 15
_evaluate extfn (cntxt, args) rr=3 returns 15

_finish extfn (cntxt)

Result

b, my sum(a)
1, o

1, o

1, ©

2, 15

2, 15

2, 15

OLAP-Style Unoptimized Cumulative Window Aggregate
If evaluate_cumulative_extfn is not supplied, this cumulative sum is evaluated through this
calling pattern, which is less efficient than _evaluate_cumulative_extfn.

Query

select b, my sum(a) over (partition by b

rows between unbounded preceding and current row)
from t

order by b

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)
_next value extfn(cntxt, args) -— input a=1

86

SAP Sybase 1Q

Scalar and Aggregate UDFs

_evaluate extfn (cntxt, args) -— returns 1
_next value extfn(cntxt, args) -- input a=2
_evaluate extfn (cntxt, args) -- returns 3
_next value extfn(cntxt, args) -- input a=3
_evaluate extfn(cntxt, args) -- returns 6
_reset extfn(cntxt)
_next value extfn(cntxt, args) -- input a=4
_evaluate extfn(cntxt, args) -- returns 4
_next value extfn(cntxt, args) -- input a=5
_evaluate extfn (cntxt, args) -- returns 9
_next value extfn(cntxt, args) -- input a=6
evaluate extfn (cntxt, args) -- returns 15

:finishiegtfn(cntxt)

Result

b, my sum(a)
1, 1

1, 3

1, 6

2, 4

2, 9

2, 15

OLAP-Style Optimized Cumulative Window Aggregate

If _evaluate_cumulative_extfn is supplied, this cumulative sum is evaluated where the
next_value/evaluate sequence is combined into a single _evaluate _cumulative_extfn call for
each row within each partition.

Query

select b, my sum(a) over (partition by b rows between unbounded
preceding and current row)

from t

order by b

Calling pattern

_start extnfn (cntxt)
_reset extfn(cntxt)

_evaluate cumulative extfn(cntxt, args) -- input a=1 returns 1

_evaluate cumulative extfn(cntxt, args) -- input a=2 returns 3

_evaluate cumulative extfn(cntxt, args) -- input a=3 returns 6

_reset extfn(cntxt)

_evaluate cumulative extfn(cntxt, args) -- input a=4 returns 4

_evaluate cumulative extfn(cntxt, args) -- input a=5 returns 9
evaluate cumulative extfn(cntxt, args) -- input a=6 returns 15

_finish extfn(cntxt)

Result
b, my sum(a)
1, 1
1, 3
1, 6

User-Defined Functions 87

Scalar and Aggregate UDFs

2, 4
2, 9
2, 15

OLAP-Style Unoptimized Moving Window Aggregate
If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
this significantly less efficient than using _drop_value_extfn.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and
current row)

from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn(cntxt, args) input a=1
_evaluate extfn (cntxt, args) returns 1
_reset extfn(cntxt)
_next value extfn(cntxt, args) input a=1
_next value extfn(cntxt, args) input a=2
_evaluate extfn (cntxt, args) returns 3
_reset extfn(cntxt)
_next value extfn(cntxt, args) input a=2
_next value extfn(cntxt, args) input a=3
_evaluate extfn (cntxt, args) returns 5
_reset extfn(cntxt)
_next value extfn(cntxt, args) input a=4
_evaluate extfn (cntxt, args) returns 4
_reset extfn (cntxt)
_next value extfn(cntxt, args) input a=4
_next value extfn(cntxt, args) input a=5
_evaluate extfn (cntxt, args) returns 9
_reset extfn (cntxt)
_next value extfn(cntxt, args) input a=5
_next value extfn(cntxt, args) input a=6
evaluate extfn(cntxt, args) returns 11

_finish extfn(cntxt)

Result

b, my sum(a)
1, 1

1, 3

1, 5

2, 4

2, 9

2, 11

88 SAP Sybase IQ

Scalar and Aggregate UDFs

OLAP-Style Optimized Moving Window Aggregate
If the _drop_value_extfn function is supplied, this moving window sum is evaluated using this
calling pattern, which is more efficient than using _drop_value_extfn.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and
current row)
from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_evaluate aggregate extfn (cntxt, args) -- returns 1
_evaluate aggregate extfn(cntxt, args) -- returns 3
_drop value extfn(cntxt) -— input a=1
_next value extfn(cntxt, args) -- input a=3

_evaluate aggregate extfn (cntxt, args) -- returns 5
_reset extfn (cntxt)

_next value extfn(cntxt, args) -— input a=4

_evaluate aggregate extfn (cntxt, args) -- returns 4
_next value extfn(cntxt, args) -- input a=5

_evaluate aggregate extfn(cntxt, args) -- returns 9
_drop value extfn(cntxt) -- input a=4

_next value extfn(cntxt, args) -- input a=6

_evaluate aggregate extfn (cntxt, args) -- returns 11

_finish extfn (cntxt)

Result
b, my sum(a)
1, 1
1, 3
1, 5
2, 4
2, 9
2, 11

OLAP-Style Unoptimized Moving Window Following Aggregate

If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
the following calling pattern. This case is similar to the previous moving window example, but
the row being evaluated is not the last row given by next value function.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and
1 following)
from t

User-Defined Functions 89

Scalar and Aggregate UDFs

Calling pattern

_start extfn(cntxt)

_reset extfn(cntxt)

_next value extfn (cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn (cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_finish extfn (cntxt)

Result

b, my sum(a)
1, 3

1, o

1, 5

2, 9

2, 15

2, 11

OLAP-Style Optimized Moving Window Following Aggregate

input a=1
input a=2
returns 3

input a=1
input a=2
input a=3
returns 6

input a=2
input a=3
returns 5

input a=4
input a=5
returns 9

input a=4
input a=5
input a=6
returns 15

input a=5
input a=6
returns 11

If drop_value_extfn function is supplied, this moving window sum is evaluated through the
following calling pattern. Again, this case is similar to the previous moving window example,
but the row being evaluated is not the last row given by next value function.

Query

select b, my sum(a) over (partition by b rows between 1 preceding and

1 following)
from t

90

SAP Sybase 1Q

Scalar and Aggregate UDFs

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_next value extfn(cntxt, args) input a=1

_next value extfn(cntxt, args) input a=2

_evaluate extfn(cntxt, args) returns 3

_next value extfn(cntxt, args) input a=3

_evaluate extfn (cntxt, args) returns 6

_dropvalue extfn (cntxt) input a=1

_evaluate extfn(cntxt, args) returns 5

_reset extfn(cntxt)

_next value extfn (cntxt, args) input a=4

_next value extfn(cntxt, args) input a=5

_evaluate extfn(cntxt, args) returns 9

_next value extfn(cntxt, args) input a=6

_evaluate extfn (cntxt, args) returns 15

_dropvalue extfn (cntxt) input a=4
evaluate extfn(cntxt, args) returns 11

_finish extfn (cntxt)

Result

b, my sum(a)
i1, 3

1, 6

1, 5

2, 9

2, 15

2, 11

OLAP-Style Unoptimized Moving Window without Current

Assume the UDF my_sum works like the built-in SUM. If _drop_value_extfn function is not
supplied, this moving window count is evaluated through the following calling pattern. This
case is similar to the previous moving window examples, but the current row is not part of the
window frame.

Query
select b, my sum(a) over (rows between 3 preceding and 1 preceding)
from t

Calling pattern

_start extfn(cntxt)
_reset extfn(cntxt)

_evaluate extfn (cntxt, args) returns NULL
_reset extfn (cntxt)

_next value extfn(cntxt, args) input a=1
_evaluate extfn (cntxt, args) returns 1
_reset extfn(cntxt)

_next value extfn (cntxt, args) input a=1
_next value extfn(cntxt, args) input a=2

User-Defined Functions 91

Scalar and Aggregate UDFs

_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn (cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn (cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_reset extfn(cntxt)

_next value extfn(cntxt, args)
_next value extfn(cntxt, args)
_next value extfn (cntxt, args)
_evaluate extfn(cntxt, args)
_finish extfn(cntxt)

Result

12

returns 3

input a=1

input a=2

input a=3
returns 6

input a=2

input a=3

input a=4
returns 9

input a=3

input a=4

input a=>5
returns 12

OLAP-Style Optimized Moving Window without Current

If _drop_value_extfn function is supplied, this moving window count is evaluated through the
following calling pattern. This case is similar to the previous moving window examples, but

the current row is not part of the window frame.

Query

select b, my sum(a) over (rows between 3 preceding and 1 preceding)

from t

Calling pattern

_start extfn(cntxt)

_reset extfn(cntxt)
_evaluate extfn (cntxt, args)
_next value extfn (cntxt, args)
_evaluate extfn(cntxt, args)
_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_next value extfn (cntxt, args)
_evaluate extfn(cntxt, args)
_dropvalue extfn(cntxt)

_next value extfn(cntxt, args)
_evaluate extfn (cntxt, args)
_dropvalue extfn (cntxt)

_next value extfn(cntxt, args)

returns NULL
input a=1
returns 1
input a=2
returns 3
input a=3
returns 6
input a=1
input a=4
returns 9
input a=2
input a=5

92

SAP Sybase 1Q

Scalar and Aggregate UDFs

_evaluate extfn (cntxt, args) returns 12
_finish extfn(cntxt)

Result

External Function Prototypes

Define the API by a header file named ext fnapiv3.h (extfnapiv4.h for the v4 API)
in the subdirectory of your SAP Sybase 1Q installation directory. This header file handles the
platform-dependent features of external function prototypes.

To notify the database server that the library is not written using the old API, provide a
function as follows:

uint32 extfn use new api()

This function returns an unsigned 32-bit integer. If the return value is nonzero, the database
server assumes that you are using the new API.

If the DLL does not export this function, the database server assumes that the old APl is in use.
When using the new API, the returned value must be the API version number defined in
extfnapi.vih.

Each library should implement and export this function as:

unsigned int extfn use new api (void)

{
return EXTFN V4 API;

}

The presence of this function, and that it returnsEXTFN_v4 APT informsthe SAP Sybase 1Q
engine that the library contains UDFs written to the new APl documented in this book.

Function prototypes
The name of the function must match that referenced in the CREATE PROCEDURE or
CREATE FUNCTION statement. Declare the function as:

void function-name (an extfn api *api, void *argument-handle)

The function must return void, and must take as arguments a structure used to pass the
arguments, and a handle to the arguments provided by the SQL procedure.

The an_extfn_ api structure has this form:

User-Defined Functions 93

Scalar and Aggregate UDFs

typedef struct an extfn api {
short (SQL CALLBACK *get value) (
void * arg_handle,
a sqgl uint32 arg_ num,
an_extfn value *value
) i
short (SQL CALLBACK *get_piece)(

void * arg handle,
a sql uint32 arg num,
an_extfn value *value,
a_sgl uint32 offset
)7
short (SQL CALLBACK *set value) (

void * arg handle,
a_sgl uint32 arg_num,
an_extfn value *value
short append
)7

void (SQL CALLBACK *set cancel) (
void * arg handle,
void * cancel handle

)

} an _extfn api;

Note: The get_piece callback is valid in v3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4 extfn blob) and Blob Input Stream
(a_v4 extfn blob istream) structures instead.

The an_extfn_value structure has this form:

typedef struct an extfn value ({

void * data;
a sql uint32 piece len;
union {
a sgl uint32 total len;
a sgl uint32 remain len;
} len;
a sql data type type;

} an_extfn value;

Notes
Calling get_value onan OUT parameter returns the data type of the argument, and returns
data as NULL.

The get_piece function for any given argument can be called only immediately after the
get_value function for the same argument.

To return NULL, set datato NULL in an_extfn value.

The append field of set value determines whether the supplied data replaces (false) or
appends to (true) the existing data. You must call set value with append=FALSE before
calling it with append=TRUE for the same argument. The append field is ignored for fixed-
length data types.

94

SAP Sybase 1Q

Scalar and Aggregate UDFs
The header file itself contains additional notes.
See also

» Blob (a_v4_extfn _blob)on page 199
e Blob Input Stream (a_v4_extfn_blob_istream) on page 203

User-Defined Functions 95

Scalar and Aggregate UDFs

96 SAP Sybase IQ

Table UDFs and TPFs

Table UDFs and TPFs

Table UDFs are external user-defined C, C++, or Java table functions. Unlike scalar and
aggregate UDFs, table UDFs produce row sets as output. SQL queries consume a table UDF's
output sets as table expressions.

Scalar and aggregate UDFs can use either the v3 or v4 API, but table UDFs can use only v4.

Declare a table UDF SQL function using the CREATE PROCEDURE statement. Scalar and
aggregate UDFs use the CREATE FUNCTION statement.

Table parameterized functions (TPFs) are enhanced table UDFs that accept either scalar
values or row sets as input.

See also

e Table Parameterized Functions on page 136

» Declaring and Defining Scalar User-Defined Functions on page 32
» Declaring and Defining Aggregate UDFs on page 46

e Learning Roadmap. Types of External C and C++ UDF5s on page 6
e Creating a Java Table UDF on page 354

User Roles
Two types of users work with table UDFs: UDF developers, and SQL analysts.

* UDF developer —develops the table UDF in C or C++,

e SQL analyst —develops and analyzes the SQL queries that reference the table expression
in the FROM clause. The table expression is the set of rows produced by the table UDF.

See also
« Learning Roadmap for Table UDF Developers on page 97
e Learning Roadmap for SQL Analysts on page 98

Learning Roadmap for Table UDF Developers

Use annotated examples to learn how to develop a C or C++ table UDF. After completing the
development tasks, the SQL analyst can then reference your UDF in a SQL query.

This roadmap assumes:

* You have a C or C++ development environment on your machine.

User-Defined Functions 97

Table UDFs and TPFs

< You are familiar with standard programming practices.

Task

See

Become familiar with table UDF and TPF re-
strictions.

Table UDF Restrictions on page 99

Create a table UDF.

Developing a Table UDF on page 103

(Optional) Define the library version validators
for distributed query processing (DQP).

Library \Version (extfn_get_library_version) on
page 17

Library Version Compatibility (extfn_check ver-
sion_compatibility) on page 17

Compile and link source code.

Compile and Link Source Code to Build Dynam-
ically Linkable Libraries on page 19

Declare the UDF to the server using the CREATE
PROCEDURE statement. Write and execute these
statements as commands, or use Sybase Control
Center.

Learning Roadmap for SQL Analysts on page
98

Learning Roadmap for SQL Analysts

Reference a C or C++ table UDF in your SQL query.

Task

See:

Obtain the .d11 or . so file (for example,
myudf .d11) from the UDF developer.

Place the .d11 file inthe bin64 directory;
place the . so fileinthe 1ib64 or LD LI-
BRARY PATH directory.

Not applicable.

Define the CREATE PROCEDURE statement, ref-
erencing the . d11 file and the callback function.

For example:

CREATE PROCEDURE my_udf(IN
num_row INT)

RESULT (id INT)

EXTERNAL NAME

'udf rg proc@myudf.dll’'

CREATE PROCEDURE Statement (Table UDF)
on page 169

Select rows from the UDF.

For example:
SELECT * FROM my_ udf (5)

SELECT Statement on page 188
FROM Clause on page 180

98

SAP Sybase 1Q

Table UDFs and TPFs

See also

SQL Reference for Table UDF and TPF Queries on page 166

Table UDF Restrictions

Table UDFs and TPFs have some restrictions.

The TEMPORARY PROCEDURE clause is not allowed for any external procedures.
Attempting to create a temporary external procedure results in an error at creation time.
The NO RESULT SET clause is not allowed. Table UDFs and TPFs must explicitly declare
the contents of their results.

If the optional DYNAMIC RESULT SETS integer-expression clause is specified, the value
must be set to 1. Table UDFs and TPFs do not return multiple result sets.

A table UDF or TPF cannot be referenced in a CALL SQL statement or EXEC embedded
SQL statement. A table UDF or TPF can be referenced only in a FROM clause of a SQL
statement.

The LANGUAGE clause cannot be used for table UDFs or TPFs. If the LANGUAGE clause
is present, syntax errors are reported at execution time.

The parameter clause is limited to keyword IN; INOUT and OUT keywords are not
supported for table UDFs or TPFs.

The EXTERNAL NAME clause has the same syntax as scalar and aggregate UDFs.

Get Started

Familiarize yourself with sample files, concepts, and restrictions before developing table
UDFs and TPFs.

Sample Files

Sample table UDF files are installed with the server. Use the samples as models when defining
your own table UDFs.

Sample files are located in:

%ALLUSERSPROFILE%\SybaselQ\samples\udf (Windows)
$SYBASE/IQ-16_0/samples/udf (UNIX)

User-Defined Functions 99

Table UDFs and TPFs

File

Description

apache log reader.cxx

Implementation of a table UDF that reads an
Apache log file and presents the rows from the file
in table format. This UDF illustrates a real-world
example of how you can use a UDF to make
computer-generated data available to a SQL
query writer in real time.

build.sh / build.bat

Script that compiles and links the sample scalar
and aggregate UDFs, table UDFs, and TPFs
found in the samples/udf directory.

my md5.cxx

A simple deterministic scalar UDF that calculates
the MD5 hash value of an input file (a LOB binary
argument).

tpf agg.cxx

Consumes rows from an input table, performs an
aggregation on the input data, and returns rows
back to the server.

tpf blob.cxx

Implementation of a TPF that reads LOB data
from an input table and passes the data to the
result set, if an even number of the specified
character or digit is present. This TPF illustrates
how to read LOB data and how a user can pass
LOB datatypes through to the result set.

tpf dt.cxx

tpf filt.cxx

Ilustrates how a TPF can be used to filter rows.
The example uses the row block provided by
caller and passes it to the input TABLE parameter.
The input table schema must match the output
result set of this function.

tpf oby.cxx

Illustrates how a TPF can generate ordered output
and pass it along.

tpf pby.cxx

Illustrates how a TPF can generate partitioned
output and pass it along.

tpf rg l.cxx

Similar to the table UDF sample
udf rg 2.cxx. Itproduces rows of data
based on an input parameter.

tpf rg 2.cxx

Builds upon the sample in tpf rg 1.cxx,
but uses fetch into instead of

fetch block toread rows from the input
table.

100

SAP Sybase 1Q

Table UDFs and TPFs

File Description

udf main.cxx This file is linked into all of the examples and
includes a common set of required entry points
for the v4 API. This allows you to reuse the code
rather than including it in each example.

udf rg l.cxx Asimple table UDF that generates rows of integer
data.
udf rg 2.cxx Asimple table UDF that generates rows of integer

data that uses describes to ensure the sche-
ma defined in SQL matches the UDF's imple-
mentation. It also describes some optimizer at-

tributes.

udf rg 3.cxx A simple table UDF that generates integer data in
blocksof 100 usingthe fetch blockfetch
method.

udf utils.cxx A set of utility functions and macros that are use-

ful to UDF/TPF developers. The examplesrely on
items in this file.

udf utils.h A set of utility functions and macros that are use-
ful to UDF/TPF developers. The examples rely on
items in this file.

Understanding Producers Versus Consumers

The server and UDF form a producer and consumer relationship when exchanging rows of
data.

Production and consumption refer to table row data. The producer produces table rows; the
consumer consumes table rows.

The server executes scalar and aggregate UDFs once for each matching row of a query. These
UDFs consume input scalar parameters and produce, and return, a single scalar parameter.
This data exchange occurs during the evaluate method using the get value () and
set _value () APIs.

However, scalar production and consumption is an inefficient method of data exchange if your
UDF must produce or consume a table. Table UDFs that produce a table, and TPFs that
consume atable, use the row block datastructure of the v4 API. Row blocks allow for bulk
row and column data exchange. The row block is populated by a producer, and read from by a
consumer.

Inthis example, the table UDFmy table udf () isaproducer of data. SAP Sybase I1Q, the
server, is the consumer of the data:
SELECT * FROM my table udf ()

User-Defined Functions 101

Table UDFs and TPFs

In general, a table UDF is always a producer of data. The server, however, may not always be
the consumer:

SELECT * FROM my tpf (TABLE(SELECT * FROM my table udf()))

The outer TPF, my tpf (), is the consumer for the table input parameter specified by
SELECT *from my_table_udf(). SAP Sybase IQ is the consumer of the table produced by the
my tpf () TPF. A TPF, therefore, can be both a consumer and a producer.

The TPF does not have to consume from a table UDF. In this example, the TPF consumes the
table data produced by the inner query, which is produced by the SAP Sybase 1Q server:

SELECT * FROM my tpf (TABLE (SELECT * FROM my table where my table.cl
< 10))

In a TPF, therefore, SAP Sybase 1Q can be both the consumer and producer of table data.

In the v4 API, a row block defines a memory area where data is produced to, and consumed
from. In general, the layout of a row block conceptually matches the row and column format of
the table; a row block consists of a number of rows, and each row consists of a number of
columns. Either the producer or consumer must allocate the row block, and must also
deallocate it when the time comes.

Rows and column have their own specific attributes that only apply to them. For example,
rows have a status flag which indicates if the row is present or not. This flag lets a TPF change
the row status without having to move the column data. Columns have a null mask that
indicates if the data value is null or not. Row blocks also have some additional attributes:
maximum number of rows, and current number of rows, for example. These row block
attributes are useful when a UDF wants to create a row block to handle a large set of rows, but
produce a smaller number of rows as required.

The process of consuming a row is handled via one of the two fetch APIs:

e fetch into
e fetch block

The fetch into is called when the consumer allocates the row block and passes it to the
producer. The producer is then requested to populate as many rows as possible, up to the
maximum number of rows. The fetch block is called when the consumer wants the
producer to allocate the row block. Fetch block is efficient if you are developing a TPF
that filters rows of data. The server (consumer) allocates the row block and fetches from the
TPF using the fetch into API. The TPF can then pass the same row block to the input
parameter using the fetch block API.

See also
e Row Block Data Exchange on page 128

102

SAP Sybase 1Q

Table UDFs and TPFs

Developing a Table UDF

The general steps for developing a table UDF include determining input and output, declaring
the v4 library, defining the a v4 extfn proc descriptor, defining a library entry point
function, defining how the server gets row information, implementing the

a v4 extfn proc structure functions, and implement the

a v4 extfn table func structure functions.

1. Determine the input and output for the table UDF.

The input is defined by the parameters the procedure accepts, and the output is defined by
how the RESULT clause for the procedure is declared. The declaration of the table UDF in
SQL is separate from the implementation of the table UDF. This means that a particular
implementation of a table UDF may be bound to a specific declaration. When developing a
table UDF, ensure that the implementation and declaration match.

2. Declare the library as a v4 Library.

For SAP Sybase 1Q to recognize the library as a v4 library, the library must include the
extfnapiv4.h header file located in the subdirectory of your SAP Sybase 1Q
installation directory.

This header defines the v4 API features and functions and is a superset of the v3 API;
extfnapivd.hincludes extfnapiv3.h.

To create table UDF or TPFs, the library must provide the extfn_use new_api ()
entry point. For v4 libraries, extfn_use new_api () must return
EXTFN V4 API.

3. Definethe a_v4 extfn proc descriptor.

When developing a v4 table UDF or TPF, the library must declare what functions are
available for the server to call.

Create a variable of type a_v4 extfn proc and set each member of this structure to
the address of the function within the table UDF that implements the function. The
information in this variable is made available to the server via a library entry pointer. Not
allmembersofa_v4 extfn procarerequiredand thereare two reserved fields which
you must set to NULL.

Use this descriptor function as a model when developing your own function:

static a v4 extfn proc udf proc descriptor =

{

udf proc start, // optional
udf proc finish, // optional
udf proc_evaluate, // required
udf proc describe, // required

udf proc enter state,// optional
udf proc leave state,// optional

User-Defined Functions 103

Table UDFs and TPFs

NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL
}i

. Define a library entry-point function.

The table UDF library must provide a function entry point that returns an
a_v4 extfn proc descriptor pointer. This is the same descriptor as described in step
3.

This callback function is the main required entry point for the library.

Use this function as a model when developing your own library entry point:

extern "C"

a v4 extfn proc * SQL CALLBACK udf rg proc /()
/?**?*****?**********?************?**?*****/
{

return &udf proc descriptor;
}

. Define how the server gets row information from the table UDF.

When developing a v4 table UDF or TPF, the library must declare how row information is
transferred to the server.

Create a variable of type a_v4 extfn table func and set each member of this
structure to the address of the function within the table UDF that implements the function.
The information in this variable is made available to the server at runtime.

Not all members of a_v4 extfn table func are required and there are two
reserved fields which must be set to NULL.

Use this descriptor as a model when developing your own table UDF:

{

udf table func open, // required

udf table func fetch into, // one of fetch into or
fetch block required

udf table func fetch block, // one of fetch into or
fetch block required

udf table func rewind, // optional
udf table func close, // required
NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL

}i

At the start of execution, the server callsthe a v4 extfn proc function
_evaluate extfn to give the table UDF an opportunity to tell the server what table
functions it is implementing. To do this, the table UDF must create an instance of

a v4 extfn table thatis given to the server. This structure contains a pointer to the
a v4 extfn table func descriptor and the number of columns in the result set.

Use this descriptor as a model when developing your own table UDF:

104

SAP Sybase 1Q

Table UDFs and TPFs

static a v4 extfn table udf rg table = {
&udf table funcs, // Table function descriptor
1 // number of columns

bi

Implementthe a v4 extfn proc structure functions.

The table UDF must provide an implementation for each of the a_v4 extfn proc
functions that it declares inthe a_v4 extfn proc descriptor in step 3.
Implementthe a v4 extfn table func structure functions.

The table UDF must provide an implementation for each of the

a v4 extfn table func functions that it declares in the
a v4 extfn table func descriptorinstep 5.

See also

Scalar and Aggregate UDF Calling Patterns on page 82
udf rg 2on page 111

udf rg 3on page 115

Implementing Sample Table UDF udf rq 1 on page 106
Table UDF Implementation Examples on page 105
External Function (a_v4_extfn_proc) on page 288

Table Functions (a_v4_extfn_table_func)on page 319
_evaluate extfnon page 290

Table UDF Implementation Examples

Implementation examples start with a simple table UDF and increase in complexity.

The table UDF implementation examples are included in the samples directory. These
examples start with a simple table UDF and build upon its complexity and functionality as the
examples progress.

The examples are available in a precompiled dynamic library called 1ibv4apiex. (The
extension of this library name is platform dependent.) This library has linked in the functions
defined in udf_main.cxx, which contains the library level functions, such as
extfn_use_new_api. Put 1ibv4apiex in a directory the server can read.

See also

Running the Sample Table UDF in udf _rg_1.cxxon page 111
Running the Sample Table UDF in udf rq 2.cxxon page 114
Running the Sample Table UDF in udf rg 3.cxxon page 118

User-Defined Functions 105

Table UDFs and TPFs

Implementing Sample Table UDF udf rg 1

The sample table UDF called udf_rg_1 illustrates how a v4 Table UDF can generate n rows of
data. The implementation of the table UDF is in the samples directory inudf rg 1.cxx.

1

Determine the input and output for the table UDF.

This example produces /7rows of data based on the value of an input parameter. The input
is a single integer parameter and the output is rows that consist of a single column of type
integer.

The CREATE PROCEDURE statement required to define this procedure is:

CREATE OR REPLACE PROCEDURE udf rg 1(IN num INT)
RESULT (¢l INT)
EXTERNAL NAME ‘udf rg 1Q@libv4apiex’

Declare the library as a v4 library.
In this example, udf _rg 1.cxx includes the extfnapiv4.h header file:

#include “extfnapiv4.h”

To inform the server that this library contains v4 table UDFs, this function export is defined
inudf main.cxx:

a sgl uint32 SQL CALLBACK extfn use new api(void)

/;*****k****k*k*k**k*k*k**k*k*k*k*k**k*k************************/
return EXTFN V4 API;

Definethe a v4 extfn proc descriptor.

This declares the necessary descriptor in udf rg 1.cxx:

static a v4 extfn proc udf rg descriptor =
{
NULL, // _start_extfn
NULL, // _finish extfn
udf rg evaluate, // evaluate extfn
udf rg describe, // _describe extfn

NULL, // _leave state extfn
NULL, // _enter state extfn
NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL

}7
Define a library entry point function.

This callback function declares the main entry point function. It simply returns a pointer to
thea v4 proc descriptor variable udf rg descriptor.

extern "C"
a v4 extfn proc * SQL CALLBACK udf rg 1 proc()
KKK KK K ok KK KK kK kK Rk Kk Kk K Rk Kk Kk K ok kKK Kk K KK KKk

{

106

SAP Sybase 1Q

Table UDFs and TPFs

return &udf rg descriptor;

}
5. Define how the server gets row information from the table UDF.

This declaresthe a_v4 extfn table func descriptor that is used to tell the server
how to retrieve row data from the table UDF:

static a v4 extfn table func udf rg table funcs =

{

udf rg open, // _open _extfn

udf rg fetch into, // _fetch into extfn
NULL, // _fetch block extfn
NULL, // _rewind extfn

udf rg close, // _close _extfn

NULL, // Reserved: must be NULL
NULL // Reserved: must be NULL

}i

In this example, the fetch into_extfn function transfers row data to the server.
Thisis the easiest data transfer method to understand and implement. This document refers
to data transfer methods as rowblock data exchange. There are two rowblock data
exchange functions: fetch into extfnand fetch block extfn.

Atruntime, whenthe evaluate extfn function is called, the UDF publishes the
table functions descriptor by setting the result set parameter. To do this, the UDF must
create an instance of a_v4 extfn table:
static a v4 extfn table udf rg table = {

&udf rg table funcs, // Table function descriptor

1 // number of columns
}i
This structure contains a pointer to the udf rg table funcs structure and the
number of columns in the result set. This table UDF produces a single column in its result
set.

6. Implement the a_v4_extfn_proc structure functions.

In this example, the required function describe extfn function does not do
anything. Other examples demonstrate how a table UDF can use the de scribe function:

static void UDF_ CALLBACK udf rg describe (
a v4 extfn proc context *ctx)

/

R R b I b I R S R S S e S b S I S S b b b R I SE I b b b b S b I b S b I S 2 b IE e S 2 I b b S b I 2b 4

/
{

// This required function is not needed in this simple example.

}

The evaluate extfn method sends the server information about getting the result
set from the UDF. This is done by callingthe a_v4 extfn proc_ context method
set_value on argument 0. Argument O represents the return value, which for a table

User-Defined Functions 107

Table UDFs and TPFs

UDF isa DT_EXTFN_TABLE. This method constructs an_extfn value structure,
setting the data type to DT_EXTFN_TABLE and setting the value pointer of this to point
tothea v4 extfn table object created in step 5. For table UDFs, the type must
always be DT_EXTFN_TABLE.

static void UDF CALLBACK udf rg evaluate(
a v4 extfn proc context *ctx,

void *args handle)
/***********************************/

{
an_extfn value result table = { &udf rg table,
sizeof (udf rg table),
sizeof (udf rg table),
DT _EXTEFN TABLE };

// Tell the server what functions table functions are being
// implemented and how many columns are in our result set.
ctx->set value(args handle, 0, &result table);

}
7. Implementthe a v4 extfn table func structure functions.

In this example, the table UDF needs to read in the parameter passed in that contains the
number of rows to generate, and cache this information to be used later. Because the
_open_extfn method is called for each new value that the parameter has, this is an
appropriate place to get this information.

In addition to the total number of rows to generate, the table UDF must also remember the
next row to generate. When the server begins fetching rows from the table UDF, it may

need to repeatedly call the fetch into extfn method. This means that the table

UDF must remember the last row that was generated.

This structure is created in udf _rg 1.cxx to contain the state information between

calls:
struct udf rg state {
a sqgl int32 next row; // The next row to produce
a sgl int32 max row; // The number of rows to generate.

}i

The open method first reads in the value of argument Lusingthea v4 proc context
method get _value. An instance of udf rg state is allocated using the

a v4 proc_context function alloc. table UDFs should use the memory
management functions (alloc and free)onthe a v4 proc context structure
whenever possible to manage their memory. The state object is then saved in the user_data
fieldof a v4 proc context. Memory stored in this field is available to the table
UDF until execution finishes.

static short UDF CALLBACK udf rg open(
a v4 extfn table context * tctx)
% Xk kX ok ok kK kK K kK K ok ok K ok X ok ok X Kk Xk ok ok Kk kK Kk kK k[

{

an_extfn value value;

108 SAP Sybase IQ

Table UDFs and TPFs

udf rg state * state = NULL;

// Read in the value of the input parameter and store it away in a
// state object. Save the state object in the context.
if (!tctx->proc context->get value(tctx->args handle,

1/

&value)) |

// Send an error to the client if we could not get the value.
tctx->proc _context->set error (

tctx->proc context,

17001, B

"Error: Could not get the value of parameter 1");

return 0;

}

// Allocate memory for the state using the a v4 extfn proc context
// function alloc.

state = (udf rg state *)
tctx->proc_context->alloc(tctx->proc_context,
sizeof (udf rg state));

// Start generating at row zero.
state->next row = 0;

// Save the value of parameter 1
state->max row = *(a_sqgl int32 *)value.data;

// Save the state on the context
tctx->user data = state;

return 1;

The fetch info_ extfnmethod returns row data to the server. This method is called
repeatedly until it returns false. For this example, the table UDF retrieves the state
information from the user_datafield of thea v4 extfn proc context object to
determine the next row to generate and the total number of rows to generate. This method is
free to generate up to the maximum number of rows indicated in the rowblock structure
passed in.

For this example, the table UDF generates a single column of type INT. It copies the data
for the next_rowsaved in the state into the data pointer of the first column. Each time
through the loop, the table UDF copies a new value into the data pointer and stops when
either the maximum number of rows to produce is reached or the row block is full.

static short UDF CALLBACK udf rg fetch into(

a_v4_e§tfn_table_coﬁtext *tctx,
a v4 _extfn row block *rb)

/**********I**I*****************************/

{

udf_rg_state *state = (udf rg state *)tctx->user data;

// Because we are implementing fetch into, the server has provided
// us with a row block. We need to inform the server how many rows
// this call to fetch into has produced.

rb->num rows = 0;

User-Defined Functions 109

Table UDFs and TPFs

// The server provided row block structure contains a max_rows

// field. This field is the maximum number of rows that this row

// block can handle. We can not exceed this number. We will also

// stop producing rows when we have produced the number of rows

// required as per the max row in the state.

while(rb->num rows < rb->max rows && state->next row < state->max row) {

// Get the current row from the row block data.
a v4 extfn row &row = rb->row data[rb->num rows];

// Get the column data for the current row.
a v4 extfn column data &col0 row.column data[0];

// Copy the integer value for the next row to generate
// into the column data for the current row.
memcpy (colO.data, &state->next row, col0O.max piece len);

state->next row++;
rb->num_rows++;

}

// 1If we produced any rows, return true.
return(rb->num rows > 0);

The table UDF callsthe _close extfn method once per new value for the parameters,
after all the rows have been fetched. In other words, foreach open_extfn call, there is
asubsequent close extfncall. Inthisexample, the table UDF must free the memory
allocated during the open extfn call which it does by retrieving the state from the

user_datafieldofa v4 extfn proc context objectand calling the £ree method.

static short UDF CALLBACK udf rg close(

a vd extfn table context *tctx)
/**~k***~k*~k*~k**************************/

{
udf rg state * state = NULL;

// Retrieve the state that was saved in user data
state = (udf rg state *)tctx->user data;

// Free the memory for the state using the
a v4 extfn proc context
// function free.
tctx->proc_context->free(tctx->proc context, state);
tctx->user data = NULL;

return 1;

See also

e udf rg 2on page 111

e udf rg_3on page 115

» Row Block Data Exchange on page 128
» Describe AP/ on page 208

e _evaluate extfnon page 290

110 SAP Sybase IQ

Table UDFs and TPFs

e fetch_intoon page 313

o Table (a_v4_extfn_table) on page 310

e External Procedure Context (a_v4_extfn_proc_context) on page 292
* _open_extfnon page 321

e _close _extfnon page 324

Running the Sample Table UDF in udf rg 1.cxx

The sample udf rg 1 isincluded in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in
udf rg 1.cxx

1. Putthe library 1ibv4apiex in a directory that can be read by the server.
2. To declare the table UDF to the server, issue:

CREATE PROCEDURE udf rg 1(IN num INT)
RESULT (cl INT)
EXTERNAL NAME ‘udf rg 1@libvé4apiex’

3. Select rows from the table UDF:

SELECT * FROM udf rg 1(5);

udf rg 2

The sample table UDF udf rg 2 builds on the sample in udf rg 1.cxx and has the
same behavior. The procedure is called udf_rg_2 and its implementation is in the samples
directory inudf rg 2.cxx.

The table UDF udf_rg_2 provides an alternate implementation of the describe extfn
method inthe a_v4 extfn proc descriptor.

static void UDF CALLBACK udf rg describe(

a v4 extfn proc context *ctx)

/*k*******;**;**********;****k************k**************************/

{

a sgl int32 desc_rc;

// The following describes will ensure that the schema defined
// by the user matches the schema supported by this table udf.
// This is achieved by telling the server what our schema is
// using describe xxxx set methods.

if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a_sql data type type = DT NOTYPE;

a sgl uint32 num_cols = 0g

a sgl uint32 num_parms = 03

// Inform the server that we support a single input
// parameter.

num parms = 1;
desc_rc = ctx->describe udf set
(ctx,

User-Defined Functions 111

Table UDFs and TPFs

EXTFNAPIV4 DESCRIBE UDF NUM PARMS,
&num_parms,
sizeof (num parms));

// Checks the return code and sets an error if the
// describe was unsuccessful for any reason.
UDF_CHECK_DESCRIBE (ctx, desc_rc);

// Inform the server that the type of parameter 1 is int.
type = DT_INT;
desc_rc = ctx->describe parameter set
(ctx,

1,

EXTFNAPIV4 DESCRIBE PARM TYPE,

&type,

sizeof (type))

UDF_CHECK_DESCRIBE (ctx, desc_rc);

// Inform the server that the number of columns in our
// result set is 1.

num cols = 1;
desc_rc = ctx->describe parameter set
(ctx,

0,
EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS,
&num_cols,

sizeof (num cols));

UDF_CHECK_DESCRIBE(ctx, desc_rc);

// Inform the server that the type of column 1 in our
// result set is int.
type = DT_INT;
desc_rc = ctx->describe column_ set
(ctx,

0,

1,
EXTFNAPIV4 DESCRIBE COL TYPE,
&type,
sizeof (type))

UDF_CHECK DESCRIBE(ctx, desc_rc);

}

// The following describes will inform the server of various
// optimizer related characteristics.

1f(ctx->current state == EXTFNAPIV475TATE70PTIMIZATION) |
an_extfn value pl value;
a vd extfn estimate num rows;

// If the value of parameter 1 was constant, then we can
// inform the server how many distinct values will be.
desc rc = ctx->describe parameter get

112

SAP Sybase 1Q

Table UDFs and TPFs

(ctx,
1,
EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE,
&pl value,
sizeof (pl value));

UDF_CHECK DESCRIBE(ctx, desc_rc);
if(desc_rc != EXTFNAPIV4 DESCRIBE NOT AVAILABLE) {

// Inform the server that this UDF will produce n rows.

num rows.value = *(a sql int32 *)pl value.data;
num_rows.confidence = 1;
desc_rc = ctx->describe parameter set
(ctx,
0

4
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS,
&num_rows,
sizeof (num rows));

UDF CHECK DESCRIBE (ctx, desc rc);

// Inform the server that this UDF will produce n distinct
// values for column 1 of its result set.
desc_rc = ctx->describe column_set
(ctx,
0,
1,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
&num_rows,
sizeof (num rows));

UDF CHECK DESCRIBE (ctx, desc rc);

This describe method has two primary functions:

« Inform the server what schema it supports.
« Inform the server of some known optimization attributes.

The describe function is called during several states. However, not all describe
attributes are usable in every state. The describe method determines the state in which it is
executing by checking the current state variable onthe a_v4 extfn proc structure.

During the Annotation state, the udf_rg_2 table udf informs the server that it has one
parameter of type INTEGER and its result set contains a single column of type INTEGER.
This is accomplished by setting these attributes:

 EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS

User-Defined Functions 113

Table UDFs and TPFs

 EXTFNAPIV4_DESCRIBE_PARM_TYPE
* EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS
 EXTFNAPIV4_DESCRIBE_COL_TYPE

If the information set in these describe methods does not match the procedure definition
from the CREATE PROCEDURE statement, the describe parameter set and
describe column_ set methods return

EXTFNAPIV4 DESCRIBE_INVALID ATTRIBUTE VALUE. The describe method then
sets an error to indicate to the client there is a mismatch.

This example uses the macro UDF_CHECK_DESCRIBEdefinedinudf utils.htocheck
the return value from a describe and set an error, if it is not successful.

During optimization, the udf_rg_2 table udf informs the server that it returns the same number
of rows indicated in parameter one. Since the generated rows increment, the values are also
unique. During optimization, only parameters that have a constant value are available. Use the
describe attribute EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE to obtain
the value of a constant parameter. Once the table udf determines that the attribute value is
available, udf_rg_2 sets EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS and
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES to the value obtained.

See also
e udf rg _3on page 115
o Implementing Sample Table UDF udf rg 1 on page 106

Running the Sample Table UDF in udf rg 2.cxx

Thesample udf rg 2isincluded in a pre-compiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

udf rg 2.cxx.

1. To declare the table UDF to the server, issue:

CREATE OR REPLACE PROCEDURE udf rg 2(IN num INT)
RESULT (cl INT)
EXTERNAL NAME 'udf rg 2@libvdapiex'

2. Select rows from the table UDF:
SELECT * FROM udf rg 2(5);

3. Tosee howthe describe affects behavior, issue a CREATE PROCEDURE statement that
has a different schema than the one published by the table UDF. For example:

CREATE OR REPLACE PROCEDURE udf rg 2(IN num INT, IN extra INT)
RESULT (cl INT)
EXTERNAL NAME 'udf rg 2@libvéapiex'

4. Select rows from the table UDF:

SELECT * FROM udf rg 2(5);

114

SAP Sybase 1Q

Table UDFs and TPFs

1Q returns an error.

udf rg 3

The sample table UDF udf_rg_3 builds upon udf_rg_2 and has similar behavior. The
procedure is called udf_rg_3 and its implementation is in the samples directory in
udf rg 3.cxx

The difference between the behavior of table UDFs udf_rg_3 and udf_rg_2 is that udf_rg_3
generates only 100 unique values from 0 to 99, then repeats the sequence as necessary. This
table UDF provides start extfnand finish extfn methodsand has a modified
version of describe extfn to account for the different semantics of the function.

Using fetch blockinstead of fetch into allows the table UDF to own the row block
structure and use its own data layout. To illustrate this, the numbers generated are pre-
allocated in an array. When a fetch is performed, rather than copying data into the server
provided row block, the table UDF points the row block data pointers directly to the memory
containing the data, thus preventing additional copies.

The following ancillary structure stores the numbers array. This structure also keeps a pointer
to the allocated row block, which deallocates the row block.

#define MAX ROWS 100
struct RowData {

a sgl int32 numbers [MAX ROWS];
a sgl uint32 piece len;
a_v4_extfn_row_block * rows;

void Init ()

{
rows = NULL;

piece len = sizeof(a sql int32);
for(int i = 0; i < MAX ROWS; i++) {
numbers[i] = i;

}

This structure is allocated when execution of the table UDF starts, and deallocated when
execution finishes, by providing start extfnand finish extfn methods inthe
a v4 extfn proc context.

static void UDF CALLBACK udf rg start(
a v4 extfn proc context *ctx)
/**********?**?*****?****?************/
{
// The start extfn method is a good place to allocate our row
// data. This method is called only once at the beginning of
// execution.
RowData *row data = (RowData *)
ctx->alloc(ctx, sizeof(RowData));
row data->Init();

User-Defined Functions 115

Table UDFs and TPFs

ctx-> user data = row data;

The finish method performs two functions:

» Deallocates the RowData structure.
» Destroys the row block, if the table UDF encounters an error during fetch and cannot
destroy the row block.

static void UDF CALLBACK udf rg finish(

a v4 extfn proc context *ctx)
/*‘k*‘k*‘k***‘k*‘k*‘k***‘k********************/

{
if (ctx-> user data != NULL) {

RowData *row data = (RowData *)ctx-> user data;

// If rows is non-null here, it means an error occurred and
// fetch block did not complete.
if (row data->rows != NULL) {

DestroyRowBlock (ctx, row data->rows, 0, false);

}

ctx->free(ctx, ctx-> user data);
ctx-> user data = NULL;

The fetch block method is:

static short UDF_CALLBACK udf rg fetch block(
a v4 extfn table context *tctx,
a v4 extfn row block **rows)
KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KK |

{
udf rg state * state = (udf_rg state*)tctx->user data;
RowData * row_data = (RowData *)tctx->proc_context-> user data;

// First call, we need to build the row block
if(*rows == NULL) {

// This function will build a row block structure that holds
// MAX_ROWS rows of data. See udf utils.cxx for details.
*rows = BuildRowBlock(tctx->proc context, 0, MAX ROWS, false);

// This pointer gets saved here because in some circumstances
// when an error occurs, its possible we may have allocated

// the rowblock structure but then never called back into

// fetch block to deallocate it. In this case, when the finish
// method is called, we will end up deallocating it there.
row_data->rows = *rows;

}
(*rows) ->num_rows = 0;

// The row block we allocated contains a max_ rows member that was
// set to the macro MAX ROWS (100 in this case). This field is the
// maximum number of rows that this row block can handle. We can
// not exceed this number. We will also stop producing rows when

116 SAP Sybase IQ

Table UDFs and TPFs

// we have produced the number of rows required as per the max row
// in the state.

while((*rows)->num rows < (*rows)->max rows &&
state->next row < state->max row) |
a v4 extfn row &row = (*rows)->row _data[(*rows)->num rows];
a v4 extfn column data &col0 = row.column datal 0];

// Row generation here is a matter of pointing the data

// pointer in the rowblock to our pre-allocated array of

// integers that was stored in the proc context.

col0.data = &row_data->numbers|[(*rows)->num rows % MAX ROWS];
col0.max piece len = sizeof(a sgl int32);

colO.piece len = &row data->piece len;

state->next row++;

(*rows)->num_rows++;

}

if ((*rows)->num rows > 0) {
return 1;
} else {

// When we are finished generating data, we can destroy the
// row block structure.

DestroyRowBlock (tctx->proc context, *rows, 0, false);

row data->rows = NULL; -

return 0;

The first time this method is called, a row block is allocated using the helper function
BuildRowBlock, which isin udf utils.cxx. A pointer to this row block is saved in the
RowData structure for later use.

Row generation is achieved by setting the data pointer for the column data to the address of the
next number in sequence in the previously allocated numbers array. The piece len pointer
for the column data must also be initialized, by setting it to the address of the piece len
member of RowData. Since the rows are a fixed data length, this number is the same for all
rows.

When fetch is called the last time and there is no more data to produce, the row block structure
is destroyed using the DestroyRowBlock helper function in udf utils.cxx.

To accommodate this table UDF generating only 100 unique values,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES issetto avalue of 100. This code
excerpt from the describe method demonstrates this:

static void UDF CALLBACK udf rg describe (

a v4 extfn proc context *ctx)
/***/

{

a v4 extfn estimate distinct = {
MAX ROWS, 1.0
}i

User-Defined Functions 117

Table UDFs and TPFs

// Inform the server that this UDF will produce MAX ROWS
// distinct values for column 1 of its result set.

desc rc = ctx->describe column set
(ctx,
0,
1,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
&distinct,

sizeof (distinct));

UDF CHECK DESCRIBE(ctx, desc rc);

See also
e udf rg 2on page 111
» Implementing Sample Table UDF udf rg 1 on page 106

Running the Sample Table UDF in udf rg 3.cxx

The sample udf _rg 3 isincluded in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

udf rg 3.cxx.

1. To declare the Table UDF to the server, issue:

CREATE OR REPLACE PROCEDURE udf rg 3(IN num INT)
RESULT (cl INT)
EXTERNAL NAME 'udf rg 3@libvé4apiex'

2. Select rows from the table UDF:
SELECT * FROM udf rg 3(200);

This query produces values for c1 from 0...99 followed by 0...99.

apache log reader

The sample table UDF apache log reader reads the contents of an Apache access log
or an Apache error log into table data. It is implemented in the file
apache log reader.cxx inthe samples directory.

A sample access log (apache access.log) and sample error log
(apache error.log) are included in the samples directory.

The apache log reader sample opens the log file inthe open extfn method. It
reads in the data and parses it into the schema supported by the procedure in the

_fetch into_extfn method. It then closes the log file using the close extfn
method.

118

SAP Sybase 1Q

Table UDFs and TPFs

See also

e _open_extfnon page 321

e _fetch into_extfnon page 322
e _close extfnon page 324

Running the Sample Table UDF in apache log reader.cxx

The sample apache log reader is included in a precompiled dynamic library called
libv4apiex (extension is platform-dependent). Its implementation is in the samples
directory in apache log reader.cxx.

1. To declare the table UDF to the server, issue:

create procedure apache log reader
(
in file name varchar (4000),
in log format varchar (32),
in ip padding varchar (1)
)

result

(
ip address varchar(15),
log name varchar (4000),
user name varchar (4000),
access_time datetime,
time zone int,
request varchar (4000),
response int,
bytes sent int,
referer varchar (4000),
browser varchar (4000),
error type varchar (4000),
error msg varchar (4000)

)

external name 'apache log reader@libv4apiex'
2. Selectrows from the table UDF. Use the full path to the access log when executing the SQL
query.

SELECT * FROM apache log reader('apache access.log', 'access',
null);

udf blob
The sample table UDF udf blob illustrates how a table UDF or TPF can read LOB input
parameters using the b1ob API.

udf blob counts the number of occurrences of a letter in the first input parameter. The data
type of parameter 1 can be LONG VARCHAR Or VARCHAR (64) . If the type is LONG
VARCHAR, the table UDF uses the b1ob API to read in the value. If the type is

VARCHAR (64), the entire value is available using get value.

This code snippett fromthe open extfn method illustrates how parameter 1 is read using
the blob API:

User-Defined Functions 119

Table UDFs and TPFs

static short UDF CALLBACK udf blob open (

a vd extfn table context * tctx)
/***************************************/

{

a v4 extfn blob *blob = NULL;
ret = tctx->proc context->get value(tctx->args handle, 2,
&value) ;

UDF SQLERROR RT (tctx->proc context,
"get value for argument 2 failed",
ret == 1,
0)

letter to find = *(char *)value.data;

ret = tctx->proc_context->get value(tctx->args handle, 1,
&value),
UDF SQLERROR RT (tctx->proc context,
"get value for argument 1 failed",

ret == 1,
0)7
1f(EXTFNilsiNULL(value) || EXTFNilsiEMPTY(value)) {
state->return value = 0;
return 1;
}
if(EXTFN IS INCOMPLETE (value)) {

// If the value is incomplete, then that means we
// are dealing with a blob.
tctx->proc_context->get blob(tctx->args handle, 1, &blob);
return value = ProcessBlob(tctx->proc context,
blob,
letter to find);
blob->release(blob);

} else {
// The entire value was put into the value pointer.
return value = CountNum((char *)value.data,

value.piece len,
letter to find);
}

Parameter 1 is retrieved using get value. If the value is empty or NULL, then no further
processing is required. If the value is determined to be a b1 ob using the macro

EXTFN_ IS INCOMPLETE, then the Table UDF gets an instance of a_v4 extfn blob
using the get blob method of a_v4 extfn proc context.The ProcessBlob

120

SAP Sybase 1Q

Table UDFs and TPFs

method reads from the b1 ob to determine how many occurrences of the specified letter are
present.

See also

» Blob (a_v4_extfn_blob)on page 199

e open _extfnon page 321

e get blobon page 304

e External Procedure Context (a_v4_extfn_proc_context) on page 292

Running the Sample Table UDF udf blob.cxx

The sample udf Dblob is included in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

udf blob.cxx.

1. ITo declare the table UDF to the server, issue:

CREATE PROCEDURE udf blob(IN data long varchar, letter char(l))
RESULT (cl BIGINT)
EXTERNAL NAME 'udf blob@libvi4apiex'

2. Select rows from the table UDF:

set temporary option Enable LOB Variables = 'On';
create variable testblob long varchar;

set testblob = 'aaaaaaaaaabbbbbbbbbbbb';

select * from udf blob(testblob, 'a');

The supplied string contains the letter "a™ 10 times.

Query Processing States

The SQL statement that references a UDF goes through query processing states in the SAP
Sybase 1Q server. In each of these states, the server uses the v4 API to communicate and
negotiate with the UDF.

See also

e Generic describe_column Errors on page 325

o EXTFNAPIV4 DESCRIBE COL _TYPE (Set)on page 228
o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211

Initial State

Initial state on the server. The only UDF method called during the Initial state is
_start extfn.

The server calls the start method for each instance of the UDF created. If a query is executed by
a single server thread, then the start method is called once. If a query is handled by several

User-Defined Functions 121

Table UDFs and TPFs

threads, or distributed across several nodes, the server creates different UDF instances and, as
a result, the start method is called several times.

UDFs can set function instance level data within the user data field of the
a v4 extfn proc context structure, which is the argument to the start method.

Annotation State

During the annotation state the server updates the parse tree with the metadata necessary for
efficient and correct query optimization.

The [enter state], describe extfn,and [leave state] methods are
called. The enter stateand leave state methods are optional and called if
provided by the UDF.

The annotation state is represented in the v4 APl by EXTFNAPIV4 STATE ANNOTATION
fromthea v4 extfn state enumeration:

typedef enum a v4 extfn state {
. EXTFNAPIV4 STATE ANNOTATION, ..
} a v4 extfn state;

As a UDF developer, you can perform some initial schema negotiation in this phase. Schema
negotiation can occur either through the UDF describing to the server what it supports, or the
UDF asking the server how it was declared.

When the UDF describes itself to the server, the server detects mismatches and returns SQL
errors back to the client. For example, if a UDF describes that it requires four parameters and
the SQL writer only declared the UDF with two, the server detects this and returns a SQL error
back to the client.

When the UDF itself performs the validation by asking the server how it was declared, it
adjusts its runtime execution accordingly: it either matches the declaratio, or it returns an error
viathe set error v4 API. For example, assume you build a UDF that returns the maximum
value of up to five input scalar integers. At runtime, the UDF determines how many input
parameters were provided and adjusts its internal logic accordingly. SQL analysts could then
create the procedure as:

CREATE PROCEDURE my sum 2(IN a INT, IN b INT) EXTERNAL

"my sum@my lib"

CREATE PROCEDURE my sum 3(IN a INT, IN b INT, IN c INT) EXTERNAL
"my_sum@my_ lib"

Both functions use the same underling implementation of my sum. The UDF recognizes that
there are only two parameters for my sum 2, and attempts to sum parameters 1 and 2. For
my sum_3, the UDF sums parameters 1, 2 and 3.

As a UDF developer, you can obtain values for constant literal parameters only in the
Annotation state. No other values are available until the Execution state. To get parameter

122

SAP Sybase 1Q

Table UDFs and TPFs

values during the annotation state use the describe parameter get method with the
PARM CONSTANT VALUE and PARM IS CONSTANT attributes.

In the Annotation state, UDFs have access to schema describe attributes:

« EXTFNAPIV4 DESCRIBE UDF NUM PARMS

¢ EXTFNAPIV4 DESCRIBE PARM NAME

e EXTFNAPIV4 DESCRIBE PARM TYPE

¢ EXTFNAPIV4 DESCRIBE PARM WIDTH

¢ EXTFNAPIV4 DESCRIBE PARM SCALE

o EXTFNAPIV4 DESCRIBE PARM IS CONSTANT

¢ EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE
« EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS
¢ EXTFNAPIV4 DESCRIBE COL NAME

¢ EXTFNAPIV4 DESCRIBE COL TYPE

¢ EXTFNAPIV4 DESCRIBE COL WIDTH

e EXTFNAPIV4 DESCRIBE COL SCALE

¢ EXTFNAPIV4 DESCRIBE COL IS CONSTANT

e EXTFNAPIV4 DESCRIBE COL_CONSTANT VALUE

During the Annotation phase the UDF can set the above values to define its schema to the
server. If the server detects a mismatch between what the UDF describes and the SQL
procedure declaration, it returns an error. This technique is referred to as se/f-describing.

An alternative technique, schema validation, can be employed by the UDF. This involves the
UDF getting the values for the schema describe types, and then setting an error if amismatch is
detected. With this approach, validation is left to the UDF, but the UDF can choose to support
multiple schemas with a single implementation (for example, the ability to support multiple
datatypes for a given parameter or being able to support varying number of parameters).

See also

o EXTFNAPIV4_DESCRIBE UDF NUM_FARMS Attribute (Get) on page 278

o EXTFNAPIV4_DESCRIBE UDF NUM_FARMS Attribute (Set) on page 280

o EXTFNAPIV4 _DESCRIBE PARM_NAME Attribute (Get) on page 243

o EXTFNAPIV4_DESCRIBE PARM_NAME Attribute (Set) on page 262

o EXTFNAPIV4_DESCRIBE PARM _TYPE Attribute (Get) on page 244

e EXTFNAPIV4 _DESCRIBE PARM_TYPE Attribute (Set) on page 263

» EXTFNAPIV4_DESCRIBE PARM_WIDTH Attribute (Get) on page 245

o EXTFNAPIV4 DESCRIBE PARM_WIDTH Attribute (Set) on page 264

o EXTFNAPIV4_DESCRIBE PARM_SCALE Attribute (Get) on page 246

o EXTFNAPIV4_DESCRIBE PARM SCALE Attribute (Set) on page 265

o EXTFNAPIV4_DESCRIBE PARM_IS CONSTANT Attribute (Get) on page 251
o EXTFNAPIV4 DESCRIBE PARM IS CONSTANT Attribute (Set) on page 267

User-Defined Functions 123

Table UDFs and TPFs

EXTENAPIV4_DESCRIBE PARM_CONSTANT_VALUE Attribute (Get) on page

252

EXTFNAPIVA4_DESCRIBE_PARM_CONSTANT _VALUE Attribute (Set) on page

268

EXTFNAPIV4_DESCRIBE COL NAME (Get)on page 210
EXTFNAPIV4_DESCRIBE COL_NAME (Set) on page 227
EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211
EXTFNAPIV4_DESCRIBE COL _TYPE (Set)on page 228
EXTFNAPIV4_DESCRIBE COL_WIDTH (Get) on page 212
EXTFNAPIV4_DESCRIBE COL_WIDTH (Set)on page 229
EXTFNAPIV4_DESCRIBE COL_SCALE (Get) on page 212
EXTFNAPIV4 DESCRIBE COL _SCALE (Set) on page 230
EXTFNAPIV4_DESCRIBE COL_IS CONSTANT (Get) on page 217
EXTFNAPIV4_DESCRIBE COL IS CONSTANT (Set)on page 234
EXTENAPIV4_DESCRIBE COL_CONSTANT _VALUE (Get) on page 218
EXTFNAPIV4_DESCRIBE COL_CONSTANT _VALUE (Set)on page 234

Query Optimization State

During the Optimization state, the server is in the initial process of constructing a query plan.
The server collects schema information and some preliminary statistical information.

The [_enter state], describe extfn,and [leave state] methods are
called. The enter stateand leave state methods are optional, and called if
provided by the UDF.

The query optimization state is represented in the v4 APl by
EXTFNAPIV4 STATE OPTIMIZATION fromthea v4 extfn state enumeration:

typedef enum a v4 extfn state {

. EXTFNAPIV4 STATE OPTIMIZATION, ..

} a v4 extfn state;

Negotiations during the query optimization state include:

The server and UDF determine the partitioning/ordering/clustering already specified for
input tables.

The server and UDF determine the partitioning/ordering required for input tables.

The UDF declares physical properties (such as an ordering property) for the result table.

The UDF describes any properties and statistics (for example, cost estimates) which can be

used during the query optimization process.

« Table scope estimates include:

e Number of rows— the total number of rows present in the UDF during the

execution state. This value is available for both the input TABLE parameter and the
returned table.

124

SAP Sybase 1Q

Table UDFs and TPFs

* Row size—an estimate of the average number of bytes in each row.
e Column scope estimates include:
« Distinct count —the number of distinct values in a column over the total number of
rows in a table. This value is available for both the input TABLE parameter and the
returned table.

In the Optimization state, UDFs have access to describe attributes:

EXTFNAPIV4 DESCRIBE PARM NAME

EXTFNAPIV4 DESCRIBE PARM TYPE

EXTFNAPIV4 DESCRIBE PARM WIDTH

EXTFNAPIV4 DESCRIBE PARM SCALE
EXTFNAPIV4 DESCRIBE PARM IS CONSTANT
EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE
EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS
EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY
EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND
EXTFNAPIV4 DESCRIBE PARM TABLE HAS REWIND
EXTFNAPIV4 DESCRIBE COL NAME

EXTFNAPIV4 DESCRIBE COL TYPE

EXTFNAPIV4 DESCRIBE_ COL WIDTH

EXTFNAPIV4 DESCRIBE COL SCALE
EXTFNAPIV4 DESCRIBE COL CAN BE NULL
EXTFNAPIV4 DESCRIBE COL IS CONSTANT
EXTFNAPIV4 DESCRIBE COL CONSTANT VALUE
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER
EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT

See also

DEFAULT TABLE UDF ROW COUNT Optionon page 179
EXTFNAPIV4_DESCRIBE _PARM_NAME Attribute (Get) on page 243
EXTFNAPIV4_DESCRIBE PARM_NAME Attribute (Set) on page 262
EXTFNAPIV4_DESCRIBE PARM_TYPE Attribute (Get) on page 244
EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Set) on page 263
EXTFNAPIV4_DESCRIBE PARM_WIDTH Aftribute (Get) on page 245
EXTFNAPIV4_DESCRIBE PARM_WIDTH Afttribute (Set) on page 264
EXTFNAPIV4 DESCRIBE PARM _SCALE Attribute (Get) on page 246
EXTFNAPIV4_DESCRIBE _PARM_SCALE Attribute (Set) on page 265
EXTFNAPIV4_DESCRIBE PARM IS CONSTANT Attribute (Get) on page 251

User-Defined Functions 125

Table UDFs and TPFs

o EXTFNAPIV4_DESCRIBE PARM_IS CONSTANT Attribute (Set) on page 267

« EXTFNAPIV4 DESCRIBE PARM_CONSTANT VALUE Attribute (Get) on page
252

o EXTFNAPIV4_DESCRIBE PARM_CONSTANT_VALUE Attribute (Set) on page
268

o EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Get) on
page 253

EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Set) on
page 268

« EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Attribute (Get) on page
254

« EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Attribute (Set) on page
269

o EXTFNAPIV4 DESCRIBE PARM_TABLE ORDERBY Attribute (Get) on page 255
o EXTFNAPIV4_DESCRIBE PARM_TABLE ORDERBY Attribute (Set)on page 270
» EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Get)on page 256
EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Set)on page 272

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Get) on
page 258

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Afttribute (Set)on
page 273

o EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Get) on page
259

« EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Set) on page
275

« EXTFNAPIV4_DESCRIBE COL_NAME (Get)on page 210

« EXTFNAPIV4_DESCRIBE COL_NAME (Set) on page 227

« EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211

« EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 228

« EXTFNAPIV4 DESCRIBE COL_WIDTH (Get) on page 212

« EXTFNAPIV4 DESCRIBE COL_WIDTH (Set)on page 229

« EXTFNAPIV4_DESCRIBE COL_SCALE (Get)on page 212

« EXTFNAPIV4_DESCRIBE COL_SCALE (Set)on page 230

« EXTFNAPIV4_DESCRIBE COL_CAN_BE NULL (Get)on page 213
EXTFNAPIV4_DESCRIBE COL_CAN_BE_NULL (Set)on page 231

« EXTFNAPIV4 DESCRIBE COL_IS CONSTANT (Get)on page 217

« EXTFNAPIV4 DESCRIBE COL_IS CONSTANT (Set)on page 234

« EXTFNAPIV4_DESCRIBE COL_CONSTANT VALUE (Get)on page 218
« EXTFNAPIV4_DESCRIBE COL_CONSTANT VALUE (Set)on page 234
« EXTFNAPIV4_DESCRIBE COL_IS USED BY CONSUMER (Get)on page 219

126 SAP Sybase IQ

Table UDFs and TPFs

« EXTFNAPIV4_DESCRIBE COL_IS USED BY CONSUMER (Set)on page 235
« EXTFNAPIV4_DESCRIBE COL_VALUES SUBSET_OF_INPUT (Get)on page
225

- EXTENAPIV4 DESCRIBE COL_VALUES SUBSET OF INPUT (Set)on page
240

Plan Building State

During the plan building state, the server builds the query execution plan based on the best plan
found during the query optimization state.

The [_enter state], describe extfn,and [leave state] methods are
called. The enter stateand leave state methods are optional and called if
provided by the UDF.

The plan building state is represented in the v4 API by
EXTFNAPIV4 STATE PLAN BUILDING fromthea v4 extfn state
enumeration:

typedef enum a v4 extfn state {
. EXTFNAPIV4 STATE PLAN BUILDING, ..
} a v4 extfn state;

At this point in query processing, the server determines what columns are needed from the
UDF, and requests information about the columns needed from the TABLE parameters.

If the UDF supports parallel processing, and if the server agrees that the query is eligible for
parallelism, the server creates multiple instances of the UDF for distributed query processing.

In the Plan Building state, UDFs have access to all describe attributes.

As an example, the following code fragment queries the server to determine which columns

are used:

a sqgl int32 EQg

rg udf *rgUdf = (rg udf *)ctx-> user data;

rg table *rgTable = rgUdf->rgTable;

a sgl uint32 buffer size = 0;

buffer size = sizeof(a v4 extfn column list) (rgTable-
>number of columns - 1) * sizeof(a sgl uint32);

a v4 extfn column list *ulist = (a_v4 extfn column list *)ctx-
>alloc (

ctx,
buffer size);
memset (ulist, 0, buffer size);

rc = ctx->describe parameter get(ctx,
0,

EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS,

ulist,

buffer size);

if(rc != buffer size) {

User-Defined Functions 127

Table UDFs and TPFs

ctx->free(ctx, ulist);
UDF_SQLERROR(PC(ctx), "Describe parameter type get failure.",
rc == buffer size);
} else {
rgTable->unused col list = ulist;

}

Assuming the above code fragment is from a Table UDF that produces 4 result set columns,
and assuming the SQL statement was
SELECT cl, c2 FROM my table proc();

thenthe describe APl returns only c1 and c2. This lets the UDF optimize the production of
the result set values.

See also
» Describe AP/ on page 208

Execution State
During the execution state, the server makes an execution call into the UDF.

The execution plan, created in the plan building state, is used in the execution state to compute
the result set of the SQL query.

These methods can be called: [enter state], describe extfn,
evaluate extfn, open extfn, fetch into extfn,
_fetch block extfn, close extfn, [leave state], and
_finish extfn.

The execution state is represented inthe a_v4 extfn state API by this enumeration:

typedef enum a v4 extfn state {
. EXTFNAPIV4 STATE EXECUTING, ..
} a v4 extfn state;

In the execution state:

* Input TABLE parameter rows and nonconstant scalar input parameter values are available.
* The UDF can open a result set on input TABLE parameters, and fetch rows.

Executing Partition State
If an input TABLE parameter exists, and if a PARTITION BY clause exists in the SQL query,
then the server invokes the UDF once per available partition.

Row Block Data Exchange

A row block is the data transfer area between the producer and the consumer.

A table UDF can only produce rows. It can use an existing row block, or it can build its own
row block.

128 SAP Sybase IQ

Table UDFs and TPFs

A TPF can both produce and consume rows. A TPF produces rows in the same way a table
UDF produces rows and can use an existing row block or build its own row block. A TPF can
consume rows from an input table and can provide the producer with a row block, or request
the producer to create its own row block.

See also

e Row Block (a_v4_extfn_row_ block) on page 309

o Table (a_v4_extfn_table) on page 310

» Table Functions (a_v4_extfn_table func)on page 319
e _open _extfnon page 321

_fetch _into_extifn on page 322

e fetch block extfnon page 322

e _rewind extfnon page 323

e _close _extfnon page 324

Fetch Methods for Row Blocks
The fetch methods for row blocks are _fetch into extfnand
_fetch block extfn. These methods are part of the a v4 extfn table func
structure.

When producing data, if the table UDF or TPF builds its own row block, the UDF must provide
the fetch_block API method. If the UDF does not build its own row block, the UDF must
provide the fetch into API method.

When consuming data, if the TPF builds its own row block, the UDF callsthe fetch _into
method on the producer. If the TPF does not build its own row block, the TPF must call the
fetch block method on the producer.

The UDF can select which fetch method to use for data production and consumption. In
general, these guidelines apply:

« fetch_into—Use this APl when the consumer owns the memory for the data transfer area
and requests that the producer use this area. In this scenario, the consumer cares about how
the data transfer area is set up, and the producer performs the necessary data copies into
this area.

« fetch_block —Use this API when the consumer does not care about the format of the data
transfer area. fetch block requests the producer to create a data transfer area and
provides a pointer to that area. The consumer owns the memory and the consumer is
responsible for copying data from this area.

See also

o Table Parameterized Functions on page 136
e fetch_intoon page 313

o fetch block on page 316

User-Defined Functions 129

Table UDFs and TPFs

The fetch block Method
Use the fetch block method for underlying data storage.

The fetch block method is used as an entry point when the consumer does not need the
data in a particular format. fetch block requests that the producer create a data transfer
area and provide a pointer to that area. The consumer owns the memory and takes
responsibility for copying data from this area.

The fetch block method is more efficient than fetch into, if the consumer does not
need a specific layout. The fetch block call provides a row block that can be populated,
and this block is passed on the next fetch block call. This method is part of the

a v4 extfn table context structure.

If the underlying data storage does not map easily to the row block structure, the UDF can
simply point the row block to addresses in its memory. This prevents unnecessary data copies
to satisfy another memory layout scheme.

The API uses a data transfer area that is defined by the structure

a v4 extfn row block,whichisdefined as aset of rows, where each row is defined as
a set of columns. The row block creator can allocate enough storage to hold a single row or a
set of rows. The producer can fill the rows, but cannot exceed the maximum number of rows
allocated for the row block. If the producer has additional rows, the producer informs the
consumer by returning the numeric value 1 from the fetch method.

Fetch is executed against a table object, which is either the object produced as the result set of a
table UDF or the object consumed as a result set of an input TABLE parameter.

See also
» Using a Row Block to Produce Data on page 131
e fetch_blockon page 316

The fetch_into Method
Use the fetch into APl when the consumer owns the memory for the data transfer area
and requests that the producer use this area.

The fetch into method is useful when the producer does not know how data should be
arranged in memory. This method is used as an entry point when the consumer has a transfer
area with a specific format. The fetch into () function writes the fetched rows into the
provided row block. This method is partofthea v4 extfn table context structure.

The API uses a data transfer area that is defined by the structure

a v4 extfn row block,whichisdefined asaset of rows, where each row is defined as
a set of columns. The creator of the row block can allocate enough storage to hold a single row
or a set of rows. The producer can fill the rows, but cannot exceed the maximum number of
rows allocated for the row block. If the producer has additional rows, the producer informs the
consumer by returning the numeric value 1 from the fetch method.

130

SAP Sybase 1Q

Table UDFs and TPFs

This API enables consumers to optionally construct the row block, such that the data pointers
refer to its own data structures. This allows the producer to directly populate memory within
the consumer. A consumer may not want to do this, if data cleansing or validation checks are
required first.

Fetchis executed against a table object, which is either the object produced as the result set of a
table UDF or the object consumed as a result set of an input TABLE parameter.

See also
» Using a Row Block to Produce Dataon page 131
» fetch_intoon page 313

Using a Row Block to Produce Data
A table UDF or TPF can use row block structures to produce data.

Thea v4 extfn row_ block row block has three fields:

* max_rows—How many table rows the row block can store in a piece of memory.

e num_rows—The number of rows actually produced or available for consumption. Cannot
be larger than max_rows.

* row_data—The array of rows produced or available for consumption. Each row is an
a v4 extfn row structure.

See also

o Table UDF Implementation Examples on page 105

e fetch_intoon page 313

e fetch_blockon page 316

» Row Block (a_v4_extfn_row_block) on page 309

* Row (a_v4_extfn_row)on page 309

e Column Data (a_v4_extfn_column_adata) on page 204

Producing Data Using fetch into
Use the fetch into API method to produce data.

1. Set num_ rows to a value based on the number of rows produced in the fetch call.

2. Foreachrowproduced,setthe row statusflagofa v4 extfn rowtol (available)
or 0 (not available). The default value is 1.

3. Foreachcolumn(a_v4 extfn column data) inthe row set:

Options | Description

is_null Set to true, if the value returned is NULL. The default is false.

User-Defined Functions 131

Table UDFs and TPFs

Options | Description

data The data returned must be copied into this pointer

piece_len | The actual length of data returned. For fixed-length data types, this cannot
exceed max_piece len. Defaults to max piece len for fixed data types.

4. For each column, return 1 to indicate rows produced, and return 0 to indicate otherwise.

Producing Data Using fetch block
Use the fetch block APl method to produce data.

1. Setmax rows to the number of rows the producer-allocated row block structure can
hold.

2. On the first fetch call, allocate a row block structure that can hold max_rows.

3. Setnum_rows to a value based on the number of rows produced in the fetch call.

4. Foreachrowproduced, setthe row statusflagofa v4 extfn rowtol (available)
or 0 (not available). The default value is 1.

5. Foreach column (a_v4 extfn column data) in the row set:

null_value | Indicates the value is used to indicate NULL

null_mask | Identifies the bits that represent the NULL value.

is_null If the value is NULL, set is_null to a value such that (* (cd-
>is null) & cd->null mask) == cd->null value).
data Set this pointer to the area in the producer's memory containing the data to

be returned.

piece_len | The actual length of data being returned. For fixed-length data types, this
cannot exceed max_piece_len. This value defaults to max_piece len for
fixed data types.

6. Return1from fetch into to indicate rows were produced, and return 0 to indicate
otherwise. On the last fetch call, deallocate any memory that is allocated for the row block
structure.

Row Block Allocation

Row block allocation is required when a producer produces data using the fetch block
method or when the consumer uses the fetch into method to retrieve data.

udf utils.cxx contains sample code thatillustrates how to allocate and deallocate a row
block.

132

SAP Sybase 1Q

Table UDFs and TPFs

These relevant data structures in the ext fnapiv4 . h header file are used when allocating a

row block:

typedef struct a v4 extfn column data {
a_sql byte *is null;
a_sql byte null mask;
a sql byte null value;
void *data;
a_sgl uint32 *piece len;
size t max piece len;
void *blob_handle;

} a v4 extfn column data;

typedef struct a v4 extfn row {
a sql uint32 *row_status;
a v4 extfn column data *column data;
} a v4 extfn row;

typedef struct a v4 extfn row block {

a_sgl uint32 max rows;
a sgl uint32 num_ rows;
a v4 extfn row *row_data;

} a_ v4 extfn row block;

When allocating a row block, the developer must decide how many rows the row block is
capable of holding, how many columns each row has, and the number of bytes required for
each of those columns.

For arow block of size m, where each row has n7columns, the developer must allocate an array
ofm a_v4 extfn rowstructures. Foreach row inthis array, the developer must allocate 77
a v4 extfn column_ data structures.

These tables outline allocation requirements for each member of the row block structures:

Table 2. a_ v4_extfn_row_block Structure

Field Requirement
max_rows Set to the number of rows this row block can hold
num_rows Initialize to zero. Is set to the number of actual

rows a row block contains during usage

*row_data Allocate an array containing max_rows of
a v4 extfn row structures

Table 3. a_v4 _extfn_row Structure

Field Requirement

*row_status Allocate enough memory to hold ana_sql_uint32

User-Defined Functions 133

Table UDFs and TPFs

Field Requirement

*column_data Allocate an array containing the number of col-
umnsintheresultsetofa v4 extfn col-
umn_data structures

Table 4. a_v4_extfn_column_data Structure

Field Requirement

*is_null Allocate enough memory to hold an a_sql_byte

null_mask Set to a value such that the formula (*is_null &
null_mask) == null_value indicates a column
value is NULL

null_value Set to a value such that the formula (*is_null &
null_mask) == null_value indicates a column
value is NULL

*data Allocate an array of bytes large enough to hold
the data for the data type of the column

*piece_len Allocate enough memoryto holdana_sql_uint32

max_piece_len Set to the maximum width for the column

*plob_handle Always owned by the server. Initialize to NULL.

See also

SQL Data Typeson page 9
External Procedure Context (a_v4_extfn_proc_context) on page 292

Table UDF Query Plan Objects

The table UDF values and TPF values visible in the query plan.

BlocksFetched —shows the number of chunks used to transfer all the data produced by the
UDF. This value equates to the number of times the server called the fetch method of the
UDF.

Maximum rowsper _fetch into_extfn —(visible ony if the UDF is using
_fetch into_extfn.)Displaysthe maximum number of rows a UDF can produce on
eachcallto fetch into extfn asdetermined by the server.

Minimum/M aximum values for an output column —displays minimum/maximum
values per column if the UDF has set them via

extfnapiv4 describe col maximum value. Minimum/maximum appear
only for arithmetic data type columns.

134

SAP Sybase 1Q

Table UDFs and TPFs

* ORDERBY node(TPF only) —fora TPF, the query plan shows an ORDER BY node as a
child of the TPF SubQuery node. The ORDER BY node indicates that the data is ordered
as it flows into the TABLE parameter.

» Output Row Width—(visible only ifthe UDF isusing fetch into extfn.) Shows
the width of an output column in bytes. This value is used in calculating the maximum
number of rows.

* TableUDF node—represents an instance of a table UDF in the query. The TableUDF node
is a leaf node.

* TPF node(TPF only) —same as the TableUDF node except that TPF node permits use of
an input TABLE parameter. Unlike a TableUDF node which is a leaf node, the TPF is an
interior node with at most one child.

* TPF SubQuery node(TPF only)—child of the TPF node. Represents the subquery for the
input table argument.

e UDF Library — UDF library file name. Shows the full path on disk from which the
dynamic library implementing the UDF was loaded.

* Uniqueness of an output column — reflects the value set by
extfnapiv4 describe col is unique.

« TABLE _UDF_ROW_BLOCK_SIZE_KB —option value displays in query plan
statistics if you specify a value other than 128KB.

Enabling Memory Tracking

Enable memory tracking to help you locate memory leaks in your UDFs, and to free the leaked
memory. Memory tracking imposes a performance penalty.

Enabling memory tracking tracks all invocations of a_v4 extfn proc context
allocanda v4 extfn proc context free. An allocations without a matching
free is logged to the i gmsg file.

1. Ensure the external_UDF_execution_mode is set to 1 or 2 (validation mode or tracing
mode).

2. Usethe alloc and free methodsof a v4 extfn proc context.

See also
e allocon page 301
e freeon page 302

User-Defined Functions 135

Table UDFs and TPFs

Table Parameterized Functions

A Table parameterized function (TPF) is an extension of a table UDF that accepts table input
parameters in addition to scalar input parameters.

You can configure user-specified partitioning for your TPF. The UDF developer can declare a
partitioning scheme that breaks down the dataset into smaller pieces of query processing that
you distribute across multiplex nodes. This enables you to execute the TPF in parallel in a

distributed server environment over partitions of row sets. The query engine supports massive

parallelization of TPF processing.

Note: Multiplex requires a separate license. See Administration: Multiplex.

Learning Roadmap for TPF Developers

Develop a C or C++ TPF.

This roadmap assumes:

* You have a C or C++ development environment on your machine.
« For the optional data partitioning capability, you have a multiplex environment. See

Administration: Multiplex.

Task

See

Familiarize yourself with table UDF develop-
ment.

Learning Roadmap for Table UDF Developerson
page 97

Follow the recommended procedure for creating
aTPF.

Developing a TPF on page 136
TPF Implementation Examples on page 156

Establish a table context for the input table and
consume table rows from it.

Consume TABLE Parameters on page 137

(Optional) Order incoming data.

Order Input Table Data on page 140

(Optional) Partition the incoming data to enable
parallel TPF processing in your multiplex.

Partitioning Input Data on page 140

Developing a TPF

Review the major steps required to develop a TPF.

Consume input parameters.
. (Optional) Order input table data.
. (Optional) Partition input table data.

INIEAR S

Perform the same steps required to develop a table UDF.

136

SAP Sybase 1Q

Table UDFs and TPFs
5. (Optional) Enable parallel TPF processing.

See also

e Consume TABLE Parameters on page 137
e Order Input Table Data on page 140

e Partitioning Input Data on page 140

e _gpen _extfnon page 321

e _fetch into_extfnon page 322

e _fetch block extfnon page 322

» _rewind_extfnon page 323

e _evaluate extfnon page 290

» Developing a Table UDF on page 103

Consume TABLE Parameters

A TABLE parameter is a non-constant parameter. This means that the TPF must be in the
execution state to retrieve TABLE parameters.

The TPF can retrieve the TABLE parameter from these methods:

e open_extfn

e fetch into extfn
e fetch block extfn
e rewind extfn

e evaluate extfn

To consume a TABLE parameter, the TPF must:
Obtain a Table Object

The TPF obtains a table object for the TABLE parameter using the get value method of
a v4d extfn proc context.

Atableobject (a_v4 extfn table) can initiate retrieving rows from an input table. The
following code snippet illustrates how get value obtains a table object for parameter 1.
For simplicity, this code assumes that parameter 1 is a table.

a v4 extfn value value;
a v4 extfn table * table;

ctx->get value(args handle,
1,
&value) ;

table = (a_v4 extfn table *)value.data;

User-Defined Functions 137

Table UDFs and TPFs

See also
e get valueon page 294

Open the Result Set

Once a table object has been obtained using get value, the TPF must open a result set on
the table object using the open result set method of

a v4 extfn proc context before it can fetch any rows.

Calling open result set returnsaninstance of a v4 extfn table context
that the TPF can use to process table data. It also saves the table object in the table member of
thea v4 extfn table context object.

The following code snippet illustrates how open result set gets an instance of
a v4 extfn table context for fetching rows:

a v4 extfn table context * rs = NULL;

ctx->open result set(ctx,
(a_v4 extfn table *)value.data,
&rs));

See also
e open result seton page 303
o Table Context (a_v4_extfn_table _context) on page 311

Fetch from the Result Set
The TPF fetches table data from an input table using an open result set.

Fetching is accomplished by calling either fetch blockor fetch into onthe

a v4 extfn table context object returned from open result set. The TPF
can choose which fetch method touse. If fetch_blockisused, the server is responsible for
rowblock allocation. If fetch into is used, the TPF is responsible for row block
allocation.

Each call to the fetch method returns either nothing, which is indicated by a return value of
false, or returns a populated row block structure. The row block structure can then be used to
consume the table data.

See also

e fetch_intoon page 313

» fetch blockon page 316

» Row Block Data Exchange on page 128

138

SAP Sybase 1Q

Table UDFs and TPFs

Consume Table Data Using a Row Block
The TPF consumes table data using the fetch into or fetch block row block
structures.

Each successful call to either fetch into or fetch block populates a
a_v4 extfn row block structure.

Thea v4 extfn row block members are:

* max_rows—the number of table rows the row block can store in a piece of memory.

e num_rows—the number of rows actually produced or available for consumption. Cannot
be larger than max _rows.

¢ row_data—the array of rows produced or available for consumption. Each row is an
a_v4 extfn row structure.

Each row of table data in row_data has these members:

* row_stats—indicates whether values for this row are present. A value of 1 means the
values are present; 0 means the values are not.
¢ column_data—the column data associated with this row.

The column_data members are:

Member Description

null value The value representing NULL

null mask One or more bits used to represent the NULL
value

data Pointer to the data for the column. Depending on

the type of fetch mechanism, either points to an
address in the consumer, or an address where the
data is stored in the UDF.

piece len The actual length of data for variable-length data
types
blob A non-NULL value means that the data for this

column must be read using the b1 ob API

See also

e Column Data (a_v4_extfn_column_adata) on page 204
e Row Block (a_v4_extfn_row_block) on page 309

e Row (a_v4_extfn_row)on page 309

e get blobon page 318

User-Defined Functions 139

Table UDFs and TPFs

Close the Result Set
Once the TPF is finished processing table data, it closes the open result set using the
close result set methodofa v4 extfn proc context.

This code snippet illustrates close result set closing a result set.

ctx->close result set(ctx,
rs))i

Order Input Table Data

Either a SQL Analyst or the UDF developer can order incoming data.
A SQL Analyst controls ordering by including the ORDER BY clause in a SELECT statement.

The UDF developer controls ordering by using the DESCRIBE_PARM_TABLE_ORDERBY
attribute.

Both methods result in the server ordering the incoming data, the results of which can be see in
the query plan in the Order node.

See also
o EXTFNAPIV4 DESCRIBE PARM_TABLE ORDERBY Alttribute (Get)on page 255
o EXTFNAPIV4 _DESCRIBE PARM_TABLE ORDERBY Attribute (Set)on page 270

Partitioning Input Data

Use the PARTITION BY clause to express and declare invocation partitioning in your parallel
TPF.

As a SQL analyst, you can efficiently utilize system resources by leveraging the server query
parallelism and distribution features available with the PARTITION BY clause in your SQL
queries. Depending on the clause specified, the server may partition data into distinct value-
based sets of rows or by row-range sets of rows.

* Value-based partitions —determined by key values on an expression. These partitions
provide value when a computation depends on seeing all rows of the same value for
aggregation.

* Row-based partitions—simple and efficient means to divide a computation into multiple
streams of work. Used when a query must be executed in parallel.

You can express a design for partition via the PARTITION BY <expr> clause on the TABLE
parameter to a TPF. UDF developers can utilize the TABLE parameter metadata attribute
EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY to programmatically declare that
the UDF requires partitioning before invocation can proceed. The UDF can inquire to the
partition to enforce it, or to dynamically adapt the partitioning.

140

SAP Sybase 1Q

Table UDFs and TPFs

See also

e Parallel TPF PARTITION BY Examples Using
EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 143

« EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Get)on page 256
. EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Set)on page 272

» V4 API describe_parameter and
EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 141

V4 APIl describe parameter and

EXTENAPIV4 DESCRIBE PARM _TABLE PARTITIONBY

You can use describe parameter set and describe parameter get for
partitioning an input TABLE parameter for required columns.

Declaration
The describe parameter API has two declarations.

describe_parameter_set Declaration
a sgl int32 (SQL CALLBACK *describe parameter set) (

a v4 extfn proc context *cntxt,

a sql uint32 arg_num,

a v4 extfn describe parm type describe type,
void *describe buffer,
size t describe buffer

)

describe_parameter_get Declaration
a sgl int32 (SQL CALLBACK *describe parameter get) (

a v4 extfn proc context *cntxt,

a sqgl uint32 arg num,

a v4 extfn describe parm type describe type,
const void *describe buffer,
size t describe buffer

)

Usage
In order to use these APIs, the arg_num must refer to a TABLE parameter, and the
describe_buffer must refer to the type of memory block a v4 extfn column list

structure.

typedef struct a v4 extfn column list ({
a sql int32 number of columns;
a_sgl uint32 column_ indexes[1];

} a_v4_efon_column_list;
The structure field number_of_columns must have one of these values:

 Positive integer N, where N indicates the number of columns present in the partition by
list.

User-Defined Functions 141

Table UDFs and TPFs

¢ 0, which indicates PARTITION BY ANY.
« -1, which indicates NO PARTITION BY.

This enumerated type is defined in the ext fnapiv4.h header file:

typedef struct a v4 extfn column list ({
a sql int32 number of columns;
a_sgl uint32 column_ indexes[1];
} a v4 extfn column list;

Youcanusethe v4 extfn partitionby col numenumerated type to build the
column list structure and execute the describe parameter set and

describe parameter get API to inform the server of its requirements and to
determine which input columns have been partitioned. The execution of

describe parameter set and describe parameter get APIscan have
following scenarios:

describe_parameter_set Scenarios

column Index Description

Scenarios

{11} Input table column #1 is partitioned as per UDF request.

{2,3,1} Input table columns #3 and #1 are partitioned as per UDF request.

{0} UDF can support any form of input table partitioning as per UDF request.

describe_parameter_get Scenarios

column Index Scenarios Description

{12} Input table column #2 is being partitioned on.

{2,1,2} Input table columns #1 and #2 are being partitioned on.
{0} Input table being partitioned by a noncolumn based scheme.
NULL No runtime partitioning is provided.

Note: A PARTITION BY expression other than PARTITION BY ANY or PARTITION BY NONE
must appear in the select list for the input query.

See also

« Describe AP/ on page 208

Partition By Column Number (a_v4_extfn_partitionby col num)on page 307
o EXTFNAPIV4_DESCRIBE PARM_TYPE Attribute (Get) on page 244

142

SAP Sybase 1Q

Table UDFs and TPFs

o EXTFNAPIV4 DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Get) on
page 253

o EXTFNAPIV4 DESCRIBE PARM_TYPE Alttribute (Set) on page 263

o EXTFNAPIV4 DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Set) on
page 268

e« EXTFNAPIV4 DESCRIBE COL _TYPE (Get)on page 211

o EXTFNAPIV4 DESCRIBE COL _TYPE (Set)on page 228

Parallel TPF PARTITION BY Examples Using

EXTENAPIV4 DESCRIBE PARM TABLE PARTITIONBY

Develop partitioning using the PARTITION BY <expr> clause on the TABLE parameter to a
TPF function. As a UDF developer, use the TABLE parameter metadata attribute
EXTFNAPIV4 DESCRIBE_PARM TABLE PARTITIONBY toprogrammatically declare
that the UDF requires partitioning before invoking it.

The examples illustrate:

» Various SQL writer scenarios where the UDF describes partitioning requirements to the
server

» Valid queries and invalid queries (SQL exceptions) for each scenario
* How the server detects mismatches

« Thevarious possible combinations that arise from usage of the PARTITION BY SQL clause
and the EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY UDF attribute

See also
e Partitioning Input Data on page 140

Example Procedure Definition
An example procedure definition that supports TPF PARTITION BY clause examples.

All TPF PARTITION BY clause examples in this section assume that you first execute this
procedure definition:

CREATE PROCEDURE my tpf(argl TABLE(cl INT, c2 INT))
RESULTS (rl INT, r2 INT, r3 INT)
EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

See also

» describe_parameter_set Example # 1: One-Column Partitioning on Column 1 on page
144

* describe_parameter_set Example # 2: Two-Column Partitioning on page 146
* describe_parameter_set Example # 3: Any-Column Partitioning on page 148

» describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause on
page 150

User-Defined Functions 143

Table UDFs and TPFs

o describe_parameter_set Example # 5. No Partitioning Support on page 151

e describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

describe _parameter_set Example # 1: One-Column Partitioning on Column 1
An example UDF that informs the server to perform partitioning on column 1 (c1).

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context

*ctx)
{
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sql int32 rel =0
a v4 extfn column list pbcol =
{1, // 1 column in the partition by list
1} // column index 1 requires partitioning
// Describe partitioning for argument 1 (the table)
rc = ctx->describe parameter set(
CE%,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));
if(rc ==) |
ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}
}
See also

» Example Procedure Definition on page 143

» describe_parameter_set Example # 2. Two-Column Partitioning on page 146

* describe_parameter_set Example # 3: Any-Column Partitioning on page 148

e describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause on
page 150

e describe_parameter_set Example # 5. No Partitioning Support on page 151

* describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

144 SAP Sybase IQ

Table UDFs and TPFs

SQL Writer Semantics for One-Column Partitioning on Column 1
Example queries valid for one-column partitioning on column 1 (c1).

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x))

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer also explicitly requests partitioning on the same column. When the
two columns match, the above query proceeds without any errors using this negotiated query:
my tpf(TABLE(SELECT T.x, T.y FROM T)

OVER (PARTITION BY T.x))
V4 describe parameter get API returns: { 1, 1 }

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY))

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer only wants the query engine to execute the UDF on partitions. The
server uses the UDF's preference for partitioning and as a result the same effective query in
Example 1 is executed.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T))

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY DEFAULT))

This example shows that the SQL writer does not include the PARTITION BY clause or the
PARTITION BY DEFAULT clause as part of the input table query specification. In this case, the
specification requested by the UDF applies, which is to perform partitioning on column T.x.

SQL Exceptions for One Column Partitioning on Column 1
Example queries not valid for one column partitioning on column 1 (c1). Each example raises
a SQL exception.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y))

User-Defined Functions 145

Table UDFs and TPFs

In this example the UDF describes to the server that the data is partitioned by the first column
(T.x) and that the SQL writer is also explicitly requesting partitioning on a different column
(T.y) which conflicts with what the UDF is requesting and as a result the server returns a SQL
error.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(NO PARTITION BY))

This example conflicts with the request made by the UDF because the SQL writer does not
want the input table partitioned and as a result the server returns a SQL error.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x, T.y))

In this example the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer requests partitioning on columns (T.x and T.y) which conflicts with
what the UDF is requesting and as a result the server returns a SQL error.

describe parameter set Example # 2: Two-Column Partitioning

An example UDF that informs the server to perform partitioning on column 1 (c1) and column
2 (c2).

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
*ctx)

{

if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sqgl int32 e = 03
a v4 extfn column list pbcol =

{ EXTFNAPIV4 PARTITION BY COLUMN ANY };

// Describe partitioning for argument 1 (the table)

rc = ctx->describe parameter set(
CER,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));
if(re == 0) {

ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}

146

SAP Sybase 1Q

Table UDFs and TPFs

See also

e Example Procedure Definition on page 143

o describe_parameter_set Example # 1. One-Column Partitioning on Column 1 on page
144

e describe_parameter_set Example # 3. Any-Column Partitioning on page 148

e describe_parameter_set Example # 4. No Support for PARTITION BY ANY Clause on
page 150

o describe_parameter_set Example # 5. No Partitioning Support on page 151

e describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

SQL Writer Semantics for Two-Column Partitioning
Example queries valid for two-column partitioning on column 1 (c1) and column 2 (c2).

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(PARTITION BY T.y, T.x))

In this example, the UDF describes to the server that the data is partitioned by columns T.y and
T.x. The SQL writer also requests partitioning on the same column. When the two columns
match, the above query proceeds without any errors using this negotiated query:

my tpf (TABLE(SELECT T.x, T.y FROM T)

OVER (PARTITION BY T.y, T.x))
V4 describe parameter get API returns: { 2, 2, 1 }

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY))

In this example, the SQL writer does not specify a specific column for partitioning. Instead the
SQL writer partitions the input table. The UDF requests partitioning on columns T.y and T.x,
and as a result, the server partitions the input data on the columns T.y and T.x.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY DEFAULT))

This example shows that the SQL writer does not include PARTITION BY clause or the
PARTITION BY DEFAULT clause. The server uses the partition requested by the UDF, and since

User-Defined Functions 147

Table UDFs and TPFs

the UDF describes that it requires partitioning on columns T.y and T.x, the server executes the
query by performing partitioning on columns T.y and T.x.

Example 4

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x,T.y))

This example is semantically identical to Example 1. The ordering of the two columns are
different, but within a given partition, the values for columns T.x and T.y stay the same. Both
columns (T.x, T.y) and columns (T.y, T.x) result in the same logical partitioning of data.

SQL Exceptions for Two-Column Partitioning
Invalid example queries for two-column partitioning on column 1 (c1) and column 2 (c2).
Each example raises a SQL exception.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(NO PARTITION BY))

This example conflicts with the request made by the UDF because the SQL writer does not
want the input table partitioned. As a result, the server returns a SQL error.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x))

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y))

In this example the UDF describes to the server that the data is partitioned by columns T.y and
T.X, while the SQL writer requests the partitioning on either column T.y or T.x. which conflicts
with what the UDF is requesting. As a result, the server returns a SQL error.

describe parameter set Example # 3: Any-Column Partitioning
An example UDF that informs the server it can perform partitioning on any column.

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
*ctx)
{
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sqgl int32 rc = 0;
a v4 extfn column list pbcol =
{ EXTFNAPIV4 PARTITION BY COLUMN ANY };

148

SAP Sybase 1Q

Table UDFs and TPFs

// Describe partitioning for argument 1 (the table)
rc = ctx->describe parameter set (
ctx,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));

if(rc ==) {
ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}

See also

« Example Procedure Definition on page 143

e describe_parameter_set Example # 1. One-Column Partitioning on Column 1 on page
144

* describe_parameter_set Example # 2: Two-Column Partitioning on page 146

» describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause on
page 150

e describe_parameter_set Example # 5. No Partitioning Support on page 151

* describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

SQL Writer Semantics for Any-Column Partitioning
Example queries valid for any-column partitioning.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x))

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.x) and the SQL writer also explicitly requests partitioning on the same column. When the
two columns match, the above query proceeds without any errors using this negotiated query:
my tpf(TABLE(SELECT T.x, T.y FROM T)

OVER (PARTITION BY T.y, T.x))
V4 describe parameter get API returns: { 2, 2, 1 }

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY))

User-Defined Functions 149

Table UDFs and TPFs

In this example, nether the SQL writer nor the UDF specify a specific column for partitioning.
linstead the SQL writer partitions the input table and, as a result, the server arranges
partitioning in a nonvalue-based scheme and the data is partitioned over ranges of rows.

describe parameter set Example # 4: No Support for PARTITION BY ANY Clause
An example UDF that informs the server that it cannot perform partitioning on any columns,
because the UDF does not support the PARTITION BY ANY clause.

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
*ctx)

{
// No describe calls

}

See also

e Example Procedure Definition on page 143

* describe_parameter_set Example # 1: One-Column Partitioning on Column 1 on page
144

* describe_parameter_set Example # 2: Two-Column Partitioning on page 146

» describe_parameter_set Example # 3: Any-Column Partitioning on page 148

* describe_parameter_set Example # 5: No Partitioning Support on page 151

» describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

SQL Writer Semantics for No Support for PARTITION BY ANY Clause
Example queries valid when the UDF does not support the PARTITION BY ANY clause.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T))

This example shows that the SQL writer does not include PARTITION BY clause. The server
uses the partition requested by the UDF and since the UDF does not supports any partitioning
requirements, the server executes the query without performing any partitioning.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(NO PARTITION BY))

Inthis example, the SQL writer requests the NO PARTITION BY clause as part of the input table
query specification. As a result, the server executes the query with no runtime partitioning.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)

150

SAP Sybase 1Q

Table UDFs and TPFs

OVER(PARTITION BY T.x))

In this example the UDF does not describe any partitioning requirements. However, the SQL
writer requests partitioning by column T.x and as a result the server executes the query by
performing partitioning on column T.x.

Example 4

SELECT * FROM my_ tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y))

In this example, the UDF does not describe any partitioning requirements. However, the SQL
writer requests partitioning by column T.y. As a result, the server executes the query by
performing partitioning on column T.y.

Example 5

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y, T.x))

In this example, the UDF does not describe any partitioning requirements. However, the SQL
writer requests partitioning by columns T.y and T.x. As a result, the server executes the query
by performing partitioning on columns T.y and T.x.

Example 6

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY))

In this example, the SQL writer requests PARTITION BY ANY partitioning. However, the UDF
does not support any partitioning requirements. As a result, the server executes the query by
performing row range partitioning.

describe parameter set Example # 5: No Partitioning Support
An example UDF that informs the server that it does not support any partitioning.

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
FEER)
{
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sgl int32 rc = 0;
a v4 extfn column list pbcol =
{ EXTFNAPIV4 PARTITION BY COLUMN NONE };

// Describe partitioning for argument 1 (the table)
rc = ctx->describe parameter set (

User-Defined Functions 151

Table UDFs and TPFs

ctx,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));
if(rc == 0) {
ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}
}
See also

» Example Procedure Definition on page 143

e describe_parameter_set Example # 1. One-Column Partitioning on Column 1 on page
144

» describe_parameter_set Example # 2: Two-Column Partitioning on page 146

* describe_parameter_set Example # 3: Any-Column Partitioning on page 148

e describe_parameter_set Example # 4. No Support for PARTITION BY ANY Clause on
page 150

e describe_parameter_set Example # 6. One-Column Partitioning on Column 2 on page
153

SQL Writer Semantics for No Partitioning Support
Valid example queries when the UDF does not support any partitioning.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY)

In this example, the SQL writer requests PARTITION BY ANY partitioning. However, the UDF
does not support any partitioning, and as a result, the server executes the query without
runtime partitioning.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY DEFAULT)

This example shows that the SQL writer does not include the PARTITION BY clause or the
PARTITION BY DEFAULT clause. The server uses the partition requested by the UDF and since
the UDF does not supports any partitioning, the server executes the query without performing
any partitioning.

152

SAP Sybase 1Q

Table UDFs and TPFs

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(NO PARTITION BY)

Inthis example, the SQL writer requests no partitioning, and as a result, the server executes the
query without runtime partitioning.

SQL Exceptions for No Partitioning Support
Invalid example queries, because the UDF does not support any partitioning. Each example
raises a SQL exception.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(PARTITION BY T.x))

This example results in a SQL error because the SQL writer requested partitioning on column
T.x, and the UDF does not support any partitioning on any columns.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y))

This example results in a SQL error because the SQL writer requested partitioning on column
T.y, and the UDF does not support any partitioning on any columns.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER(PARTITION BY T.y, T.x))

Thisexample results ina SQL error because the SQL writer requested partitioning on columns
T.y and T.x, and the UDF does not support any partitioning on any columns.

describe parameter set Example # 6: One-Column Partitioning on Column 2
An example UDF that informs the server to perform partitioning on column 2 (c2).

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context

*ctx)
{
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sgl int32 re = 0f
a v4 extfn column list pbcol =
{1, // 1 column in the partition by list
2 }; // column index 2 requires partitioning

User-Defined Functions 153

Table UDFs and TPFs

// Describe partitioning for argument 1 (the table)
rc = ctx->describe parameter set (
ctx,
1,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
&pbcol,
sizeof (pbcol));

if(rc ==) {
ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}

See also

« Example Procedure Definition on page 143

e describe_parameter_set Example # 1. One-Column Partitioning on Column 1 on page
144

* describe_parameter_set Example # 2: Two-Column Partitioning on page 146

o describe_parameter_set Example # 3: Any-Column Partitioning on page 148

e describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause on
page 150

* describe_parameter_set Example # 5: No Partitioning Support on page 151

SQL Writer Semantics for One-Column Partitioning on Column 2
Valid example queries for one-column partitioning on column 2 (c2).

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.y)

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.y), and the SQL writer also explicitly requests partitioning on the same column. When the
two columns match, the above query proceeds without any errors using this negotiated query:
my tpf(TABLE(SELECT T.x, T.y FROM T)

OVER (PARTITION BY T.y))
V4 describe parameter get API returns: { 1, 2 }

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY ANY)

154

SAP Sybase 1Q

Table UDFs and TPFs

In this example the SQL writer does not specify a specific column for partitioning. Instead the
SQL writer partitions the input table. The UDF requests partitioning on column T.y, and as a
result, the server partitions the input data on the column T.y.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY DEFAULT)

This example shows that the SQL writer does not include the PARTITION BY clause or the
PARTITION BY DEFAULT clause as part of the input table query specification. In this case, the
specification requested by the UDF applies, which is to perform partitioning on column T.y.

SQL Exceptions for One-Column Partitioning on Column 2
Invalid example queries for one-column partitioning on column 2 (c2). Each example raises a
SQL exception.

Example 1

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x)

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.y) ,and that the SQL writer is also explicitly requesting partitioning on a different column
(T.x), which conflicts with what the UDF is requesting. As a result the server returns a SQL
error.

Example 2

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (NO PARTITION BY)

This example conflicts with the request made by the UDF because the SQL writer does not
want the input table partitioned. As a result the server returns a SQL error.

Example 3

SELECT * FROM my tpf (
TABLE (SELECT T.x, T.y FROM T)
OVER (PARTITION BY T.x, T.y)

In this example, the UDF describes to the server that the data is partitioned by the first column
(T.y), and the SQL writer requests partitioning on columns (T.x and T.y), which conflicts with
what the UDF is requesting. As a result the server returns a SQL error.

User-Defined Functions 155

Table UDFs and TPFs

TPF Implementation Examples

Implementation examples start with a simple TPF and increase in complexity and
functionality as the examples progress.

The TPF implementation examples are in the samples directory.

The examples are available in a precompiled dynamic library called 1ibv4apiex. The
extension of this library name is platform-dependent. This library includes the functions
defined in udf main.cxx, which contains the library-level functions, such as
extfn use new api.Putlibv4apiex in adirectory the server can read.

tpf rg 1
TPF sample tpf rg 1.cxx issimilarto the table UDF sample udf rg 2.cxx. It

produces rows of data based on an input parameter.

The number of rows generated is the sum of the values of the rows in a single input table. The
output is the same as udf rg 2.cxx.

The majority of the code for this sample is the same as udf _rg_ 2. cxx. The main
differences are:

* The names of the implementing functions have the prefix tpf rg instead of udf rg.
See the file tpf _rg 1. cxx for details.

» The implementation of describe extfn validates the schema of this example but
does not estimate the number of rows generated.

» The implementation of open extfn reads rows from an input table to determine the
number of rows to generate.

The describe extfn method accommodates the schema differences between
udf rg 2.cxx and this example. In particular, parameter 1 is a table with one integer
column. This code snippet illustrates describe extfn:

static void UDF CALLBACK tpf rg describe(
a v4 extfn proc context *ctx)
/********;**?*****?****;*****************/

{

a sgl int32 desc_rc;

// The following describes will ensure that the schema defined
// by the user matches the schema supported by this TPF

// This is achieved by telling the server what our schema is
// using describe xxxx set methods.

if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {

// Inform the server that the type of parameter 1 is a TABLE
type = DT_EXTFN TABLE;
desc_rc = ctx->describe parameter set

156 SAP Sybase IQ

Table UDFs and TPFs

(ctx,
1,
EXTFNAPIV4 DESCRIBE PARM TYPE,
&type,
sizeof (type));

UDF_CHECK DESCRIBE(ctx, desc_rc);

// Inform the server that the input table should have a single
// column.

num cols = 1;
desc rc = ctx->describe parameter set
(ctx,

1,
EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS,
&num_ cols,

sizeof (num cols));

UDF_CHECK DESCRIBE(ctx, desc_rc);

// Inform the server that the input table column is an integer
type = DT_INT;

desc_rc = ctx->describe column_ set
(ctx,
L,
L,
EXTFNAPIV4 DESCRIBE_COL_TYPE,
&type,

sizeof (type));

UDF_CHECK DESCRIBE(ctx, desc_rc);

Inudf rg 2.cxx, the number of rows generated by the UDF may be available during the
describe phase if the value is a constant. A table argument can never be constant, so its value is
unavailable until the Execution state. For this reason, no optimizer estimate for the number of
rows being generated is provided during the describe phase.

Callsto the describe only during the Annotation state have an effect in this example. Such calls
will do nothing in the other states.

The open extfn method reads in rows from the input table and sums their values. As in
the udf rg 2.cxx example, the value of the first input parameter is retrieved using

get value. Thedifference here is that the type of the parameterisa_v4 extfn table
pointer. This code snippet illustrates open extfn:

static short UDF CALLBACK tpf rg open (

a v4 extfn table context * tctx)
/***************************************/

{

User-Defined Functions 157

Table UDFs and TPFs

an_extfn value value;

tpf rg state * state = NULL;
a v4 extfn table context * rs = NULL;
a sgl uint32 num_ to generate = 0;

// Read in the value of the input parameter and store it away in a
// state object. Save the state object in the context.
if (!tctx->proc context->get value(tctx->args handle,

1,

&value)) |

// Send an error to the client if we could not get the value.
tctx->proc context->set error (

tctx->proc_context,

17001,

"Error: Could not get the value of parameter 1");

return 0;

}

// Open a result set for the input table.
if (!tctx->proc context->open result set(tctx->proc context,
(a v4 extfn table *)value.data,
&rs)) A
// Send an error to the client if we could not open the result
// set.
tctx->proc_context->set_error (
tctx->proc_context,
17001,
"Error: Could not open result set on input table.");

return 0;

}

a v4 extfn row block * rbfb = NULL;
a_v4_extfn_row * rfb = NULL;
a v4 extfn column data * cdfb = NULL;

// When using fetch block to read rows from an input table, the
// server will manage the row block allocation.
while (rs->fetch block(rs, &rbfb)) {

// Each successful call to fetch will fill rows in the server
// allocated row block. The number of rows retrieved is
// indicated by the num rows member.
for(unsigned int i = 0; i < rbfb->num rows; i++) {
rfb = & (rbfb->row dataf[i]);
cdfb = &(rfb->column data[0]);

// Only consider non-null values. To determine null we
// have to use the following logic.
if((*cdfb->is null & cdfb->null mask) != cdfb-

>null value) {
num_to generate += *(a_sql int32 *)cdfb->data;

}

158 SAP Sybase IQ

Table UDFs and TPFs

if (!tctx->proc context->close result set(tctx->proc context, rs))

// Send an error to the client if we could not close the
// result set.
tctx->proc_context->set error (

tctx->proc_context,

17001,

"Error: Could not close result set on input table.");

return 0;

}

// Allocate memory for the state using the a v4 extfn proc context
// function alloc.

state = (tpf rg state *)
tctx->proc_context->alloc(tctx->proc context,
sizeof (tpf rg state));

// Start generating at row zero.
state->next row = 0;

// Save the value of parameter 1
state->max row = num_ to generate;

// Save the state on the context
tctx->user data = state;

return 1;

Once you retrieve the table object using get value, call open result settoreadin
rows of data from the table.

To read rows from the input table, the UDF canuse fetch intoor fetch block. When
a UDF is fetching rows from an input table, it becomes a consumer of data. If the consumer
(the UDF in this case) wants to be responsible for managing the row block structure, then the
consumer must allocate their own row block structure and use fetch_into to retrieve the
data. Alternatively, if the consumer wants the producer (the server in this case) to manage the
row block structure, then use fetch block. tpf rg 1 demonstrates the latter.

Using an open result set, tpf rg 1 retrieves rows of data from the server by calling
fetch block repeatedly. Each successful call to fetch block populates the server
allocated row block structure with up to num_rows rows. In tpf rg 1, the value of
column 1 for each row is added to a total. As in the udf rg 2.cxx example, this total is
saved inthe a_ v4 extfn proc context state to be used later.

See also

» Describe AP/ on page 208

e _ogpen _extfnon page 321

o Table (a_v4_extfn_table) on page 310
o _fetch block extfnon page 322

User-Defined Functions 159

Table UDFs and TPFs

Running the Sample TPF in tpf rg 1

The sample tpf rg 1 isincluded in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in
tpf rg l.cxx

1. Declare the TPF to the server.

CREATE OR REPLACE PROCEDURE tpf rg 1(IN tab TABLE(num INT))
RESULT (cl INT)
EXTERNAL NAME 'tpf rg 1Q@libvdapiex';

2. Declare a table to use as input to the TPF.
CREATE TABLE test_table(val int);

3. Insert rows into the table:

INSERT INTO test table values(1l);
INSERT INTO test table values(2);
INSERT INTO test table values(3);
COMMIT;
4. Select rows from the TPF.
The table test_table has three rows with values 1,2,3. The sum of these values is 6. The
example generates 6 rows.

SELECT * from tpf rg 1(TABLE(select val from test table));

a) To see how the describe affects the behavior, issue a CREATE PROCEDURE
statement that has a different schema than the schema the TPF publishes in the
describe:

CREATE OR REPLACE PROCEDURE tpf rg 1(IN tab TABLE(num INT,
num?2 INT))

RESULT (cl INT)

EXTERNAL NAME 'tpf rg 1@libvéapiex';

b) Select rows from the TPF:

// This will return an error that the number of columns in
select list

does not match input table param schema

SELECT * from tpf rg 1(TABLE(select val from test table));

tpf rg 2
TPF sample tpf rg 2.cxx builds on the sample in tpf rg 1.cxx and has similar

behavior. It produces rows of data based on an input parameter.

This sample provides an alternate implementation of the open extfn method in the
a v4 extfn func descriptor. The behavior is the same as tpf rg 1 but the TPF uses
fetch into instead of fetch block to read rows from the input table.

This code snippet from the open extfn method shows fetch into retrieving rows
from the input table:

160

SAP Sybase 1Q

Table UDFs and TPFs

static short UDF CALLBACK tpf rg open (
a vd extfn table context * tctx)
/****?**?*****?*****?*******************/

{

// This block of code will create a statically allocated row block
// that can contain at most 1 row of data.

a_sgl uint32 cl data;
a sql byte cl null = 0x0;
a sgl uint32 cl len = 0¢
a sgl byte null mask = 0x1;
a sqgl byte null value = 0x1;
a v4 extfn column data cd[1l] =
{
{ &l null, // is null
null mask, // null mask
null value, // null value
&cl data, // data
&cl len, // piece len
sizeof (cl_data), // max_piece len
NULL // blob
}
b
a sgl uint32 r status;
a vd extfn row row =

{
&r status, &cd[0]

}i

a v4 extfn row block rb
{
1, 0, &row

}i

// We are providing a row block structure that was statically
// allocated to have a single row. This means that each call to
// fetch into will return at most 1 row.

while(rs->fetch into(rs, &rb)) {

// Only consider non-null rows. They way the column data has
// been defined allows us to treat cl null as a boolean.
if(!cl _null) {

num to generate += cl data;

}

User-Defined Functions 161

Table UDFs and TPFs

When using fetch into to retrieve rows from an input table, the TPF manages the row
block structure. In this example, a static row block structure is created that retrieves one row at
a time. Alternatively, you can allocate a dynamic structure that simultaneously supports an
arbitrary number of rows.

In the code snippet, the row block structure defined to store the value of the column from the
input table in the variable ¢ data. IfaNULL row is encountered, the variable cZ_nullis setto
1 to indicate this.

See also

_open_extfnon page 321
_fetch _into_extfn on page 322

Running the Sample TPF in tpf rg 2

Thesample tpf rg 2isincluded in a pre-compiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in
tpf rg 2.cxx

1

Issue a CREATE PROCEDURE statement to declare the TPF to the server.

CREATE OR REPLACE PROCEDURE tpfirg72(IN tab TABLE(num INT))
RESULT(cl INT)
EXTERNAL NAME 'tpf rg 2Q@libvdapiex';

Issue a CREATE TABLE statement to declare a table to use as input to the TPF.
CREATE TABLE test table(val INT);
Insert rows into the table.

INSERT INTO test table VALUES (1) ;
INSERT INTO test table VALUES(2);
INSERT INTO test table VALUES (3);
COMMIT;

Select rows from the TPF.
SELECT * FROM tpf rg 2 (TABLE(SELECT val FROM test table));

The table test_table has three rows with values 1,2,3. The sum of these values is 6. The
example generates 6 rows.

Pass-Through TPFE in tpf blob

The TPF sample tpf blob.cxx demonstrates advanced UDF LOB and CLOB handling.
The example is available in the samples directory. This examination of tpf blob
illustrates concepts not already covered by the simpler examples in tpf rg 1 and

tpf rg_2;only the relevant portions are discussed.

Atable UDF or TPF can not produce LOB or CLOB data. However, using a concept known as
pass-through, LOB or CLOB data can be passed from an input table to an output table. In fact,
any data type can be passed through from an input table to the result set. This allows a TPF to
filter rows, meaning that the output is a subset of the input table rows.

162

SAP Sybase 1Q

Table UDFs and TPFs

The CREATE PROCEDURE statement supported by tpf blob is:

CREATE PROCEDURE tpf blob(IN tab TABLE (num INT, s [LONG] <VARCHAR |
BINARY >,
IN pattern char(l))
RESULT SET (num INT, s [LONG] <VARCHAR | BINARY >)
EXTERNAL NAME ‘tpf blob@libv4apiex’

The procedure supports multiple schemas. The data types for column s in the result set and
input table can be one of VARCHAR, BINARY, LONG VARCHAR, of LONG BINARY.

Dynamic Schema Support
The schema for the tpf blob procedure is dynamic.

The data types for column s in the result set and input table can be one of VARCHAR,
BINARY, LONG VARCHAR, Of LONG BINARY. You accomplish this using the
describe column get methodofa v4 extfn proc context to get the data
type of the input table column. The implementation of the TPF is adjusted according to what
the actual defined schema is. The interpretation of the pattern argument of the procedure
differs depending on the data type of column s. For character data types, the argument is
interpreted as a letter; for binary data types it is interpreted as a digit.

See also
e External Procedure Context (a_v4_extfn_proc_context) on page 292
e *gescribe_column_geton page 209

Processing LOB and CLOB Columns in Input Tables
Atpf blobexamplecounting the number of occurrences of a pattern in each data row in the
input table.

When the procedure is defined as having LONG VARCHAR or LONG BINARY forcolumns,
the data must be processed using the b1ob API. This code shippet from the

fetch into_ extfn method illustrates how a TPF can use the blob API to process LOB
and CLOB data from an input table:

if (EXTFN_COL IS BLOB(cd, 1)) {
ret = state->rs->get blob(state->rs, &cd[1l], &blob);

UDF SQLERROR RT (tctx->proc context,
"Failed to get blob",

(ret == 1 && blob != NULL),
0)
if (state->data type == DT VARCHAR ||
state->data type == DT LONGVARCHAR) {
num = ProcessBlob(tctx->proc context, blob, state->pattern);
} else {
char 1 = (char)atoi(&(state->pattern));

num = ProcessBlob(tctx->proc context, blob, i);

User-Defined Functions 163

Table UDFs and TPFs

}
ret = blob->release(blob);

UDF SQLERROR RT (tctx->proc context,
"Failed to release blob",

(ret == 1),
0)
} else {
if (state->data type == DT VARCHAR ||
state->data type == DT LONGVARCHAR) {

num = CountNum((char ;)cd[l].data,
*(cd[1l].piece len),
state>pattern);
} else {
char i = (char)atoi(&(state->pattern));
num = CountNum((char *)cd[1l].data, *(cd[l].piece len), i);
}
}

For each of the rows in the input table, the TPF checks if it is a blob using the macro
EXTFN COL IS BLOB. Ifitisa blob, then the TPF uses the get blob method of

a v4 extfn table context to create a blob object for the specified column. On
success, the get blob method provides the TPF withaninstanceofa_v4 extfn blob,
which allows the TPF to read in the blob data. Once the TPF is finished with the blob, it should
call releaseonit.

The ProcessBlob method illustrates how a blob object processes the data:

static a sgl uint64 ProcessBlob (
a v4 extfn proc context *ctx,
a v4 extfn blob *blob,
char pattern)
/*******************************/

{
char buffer [BLOB ISTREAM BUFFER LEN] ;
size t len = 0;
short ret = 0;

a_sgl uint64 num = 0;
a v4 extfn blob istream *is = NULL;

ret = blob->open istream(blob, &is);
UDF_SQLERROR RT (* ctx,
"Failed to open blob istream",
(ret == 1 && is != NULL),
0)

for(;;) |
len = is->get(is, buffer, BLOB ISTREAM BUFFER LEN) ;
if(len == 0) {
break;
}
num += CountNum(buffer, len, pattern);

}

164

SAP Sybase 1Q

Table UDFs and TPFs

ret = blob->close istream(blob, is);
UDF SQLERROR RT (ctx,
"Failed to close blob istream",
(ret == 1),
0)
return num;

}

The open_istream method on the blob object creates an instance of
a v4 extfn blob istream,which can then be used to read a specified amount of the
blob into a buffer using the get method.

See also

e Blob Input Stream (a_v4_extfn_blob_istream) on page 203
» Blob (a_v4_extfn_blob)on page 199

e get blobon page 318

e fetch_intoon page 313

Passing Input Table Columns to the Result Set
Atpf blobillustrating how a TPF can pass the rows from an input table to the result table,
and how to use the row_status flag to indicate if a row is present.

This allows the TPF to filter out unwanted rows.

1. During the describe phase, ensure the TPF uses the describe column_ set method
of EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT to inform the
server that specific result-set rows are a subset of rows from an input table.

This code snippet from the describe extfn method illustrates filtering:

else if(ctx->current state == EXTFNAPIV4 STATE OPTIMIZATION) {

// The output columns of this TPF are the same as the first
// argument's input table columns. The following describe
// informs the consumer of this fact.
a v4 extfn col subset of input colMap;

for(short i = 1; 1 <= 2; i++) {
colMap.source table parameter arg num = 1;
colMap.source column number = i;
desc_rc = ctx->describe column set (ctx,
0, i,
EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT,
&colMap, sizeof(a v4 extfn col subset of input));

UDF CHECK DESCRIBE (ctx, desc rc);

User-Defined Functions 165

Table UDFs and TPFs

2. Passthecall to fetch into for the input table the same rowblock structure that was
passed into the fetch into_ extfn method. This ensures that the rowblock structure
for the result set is the same as for the input tables.

See also

« EXTFNAPIV4_DESCRIBE COL_VALUES SUBSET OF INPUT (Set)on page
240

e fetch_intoon page 313

e _fefch _into_extfnon page 322

Running the Sample TPF in tpf blob.cxx

The sample tpf blob isincluded in a precompiled dynamic library called 1ibv4apiex
(extension is platform-dependent). Its implementation is in the samples directory in

tpf blob.cxx.

1. Declare the TPF to the server:

CREATE OR REPLACE PROCEDURE tpf_blob(IN tab TABLE(num INT,
s long
varchar),
IN pattern char(l))
RESULT (num INT, s long varchar)
EXTERNAL NAME 'tpf blob@libvé4apiex';

2. Declare a table to use as input to the TPF:
CREATE TABLE test table(val INT, str LONG VARCHAR);
3. Insert rows into the table:

INSERT INTO test table VALUES (1, 'aaaaaaaaaabbbbbbbbbb') ;
INSERT INTO test table VALUES (2, 'aaaaaaaaaaabbbbbbbbbbb') ;
INSERT INTO test table VALUES (3, 'aaaaaaaaaaaabbbbbbbbbbbb') ;
INSERT INTO test table VALUES (4, 'aaaaaaaaaaaaabbbbbbbbbbbbb') ;
INSERT INTO test table VALUES (5, 'aaaaaaaaaaaaaabbbbbbbbbbbbbb') ;
COMMIT;

4, Select rows from the TPF:
SELECT * FROM tpf blob(TABLE(SELECT val,str FROM test table),
\l al) ,.
The table test_table has three rows with an even number of as. Row 1 has 10, row 3 has 12,
and row 5 has 14.

SQL Reference for Table UDF and TPF Queries

SQL statement reference for queries referencing table UDFs and TPFs.

166 SAP Sybase IQ

Table UDFs and TPFs

ALTER PROCEDURE Statement

Replaces an existing procedure with a modified version. Include the entire modified
procedure in the ALTER PROCEDURE statement, and reassign user permissions on the
procedure.

Quick Links:

Go to Parameters on page 167
Go to Usage on page 168
Go to Standards on page 168

Go to Permissions on page 169

Syntax

Syntax 1
ALTER PROCEDURE [owner.]procedure-name procedure-definition

Syntax 2

ALTER PROCEDURE [owner.]procedure-name
REPLICATE { ON | OFF }

Syntax 3

ALTER PROCEDURE [owner.]procedure-name
SET HIDDEN

Syntax 4

ALTER PROCEDURE [owner.]procedure-name
RECOMPILE

Syntax 5

ALTER PROCEDURE
[owner.]procedure-name ([parameter, ..])
[RESULT (result-column, ...)]
EXTERNAL NAME ‘external-call” [LANGUAGE JAVA [environment-name] }

external-call - (back to Syntax 5)
[column-name:] function-name@library;

environment-name - (back to Syntax 5)
DISALLOW | ALLOW SERVER SIDE REQUESTS

Parameters

(back to top) on page 167

* procedure-definition — CREATE PROCEDURE syntax following the name.

User-Defined Functions 167

Table UDFs and TPFs

* REPLICATE —if a procedure needs to be relocated to other sites using SAP Sybase
Replication Server, use the REPLICATE ON clause.

« SET HIDDEN —to obfuscate the definition of the associated procedure and cause it to
become unreadable. The procedure can be unloaded and reloaded into other databases.

Note: This setting is irreversible. It is recommended that you retain the original procedure
definition outside of the database.

* RECOMPILE —recompiles a stored procedure. When you recompile a procedure, the
definition stored in the catalog is re-parsed and the syntax is verified.

The procedure definition is not changed by recompiling. You can recompile procedures
with definitions hidden with the SET HIDDEN clause, but their definitions remain hidden.

» RESULT —for procedures that generate a result set but do not include a RESULT clause,
the database server attempts to determine the result set characteristics for the procedure
and stores the information in the catalog. This can be useful if a table referenced by the
procedure has been altered to add, remove, or rename columns since the procedure was
created.

e environment-name— DISALLOW is the default. ALLOW indicates that server-side
connections are allowed.

Note:

» Do not specify ALLOW unless necessary. Use of teh ALLOW clause slows down
certain types of SAP Sybase 1Q table joins.

» Do not use UDFs with both ALLOW SERVER SIDE REQUESTS and DISALLOW
SERVER SIDE REQUESTS clauses in the same query.

Usage
(back to top) on page 167

The ALTER PROCEDURE statement must include the entire new procedure. You can use
PROC as a synonym for PROCEDURE. Both Watcom and Transact-SQL® dialect procedures
can be altered through the use of ALTER PROCEDURE. Existing permissions on the procedure
are not changed. If you execute DROP PROCEDURE followed by CREATE PROCEDURE,
execute permissions are reassigned.

You cannot combine Syntax 2 with Syntax 1.

When using the ALTER PROCEDURE statement for table UDFs, the same set of restrictions
apply as for the CREATE PROCEDURE Statement (External Procedures).

Standards
(back to top) on page 167

168

SAP Sybase 1Q

Table UDFs and TPFs

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« SAP Sybase Database product—Not supported by SAP Adaptive Server® Enterprise.

Permissions
(back to top) on page 167
Alter a Watcom-SQL or Transcat-SQL procedure — Requires one of:

e ALTER ANY PROCEDURE system privilege.
e« ALTER ANY OBJECT system privilege.
* You own the procedure.

Alter an external C/C++ or external environment procedure — Requires CREATE
EXTERNAL REFERENCE system privilege. Also requires one of:

e ALTER ANY PROCEDURE system privilege.

* ALTER ANY OBJECT system privilege.

« You own the procedure.

See also
» Table UDF Restrictions on page 99
» CREATE PROCEDURE Statement (Table UDF) on page 169

CREATE PROCEDURE Statement (Table UDF)

Creates an interface to an external table user-defined function (table UDF). Users must be
specifically licensed to use table UDFs.

For CREATE PROCEDURE reference information for external procedures, see CREATE
PROCEDURE Statement (External Procedures). For CREATE PROCEDURE reference
information for Java UDFs, see CREATE PROCEDURE Statement (Java UDF)

Quick Links:

Go to Parameters on page 170
Go to Usage on page 171

Go to Standards on page 172

Go to Permissions on page 172

Syntax
CREATE[OR REPLACE] PROCEDURE
[owner.]procedure—-name ([parameter[, ..]]1)

| RESULT result-column [, ..])
[SQL SECURITY { INVOKER | DEFINER }]
EXTERNAL NAME ‘external-call’

User-Defined Functions 169

Table UDFs and TPFs

parameter - (back to Syntax)

[IN] parameter-name data-type [DEFAULT expression]
| [IN] parameter-name table-type

table-type - (back to parameter)

TABLE (column-name data-type [, ...])

external-call - (back to Syntax)

[column-name:] function-name@library;

Parameters

(back to top) on page 169

I N —the parameter is an object that provides a value for a scalar parameter or a set of values
for a TABLE parameter to the UDF.

Note: TABLE parameters cannot be declared as INOUT or OUT. You can only have one
TABLE parameter (the position of which is not important).

OR REPLACE - specifying OR REPLACE (CREATE OR REPLACE PROCEDURE)
creates a new procedure, or replaces an existing procedure with the same name. This
clause changes the definition of the procedure, but preserves existing permissions. An
error is returned if you attempt to replace a procedure that is already in use.

RESULT —declares the column names and their data types for the result set of the external
UDF. The data types of the columns must be a valid SQL data type (e.g., a column in the
result set cannot have TABLE as data type). The set of datums in the result implies the
TABLE. External UDFs can only have one result set of type TABLE.

Note: TABLE is not an output value. A table UDF cannot have LONG VARBINARY or
LONG VARCHAR data types inits result set, but a table parameterized function (TPF) can
have large object (LOB) data in its result set.

A TPF cannot produce LOB data, but can have columns in the result set as LOB data types.
However, the only way to get LOB data in the output is to pass a column from an input table
to the output table. The describe attribute

EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT allows this, as
illustrated in the sample file tpf blob.cxx.

SQL SECURITY —defines whether the procedure is executed as the INVOKER (the user
who is calling the UDF), or as the DEFINER (the user who owns the UDF). The default is
DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because annotation
must be done for each user that calls the procedure. Also, when SQL SECURITY
INVOKER is specified, name resolution is done as the invoker as well. Therefore, care
should be taken to qualify all object names (tables, procedures, and so on) with their
appropriate owner. For example, suppose userl creates this procedure:

170

SAP Sybase 1Q

Table UDFs and TPFs

CREATE PROCEDURE userl.myProcedure ()
RESULT (columnA INT)
SQL SECURITY INVOKER
BEGIN
SELECT columnA FROM tablel;
END;

If user2 attempts to run this procedure and a table user2.tablel does not exist, a table
lookup error results. Additionally, if a user2.tablel does exist, that table is used instead of
the intended userl.tablel. To prevent this situation, qualify the table reference in the
statement (userl.tablel, instead of just tablel).

« EXTERNAL NAME — An external UDF must have EXTERNAL NAME clause which
defines an interface to a function written in a programming language such as C. The
function is loaded by the database server into its address space.

The library name can include the file extension, which is typically .dll on Windows and .so
on UNIX. In the absence of the extension, the software appends the platform-specific
default file extension for libraries. This is a formal example.
CREATE PROCEDURE mystring(IN instr CHAR(255),

IN input table TABLE (A INT))

RESULT (CHAR (255))

EXTERNAL NAME
'mystring@mylib.dll;Unix:mystring@mylib.so"

A simpler way to write the preceding EXTERNAL NAME clause, using platform-specific
defaults, is as follows:

CREATE PROCEDURE mystring(IN instr CHAR(255),
IN input table TABLE (A INT))
RESULT (CHAR(255))

EXTERNAL NAME ‘mystring@mylib’

Usage
(back to top) on page 169

You define table UDFs using the a_v4 extfn APl. CREATE PROCEDURE statement
reference information for external procedures that do not use the a_ v3 extfn or

a_v4 extfnAPIlsislocated inaseparate topic. CREATE PROCEDURE statement reference
information for Java UDFs is located in a separate topic.

The CREATE PROCEDURE statement creates a procedure in the database. To create a
procedure for themselves, a user must have the CREATE PROCEDURE system privilege. To
create a procedure for others, a user must specify the owner of the procedure and must have
either the CREATE ANY PROCEDURE or CREATE ANY OBJECT system privilege. If the
procedure contains an external reference, the user must have the CREATE EXTERNAL
REFERENCE system privilege in addition to previously mentioned system privileges,
regardless of who owns the procedure.

If a stored procedure returns a result set, it cannot also set output parameters or return a return
value.

User-Defined Functions 171

Table UDFs and TPFs

When referencing atemporary table from multiple procedures, a potential issue can arise if the
temporary table definitions are inconsistent and statements referencing the table are cached.
Use caution when referencing temporary tables within procedures.

You can use the CREATE PROCEDURE statement to create external table UDFs implemented
in a different programming language than SQL. However, be aware of the table UDF
restrictions before creating external UDFs.

The data type for a scalar parameter, a result column, and a column of a TABLE parameter
must be a valid SQL data type.

Parameter names must conform to the rules for other database identifiers such as column
names. They must be a valid SQL data type.

TPFs support a mix scalar parameters and single TABLE parameter. A TABLE parameter
must define a schema for an input set of rows to be processed by the UDF. The definition of a
TABLE parameter includes column names and column data types.

TABLE (cl INT, c2 CHAR(20))

The above example defines a schema with the two columns c1 and c2 of types INT and
CHAR(20). Each row processed by the UDF must be a tuple with two (2) values. TABLE
parameters, unlike scalar parameters cannot be assigned a default value.

Standards
(back to top) on page 169

e SQL—ISO/ANSI SQL compliant.

» SAP Sybase Database product—The Transact-SQL CREATE PROCEDURE statement is
different.

e SQLJ—The syntax extensions for Java result sets are as specified in the proposed SQLJ1
standard.

Permissions
(back to top) on page 169

Unless creating a temporary procedure, a user must have the CREATE PROCEDURE system
privilege to create a UDF for themselves. To create a UDF for others, they must specify the
owner of the procedure and must have either the CREATE ANY PROCEDURE or CREATE
ANY OBJECT system privilege. If the procedure contains an external reference, a user must
also have the CREATE EXTERNAL REFERENCE system privilege, in addition to the
previously mentioned system privileges.

See also
e Sample Files on page 99

172

SAP Sybase 1Q

Table UDFs and TPFs

CREATE FUNCTION Statement

Creates a user-defined function in the database. A function can be created for another user by
specifying an owner name. Subject to permissions, a user-defined function can be used in
exactly the same way as other non-aggregate functions.

Quick Links:

Go to Parameters on page 174
Go to Examples on page 177
Go to Usage on page 178

Go to Standards on page 178

Go to Permissions on page 179

Syntax

Syntax 1

CREATE [ORREPLACE] [TEMPORARY] FUNCTION [owner.] function-name
([parameter, ..])

[SQL SECURITY { INVOKER | DEFINER }]

RETURNS data-type ON EXCEPTION RESUME

| [NOT] DETERMINISTIC

{ compound-statement | AS tsql-compound-statement
| EXTERNAL NAME library-call

| EXTERNAL NAME java-call LANGUAGE JAVA }

Syntax 2

CREATE FUNCTION [owner.] function-name ([parameter, ..])
RETURNS data-type
URL url-string
[HEADER header-string]
SOAPHEADER soap-header-string]
TYPE { 'HTTP[:{ GET | POST }] ' | 'SOAP[:{ RPC | DOC } 1" } 1
NAMESPACE namespace-string |
CERTIFICATE certificate-string |
CLIENTPORT clientport-string]
PROXY proxy-string |

——

parameter - (back to Syntax 1) or (back to Syntax 2)
IN parameter-name data-type [DEFAULT expression]

tsgl-compound-statement - (back to Syntax 1)
sgl-statement
sqgl-statement ..

library-call - (back to Syntax 1)
' [operating-system:] function-name@library; ..'

operating-system - (back to library-call)
UNIX

User-Defined Functions 173

Table UDFs and TPFs

java-call - (back to Syntax 1)

'[package-name.]class—-name.method-name method-signature'

method-signature - (back to java-call)

([field-descriptor, ...]) return-descriptor

field-descriptor and return-descriptor - (back to method-signature)

Z | B | S|I1|]J]|]F]|]D]|]C/| V| [descriptor | L class-name;

url-string - (back to Syntax 2)

' { HTTP | HTTPS | HTTPS_FIPS }://[user:passwordl@] hostname|:port] [/

path] !

Parameters

(back to top) on page 173

CREATE [OR REPLACE] —parameter names must conform to the rules for database
identifiers. They must have a valid SQL data type and be prefixed by the keyword IN,
signifying that the argument is an expression that provides a value to the function.

The CREATE clause creates a new function, while the OR REPLACE clause replaces an
existing function with the same name. When a function is replaced, the definition of the
function is changed but the existing permissions are preserved. You cannot use the OR
REPLACE clause with temporary functions.

TEMPORARY —the functionis visible only by the connection that created it, and that it is
automatically dropped when the connection is dropped. Temporary functions can also be
explicitly dropped. You cannot perform ALTER, GRANT, or REVOKE operations on them,
and unlike other functions, temporary functions are not recorded in the catalog or
transaction log.

Temporary functions execute with the permissions of their creator (current user), and can
only be owned by their creator. Therefore, do not specify owner when creating atemporary
function. They can be created and dropped when connected to a read-only database.

SQL SECURITY —defines whether the function is executed as the INVOKER, the user
who is calling the function, or as the DEFINER, the user who owns the function. The
default is DEFINER.

When INVOKER is specified, more memory is used because annotation must be done for
each user that calls the procedure. Also, name resolution is done as the invoker as well.
Therefore, take care to qualify all object names (tables, procedures, and so on) with their
appropriate owner.

data-type— LONG BINARY and LONG VARCHAR are not permitted as return-value
data types.

174

SAP Sybase 1Q

Table UDFs and TPFs

* compound-statement —a set of SQL statements bracketed by BEGIN and END, and
separated by semicolons. See BEGIN ... END Statement.

¢ tsgl-compound-statement —a batch of Transact-SQL statements.

* external-name—a wrapper around a call to a function in an external library and can have
no other clauses following the RETURNS clause. The library name may include the file
extension, which is typically . d11 on Windows and . so on UNIX. In the absence of the
extension, the software appends the platform-specific default file extension for libraries.

The external-name clause is not supported for temporary functions.

* LANGUAGE JAVA —a wrapper around a Java method. For information on calling Java
procedures, see CREATE PROCEDURE Statement.

* ON EXCEPTION RESUME —uses Transact-SQL-like error handling. See CREATE
PROCEDURE Statement.

* [NOT]DETERMINISTIC—function is re-evaluated each time itis called in a query. The
results of functions not specified in this manner may be cached for better performance, and
re-used each time the function is called with the same parameters during query evaluation.

Functions that have side effects, such as modifying the underlying data, should be declared
as NOT DETERMINISTIC. For example, a function that generates primary key values
and is used in an INSERT ... SELECT statement should be declared NOT
DETERMINISTIC:
CREATE FUNCTION keygen(increment INTEGER)
RETURNS INTEGER
NOT DETERMINISTIC
BEGIN
DECLARE keyval INTEGER;
UPDATE counter SET x = X + increment;
SELECT counter.x INTO keyval FROM counter;
RETURN keyval
END
INSERT INTO new table
SELECT keygen (1),
FROM old table

Functions may be declared as DETERMINISTIC if they always return the same value for
given input parameters. All user-defined functions are treated as deterministic unless they
are declared NOT DETERMINISTIC. Deterministic functions return a consistent result
for the same parameters and are free of side effects. That is, the database server assumes
that two successive calls to the same function with the same parameters will return the
same result without unwanted side-effects on the semantics of the query.

* URL —for use only when defining an HTTP or SOAP web services client function.
Specifies the URL of the web service. The optional user name and password parameters
provide a means of supplying the credentials needed for HT TP basic authentication. HTTP
basic authentication base-64 encodes the user and password information and passes it in
the “Authentication” header of the HTTP request.

User-Defined Functions 175

Table UDFs and TPFs

For web service client functions, the return type of SOAP and HT TP functions must one of
the character data types, such as VARCHAR. The value returned is the body of the HTTP
response. No HTTP header information is included. If more information is required, such
as status information, use a procedure instead of a function.

Parameter values are passed as part of the request. The syntax used depends on the type of
request. For HTTP:GET, the parameters are passed as part of the URL; for HTTP:POST
requests, the values are placed in the body of the request. Parameters to SOAP requests are
always bundled in the request body.

HEADER —when creating HTTP web service client functions, use this clause to add or
modify HTTP request header entries. Only printable ASCII characters can be specified for
HTTP headers, and they are case-insensitive. For more information about how to use this
clause, see the HEADER clause of the CREATE PROCEDURE Statement.

SOAPHEADER —when declaring a SOAP Web service as a function, use this clause to
specify one or more SOAP request header entries. A SOAP header can be declared as a
static constant, or can be dynamically set using the parameter substitution mechanism
(declaring IN, OUT, or INOUT parameters for hdl, hd2, and so on). A web service
function can define one or more IN mode substitution parameters, but cannot define an
INOUT or OUT substitution parameter.

TYPE —specifies the format used when making the web service request. If SOAP is
specified or no type clause is included, the default type SOAP:RPC is used. HTTP implies
HTTP:POST. Since SOAP requests are always sent as XML documents, HTTP:POST is
always used to send SOAP requests.

NAM ESPACE — applies to SOAP client functions only and identifies the method
namespace usually required for both SOAP:RPC and SOAP:DOC requests. The SOAP
server handling the request uses this namespace to interpret the names of the entities in the
SOAP request message body. The namespace can be obtained from the WSDL description
of the SOAP service available from the web service server. The default value is the
procedure's URL, up to but not including the optional path component.

CERTIFICATE —to make a secure (HTTPS) request, a client must have access to the
certificate used by the HTTPS server. The necessary information is specified in a string of
semicolon-separated key/value pairs. The certificate can be placed in a file and the name of
the file provided using the file key, or the whole certificate can be placed in a string, but not
both. These keys are available:

Key Abbreviation Description

file File name of certificate

certificate cert The certificate

company co Company specified in the certificate

176

SAP Sybase 1Q

Table UDFs and TPFs

Key Abbreviation Description
unit Company unit specified in the certificate
name Common name specified in the certificate

Certificates are required only for requests that are either directed to an HTTPS server or
can be redirected from an insecure to a secure server.

e CLIENTPORT —identifies the port number on which the HTTP client procedure
communicates using TCP/IP. It is provided for and recommended only for connections
across firewalls, as firewalls filter according to the TCP/UDP port. You can specify asingle
port number, ranges of port numbers, or a combination of both; for example,
CLIENTPORT '85,90-97".

* PROXY —specifies the URI of a proxy server. For use when the client must access the
network through a proxy. Indicates that the procedure is to connect to the proxy server and
send the request to the web service through it.

Examples
(back to top) on page 173

» Example 1 - concatenates a £irstname string and a Lastname string:

CREATE FUNCTION fullname (
firstname CHAR(30),
lastname CHAR (30))
RETURNS CHAR (61)
BEGIN
DECLARE name CHAR (61) ;
SET name = firstname || ' ' || lastname;
RETURN (name) ;
END

This example illustrates the use of the fullname function.

« Return a full name from two supplied strings:
SELECT fullname ('joe','smith')

fullname('joe’, 'smith")

joe smith

« List the names of all employees:

SELECT fullname (givenname, surname)
FROM Employees

User-Defined Functions 177

Table UDFs and TPFs

fullname (givenname, surname)

Fran Whitney

Matthew Cobb
Philip Chin

Julie Jordan

Robert Breault

* Example 2 —uses Transact-SQL syntax:

CREATE FUNCTION DoubleIt (@Input INT)
RETURNS INT

AS

DECLARE @Result INT

SELECT @Result = @Input * 2

RETURN Q@Result

The statement SELECT DoubleIt (5) returnsa value of 10.

* Example 3 —creates an external function written in Java:

CREATE FUNCTION dba.encrypt(IN name char (254))

RETURNS VARCHAR

EXTERNAL NAME

'Scramble.encrypt (Ljava/lang/String;)Ljava/lang/String;'
LANGUAGE JAVA

Usage
(back to top) on page 173

To modify a user-defined function, or to hide the contents of a function by scrambling its
definition, use the ALTER FUNCTION statement.

When functions are executed, not all parameters need to be specified. If a default value is
provided in the CREATE FUNCTION statement, missing parameters are assigned the default
values. If an argument is not provided by the caller and no default is set, an error is given.

Side Effects

e Automatic commit

Standards

(back to top) on page 173

e SQL—ISO/ANSI SQL compliant.
» SAP Sybase Database product—Not supported by Adaptive Server.

178

SAP Sybase 1Q

Table UDFs and TPFs

Permissions

(back to top) on page 173

For function to be owned by self — Requires the CREATE PROCEDURE system privilege.
For function to be owned by any user — Requires one of:

+ CREATE ANY PROCEDURE system privilege.
« CREATE ANY OBJECT system privilege.
To create a function containing an external reference, regardless of whether or not they are the

owner of the function, also requires the CREATE EXTERNAL REFERENCE system
privilege.

DEFAULT TABLE UDF ROW_ COUNT Option

Enables you to override the default estimate of the number of rows to return from a table UDF
(either a C, C++, or Java table UDF).

Allowed Values
0 to 4294967295

Default
200000

Scope

Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required
to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Can be set
temporary for an individual connection or for the PUBLIC role. Takes effect immediately.

Remarks

A table UDF can use the DEFAULT_TABLE_UDF_ROW_COUNT option to give the query
processor an estimate for the number of rows that a table UDF will return. This is the only way
a Java table UDF can convey this information. However, for a C or C++ table UDF, the UDF
developer should consider publishing this information in the describe phase using the
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS describe parameter to publish the
number of rows it expects to return. The value of

EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS always overrides the value of the
DEFAULT_PROXY_TABLE_UDF_ROW_COUNT option.

See also
» Query Processing States on page 121

User-Defined Functions 179

Table UDFs and TPFs

TABLE UDF ROW _BLOCK CHUNK SIZE KB Option

Controls the size, in kilobytes, for server-allocated row blocks. Row blocks are used by Table
UDFs and TPFs.

Allowed Values
0 to 4294967295

Default
128

Scope

Option can be set at the database (PUBLIC) or user level. When set at the database level, the
value becomes the default for any new user, but has no impact on existing users. When set at
the user level, overrides the PUBLIC value for that user only. No system privilege is required
to set option for self. System privilege is required to set at database level or at user level for any
user other than self.

Requires the SET ANY PUBLIC OPTION system privilege to set this option. Can be set
temporary for an individual connection or for the PUBLIC role. Takes effect immediately.

Description
Specifies the row block size, in kilobytes, to fetch from the server.

The server allocates row blocks whenyou use fetch into to fetch rows from a table UDF,
and when you use fetch_block to fetch rows from a TPF input table.

The row block contains as many rows as will fit into the specified size. If you specify a row
block size smaller than the size required for a single row, the server allocates the size of one
row.

FROM Clause

Specifies the database tables or views involved in a SELECT statement.
Quick Links:

Go to Parameters on page 183

Go to Examples on page 186

Go to Usage on page 186

Go to Standards on page 187

Go to Permissions on page 188

Syntax
.. .FROM table-expression [, ...]

180

SAP Sybase 1Q

Table UDFs and TPFs

table-expression - (back to Syntax)
table-name
| view-name
| procedure-name
| common-table-expression
| (subquery) [[AS] derived-table-name [column name, ...) 1]
| derived-table
| join-expression
| (table-expression , ...)
| openstring-expression
| apply-expression
| contains-expression
| dml-derived-table

table-name - (back to table-expression)
[userid.] table-name]
[[AS] correlation—-name]
[FORCE INDEX (index-name)]

view-name - (back to table-expression)
[userid.]view-name [[AS] correlation-name]

procedure-name - (back to table-expression)

[owner,] procedure-name ([parameter, ...])
[WITH (column-name datatype,)]
[[AS] correlation—-name]

parameter — (back to procedure-name)
scalar-expression | table-parameter

table-parameter - (back to parameter)
TABLE (select-statement) [OVER (table-parameter-over)]

table-parameter-over - (back to table-parameter)
[PARTITION BY {ANY
| NONE| table-expression }]
[ORDER BY { expression | integer }
[ASC | DESC] [, ...]1 1

derived-table - (back to table-expression)
(select-statement)
[AS] correlation-name [(column-name, ...) |

join-expression - (back to table-expression)
table-expression join-operator table-expression
[ON join-condition]

join-operator - (back to join-expression)
[KEY | NATURAL] [join-type] JOIN | CROSSJOIN

join-type - (back to join-operator)
INNER
| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

User-Defined Functions 181

Table UDFs and TPFs

openstring-expression - (back to table-expression)
OPENSTRING ({ FILE | VALUE } string-expression)
WITH (rowset-schema)
[OPTION (scan-option ...)]
[AS] correlation-name

apply-expression - (back to table-expression)
table-expression { CROSS | OUTER } APPLY table-expression

contains-expression - (back to table-expression)

{ table-name | view—-name } CONTAINS
(column-name [,...], contains-query)
[[AS] score-correlation-name]

rowset-schema - (back to openstring-expression)
column-schema-list
| TABLE [owner.]table-name [(column-list)]

column-schema-list — (back to rowset-schema)
{ column-name user-or-base-type | filler() } [, ...]

column-list — (back to rowset-schema)
{ column-name | filler() } [, ... 1

scan-option - (back to openstring-expression)
BYTE ORDER MARK { ON | OFF }
| COMMENTS INTRODUCED BY comment-prefix
| DELIMITED BY string
| ENCODING encoding
| ESCAPE CHARACTER character
| ESCAPES { ON | OFF }
| FORMAT { TEXT | BCP }
| HEXADECIMAL { ON | OFF }
| QUOTE string
| QUOTES { ON | OFF }
| ROW DELIMITED BY string
| SKIP integer
| STRIP { ON | OFF | LTRIM | RTRIM | BOTH }

contains-query - (back to contains-expression)
string

dml-derived-table — (back to table-expression)
(dml-statement) REFERENCING ([table-version-names | NONE])

dml-statement - (back to dml-derived-table)
insert-statement
update-statement
delete-statement

table-version-names - (back to dml-derived-table)
OLD [AS] correlation-name [FINAL [AS] correlation-name]
| FINAL [AS] correlation-name

182 SAP Sybase IQ

Table UDFs and TPFs

Parameters
(back to top) on page 180

* table-name—a base table or temporary table. Tables owned by a different user can be
qualified by specifying the user ID. Tables owned by groups to which the current user
belongs are found by default without specifying the user ID.

* view-name —specifies a view to include in the query. As with tables, views owned by a
different user can be qualified by specifying the user ID. Views owned by groups to which
the current user belongs are found by default without specifying the user ID. Although the
syntax permits table hints on views, these hints have no effect.

* procedure-name—a stored procedure that returns a result set. This clause applies to the
FROM clause of SELECT statements only. The parentheses following the procedure name
are required even if the procedure does not take parameters. DEFAULT can be specified in
place of an optional parameter.

* parameter —specifies a scalar-parameter or table-parameter clause. A scalar-parameter
are any objects of a valid SQL datatype. A table-parameter can be specified using a table,
view or common table-expression name which are treated as new instance of this object if
the object is also used outside the table-parameter.

This query illustrates a valid FROM clause where the two references to the same table T are
treated as two different instances of the same table T.

SELECT * FROM T, my proc (TABLE (SELECT T.Z, T.X FROM T)
OVER (PARTITION BY T.Z));

Table Parameterized Function (TPF) Example—This query illustrates a valid FROM
clause.
SELECT * FROM R, SELECT * FROM my udf (1);

SELECT * FROM my tpf(l, TABLE (SELECT cl, c2 FROM t))
(my proc(R.X, TABLE T OVER PARTITION BY T.X)) AS XX;

If a subquery is used to define the TABLE parameter, then the following restrictions must
hold:

e The table-parameter clause must be of type IN.

* PARTITION BY or ORDER BY clauses must refer to the columns of the derived table
and outer references. An expression in the expression-list can be an integer K which
refers to the Kth column of the TABLE input parameter.

Note: A Table UDF can only be referenced in a FROM clause of a SQL statement.

 PARTITION BY - logically specifies how the invocation of the function will be
performed by the execution engine. The execution engine must invoke the function for
each partition and the function must process a whole partition in each invocation.

PARTITION BY clause also specifies how the input data must be partitioned such that
each invocation of the function will process exactly one partition of data. The function

User-Defined Functions 183

Table UDFs and TPFs

must be invoked the number of times equal to the number of partitions. For TPF, the
parallelism characteristics are established through dynamic negotiation between the
server and the UDF at the runtime. If the TPF can be executed in parallel, for N input
partitions, the function can be instantiated M times, with M <=N. Each instantiation of the
function can be invoked more than once, each invocation consuming exactly one partition.

You can specify only one TABLE input parameter for PARTITION BY expression-listor
PARTITION BY ANY clause. For all other TABLE input parameters you must specify,
explicit or implicit PARTITION BY NONE clause.

Note: The execution engine can invoke the function in any order of the partitions and the
function is assumed to return the same result sets regardless of the partitions order.
Partitions cannot be split among two invocations of the function.

ORDER BY - specifies that the input data in each partition is expected to be sorted by
expression-Iist by the execution engine. The UDF expects each partition to have this
physical property. If only one partition exists, the whole input data is ordered based on the
ORDER BY specification. ORDER BY clause can be specified for any of the TABLE
input parameters with PARTITION BY NONE or without PARTITION BY clause.

derived-table—you can supply a SELECT statement instead of table or view name in the
FROM clause. A SELECT statement used in this way is called a derived table, and it must
be given an alias. For example, the following statement contains a derived table,
MyDerivedTable, which ranks products in the Products table by UnitPrice.

SELECT TOP 3 *
FROM (SELECT Description,

Quantity,
UnitPrice,
RANK () OVER (ORDER BY UnitPrice ASC)
AS Rank
FROM Products) AS MyDerivedTable
ORDER BY Rank;

join-expression, join-oper ator, join-type —the join-type keywords are:

Keyword Description

CROSS JOIN Returns the Cartesian product (cross product) of the two source
tables

NATURAL JOIN Compares for equality all corresponding columns with the same

names in two tables (a special case equijoin; columns are of
same length and data type)

KEY JOIN Restricts foreign-key values in the first table to be equal to the
primary-key values in the second table

INNER JOIN Discards all rows from the result table that do not have corre-
sponding rows in both tables

184

SAP Sybase 1Q

Table UDFs and TPFs

Keyword Description

LEFT OUTER JOIN Preserves unmatched rows from the left table, but discards un-
matched rows from the right table

RIGHT OUTER JOIN Preserves unmatched rows from the right table, but discards
unmatched rows from the left table

FULL OUTER JOIN Retains unmatched rows from both the left and the right tables

Do not mix comma-style joins and keyword-style joins in the FROM clause. The same
query can be written two ways, each using one of the join styles. The ANSI syntax
keyword style join is preferable.

This query uses a comma-style join:

SELECT *
FROM Products pr, SalesOrders so, SalesOrderItems si
WHERE pr.ProductID so.ProductID
AND pr.ProductID si.ProductlID;

The same query can use the preferable keyword-style join:

SELECT *
FROM Products pr INNER JOIN SalesOrders so
ON (pr.ProductID = so.ProductID)
INNER JOIN SalesOrderItems si
ON (pr.ProductID = si.ProductID);

The ON clause filters the data of inner, left, right, and full joins. Cross joins do not have an
ON clause. Inan inner join, the ON clause is equivalent to a WHERE clause. In outer joins,
however, the ON and WHERE clauses are different. The ON clause in an outer join filters
the rows of a cross product and then includes in the result the unmatched rows extended
with nulls. The WHERE clause then eliminates rows from both the matched and
unmatched rows produced by the outer join. You must take care to ensure that unmatched
rows you want are not eliminated by the predicates in the WHERE clause.

You cannot use subqueries inside an outer join ON clause.

e openstring-expression — Specify an OPENSTRING clause to query within a file or a
BLOB, treating the content of these sources as a set of rows. When doing so, you also
specify information about the schema of the file or BLOB for the result set to be generated,
since you are not querying a defined structure such as atable or view. This clause applies to
the FROM clause of a SELECT statement. It is not supported for UPDATE or DELETE
statements.

* apply-expression — Use this clause to specify a join condition where the right table-
expression is evaluated for every row in the left table-expression. For example, you can use
an apply expression to evaluate a function, procedure, or derived table for each row in a
table expression.

User-Defined Functions 185

Table UDFs and TPFs

contains-expression — Use the CONTAINS clause after a table name to filter the table,
and return only those rows matching the full text query specified with contains-query.
Every matching row of the table is returned, along with a score column that can be referred
to using score-correlation-name, if it is specified. If score-correlation-name is not
specified, then the score column can be referred to by the default correlation name,
contains.

dml-derived-table — Supports the use of a DML statement (INSERT, UPDATE, or
DELETE) as a table expression in a query's FROM clause.

Examples
(back to top) on page 180

Example 1 —these are valid FROM clauses:
FROM Employees
FROM Employees NATURAL JOIN Departments

FROM Customers

KEY JOIN SalesOrders

KEY JOIN SalesOrderItems
KEY JOIN Products

Example 2 —this query illustrates how to use derived tables in a query:

SELECT Surname, GivenName, number of orders
FROM Customers JOIN
(SELECT CustomerID, count (*)
FROM SalesOrders
GROUP BY CustomerID)

AS sales order counts (CustomerID,
number of orders)
ON (Customers.ID = sales order counts.cust id)

WHERE number of orders > 3

Usage
(back to top) on page 180

The SELECT statement requires a table list to specify which tables are used by the statement.

Note: Although this description refers to tables, it also applies to views unless otherwise
noted.

The FROM table list creates a result set consisting of all the columns from all the tables
specified. Initially, all combinations of rows in the component tables are in the result set, and
the number of combinations is usually reduced by join conditions and/or WHERE conditions.

186

SAP Sybase 1Q

Table UDFs and TPFs

Tables owned by a different user can be qualified by specifying the userid. Tables owned by
roles to which the current user belongs are found by default without specifying the user ID.

The correlation name is used to give a temporary name to the table for this SQL statement only.
This is useful when referencing columns that must be qualified by a table name but the table
name is long and cumbersome to type. The correlation name is also necessary to distinguish
between table instances when referencing the same table more than once in the same query. If
no correlation name is specified, then the table name is used as the correlation name for the
current statement.

If the same correlation name is used twice for the same table in a table expression, that table is
treated as if it were only listed once. For example, in:

SELECT *

FROM SalesOrders

KEY JOIN SalesOrderItems,

SalesOrders
KEY JOIN Employees

The two instances of the SalesOrders table are treated as one instance that is equivalent
to:

SELECT *

FROM SalesOrderItems

KEY JOIN SalesOrders
KEY JOIN Employees

By contrast, the following is treated as two instances of the Person table, with different
correlation names HUSBAND and WIFE.

SELECT *
FROM Person HUSBAND, Person WIFE

Join columns require like data types for optimal performance.

» Performance Consider ations—Depending on the query, SAP Sybase 1Q allows between
16 and 64 tables in the FROM clause with the optimizer turned on; however, performance
might suffer if you have more than 16 to 18 tables in the FROM clause in very complex
queries.

Note: If you omitthe FROM clause, or if all tables in the query are in the SYSTEM dbspace,
the query is processed by SQL Anywhere instead of SAP Sybase 1Q and might behave
differently, especially with respect to syntactic and semantic restrictions and the effects of
option settings.

If you have a query that does not require a FROM clause, you can force the query to be
processed by SAP Sybase IQ by adding the clause FROM iq_dummy, where 1g_dummy is
a one-row, one-column table that you create in your database.

Standards
(back to top) on page 180

User-Defined Functions 187

Table UDFs and TPFs

e SQL—ISO/ANSI SQL compliant.
» SAP Sybase Database product—The JOIN clause is not supported in some versions of

Adaptive Server. Instead, you must use the WHERE clause to build joins.
Permissions
(back to top) on page 180

Must be connected to the database.

SELECT Statement
Retrieves information from the database.

Quick Links:

Go to Parameters on page 189
Go to Examples on page 195
Go to Usage on page 196

Go to Standards on page 197

Go to Permissions on page 197

Syntax
SELECT [ALL | DISTINCT] [row-limitation-optionl] select-list
INTO { host-variable-list | variable-list | table-name }]

INTO LOCAL TEMPORARY TABLE { table-name }]
FROM table-1ist]

WHERE search-condition]

GROUP BY [expression [, ...]

————

| ROLLUP (expression [, ...])
| CUBE (expression [, ...]1) 1 1
HAVING search-condition]
ORDER BY { expression | integer } [ASC | DESC] [, ...] 1]

FOR JSON json-mode |
row-limitation-option]

————

select-list - (back to Syntax)
{ column-name

| expression [[AS] alias-name]

[*}
row-limitation-optionl - (back to Syntax)

FIRST

| TOP {ALL | limit-expression} [START AT startat-expression]
limit-expression - (back to row-limitation-optionl) or (back to row-

limitation-optionZ2)
simple-expression

startat-expression - (back to row-limitation-optionl)

188 SAP Sybase IQ

Table UDFs and TPFs

simple-expression

row-limitation-option2 - (back to Syntax)
LIMIT { [offset-expression,] limit-expression
| limit-expression OFFSET offset-expression }

offset-expression - (back to row-limitation-optionZ2)
simple-expression

simple-expression - (back to startat-expression) or (back to offset-
expression) or (back to limit-expression)

integer

| variable

| (simple-expression)

| (simple-expression { + | - * } simple-expression)
Parameters

(back to top) on page 188

* ALL or DISTINCT —filters query results. If neither is specified, all rows that satisfy the
clauses of the SELECT statement are retrieved. If DISTINCT is specified, duplicate output
rows are eliminated. This is called the projection of the result of the statement. In many
cases, statements take significantly longer to execute when DISTINCT is specified, so
reserve the use of DISTINCT for cases where it is necessary.

If DISTINCT is used, the statement cannot contain an aggregate function with a
DISTINCT parameter.

* row-limitation-optionl — specifies the number of rows returned from a query. FIRST
returns the first row selected from the query. TOP returns the specified number of rows
from the query where number-of-rowsis inthe range 1 — 2147483647 and can be an integer
constant or integer variable.

Note: You cannot use TOP and LIMIT in the same query.

FIRST and TOP are used primarily with the ORDER BY clause. If you use these keywords
without an ORDER BY clause, the result might vary from run to run of the same query, as
the optimizer might choose a different query plan.

FIRST and TOP are permitted only in the top-level SELECT of a query, so they cannot be
used in derived tables or view definitions. Using FIRST or TOP in a view definition might
result in the keyword being ignored when a query is run on the view.

Using FIRST is the same as setting the ROW_COUNT database option to 1. Using TOP is
the same as setting the ROW_COUNT option to the same number of rows. If both TOP and
ROW_COUNT are set, then the value of TOP takes precedence.

The ROW_COUNT option could produce inconsistent results when used in a query
involving global variables, system functions or proxy tables. See ROW COUNT Option
for details.

User-Defined Functions 189

Table UDFs and TPFs

select-list—is a comma delimited list of expressions that specify what is retrieved from the
database. If an asterisk (*) is specified, all columns of all tables in the FROM clause
(table-name all columns of the named table) are selected. Aggregate functions and
analytical functions are allowed in the select-list.

Note: In SAP Sybase 1Q, scalar subqueries (nested selects) are allowed in the select list of
the top level SELECT, as in SQL Anywhere and Adaptive Server. Subqueries cannot be
used inside a conditional value expression (for example, in a CASE statement).

Subqueries can also be used in a WHERE or HAVING clause predicate (one of the
supported predicate types). However, inside the WHERE or HAVING clause, subqueries
cannot be used inside a value expression or inside a CONTAINS or LIKE predicate.
Subqueries are not allowed in the ON clause of outer joins or in the GROUP BY clause.

alias-names—can be used throughout the query to represent the aliased expression. Alias
names are also displayed by Interactive SQL at the top of each column of output from the
SELECT statement. If the optional a/ias-name is not specified after an expression,
Interactive SQL displays the expression. If you use the same name or expression for a
column alias as the column name, the name is processed as an aliased column, not a table
column name.

INTO host-variable-list — specifies where the results of the SELECT statement goes.
There must be one fost-variable item for each item in the sefect-/ist. Select list items are
put into the host variables in order. An indicator host variable is also allowed with each
host-variable so the program can tell if the select list item was NULL. Used in Embedded
SQL only.

INTO variable-list —specifies where the results of the SELECT statement go. There must
be one variable for each item in the select list. Select list items are put into the variables in
order. Used in procedures only

INTO table-name — creates a table and fills the table with data.

If the table name starts with #, the table is created as a temporary table. Otherwise, the table
is created as a permanent base table. For permanent tables to be created, the query must
satisfy these conditions:

» The select-listcontains more than one item, and the INTO target is a single table-name
identifier, or
e The select-list contains a * and the INTO target is specified as owner.table.

To create a permanent table with one column, the table name must be specified as
owner.table. Omit the owner specification for a temporary table.

This statement causes a COMMIT before execution as a side effect of creating the table.
Requires the CREATE TABLE system privilege to execute this statement. No permissions
are granted on the new table: the statement is a short form for CREATE TABLE followed by
INSERT... SELECT.

190

SAP Sybase 1Q

Table UDFs and TPFs

A SELECT INTO from a stored procedure or function is not permitted, as SELECT INTO is
an atomic statement and you cannot do COMMIT, ROLLBACK, or some ROLLBACK TO
SAVEPOINT statements in an atomic statement.

Tables created using this statement do not have a primary key defined. You can add a
primary key using ALTER TABLE. A primary key should be added before applying any
updates or deletes to the table; otherwise, these operations result in all column values being
logged in the transaction log for the affected rows.

Use of this clause is restricted to valid SQL Anywhere queries. SAP Sybase 1Q extensions
are not supported.

* INTOLOCAL TEMPORARY TABLE —creates a local, temporary table and populates
it with the results of the query. When you use this clause, you do not need to start the
temporary table name with #.

* FROM table-list —retrieves rows and views specified in the fable-/ist. Joins can be
specified using join operators. For more information, see FROM Clause. A SELECT
statement with no FROM clause can be used to display the values of expressions not
derived from tables. For example:

SELECT @Q@version

displays the value of the global variable @ @version. This is equivalent to:

SELECT @@version
FROM DUMMY

Note: Ifyou omitthe FROM clause, or ifall tables in the query are inthe SYSTEM dbspace,
the query is processed by SQL Anywhere instead of SAP Sybase 1Q and might behave
differently, especially with respect to syntactic and semantic restrictions and the effects of
option settings.

If you have a query that does not require a FROM clause, you can force the query to be
processed by SAP Sybase 1Q by adding the clause “FROM iqg dummy,” where
ig dummy is a one-row, one-column table that you create in your database.

* WHERE search-condition —specifies which rows are selected from the tables named in
the FROM clause. It is also used to do joins between multiple tables. This is accomplished
by putting a condition in the WHERE clause that relates a column or group of columns
from one table with a column or group of columns from another table. Both tables must be
listed in the FROM clause.

The use of the same CASE statement is not allowed in both the SELECT and the WHERE
clause of a grouped query.

SAP Sybase 1Q also supports the disjunction of subquery predicates. Each subquery can
appear within the WHERE or HAVING clause with other predicates and can be combined
using the AND or OR operators.

* GROUP BY —groups columns, alias names, or functions. GROUP BY expressions must
also appear in the select list. The result of the query contains one row for each distinct set of

User-Defined Functions 191

Table UDFs and TPFs

values in the named columns, aliases, or functions. The resulting rows are often referred to
as groups since there is one row in the result for each group of rows from the table list. In
the case of GROUP BY, all NULL values are treated as identical. Aggregate functions can
then be applied to these groups to get meaningful results.

GROUP BY must contain more than a single constant. You do not need to add constants to
the GROUP BY clause to select the constants in grouped queries. If the GROUP BY
expression contains only a single constant, an error is returned and the query is rejected.

When GROUP BY is used, the select list, HAVING clause, and ORDER BY clause cannot
reference any identifiers except those named in the GROUP BY clause. This exception
applies: The sefect-listand HAVING clause may contain aggregate functions.

* ROLLUP operator —subtotals GROUP BY expressions that roll up from a detailed level
to a grand total.

The ROLLUP operator requires an ordered list of grouping expressions to be supplied as
arguments. ROLLUP first calculates the standard aggregate values specified in the
GROUP BY. Then ROLLUP moves from right to left through the list of grouping columns
and creates progressively higher-level subtotals. A grand total is created at the end. If n7is
the number of grouping columns, ROLLUP creates n+1 levels of subtotals.

Restrictions on the ROLLUP operator:

« ROLLUP supports all of the aggregate functions available to the GROUP BY clause,
but ROLLUP does not currently support COUNT DISTINCT and SUM DISTINCT.

e ROLLUP can be used only in the SELECT statement; you cannot use ROLLUP in a
SELECT subquery.

* A multiple grouping specification that combines ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

» Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the ROLLUP operator to distinguish between stored NULL
values and NULL values in query results created by ROLLUP.

ROLLUP syntax:

SELECT ... [GROUPING (column-name) ..] ..
GROUP BY [expression [, ..]
| ROLLUP (expression [, ..])]

GROUPING takes a column name as a parameter and returns a Boolean value:

Table 5. Values Returned by GROUPING with the ROLLUP Operator
If the Value of the Result Is GROUPING Returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

192 SAP Sybase IQ

Table UDFs and TPFs

If the Value of the Result Is GROUPING Returns
not created by a ROLLUP operation 0 (FALSE)
a stored NULL 0 (FALSE)

* CUBE operator —analyzes data by forming the data into groups in more than one
dimension. CUBE requires an ordered list of grouping expressions (dimensions) as
arguments and enables the SELECT statement to calculate subtotals for all possible
combinations of the group of dimensions. The CUBE operator is part of the GROUP BY
clause.

Restrictions on the CUBE operator:

« CUBE supports all of the aggregate functions available to the GROUP BY clause, but
CUBE does not currently support COUNT DISTINCT or SUM DISTINCT.

e CUBE does not currently support the inverse distribution analytical functions
PERCENTILE_CONT and PERCENTILE_DISC.

e CUBE can be used only in the SELECT statement; you cannot use CUBE ina SELECT
subquery.

* A multiple GROUPING specification that combines ROLLUP, CUBE, and GROUP
BY columns in the same GROUP BY clause is not currently supported.

» Constant expressions as GROUP BY keys are not supported.

GROUPING is used with the CUBE operator to distinguish between stored NULL values
and NULL values in query results created by CUBE.

CUBE syntax:

SELECT .. [GROUPING (column-name) ..] ..

GROUP BY [expression [, ..]

| CUBE (expression [, ..]) 1

GROUPING takes a column name as a parameter and returns a Boolean value:

Table 6. Values Returned by GROUPING with the CUBE Operator
If the Value of the Result Is GROUPING Returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

not created by a CUBE operation 0 (FALSE)

a stored NULL 0 (FALSE)

When generating a query plan, the SAP Sybase 1Q optimizer estimates the total number of
groups generated by the GROUP BY CUBE hash operation. The MAX_CUBE_RESULTS
database option sets an upper boundary for the number of estimated rows the optimizer

considers for a hash algorithm that can be run. If the actual number of rows exceeds the
MAX_CUBE_RESULT option value, the optimizer stops processing the query and returns

User-Defined Functions 193

Table UDFs and TPFs

the error message “Estimate number: nnn exceed the
DEFAULT MAX CUBE RESULT of GROUP BY CUBE or ROLLUP”, where nmn
is the number estimated by the optimizer. See MAX CUBE RESULT Option for
information on setting the MAX_CUBE_RESULT option.

HAVING search-condition —based on the group values and not on the individual row
values. The HAVING clause can be used only if either the statement has a GROUP BY
clause or if the select list consists solely of aggregate functions. Any column names
referenced in the HAVING clause must either be in the GROUP BY clause or be used as a
parameter to an aggregate function in the HAVING clause.

ORDER BY —orders the results of a query. Each item in the ORDER BY list can be
labeled as ASC for ascending order or DESC for descending order. Ascending is assumed
if neither is specified. If the expression is an integer n, then the query results are sorted by
the nth item in the select list.

In Embedded SQL, the SELECT statement is used for retrieving results from the database
and placing the values into host variables with the INTO clause. The SELECT statement
must return only one row. For multiple row queries, you must use cursors.

You cannot include a Java class in the SELECT list, but you can, for example, create a
function or variable that acts as a wrapper for the Java class and then select it.

FOR JSON clause specifies that the result set is to be returned in JSON format. The JSON
format depends on the mode you specify. This clause cannot be used with the FOR
UPDATE or FOR READ ONLY clause. Cursors declared with FOR JSON are implicitly
READ ONLY.

When you specify RAW mode, each row in the result set is returned as a flattened JSON
representation.

AUTO mode returns the query results as nested JSON objects based on query joins.

EXPLICIT mode allows you to control the form of the generated JSON objects. Using
EXPLICIT mode offers more flexibility in specifying columns and nested hierarchical
objects to produce uniform or heterogeneous arrays.

row-limitation-option2 — returns a subset of rows that satisfy the WHERE clause. Only
one row-limitation clause can be specified at a time. When specifying this clause, an
ORDER BY clause is required to order the rows in a meaningful manner. The row
limitation clause is valid only in the top query block of a statement.

The LIMIT argument must be an integer or integer variable The OFFSET argument must
evaluate to a value greater than or equal to 0. If offset-expression is not specified, the
default is 0.

The row limitation clause LIMIT offset-expression, limit-expression is equivalent to
LIMIT /imit-expression OFFSET offset-expression.

The LIMIT keyword is disabled by default. Use the RESERVED_KEYWORDS option to
enable the LIMIT keyword.

194

SAP Sybase 1Q

Table UDFs and TPFs

Note: You cannot specify TOP and LIMIT in the same query.

Examples
(back to top) on page 188

* Example 1 —list all tables and views in the system catalog:

SELECT tname
FROM SYS.SYSCATALOG
WHERE tname LIKE 'SYSS$' ;

» Example 2 —list all customers and the total value of their orders:

SELECT CompanyName,
CAST(sum(SalesOrderItems.Quantity *
Products.UnitPrice) AS INTEGER) VALUE
FROM Customers
LEFT OUTER JOIN SalesOrders
LEFT OUTER JOIN SalesOrderItems
LEFT OUTER JOIN Products
GROUP BY CompanyName
ORDER BY VALUE DESC

* Example 3 —list the number of employees:

SELECT count (*)
FROM Employees;

e Example 4 —an Embedded SQL SELECT statement:

SELECT count (*) INTO :size FROM Employees;

* Example 5—list the total sales by year, model, and color:

SELECT year, model, color, sum(sales)
FROM sales tab
GROUP BY ROLLUP (year, model, color);

* Example 6 —select all items with a certain discount into a temporary table:

SELECT * INTO #TableTemp FROM lineitem
WHERE 1 discount < 0.5

* Example7—return information about the employee that appears first when employees are
sorted by last name:
SELECT FIRST *

FROM Employees
ORDER BY Surname;

« Example 8 —return the first five employees when their names are sorted by last name:

SELECT TOP 5 *
FROM Employees
ORDER BY Surname;

SELECT *
FROM Employees

User-Defined Functions 195

Table UDFs and TPFs

ORDER BY Surname
LIMIT 5;

* Example 9 —list the fifth and sixth employees sorted in descending order by last name:

SELECT *

FROM Employees

ORDER BY Surname DESC
LIMIT 4,2;

Usage
(back to top) on page 188

You can use a SELECT statement in Interactive SQL to browse data in the database or to export
data from the database to an external file.

You can also use a SELECT statement in procedures or in Embedded SQL. The SELECT
statement with an INTO clause is used for retrieving results from the database when the
SELECT statement returns only one row. (Tables created with SELECT INTO do not inherit
IDENTITY/AUTOINCREMENT tables.) For multiple-row queries, you must use cursors.
When you select more than one column and do not use #fable, SELECT INTO creates a
permanent base table. SELECT INTO #fable always creates a temporary table regardless of
the number of columns. SELECT INTO table with a single column selects into a host variable.

Note: When writing scripts and stored procedures that SELECT INTO a temporary table,
wrap any select list item that is not a base column in a CAST expression. This guarantees that
the column data type of the temporary table is the required data type.

Tables with the same name but different owners require aliases. A query without aliases
returns incorrect results:

SELECT * FROM userl.tl

WHERE NOT EXISTS

(SELECT *

FROM user2.tl
WHERE user2.tl.coll = userl.t.coll);

For correct results, use an alias for each table:

SELECT * FROM userl.tl Ul
WHERE NOT EXISTS

(SELECT *

FROM user2.tl U2

WHERE U2.coll = Ul.coll);

The INTO clause with a variable-listis used only in procedures.

In SELECT statements, a stored procedure call can appear anywhere a base table or view is
allowed. Note that CIS functional compensation performance considerations apply. For
example, a SELECT statement can also return a result set from a procedure.

196

SAP Sybase 1Q

Table UDFs and TPFs

Standards
(back to top) on page 188

e SQL—ISO/ANSI SQL compliant.

* SAP Sybase Database product—Supported by SAP Sybase 1Q, with some differences in
syntax.

Permissions
(back to top) on page 188

Requires SELECT privilege on the named tables and views.

User-Defined Functions 197

Table UDFs and TPFs

198 SAP Sybase IQ

API Reference for a_v4_extfn

APl Reference for a_v4 extfn

Reference information for a_v4 extfn functions, methods, and attributes.

Blob (a v4 extfn blob)

Usethe a_v4 extfn blob structure to represent a free-standing blob object.

Implementation

typedef struct a v4 extfn blob ({
a sql uint64 (SQL CALLBACK *blob length) (a v4 extfn blob *blob);
void (SQL CALLBACK *open istream) (a_v4 extfn blob *blob,
a v4 extfn blob istream **is);
void (SQL CALLBACK *close istream) (a v4 extfn blob *blob,
a v4 extfn blob istream *is);
void (SQL CALLBACK *release) (a_v4 extfn blob *blob);
} a v4 extfn blob;

Method Summary

Method Name Data Type Description

blob_length a_sql_uint64 Returns the length, in
bytes, of the specified
blob.

open_istream void Opens an input stream

that can be used to be-
gin reading from the
specified blob.

close_istream void Closes the input stream
for the specified blob.

User-Defined Functions 199

API Reference for a_v4_extfn

Method Name Data Type Description

release void Indicates that the caller
is done with this blob
and that the blob owner
is free to release resour-
ces. After release(),
referencing the blob re-
sults in an error. The
owner usually deletes
the memory when re-
lease() is called.

Description
The objecta_v4 extfn blob is used when:

» atable UDF needs to read LOB or CLOB data from a scalar input value
e a TPF needs to read LOB or CLOB data from a column in an input table

Restrictions and Limitations
None.

blob_length

Use the blob length v4 APl method to return the length, in bytes, of the specified blob.

Declaration

a sgl uint64 blob length (
a v4 extfn blob *
)

Usage
Returns the length, in bytes, of the specified blob.

Parameters

Parameter Description

blob The blob to return the length of.
Returns

The length of the specified blob.

See also
e open _istream on page 201
» close_istream on page 201

200

SAP Sybase 1Q

API Reference for a_v4_extfn

* release on page 202

open istream
Use the open_istream v4 APl method to open an input stream to read from a blob.

Declaration

void open istream(
a v4 extfn blob *blob,
a v4 extfn blob istream **is

)

Usage
Opens an input stream that can be used to begin reading from the specified blob.

Parameters
Parameter Description
blob The blob to open the input stream on.
is An output parameter identifying the returned
open input stream.
Returns
Nothing.
See also

e blob_lengthon page 200
» close_istream on page 201
* release on page 202

close istream
Usethe close istream v4 APl method to close the input stream for the specified blob.

Declaration

void close istream(
a v4 extfn blob *blob,
a v4 extfn blob istream *is
)

Usage
Closes the input stream previously opened with the open istream API.

User-Defined Functions 201

API Reference for a_v4_extfn

Parameters
Parameter Description
blob The blob to close the input stream on.
is A parameter identifying the input stream to close.
Returns
Nothing.
See also

e blob_lengthon page 200
e open_istream on page 201
e release on page 202

release
Usethe release v4 APl method to indicate that the caller is done with the currently selected
blob. Releasing enables the owner to free memory.

Declaration

void release (

a v4 extfn blob *blob

)

Usage

Indicates that the caller is done with this blob and that the blob owner is free to release
resources. After release(), referencing the blob results in an error. The owner usually deletes
the memory when release() is called.

Parameters

Parameter

Description

blob

The blob to release.

Returns
Nothing.

See also

e blob_lengthon page 200
e open _istream on page 201
» close_istream on page 201

202

SAP Sybase 1Q

API Reference for a_v4_extfn

Blob Input Stream (a v4 extfn _blob_istream)

Usethe a_v4 extfn blob istream structure to read blob data for a LOB or CLOB
scalar input column, or LOB or CLOB column in an input table.

Implementation

typedef struct a v4 extfn blob istream {
size t (SQL CALLBACK *get) (a v4 extfn blob istream *is, void
*buf, size t len);

a v4 extfn blob *blob;
a_sql byte *beg;
a_sql byte O g
a sgl byte *1im;

} a v4 extfn blob istream;

Method Summary

Method Name Data Type Description

get size_t Gets a specified
amount of data from a
blob input stream.

Data Members and Data Types Summary

Data Member Data Type Description

Blob a_v4_extfn_blob The underlying blob structure
for which this input stream was
created.

Beg a_sql_byte A pointer to the beginning of the
current chunk of data.

Ptr a_sql_byte A pointer to the current byte in
the chunk of data.

Lim a_sql_byte A pointer to the end of the cur-

rent chunk of data.

get

Use the get v4 API method to get a specified amount of data from a blob input stream.

Declaration

size t get(
a v4 extfn blob istream *is,

User-Defined Functions 203

API Reference for a_v4_extfn
void *buf,

size t len

Usage
Gets a specified amount of data from a blob input stream.

Parameters
Parameter Description
is The input stream to retrieve data from.
buf The buffer to store the data in.
len The amount of data to retrieve.
Returns

The amount of data received.

Column Data (a_v4 extfn _column data)

The structure a_v4 extfn column data represents a single column's worth of data.
This is used by the producer when generating result set data, or by the consumer when reading
input table column data.

Implementation

typedef struct a v4 extfn column data ({

a_sql byte *is null;
a_sql byte null mask;

a sql byte null value;
void *data;

a_sgl uint32 *piece len;
size t max piece len;
void *blob_handle;

} a v4 extfn column data;

Data Members and Data Types Summary

Data Member | Data Type Description

is_null a_sql_byte * | Points to a byte where the NULL information for the value is
stored.
null_mask a_sql_byte One or more bits used to represent the NULL value

204 SAP Sybase IQ

API Reference for a_v4_extfn

Data Member | Data Type Description

null_value a_sql_byte The value representing NULL

data void * Pointer to the data for the column. Depending on the type of fetch
mechanism, either points to an address in the consumer, or an
address where the data is stored in the UDF.

piece_len a_sql_uint32* | The actual length of data for variable-length data types
max_piece_len | size_t The maximum data length allowed for this column.
blob_handle | void * A non-NULL value means that the data for this column must be

read using the blob API

Description

Thea v4 extfn column_data structure represents the data values and related
attributes for a specific data column. This structure is used by the producer when generating
result set data. Data producers are also expected to create storage for data, piece_len, and the
is_nullflag.

The 7s_null, null_mask, and null_value data members indicate null in a column, and handle
situations in which the null-bits are encoded into one byte for eight columns, or other cases in
which a full byte is used for each column.

This example shows how to interpret the three fields used to represent NULL: 7s_null,
null_mask, and null_value.
is value null ()

_returﬁ((*is_null & null_mask) == null_value)

set value null ()
*is null = (*is null & ~null mask) | null value

set value not null()
*is null = *is null & ~null mask | (~null value & null mask)

See also
e get blobon page 318

User-Defined Functions 205

API Reference for a_v4_extfn

Column List (a_v4 extfn_column_list)

Usethe a_v4 extfn column_ list structure to provide a list of columns when
describing PARTITION BY or to provide a list of columns when describing
TABLE_UNUSED_COLUMNS.

Implementation

typedef struct a v4 extfn column list {

a sql int32 number of columns;

a_sgl uint32 column_indexes[1]; // there are
number of columns entries
} a v4 extfn column list;

Data Members and Data Types Summary

Data Member Data Type Description
number_of_columns a_sql_uint32 The number of columns in the list.
column_indexes a_sql_uint32 * A contiguous array of size num-

ber_of_columns with the column in-
dexes (1-based).

Description
The meaning of the contents of the column list changes, depending on whether the list is used
with TABLE_PARTITIONBY or TABLE_UNUSED_COLUMNS.

See also

* V4 API describe_parameter and

EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 141

* Parallel TPF FARTITION BY Examples Using

EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY on page 143

o EXTFNAPIV4_DESCRIBE PARM_TABLE UNUSED COLUMNS Attribute (Get)
on page 260

o EXTFNAPIV4_DESCRIBE PARM_TABLE UNUSED COLUMNS Attribute (Set)on
page 276

Column Order (a_v4 extfn_order_el)

Usethe a_v4 extfn order el structure to describe the element order in a column.

Implementation

typedef struct a v4 extfn order el {
a_sgl uint32 column_ index; // Index of the column in the

206 SAP Sybase IQ

API Reference for a_v4_extfn

table (l-based)

a sqgl byte ascending; // Nonzero if the column
is ordered "ascending".
} a v4 extfn order el;

Data Members and Data Types Summary

Data Member Data Type Description
column_index a_sqgl_uint32 Index of the column in the table (1-
based).
ascending a_sql_byte Nonzero, if the column order is "as-
cending."
Description

Thea v4 extfn order el structure describes a column and tells whether it should be
in ascending or descending order. Thea v4 extfn orderby list structure holds an
array of these structures. Thereisonea_v4 extfn order el structure for each column
in the ORDERBY clause.

See also
e Order By List (a_v4_extfn_orderby list) on page 307

Column Subset (a v4 extfn _col subset of input)

Usethe a v4 extfn col subset of input structure to declare that an output
column has a value that is always taken from a particular input column to the UDF.

Implementation
typedef struct a v4 extfn col subset of input {

a sql uint32 ‘source table parameter arg num; // arg_num of
the source table parameter
a sgl uint32 source_column_ number; // source column of

the source table
} a v4 extfn col subset of input;

Data Members and Data Types Summary

Data Member Data Type Description

source_table_parameter_arg_num a_sql_uint32 * arg_num of the source TABLE param-
eter

source_column_number a_sql_uint32 * Source column of the source table

User-Defined Functions 207

API Reference for a_v4_extfn

Description

The query optimizer uses the subset of input to infer logical properties of the values in the
output column. For example, the number of distinct values in the input column is an upper
bound on the distinct values in the output column, and any local predicates on the input column
also hold on the output column.

See also
» Describe Column Type (a_v4_extfn_describe _col type)on page 281

Describe API

The _describe_extfn function is a member of a_v4 extfn proc. A UDF gets and sets
logical properties using the describe column, describe parameter, and
describe udf propertiesinthea v4 extfn proc context object.

_describe extfn Declaration

void (UDF_CALLBACK * describe extfn) (a_v4 extfn proc context
*cntxt) ;

)

Usage

The _describe_extfn function describes the procedure evaluation to the server.

Each of the describe column, describe parameter, and describe udf
properties has an associated get and set method, a set of attribute types, and an associated data
type for each attribute. The get methods retrieve information from the server; the set methods
describe the logical properties of the UDF (such as the number of output columns or the
number of distinct values for a output column) to the server.

See also

e *gescribe_column_geton page 209

e *gescribe_column_seton page 225

» *describe_parameter _geton page 242

e *gescribe_parameter seton page 261

e *gescribe_udf geton page 277

e *describe_udf seton page 279

e External Function (a_v4_extfn_proc) on page 288

208

SAP Sybase 1Q

API Reference for a_v4_extfn

*describe column get

The describe column_ get v4 APl method is used by the table UDF to retrieve
properties about an individual column of a TABLE parameter.

Declaration
a sgl int32 (SQL CALLBACK *describe column get) (
a v4 extfn proc context *cntxt,
a sgl uint32 arg num,
a_sgl uint32 column num,
a v4 extfn describe parm type describe type,
void *describe buffer,
size t describe buffer len);
Parameters
Parameter Description
cntxt The procedure context object for this UDF.
arg_num The ordinal of the TABLE parameter (0 is the
result table, 1 for first input argument).
column_num The ordinal of the column starting at 1.
describe_type A selector indicating what property to retrieve.
describe_buffer A structure that holds the describe information
for the specified property to get from the server.
The specific structure or data type is indicated by
the describe_type parameter.
describe_buffer_length The length, in bytes, of the describe_buffer.
Returns

On success, returns the number of bytes written to the describe_buffer. If an error occurs, or
no property is retrieved, this function returns one of the generic describe column errors.

See also
» *describe_column_seton page 225

Attributes for *describe column get
Code showing the attributes for describe column get v4 APl method.

typedef enum a v4 extfn describe col type {
EXTFNAPIV4 DESCRIBE COL NAME,
EXTFNAPIV4 DESCRIBE COL TYPE,
EXTFNAPIV4 DESCRIBE COL WIDTH,
EXTFNAPIV4 DESCRIBE COL_ SCALE,

User-Defined Functions 209

API Reference for a_v4_extfn

EXTFNAPIV4 DESCRIBE COL CAN BE NULL,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
EXTFNAPIV4 DESCRIBE COL IS UNIQUE,

EXTFNAPIV4 DESCRIBE COL IS CONSTANT,
EXTFNAPIV4 DESCRIBE COL CONSTANT VALUE,
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER,
EXTFNAPIV4 DESCRIBE COL MINIMUM VALUE,
EXTFNAPIV4 DESCRIBE COL MAXIMUM VALUE,
EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT,
} a v4 extfn describe col type;

EXTENAPIV4 DESCRIBE COL NAME (Get)
The EXTFNAPIV4_DESCRIBE_COL_NAME attribute indicates the column name. Used in a
describe column get scenario.

Data Type
char[]

Description
The column name. This property is valid only for table arguments.

Usage
If a UDF gets this property, then the name of the specified column is returned.

Returns
On success, returns the length of the column name.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — get error returned if the
buffer length has insufficient characters or is 0 length.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER — get error returned if the
parameter is not a TABLE parameter.

Query Processing Phases
Valid in:

« Annotation phase

* Query Optimization phase
e Plan Building phase

« Execution phase

See also
o EXTFNAPIV4_DESCRIBE COL NAME (Set) on page 227

210 SAP Sybase IQ

API Reference for a_v4_extfn

o EXTFNAPIV4 DESCRIBE COL _TYPE (Set)on page 228
o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211
e Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL TYPE (Get)
The EXTFNAPIV4 DESCRIBE COL_TYPE attribute indicates the data type of the column.
Used inadescribe column_ get scenario.

Data Type
a_sqgl data_ type

Description
The data type of the column. This property is valid only for table arguments.

Usage
If a UDF gets this property, then returns the data type of the specified column.

Returns
On success, the sizeof (a_sql data type) isreturned.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —geterror returned if the
describe buffer is not the size of a_sql data_type.

* EXTFNAPIV4 DESCRIBE INVALID STATE —geterror returned if the query
processing phase is not greater than Initial.

Query Processing Phases

« Annotation phase

¢ Query Optimization phase
* Plan Building phase

e Execution phase

See also

» Generic describe_column Errors on page 325

o EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 228
e Query Processing States on page 121

User-Defined Functions 211

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE COL WIDTH (Get)
The EXTFNAPIV4_DESCRIBE_COL_WIDTH attribute indicates the width of the column.
Used inadescribe column_ get scenario.

Data Type
a_sql uint32

Description
The width of a column. Column width is the amount of storage, in bytes, required to store a
value of the associated data type. This property is valid only for table arguments.

Usage
If a UDF gets this property, then returns the width of the column as defined in the CREATE
PROCEDURE statement.

Returns
On success, returns the sizeof (a_sgl uint32).

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — get error returned if the
describe buffer is not the size of a_sgl uint32.

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases

« Annotation phase

e Query Optimization phase
e Plan Building phase

« Execution phase

See also

o EXTFNAPIV4_DESCRIBE COL _WIDTH (Set)on page 229
» Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL SCALE (Get)
The EXTFNAPIV4_DESCRIBE_COL_SCALE attribute indicates the scale of the column. Used
inadescribe column get scenario.

Data Type
a_sqgl uint32

212

SAP Sybase 1Q

API Reference for a_v4_extfn

Description
The scale of a column. For arithmetic data types, parameter scale is the number of digits to the
right of the decimal point in a number. This property is valid only for table arguments.

Usage
If the UDF gets this property, returns the scale of the column as defined in the CREATE
PROCEDURE statement. This property is valid only for arithmetic data types.

Returns
On success, returns the sizeof (a_sqgl uint32) if the value was returned, or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE —get error returned if the scale is
unavailable for the data type of the specified column.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe buffer is not the size of a_sql uint32.

* EXTFNAPIV4 DESCRIBE INVALID STATE — get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases

¢ Annotation phase

e Query Optimization phase
e Plan Building phase

e Execution phase

See also

 EXTFNAPIV4 DESCRIBE COL SCALE (Set)on page 230
e Generic describe_column Errors on page 325

* Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL CAN BE NULL (Get)
The EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL attribute indicates if the column can be
NULL. Used ina describe column_get scenario.

Data Type
a sql byte

Description
True, if the column can be NULL. This property is valid only for table arguments. This
property is valid only for argument 0.

User-Defined Functions 213

API Reference for a_v4_extfn

Usage
If a UDF gets this property, returns 1 if the column can be NULL, and returns 0 if otherwise.

Returns
On success, returns the sizeof (a_sqgl byte) if the attribute is available, or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - returned if the attribute was not
available to get. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe buffer is not the size of a_sql byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE - get error returned if the specified
argument is an input table and the query processing phase is not greater than Plan Building
phase.

Query Processing Phases
Valid in:

« Execution phase

See also

o EXTFNAPIV4_DESCRIBE COL_CAN_BE NULL (Set)on page 231
o Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL DISTINCT VALUES (Get)
The EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES attribute describes the distinct
values for a column. Used in a describe column_get scenario.

Data Type
a v4 extfn estimate

Description
The estimated number of distinct values for a column. This property is valid only for table
arguments.

Usage
If a UDF gets this property, it returns the estimated number of distinct values for a column.

Returns
On success, returns the sizeof (a_v4 extfn estimate), if it returns a value, or:

214

SAP Sybase 1Q

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - returned if the attribute was not
available to get. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe buffer is not the size of a_v4 extfn estimate.

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the specified
argument is an input table and the query processing phase is greater than Optimization.

Query Processing Phases
Valid in:

* Plan Building phase
e Execution phase

Example
Consider this procedure definition and code fragment in the describe extfn API
function:

CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2 INT))

RESULTS (rl INT, r2 INT, r3 INT)

EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select * from my tpf('test', TABLE(select x,y from T))

This example shows how a TPF gets the number of distinct values for column one of the input
table. A TPF may want to get this value, if it is beneficial for choosing an appropriate
processing algorithm.

my tpf describe(a v4 extfn proc context *cntxt)
{
if (cntxt->current state == EXTFNAPIV4 STATE PLAN BUILDING) {
a v4 extfn estimate num distinct;

a sql int32 ret = 0;

// Get the number of distinct values expected from the first
column
// of the table input parameter 'col table'
ret = cntxt->describe column get(cntxt, 2, 1
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
&num_distinct,
sizeof (a v4 extfn estimate));

// default algorithm is 1
_algorithm = 1;

if(ret > 0) {
// choose the best algorithm for sample size.

User-Defined Functions 215

API Reference for a_v4_extfn

if (num distinct.value < 100) {
// use faster algorithm for small distinct values.
_algorithm = 2;
}
}
else {
if (ret < 0) {
// Handle the error
// or continue with default algorithm
} else {
// Attribute was unavailable
// We will use the default algorithm.

See also

o EXTFNAPIV4_DESCRIBE COL _DISTINCT_VALUES (Set) on page 232
» Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL IS UNIQUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE attribute indicates if a column is unique in
the table. Used ina describe column_get scenario.

Data Type
a_sqgl byte

Description
True, if the column is unique within the table. This property is valid only for table arguments.

Usage
If the UDF gets this property, then returns 1 if the column is unique, and 0 otherwise.

Returns
On success, returns the sizeof (a_sgl byte) or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE —ifthe attribute was unavailable to get.
This can happen if the column was not involved in the query.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe buffer is not the size of a_sql byte.

216

SAP Sybase 1Q

API Reference for a_v4_extfn

* EXTENAPIV4 DESCRIBE INVALID STATE —geterror returned if the query
processing phase is not greater than Initial.

Query Processing Phases
Valid in:

« Annotation phase

e Query Optimization phase
e Plan Building phase

e Execution phase

See also

» Generic describe_column Errors on page 325

o EXTFNAPIV4_DESCRIBE COL_IS UNIQUE (Set)on page 233
» Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL IS CONSTANT (Get)
The EXTFNAPIV4A_DESCRIBE_COL_IS_CONSTANT attribute indicates if a column is
constant. Used ina describe column_get scenario.

Data Type
a_sqgl byte

Description
True, if the column is constant for the lifetime of the statement. This property is valid only for
input table arguments.

Usage

If a UDF gets this property, the return value is 1 if the column is constant for the lifetime of the
statement and 0 otherwise. Input table columns are constant, if the column in the select list for
the input table is a constant expression or NULL.

Returns
On success, returns the sizeof (a_sql byte), if the value was returned, or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - the attribute is not available to get.
Returned, if the column is not involved in the query.

On failure, returns one of the generic describe column errors, or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — get error returned, if the
describe buffer is not the size of a_sgl byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE - get error returned, if the query
processing phase is not greater than Initial.

User-Defined Functions 217

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE_ INVALID PARAMETER — geterror returned, if the
specified argument is not an input table.

Query Processing Phases
Valid in:

« Annotation phase

e Query Optimization phase
e Plan Building phase

e Execution phase

See also

* EXTFNAPIV4_DESCRIBE COL IS CONSTANT (Set) on page 234
e Generic describe_column Errors on page 325

» Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL CONSTANT VALUE (Get)
The EXTFNAPIV4A_DESCRIBE_COL_CONSTANT_VALUE attribute indicates the constant
value of a column. Used in a describe column_get scenario.

Data Type

an_extfn value

Description

The value of the column, if it is constant for the statement lifetime. If

EXTFNAPIV4 DESCRIBE COL IS CONSTANT for this column returns true, this value
is available. This property is valid only for table arguments.

Usage
For columns of input tables that have a constant value, the value is returned. If the value is
unavailable, then NULL is returned.

Returns
On success, returns the sizeof (a_sql byte), if the value was returned, or:

* EXTFNAPIV4 DESCRIBE_NOT AVAILABLE - the attribute is not available to get.
Returned, if the column is not involved in the query, or if the value is not considered
constant.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — get error returned, if the
describe buffer is not the size of a_sgl byte.

218

SAP Sybase 1Q

API Reference for a_v4_extfn

* EXTEFNAPIV4 DESCRIBE INVALID STATE — geterror returned, if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER — get error returned, if the
specified argument is not an input table.

Query Processing Phases
Valid in:

* Annotation phase

e Query Optimization phase
e Plan Building phase

e Execution phase

See also

e Generic describe_column Errors on page 325

o EXTFNAPIV4_DESCRIBE COL_CONSTANT _VALUE (Set) on page 234
e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL IS USED BY CONSUMER (Get)

The EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER attribute indicates if a
column in the result table is used by the consumer. Used ina describe column get
scenario.

Data Type
a_sql byte

Description

Used either to determine whether a column in the result table is used by the consumer, or to
indicate that a column in an input is not needed. Valid for table arguments. Allows the user to
set or retrieve information about a single column, whereas the similar attribute
EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS Sets or retrieves
information about all columns in a single call.

Usage
The UDF queries this property to determine if a result table column is required by the
consumer. This can help the UDF avoid unnecessary work for unused columns.

Returns
On success, returns the sizeof (a_sqgl byte) or:

e EXTFNAPIV4 DESCRIBE NOT AVAILABLE -—iftheattribute was unavailable to get.
This can happen if the column was not involved in the query.

On failure, returns one of the generic describe column errors, or:

User-Defined Functions 219

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe buffer is not the size of a_v4 extfn estimate.

* EXTFNAPIV4 DESCRIBE INVALID STATE - get error returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —get error returned if the
argument specified is not argument 0.

Query Processing Phases
Valid during:

« Annotation phase

e Query Optimization phase
* Plan Building phase

e Execution phase

The PROCEDURE definition and code fragment inthe describe extfn API function:

CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2
INT))

RESULTS (rl INT, r2 INT, r3 INT)

EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);
select r2,r3 from my tpf('test', TABLE(select x,y from T))

When this TPF runs, it is beneficial to know if the user has selected column r1 of the result set.
If the user does not need r1, calculations for r1 may be unnecessary and we do not need to
produce it for the server.

my tpf describe(a v4 extfn proc context *cntxt)
{
if (cntxt->current state > EXTFNAPIV4 STATE INITIAL) {
a sql byte col is used = 0;
a sgl int32 ret = 0;

ret = cntxt->describe column get(cntxt, 0, 1,
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER,
&col is used,
sizeof (a_sqgl byte));

if(ret < 0) {
// Handle the error.
}

See also
o EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER (Set)on page 235

220 SAP Sybase IQ

API Reference for a_v4_extfn

» Generic describe_column Errors on page 325
e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL MINIMUM VALUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE attribute indicates the minimum
value for a column. Used ina describe column get scenario.

Data Type
an_extfn value

Description
The minimum value for a column, if available. Valid only for argument 0 and table arguments.

Usage

If a UDF gets the EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE property, the minimum
value of the column data is returned in the describe_buffer. If the input table is a base table, the
minimum value is based on all of the column data in the table and is accessible only if there is
an index on the table column. If the input table is the result of another UDF, the minimum value
isthe EXTFNAPIV4 DESCRIBE COL TYPE set by that UDF.

The data type for this property is different for different columns. The UDF can use
EXTFNAPIV4 DESCRIBE COL TYPE todetermine the datatype of the column. The UDF
can also use EXTFNAPIV4 DESCRIBE_COL_ WIDTH to determine the storage
requirements of the column,to provide an equivalently sized buffer to hold the value.

describe_buffer_length allows the server to determine if the buffer is valid.

If the EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE property is unavailable,
describe bufferis NULL.

Returns
Onsucmﬁ&rﬂuwwthedescribe_buffer_length,Oh

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE -—ifthe attribute was unavailable to get.
Returned if the column was not involved in the query or the minimum value was
unavailable for the requested column.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — Get error returned, if the
describe buffer is not large enough to hold the minimum value.

* EXTFNAPIV4 DESCRIBE INVALID STATE - Get error returned if the state is not
greater than Initial.

Query Processing States
Valid in any state except Initial state:

User-Defined Functions 221

API Reference for a_v4_extfn

< Annotation state

e Query Optimization state
e Plan Building state

» Execution state

Example
The procedure definition and code fragment inthe describe extfn API function:

CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2 INT))

RESULTS (rl INT, r2 INT, r3 INT)

EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);
select * from my tpf('test', TABLE(select x,y from T))

This example illustrates how a TPF would get the minimum value for column two of the input
table, for internal optimization purposes.

my tpf describe(a v4 extfn proc context *cntxt)
{
if (cntxt->current state > EXTFNAPIV4 STATE INITIAL) ({
a sql int32 min value = 0;
a sgl int32 ret = 0;

// Get the minimum value of the second column of the
// table input parameter 'col table'

ret = cntxt->describe column get(cntxt, 2, 2
EXTFNAPIV4 DESCRIBE COL MINIMUM VALUE,
&min value,
sizeof (a _sql int32));

if(ret < 0) {
// Handle the error.

See also

» Query Processing States on page 121

o EXTFNAPIV4_DESCRIBE _COL_MINIMUM_VALUE (Set) on page 237
o EXTFNAPIV4_DESCRIBE _COL_TYPE (Get)on page 211

o EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 228

* EXTFNAPIV4_DESCRIBE COL_WIDTH (Get)on page 212

o EXTFNAPIV4_DESCRIBE COL_WIDTH (Set)on page 229

» Generic describe_column Errors on page 325

222 SAP Sybase IQ

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE COL MAXIMUM VALUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE attribute indicates the maximum
value for the column. Used in a describe column_get scenario.

Data Type

an_extfn value

Description
The maximum value for a column. This property is valid only for argument 0 and table
arguments.

Usage

If a UDF gets the EXTFNAPIV4 DESCRIBE COL MAXIMUM VALUE property, then the
maximum value of the column data is returned in the describe_buffer. If the input table is a
base table, the maximum value is based on all of the column data in the table and is accessible
only if there is an index on the table column. If the input table is the result of another UDF, the
maximum value is the COL._MAXIMUM VALUE set by that UDF.

The data type for this property is different for different columns. The UDF can use
EXTFNAPIV4 DESCRIBE COL TYPE todetermine the datatype of the column. The UDF
can also use EXTFNAPIV4 DESCRIBE COL WIDTH to determine the storage
requirements of the column, to provide an equivalently sized buffer to hold the value.

describe_buffer_length allows the server to determine if the buffer is valid.

If EXTFNAPTV4 DESCRIBE COIL MAXIMUM VALUE is unavailable,
describe buffer is NULL.

Returns
On success, returns the describe buffer length or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - Iftheattribute was unavailable to get.
This can happen if the column was uninvolved in the query, or if the maximum value was
unavailable for the requested column.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - Get error returned if the
describe buffer is not large enough to hold the maximum value.

* EXTFNAPIV4 DESCRIBE INVALID STATE — Get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases
Valid in any phase except Initial phase:

User-Defined Functions 223

API Reference for a_v4_extfn

« Annotation phase

e Query Optimization phase
e Plan building phase

« Execution phase

Example

The PROCEDURE definition and code fragment in the describe extfn API function:
CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2 INT))

RESULTS (rl INT, r2 INT, r3 INT)
EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);
select * from my tpf('test', TABLE(select x,y from T))

This example illustrates how a TPF would get the maximum value for column two of the input
table, for internal optimization purposes.

my tpf describe(a v4 extfn proc context *cntxt)
{
if (cntxt->current state > EXTFNAPIV4 STATE INITIAL) ({
a sqgl int32 max value = 0;
a sqgl int32 ret = 0;

// Get the maximum value of the second column of the
// table input parameter 'col table'
ret = cntxt->describe column get (cntxt, 2, 2
EXTFNAPIV4 DESCRIBE COL MAXIMUM VALUE,
&max value,
sizeof (a _sgl int32));

if(ret < 0) {
// Handle the error.
}

See also

e Query Processing States on page 121

o EXTFNAPIV4_DESCRIBE COL_MAXIMUM_VALUE (Set) on page 239
o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211

o EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 228

* EXTFNAPIV4_DESCRIBE COL_WIDTH (Get)on page 212

» EXTFNAPIV4 DESCRIBE COL WIDTH (Set) on page 229

» Generic describe_column Errors on page 325

224

SAP Sybase 1Q

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT (Get)

The EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT attribute sets a subset of
the values specified in an input column. Using this attribute ina describe column get
scenario returns an error.

Data Type
a v4 extfn col subset of input

Description
Column values are a subset of the values specified in an input column.

Usage
This attribute can be set only.

Returns
Returns the error EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE.

Query Processing States
Error EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE is returned in any state.

See also

« EXTFNAPIV4_DESCRIBE COL_VALUES SUBSET OF_INPUT (Set)on page
240

e Generic describe_column Errors on page 325
* Query Processing States on page 121

*describe column set

The describe column_set v4 APl method sets UDF column-level properties on the
server.

Description

Column-level properties describe various characteristics about columns in the result set or
input tables ina TPF. For example, a UDF can tell the server that a column in its result set will
have only ten distinct values.

Declaration
a sql int32 (SQL CALLBACK *describe column set) (
a v4 extfn proc context *cntxt,
a_sgl uint32 arg_num,
a sgl uint32 column num,
a v4 extfn describe udf type describe type,
const void *describe buffer,
size t describe buffer len);

User-Defined Functions 225

API Reference for a_v4_extfn

Parameters
Parameter Description
cntxt The procedure context object for this UDF.
arg_num The ordinal of the TABLE parameter (0 is the
result table, 1 for first input argument).
column_num The ordinal of the column starting at 1.
describe_type A selector indicating what property to set.
describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.
describe_buffer_length The length, in bytes, of the describe_buffer.
Returns

On success, returns the number of bytes written to the describe_buffer. If an error occurs, or
no property is retrieved, this function returns one of the generic describe column errors.

See also
e *describe_column_geton page 209

Attributes for *describe column set
Code showing the attributes for describe column set.

typedef enum a v4 extfn describe col type {
EXTENAPIV4 DESCRIBE COL NAME
EXTFNAPIV4 DESCRIBE COL TYPE,
EXTFNAPIV4 DESCRIBE COL WIDTH,
EXTFNAPIV4_DESCRIBE_COL_SCALE
EXTFNAPIV4 DESCRIBE COL CAN BE NULL,
EXTFNAPIV4 DESCRIBE COL DISTINCT ~ VALUES,
EXTFNAPIV4 DESCRIBE COL IS UNIQUE
EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT,
EXTFNAPIV4 DESCRIBE COL CONSTANT VALUE,
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER,
EXTFNAPIV4 DESCRIBE COL MINIMUM VALUE,
EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE
EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT,
} a v4 extfn describe col type;

226 SAP Sybase IQ

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE _COL NAME (Set)
The EXTFNAPIV4_DESCRIBE_COL_NAME attribute indicates a column name. Used in a
describe column_set scenario.

Data Type
char[]

Description
The column name. This property is valid only for table arguments.

Usage

For argument O, if the UDF sets this property, the server compares the value with the name of
the column supplied in the CREATE PROCEDURE statement. The comparison ensures that the
CREATE PROCEDURE statement has the same column name as expected by the UDF.

Returns
On success, returns the length of the column name.

On failure, returns one of the generic describe column errors, or:

e EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the state is not
Annotation.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER - set error returned if the
parameter is not a TABLE parameter.

e EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the length of input column name exceeds 128 characters or if the input column name and
column name stored in the catalog do not match.

Query Processing States

* Annotation state

Example
short desc rc = 0;
char name[7] = ‘columnl’;

// Verify that the procedure was created with the second column
of the result table as an int
1f(ctx->current state == EXTFNAPIV4_STATE_ANNOTATION) |
desc_rc = ctx->describe column set (ctx, 0, 2,
EXTFNAPIV4 DESCRIBE COL NAME,
name,
sizeof (name));
if(desc rc < 0) {
// handle the error.
}

User-Defined Functions 227

API Reference for a_v4_extfn

See also

» EXTFNAPIV4_DESCRIBE COL_NAME (Get)on page 210
o EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 228

o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211
» Generic describe_column Errors on page 325

* Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL TYPE (Set)
The EXTFNAPIV4 DESCRIBE COL_TYPE attribute indicates the data type of the column.
Used inadescribe column_set scenario.

Data Type
a_sql data type

Description
The data type of the column. This property is valid only for table arguments.

Usage

For argument zero, if the UDF sets this property, then the server compares the value with the
data type of the column supplied in the CREATE PROCEDURE statement. This allows the
UDF to ensure the CREATE PROCEDURE statement has the same data type as expected by the
UDF.

Returns
On success, returns the a_sqgl data type.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - Set error returned if the
describe buffer is not the size of a_sql data_ type.

* EXTFNAPIV4 DESCRIBE INVALID STATE — Seterror returned if the state is not
Annotation.

e EXTEFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - Seterror returned if
the input data type and the data type stored in the catalog do not match,.

Query processing states
* Annotation state

Example

short desc rc = 0;
a_sql data type type = DT INT;

// Verify that the procedure was created with the second column of
the result table as an int
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {

228

SAP Sybase 1Q

API Reference for a_v4_extfn

desc_rc = ctx->describe column set (ctx, 0, 2,
EXTFNAPIV4 DESCRIBE COL TYPE,
&type,

sizeof (a _sql data type));
if(desc_ rc < 0) {
// handle the error.
}

See also

» Generic describe_column Errors on page 325

o EXTFNAPIV4_DESCRIBE _COL_TYPE (Get)on page 211
* Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL WIDTH (Set)
The EXTFNAPIV4A_DESCRIBE_COL_WIDTH attribute indicates the width of the column.
Used ina describe column set scenario.

Data Type
a sgl uint32

Description
The width of a column. Column width is the amount of storage, in bytes, required to store a
value of the associated data type. This property is valid only for table arguments.

Usage

If the UDF sets this property, the server compares the value with the width of the column
supplied in the CREATE PROCEDURE statement. This allows the UDF to ensure the CREATE
PROCEDURE statement has the same column width as expected by the UDF.

Returns
On success, returns the sizeof (a_sgl uint32).

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned if the
describe buffer is not the size of a_sql uint32.

e EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the query
processing state is not Annotation.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - Seterror returned if
the input width and width stored in the catalog do not match.

Query Processing States
Valid in:

* Annotation state

User-Defined Functions 229

API Reference for a_v4_extfn

See also

* EXTFNAPIV4_DESCRIBE COL_WIDTH (Get)on page 212
e Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTFENAPIV4 DESCRIBE COL SCALE (Set)
The EXTFNAPIV4_DESCRIBE_COL_SCALE attribute indicates the scale of the column. Used
inadescribe column_ set scenario.

Data Type
a_sqgl uint32

Description
The scale of a column. For arithmetic data types, parameter scale is the number of digits to the
right of the decimal point in a number. This property is valid only for table arguments.

Usage

If the UDF sets this property, the server compares the value with the scale of the column
supplied in the CREATE PROCEDURE statement. This allows the UDF to ensure the CREATE
PROCEDURE statement has the same column width as expected by the UDF. This property is
valid only for arithmetic data types.

Returns
On success, returns the sizeof (a_sgl uint32),or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - seterror returned if the scale is not
available for the data type of the specified column.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned if the
describe buffer is not the size of a_sql uint32.

* EXTFNAPIV4 DESCRIBE_ INVALID STATE - seterror returned if the query
processing state is not Annotation.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the input scale and scale stored in the catalog do not match.

Query Processing States
Valid in:

* Annotation state

Example
short desc rc = 0;
a sgl uint32 scale = 0;

230

SAP Sybase 1Q

API Reference for a_v4_extfn

// Verify that the procedure has a scale of zero for the
second result table column.

if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
desc _rc = ctx->describe column set(ctx, 0, 2,
EXT FNAPIV47DESCRIBE7COL75CALE o
&scale,
sizeof (a_sqgl data type));
if(desc rc < 0) {

// handle the error.
}

See also

o EXTFNAPIV4_DESCRIBE COL_SCALE (Get)on page 212
» Generic describe_column Errors on page 325

» Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL CAN BE NULL (Set)
The EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL attribute indicates if the column can be
null. Used ina describe column_set scenario.

Data Type
a_sql byte

Description
True, if the column can be NULL. This property is valid only for table arguments. This
property is valid only for argument 0.

Usage

The UDF can set this property for a result table column if that column can be NULL. If the
UDF does not explicitly set this property, it is assumed that the column can be NULL. The
server can use this information during the Optimization state.

Returns
On success, returns the sizeof (a_sqgl byte) if the attribute was set or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - returned if the attribute was
unavailable to set, which may happen if the column was uninvolved in the query.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned if the
describe buffer is not the size of a_sql byte.

* EXTFNAPIV4 DESCRIBE_INVALID STATE - seterror returned if the state is not
equal to OPTIMIZATION.

User-Defined Functions 231

API Reference for a_v4_extfn

* EXTENAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

e Optimization state

See also

o EXTFNAPIV4_DESCRIBE COL_CAN_BE NULL (Get)on page 213
o Generic describe_column Errors on page 325

* Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL DISTINCT VALUES (Set)
The EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES attribute describes the distinct
values for a column. Used in a describe column_set scenario.

Data Type
a v4 extfn estimate

Description
The estimated number of distinct values for a column. This property is valid only for table
arguments.

Usage
The UDF can set this property if it knows how many distinct values a column can have in its
result table. The server uses this information during the Optimization state.

Returns
On success, returns the sizeof (a_v4 extfn estimate), if it sets the value, or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - returned if the attribute was
unavailable to set. This can happen if the column was not involved in the query.

On failure, returns:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —seterror returned if the
describe buffer is not the size of a_v4 extfn estimate.

* EXTFNAPIV4 DESCRIBE_INVALID STATE - seterror returned if the state is not
equal to Optimization.

Query Processing States
Valid in:

e Optimization state

232

SAP Sybase 1Q

API Reference for a_v4_extfn

See also

o EXTFNAPIV4_DESCRIBE COL_DISTINCT VALUES (Get)on page 214
» Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE_COL IS _UNIQUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE attribute indicates if the column is unique
in the table. Used in a describe column_set scenario.

Data Type
a_sql byte

Description
True, if the column is unique within the table. This property is valid only for table arguments.

Usage

The UDF can set this property if it knows the result table column value is unique. The server
uses this information during the Optimization state. The UDF can set this property only for
argument 0.

Returns
On success, returns the sizeof (a_sql byte) or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - if the attribute was not available to
set. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe column errors, or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - seterror returned if the
describe buffer is not the size of a_sql byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE —seterror returned if the query
processing state is not Optimization.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned if the
arg_num is not zero.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

e Optimization state
See also

o Generic describe_column Errors on page 325
o EXTFNAPIV4_DESCRIBE COL IS UNIQUE (Get)on page 216

User-Defined Functions 233

API Reference for a_v4_extfn

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL IS CONSTANT (Set)
The EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT attribute indicates if the column is
constant. Used in a describe column_set scenario.

Data Type
a_sql byte

Description
True, if the column is constant for the lifetime of the statement. This property is valid only for
input table arguments.

Usage
This is a read only property. All attempts to set it return
EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE.

Returns

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE - thisis aread-only property; all
attempts to set return this error.

* EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned, if the state is not
Optimization.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned, if the
arg_num is not zero.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned, if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Not applicable.

See also

o EXTFNAPIV4_DESCRIBE COL_IS CONSTANT (Get)on page 217
o Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL CONSTANT VALUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE attribute indicates the constant
value of the column. Used in a describe column_ set scenario.

Data Type

an_extfn value

234

SAP Sybase 1Q

API Reference for a_v4_extfn

Description

The value of the column, if it is constant for the statement lifetime. If

EXTFNAPIV4 DESCRIBE_COL IS CONSTANT for this column returns true, this value
is available. This property is valid only for table arguments.

Usage
This property is read-only.

Returns

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE - thisis aread-only property; all
attempts to set return this error.

Query Processing States
Not applicable.

See also

e Generic describe_column Errors on page 325

o EXTFNAPIV4_DESCRIBE COL_CONSTANT_VALUE (Get)on page 218
e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL IS USED BY CONSUMER (Set)

The EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER attribute indicates if the
column in the result table is used by the consumer. Used in a describe column set
scenario.

Data Type
a_sql byte

Description

Used either to determine whether a column in the result table is used by the consumer, or to
indicate that a column in an input is not needed. Valid for table arguments. Allows the user to
set or retrieve information about a single column, whereas the similar attribute
EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS Sets or retrieves
information about all columns in a single call.

Usage
The UDF sets EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER on columns in an
input table to inform the producer that it does not need values for the column.

Returns
On success, returns the sizeof (a_sqgl byte) or:

User-Defined Functions 235

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - if the attribute was not available to
set. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe column errors, or:

e EXTEFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - set error returned if the
describe buffer is not the size of a_v4 extfn estimate.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned if the
argument specified is argument 0.

* EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the state is not
equal to Optimization.

* EXTFNAPIV4 DESCRIBE_INVALID ATTRIBUTE VALUE - seterror returned if
the value the UDF is setting is not 0 or 1.

Query Processing States
Valid during:

e Optimization state

The PROCEDURE definition and code fragment inthe describe extfn API function:

CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2
INT))

RESULTS (rl INT, r2 INT, r3 INT)

EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);
select r2,r3 from my tpf('test', TABLE(select x,y from T))

When this TPF runs, itis beneficial for the server to know if column y is used by this TPF. If the
TPF does not need v, the server can use this knowledge for optimization and does not send this
column information to the TPF.

my tpf describe(a v4 extfn proc context *cntxt)
{
if (cntxt->current state == EXTFNAPIV4 STATE OPTIMIZATION)
a_sqgl byte col is used = 0;
a sgl int32 ret = 0;

ret = cntxt->describe column get(cntxt, 2, 2,
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER,
&col is used,
sizeof (a_sqgl byte));

if(ret < 0) {
// Handle the error.
}

236

SAP Sybase 1Q

API Reference for a_v4_extfn

See also

o EXTFNAPIV4_DESCRIBE COL_IS USED BY CONSUMER (Get)on page 219
e Generic describe_column Errors on page 325

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE COL MINIMUM VALUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE attribute indicates the minimum
value for the column. Used in a describe column_set scenario.

Data Type

an_extfn value

Description
The minimum value a column can have, if available. Only valid for argument 0.

Usage

The UDF can set EXTFNAPIV4 DESCRIBE COL MINIMUM VALUE, if it knows what
the minimum data value of the column is. The server can use this information during
optimization.

The UDF canuse EXTFNAPIV4 DESCRIBE COL_TYPE to determine the data type of the
column, and EXTFNAPIV4 DESCRIBE COL WIDTH to determine the storage
requirements of the column, to provide an equivalently sized buffer to hold the value to set.

Returns
Onsuums&rmunwthedescribe_buffer_length,Oh

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - if the attribute cannot be set.
Returned if the column was not involved in the query or the minimum value was not
available for the requested column.

On failure, returns one of the generic describe column errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned, if the
describe buffer is not large enough to hold the minimum value.

* EXTFNAPIV4 DESCRIBE INVALID STATE — seterror returned, if the state is not
equal to Optimization.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned, if the
arg_num is not 0.

Query Processing States
Valid in:

e Optimization state

User-Defined Functions 237

API Reference for a_v4_extfn

Example

The PROCEDURE definition and UDF code fragment that implements the
_describe extfn callback API function:

CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2 INT))

RESULTS (rl INT, r2 INT, r3 INT)
EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);
select * from my tpf('test', TABLE(select x,y from T))

This example shows a TPF where it is useful to the server (or to another TPF that takes the
result of this TPF as input) to know the minimum value of result set column one. In this
instance, the minimum output value of column one is 27.

my tpf describe(a v4 extfn proc context *cntxt)

{
if (cntxt->current state == EXTFNAPIV4 STATE OPTIMIZATION) ({

a sqgl int32 min_vaiue = 27;
a sgl int32 ret = 0;

// Tell the server what the minimum value of the first column
// of our result set will be.

ret = cntxt->describe column set(cntxt, 0, 1
EXTFNAPIV4 DESCRIBE COL MINIMUM VALUE,
&min value,
sizeof (a _sgl int32));

if(ret < 0) {
// Handle the error.

See also

e Query Processing States on page 121

o EXTFNAPIV4_DESCRIBE COL_MINIMUM_VALUE (Get) on page 221
o EXTFNAPIV4 DESCRIBE COL TYPE (Set)on page 228

o EXTFNAPIV4_DESCRIBE_COL_TYPE (Get)on page 211

o EXTFNAPIV4_DESCRIBE COL_WIDTH (Set) on page 229

» EXTFNAPIV4 DESCRIBE COL WIDTH (Get)on page 212

» Generic describe_column Errors on page 325

238

SAP Sybase 1Q

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE COL MAXIMUM_ VALUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE attribute indicates the maximum
value for the column. Used in a describe column_set scenario.

Data Type

an_extfn value

Description
The maximum value for a column. This property is valid only for argument 0 and table
arguments.

Usage

The UDF can set EXTFNAPIV4 DESCRIBE COL MAXIMUM VALUE, if it knows what
the maximum data value of the column is. The server can use this information during
optimization.

The UDF canuse EXTFNAPIV4 DESCRIBE COL_TYPE to determine the data type of the
column, and EXTFNAPIV4 DESCRIBE COL WIDTH to determine the storage
requirements of the column, to provide an equivalently sized buffer to hold the value to set.

describe buffer lengthisthe sizeof () this buffer.

Returns
On success, returns the describe buffer length, if the value was set, or:

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - if the attribute could not be set.
Returned if the column was not involved in the query or the maximum value was not
available for the requested column.

On failure, returns one of the generic describe column errors, or:

* EXTEFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned, if the
describe buffer is not large enough to hold the maximum value.

* EXTFNAPIV4 DESCRIBE INVALID STATE — Seterror returned, if the query
processing state is not equal to Optimization.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned, if the
arg_num is not 0.

Query Processing States
Valid in:

e Optimization state
Example

The PROCEDURE definition and and UDF code fragment that implements the
_describe extfn callback API function:

User-Defined Functions 239

API Reference for a_v4_extfn

CREATE PROCEDURE my tpf(col char char(10), col table TABLE(cl INT,
c2 INT))

RESULTS (rl INT, r2 INT, r3 INT)

EXTERNAL ‘my tpf proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);
select * from my tpf('test', TABLE(select x,y from T))

This example shows a TPF where it is useful to the server (or to another TPF that takes the
result of this TPF as input) to know the maximum value of result set column one. In this
instance, the maximum output value of column one is 500000.
my tpf describe(a v4 extfn proc context *cntxt)
{
if (cntxt->current state == EXTFNAPIV4 STATE OPTIMIZATION) ({
a sql int32 max value = 500000;
a sqgl int32 ret = 0;

// Tell the server what the maximum value of the first column
// of our result set will be.

ret = cntxt->describe column_set(cntxt, 0, 1
EXTFNAPIV4 DESCRIBE COL MAXIMUM VALUE,
&émax value,
sizeof (a_sqgl int32));

if(ret < 0) {
// Handle the error.
}

See also

e Query Processing States on page 121

o EXTFNAPIV4_DESCRIBE COL_MAXIMUM_VALUE (Get) on page 223
o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 211

o EXTFNAPIV4 DESCRIBE COL TYPE (Set)on page 228

o EXTFNAPIV4_DESCRIBE COL_WIDTH (Get)on page 212

o EXTFNAPIV4_DESCRIBE COL_WIDTH (Set) on page 229

» Generic describe_column Errors on page 325

EXTENAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT (Set)
The EXTFNAPIV4A_DESCRIBE_COL_VALUES _SUBSET_OF_INPUT attribute sets a subset of
the values specified in an input column. Used ina describe column set scenario.

Data Type
a v4 extfn col subset of input

240

SAP Sybase 1Q

API Reference for a_v4_extfn

Description
Column values are a subset of the values specified in an input column.

Usage

Setting this describe attribute informs the query optimizer that the indicated column values are
a subset of those values specified in an input column. For example, consider a filter TPF that
consumes a table and filters out rows based on a function. In such a case, the return table is a
subset of the input table. Setting
EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT for the filter TPF optimizes
the query.

Returns
On success, returns the sizeof (a_v4 extfn col subset of input).

On failure, returns one of the generic describe column errors, or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - seterror returned if the
buffer length is less than sizeof (a v4 extfn col subset of input).

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the column index of the source table is out of range.

* EXTFNAPIV4 DESCRIBE NOT AVAILABLE - seterror returned if the column
subset of input isseton is not aplicable (for example, if the column is not in the
select list).

* EXTFNAPIV4 DESCRIBE INVAILD STATE —seterror returned if the query
processing state is not Optimization.

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - set error returned if the
buffer length is zero.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER -seterror returned if called ona
parameter other than the return table.

Query Processing States
Valid in:

e Optimization state

Example

a v4 extfn col subset of input colMap;

colMap.source table parameter arg num = 4;
colMap.source column number = 1i;

desc rc = ctx->describe column set(ctx,
0, i,
EXTFNAPIV4 DESCRIBE COL VALUES SUBSET OF INPUT,
&colMap, sizeof(a v4 extfn col subset of input));

User-Defined Functions 241

API Reference for a_v4_extfn

See also

o EXTFNAPIV4_DESCRIBE COL_VALUES SUBSET_OF INPUT (Get)on page 225
e Generic describe_column Errors on page 325

e Query Processing States on page 121

*describe parameter get

The describe parameter get v4 APl method gets UDF parameter properties from
the server.

Declaration
a sgl int32 (SQL CALLBACK *describe parameter get) (
a v4 extfn proc context *cntxt,
a sgl uint32 arg_num,
a v4 extfn describe udf type describe type,
const void *describe buffer,
size t describe buffer len);
Parameters
Parameter Description
cntxt The procedure context object.
arg_num The ordinal of the TABLE parameter (0 is for the
result table and 1 is for first input argument)
describe_type A selector indicating what property to set.
describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.
describe_buffer_length The length, in bytes, of the describe_buffer.
Returns

On success, returns 0 or the number of bytes written to the describe_buffer. A value of 0
indicates that the server was unable to get the attribute, but no error condition occurred. If an
error occurred, or no property was retrieved, this function returns one of the generic
describe_parameter errors.

Attributes for *describe parameter get
Code showing the attributes for describe parameter get.

typedef enum a v4 extfn describe parm type {
EXTFNAPIV4 DESCRIBE PARM NAME,
EXTFNAPIV4 DESCRIBE PARM TYPE,

242

SAP Sybase 1Q

API Reference for a_v4_extfn

EXTFNAPIV4 DESCRIBE PARM WIDTH,
EXTFNAPIV4 DESCRIBE PARM SCALE,
EXTFNAPIV4 DESCRIBE PARM CAN BE NULL,
EXTFNAPIV4 DESCRIBE PARM DISTINCT VALUES,
EXTFNAPIV4 DESCRIBE PARM IS CONSTANT,
EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE,

EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS,
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS,
EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND,
EXTFNAPIV4 DESCRIBE PARM TABLE HAS REWIND,
EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS,

} a v4 extfn describe parm type;

EXTENAPIV4 DESCRIBE PARM NAME Attribute (Get)
The EXTFNAPIV4 DESCRIBE_PARM NAME attribute indicates the parameter name.
Used inadescribe parameter get scenario.

Data Type
char[]

Description
The name of a parameter to a UDF.

Usage
Gets the parameter name as defined in the CREATE PROCEDURE statement. Invalid for
parameter 0.

Returns
On success, returns the length of the parameter name.

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —geterror returned if the
describe_buffer is not large enough to hold the name.

* EXTEFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —get error returned if the
parameter is the result table.

Query Processing Phases
Valid in:

« Annotation phase
* Query optimization phase

User-Defined Functions 243

API Reference for a_v4_extfn

e Plan building phase
« Execution phase

See also

o EXTFNAPIV4 _DESCRIBE PARM_NAME Attribute (Set) on page 262
o Generic describe_parameter Errors on page 326

» Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TYPE Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TYPE attribute returns the data type in a
describe parameter get scenario.

Data Type
a _sql data type

Description
The data type of a parameter to a UDF.

Usage
Gets the data type of the parameter as defined in the CREATE PROCEDURE statement.

Returns
On success, returns sizeof (a_sqgl data_ type).

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the sizeof (a_sqgl data type).

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases
Valid in:

« Annotation phase

* Query Optimization phase
e Plan Building phase

« Execution phase

See also

o EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Set) on page 263
» Generic describe_parameter Errors on page 326

e Query Processing States on page 121

244 SAP Sybase IQ

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE PARM WIDTH Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_WIDTH attribute indicates the width of a parameter.
Used inadescribe parameter get scenario.

Data Type
a_sql uint32

Description

The width of a parameter to a UDF. EXTFNAPIV4 DESCRIBE PARM WIDTH applies
only to scalar parameters. Parameter width is the amount of storage, in bytes, required to store
a parameter of the associated data type.

» Fixed length data types— the bytes required to store the data.

* Variablelength data types—the maximum length.

L OB data types —the amount of storage required to store a handle to the data.
TIME data types—the amount of storage required to store the encoded time.

Usage
Gets the width of the parameter as defined in the CREATE PROCEDURE statement.

Returns
Onsumms&rﬂunwthesizeof(a_sql_uint32)

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the size of a_sgl uint32

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —get error returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter 7
where nis an input table.

Query Processing Phases
Valid in:

* Annotation phase

* Query Optimization phase
e Plan Building phase

e Execution phase

Example
Sample procedure definition:

User-Defined Functions 245

API Reference for a_v4_extfn

CREATE PROCEDURE my udf (IN pl INT, IN p2 char(100))
RESULT (x INT)
EXTERNAL NAME ‘my udf@myudflib’;

Sample describe extfn API function code fragment:

my udf describe(a v4 extfn proc context *cntxt)

{

if (cntxt->current state == EXTFNAPIV4 STATE OPTIMIZATION)

a sgl uint32 width = 0;
a sqgl int32 ret = 0;

// Get the width of parameter 1

ret = cntxt->describe parameter get(cntxt, 1,
EXTFNAPIV4 DESCRIBE PARM WIDTH,
s&width,

sizeof (a_sgl uint32));

if(ret < 0) {
// Handle the error.
}

//Allocate some storage based on parameter width
a_sql byte *p = (a_sqgl byte *)cntxt->alloc(cntxt,

// Get the width of parameter 2
ret = cntxt->describe parameter get(cntxt, 2,
EXTFNAPIV4 DESCRIBE PARM WIDTH,
&width,
sizeof (a_sgl uint32));
if(ret <= 0) {
// Handle the error.
}

// Allocate some storage based on parameter width
char *c = (char *)cntxt->alloc(cntxt, width)

See also

EXTENAPIV4 DESCRIBE PARM SCALE Attribute (Get)

width)

EXTFNAPIV4 DESCRIBE PARM _WIDTH Attribute (Set) on page 264
Generic describe_parameter Errors on page 326
Query Processing States on page 121

The EXTFNAPIV4_DESCRIBE_PARM_SCALE attribute indicates the scale of a parameter.
Used ina describe parameter get scenario.

Data Type
a sgl uint32

246

SAP Sybase 1Q

API Reference for a_v4_extfn

Description
The scale of a parameter to a UDF. For arithmetic data types, parameter scale is the number of
digits to the right of the decimal point in a number.

This attribute is not valid for:

e non-arithmetic data types
e TABLE parameters

Usage
Gets the scale of the parameter as defined in the CREATE PROCEDURE statement.

Returns
On success, returns the size of (a_sgl uint32).

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the size of a_sql uint32.

* EXTFNAPIV4 DESCRIBE INVALID STATE — get error returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —geterror returned if the
specified parameter is a TABLE parameter. This includes parameter O, or parameter »
where nis an input table.

Query Processing Phases
Valid in:

» Annotation phase

e Query Optimization phase
e Plan Building phase

« Execution phase

Example
Sample describe extfn API function code fragment that gets the scale of parameter
1:
if (cntxt->current state > EXTFNAPIV4 STATE ANNOTATION) ({
a sgl uint32 scale = 0;
a sgl int32 ret = 0;

ret = ctx->describe parameter get(ctx, 1,
EXTFNAPIV4 DESCRIBE PARM SCALE,
&scale, sizeof(a sgl uint32));

if(ret <= 0) {
// Handle the error.

User-Defined Functions 247

API Reference for a_v4_extfn

}

See also

o EXTFNAPIV4 _DESCRIBE PARM_SCALE Attribute (Set) on page 265
o Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM CAN BE NULL Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL attribute indicates whether or not the
parameter is null. Used in a describe parameter get scenario.

Data Type
a_sql byte

Description
True, if the value of a parameter can be NULL at the time of execution. For a TABLE
parameter or parameter O, the value is false.

Usage
Gets whether or not the specified parameter can be null during query execution.

Returns
Onsumms&FMUNEthesizeof(a_sql_byte)

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — Get error returned if the
describe_buffer is not the size of a_sql byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE - Get error returned if the query
processing phase is not greater than Plan Building.

Query Processing Phases
Valid in:

e Execution phase

Examples: EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL (Get)
Example procedure definitions, describe extfn APIfunctioncode fragment, and SQL
queries for getting EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL values.

Procedure Definition
Sample procedure definition used by the example queries in this topic:
CREATE PROCEDURE my_udf (IN p INT)

RESULT (x INT)
EXTERNAL NAME ‘my udf@myudflib’;

248

SAP Sybase 1Q

API Reference for a_v4_extfn

API Function Code Fragment

Sample describe extfn API function code fragment used by the example queries in
this topic:

my udf describe(a v4 extfn proc context *cntxt)

{

if (cntxt->current state > EXTFNAPIV4 STATE OPTIMIZATION) ({
a_sql byte can be null = 0;
a sgl int32 ret = 0;

ret = cntxt->describe parameter get(cntxt, 1,
EXTFNAPIV4 DESCRIBE PARM CAN BE NULL,

&can_be null,

sizeof (a_sqgl byte));

if(ret <= 0) {
// Handle the error.
}

Example 1: Without NOT NULL

This example creates a table with a single integer column without the NOT NULL modifier
specified. The correlated subquery passes in column ¢ from the table has nulls. When
the procedure my_udf_describe is called during the Execution state, the call to
describe parameter get populates can_be_null with a value of 1.

CREATE TABLE has nulls (cl INT);

INSERT INTO has nulls VALUES (1) ;

INSERT INTO has nulls VALUES (NULL) ;

SELECT * from hgs_nulls WHERE (SELECT sum(my udf.x) FROM
my udf (has nulls.cl)) > 0;

Example 2: With NOT NULL

This example creates a table with a single integer column with the NOT NULL modifier
specified. The correlated subquery passes in column ¢ from the table no_nulls. Whenthe
procedure my_udf_describe is called during the Execution state, the call to

describe parameter get populates can_be_null with a value of 0.

CREATE TABLE no nulls (cl INT NOT NULL) ;

INSERT INTO no nulls VALUES (1);

INSERT INTO no nulls VALUES (2);

SELECT * from no nulls WHERE (SELECT sum(my udf.x) FROM

my udf (no nulls.cl)) > 0;

Example 3: With a Constant

This example calls the procedure my_udf with a constant. When the procedure
my_udf_describe is called, during the Execution state, the call to

describe parameter get populates can_be_null with a value of 0.

User-Defined Functions 249

API Reference for a_v4_extfn

SELECT * from my udf (5);

Example 4: With a NULL

This example calls the procedure my_udf with a NULL. When the procedure
my_udf_describe is called, during the Execution state, the call to
describe parameter get populates can_be_null with a value of 1.

SELECT * from my udf (NULL) ;

EXTENAPIV4 DESCRIBE PARM DISTINCT VALUES Attribute (Get)
The EXTFNAPIV4A_DESCRIBE_PARM_DISTINCT_VALUES attribute returns the number of
distinct values. Used ina describe parameter get scenario.

Data Type
a v4d extfn estimate

Description
Returns the estimated number of distinct values across all invocations. valid only for scalar
parameters.

Usage

If this information is available, the UDF returns the estimated number of distinct values with
100% confidence. If the information is not available, the UDF returns an estimate of O with 0%
confidence.

Returns
Onsuum%,mnunsmesizeof(a_v4_extfn_estimatey

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer isnot the sizeof a_v4 extfn estimate

* EXTFNAPIV4 DESCRIBE INVALID STATE — geterror returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - geterror returned if the
parameter is a TABLE parameter.

Query Processing Phases
Valid in:

e Annotation phase

e Query Optimization phase
e Plan Building phase

« Execution phase

250

SAP Sybase 1Q

API Reference for a_v4_extfn

Example
Sample describe extfn API function code fragment:

if(ctx->current state >= EXTFNAPIV475TATE7ANNOTATION) {
desc_est.value = 0.0;
desc_est.confidence = 0.0;

desc_rc = ctx->describe parameter get(ctx,

1,
EXTFNAPIV4 DESCRIBE PARM DISTINCT VALUES,
&desc est, sizeof(a v4 extfn estimate));

See also

o EXTFNAPIV4_DESCRIBE _PARM_DISTINCT_VALUES Attribute (Set) on page
267

o EXTFNAPIV4_DESCRIBE _PARM_TYPE Attribute (Get) on page 244
e Generic describe_parameter Errors on page 326
* Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM IS CONSTANT Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM DISTINCT VALUES attribute returns whether or
not the parameter is constant. Used in a describe parameter get scenario.

Data Type
a _sql byte

Description
True, if the parameter is a constant for the statement. Valid only for scalar parameters.

Usage
Returns 0 if the value of the specified parameter is not a constant; returns 1 if the value of the
specified parameter is a constant.

Returns
On success, returns the sizeof (a_sql byte).

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the size of a_sqgl byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

* EXTEFNAPIV4 DESCRIBE INVALID PARAMETER — get error returned if the
parameter is a TABLE parameter.

User-Defined Functions 251

API Reference for a_v4_extfn

Query Processing Phases
Valid in:

« Annotation phase

¢ Query Optimization phase
* Plan Building phase

« Execution phase

Example
Sample describe extfn API function code fragment:

if (ctx->current state >= EXTFNAPIV4 STATE ANNOTATION) {
desc_rc = ctx->describe parameter get(ctx,
1,
EXTFNAPIV4 DESCRIBE PARM IS CONSTANT,
&desc_byte, sizeof(a _sqgl byte));

See also

o EXTFNAPIV4_DESCRIBE PARM IS CONSTANT Attribute (Set) on page 267
o EXTFNAPIV4_DESCRIBE PARM_TYPE Attribute (Set) on page 263

e Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM CONSTANT VALUE Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE attribute indicates the value of
the parameter. Used ina describe parameter get scenario.

Data Type
an_extfn value

Description
The value of the parameter if it is known at describe time. Valid only for scalar parameters.

Usage
Returns the value of the parameters.

Returns
On success, returns the sizeof (an_extfn value) if the value is available, or:

* EXTFNAPIV4 DESCRIBE NOT AVILABLE - Value returned if the value is not
constant.

On failure, returns one of the generic describe parameter errors or:

252

SAP Sybase 1Q

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the size of an_extfn value

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the phase is not
greater than Initial.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —get error returned if the
parameter is a TABLE parameter.

Query Processing Phases
Valid in:

« Annotation phase

e Query Optimization phase
e Plan Building phase

« Execution phase

Example
Sample describe extfn API function code fragment:

if (ctx->current state >= EXTFNAPIV4 STATE ANNOTATION) {
a sgl int32 desc_rc;
desc_rc = ctx->describe parameter get(ctx,
1,
EXTFNAPIV4 DESCRIBE PARM CONSTANT VALUE,
&arg,
sizeof (an _extfn value));

}

See also

o EXTFNAPIV4_DESCRIBE PARM_IS CONSTANT Alttribute (Set) on page 267
o EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Get) on page 244

» Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE NUM COLUMNS Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS attribute indicates the
number of columns in the table. Used ina describe parameter get scenario.

Data Type
a sgl uint32

Description
The number of columns in the table. Only valid for argument 0 and table arguments.

Usage
Returns the number of columns in the specified table argument. Argument O returns the
number of columns in the result table.

User-Defined Functions 253

API Reference for a_v4_extfn

Returns
On success, returns the sizeof (a_sgl uint32).

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the size of size of a sqgl uint32

* EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER —get error returned if the
parameter is not a TABLE parameter.

Query Processing Phases
Valid in:

« Annotation phase

e Query Optimization phase
* Plan Building phase

« Execution phase

See also

o EXTFNAPIV4 DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Set) on
page 268

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE NUM ROWS Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS attribute indicates the
number of rows in the table. Used in a describe parameter get scenario.

Data Type
a v4 extfn estimate

Description
The estimated number of rows in the table. Only valid for argument 0 and table arguments.

Usage
Returns the estimated number of rows in the specified table argument or result set with a
confidence of 100%.

Returns
On success, returns the size of a_v4 extfn estimate.

On failure, returns one of the generic describe parameter errors or:

254 SAP Sybase IQ

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer isnot the sizeof a_v4 extfn estimate.

* EXTFNAPIV4 DESCRIBE INVALID STATE —geterror returned if the query
processing phase is not greater than Initial.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER —get error returned if the
parameter is not a TABLE parameter.

Query Processing Phases
Valid in:

« Annotation phase

e Query Optimization phase
e Plan Building phase

« Execution phase

See also

o EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Aftribute (Set) on page
269

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE ORDERBY Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY attribute indicates the order of
rows in the table. Used in a describe parameter get scenario.

Data Type
a v4 extfn orderby list

Description
The order of rows in the table. This property is only valid for argument 0 and table arguments.

Usage
This attribute allows the UDF code to:

e Determine if the input TABLE parameter has been ordered
» Declare that the result set is ordered

If the parameter number is 0, then the attribute refers to the outbound result set. If the
parameter is > 0 and the parameter type is a table then the attribute refers to the input TABLE
parameter.

The order is specified by the a_v4 extfn orderby list,which isa structure
supporting a list of column ordinals and their associated ascending or descending property. If
the UDF sets the order by property for the outbound result set, the server is then able to
perform order by optimizations. For example, if the UDF produced ascending order on the

User-Defined Functions 255

API Reference for a_v4_extfn

first result set column, the server will eliminate a redundant order by request on the same
column.

If the UDF does not set the orderby property on the outbound result set, the server assumes the
data is not ordered.

If the UDF sets the orderby property on the input TABLE parameter, the server guarantees data
ordering for the input data. In this scenario, the UDF describes to the server that the input data
must be ordered. If the server detects a runtime conflict it raises a SQL exception. For
example, when the UDF describes that the first column of the input TABLE parameter must
have ascending order and the SQL statement contains a descending clause, the server raises a
SQL exception.

In the event that the SQL did not contain an ordering clause, the server automatically adds the
ordering to ensure that input TABLE parameter is ordered as required.

Returns
If successful, returns the number of bytes copied froma_v4 extfn orderby list.

Query Processing States
Valid in:

* Annotation state

* Query optimization state

See also
o EXTFNAPIV4_DESCRIBE PARM_TABLE ORDERBY Alttribute (Set) on page 270
» Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE PARTITIONBY (Get)
The EXTFNAPTV4 DESCRIBE_PARM TABLE PARTITIONBY attribute indicates that
the UDF requires partitioning. Used in a describe parameter get scenario.

Data Type
a v4 extfn column list

Description
UDF developers use EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY to
programmatically declare that the UDF requires partitioning before invocation can proceed.

Usage

The UDF can inquire to the partition to enforce it, or to dynamically adapt the partitioning. Itis
the UDF's responsibility to allocate the a_v4_extfn_column_list, taking into consideration the
total number of columns in the input table, and sending that data to the server.

256

SAP Sybase 1Q

API Reference for a_v4_extfn

Returns
On success, returns the size of a_v4 extfn column_ list. This value is equal to:

sizeof (a v4 extfn column list) + sizeof(a sqgl uint32) *
number of partition columns

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - geterror returned if the
buffer length is less than the expected size.

Query Processing Phases
Valid in:

e Query Optimization phase
e Plan Building phase

« Execution phase

Example
void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
*ctx)
{
if (ctx->current state == EXTFNAPIV4 STATE OPTIMIZATION) {
a sgl uint32 col count = 0z
a sgl uint32 buffer size = 0;
a_v4_extfn_column_list *clist = NULL;
col count = 3; // Set to the max number of possible pby
columns

buffer size = sizeof(a v4 extfn column list) + (col count -
1) * sizeof(a _sgl uint32);

clist = (a v4 extfn column list *)ctx->alloc(ctx,
buffer size);

clist->number of columns = 0;
clist->column indexes[0] = 0;
clist->column indexes[1l] = 0;
clist->column indexes([2] = 0;
args->r api rc = ctx->describe parameter get(ctx,

args—->p3_arg num,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
clist,
buffer size);

See also
o EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Set)on page 272

User-Defined Functions 257

API Reference for a_v4_extfn

e Generic describe_parameter Errors on page 326

» V4 API describe_parameter and
EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 141

* Parallel TPF PARTITION BY Examples Using
EXTFNAPIV4_DESCRIBE PARM_TABLE FPARTITIONBY on page 143

e Query Processing States on page 121
e Partitioning Input Data on page 140

EXTENAPIV4 DESCRIBE PARM TABLE REQUEST REWIND Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND attribute indicates
that the consumer requests rewind of an input table. Used in a

describe parameter get scenario.

Data Type
a_sqgl byte

Description
Indicates that the consumer wants to rewind an input table. Valid only for table input
arguments. By default, this property is false.

Usage
The UDF queries this property to retrieve the true/false value.

Returns
On success, returns sizeof (a_sgl byte).

On failure, returns one of the generic describe parameter errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not the size of a_sql byte.

e EXTFNAPIV4 DESCRIBE INVALID STATE —get error returned if the phase is not
Optimization or Plan Building.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - geterror returned if the UDF
attempts to get this attribute on parameter 0.

* EXTENAPIV4 DESCRIBE NON TABLE PARAMETER — get error returned if the
UDF attempts to get this attribute on a parameter that is not a table.

Query Processing Phases
Valid in:

e Optimization phase

¢ Plan Building phase

258

SAP Sybase 1Q

API Reference for a_v4_extfn

?eg(lsr/c-)‘NA PIV4_DESCRIBE_PARM_TABLE REQUEST REWIND Attribute (Set) on
f) ag eEf(7 ﬁFNAP/ V4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Set) on page
?755)(TFNAPIV4_DESCRIBE PARM_TABLE_HAS REWIND Attribute (Get) on page
0259_rewina’_ extfnon page 323

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE_PARM TABLE HAS REWIND Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM TABLE HAS REWIND attribute indicates if the
parameter supports rewind. Used in a describe parameter get scenario.

Data Type
a_sql byte

Description
Indicates whether a producer can support rewind. Valid only for table arguments.

You must also provide an implementation of the rewind table callback (_rewind_extfn()) if
you plan on setting DESCRIBE_PARM TABLE HAS REWIND to true. The server will
fail to execute the UDF if the callback method is not provided.

Usage

The UDF asks if a table input argument supports rewind. As a prerequisite, the UDF must
request rewind using DESCRIBE_PARM_TABLE_REQUEST_REWIND before you can use
this property.

Returns
On success, returns sizeof (a_sgl byte).

On failure, returns one of the generic describe parameter errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH — get error returned if the
describe_buffer is not the size of a_sqgl byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE — get error error returned if the query
processing phase is not greater than Annotation.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER —get error returned if the
UDF attempts to get this attribute on a parameter that is not a table.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —geterror returned if the UDF
attempts to get this attribute on the result table.

Query Processing Phases
Valid in:

User-Defined Functions 259

API Reference for a_v4_extfn

e Optimization phase
e Plan Building phase
« Execution phase

See also

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Get) on
page 258

o EXTFNAPIV4 DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Set)on
page 273

o EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Set) on page
275

e _rewind extfnon page 323

* Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS Attribute (Get)
The EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS attribute lists
unconsumed columns. Used ina describe parameter get scenario.

Data Type
a v4 extfn column list

Description
The list of output table columns that are not going to be consumed by the server or the UDF.

For the output TABLE parameter, the UDF normally produces the data for all the columns, and
the server consumes all the columns. The same holds true for the input TABLE parameter
where the server normally produces the data for all the columns, and the UDF consumes all the
columns.

However, in some cases the server, or the UDF, may not consume all the columns. The best
practice in such a case is for the UDF to perform a GET for the output table on the describe
attribute EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS. This action
queries the server for the list of output table columns that are not going to be consumed by the
server. The list can then be used by the UDF when populating the column data for the output
table; that is, the UDF does not attemp to populate data for unused columns.

In summary, for the output table the UDF polls the list of unused columns. For the input table,
the UDF pushes the list of unused columns.

Usage

The UDF asks the server if all the columns of the output table are going to be used. The UDF
must allocate aa v4 extfn column list thatincludes all the columns of the output
table, and then must pass it to the server. The server then marks all the unprojected column
ordinals as 1. The list returned by the server can be used while producing the data.

260

SAP Sybase 1Q

API Reference for a_v4_extfn

Returns
On success, returns the size of the column list: sizeof (a_v4 extfn column list)
+ sizeof (a_sgl uint32) * number result columns.

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE INVALID STATE — geterror returned if the query
processing phase is not greater than Plan Building.

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe_buffer is not large enough to hold the returned list.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —get error returned if the UDF
attempts to get this attribute on an input table.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER — get error returned if the
UDF attempts to get this attribute on a parameter that is not a table.

Query Processing Phases
Valid in:

« Execution phase
See also

o EXTFNAPIV4_DESCRIBE_PARM_TABLE UNUSED_COLUMNS Afttribute (Set)on
page 276

*describe parameter set
Thedescribe parameter set v4 APl method sets propertiesaboutasingle parameter

to the UDF.
Declaration
a sgl int32 (SQL CALLBACK *describe parameter set) (
a v4 extfn proc context *cntxt,
a sgl uint32 arg_num,
a v4 extfn describe udf type describe type,
const void *describe buffer,
size t describe buffer len);
Parameters
Parameter Description
cntxt The procedure context object.
arg_num The ordinal of the TABLE parameter (0 is for the
result table and 1 is for first input argument)

User-Defined Functions 261

API Reference for a_v4_extfn

Parameter Description
describe_type A selector indicating what property to set.
describe_buffer A structure that holds the describe information

for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.

describe_buffer_length The length in bytes of the describe_buffer.

Returns

On success, returns 0 or the number of bytes written to the describe_buffer. A value of 0
indicates that the server was unable to set the attribute, but no error condition occurred. If an
error occurred, or no property was retrieved, this function returns one of the generic
describe_parameter errors.

Attributes for *describe parameter set
Code showing the attributes for describe parameter set.

typedef enum a v4 extfn describe parm type {
EXTFNAPIV4 DESCRIBE PARM NAME,
EXTFNAPIV4 DESCRIBE PARM TYPE,
EXTFNAPIV4 DESCRIBE PARM WIDTH,
EXTFNAPIV4 DESCRIBE PARM SCALE,
EXTFNAPIV4 DESCRIBE PARM CAN BE NULL,
EXTFNAPIV4 DESCRIBE PARM DISTINCT VALUES,
EXTFNAPIV4 DESCRIBE PARM Is CONSTANT
EXTFNAPIV4 DESCRIBE PARM CONSTANT ~ VALUE,

EXTFNAPIV4 DESCRIBE_PARM TABLE_NUM COLUMNS,
EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS,
EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY,
EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY,
EXTFNAPIV4 DESCRIBE_ PARM TABLE REQUEST REWIND,
EXTFNAPIV4 DESCRIBE PARM TABLE HAS REWIND,
EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS,

} a v4 extfn describe parm type;

EXTENAPIV4 DESCRIBE PARM NAME Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM NAME attribute indicates the parameter name.
Used inadescribe parameter set scenario.

Data Type
char[]

Description
The name of a parameter to a UDF.

262

SAP Sybase 1Q

API Reference for a_v4_extfn

Usage

If the UDF sets this property, the server compares the value with the name of the parameter
supplied in the CREATE PROCEDURE statement. If the two values do not match, the server
returns an error. This allows the UDF to ensure the CREATE PROCEDURE statement has the
same parameter names as the UDF is expecting.

Returns
On success, returns the length of the parameter name.

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the state is not
equal to Annotation.

* EXTFNAPIV4 DESCRIBE_ INVALID PARAMETER - seterror returned if the
parameter is the result table.

* EXTFNAPI4 DESCRIBE_ INVALID ATTRIBUTE VALUE —seterror returned if the
UDF tries to reset the name.

Query Processing States
Valid in:

« Annotation state

See also

EXTFNAPIV4 _DESCRIBE PARM_NAME Attribute (Get) on page 243
e Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TYPE Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM TYPE attribute indicates the data type of the
parameter. Used ina describe parameter set scenario.

Data Type
a _sql data type

Description
The data type of a parameter to a UDF.

Usage

When the UDF sets this property, the server compares the value to the parameter type supplied
in the CREATE PROCEDURE statement. If the two values do not match, the server returns an
error. This check ensures that the CREATE PROCEDURE statement has the same parameter
data types that the UDF expects.

User-Defined Functions 263

API Reference for a_v4_extfn

Returns
On success, returns sizeof (a_sqgl data type).

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - seterror returned if the
describe_buffer isnot the sizeof (a_sqgl data type).

* EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the query
processing state is not equal to Annotation.

* EXTFNAPI4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if the
UDF tries to set the datatype of a parameter to something other than what it is already
defined as.

Query Processing States
Valid in:

* Annotation state

See also

o EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Get) on page 244
o Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM WIDTH Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_WIDTH attribute indicates the width of a parameter.
Used inadescribe parameter set scenario.

Data Type
a sqgl uint32

Description

The width of a parameter to a UDF. EXTFNAPIV4 DESCRIBE PARM WIDTH applies
only to scalar parameters. Parameter width is the amount of storage, in bytes, required to store
a parameter of the associated data type.

* Fixed length data types— the bytes required to store the data.

* Variablelength data types—the maximum length.

* LOB datatypes—the amount of storage required to store a handle to the data.
* TIME datatypes—the amount of storage required to store the encoded time.

Usage
This is aread-only property. The width is derived from the associated column data type. Once
the data type is set, you cannot change the width.

264

SAP Sybase 1Q

API Reference for a_v4_extfn

Returns
On success, returns the sizeof (a_sgl uint32).

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the query
processing state is not equal to Annotation.

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned if the
describe_buffer is not the size of a_sql uint32

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter 7,
where nis an input table.

* EXTFNAPI4 DESCRIBE INVALID ATTRIBUTE VALUE - seterrorreturned if the
UDF tries to reset the parameter width.

Query Processing States
Valid in:

* Annotation state

See also

o EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Get) on page 245
» Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM SCALE Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_SCALE attribute indicates the scale of a parameter.
Used inadescribe parameter set scenario.

Data Type
a_sqgl uint32

Description
The scale of a parameter to a UDF. For arithmetic data types, parameter scale is the number of
digits to the right of the decimal point in a number.

This attribute is invalid for:
* Nonarithmetic data types
e TABLE parameters

Usage
This is a read-only property. The scale is derived from the associated column data type. Once
the data type is set, you cannot change the scale.

User-Defined Functions 265

API Reference for a_v4_extfn

Returns
On success, returns sizeof (a_sgl uint32).

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned if the
describe_buffer is not the size of a_sql uint32.

* EXTFNAPIV4 DESCRIBE_INVALID STATE - seterror returned if the state is not
Annotation.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter 7,
where nis an input table.

Query Processing States
Valid in:

* Annotation state

See also

o EXTFNAPIV4 DESCRIBE PARM _SCALE Attribute (Get) on page 246
» Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM CAN BE NULL Attribute (Set)

The EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL attribute returns whether or not the
parameter is null. Using this attribute in a describe parameter set scenario returns
an error.

Data Type
a sql byte

Description
True, if the value of a parameter can be NULL at the time of execution. For a TABLE
parameter or parameter O, the value is false.

Usage
This is a read-only property.

Returns
This is a read-only property, so all attempts to set result in an
EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE error.

Query Processing States
Not applicable.

266 SAP Sybase IQ

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE PARM DISTINCT VALUES Attribute (Set)

The EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES attribute returns the number of
distinct values. Using this attribute ina describe parameter set scenario returnsan
error.

Data Type
a v4 extfn estimate

Description
Returns the estimated number of distinct values across all invocations. valid only for scalar
parameters.

Usage
This is a read-only property.

Returns
This is a read-only property; all attempts to set result in an
EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE error.

Query Processing States
Not applicable.

See also

« EXTFNAPIV4_DESCRIBE PARM DISTINCT VALUES Attribute (Get) on page
250

o EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Get) on page 244

» Generic describe_parameter Errors on page 326

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM IS CONSTANT Attribute (Set)

The EXTFNAPIV4 DESCRIBE PARM DISTINCT VALUES attribute returns whether or
not the parameter is constant. Using this attribute in a describe parameter set
scenario returns an error.

Data Type
a_sqgl byte

Description
True, if the parameter is a constant for the statement. Valid only for scalar parameters.

Usage
This is a read-only property.

User-Defined Functions 267

API Reference for a_v4_extfn

Returns
This is a read-only property; all attempts to set result in an
EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE error.

Query Processing States
Not applicable.

See also

o EXTFNAPIV4_DESCRIBE PARM_ IS _CONSTANT Attribute (Get) on page 251
o EXTFNAPIV4 DESCRIBE PARM_TYPE Attribute (Set) on page 263

e Generic describe_parameter Errors on page 326

» Query Processing States on page 121

« EXTFNAPIV4 DESCRIBE PARM_CONSTANT VALUE Attribute (Get) on page
252

« EXTFNAPIV4_DESCRIBE PARM._TYPE Attribute (Get) on page 244

EXTENAPIV4 DESCRIBE PARM CONSTANT VALUE Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE attribute indicates the value of
the parameter. Used ina describe parameter set scenario.

Data Type
an_extfn value

Description
The value of the parameter if it is known at describe time. Valid only for scalar parameters.

Usage
This is a read-only property.

Returns
This is a read-only property; all attempts to set result in an
EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE error.

Query Processing States
Not applicable.

EXTENAPIV4 DESCRIBE PARM TABLE NUM COLUMNS Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS attribute indicates the
number of columns in the table. Used ina describe parameter set scenario.

Data Type
a sgl uint32

268

SAP Sybase 1Q

API Reference for a_v4_extfn

Description
The number of columns in the table. Only valid for argument 0 and table arguments.

Usage

If the UDF sets this property, the server compares the value with the name of the parameter
supplied in the CREATE PROCEDURE statement. If the two values do not match, the server
returns an error. This allows the UDF to ensure the CREATE PROCEDURE statement has the
same parameter names as the UDF is expecting.

Returns
On success, returns the sizeof (a_sgl uint32).

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - seterror returned if the
describe_buffer is not the size of size of a sqgl uint32

* EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the state is not
ANNOTATION.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER - seterror returned if the
parameter is not a TABLE parameter.

* EXTFNAPI4 DESCRIBE_INVALID ATTRIBUTE VALUE - seterror returned if the
UDF tries to reset the number of columns of the specified table.

Query Processing States
Valid in:

* Annotation state

See also

o EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Get) on
page 253

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE NUM ROWS Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM TABLE NUM ROWS attribute indicates the
number of rows in the table. Used in a describe parameter set scenario.

Data Type
a sql a v4 extfn estimate

Description
The estimated number of rows in the table. Only valid for argument 0 and table arguments.

User-Defined Functions 269

API Reference for a_v4_extfn

Usage

The UDF sets this property for argument 0 if it estimates the number of rows in the result set.
The server uses the estimate during optimization to make query processing decisions. You
cannot set this value for an input table.

If you do not set a value, the server defaults to the number of rows specified by the
DEFAULT_TABLE_UDF_ROW_COUNT option.

Returns
Onsuums&renwnsa_v4_extfn_estimate.

On failure, returns one of the generic describe parameter errors or:

e EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - seterror returned if the
describe_buffer is not the size of a_v4 extfn estimate

* EXTFNAPIV4 DESCRIBE INVALID STATE - seterror returned if the state is not
Optimization.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER —get error returned if the
parameter is not a TABLE parameter.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER —get error returned if the
TABLE parameter is not the result table.

e EXTEFNAPI4 DESCRIBE INVALID ATTRIBUTE VALUE —geterror returned if the
UDF tries to reset the number of columns of the specified table.

Query Processing States
Valid in:

e Query Optimization state

See also
o EXTFNAPIV4 DESCRIBE PARM_TABLE NUM_ROWS Attribute (Get) on page
254

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE ORDERBY Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY attribute indicates the order of
rows in the table. Used in a describe parameter set scenario.

Data Type
a v4 extfn orderby list

Description
The order of rows in the table. This property is only valid for argument 0 and table arguments.

270

SAP Sybase 1Q

API Reference for a_v4_extfn

Usage
This attribute allows the UDF code to:

e Determine if the input TABLE parameter has been ordered
» Declare that the result set is ordered.

If the parameter number is 0, then the attribute refers to the outbound result set. If the
parameter is > 0 and the parameter type is a table then the attribute refers to the input TABLE
parameter.

The order is specified by the a v4 extfn orderby list, whichis a structure
supporting a list of column ordinals and their associated ascending or descending property. If
the UDF sets the order by property for the outbound result set, the server is then able to
perform order by optimizations. For example, if the UDF produced ascending order on the
first result set column, the server will eliminate a redundant order by request on the same
column.

If the UDF does not set the orderby property on the outbound result set, the server assumes the
data is not ordered.

If the UDF sets the orderby property on the input TABLE parameter, the server guarantees data
ordering for the input data. In this scenario, the UDF describes to the server that the input data
must be ordered. If the server detects a runtime conflict it raises a SQL exception. For
example, when the UDF describes that the first column of the input TABLE parameter must
have ascending order and the SQL statement contains a descending clause, the server raises a
SQL exception.

In the event that the SQL did not contain an ordering clause, the server automatically adds the
ordering to ensure that input TABLE parameter is ordered as required.

Returns
If successful, returns the number of bytes copied froma v4 extfn orderby list.

Query Processing States
Valid in:

< Annotation state

« Query optimization state

See also
o EXTFNAPIV4 DESCRIBE PARM_TABLE ORDERBY Attribute (Get)on page 255
e Query Processing States on page 121

User-Defined Functions 271

API Reference for a_v4_extfn

EXTENAPIV4 DESCRIBE PARM TABLE PARTITIONBY (Set)
The EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY attribute indicates that
the UDF requires partitioning. Used in a describe parameter set scenario.

Data Type
a v4 extfn column list

Description
UDF developers use EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY to
programmatically declare that the UDF requires partitioning before invocation can proceed.

Usage

The UDF can inquire to the partition to enforce it, or to dynamically adapt the partitioning.
The UDF must allocate the a_v4_extfn_column_list, taking into consideration the total
number of columns in the input table, and sending that data to the server.

Returns
On success, returns the size of a_v4 extfn column list. This value is equal to:

sizeof (a_v4 extfn column list) + sizeof(a sgl uint32) *
number of partition columns

On failure, returns one of the generic describe parameter errors or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - Seterror returned if the
buffer length is less than the expected size.

Query Processing States
Valid in:

« Annotation state

e Query Optimization state

Example

void UDF CALLBACK my tpf proc describe(a v4 extfn proc context
*ctx)
{
if (ctx->current state == EXTFNAPIV4 STATE ANNOTATION) {
a sql int32 reh =10/
a v4 extfn column list pbcol =
{1, // 1 column in the partition by list
2 }; // column index 2 requires partitioning

// Describe partitioning for argument 1 (the table)
rc = ctx->describe parameter set(

ctx, 1,

EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY,

&pbcol,

sizeof (pbcol));

272

SAP Sybase 1Q

API Reference for a_v4_extfn

if(rc ==) |
ctx->set error(ctx, 17000,
“Runtime error, unable set partitioning requirements for
column.”);
}
}

See also
o EXTFNAPIV4 DESCRIBE PARM TABLE PARTITIONBY (Get)on page 256
e Generic describe_parameter Errors on page 326

* V4 API describe_parameter and
EXTFNAPIV4_DESCRIBE FARM_TABLE PARTITIONBY on page 141

* Parallel TPF PARTITION BY Examples Using
EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY on page 143
e Query Processing States on page 121

e Partitioning Input Data on page 140

EXTENAPIV4 DESCRIBE PARM TABLE REQUEST REWIND Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND attribute indicates
that the consumer requests rewind of an input table. Used in a

describe parameter set scenario.

Data Type
a_sqgl byte

Description
Indicates that the consumer wants to rewind an input table. Valid only for table input
arguments. By default, this property is false.

Usage
If the UDF requires input table rewind capability, the UDF must set this property during
Optimization.

Returns
On success, returns sizeof (a_sgl byte).

On failure, returns one of the generic describe parameter errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —set error returned if the
describe_buffer is not the size of a_sqgl byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE — seterror returned if the state is not
equal to Optimization.

User-Defined Functions 273

API Reference for a_v4_extfn

* EXTFNAPIV4 DESCRIBE_ INVALID PARAMETER - seterror returned if the UDF
attempts to set this attribute on parameter 0.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER - seterror returned if the
UDF attempts to set this attribute on a parameter that is not a table.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

e Optimization state

Example

In this example, when the function my_udf_describe is called during the Optimization state,
thecalltodescribe parameter set informsthe producer of the table input parameter
1 that a rewind may be required.

Sample procedure definition:
CREATE PROCEDURE my udf (IN t TABLE (cl INT))

RESULT (x INT)
EXTERNAL NAME ‘my udf@myudflib’;

Sample describe extfn API function code fragment:

my udf describe(a v4 extfn proc context *cntxt)

{

if(cntxt->current state == EXTFNAPIV4 STATE OPTIMIZATION) {
a sgl byte rewind required = 1;

a sqgl int32 ret = 0;

ret = cntxt->describe parameter set(cntxt, 1,
EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND,
&rewind required,

sizeof (a_sqgl byte));

if(ret <= 0) {
// Handle the error.
}
}
}

See also

o EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND Attribute (Get)on
page 258

EXTFNAPIV4 _DESCRIBE PARM_TABLE HAS REWIND Afttribute (Set) on page
275

« EXTFNAPIV4 DESCRIBE PARM _TABLE HAS REWIND Attribute (Get) on page
259

e _rewind extfnon page 323

274

SAP Sybase 1Q

API Reference for a_v4_extfn

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE HAS REWIND Attribute (Set)
The EXTENAPIV4 DESCRIBE PARM TABLE HAS REWIND attribute indicates if the
parameter supports rewind. Used in a describe parameter set scenario.

Data Type
a_sqgl byte

Description
Indicates whether a producer can support rewind. Valid only for table arguments.

You must also provide an implementation of the rewind table callback (_rewind_extfn()), if
you plan on setting DESCRIBE_PARM TABLE HAS REWIND to true. The server cannot
execute the UDF if you do not provide the callback method.

Usage

A UDF sets this property during the Optimization state if it can provide rewind capability for
its result table at no cost. If it is expensive for the UDF to provide rewind, do not set this
property, or set it to 0. If set to 0, the server provides rewind support.

Returns
On success, returns sizeof (a_sgl byte).

On failure, returns one of the generic describe parameter errors, or:

e EXTEFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - set error returned if the
describe_buffer is not the size of a_sql byte.

* EXTFNAPIV4 DESCRIBE INVALID STATE —seterror returned if the state is not
equal to Optimization.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER - seterror returned if the
UDF attempts to set this attribute on a parameter that is not a table.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - seterror returned if the
specified argument is not the result table.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

e Optimization state
See also

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Get) on
page 258

User-Defined Functions 275

API Reference for a_v4_extfn

o EXTFNAPIV4 DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Set)on
page 273

o EXTFNAPIV4_DESCRIBE PARM_TABLE HAS REWIND Aftribute (Get) on page
259

o _rewind_extfnon page 323

e Query Processing States on page 121

EXTENAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS Attribute (Set)
The EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS attribute lists
unconsumed columns. Used ina describe parameter set scenario.

Data Type
a v4 extfn column list

Description
The list of output table columns that are not going to be consumed by the server or the UDF.

For the output TABLE parameter, the UDF normally produces the data for all the columns, and
the server consumes all the columns. The same holds true for the input TABLE parameter
where the server normally produces the data for all the columns, and the UDF consumes all the
columns.

However, in some cases the server, or the UDF, may not consume all the columns. The best
practice in such a case is that the UDF performs a GET for the output table on the describe
attribute EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS. This action
queries the server for the list of output table columns which are not going to be consumed by
the server. The list can then be used by the UDF when populating the column data for the
output table; that is, the UDF skips populating data for unused columns.

In summary, for the output table the UDF polls the list of unused columns. For the input table,
the UDF pushes the list of unused columns.

Usage

The UDF sets this property during Optimization if it is not going to use certain columns of the
input TABLE parameter. The UDF must allocateaa v4 extfn column list that
includes all the columns of the output table, and then must pass it to the server. The server then
marks all the un-projected column ordinals as 1. The server copies the list into its internal data
structure.

Returns
On success, returns the size of the column list: sizeof (a_v4 extfn column list)
+ sizeof(a_sgl uint32) * number result columns.

On failure, returns one of the generic describe parameter errors or:

276

SAP Sybase 1Q

API Reference for a_v4_extfn

* EXTEFNAPIV4 DESCRIBE_INVALID STATE - seterror returned if the state is not
Optimization.

e EXTFNAPIV4 DESCRIBE INVALID PARAMETER - set error returned if the UDF
attempts to get this attribute on an input table.

* EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER —set error returned if the
UDF attempts to set this attribute on a parameter that is not a table.

Query Processing States
Valid in:

e Optimization state

See also

EXTFNAPIV4_DESCRIBE PARM_TABLE UNUSED COLUMNS Attribute (Get)
on page 260

*describe udf get
The describe udf get v4 APl method gets UDF properties from the server.

Declaration
a sql int32 (SQL CALLBACK *describe udf get) (
a v4 extfn proc context *cntxt,
a v4 extfn describe udf type describe type,
void *describe buffer,
size t describe buffer len);
Parameters
Parameter Description
cntxt The procedure context object for this UDF.
describe_type A selector indicating what property to retrieve.
describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.
describe_buffer_length The length in bytes of the describe_buffer.
Returns

On success, returns 0 or the number of bytes written to the describe_buffer. A value of 0
indicates that the server was unable to get the attribute but no error condition occurred. If an
error occurred, or no property was retrieved, this function returns one of the generic
describe udf errors.

User-Defined Functions 277

API Reference for a_v4_extfn

See also
e *describe_udf seton page 279
e Generic describe_udf Errors on page 326

Attributes for *describe udf get
Code showing the attributes for describe udf get.

typedef enum a v4 extfn describe udf type {
EXTFNAPIV4 DESCRIBE UDF NUM PARMS,
EXTFNAPIV4 DESCRIBE UDF LAST

} a v4 extGetfn describe udf type;

EXTENAPIV4 DESCRIBE UDF NUM PARMS Attribute (Get)
The EXTFNAPIV4 DESCRIBE UDF NUM PARMS attribute indicates the number of
parameters. Used ina describe udf get scenario.

Data Type
a_sqgl uint32

Description
The number of parameters supplied to the UDF.

Usage
Gets the number of parameters as defined in the CREATE PROCEDURE statement.

Returns
On success, returns the sizeof (a_sqgl uint32).

On failure, returns one of the generic describe udf errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH —get error returned if the
describe buffer is not the size of a_sql uint32.

* EXTFNAPIV4 DESCRIBE INVALID STATE —geterror returned if the phase is not
greater than Initial.

Query Processing Phases

e Annotation phase

e Query optimization phase
e Plan building phase

« Execution phase

See also

o EXTFNAPIV4_DESCRIBE UDF NUM_FARMS Alttribute (Set) on page 280
e Generic describe_udf Errors on page 326

» Query Processing States on page 121

278 SAP Sybase IQ

API Reference for a_v4_extfn

*describe_udf_set
The describe udf set v4 APl method sets UDF properties on the server.

Declaration
a sgl int32 (SQL CALLBACK *describe udf set) (
a v4 extfn proc context *cntxt,
a v4 extfn describe udf type describe type,
const void *describe buffer,
size t describe buffer len);
Parameters
Parameter Description
cntxt The procedure context object for this UDF.
describe_type A selector indicating what property to set.
describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data-type is indicated by the
describe_type parameter.
describe_buffer_length The length, in bytes, of describe_buffer.
Returns

On success, returns the number of bytes written to the describe_buffer. If an error occurs, or
no property is retrieved, this function returns one of the generic describe udf errors.

If an error occurs, or no property is retrieved, this function returns one of the generic
describe udf errors, or.

* EXTFNAPIV4 DESCRIBE INVALID PARAMETER - set error returned if any of the
cntxt or describe_buffer arguments are NULL or if describe_buffer_length is 0.

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - seterror returned if there
is a discrepancy between the requested attribute’s size and the supplied
describe_buffer_length.

See also
e *describe_udf geton page 277
e Generic describe_udf Errors on page 326

Attributes for *describe udf set
Code showing the attributes for describe udf set.

typedef enum a v4 extfn describe udf type {
EXTFNAPIV4 DESCRIBE UDF NUM PARMS,

User-Defined Functions 279

API Reference for a_v4_extfn

EXTFNAPIV4 DESCRIBE UDF LAST
} a v4 extGetfn describe udf type;

EXTENAPIV4 DESCRIBE UDF NUM PARMS Attribute (Set)
The EXTFNAPIV4 DESCRIBE UDF NUM PARMS attribute indicates the number of
parameters. Used ina describe udf set scenario.

Data Type
a sgl uint32

Description
The number of parameters supplied to the UDF.

Usage

If the UDF sets this property, the server compares the value with the number of parameters
supplied in the CREATE PROCEDURE statement. If the two values do not match, the server
returns a SQL error. This allows the UDF to ensure the CREATE PROCEDURE statement has
the same number of parameters expected by the UDF.

Returns
On success, returns the sizeof (a_sqgl uint32).

On failure, returns one of the generic describe udf errors, or:

* EXTFNAPIV4 DESCRIBE BUFFER SIZE MISMATCH - Seterror returned if the
describe buffer is not the size of a_sgl uint32.

* EXTFNAPIV4 DESCRIBE INVALID STATE — Seterror returned if the state is not
equal to Annotation.

* EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE - seterror returned if
the UDF tries to reset the parameter datatype.

Query processing states

* Annotation state

See also

o EXTFNAPIV4_DESCRIBE UDF NUM_FARMS Attribute (Get) on page 278
e Generic describe_udf Errors on page 326

* Query Processing States on page 121

280 SAP Sybase IQ

API Reference for a_v4_extfn

Describe Column Type (a v4 extfn _describe col type)

Thea v4 extfn describe col type enumerated type selects the column property

retrieved or set by the UDF.

Implementation

typedef enum a v4 extfn describe col type {

EXTFNAPIV4 DESCRIBE COL_NAME,

EXTFNAPIV4 DESCRIBE COL_TYPE,

EXTFNAPTIV4 DESCRIBE_COI,_WIDTH,

EXTFNAPIV4 DESCRIBE COIL_SCALE,
EXTFNAPIV4 DESCRIBE COL CAN BE NULL,
EXTFNAPIV4 DESCRIBE COL DISTINCT VALUES,
EXTFNAPIV4 DESCRIBE_COL_IS UNIQUE,
EXTFNAPIV4 DESCRIBE_COL_IS_CONSTANT,
EXTFNAPIV4 DESCRIBE COL_CONSTANT VALUE,
EXTFNAPIV4 DESCRIBE COL IS USED BY CONSUMER,
EXTFNAPIV4 DESCRIBE_COIL MINIMUM VALUE,
EXTFNAPIV4 DESCRIBE_COL MAXIMUM VALUE,
EXTFNAPIV4 DESCRIBE COL_VALUES SUBSET OF INPUT,

EXTFNAPIV4 DESCRIBE COL LAST
} a v4 extfn describe col type;

Members Summary

Member

Description

EXTFNAPIV4_DESCRIBE COL_NAME

Column name (valid identifier).

EXTFNAPIV4_DESCRIBE COL_TYPE

Column data type.

EXTFNAPIV4_DESCRIBE COL_WIDTH

String width (precision for NU-
MERIC).

EXTFNAPIV4_DESCRIBE COL _SCALE

Scale for NUMERIC.

EXTFNAPIVA4_DESCRIBE COL_CAN_BE NULL

True, if a column can be NULL.

EXTFNAPIV4_DESCRIBE COL_DISTINCT_VALUES

Estimated number of distinct
values in the column.

EXTFNAPIV4_DESCRIBE_COL IS UNIQUE

True, if column is unique within
the table.

EXTENAPIV4_DESCRIBE COL_IS CONSTANT

True, if column is constant for
statement lifetime.

EXTENAPIV4_DESCRIBE COL_CONSTANT VALUE

The value of a parameter, if
known at describe time.

User-Defined Functions

281

API Reference for a_v4_extfn

Member

Description

EXTFNAPIV4_DESCRIBE COL_IS USED BY CONSUM:-
ER

True, if column is needed by the
consumer of the table.

EXTFNAPIV4_DESCRIBE COL_MINIMUM_VALUE

The minimum value for the col-
umn (if known).

EXTFNAPIV4_DESCRIBE COL_MAXIMUM_VALUE

The maximum value for the col-
umn (if known).

EXTFNAPIV4_DESCRIBE COL_VALUES SUBSET_OF_IN-
PUT

The result column values are a
subset of columns from an input
table.

EXTFNAPIV4_DESCRIBE COL_LAST

First illegal value for v4 API.
Out-of-band value.

Describe Parameter Type
(a_v4 extfn describe parm type)

Thea v4 extfn describe parm type enumerated type selects the parameter

property retrieved or set by the UDF.

Implementation

typedef enum a v4 extfn describe parm type {
EXTFNAPIV4 DESCRIBE PARM NAME,
EXTFNAPIV4 DESCRIBE PARM TYPE,
EXTFNAPIV4 DESCRIBE PARM WIDTH,
EXTFNAPIV4 DESCRIBE PARM SCALE,
EXTFNAPIV4 DESCRIBE PARM CAN BE NULL,

EXTFNAPIV4 DESCRIBE PARM DISTINCT VALUES,

EXTFNAPIV4 DESCRIBE PARM IS CONSTANT,
EXTFNAPIV4 DESCRIBE PARM CONSTANT _VALUE,

EXTFNAPIV4 DESCRIBE PARM TABLE NUM COLUMNS,

EXTENAPIV4 DESCRIBE PARM TABLE NUM ROWS,
EXTFNAPIV4 DESCRIBE PARM TABLE ORDERBY

EXTFNAPIV47DESCRIBEiPARMiTABLEiPARTITIONBY,
EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND,

EXTENAPIV4 DESCRIBE PARM TABLE HAS REWIND,

EXTFNAPIV4 DESCRIBE PARM TABLE UNUSED COLUMNS,

EXTFNAPIV4 DESCRIBE_ PARM LAST
} a v4 extfn describe parm type;

282

SAP Sybase 1Q

API Reference for a_v4_extfn

Members Summary

Member

Description

EXTFNAPIV4_DESCRIBE PARM_NAME

Parameter name (valid iden-
tifier).

EXTFNAPIV4_DESCRIBE PARM_TYPE

Data type.

EXTFNAPIV4_DESCRIBE PARM_WIDTH

String width (precision for
NUMERIC).

EXTFNAPIV4_DESCRIBE PARM_SCALE

Scale for NUMERIC.

EXTFNAPIV4_DESCRIBE PARM_CAN_BE NULL

True, if the value can be
NULL.

EXTFNAPIV4_DESCRIBE PARM_DISTINCT_VALUES

Estimated number of distinct
values across all invocations.

EXTFNAPIV4_DESCRIBE_PARM_IS CONSTANT

True, if parameter is a con-
stant for the statement.

EXTFNAPIV4_DESCRIBE PARM_CONSTANT_VALUE

The value of a parameter, if
known at describe time.

be used with scalar parameters:

These selectors can retrieve or set properties of a TABLE parameter. These enumerator values cannot

EXTENAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS

The number of columns in the
table.

EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS

Estimated number of rows in
the table.

EXTFNAPIV4_DESCRIBE PARM_TABLE ORDERBY

The order of rows in a table.

EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY

The partitioning; use num-
ber_of _columns=0 for ANY.

EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST RE-
WIND

True, if the consumer wants
the ability rewind the input
table.

EXTFNAPIV4_DESCRIBE PARM_TABLE_HAS REWIND

Return true, if the producer
supports rewind.

User-Defined Functions

283

API Reference for a_v4_extfn

Member Description
EXTFNAPIV4_DESCRIBE PARM_TABLE UNUSED COL- The list of output table col-
UMNS umns that are not going to be
consumed by the server or the
UDF.
EXTFNAPIV4_DESCRIBE PARM_LAST First illegal value for v4 API.

Out-of-band value.

Describe Return (a v4 extfn describe return)

Thea v4 extfn describe return enumerated type provides a return value, when
a v4 extfn proc context.describe xxx get () Or
a v4 extfn proc context.describe xxx set () does notsucceed.

Implementation

typedef enum a_v4_extfn_describe_return {
EXTFNAPIV4 DESCRIBE NOT_ AVAILABLE = 0, // the specified operation has no
meaning either for this attribute or in

the current context.
EXTFNAPIV4 DESCRIBE BUFFER_SIZE MISMATCH = -1, // the provided buffer size
does not match the required length or the

length is insufficient.

EXTFNAPIV4_ DESCRIBE_INVALID PARAMETER = -2, // the provided parameter number
is invalid

EXTFNAPIV4 DESCRIBE_ INVALID COLUMN = -3, // the column number is invalid
for this TABLE parameter

EXTFNAPIV4 DESCRIBE INVALID STATE = -4, // the describe method call is not
valid in the present state

EXTFNAPIV4_ DESCRIBE_INVALID ATTRIBUTE = =5, // the attribute is known but not
appropriate for this object

EXTFNAPIV4_ DESCRIBE_UNKNOWN_ATTRIBUTE = -6, // the identified attribute is
not known to this server version

EXTFNAPIV4 DESCRIBE NON TABLE PARAMETER = -7, // the specified parameter is

not a TABLE parameter (for describe col get()

or set())

EXTFNAPIV4 DESCRIBE INVALID ATTRIBUTE VALUE = -8, // the specified attribute
value is illegal

EXTFNAPIV4_ DESCRIBE_LAST = -9
} a7v47extfnidescribeireturn;

284

SAP Sybase 1Q

Members Summary

API Reference for a_v4_extfn

Member

turn
Value

Description

EXTFNAPIV4_DESCRIBE NOT_AVAILABLE

The specified operation
has no meaning either for
this attribute or in the cur-
rent context.

EXTFNAPIV4_DESCRIBE BUFFER_SIZE MISMATCH

The provided buffer size
does not match the re-
quired length, or the
length is insufficient.

EXTFNAPIV4_DESCRIBE INVALID PARAMETER

The provided parameter
number is invalid.

EXTFNAPIV4_DESCRIBE _INVALID COLUMN

The column number is in-
valid for this TABLE pa-
rameter.

EXTFNAPIV4_DESCRIBE INVALID STATE

The describe method call
is invalid in the present
state.

EXTFNAPIV4_DESCRIBE INVALID ATTRIBUTE

-5

The attribute is known but
not appropriate for this ob-
ject.

EXTFNAPIV4_DESCRIBE UNKNOWN_ATTRIBUTE

The identified attribute is
not known to this server
version.

EXTFNAPIV4_DESCRIBE NON_TABLE PARAMETER

The specified parameter is
not a TABLE parameter
(for de-
scribe col get(
) orde-
scribe col set(

).

EXTFNAPIV4_DESCRIBE_INVALID ATTRIB-
UTE_VALUE

The specified attribute val-
ue is illegal.

User-Defined Functions

285

API Reference for a_v4_extfn

Member Re- Description
turn
Value
EXTFNAPIV4_DESCRIBE LAST -9 First illegal value for v4
API.
Description

The return value of a_v4 extfn proc context.describe xxx get () and

a v4 extfn proc context.describe xxx set () isasigned integer. If the
result is positive, the operation succeeds, and the value is the number of bytes copied. If the
return value is less or equal to zero, the operation does not succeed, and the return value is one
ofthea v4 extfn describe return values.

Describe UDF Type (a_v4 extfn_describe udf type)

Usethe a v4 extfn describe udf type enumerated type to select the logical
property the UDF retrieves or sets.

Implementation

typedef enum a v4 extfn describe udf type {
EXTFNAPIV4 DESCRIBE UDF NUM PARMS,
EXTFNAPIV4 DESCRIBE UDF LAST

} a v4 extfn describe udf type;

Members Summary

Member Description

EXTFNAPIV4_DE- The number of parameters supplied to the UDF.
SCRIBE_UDF NUM_PARMS

EXTFNAPIV4_DE- Out-of-band value.
SCRIBE _UDF LAST

Description

Thea v4 extfn proc context.describe udf get () method is used by the

UDF to retrieve properties, and the

a v4 extfn proc context.describe udf set () method is used by the UDF
to set properties about the UDF as a whole. The a v4 extfn describe udf type
enumerator selects the logical property the UDF retrieves or sets.

See also
e External Procedure Context (a_v4_extfn_proc_context) on page 292

286

SAP Sybase 1Q

API Reference for a_v4_extfn

Execution State (a_v4 extfn_ state)

The a_v4 extfn state enumerated type represents the query processing phase of a
UDF.

Implementation

typedef enum a v4 extfn state {

EXTFNAPIV4 STATE INITIAL, // Server initial state,
not used by UDF

EXTFNAPIV4 STATE ANNOTATION, // Annotating parse
tree with UDF reference

EXTFNAPIV4 STATE OPTIMIZATION, // Optimizing

EXTFNAPIV4 STATE PLAN BUILDING, // Building execution
plan

EXTFNAPIV4 STATE EXECUTING, // Executing UDF and

fetching results from UDF
EXTFNAPIV4 STATE LAST
} a v4 extfn state;

Members Summary

Member Description

EXTFNAPIV4_STATE_INITIAL Server initial phase. The only UDF method that is
called during this query processing phase is
_start extfn.

EXTFNAPIV4_STATE ANNOTATION Annotating parse tree with UDF reference. The
UDF is not invoked during this phase.

EXTFNAPIV4_STATE_OPTIMIZATION Optimizing. The server calls the UDF’s
__start extfn method, followed by the
_describe extfn function.

EXTFNAPIV4_STATE_PLAN_BUILDING Building a query execution plan. The server calls
the UDF’s _describe extfn function.

EXTFNAPIV4_STATE EXECUTING Executing UDF and fetching results from UDF.
The server callsthe _describe extfn
function before starting to fetch data from the
UDF. The server then calls _evalu-

ate extfntostartthe fetch cycle. During the
fetch cycle, the server calls the functions defined
ina v4 extfn table func.When
fetching finishes, the server calls the UDF’s
_close_extfn function.

User-Defined Functions 287

API Reference for a_v4_extfn

Member Description
EXTFNAPIV4_STATE LAST First illegal value for v4 API. Out-of-band value.
Description

Thea v4 extfn state enumeration indicates which stage of UDF execution the server
is in. When the server makes a transition from one phase to the next, the server informs the
UDF it is leaving the previous phase by calling the UDF’s leave state extfn
function. The server informs the UDF it is entering the new phase by calling the UDF’s
enter state extfn function.

The query processing phase of a UDF restricts the operations that the UDF can perform. For
example, in the Annotation phase, the UDF can retrieve the data types only for constant
parameters.

See also

* Query Processing States on page 121

e _start extfnon page 289

e _evaluate extfnon page 290

e _enter state extfnon page 291

e Jeave state extfnon page 291

» Table Functions (a_v4_extfn_table_func)on page 319

External Function (a v4 extfn proc)

The serverusesthea v4 extfn proc structure to call into the various entry points in the
UDF. The server passes an instance of a_v4 extfn proc_context to each of the
functions.

Method Summary

Method Description

_start_extfn Allocates a structure and stores its address in the
_user_data field in the
a v4 extfn proc context.

_finish_extfn Deallocates a structure whose address was stored
in the user_data field in the
a vd extfn proc context.

288

SAP Sybase 1Q

API Reference for a_v4_extfn

Method Description

_evaluate_extfn Required function pointer to be called for each
invocation of the function on a new set of argu-
ment values.

_describe_extfn See Describe APl on page 208.

_enter_state_extfn The UDF can use this function to allocate struc-
tures.

_leave_state_extfn The UDF can use this function to release memory
or resources needed for the state.

start_extfn
Usethe start extfnv4 APl method asan optional pointer to an initializer function, for
which the only argument is a pointerto a_v4 extfn proc_context structure.

Declaration

_start extfn(
a v4 extfn proc context *

)

Usage

Usethe start extfn method to allocate a structure and store its address in the
_user_datafieldinthea v4 extfn proc_ context. This function pointer must be
set to the null pointer if there is no need for any initialization.

Parameters
Parameter Description
cntxt The procedure context object.
finish extfn

Usethe finish extfnv4 APl method asan optional pointer to a shutdown function, for
which the only argument is a pointer to a_v4 extfn proc context.

Declaration

_finish extfn(
a v4 extfn proc context *cntxt,

)

User-Defined Functions 289

API Reference for a_v4_extfn

Usage
The finish extfn APl deallocates a structure for which the address was stored in the

user datafieldinthea v4 extfn proc context. This function pointer must be
set to the null pointer if there is no need for any cleanup.

Parameters
Parameter Description
cntxt The procedure context object.

evaluate extfn
Usethe evaluate extfnv4 APl method asarequired function pointer that is called for
each invocation of the function on a new set of argument values.

Declaration

_evaluate extfn(
a v4 extfn proc context *cntxt,
void *args handle

)

Usage
The evaluate extfn function must describe to the server how to fetch results by filling

inthea v4 extfn table func portionofthea v4 extfn table structure and
usethe set value method on the context with argument zero to send this information to the
server. This function must also inform the server of its output schema by filling in the

a v4 extfn value schemaofthea v4 extfn table structure before calling
set_value onargument 0. It can access its input argument values via the get value
callback function. Both constant and nonconstant arguments are available to the UDF at this

time.

Parameters
Parameter Description
cntxt The procedure context object.
args_handle Handle to the arguments in the server.

describe extfn
_describe extfniscalled at the beginning of each state to allow the server to get and set
logical properties. The UDF can do this by using the six describe methods
(describe parameter get, describe parameter set,

290 SAP Sybase IQ

API Reference for a_v4_extfn

describe column get,describe column set,describe udf get,and
describe udf set)inthea v4 proc context object.

See Describe AP/ on page 208.

enter state extfn

The UDF can implementthe enter state extfn v4 APl method as an optional entry
point to be notified whenever the UDF enters a new state.

Declaration

_enter state extfn(
a v4 extfn proc context *cntxt,

)

Usage
The UDF can use this natification to allocate structures.

Parameters
Parameter Description
cntxt The procedure context object.

leave state extfn
The leave state extfn v4 APl method is an optional entry point the UDF can
implement to receive a notification when the UDF moves out of a query processing state.

Declaration

_leave state extfn(
a v4 extfn proc context *cntxt,
)

Usage
The UDF can use this notification to release memory or resources needed for the state.

Parameters
Parameter Description
cntxt The procedure context object.

User-Defined Functions 291

API Reference for a_v4_extfn

External Procedure Context (a v4 extfn _proc_context)

Usethe a_v4 extfn proc context structure to retain context information from the

server and from the UDF.

Implementation

typedef struct a v4 extfn proc context {

} a v4 extfn proc context;

Method Summary

Re- Method
turn

Type

Description

short get_value

Gets input arguments to the UDF.

short get_value_is_constant

Allows the UDF to ask whether a given argument is a con-
stant.

short set_value

Used by the UDF in eitherthe evaluate extfnor
_describe extfn functions to describe to the server
what its output will look like and to inform the server how to
fetch results from the UDF.

a_sgl_ | get_is_cancelled
uint32

Callthe get_is_cancelled callback every second or two to see
if the user has interrupted the current statement.

short set_error

Rolls back the current statement and generates an error.

void log_message

Writes a message to the message log.

short convert_value

Converts one data type to another.

short get_option

Gets the value of a settable option.

void alloc Allocates a block of memory of length at least "len".

void free Free the memory allocated by alloc() for the specified life-
time.

a_sql_ | describe_column_get See *describe_column_get on page 209.

uint32

292

SAP Sybase 1Q

API Reference for a_v4_extfn

Re- Method Description

turn

Type

a_sql_ | describe_column_set See *describe_column_seton page 225.
uint32

a_sql_ | describe_parameter_get | See *describe_parameter_geton page 242.
uint32

a_sql_ | describe_parameter_set | See *describe_parameter_seton page 261.
uint32

a_sql_ | describe_udf_get See *describe_udf geton page 277.
uint32

a_sql_ | describe_udf_set See *describe_udf seton page 279.
uint32

short open_result_set Opens a result set for a table value.

short close_result_set Closes an open result set.

short get_blob Retrieves an input parameter that is a blob.
short set_cannot_be_distrib- Disables distribution at the UDF level even if the library is

uted

distributable.

Data Members and Data Types Summary

Data Member Data Description
Type
_user_data void * This data pointer can be filled in by any usage with whatever
context data the external routine requires.
_executionMode a_sql_ui | Indicates the debug/trace level requested via the Exter-
nt32 nal_UDF_Execution_Mode option. This is a read-only field.
current_state a_sql_ui | The current_stateattribute reflects the current execution mode of
nt32 the context. This can be queried from functions suchas de-
scribe extfn to determine what course of action to take.
Description

In addition to retaining context information from the server and the UDF, the structure
a v4 extfn proc context allows the UDF to call back into the server to perform
certainactions. The UDF can store private data in this structure inthe _user data member.

User-Defined Functions

293

API Reference for a_v4_extfn

An instance of this structure gets passed to the functionsinthea v4 extfn proc method
by the server. User data is not maintained until after the server reaches the Annotation state.

get_value

Usethe get value v4 APl method to obtain the values of input arguments sent to the UDF
in a SQL query.

Declaration

short get value (
void * arg handle,
a sgl uint32 arg_num,

an_extfn value *value

)

Usage

The get_value APl is used in an evaluation method to retrieve the value of each input
argument to the UDF. For narrow argument data types (>32K), a call to get _value is
sufficient to retrieve the entire argument value.

The get value API can be called from any API that has access to the arg _handle
pointer. This includes API functions thattake a_v4 table context asaparameter. The
a v4 table contexthasanargs handle member variable that can be used for this
purpose.

For all fixed-length data types, the data is available in the returned value and no further calls
are necessary to obtain all of the data. The producer can decide what the maximum length is
that is returned entirely in the call to get value method. All fixed length data types should
be guaranteed to fit in a single contiguous buffer. For variable-length data, the limit is
producer-dependant.

For nonfixed-length data types, and depending on the length of the data, a blob may need to be
created using the get blob method to get the data. You can use the macro
EXTFN_IS_INCOMPLETE onthe value returned by get value to determine whether a blob
object is required. If EXTFN_IS_INCOMPLETE evaluates to true, a blob is required.

For input arguments that are tables, the type is AN_EXTFN_TABLE. For this type of argument,
you must create aresult setusing the open result set method to read values in fromthe
table.

If a UDF requires the value of an argument prior to the evaluate extfn API being
called, then the UDF should implement the describe extfn API. From the
_describe extfn API, the UDF can obtain the value of constant expressions using the
describe parameter get method.

294

SAP Sybase 1Q

API Reference for a_v4_extfn

Parameters

Parameter | Description

arg_handle | A context pointer provided by the consumer.

arg_num The index of the argument to get a value for. The argument index starts at 1.
value The value of the specified argument.
Returns

1 if successful, 0 otherwise.

an_extfn_value Structure

The an_extfn_value structure represents the value of an input argument returned by the
get_value APL.

This code shows the declaration of the an_extfn_value structure:

short typedef struct an extfn value ({

void* data;
a_sgl uint32 piece len,
an_extfn value *value {
a sgl uint32 total len;
a_sgl uint32 remain len;
} len;
a sql data type type;

} an _extfn value;

This table describes what the returned values of an_extfn_value object look like after calling
the get value method:

Value Re- EXTFEN_IS_IN [total len piece len data
turned by COMPLETE

get_value API

null FALSE 0 0 null
empty string FALSE 0 0 non-null
Size < FALSE actual actual non-null
MAX_UINT32

size < TRUE actual 0 non-null
MAX_UINT32

size >= TRUE MAX_UINT32 0 non-null
MAX_UINT32

User-Defined Functions 295

API Reference for a_v4_extfn

The type field of an_extfn_value contains the data type of the value. For UDFs that have tables
as input arguments, the data type of that argument is DT_EXTFN_TABLE. For v4 Table UDFs,
the remain len field is not used.

See also

e _evaluate extfnon page 290

e Table Context (a_v4_extfn_table context) on page 311
e _describe_extfnon page 290

e *gescribe_parameter geton page 242

get value is constant

Usethe get value is constant v4 APl method to determine whether the specified
input argument value is a constant.

Declaration

short get value is constant (

void *

arg handle,

a sgl uint32 arg num,
an_extfn value *value is constant

)

Usage

The UDF can ask whether a given argument is a constant. This is useful for optimizing a UDF,
for example, where work can be performed once during the first call to the
_evaluate extfn function, rather than for every evaluation call.

Parameters
Parameter Description
arg_handle Handle the arguments in the server.
arg_num The index value of the input argument being retrieved. Index values are 1..N.
value_is_constant | Out parameter for storing is constant.

Returns

1 if successful, 0 otherwise.

See also

e _evaluate extfnon page 290

296

SAP Sybase 1Q

API Reference for a_v4_extfn

set value

Use the set value v4 APl method to describe to the consumer how many columns the
result set has and how data should be read.

Declaration

short set value (
void * arg handle,
a sgl uint32 arg_ num,

an_extfn value *value

)

Usage

This method is used by the UDF inthe evaluate extfn APIl. The UDF must call the
set_value method to tell the consumer how many columns are in the result set and what set
ofa v4 extfn table func functions the UDF supports.

For the set value API, the UDF provides an appropriate arg_handle pointer via the
_evaluate extfnAPI, or from the args_handle member of
a v4 extfn table context structure.

Thevalue argument forthe set value method mustbe oftype D7_EXTFN_TABLEforv4
Table UDFs.

Parameters

Parameter | Description

arg_handle | A context pointer provided by the consumer.

arg_num The index of the argument to set a value for. The only supported argument is 0.
value The value of the specified argument.
Returns

1 if successful, 0 otherwise.

See also

e _evaluate extfnon page 290

» Table Functions (a_v4_extfn_table func)on page 319
e Table Context (a_v4_extfn_table_context) on page 311

User-Defined Functions 297

API Reference for a_v4_extfn

get

is cancelled

set

Usethe get is cancelled v4 APl method to determine whether the statement has been
cancelled.

Declaration

short get is cancelled(
a v4 extfn proc context * cntxt,
)

Usage

If a UDF entry point is performing work for an extended period of time (many seconds), it
should, if possible, call the get _is cancelled callback every second or two to see if the
user has interrupted the current statement. If the statement has been interrupted, a nonzero
value is returned and the UDF entry point should then immediately return. Call the
_finish extfn function to perform necessary cleanup. Do not subsequently call any
other UDF entry points.

Parameters

Parameter Description

cntxt The procedure context object.
Returns

A nonzero value, if the statement is interrupted.

error

Use the set _error v4 APl method to communicate an error back to the server and
eventually to the user.

Declaration

void set error(
a v4 extfn proc context * cntxt,
a sgl uint32 error number,
const char *error desc_string
)

Usage

Callthe set _error API, if a UDF entry point encounters an error that should send an error
message to the user and shut down the current statement. When called, set _error APl rolls
back the current statement and the user sees “Error raised by user-defined
function: <error desc string>”. The SQLCODE is the negated form of the
supplied <error_number>.

298

SAP Sybase 1Q

API Reference for a_v4_extfn

To avoid collisions with existing error codes, UDFs should generate error numbers between
17000 and 99999. If a number outside this range is provided, the statement is still rolled back,
but the error message is "Invalid error raised by user-defined
function: (<error number>) <error desc string>" witha SQLCODE of
-1577. The maximum length of error_desc_string is 140 characters.

Afteracall to set error is made, the UDF entry point should immediately perform a
return; eventually the finish extfn functioniscalled to perform necessary cleanup. Do
not subsequently call any other UDF entry points.

Parameters
Parameter Description
cntxt The procedure context object
error_number The error number to set
error_desc_string The message string to use
See also

e Scalar and Aggregate UDF Callback Functions on page 82

log message
Use the 1og_message v4 APl method to to send a message to the server's message log.

Declaration
short log message (
const char *msg,
short msg length
)
Usage

The log message method writes a message to the message log. The message string must be
a printable text string no longer than 255 bytes; longer messages may be truncated.

Parameters

Parameter Description

msg The message string to log
msg_length The length of the message string

User-Defined Functions 299

API Reference for a_v4_extfn

See also
e Controlling Error Checking and Call Tracing on page 27

convert value
Use the convert value v4 APl method to convert data types.

Declaration

short convert value (
an_extfn value *input,
an_extfn value *output

)

Usage

. The primary use of the convert value API is the converting between DT DATE,
DT TIME, and DT TIMESTAMP, and DT TIMESTAMP STRUCT.An inputand output
an_extfn value is passed to the function.

Input Parameters

Parameter Description
an_extfn_value.data Input data pointer
an_extfn_value.total_len Length of input data
an_extfn_value.type DT _ datatype of input

Output Parameters

Parameter Description

an_extfn_value.data UDF supplied output data point

an_extfn_value.piece_len Maximum length of output data.

an_extfn_value.total_len Server set length of converted

an_extfn_value.type DT_ datatype of desired output
Returns

1 if successful, 0 otherwise.

See also
e get valueon page 294

300 SAP Sybase IQ

API Reference for a_v4_extfn

get_option

The get_option v4 APl method gets the value of a settable option.

Declaration

short get option (

a v4 extfn proc context * cntxt,
char *option name,

an_extfn value *output

)

Parameters
Parameter Description
cntxt The procedure context object
option_name Name of the option to get
output e an extfn value.data-UDF sup-
plied output data pointer
e an_extfn value.piece len-
maximum length of output data
* an _extfn value.total len-
server set length of converted output
* an_extfn value.type —server set
data type of value
Returns

1 if successful, 0 otherwise.

See also
e External Function Prototypes on page 93
e External Procedure Context (a_v4_extfn_proc_context) on page 292

alloc
The alloc v4 API method allocates a block of memory.

Declaration

void*alloc (

a v4 extfn proc context *cntxt,
size t len

)

User-Defined Functions 301

API Reference for a_v4_extfn

Usage
Allocates a block of memory of length at least len. The returned memory is 8-byte aligned.

Tip: Usethe alloc () method as your only means of memory allocation, which allows the
server to keep track of how much memory is used by external routines. The server can adapt
other memory users, track leaks, and provide improved diagnostics and monitoring.

Memory tracking is enabled only when external_UDF_execution_mode is set to a value of 1
or 2 (validation mode or tracing mode).

Parameters
Parameter Description
cntxt The procedure context object
len The length, in bytes, to allocate
See also

e freeon page 302
e Enabling Memory Tracking on page 135

The free v4 APl method frees an allocated block of memory.

Declaration

void free (
a v4 extfn proc context *cntxt,
void *mem

)

Usage
Frees the memory allocated by al1loc () for the specified lifetime.

Memory tracking is enabled only when external_UDF_execution_mode is set to a value of 1
or 2 (validation mode or tracing mode).

Parameters
Parameter Description
cntxt The procedure context object
mem Pointer to the memory allocated using the a1 -
1loc method

SAP Sybase 1Q

API Reference for a_v4_extfn

See also
e allocon page 301
» Enabling Memory Tracking on page 135

open result set
The open_result set v4 APl method opens a result set for a table value.

Declaration

short open result set(

a v4 extfn proc context *cntxt,

a v4 extfn table *table,

a v4 extfn table context **result set

)

Usage

open_result set opensaresultsetforatable value. A UDF can open aresult set to read
rows from an input parameter of type DT EXTFN TABLE. The server (or another UDF) can
open a result set to read rows from the UDF.

Parameters
Parameter Description
cntxt The procedure context object
table The table object on which to open a result set
result_set An output parameter that is set to be an opened
result set
Returns

1 if successful, 0 otherwise.

Seethe fetch blockand fetch into v4 APl method descriptions for examples of the
use of open result_ set.

See also

e External Procedure Context (a_v4_extfn_proc_context) on page 292
e fetch_intoon page 313

e fetch blockon page 316

User-Defined Functions 303

API Reference for a_v4_extfn

close result_set
The close result set v4 APl method closes an open result set.

Declaration

short close result set(
a v4 extfn proc context *cntxt,
a v4 extfn table context *result set

)

Usage
You canonly use close result set once per result set.

Parameters
Parameter Description
cntxt The procedure context object
result_set The result set to close
Returns

1 if successful, 0 otherwise.

get_blob
Use the get blob v4 APl method to retrieve an input blob parameter.
Declaration
short get blob(
void *arg handle,
a sgl uint32 arg_num,

a v4 extfn blob **blob
)

Usage

Use get Dblob to retrieve a blob input parameter after calling get _value (). Use the
macro EXTFN IS INCOMPLETE to determine if a blob object is required to read the data
for the value returned from get value (), if piece_len< total len. The blob object is
returned as an output parameter and is owned by the caller.

get Dblob obtains a blob handle that can be used to read the contents of the blob. Call this
method only on columns that contain blob objects.

304 SAP Sybase IQ

API Reference for a_v4_extfn

Parameters
Parameter Description
arg_handle Handle to the arguments in the server
arg_num The argument is a number 1...N
blob Output argument containing the blob object
Returns

1 if successful, 0 otherwise.

See also
e External Procedure Context (a_v4_extfn_proc_context) on page 292
e get valueon page 294

set cannot be distributed

The set_cannot_be distributed v4 APl method disables distributions at the UDF
level, even if the distribution criteria are met at the library level.

Declaration

void set cannot be distributed(a v4 extfn proc context *cntxt)

Usage

In the default behavior, if the library is distributable, then the UDF is distributable. Use
set cannot be distributedinthe UDF to push the decision to disable distribution
to the server.

License Information (a_v4 extfn license info)

If you are a design partner, use the a_v4 extfn license_ info structure to define
library-level license validations for your UDFs, including your company name, library
version information, and an SAP-supplied license key.

Implementation

typedef struct an extfn license info {
short version;
} an extfn license info;

typedef struct a v4 extfn license info {
an_extfn_license_info version;

const char name [255] ;

User-Defined Functions 305

API Reference for a_v4_extfn

const char info[255];
void * key;
} a v4 extfn license info;

Data Member Summary

Data Member | Description

version Internal use only. Must be set to 1.

name Value the UDF sets as your company name.

info Value the UDF sets for additional library information such as library version
and build numbers.

key (Design partners only) An SAP-supplied license key. The key is a 26-character
array.

Optimizer Estimate (a v4 extfn estimate)

Usethea v4 extfn estimate structure to describe an estimate, which includes a value
and a confidence level.

Implementation

typedef struct a v4 extfn estimate ({
double value;
double confidence;

} a v4 extfn estimate;

Data Members and Data Types Summary

Data Member Data Type Description
value double The value for the estimate.
confidence double The confidence level associated

with the estimate. The confi-
dence varies from 0.0 to 1.0,
with 0.0 meaning the estimate is
invalid and 1.0 meaning the es-
timate is known to be true.

306 SAP Sybase IQ

API Reference for a_v4_extfn

Order By List (a_v4 extfn_orderby list)

Usethea v4 extfn orderby list structuretodescribethe ORDER BY property ofa
table.

Implementation

typedef struct a v4 extfn orderby list {

a sgl uint32 number of elements;

a v4 extfn order el order elements[1l]; // there are
number of elements entries
} a v4 extfn orderby list;

Data Members and Data Types Summary

Data Member Data Type Description

number_of_elements a_sql_uint32 The number of entries

order_elements[1] a_v4_extfn_order_el | The order of the elements
Description

There are number_of elements entries, each with a flag indicating whether the element is
ascending or descending, and a column index indicating the appropriate column in the
associated table.

See also
» Column Order (a_v4_extfn_order_el) on page 206

Partition By Column Number
(a_v4 extfn partitionby col num)

Thea v4 extfn partitionby col numenumerated type represents the column
number to allow the UDF to express PARTITION BY support similar to that of SQL support.

Implementation

typedef enum a v4 extfn partitionby col num {

EXTFNAPIV4 PARTITION BY COLUMN NONE = -1, // NO PARTITION
BY

EXTFNAPIV4 PARTITION BY COLUMN ANY = 0, // PARTITION BY
ANY

// + INTEGER representing a specific

column ordinal
} a v4 extfn partitionby col num;

User-Defined Functions 307

API Reference for a_v4_extfn

Members Summary

Member of a_v4 extfn_partition- Val- | Description

by col_num Enumerated Type ue

EXTFNAPIV4_PARTITION_BY COL- -1 NO PARTITION BY

UMN_NONE

EXTFNAPIV4_PARTITION_BY COL- 0 PARTITION BY ANY positive inte-

UMN_ANY ger representing a specific column
ordinal

Column Ordinal Number N >0 | Ordinal for the table column number
to partition on

Description
This structure allows the UDF to programmatically describe the partitioning and the column
to partition on.

Use this enumeration when populating the a_v4 extfn column list

number of columns field. When describing partition by support to the server, the UDF
sets the number of columns to one of the enumerated values, or to a positive integer
representing the number of column ordinals listed. For example, to describe to the server that
no partitioning is supported, create the structure as:

a v4 extfn column list nopby = ({
EXTFNAPIV4 PARTITION BY COLUMN NONE,
0

}i

The EXTFNAPIV4_PARTITION _BY COLUMN_ANYmember informs the server that the
UDF supports any form of partitioning.

To describe a set of ordinals to partition on, create the structure as:
a v4 extfn column list nopby = ({

2,

3, 4

}i

This describes a partition by over 2 columns whose ordinals are 3 and 4.

Note: This example is for illustrative purposes only and is not legal code. The caller must
allocate the structure accordingly with room for 3 integers.

308 SAP Sybase IQ

API Reference for a_v4_extfn

Row (a_v4 extfn _row)

Usethe a_v4 extfn row structure to represent the data in a single row.

Implementation

/* a v4 extfn row - */
typedef struct a v4 extfn row {
a_sgl uint32 *row status;
a v4 extfn column data *column data;

} aivziegtfniraw;

Data Members and Data Types Summary

Data Member | Data Type Description
row_status a_sql_uint32 * The status of the row. Set to 1 for existing rows and 0
otherwise.

column_data | a_v4_extfn_column_data* | An array of column data for the row.

Description

The row structure contains information for a specific row of columns. This structure defines
the status of an individual row and includes a pointer to the individual columns within the row.
The row status is a flag that indicates the existence of a row. The row status flag can be altered
by nested fetch calls without requiring manipulation of the row block structure.

The row _statusflag set as 1 indicates that the row is available and can be included in the result
set. The row _status set as 0 means the row should be ignored. This is useful when the TPF is
acting as a filter because TPF may pass through rows of an input table to the result set, but it
may also want to skip certain rows, which it can do by setting a status of 0 for those rows.

See also
» Column Data (a_v4_extfn_column_data) on page 204

Row Block (a v4 extfn row block)

Usethe a v4 extfn row block structure to represent the data in a block of rows.

Implementation

/* a v4 extfn row block - */

typedef struct a v4 extfn row block {
a sgl uint32 max rows;
a sql uint32 num_rows;

User-Defined Functions 309

API Reference for a_v4_extfn

a v4 extfn row *row data;
} a v4 extfn row block;

Data Members and Data Types Summary

Data Member | Data Type Description
max_rows a_sql_uint32 The maximum number of rows this row block can handle
num_rows a_sqgl_uint32 Must be less than or equal to the maximum of rows the row

block contains

row_data a_v4_extfn_row * | The row data vector

Description

The row block structure is utilized by the fetch into and fetch block methods to
allow the production and consumption of data. The allocator sets the maximum number of
rows. The producer icorrectly sets the number of rows. The data consumer should not attempt
to read more than number of rows produced.

The owner of the row block structure determines the value of max_rowsdata member. For
example, when a table UDF is implementing fetch_into, the value of max_rows s
determined by the server as the number of rows that can fit into 128K of memory. However,
when atable UDF isimplementing fetch block, the table UDF itself determines the value
of max_rows.

Restrictions and Limitations
The value for the both the num_rowsand max_rowsis > 0. The num_rows must be <=
max_rows. The row_data field should not be NULL for a valid row block.

Table (a v4 extfn table)

Usethe a v4 extfn table structure to represent how data is stored in a table and how
the consumer fetches that data.

Implementation

typedef struct a v4 extfn table {
a v4 extfn table func *func;

a_sgl uint32 number of columns;
} a v4 extfn table;

310 SAP Sybase IQ

API Reference for a_v4_extfn

Data Members and Data Types Summary

Data Member Data Type Description

func a_v4_extfn_ta- This member holds a set of function pointers that
ble_func * the consumer uses to fetch result data

number_of _columns | a_sql_uint32 * The number of columns in the table

Table Context (a_v4 extfn table context)

Thea v4 extfn table context structure represents an open result set over a table.

Implementation
typedef struct a v4 extfn table context {

// size t struct size;

/* fetch into() - fetch into a specified row block. This entry point
is used when the consumer has a transfer area with a specific format.
The fetch_into() function will write the fetched rows into the provided row block.
*/
short (UDF_CALLBACK *fetch_into)(a_v4_extfn_table_context *cntxt,
a v4 extfn row block *);

/* fetch block() - fetch a block of rows. This entry point is used
when the consumer does not need the data in a particular format. For example,
if the consumer is reading a result set and formatting it as HTML, the consumer
does not care how the transfer area is layed out. The fetch block() entry point is
more efficient if the consumer does not need a specific layout.

The row _block parameter is in/out. The first call should point to a NULL row

block.
The fetch_block() call sets row_block to a block that can be consumed, and this
block
should be passed on the next fetch block() call.
*/

short (UDF_CALLBACK *fetch block) (a_v4 extfn table context *cntxt,
a v4 extfn row block **row block);

/* rewind() - this is an optional entry point. If NULL, rewind is not supported.
Otherwise,
the rewind() entry point restarts the result set at the beginning of the table.
*/
short (UDF_CALLBACK *rewind)(a_v4_extfn_table_context W) 0

/* get_blob() - If the specified column has a blob object, return it. The blob
is returned as an out parameter and is owned by the caller. This method should
only be called on a column that contains a blob. The helper macro
EXTFN_COL_IS_BLOB can
be used to determine whether a column contains a blob.
s
short (UDF_CALLBACK *get_blob) (a_v4_extfn table context *cntxt,
a_v4 _extfn column_data *col,
a_v4_extfn blob **blob);

/* The following fields are reserved for future use and must be initialized to NULL.
*/

void *reservedl must_be null;

void *reserved2 must be null;

void *reserved3 must be null;

User-Defined Functions 311

API Reference for a_v4_extfn

void *reserved4 must be null;
void *reserved5 must be null;

a_v4 extfn proc context *proc_context;

void *args handle; // use in
a_v4 _extfn proc context::get value() etc.

a_v4_extfn table *table;

void *user_data;

void *server_ internal use;

/* The following fields are reserved for future use and must be initialized to NULL.
*
/

void *reserved6 must be null;

void *reserved’7 must be null;

void *reserved8 must be null;

void *reserved9 must be null;

void *reservedl(O_must_be null;

} a_v4_extfn table context;

Method Summary

Data Method Description

Type

short fetch_into Fetch into a specified row block

short fetch_block Fetch a block of rows

short rewind Restarts the result set at the beginning of the table

short get_blob Return a blob object, if the specified column has a blob object

Data Members and Data Types Summary

Data Mem- |Data Type Description
ber

proc_context a_v4_extfn_proc_c | A pointer to the procedure context object. The UDF can use

ontext * this to set errors, log messages, cancel, and so on.
args_handle void * A handle to the arguments provided by the server.
table a_v4_extfn_table * | Points to the open result set table. This is populated after

a v4 extfn proc context open re-
sult set has been called.

user_data void * This data pointer can be filled in by any usage with whatever
context data the external routine requires.

server_inter- void * Internal use only.
nal_use

312

SAP Sybase 1Q

API Reference for a_v4_extfn

Description
Thea v4 extfn table context structure acts as a middle layer between the

producer and the consumer to help manage the data, when the consumer and producer require
separate formats.

A UDF can read rows from an input TABLE parameter using
a v4 extfn table context.Theserveroranother UDF can read rows fromthe result
table of a UDF using a_v4 extfn table context.

The server implements the methods of a_v4 extfn table context, which gives the
server an opportunity to resolve impedance mismatches.

See also

e fetch_intoon page 313

e fetch_block on page 316
e rewindon page 318

fetch_into
The fetch into v4 APl method fetches data into a specified row block.

Declaration

short fetch into(
a v4 extfn table context *cntxt,
a vd extfn row block *)

Usage

The fetch_into method is useful when the producer does not know how data should be
arranged in memory. This method is used as an entry point when the consumer has a transfer
area with a specific format. The fetch_into () function writes the fetched rows into the
provided row block. This method is partofthea v4 extfn table context structure.

Use fetch_ into when the consumer owns the memory for the data transfer area and
requests that the producer use this area. You use the fetch into method when the
consumer cares about how the data transfer area is set up and it is up to the producer to perform
the necessary data copying into this area.

Parameters
Parameter Description
cntxt The table context object obtained from the
open_result set API
row_block The row block object to fetch into

User-Defined Functions 313

API Reference for a_v4_extfn

Returns
1 if successful, 0 otherwise.

If the UDF returns 1, the consumer knows that there are more rows leftand the fetch_into
method should be called again. However, a UDF returning a value of 0 indicates that there are
no more rows and a call to the fetch_into method is unnecessary.

Consider the following procedure definition, which is an example of a TPF function that
consumes an input parameter table and produces it as a result table. Both are instances of SQL
values that are obtained and returned through the get value and set value v4 API
methods, respectively.

CREATE PROCEDURE FETCH EX(IN a INT, INT b TABLE(cl INT))
RESULT SET (rc INT)

This procedure definition contains two table objects:
e The input TABLE parameter named b
* The return result set table

The following example shows how output tables are fetched from by the caller, in this case, the
server. The server might decide to use the fetch into method. Input tables are fetched
from by the called entity, in this case the TPF. The TPF decides which fetch API to use.

SELECT rc from FETCH EX(1, TABLE(SELECT cl from TABLE))

The example shows that prior to fetching/consuming from an input table, a table context must
beestablished viathe open result set APlonthea v4 extfn procstructure. The
open_result set requires a table object, which can be obtained through the

get value APL

an_extfn value arg;
ctx->get value(args handle, 3, &arg);

if (arg.type != DT _EXTFN TABLE) {
// handle error

}

a vd extfn table context *rs = NULL;
a v4 extfn table *inTable = arg.data;
ctx->open result set(ctx, inTable, &rs);

After the table context is created, the rs structure executesthe fetch _into APland fetches
the rows.

a v4 extfn row block *rb = // get a row block to hold a series of
INT values.
rs->fetch into(rs, &rb) // fetch the rows.

Prior to producing rows to a result table, a table object must be created and returned to the
caller viathe set _value APlonthe a v4 extfn proc context structure.

314

SAP Sybase 1Q

API Reference for a_v4_extfn

This example shows that a table UDF must create an instance of thea_ v4 extfn table
structure. Each invocation of the table UDF should return a separate instance of the

a v4 extfn table structure. The table contains the state fields to keep track of the
current row and the number of rows to generate. State for a table can be stored as a field of the

instance.
typedef struct rg table : a v4 extfn table ({
a sql uint32 rows to generate;
a_sgl uint32 current row;

} my table;

In the following example, each time a row is produced, current_row is incremented until the
number of rows to be generated is reached, when fetch into returns false to indicate end-
of-file. The consumer executes the fetch into APl implemented by the table UDF. As
part of the call to the fetch into method, the consumer provides the table context, as well
as the row block to fetch into.

rs->fetch into(rs, &rb)

short UDF CALLBACK my table func fetch into(
a v4 extfn table context *tctx,

a v4 extfn row block *rb)
/***/

{
my table *myTable = tctx->table;

if (rgTable->current row < rgTable->rows to generate) {
// Produce the row...

rgTable->current row++;

return 1;

}

return 0;

See also

e The fetch_into Method on page 130

e Table Context (a_v4_extfn_table context) on page 311

» Row Block (a_v4_extfn_row_block) on page 309

e External Procedure Context (a_v4_extfn_proc_context) on page 292
e get valueon page 294

e set valueon page 297

e Table (a_v4_extfn_table) on page 310

User-Defined Functions 315

API Reference for a_v4_extfn

fetch block

The fetch block v4 APl method fetches a block of rows.

Declaration

short fetch block(
a v4 extfn table context *cntxt,
a v4 extfn row block **row block)

Usage

The fetch block method is used as an entry point when the consumer does not need the
data in a particular format. fetch block requests that the producer create a data transfer
area and provide a pointer to that area. The consumer owns the memory and takes
responsibility for copying data from this area.

The fetch block is more efficient if the consumer does not require a specific layout. The
fetch blockcall setsa fetch block to ablock that can be consumed, and this block
should be passed on the next fetch block call. This method is part of the

a v4 extfn table context structure.

Parameters
Parameter Description
cntxt The table context object.
row_block An infout parameter. The first call should always
point to a NULL row_block.

When fetch blockis called and row_block points to NULL, the UDF must allocate a
a v4 extfn row block structure.

Returns
1 if successful, 0 otherwise.

If the UDF returns 1, the consumer knows that there are more rows left and calls the
fetch block method again. However, a UDF returning a value of 0 indicates that there are
no more rows and a call to the fetch block method is unnecessary.

Consider the following procedure definition, which is an example of a TPF function that
consumes an input parameter table and produces it as a result table. Both are instances of SQL
values that are obtained and returned through the get value and set value v4 API
methods, respectively.

CREATE PROCEDURE FETCH EX(IN a INT, INT b TABLE(cl INT))
RESULT SET (rc INT)

This procedure definition contains two table objects:

316

SAP Sybase 1Q

API Reference for a_v4_extfn

e The input TABLE parameter named b
e The return result set table

The following example shows how output tables are fetched from by the caller, in this case, the
server. The server might decide to use the fetch block method. Input tables are fetched
from by the called entity, in this case the TPF, which decides which fetch API to use.

SELECT rc from FETCH EX(1, TABLE(SELECT cl from TABLE))

The example shows that prior to fetching/consuming from an input table, a table context must
beestablished viathe open result set APlonthea v4 extfn procstructure. The
open_result set requires a table object, which can be obtained through the

get value APL

an_extfn value arg;
ctx->get value(args handle, 3, &arg);

if(arg.type != DT EXTFN TABLE) {
// handle error

}

a v4 extfn table context *rs = NULL;
a v4 extfn table *inTable = arg.data;
ctx->open result set(ctx, inTable, &rs);

After the table context is created, the rs structure executes the fetch block APl and
fetches the rows.
a v4 extfn row block *rb = // get a row block to hold a series of

INT values.
rs->fetch block(rs, &rb) // fetch the rows.

Prior to producing rows to a result table, a table object must be created and returned to the
caller viathe set _value APlonthea v4 extfn proc context structure.

This example shows that a table UDF must create an instance of thea_ v4 extfn table
structure. Each invocation of the table UDF should return a separate instance of the

a v4 extfn table structure. The table contains the state fields to keep track of the
current row and the number of rows to generate. State for a table can be stored as a field of the

instance.
typedef struct rg table : a v4 extfn table ({
a sql uint32 rows to generate;
a sgl uint32 current row;

} my table;

See also

e The fetch_block Method on page 130

o Table Context (a_v4_extfn_table _context) on page 311

e Row Block (a_v4_extfn_row_block) on page 309

e External Procedure Context (a_v4_extfn_proc_context) on page 292

User-Defined Functions 317

API Reference for a_v4_extfn

e get valueon page 294

e set valueon page 297

e open_result seton page 303

o Table (a_v4_extfn_table) on page 310

rewind
Use the rewind v4 API method to restart a result set at the beginning of the table.

Declaration

short rewind (
a v4 extfn table context *cntxt,

)

Usage

Call the rewind method on an open result set to rewind the table to the beginning. If the UDF
intends to rewind an input table, it must inform the producer during the state
EXTFNAPIV4_STATE_OPTIMIZATION using the
EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND parameter.

rewind () isan optional entry point. If NULL, rewind is not supported. Otherwise, the
rewind () entry point restarts the result set at the beginning of the table.

Parameters

Parameter Description

cntxt The table context object
Returns

1 if successful, 0 otherwise.

See also
e Query Optimization State on page 124
» Execution State on page 128

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Set)on
page 273

get_blob

Use the get blob v4 APl method to return a blob object from a specified column.

Declaration

short get blob(
a v4 extfn table context *cntxt,

318 SAP Sybase IQ

API Reference for a_v4_extfn

a v4 extfn column data *col,
a v4 extfn blob **blob
)

Usage
The blob is returned as an output parameter and is owned by the caller. Call this method only
on a column that contains a blob.

Use the helper macro EXTFN_ COL IS BLOB to determine whether a column contains a
blob. This is the declaration of EXTFN_ COL IS BLOB in the header file
extfnapivéd.h:

#define EXTFN COL IS BLOB(c, n) (c[n] .blob handle != NULL)
Parameters
Parameter Description
cntxt The table context object
col The column data pointer for which to get the blob
blob On success, contains the blob object associated
with the column

Returns
1 if successful, 0 otherwise.

See also
o Table Context (a_v4_extfn_table _context) on page 311

Table Functions (a v4 extfn table func)

The consumer uses the a_v4 extfn table func structure to retrieve results from the
producer.

Implementation

typedef struct a v4 extfn table func {
// size t struct size;

/* Open a result set. The UDF can allocate any resources needed
for the result set.

v

short (UDF_CALLBACK * open extfn) (a v4 extfn table context *);

/* Fetch rows into a provided row block. The UDF should implement
this method if it does

not have a preferred layout for its transfer area.

*/

User-Defined Functions 319

API Reference for a_v4_extfn

short (UDF CALLBACK * fetch into extfn) (a v4 extfn table context
*, a vd extfn row block

*row block) ;

/* Fetch a block that is allocated and configured by the UDF. The
UDF should implement this
method if it has a preferred layout of the transfer area.
*/
short (UDF_CALLBACK * fetch block extfn)
(a_v4d extfn table context *, a v4 extfn row block

**row block);

/* Restart a result set at the beginning of the table. This is an
optional entry point.

*/

short (UDF CALLBACK * rewind extfn) (a v4 extfn table context *);

/* Close a result set. The UDF can release any resources
allocated for the result set.

Y/

short (UDF_CALLBACK * close extfn) (a v4 extfn table context *);

/* The following fields are reserved for future use and must be
initialized to NULL. */

void * reservedl must be null;

void * reserved2 must be null;

} a v4 extfn table func;

Method Summary

Method Data Type | Description

_open_extfn void Called by the server to initiate row fetching by opening
a result set. The UDF can allocate any resources nee-
ded for the result set.

_fetch in- short Fetch rows into a provided row block. The UDF im-
to extfn plements this method, if it does not have a preferred
layout for its transfer area.

_fetch block ext | short Fetch a block that is allocated and configured by the
fn UDF. The UDF implements this method, if it has a
preferred layout of the transfer area.

_rewind extfn void Optional function called by the server to restart the

fetching from the beginning of the table.

320

SAP Sybase 1Q

API Reference for a_v4_extfn

Method Data Type | Description

_close_extfn void Called by the server to terminate row fetching by clos-
ing the result set. The UDF can release any resources
allocated for the result set.

_re- void Reserved for future use. Must be initialized to NULL.
servedl must be
null

_re- void Reserved for future use. Must be initialized to NULL.
servedl must be
null

Description
Thea v4 extfn table func structure definesthe methods used to fetch results froma
table.

See also

o Table (a_v4_extfn_table) on page 310

« Table Context (a_v4_extfn_table context) on page 311
e _open_extfnon page 321

_fetch_into_extfnon page 322

e fetch block extfnon page 322

e _rewind extfnon page 323

» _close_extfnon page 324

open_extfn

The server calls the open extfn v4 APl method to initiate fetching of rows.

Declaration

void open extfn (
a v4 extfn table context *cntxt,

)

Usage
The UDF uses this method to open a result set and allocate any resources (for example,
streams) needed for sending results to the server.

User-Defined Functions 321

API Reference for a_v4_extfn

Parameters

Parameter Description

cntxt The procedure context object
See also

o Table Context (a_v4_extfn_table _context) on page 311

fetch into extfn

The fetch into extfn v4 APl method fetches rows into a provided row block.

Declaration

short fetch into extfn(
a v4 extfn table context *cntxt,
a v4 extfn row block *row block

)

Usage
The UDF should implement this method, if it does not have a preferred layout for its transfer
area.

Parameters
Parameter Description
cntxt The procedure context object
row_block The row block object to fetch into.
Returns

1 if successful, 0 otherwise.

See also
o Table Context (a_v4_extfn_table context) on page 311
» Row Block (a_v4_extfn_row_block) on page 309

fetch block extfn

The fetch block extfn v4 APl method fetches a block that is allocated and
configured by the UDF.

Declaration

short fetch block extfn(
a v4 extfn table context *cntxt,

322

SAP Sybase 1Q

API Reference for a_v4_extfn

a v4 extfn row block **

)

Usage
The UDF should implement this method, if it has a preferred layout for its transfer area.

Parameters
Parameter Description
cntxt The procedure context object
row_block The row block object to fetch into
Returns

1 if successful, 0 otherwise.

See also
» Table Context (a_v4_extfn_table context) on page 311
» Row Block (a_v4_extfn_row_block)on page 309

rewind extfn
The _rewind_extfn v4 API method restarts a result set at the beginning of the table.

Declaration

void rewind extfn(
a v4 extfn table context *cntxt,

)

Usage
This function is an optional entry point. The UDF implementsthe rewind extfn method
when the result table is rewound to the beginning. The UDF should consider implementing
this method only if it can provide the rewind functionality in an efficient and cost-effective
manner.

If a UDF chooses to implement the rewind extfn method, it should tell the consumer
during the state EXTFNAPIV4_STATE_OPTIMIZATION by setting the
EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND parameter for argument 0.

The UDF may decide not to provide the rewind functionality, in which case the server
compensates and provides the functionality.

Note: The server can choose notto callthe rewind extfn method to perform the rewind.

User-Defined Functions 323

API Reference for a_v4_extfn

Parameters

Parameter Description

cntxt The procedure context object
Returns

No return value.

See also

o EXTFNAPIV4 DESCRIBE PARM TABLE REQUEST REWIND Attribute (Get)on
page 258

o EXTFNAPIV4 DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Set)on
page 273

o EXTFNAPIV4_DESCRIBE PARM_TABLE HAS REWIND Attribute (Set) on page
275

o EXTFNAPIV4 DESCRIBE PARM _TABLE HAS REWIND Aftribute (Get) on page
259

e Query Processing States on page 121

e Execution State (a_v4_extfn_state) on page 287

o Table Context (a_v4_extfn_table_context) on page 311

close extfn

The server callsthe close extfn v4 APl method to terminate fetching of rows.

Declaration

void close extfn(
a v4 extfn table context *cntxt,
)

Usage
The UDF uses this method when fetching is complete to close a result set and release any
resources allocated for the result set.

Parameters

Parameter Description

cntxt The procedure context object
See also

« Table Context (a_v4_extfn_table context)on page 311

324

SAP Sybase 1Q

API Troubleshooting for a_v4_extfn

API Troubleshooting for a_v4_ extfn

The describe column, describe parameter, and describe udf v4 API
methods can return generic error messages. Executing a UDF that does not exist on the server
returnsa Could not execute statement error.

Generic describe _column Errors

Common error returns for describe_column get and set calls.

Get

Set

EXTFNAPIV4 DESCRIBE BUF-
FER SIZE MISMATCH — get error returned
if the cntxt or describe_buffer are NULL, or if
the describe_buffer_length is 0.

EXTFNAPIV4 DESCRIBE BUF-
FER SIZE MISMATCH - set error returned
if the cntxt or describe_buffer are NULL, or if
the describe_buffer_length is 0.

EXTFNAPIV4 DESCRIBE INVA-
LID STATE - geterror returned if the cntxt
parameter is not a valid context.

EXTFNAPIV4 DESCRIBE INVA-
LID_ STATE - seterror returned if the cntxt
parameter is not a valid context.

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER —get error returned if the
provided parameter number is outside legal range
for the procedure: < 0 or > the number of param-
eters for the procedure.

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER - set error returned if the
provided parameter number is outside legal range
for the procedure: < 0 or > the number of param-
eters for the procedure.

EXTFNAPIV4 DESCRIBE NON TA-
BLE PARAMETER - get error returned if
arg_num is not a TABLE parameter.

EXTFNAPIV4 DESCRIBE NON TA-
BLE PARAMETER - set error returned if
arg_num is not a TABLE parameter.

EXTFNAPIV4 DESCRIBE INVA-
LID COLUMN —get error returned if the col-
umn number is not valid for the TABLE param-
eter.

EXTFNAPIV4 DESCRIBE INVA-

LID COLUMN - set error returned if the col-
umn number is not valid for the TABLE param-
eter.

EXTFNAPIV4 DESCRIBE UN-

KNOWN ATTRIBUTE - get error returned if
the value of describe_type is not one of the valid
describe types froma_v4 extfn de-
scribe parm type.

EXTFNAPIV4 DESCRIBE UN-

KNOWN ATTRIBUTE - set error returned if
the value of describe_type is not one of the valid
describe types froma_v4 extfn de-
scribe parm_ type.

User-Defined Functions

325

API Troubleshooting for a_v4_extfn

Generic describe _udf Errors

Common error returns for describe udf get and set calls.

Get

Set

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER —get error returned if any
of the cntxt or describe_buffer arguments are
NULL or if describe_buffer_length is 0.

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER - set error returned if any
of the cntxt or describe_buffer arguments are
NULL or if describe_buffer_length is 0.

EXTFNAPIV4 DESCRIBE INVA-
LID PARAMETER - get error returned if the
cntxt parameter is an invalid context.

EXTFNAPIV4 DESCRIBE INVA-
LID PARAMETER - seterror returned if the
cntxt parameter is an invalid context.

EXTFNAPIV4 DESCRIBE UN-
KNOWN ATTRIBUTE - get error returned if
the value of describe_type is not one of the

a v4 extfn describe udf type
describe types.

EXTFNAPIV4 DESCRIBE UN-
KNOWN ATTRIBUTE - set error returned if
the value of describe_type is not one of the

a v4 extfn describe udf type
describe types.

Generic describe parameter Errors

Common error returns for describe parameter get and set calls.

Get

Set

EXTFNAPIV4 DESCRIBE INVA-
LID PARAMETER —get error returned if the
cntxt or describe_buffer is NULL, or if de-
scribe_buffer_length is 0.

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER - set error returned if the
cntxt or describe_buffer is NULL, or if de-
scribe_buffer_length is 0.

EXTFNAPIV4 DESCRIBE INVA-
LID PARAMETER - geterror returned if the
cntxt parameter is invalid.

EXTFNAPIV47DESCRIBE71NVA—
LID PARAMETER - seterror returned if the
cntxt parameter is invalid.

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER —get error returned if the
provided parameter number is outside the legal
range for the procedure; that is, if the parameter
number is < 0 or > the number of parameters for
the procedure.

EXTFNAPIV4 DESCRIBE INVA-

LID PARAMETER - set error returned if the
provided parameter number is outside the legal
range for the procedure; that is, if the parameter
number is < 0 or > the number of parameters for
the procedure.

326

SAP Sybase 1Q

API Troubleshooting for a_v4_extfn

Get

Set

EXTFNAPIV4 DESCRIBE UN-
KNOWN ATTRIBUTE - get error returned if
the value of describe_type is an invalid

a v4 extfn describe parm type
describe type.

EXTFNAPIV4 DESCRIBE UN-
KNOWN ATTRIBUTE - set error returned if
the value of describe_type is an invalid

a v4 extfn describe parm type
describe type.

EXTFNAPIV4 DESCRIBE BUF-
FER_SIZE_MISMATCH—gﬁewormwnwd
if there is a discrepancy between the requested
attribute size and the supplied de-

scribe buffer length. For fixed-size
attributes, suichasan a_sgl byte data type,
the sizes must match. For variable-length attrib-
ute data types, such as char [], the supplied
buffer needs to be at least large enough to hold the
value of the requested attribute.

EXTFNAPIV4 DESCRIBE BUF-
FER_SIZE_MISMATCH—SmeNmrﬁumed
if there is a discrepancy between the size of the
requested attribute and the supplied de-
scribe_buffer_length. For fixed-size attributes,
suchasana_ sqgl byte datatype, the sizes
must match.

See also
e Query Processing States on page 121

Missing UDF Returns an Error

An attempt to execute a UDF that does not exist on the server returns an error.

If you attempt to execute a query similar to:

select my suml (n_tabkey)
where:

e tabudf () isatable UDF, and

from tabudf ()

e the UDFmy suml () does not exist on the server,

this error is returned:

Could not execute statement.

External procedures or functions are not allowed across server types.

SQLCODE=-1579,

Line 1, column 1

ODBC 3 State="HY0O00"

User-Defined Functions

327

API Troubleshooting for a_v4_extfn

328 SAP Sybase IQ

External Environment for UDFs

External Environment for UDFs

An improperly defined UDF may cause memory violations or may lead to a database server
failure. Running a UDF outside the database server, in an external environment, eliminates
this risk to the server.

If a runtime exception occurs in the external environment, the server process is unaffected.
The server issues an error to the UDF caller, and any subsequent calls to the UDF result in a
restart of the external environment.

Note: The external runtime environments do not require the IQ_UDF or IQ_IDA license. The
external runtime environments do not require the a v3 extfnora v4 extfn APIs.

The database server includes support for these external runtime environments for UDFs:

e ESQL and ODBC (C/C++ Embedded SQL or ODBC server-side requests)

e Java
e Perl
e PHP

Each environment has its own set of APIs for processing arguments and returning values back
to the server. The Java external environment, for example, uses the JDBC API.

System Tables
The system table SYSEXTERNENV stores the information needed to identify and launch each
of the external environments.

The system table SYSEXTERNENVOBJECT stores non-Java external objects.

SQL Statements
The following SQL syntax allows you to set or modify the location of external environments in
the SYSEXTERNENYV table.

ALTER EXTERNAL ENVIRONMENT environment-name
[LOCATION location-string]

Once an external environment is set up to be used on the database server, you can then install
objects into the database and create stored procedures and functions that make use of these
objects within the external environment. Installing, creating, and using these objects, stored
procedures, and stored functions is similar to installing Java classes and creating and using
Java stored procedures and functions.

To add a comment for an external environment, you can execute:

COMMENT ON EXTERNAL ENVIRONMENT environment-name
IS comment-string

User-Defined Functions 329

External Environment for UDFs

To install a Perl or PHP external object (for example, a Perl script) from a file or an expression
into the database, execute an INSTALL EXTERNAL OBJECT statement similar to:
INSTALL EXTERNAL OBJECT object-name-string

[update-mode]

FROM { FILE file-path | VALUE expression }

ENVIRONMENT environment-name

To add a comment for an installed Perl or PHP external object, you can execute:

COMMENT ON EXTERNAL [ENVIRONMENT] OBJECT object-name-string
IS comment-string

To remove an installed Perl or PHP external object from the database, use a REMOVE
EXTERNAL OBJECT statement:

REMOVE EXTERNAL OBJECT object-name-string

Once external objects are installed in the database, you can use them in external stored
procedure and function definitions (similar to the current mechanism for creating Java stored
procedures and functions).

CREATE PROCEDURE procedure-name(...)
EXTERNAL NAME '...'
LANGUAGE environment-name

CREATE FUNCTION function-name(...)
RETURNS

EXTERNAL NAME '...'

LANGUAGE environment-name

Once these stored procedures and functions are created, you can use them like any other stored
procedure or function in the database. The database server, when encountering an external
environment stored procedure or function, automatically launches the external environment
(if it has not already been started), and sends the necessary information to get the external
environment to fetch the external object from the database and execute it. Any result sets or
return values resulting from the execution are returned as needed.

To start or stop an external environment on demand, use the START EXTERNAL
ENVIRONMENT and STOP EXTERNAL ENVIRONMENT statements:

START EXTERNAL ENVIRONMENT environment-name
STOP EXTERNAL ENVIRONMENT environment-name

Executing UDFs from an External Environment

Execute UDFs in the ESQL, ODBC, Java, Perl, or PHP external environments.

Prerequisites

There are no licensing prerequisites. The external runtime environments do not require the
IQ_IDA license. The external runtime environments do not require the a_ v3 extfn or
a v4 extfnAPIs.

330

SAP Sybase 1Q

External Environment for UDFs

Task

1. Set up the external environment to be used on the database server.

ALTER EXTERNAL ENVIRONMENT environment-name
[LOCATION location-string]

2. Install external objects (CLR, ESQL and ODBC, Java, Perl, or PHP) into the database.
3. Use CREATE PROCEDURE and CREATE FUNCTION statements to create stored

procedures and functions that make use of these objects within the external
environment.

4. Reference the stored procedure or function. Reference stored procedures in the FROM
clause of your query.

See also

e The ESQL and ODBC External Environments on page 331

e The Java External Environment on page 341

e PERL External Environmenton page 369

e PHP External Environmenton page 373

e CREATE PROCEDURE Statement (Java UDF) on page 361
e CREATE FUNCTION Statement (Java UDF) on page 363

External Environment Restrictions

Restrictions apply to all external environments for UDFs.

e The NO RESULT SET option is not supported.
e Only IN parameters are supported: INOUT/OUT are not supported.
e Functions with LONG VARCHAR or LONG BINARY result values are not permitted.

See also
o Java External Environment Restrictions on page 347

The ESQL and ODBC External Environments

To run a compiled native C function in an external environment instead of within the database
server, the stored procedure or function is defined with the EXTERNAL NAME clause
followed by the LANGUAGE attribute specifying one of C_ESQL32, C_ESQL64,
C_ODBC32, or C_ODBC64.

Unlike the Perl, PHP, and Java external environments, you do not install any source code or
compiled objects in the database. As a result, you do not need to execute any INSTALL
statements before using the ESQL and ODBC external environments.

User-Defined Functions 331

External Environment for UDFs

Here is an example of a function written in C++ that can be run within the database server or in

an external environment.

#include
#include
#include
#include
#include

<windows.h>
<stdio.h>
<stdlib.h>
<string.h>
"extfnapi.h"

BOOL APIENTRY Dl1lMain (

DWORD

)
{
return TRUE;

}

HMODULE hModule,
ul reason for call,
LPVOID lpReserved

// Note: extfn use new _api used only for
// execution in the database server

extern "C"

declspec(dllexport)

a_sgl uint32 extfn use new api(void)

{

return(EXTFN API VERSION);

}

extern "C" declspec(dllexport)

void SimpleCFunction (
an_extfn api *api
void *arg handle

’

)

short result;

an_extfn value arg;

an_extfn value retval;

int * intptr;

int i, 3, k;

j = 1000;

k=07

for(i = 1; 1 <= 4; i++)

{
result = api->get value(arg handle, i, &arg
if(result == 0 || arg.data == NULL) break;
if(arg.type & DT TYPES != DT INT) break;
intptr = (int *) arg.data;
k += *intptr * j;
3 =3/ 107

}

retval.type = DT INT;

retval.data =
retval.piece len
(a_sgl uint32)

api->set value(arg handle,

return;

(void*) &k;
retval.len.total len =
sizeof (int

)i

0, &retval, 0);

)7

332

SAP Sybase 1Q

External Environment for UDFs

When compiled into a dynamic link library or shared object, this function can be called from
an external environment. An executable image called dbexternc12 is started by the database
server and this executable image loads the dynamic link library or shared object for you.

Note that 32-bit or 64-bit versions of the database server can be used and either version can
start 32-bit or 64-bit versions of dbexternc12. This is one of the advantages of using the
external environment. Note that once dbexternc12 is started by the database server, it does not
terminate until the connection has been terminated or a STOP EXTERNAL
ENVIRONMENT statement (with the correct environment name) is executed. Each
connection that does an external environment call will get its own copy of dbexternc12.

To call the compiled native function, SimpleCFunction, a wrapper is defined as follows:

CREATE FUNCTION SimpleCDemo (
IN argl INT,
IN arg2 INT,
IN arg3 INT,
IN arg4 INT)
RETURNS INT
EXTERNAL NAME 'SimpleCFunction@c:\\c\\extdemo.dll'
LANGUAGE C_ODBC32;

This is almost identical to the way a compiled native function is described when it is to be
loaded into the database server's address space. The one difference is the use of the
LANGUAGE C_ODBC32 clause. This clause indicates that SimpleCDemo is a function
running in an external environment and that it is using 32-bit ODBC calls. The language
specification of C_ESQL32, C_ESQL64, C_ODBC32, or C_ODBC64 tells the database
server whether the external C function issues 32-bit or 64-bit ODBC, ESQL, or

a_v4_ extfn API calls when making server-side requests.

When the native function uses none of the ODBC, ESQL, or SQL Anywhere C API calls to
make server-side requests, then either C_ODBC32 or C_ESQL32 can be used for 32-bit
applications and either C_ODBC64 or C_ESQL64 can be used for 64-bit applications. This is
the case in the external C function shown above. It does not use any of these APIs.

To execute the sample compiled native function, execute the following statement.
SELECT SimpleCDemo (1,2,3,4);

To use server-side ODBC, the C/C++ code must use the default database connection. To geta
handle to the database connection, call get_value with an
EXTFN_CONNECTION_HANDLE_ARG_NUM argument. The argument tells the
database server to return the current external environment connection rather than opening a
new one.

#include <windows.h>

#include <stdio.h>

#include "odbc.h"
#include "extfnapi.h"

BOOL APIENTRY Dl1lMain (HMODULE hModule,
DWORD ul reason for call,

User-Defined Functions 333

External Environment for UDFs

LPVOID lpReserved
)

{
return TRUE;

}

extern "C" declspec(dllexport)

void ServerSideFunction (an _extfn api *api, void *arg handle)

{

short result;
an_extfn value arg;
an_extfn value retval;
SQLRETURN ret;
ret = -1;

// set up the return value struct

retval.type = DT INT;

retval.data = (void*) &ret;

retval.piece len = retval.len.total len =
(a_sql uint32) sizeof (int);

result = api->get value(arg handle,
EXTFN_CONNECTION HANDLE ARG NUM,
&arg);

if(result == 0 || arg.data == NULL)

{

api->set value(arg handle, 0, &retval, 0);

return;

}

HDBC dbc = (HDBC)arg.data;
HSTMT stmt = SQL NULL HSTMT;

ret = SQLAllocHandle (SQL HANDLE STMT, dbc, &stmt);

if (ret != SQL SUCCESS) return;
ret = SQLExecDirect (stmt,
(SQLCHAR *) "INSERT INTO odbcTab "
"SELECT table id, table name "
"FROM SYS.SYSTAB", SQL NTS);
if (ret == SQL SUCCESS)
{
SQLExecDirect (stmt,
(SQLCHAR *) "COMMIT", SQL NTS);
}
SQLFreeHandle (SQL HANDLE STMT, stmt)

api->set value(arg handle, 0, &retval, 0);
return;

}

If the above ODBC code is stored in the file extodbc.cpp, it can be built for Windows using the

following commands.
cl extodbc.cpp /LD /Ic:\sal2\sdk\include odbc32.1ib

The following example creates a table, defines the stored procedure wrapper to call the
compiled native function, and then calls the native function to populate the table.

334

SAP Sybase 1Q

External Environment for UDFs

CREATE TABLE odbcTab(cl int, c2 char(128));

CREATE FUNCTION ServerSideODBC()

RETURNS INT

EXTERNAL NAME 'ServerSideFunction@extodbc.dll'
LANGUAGE C_ODBC32;

SELECT ServerSideODBC () ;

// The following statement should return two identical rows
SELECT COUNT (*) FROM odbcTab

UNION ALL

SELECT COUNT (*) FROM SYS.SYSTAB;

Similarly, to use server-side ESQL, the C/C++ code must use the default database connection.
To get a handle to the database connection, call get_value with an
EXTFN_CONNECTION_HANDLE_ARG_NUM argument. The argument tells the
database server to return the current external environment connection rather than opening a
new one.

#include <windows.h>
#include <stdio.h>

#include "sglca.h"
#include "sglda.h"
#include "extfnapi.h"

BOOL APIENTRY Dl1lMain (HMODULE hModule,
DWORD ul reason for call,
LPVOID lpReserved
)
{
return TRUE;
}

EXEC SQL INCLUDE SQLCA;

static SQLCA * sqglc;

EXEC SQL SET SQLCA " sqglc";

EXEC SQL WHENEVER SQLERROR { ret = sqglc->sqlcode; };

extern "C" declspec(dllexport)
void ServerSideFunction(an extfn api *api, void *arg handle)

{

short result;
an_extfn value arg;
an_extfn value retval;

EXEC SQL BEGIN DECLARE SECTION;
char *stmt text =
"INSERT INTO esqlTab "
"SELECT table id, table name "
"FROM SYS.SYSTAB";
char *stmt commit =
"COMMIT";
EXEC SQL END DECLARE SECTION;

User-Defined Functions 335

External Environment for UDFs

int ret = -1;

// set up the return value struct

retval.type = DT INT;

retval.data = (void*) &ret;

retval.piece len = retval.len.total len =
(a_sql uint32) sizeof (int);

result = api->get value(arg handle,
EXTFN_CONNECTION HANDLE ARG NUM,
&arg);

if(result == 0 || arg.data == NULL)

{

api->set value(arg handle, O,

return;
}
ret =

0;
_sqglc =

(SQLCA *)arg.data;

EXEC SQL EXECUTE IMMEDIATE
EXEC SQL EXECUTE IMMEDIATE

api->set value(arg handle,

}

&retval, 0);

:stmt text;
:stmt commit;

0, &retval, 0);

If the above embedded SQL statements are stored in the file extesqgl.sqc, it can be built for

Windows using the following commands.

sglpp extesgl.sqc extesqgl.cpp

cl extesqgl.cpp /LD /Ic:\sal2\sdk\include c:\sal2\sdk\lib

\x86\dblibtm.1lib

The following example creates a table, defines the stored procedure wrapper to call the
compiled native function, and then calls the native function to populate the table.

CREATE TABLE esglTab(cl int,

CREATE FUNCTION ServerSideESQL (

RETURNS INT
EXTERNAL NAME
LANGUAGE C _ESQL32;

SELECT ServerSideESQL () ;

c2 char(128));

)

'ServerSideFunction@extesgl.dll’

// The following statement should return two identical rows

SELECT COUNT (*)
UNION ALL
SELECT COUNT (*)

FROM esglTab

FROM SYS.SYSTAB;

As in the previous examples, to use server-side SAP Sybase 1Q C API calls, the C/C++ code
must use the default database connection. To get a handle to the database connection, call
get_value with an EXTFN_CONNECTION_HANDLE_ARG_NUM argument. The
argument tells the database server to return the current external environment connection rather
than opening a new one. The following example shows the framework for obtaining the

336

SAP Sybase 1Q

External Environment for UDFs

connection handle, initializing the C API environment, and transforming the connection
handle into a connection object (a_sqlany_connection) that can be used with the SAP Sybase
IQ C API.

include <windows.h>
#include "sacapidll.h"
#include "extfnapi.h"

BOOL APIENTRY Dl1lMain (HMODULE hModule,
DWORD ul reason for call,
LPVOID lpReserved
)
{
return TRUE;
}

extern "C" declspec(dllexport)
void ServerSideFunction(an_extfn api *extapi, void *arg handle)

{

short result;
an_extfn value arg;
an_extfn value retval;
unsigned offset;
char *cmd;

SQLAnywhereInterface capi;
a_sqglany connection * sqglany conn;
unsigned int max api ver;

result = extapi->get value(arg handle,
EXTFN_CONNECTION HANDLE ARG NUM,

&arg);
if(result == || arg.data == NULL)
{ return;
if(!sglany initialize interface(&capi, NULL))
{ return;

if(!capi.sqglany init ("MyApp",
SQLANY CURRENT API VERSION,
&max_api_ver))

sglany finalize interface(&capi);

return;
}
sglany conn = sglany make connection(arg.data);
// processing code goes here

capi.sglany fini();

sglany finalize interface(&capi);

User-Defined Functions 337

External Environment for UDFs

return;

}

If the above C code is stored in the file extcapi.c, it can be built for Windows using the
following commands.

cl /LD /Tp extcapi.c /Tp c:\sal2\SDK\C\sacapidll.c
/Ic:\sal2\SDK\Include c:\sal2\SDK\Lib\X86\dbcapi.lib

The following example defines the stored procedure wrapper to call the compiled native
function, and then calls the native function.

CREATE FUNCTION ServerSideC ()

RETURNS INT

EXTERNAL NAME 'ServerSideFunction@extcapi.dll'
LANGUAGE C_ESQL32;

SELECT ServerSideC();

The LANGUAGE attribute in the above example specifies C_ESQL32. For 64-bit
applications, you would use C_ESQL64. You must use the embedded SQL language attribute
since the SAP Sybase 1Q C API is built on the same layer (library) as ESQL.

As mentioned earlier, each connection that does an external environment call will start its own
copy of dbexternc12. This executable application is loaded automatically by the server the
first time an external environment call is made. However, you can use the START
EXTERNAL ENVIRONMENT statement to preload dbexternc12. This is useful if you want
to avoid the slight delay that is incurred when an external environment call is executed for the
first time. Here is an example of the statement.

START EXTERNAL ENVIRONMENT C ESQL32

Another case where preloading dbexternc12 is useful is when you want to debug your external
function. You can use the debugger to attach to the running dbexterncl12 process and set
breakpoints in your external function.

The STOP EXTERNAL ENVIRONMENT statement is useful when updating a dynamic link
library or shared object. It will terminate the native library loader, dbexternc12, for the current
connection thereby releasing access to the dynamic link library or shared object. If multiple
connections are using the same dynamic link library or shared object then each of their copies
of dbexternc12 must be terminated. The appropriate external environment name must be
specified in the STOP EXTERNAL ENVIRONMENT statement. Here is an example of the
statement.

STOP EXTERNAL ENVIRONMENT C ESQL32

To return a result set from an external function, the compiled native function must use the
native function call interface.

The following code fragment shows how to set up a result set information structure. It contains
a column count, a pointer to an array of column information structures, and a pointer to an
array of column data value structures. The example also uses the SAP Sybase 1Q C API.

338

SAP Sybase 1Q

an_e
int

an e

an e

rs i
rs i
rs i

External Environment for UDFs

xtfn result set info rs_info;
columns = capi.sqlany num cols(sglany stmt);
xtfn result set column info *col info =

(an_extfn result set column info *)
malloc(columns * sizeof (an_extfn result set column info)

xtfn result set column data *col data =
(an_extfn result set column data *)
malloc(columns * sizeof (an _extfn result set column data)

nfo.number of columns = columns;
nfo.column infos = col info;
nfo.column data values = col data;

) ;

) ;

The following code fragment shows how to describe the result set. It uses the SAP Sybase IQ C
API to obtain column information for a SQL query that was executed previously by the C API.

The information that is obtained from the SAP Sybase IQ C API for each column is

transformed into a column name, type, width, index, and null value indicator that will be used
to describe the result set.

a sglany column info info;

for (

{

int i = 0; i < columns; i++)

if (sqlany get column info(sglany stmt, i, &info))
{
// set up a column description
col info[i].column name = info.name;
col info[i].column type = info.native type;
switch(info.native type)

{

case DT DATE: // DATE is converted to string by C API
case DT _TIME: // TIME is converted to string by C API
case DT TIMESTAMP: // TIMESTAMP is converted to string by
C API
case DT DECIMAL: // DECIMAL is converted to string by C
API
col info[i].column type = DT FIXCHAR;
break;
case DT FLOAT: // FLOAT is converted to double by C API
col info[i].column type = DT DOUBLE;
break;
case DT BIT: // BIT is converted to tinyint by C API
col info[i].column type = DT TINYINT;
break;
}
col info[i].column width = info.max size;
col info[i].column index = i + 1; // column indices are origin
1

}

col info[i].column can be null = info.nullable;

}

// send the result set description

if(

extapi->set value(arg handle,

User-Defined Functions

339

External Environment for UDFs

EXTFN RESULT SET ARG NUM,
(an_extfn value *)&rs info,
EXTFN _RESULT SET DESCRIBE) == 0)

// failed

free(col info);
free(col data);
return;

}

Once the result set has been described, the result set rows can be returned. The following code
fragment shows how to return the rows of the result set. It uses the SAP Sybase IQ C API to
fetch the rows for a SQL query that was executed previously by the C API. The rows returned
by the SAP Sybase 1Q C API are sent back, one at atime, to the calling environment. The array
of column data value structures must be filled in before returning each row. The column data
value structure consists of a column index, a pointer to a data value, a data length, and an
append flag.

a_sqglany data value *value = (a_sqglany data value *)
malloc(columns * sizeof(a_sqlany_data_value)) 2

while (capi.sqglany fetch next(sglany stmt))
{
for(int 1 = 0; 1 < columns; i++)
{
if (capi.sglany get column(sglany stmt, i, &value[i]))
{
col data[i].column index = i + 1;
col data[i].column data value[i] .buffer;
col data[i].data length
(a_sqgl uint32) * (value[i].length);
col data[i].append = 0;
if(*(value[i].is_null))

{

// Received a NULL value
col data[i].column data = NULL;

}
}
1f(extapi—>set_value(arg handle,
EXTFN RESULT SET ARG NUM,
(an_extfn value *)&rs info,
EXTFN_RESULT SET NEW ROW FLUSH) ==)

// failed

free(value);

free(col data);

free(col data);

extapi->set value(arg handle, 0, &retval, 0);
return;

340

SAP Sybase 1Q

External Environment for UDFs

The Java External Environment

The database server includes support for Java stored procedures and functions. A Java stored
procedure or function behaves the same as a SQL stored procedure or function except that the
code for the procedure or function is written in Java and the execution of the procedure or
function takes place outside the database server (that is, within a Java VM environment).

It should be noted that there is one instance of the Java VM for each database rather than one
instance per connection. Java stored procedures can return result sets.

There are a few prerequisites to using Java in the database support:

1. A copy of the Java Runtime Environment must be installed on the database server
computer.
2. The database server must be able to locate the Java executable (the Java VM).

To use Java in the database, make sure that the database server is able to locate and start the
Java executable. Verify that this can be done by executing:
START EXTERNAL ENVIRONMENT JAVA;

If the database server fails to start Java then the problem probably occurs because the database
server is not able to locate the Java executable. In this case, you should execute an ALTER
EXTERNAL ENVIRONMENT statement to explicitly set the location of the Java executable.
Make sure to include the executable file name.

ALTER EXTERNAL ENVIRONMENT JAVA
LOCATION 'java-path';

For example:

ALTER EXTERNAL ENVIRONMENT JAVA
LOCATION 'c:\\Jjdkl.6.0\\jre\\bin\\java.exe';

You can query the location of the Java VM that the database server will use by executing the
following SQL query:
SELECT db_property ('JAVAVM') ;

Note that the START EXTERNAL ENVIRONMENT JAVA statement is not necessary other than
to verify that the database server can start the Java VM. In general, making a Java stored
procedure or function call starts the Java VM automatically.

Similarly, the STOP EXTERNAL ENVIRONMENT JAVA statement is not necessary to stop an
instance of Java since the instance automatically goes away when the all connections to the
database have terminated. However, if you are completely done with Java and you want to
make it possible to free up some resources, then the STOP EXTERNAL ENVIRONMENT JAVA
statement decrements the usage count for the Java VM.

Once you have verified that the database server can start the Java VM executable, the next
thing to do is to install the necessary Java class code into the database. Do this by using the

User-Defined Functions 341

External Environment for UDFs

INSTALL JAVA statement. For example, you can execute the following statement to install a
Java class from a file into the database.
INSTALL JAVA

NEW
FROM FILE 'java-class-file';

You can also install a Java JAR file into the database.
INSTALL JAVA

NEW

JAR 'jar-name'

FROM FILE 'jar-file';

Java classes can be installed from a variable, as follows:

CREATE VARIABLE JavaClass LONG VARCHAR;

SET JavaClass = xp read file('java-class-file')
INSTALL JAVA

NEW

FROM JavaClass;

To remove a Java class from the database, use the REMOVE JAVA statement, as follows:
REMOVE JAVA CLASS java-class

To remove a Java JAR from the database, use the REMOVE JAVA statement, as follows:
REMOVE JAVA JAR 'jar—name'

To modify existing Java classes, you can use the UPDATE clause of the INSTALL JAVA
statement, as follows:

INSTALL JAVA
UPDATE
FROM FILE 'java-class-file'

You can also update existing Java JAR files in the database.

INSTALL JAVA

UPDATE

JAR 'jar-name'

FROM FILE 'jar-file';

Java classes can be updated from a variable, as follows:

CREATE VARIABLE JavaClass LONG VARCHAR;

SET JavaClass = xp read file('java-class-file')
INSTALL JAVA

UPDATE

FROM JavaClass;

342 SAP Sybase IQ

External Environment for UDFs

Once the Java class is installed in the database, you can then create stored procedures and
functions to interface to the Java methods. The EXTERNAL NAME string contains the
information needed to call the Java method and to return OUT parameters and return values.
The LANGUAGE attribute of the EXTERNAL NAME clause must specify JAVA. The format of
the EXTERNAL NAME clause is:

EXTERNAL NAME 'java-call LANGUAGE JAVA

java-call :

[package-name.]class—-name.method-name method-signature

method-signature :

([field-descriptor, ...]) return-descriptor

field-descriptor and return-descriptor :

e Z
- |B
« S
o I
. |J
. |F
« |D
. |C
. |V

e | [descriptor
e | Lclass-name;

A Java method signature is a compact character representation of the types of the parameters
and the type of the return value. If the number of parameters is less than the number indicated
in the method-signature, then the difference must equal the number specified in DYNAMIC
RESULT SETS, and each parameter in the method signature that is more than those in the
procedure parameter list must have a method signature of [Ljava/SQL/ResultSet;.

For Java UDFs, you do not need to set DYNAMIC RESULT SETS; DYNAMIC RESULT SETS
equal to 1 is implied.

The field-descriptorand return-descriptor have the following meanings:

Field type Java data type
B byte

C char

D double

F float

User-Defined Functions 343

External Environment for UDFs

Field type Java data type

| int

J long

L class-name; an instance of the class class-name. The class

name must be fully qualified, and any dot in the
name must be replaced by a /. For example, java/

lang/String
S short
\ void
z Boolean
[use one for each dimension of an array

For example,

double some method (
boolean a,
int b,
java.math.BigDecimal c,
byte [1[] d,
java.sgl.ResultSet[] rs) {
}

would have the following signature:
'(ZILjava/math/BigDecimal; [[B[Ljava/SQL/ResultSet;)D"

The following procedure creates an interface to a Java method. The Java method does not
return any value (V).
CREATE PROCEDURE insertfix ()

EXTERNAL NAME 'JDBCExample.InsertFixed()V'
LANGUAGE JAVA;

The following procedure creates an interface to a Java method that has a String ([Ljava/lang/
String;) input argument. The Java method does not return any value (V).

CREATE PROCEDURE InvoiceMain(IN argl CHAR(50))
EXTERNAL NAME 'Invoice.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

The following procedure creates an interface to a Javamethod Invoice.init which takes
a string argument (Ljava/lang/String;), a double (D), another string argument (Ljava/lang/
String;), and another double (D), and returns no value (V).

CREATE PROCEDURE init(IN argl CHAR(50),
IN arg2 DOUBLE,
IN arg3 CHAR(50),
IN arg4 DOUBLE)
EXTERNAL NAME 'Invoice.init (Ljava/lang/String;DLjava/lang/
String;D) V'
LANGUAGE JAVA

344

SAP Sybase 1Q

External Environment for UDFs

The following Java example contains the function main which takes a string argument and
writes it to the database server messages window. It also contains the function whare that
returns a Java String.

import java.io.*;

public class Hello
{
public static void main(String[] args)
{
System.out.print ("Hello");
for (int 1 = 0; i < args.length; i++)
System.out.print(" " + args[i]);
System.out.println() ;

}
public static String whare ()
{

return("I am SQL Anywhere.");
}
}

The Java code above is placed inthe file He 11 0. java and compiled using the Java compiler.
The class file that results is loaded into the database as follows.

INSTALL JAVA
NEW
FROM FILE 'Hello.class';

Using Interactive SQL, the stored procedure that will interface to the method main in the
class Hel1lo is created as follows:

CREATE PROCEDURE HelloDemo (IN name LONG VARCHAR)
EXTERNAL NAME 'Hello.main([Ljava/lang/String;)V'
LANGUAGE JAVA;

Note that the argument to main is described as an array of java.lang.String. Using
Interactive SQL, test the interface by executing the following SQL statement.
CALL HelloDemo ('SQL Anywhere');

If you check the database server messages window, you will find the message written there.
All output to System. out is redirected to the server messages window.

Using Interactive SQL, the function that will interface to the method whare in the class
Hello is created as follows:

CREATE FUNCTION Whare ()

RETURNS LONG VARCHAR

EXTERNAL NAME 'Hello.whoAreYou(V)Ljava/lang/String;'
LANGUAGE JAVA;

Note that the function whare is described as returninga java.lang.String. Using
Interactive SQL, test the interface by executing the following SQL statement.
SELECT Whare () ;

User-Defined Functions 345

External Environment for UDFs

You should see the response in the Interactive SQL Results window.

In attempting to troubleshoot why a Java external environment did not start, that is, if the
applicationgetsa"main thread not found" error whenaJava call is made, the DBA
should check the following:

« If the Java VM is a different bitness than the database server, then ensure that the client
libraries with the same bitness as the VM are installed on the database server machine.

e Ensure that the sajdbc.jar and dbjdbcl2/1ibdbjdbcl2 shared objects are
from the same software build.

e Ifmorethanonesajdbc. jar are on the database server machine, make sure they are all
synchronized to the same software version.

« If the database server machine is very busy, then there is a chance the error is being
reported due to a timeout.

See also

e INSTALL JAVA Statement on page 358

» CREATE PROCEDURE Statement (Java UDF) on page 361
e CREATE FUNCTION Statement (Java UDF) on page 363

* REMOVE Statement on page 367

o START JAVA Statementon page 368

e STOP JAVA Statement on page 369

Java External Environment in a Multiplex

Before you can use Java external environment UDFs in a multiplex configuration, install the
Java class file or JAR files on each node of the multiplex that requires the UDF.

Use Sybase Control Center or the Interactive SQL INSTALL JAVA statement to install the Java
class file and JAR.

See also
e INSTALL JAVA Statement on page 358

Installing a Class Using Interactive SQL

To make your Java class available within the database, you install the class into the database
using the INSTALL JAVA statement from Interactive SQL. You must know the path and file
name of the class you want to install.

1. Connectto the database as a user with the MANAGE ANY EXTERNAL OBJECT system
privilege.
2. Execute the following statement:

INSTALL JAVA NEW
FROM FILE 'path\\ClassName.class';

346

SAP Sybase 1Q

External Environment for UDFs

path is the directory where the class file is located, and ClassName.class is the
name of the class file.

The double backslash ensures that the backslash is not treated as an escape character.
For example, to install a class in a file named Utility.class, held in the directory
c:\source, you would execute the following statement:

INSTALL JAVA NEW

FROM FILE 'c:\\source\\Utility.class';

If you use arelative path, it must be relative to the current working directory of the database
server.

Java External Environment Restrictions

Before developing Java UDFs and Java table UDFs, familiarize yourself with the restrictions
specific to the Java external environment for UDFs.

« Aggregate Java functions are not supported.
e Query fragments involving Java UDFs are not eligable for DQP or SMP processing.

* You cannot DROP tables involved in the current query from within the Java external
environment.

« You cannot ALTER tables involved in the current query from within the Java external
environment.

e UNSIGNED SMALLINT datatype is not supported.
* Numeric functions are limited to a precision of 255 or less.
e Only one result set is permitted for Java table UDFs.

See also
e External Environment Restrictions on page 331

Java VM Memory Options

Use the java_vm_options option to specify any additional command line options that are
required to start the Java virtual machine (VM).

Use this syntax:
SET OPTION PUBLIC.java vm options='java-options';

In the following example, you use java_vm_options to set the maximum heap size of the Java
VM to 512 megabytes:

SET OPTION PUBLIC.java_vm options='-Xmx512m';
In the following example, you set the initial heap size of the Java VM to 32 megabytes:
SET OPTION PUBLIC.java_ vm options='-Xms32m';

User-Defined Functions 347

External Environment for UDFs

SQL Data Type Conversions for Java UDFs

SQL-to-Java and Java-to-SQL data type conversions are carried out according to the JDBC
standard. LOB data types LONG VARCHAR and LONG BINARY are supported for input
values but not for return values.

SQL to Java Data Type Conversion

The data type conversions used by the input values of Java Scalar UDFs and Java Table UDFs.

SQL type Java Type
BIGINT long

BINARY byte[]

BIT boolean

CHAR String

DATE java.sqgl.Date
DECIMAL java.math.BigDecimal
DOUBLE double

IMAGE byte[]
INTEGER int

LONG BINARY byte[1

Note: Large object data support requires a separately licensed SAP Syb-
ase 1Q option.

LONG VARCHAR

String

Note: Large object data support requires a separately licensed SAP Syb-
ase 1Q option.

MONEY java.math.BigDecimal
NUMERIC java.math.BigDecimal
REAL float
SMALLINT short
SMALLMONEY java.math.BigDecimal

348

SAP Sybase 1Q

External Environment for UDFs

SQL type Java Type

TEXT String

TIME java.sgl.Time
TIMESTAMP java.sqgl.Timestamp
TINYINT byte

UNSIGNED BIGINT| java.math.BigDecimal

20 and scale of 0)

(with a precision of

UNSIGNED INT java long

VARBINARY byte[1

VARCHAR String

Java to SQL Data Type Conversion

The return-value data types of Java scalar UDFs and Java Table UDFs.

Java Type SQL Type
String CHAR
String VARCHAR
String TEXT
java.math.BigDecimal NUMERIC
java.math.BigDecimal MONEY
java.math.BigDecimal SMALLMONEY
boolean BIT

byte TINYINT
short SMALLINT
int INTEGER
long BIGINT
float REAL
double DOUBLE

User-Defined Functions

349

External Environment for UDFs

Java Type SQL Type

bytel[] VARBINARY

byte[] IMAGE
java.sqgl.Date DATE

java.sqgl.Time TIME
java.sqgl.Timestamp DATETIME/TIMESTAMP
java.lang.Double DOUBLE
java.lang.Float REAL
java.lang.Integer INTEGER
java.lang.Long BIGINT

Creating a Java Scalar UDF

Create and compile a Java class, install the class file onto the server, and create the function
definition.

Prerequisites

* You are familiar with Java and can compile a . jawva file. You know where the
resulting . class file will reside on the file system.
* You are familiar with Interactive SQL. You can connect to the i gdemo database from

Interactive SQL, and can issue the START EXTERNAL ENVIRONMENT JAVA command
from Interactive SQL.

Task
Use this task as template when creating your own Java UDFs.

1. Place this Java code in a file named Hel1loJavaUDF . java:

public class HelloJavaUDF
{
public static String helloJava(String name)
{
// Simply return Hello and the name passed in.
return "Hello " + name;

}

This creates the Java class He1l1oJavaUDF with a static method helloJava. The
method takes a single string argument and returns a string.

350 SAP Sybase IQ

External Environment for UDFs

2. Compile HellowJavaUDF. java:
javac <pathtojavafile>/HelloJavaUDF.java

3. In Interactive SQL, connect to the i gdemo database.
4. In Interactive SQL, install the class file onto the server:

Using
absolute path

INSTALL JAVA NEW FROM FILE
'<absolutepathtofile>/HelloJavaUDF.class'

Example:

INSTALL JAVA NEW FROM FILE 'd:/mydirectory/
HelloJavaUDF.class'

Using relative
path

INSTALL JAVA NEW FROM FILE
'<pathrelativetocwd>/HelloJavaUDF.class'

Example:

INSTALL JAVA NEW FROM FILE 'myreldir/
HelloJavaUDF.class'

5. In Interactive SQL, create the function definition.
Provide the following information:
e The Java package, class, and method names
» The Java data types of your function arguments, and their corresponding SQL data

types

e The SQL name assign to the Java UDF

CREATE FUNCTION my helloJava (IN name VARCHAR (249))
RETURNS VARCHAR (255)

EXTERNAL NAME

'example.HelloJavaUDF.helloJava (Ljava/lang/

String;)Ljava/lang/String; "'

LANGUAGE JAVA

6. In Interactive SQL, use the Java UDF in a query against the i gdemo database:

SELECT my helloJava(GivenName)

110

See also

e SQL to Java Data Type Conversion on page 348
e Java to SQL Data Type Conversion on page 349

Example: Executing a Java Scalar UDF

Java scalar UDF code example.

1. Create the Java class.

public class Sample {
public static int add(int a, int b) {

FROM Customers WHERE ID <

User-Defined Functions

351

External Environment for UDFs

return a + b;
}
}
public class Sample {
public static int add(int a, int b) {
return new java.lang.Integer(a + b);
}
}

2. Execute the SQL statement to deploy the Java class to the database.

INSTALL JAVA NEW FROM FILE 'd:\\java\\samples\\Sample.class'
3. Create the SQL function that maps to the Java method “Sample.add (int,

int)”.

CREATE FUNCTION sample add int (IN a int, IN b int)

RETURNS int

EXTERNAL NAME 'Sample.add(II)I'

LANGUAGE JAVA

4. Use the SQL function in a SELECT statement.

SELECT sample add int(ID, ID) from Customers WHERE ID < 110
5. Remove a Java class from the database.

REMOVE JAVA CLASS ‘Sample’
6. Update a java class in the database.

INSTALL JAVA UPDATE FROM FILE 'd:\\java\\samples\\Sample.class'
INSTALL JAVA JAR UPDATE FROM FILE 'd:\\java\\samples\\Sample.jar'

Creating a Java Scalar UDF Version of the SQL substr Function

Create a Java UDF deployment where the SQL function passes multiple arguments to the Java
UDF.

Prerequisites

* You are familiar with Java and can compile a . java file. You know where the
resulting . class file will reside on the file system.

* You are familiar with Interactive SQL. You can connect to the igdemo database from
Interactive SQL, and can issue the START EXTERNAL ENVIRONMENT JAVA command
from Interactive SQL.

Task

1. Place this Java code in a file named MyJavaSubstr:

public class MyJavaSubstr
{

public static String my java substr(String in, int start, int
length)

{

String rc = null;

352 SAP Sybase IQ

External Environment for UDFs

if (start < 1)
{

start = 1;
}

// Convert the SQL start, length to Java start, end.
start --; // Java is 0 based, but SQL is one based.
int endindex = start+length;

try {
if (in !'= null)

{

rc = in.substring(start, endindex);

}
} catch (IndexOutOfBoundsException ex)

{
System.out.println ("ScalarTestFunctions:
my java substr ("+in+","+start+","+length+")
failed");
System.out.println (ex) ;

}

return rc;

}
2. In Interactive SQL, connect to the i gdemo database.
3. In Interactive SQL, install the class file onto the server:
INSTALL JAVA NEW FROM FILE '<pathtofile>/
MyJavaSubstr.class'

4, In Interactive SQL, create the function definition:

CREATE or REPLACE FUNCTION java substr (IN a VARCHAR(255), IN b
INT, IN c INT)
RETURNS VARCHAR (255)
EXTERNAL NAME
'example.MyJavaSubstr.my java substr(Ljava/lang/
String;II)Ljava/lang/String;"
LANGUAGE JAVA

Notice the code snippet Ljava/lang/String; 1l indicating parameter types String, int,
int.
5. In Interactive SQL, use the Java UDF in a query against the i gdemo database:

select GivenName, java_substr(Surname,1,1) from Customers where
Icase(java_substr(Surname,1,1)) ='a’;

User-Defined Functions 353

External Environment for UDFs

Creating a Java Table UDF

Create, compile, and install a Java row generator and create the Java table UDF function
definition.

Prerequisites

* You are familiar with Java and can compile a . java file. You know where the
resulting . class file will reside on the file system.

« You are familiar with Interactive SQL. You can connect to the i gdemo database from
Interactive SQL, and can issue the START EXTERNAL ENVIRONMENT JAVA command
from Interactive SQL.

Task

This example executes a Java row generator (RowGenerator) that takes a single integer input
and returns that number of rows in a result set. The result set has two columns: one INTEGER
and one VARCHAR. The RowGenerator relies on two utility classes:

e example.ResultSetImpl
¢ example.ResultSetMetaDatalmpl

These are simple implementations of the java.sqgl.ResultSet interface and
java.sqgl.ResultSetMetaData interface.

1. Place this code in a file named RowGenerator. java:

package example;

import java.sqgl.*;

public class RowGenerator {

public static void rowGenerator (int numRows, ResultSet rset[]) {

// Create the meta data needed for the result set
ResultSetMetaDataImpl rsmd = new ResultSetMetaDatalmpl (2) ;

//The first column is the SQL type INTEGER.
rsmd.setColumnType (1, Types.INTEGER) ;
rsmd.setColumnName (1, "cl1l") ;
rsmd.setColumnLabel (1, "cl1") ;
rsmd.setTableName (1, "MyTable") ;

// The second column is the SQL type VARCHAR length 255
rsmd.setColumnType (2, Types.VARCHAR) ;
rsmd.setColumnName (2, "c2") ;
rsmd.setColumnLabel (2, "c2") ;
rsmd.setColumnDisplaySize (2, 255);
rsmd.setTableName (2, "MyTable") ;

// Create result set using the ResultSetMetaData

354

SAP Sybase 1Q

External Environment for UDFs

ResultSetImpl rs = null;

try {
rs = new ResultSetImpl ((ResultSetMetaData)rsmd);
rs.beforeFirst(); // Make sure we are at the beginning.
} catch(Exception e) {

System.out.println("Error: couldn't create result set.");
System.out.println(e.toString());
}

// Add the rows to the result set and populate them

for(int 1 = 0; 1 < numRows; i++) {
try {
rs.insertRow () ; // insert a new row.
rs.updateInt (1, 1); // put the integer value in the first
column
rs.updateString(2, ("Str" + i)); // put the VARCHAR/String value
in the second column
} catch(Exception e) {

System.out.println("Error: couldn't insert row/data on row " +
i)
System.out.println(e.toString ());
}
}

try {
rs.beforeFirst(); // rewind the result set so that the server gets

it from the beginning.

} catch(Exception e) {

System.out.println(e.toString());

}

rset[0] = rs; // assign the result set to the 1st of the passed in
array.

}
}

2. Compile RowGenerator.java, ResultSetImpl.java, and
ResultSetMetaData.java. The Windows directory $ALLUSERSPROFILES
\samples\java (SIQDIR15/samples/java on UNIX) contains
ResultSetImpl.javaand ResultSetMetaData.java

javac <pathtojavafile>/ResultSetMetaDatalmpl.java
javac <pathtojavafile>/ResultSetImpl.java

javac <pathtojavafile>/RowGenerator.java
3. In Interactive SQL, connect to the i gdemo database.
4. In Interactive SQL, install the three class files:

INSTALL JAVA NEW FROM FILE '<pathtofile>/
ResultSetMataDataImpl.class'

INSTALL JAVA NEW FROM FILE '<pathtofile>/
ResultSetImpl.class'

User-Defined Functions 355

External Environment for UDFs

INSTALL JAVA NEW FROM FILE '<pathtofile>/
RowGenerator.class'

5. In Interactive SQL, create the Java Table function definition.

Be ready to provide this information:
» The Java package, class, and method names
e The Java data types of your function arguments, and their corresponding SQL data

types
e The SQL name to assign to the Java UDF

CREATE or REPLACE PROCEDURE rowgenerator (IN numRows INTEGER)
RESULT (cl INTEGER , c2 VARCHAR(255))
EXTERNAL NAME
'example.RowGenerator.rowGenerator (I [Ljava/sql/
ResultSet;)V'
LANGUAGE JAVA

Note: The RESULT set has two columns; one INTEGER and the other VARCHAR (255).

The Java prototype has two arguments; one INT (I) and the other an array of
java.sgl.ResultSets ([Ljava/sqgl/ResultSet;). The Java prototype
shows the function returning void (V).

6. In Interactive SQL, use the Java table UDF in a query against the i gdemo database:
SELECT * from rowGenerator (5);

The query returns five rows of two columns.

See also
» SQL to Java Data Type Conversion on page 348
e Java to SQL Data Type Conversion on page 349

Example: Executing a Java Table UDF

Java Table UDF code example.

1. Java code for a simple return_rset method. Compile into Sample.class.

public class Sample {
public static void return rset(ResultSet[] rsetl) throws
SQLException {
// Creates new connection back to same db.
Connection conn = DriverManager.getConnection (
"jdbc:ianywhere:driver=Sybase
IQ;UID=DBA; PWD=sqgl") ;
Statement stmt = conn.createStatement () ;
ResultSet rset = stmt.executeQuery (
"SELECT ID " +
"FROM Customers");
rsetl[0] = rset;

356

SAP Sybase 1Q

External Environment for UDFs

}
2. SQL statement deploying the Java class to the database:
INSTALL JAVA NEW FROM FILE 'd:\\java\\samples\\Sample.class'

3. SQL procedure mapping to the Java method
Sample.return rset(java.sgl.ResultSet):

CREATE PROCEDURE sample result set()

RESULT (ID int)

DYNAMIC RESULT SETS 1

EXTERNAL NAME 'Sample.return rset([Ljava/sgl/ResultSet;)V’
LANGUAGE JAVA

4. SQL procedure in a SELECT statement:
SELECT * from sample result set() where ID < 110

Example: Executing a Java Table UDF with Java Result Set
Construction
Java Table UDF code example. This example creates a result set.

1. Java code for Java creation of a return_rset method, for numeric values:

public static void rowgenerator (int a, int b, ResultSet rset[])
{
int result = a + b;
// Create the meta data needed for the result set
ResultSetMetaDataImpl rsmd = new ResultSetMetaDataImpl (1) ;
rsmd.setColumnType (1, Types.INTEGER) ;
rsmd.setColumnName (1, "sum") ;
rsmd.setColumnLabel (1, "sum") ;
rsmd.setTableName (1, "my sum");

// Create result set

ResultSetImpl rs = null;

try {
rs = new ResultSetImpl((ResultSetMetaData)rsmd);
rs.beforeFirst () ;

} catch(Exception e) {

System.out.println("Error: couldn't create result set.");

System.out.println(e.toString());

}

// Add the rows to the result set and populate them
try {

rs.insertRow () ;

rs.updateInt(1, result);
} catch(Exception e) {

System.out.println("Error: couldn't insert row/data on row
1");

System.out.println(e.toString());
}
try {

rs.beforeFirst () ;
} catch(Exception e) {

User-Defined Functions 357

External Environment for UDFs

System.out.println(e.toString());

rset[0] = rs;

2. Java code for java creation of a return_rset method, for non-numerical values:

public static void char result udf(java.lang.String s, ResultSet

{

// Create the meta data needed for the result set
ResultSetMetaDatalImpl rsmd = new ResultSetMetaDatalImpl (1) ;
rsmd.setColumnType (1, Types.CHAR) ;

if (s.length ()==0) {

rsmd.setColumnDisplaySize (1, 1);

} else {

rsmd.setColumnDisplaySize (1l,s.length());

rsmd.setColumnName (1, "cl1") ;
rsmd.setColumnLabel (1, "cl") ;
rsmd.setTableName (1, "my string");

// Create result set
ResultSetImpl rs = null;
try {

rs = new ResultSetImpl((ResultSetMetaData)rsmd);
rs.beforeFirst () ;

//Insert some values into the result set
rs.insertRow () ;

rs.updateString (1, c);

} catch(Exception e) {
System.out.println("Error: couldn't create result set.");

System.out.println(e.toString());

try {

rs.beforeFirst () ;

} catch(Exception e) {
System.out.println("Error: couldn't insert row/data on row

System.out.println(e.toString());

rset[0] = rs;

Java External Environment SQL Statement Reference

Use these SQL statements when developing Java stored procedures and functions.

INSTALL JAVA Statement

Makes Java classes available for use within a database.
Quick Links:

Go to Parameters on page 359

Go to Examples on page 360

Go to Usage on page 360

358

SAP Sybase 1Q

External Environment for UDFs

Go to Standards on page 361

Go to Permissions on page 361

Syntax

INSTALL JAVA [install-mode] [JAR jar-name]
FROM source

install-mode - (back to Syntax)
{ NEW | UPDATE }

source - (back to Syntax)
{FILE file-name | URL url-value }

Parameters
(back to top) on page 358

* NEW - (default) requires that the referenced Java classes be new classes, rather than
updates of currently installed classes. An error occurs if a class with the same name exists
in the database and the NEW install mode clause is used

* UPDATE —an install mode of specifies that the referenced Java classes may include
replacements for Java classes already installed in the given database.

* JAR—acharacter string value of up to 255 bytes that is used to identify the retained JAR in
subsequent INSTALL, UPDATE, and REMOVE statements. jar-name or text-pointer must
designate a JAR file or a column containing a JAR. JAR files typically have extensions
of .jaror .zip.

Installed JAR and zip files can be compressed or uncompressed. However, JAR files
produced by the Sun JDK jar utility are not supported. Files produced by other zip utilities
are supported.

If the JAR option is specified, then the JAR is retained as a JAR after the classes that it
contains have been installed. That JAR is the associated JAR of each of those classes. The
set of JARs installed in a database with the JAR clause are called the retained JARSs of the
database.

Retained JARs are referenced in INSTALL and REMOVE statements. Retained JARs have
no effect on other uses of Java-SQL classes. Retained JARs are used by the SQL system for
requests by other systems for the class associated with given data. If a requested class has
an associated JAR, the SQL system can supply that JAR, rather than the individual class.

* source—specifies the location of the Java classes to be installed and must identify either a
class file or a JAR file.

The formats supported for file-nameinclude fully qualified file names, suchas'c:\1ibs
\jarname.jar' and'/usr/u/libs/jarname. jar', and relative file names,
which are relative to the current working directory of the database server.

User-Defined Functions 359

External Environment for UDFs

The class definition for each class is loaded by the VM of each connection the first time
that class is used. When you INSTALL a class, the VM on your connection is implicitly

restarted. Therefore, you have immediate access to the new class, whether the INSTALL
uses an install-mode clause of NEW or UPDATE.

For other connections, the new class is loaded the next time a VM accesses the class for the
firsttime. If the class is already loaded by a VM, that connection does not see the new class
until the VM is restarted for that connection (for example, with a STOP JAVA and START
JAVA).

Examples
(back to top) on page 358

Example 1—install the user-created Java class named “Demo” by providing the file name
and location of the class:

INSTALL JAVA NEW
FROM FILE 'D:\JavaClass\Demo.class'

After installation, the class is referenced using its name. Its original file path location is no
longer used. For example, this statement uses the class installed in the previous statement:
CREATE VARIABLE d Demo

If the Demo class was a member of the package sybase.work, the fully qualified name of
the class must be used:

CREATE VARIABLE d sybase.work.Demo

Example 2 —install all the classes contained in a zip file and associate them within the
database with a JAR file name:
INSTALL JAVA

JAR 'Widgets'
FROM FILE 'C:\Jars\Widget.zip'

The location of the zip file is not retained and classes must be referenced using the fully
qualified class name (package name and class name).

Usage
(back to top) on page 358

Only new connections established after installing the class, or that use the class for the first
time after installing the class, use the new definition. Once the Java VM loads a class
definition, it stays in memory until the connection closes.

If you have been using a Java class or objects based on a class in the current connection, you
need to disconnect and reconnect to use the new class definition.

360

SAP Sybase 1Q

External Environment for UDFs

Standards
(back to top) on page 358

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« SAP Sybase Database product—Not supported by Adaptive Server.

Permissions
(back to top) on page 358

» Requires the MANAGE ANY EXTERNAL OBJECT system privilege and a newer
version of the compiled class file or JAR file available in a file on disk.
« Allinstalled classes can be referenced in any way by any user.

CREATE PROCEDURE Statement (Java UDF)
Creates an interface to an external Java table UDF.

For CREATE PROCEDURE reference information for external procedures, see CREATE
PROCEDURE Statement (External Procedures). For CREATE PROCEDURE reference
information for table UDFs, see CREATE PROCEDURE Statement (Table UDF)

Quick Links:

Go to Parameters on page 362
Go to Usage on page 362

Go to Standards on page 362

Go to Permissions on page 363

Syntax

Syntax 1 — For a query referencing at least one SAP Sybase 1Q table:

CREATE[OR REPLACE] PROCEDURE
[owner.]procedure-name ([parameter, ..])
[RESULT (result-column, ...)]
[SQL SECURITY { INVOKER | DEFINER }]
EXTERNAL NAME ‘java-call’ [LANGUAGE java] }

Syntax 2 — For a query referencing catalog store tables only:

CREATE[OR REPLACE] PROCEDURE
[owner.]procedure-name ([parameter, ..])
[RESULT (result-column, ...)]
| NO RESULT SET
[DYNAMIC RESULT SETS integer-expression |
[SQL SECURITY { INVOKER | DEFINER }]
EXTERNAL NAME ‘java-call’ [LANGUAGE java] }

parameter - (back to Syntax 1) or (back to Syntax 2)

User-Defined Functions 361

External Environment for UDFs

[IN parameter mode parameter-name data-type
[DEFAULT expression |

result-column - (back to Syntax 1) or (back to Syntax 2)
column-name data-type

java-call - (back to Syntax 1) or (back to Syntax 2)
"[package-name.]class—-name.method-name method-signature’

java - (back to Syntax 1) or (back to Syntax 2)
[ALLOW | DISALLOW SERVER SIDE REQUESTS]

Parameters

(back to top) on page 361

* java—DISALLOW is the default. ALLOW indicates that server-side connections are
allowed.

Note: Do not specify ALLOW unless necessary. A setting of ALLOW slows down certain
types of SAP Sybase 1Q table joins. If you change a procedure definition from ALLOW to
DISALLOW, or vice-versa, the change will not be recognized until you make a new
connection.

Do not use UDFs with both ALLOW SERVER SIDE REQUESTS and DISALLOW
SERVER SIDE REQUESTS in the same query.

Usage
(back to top) on page 361

If your query references SAP Sybase IQ tables, note that different syntax and parameters
apply compared to a query that references only catalog store tables.

Java table UDFs are only supported in the FROM clause.

For Java table functions, exactly one result set is allowed. If the Java table functions are joined
with an SAP Sybase 1Q table or if a column from an SAP Sybase 1Q table is an argument to the
Java table function then only one result set is supported.

If the Java table function is the only item in the FROM clause then N number of result sets are
allowed.

Standards
(back to top) on page 361

e SQL—ISO/ANSI SQL compliant.

» SAP Sybase Database product—The Transact-SQL CREATE PROCEDURE statement is
different.

362

SAP Sybase 1Q

External Environment for UDFs

e SQLJ—The syntax extensions for Java result sets are as specified in the proposed SQLJ1
standard.

Permissions
(back to top) on page 361

Unless creating a temporary procedure, a user must have the CREATE PROCEDURE system
privilege to create a procedure for themselves. To create UDF procedure for others, a user must
specify an owner and have either the CREATE ANY PROCEDURES or CREATE ANY
OBJECT system privilege. If a procedure has an external reference, a user must also have the
CREATE EXTERNAL REFERENCE system privilege, in addition to the previously
mentioned system privileges, regardless of whether or not they are the owner of procedure.

Referencing Temporary Tables Within Procedures
Sharing a temporary table between procedures can cause problems if the table definitions are
inconsistent.

For example, suppose you have two procedures procA and procB, both of which define a
temporary table, temp table, and call another procedure called sharedProc. Neither
procA nor procB has been called yet, so the temporary table does not yet exist.

Now, suppose that the proca definition for temp table is slightly different than the
definition in procB—while both used the same column names and types, the column order is
different.

When you call proca, it returns the expected result. However, when you call procB, it
returns a different result.

This is because when proca was called, it created temp table, and then called
sharedProc. When sharedProc was called, the SELECT statement inside of it was
parsed and validated, and then a parsed representation of the statement is cached so that it can
be used again when another SELECT statement is executed. The cached version reflects the
column ordering from the table definition in proca.

Calling procB causes the temp_table to be recreated, but with different column ordering.
When procB calls sharedProc, the database server uses the cached representation of the
SELECT statement. So, the results are different.

You can avoid this from happening by doing one of the following:

« ensure that temporary tables used in this way are defined consistently
« consider using a global temporary table instead

CREATE FUNCTION Statement (Java UDF)

Creates a new external Java table UDF function in the database.

Quick Links:

User-Defined Functions 363

External Environment for UDFs

Go to Parameters on page 364
Go to Examples on page 366
Go to Usage on page 366

Go to Standards on page 366

Go to Permissions on page 366

Syntax

CREATE [ORREPLACE | TEMPORARY] FUNCTION [owner.] function—-name

([parameter on page 364, ...])

[SQL SECURITY { INVOKER | DEFINER 1}]

RETURNS data-type

ON EXCEPTION RESUME

| [NOT] DETERMINISTIC

{ compound-statement | AS tsql-compound-statement on page 364

| EXTERNAL NAME 'java-call on page 364' LANGUAGE JAVA [ALLOW | DISALLOW
SERVER SIDE REQUESTS] environment-name}

parameter - (back to Syntax) on page 364
IN parameter-name data-type [DEFAULT expression]

tsgl-compound-statement - (back to Syntax) on page 364
sqgl-statement
sgl-statement ..

java-call - (back to Syntax) on page 364
'[package-name.]class—-name.method-name method-signature on page
364"

method-signature - (back to java-call) on page 364
([field-descriptor on page 364, ...]) return-descriptor on page 364

field-descriptor and return-descriptor — (back to method-signature) on page 364
Z | Bl S|I1I]J]|]F]|D|J]C]| V| [descriptor | L class-name;

Parameters
(back to top) on page 363

* CREATE [OR REPLACE] —parameter names must conform to the rules for database
identifiers. They must have a valid SQL data type and be prefixed by the keyword IN,
signifying that the argument is an expression that provides a value to the function.

The CREATE clause creates a new function, while the OR REPLACE clause replaces an
existing function with the same name. When a function is replaced, the definition of the
function is changed but the existing permissions are preserved. You cannot use the OR
REPLACE clause with temporary functions.

« TEMPORARY -the functionis visible only by the connection that created it, and that it is
automatically dropped when the connection is dropped. Temporary functions can also be
explicitly dropped. You cannot perform ALTER, GRANT, or REVOKE operations on them,

364

SAP Sybase 1Q

External Environment for UDFs

and unlike other functions, temporary functions are not recorded in the catalog or
transaction log.

Temporary functions execute with the permissions of their creator (current user), and can
only be owned by their creator. Therefore, do not specify owner when creating atemporary
function. They can be created and dropped when connected to a read-only database.

e SQL SECURITY —defines whether the function is executed as the INVOKER, the user
who is calling the function, or as the DEFINER, the user who owns the function. The
default is DEFINER.

When INVOKER is specified, more memory is used because annotation must be done for
each user that calls the procedure. Also, name resolution is done as the invoker as well.
Therefore, take care to qualify all object names (tables, procedures, and so on) with their
appropriate owner.

* data-type— LONG BINARY and LONG VARCHAR are not permitted as return-value
data types.

* compound-statement —a set of SQL statements bracketed by BEGIN and END, and
separated by semicolons. See BEGIN ... END Statement.

* tsgl-compound-statement —a batch of Transact-SQL statements.

* [NOT]DETERMINISTIC—function is re-evaluated each time itis called in a query. The
results of functions not specified in this manner may be cached for better performance, and
re-used each time the function is called with the same parameters during query evaluation.

Functions that have side effects, such as modifying the underlying data, should be declared
as NOT DETERMINISTIC. For example, a function that generates primary key values
and is used in an INSERT ... SELECT statement should be declared NOT
DETERMINISTIC:

CREATE FUNCTION keygen(increment INTEGER)

RETURNS INTEGER

NOT DETERMINISTIC

BEGIN
DECLARE keyval INTEGER;
UPDATE counter SET x = x + increment;
SELECT counter.x INTO keyval FROM counter;
RETURN keyval

END

INSERT INTO new_table

SELECT keygen (1),

FROM old table

Functions may be declared as DETERMINISTIC if they always return the same value for
given input parameters. All user-defined functions are treated as deterministic unless they
are declared NOT DETERMINISTIC. Deterministic functions return a consistent result
for the same parameters and are free of side effects. That is, the database server assumes

User-Defined Functions 365

External Environment for UDFs

that two successive calls to the same function with the same parameters will return the
same result without unwanted side-effects on the semantics of the query.

* LANGUAGE JAVA —a wrapper around a Java method. For information on calling Java
procedures, see CREATE PROCEDURE Statement.

e environment-name—a wrapper around a Java method.

The DISALLOW clause is the default. The ALLOW clause indicates that server-side
connections are allowed.

Note: Do not specify the ALLOW clause unless necessary. ALLOW slows down certain
types of SAP Sybase 1Q table joins. Do not use UDFs with both the ALLOW and
DISALLOW SERVER SIDE REQUESTS clauses in the same query.

Examples
(back to top) on page 363

* Example 1 —creates an external function written in Java:

CREATE FUNCTION dba.encrypt(IN name char (254))

RETURNS VARCHAR

EXTERNAL NAME

'Scramble.encrypt (Ljava/lang/String;)Ljava/lang/String;'
LANGUAGE JAVA

Usage
(back to top) on page 363

When functions are executed, not all parameters need to be specified. If a default value is
provided in the CREATE FUNCTION statement, missing parameters are assigned the default
values. If an argument is not provided by the caller and no default is set, an error is given.

Standards
(back to top) on page 363

e SQL—ISO/ANSI SQL compliant.
* SAP Sybase Database product—Not supported by Adaptive Server.

Permissions

(back to top) on page 363

For function to be owned by self — Requires the CREATE PROCEDURE system privilege
For function to be owned by any user — Requires one of;

e« CREATE ANY PROCEDURES system privilege.

366

SAP Sybase 1Q

External Environment for UDFs

* CREATE ANY OBJECT system privilege.

To create a function containing an external reference, regardless of whether or not they are the
owner of the function, also requires the CREATE EXTERNAL REFERENCE system
privilege.

REMOVE Statement

Removes a class, a package, or a JAR file from a database. Removed classes are no longer
available for use as a variable type. Any class, package, or JAR to be removed must already be
installed.

Quick Links:

Go to Parameters on page 367

Go to Examples on page 367
Go to Standards on page 368

Go to Permissions on page 368

Syntax
REMOVE JAVA classes_to_remove

classes_to_remove
{ CLASS java class name [, java class name]..
| PACKAGE java package name [, java package name]..
| JAR jar name [, jar name].. [RETAIN CLASSES] }

Parameters

(back to top) on page 367

* java_class name— he name of one or more Java classes to be removed. Those classes
must be installed classes in the current database.

* java _package name—he name of one or more Java packages to be removed. Those
packages must be the name of packages in the current database.

e jar_name-a character string value of maximum length 255. Each jar_name must be
equal to the jar_name of a retained JAR in the current database. Equality of jar_nameis
determined by the character string comparison rules of the SQL system.

* RETAIN CLASSES-the specified JARs are no longer retained in the database, and the
retained classes have no associated JAR. If RETAIN CLASSES is specified, this is the
only action of the REMOVE statement.

Examples
(back to top) on page 367

User-Defined Functions 367

External Environment for UDFs

* Example 1 -remove a Java class named “Demo” from the current database:
REMOVE JAVA CLASS Demo

Standards
(back to top) on page 367

e SQL—Vendor extension to ISO/ANSI SQL grammar.
* SAP Sybase Database product—Not supported by Adaptive Server. A similar feature is
available in an Adaptive Server-compatible manner using nested transactions.

Permissions
(back to top) on page 367
Requires one of:

e MANAGE ANY EXTERNAL OBJECT system privilege.
* You own the object.

START JAVA Statement
Loads the Java VM at a convenient time, so that when the user starts to use Java functionality,
there is no initial pause while the Java VM is loaded.

Quick Links:

Go to Examples on page 368
Go to Standards on page 368

Go to Permissions on page 369

Syntax
START EXTERNAL ENVIRONMENT JAVA

Examples
(back to top) on page 368

* Example 1 —start the Java VM:

START EXTERNAL ENVIRONMENT JAVA

Standards
(back to top) on page 368

e SQL—Vendor extension to ISO/ANSI SQL grammar.
* SAP Sybase Database product—Not applicable.

368

SAP Sybase 1Q

External Environment for UDFs

Permissions

(back to top) on page 368

None

STOP JAVA Statement

Releases resources associated with the Java VM to economize on the use of system resources.
Quick Links:

Go to Standards on page 369

Go to Permissions on page 369

Syntax

STOP EXTERNAL ENVIRONMENT JAVA
Standards

(back to top) on page 369

e SQL—Vendor extension to ISO/ANSI SQL grammar.
« SAP Sybase Database product—Not applicable.

Permissions
(back to top) on page 369

None

PERL External Environment

A Perl stored procedure or function behaves the same as a SQL stored procedure or function
except that the code for the procedure or function is written in Perl and the execution of the
procedure or function takes place outside the database server (that is, within a Perl executable
instance).

It should be noted that there is a separate instance of the Perl executable for each connection
that uses Perl stored procedures and functions. This behavior is different from Java stored
procedures and functions. For Java, there is one instance of the Java VM for each database
rather than one instance per connection. The other major difference between Perl and Java is
that Perl stored procedures do not return result sets, whereas Java stored procedures can return
result sets.

There are a few prerequisites to using Perl in the database support:

User-Defined Functions 369

External Environment for UDFs

1. Perlmustbe installed on the database server computer and the database server must be able
to locate the Perl executable.

1. The DBD::SQLAnywhere driver must be installed on the database server computer.
2. OnWindows, Microsoft Visual Studio must also be installed. This is a prerequisite since it
is necessary for installing the DBD::SQLAnywhere driver.

In addition to the above prerequisites, the database administrator must also install the Perl
External Environment module.

To install the external environment module (Windows):

* Run the following commands from the SDK\ Per1Env subdirectory:

perl Makefile.PL
nmake
nmake install

To install the external environment module (UNIX):

e Run the following commands from the sdk/perlenv subdirectory:

perl Makefile.PL
make
make install

Once the Perl external environment module has been built and installed, the Perl in the
database support can be used.

To use Perl inthe database, make sure that the database server is able to locate and start the Perl
executable. Verify that this can be done by executing:
START EXTERNAL ENVIRONMENT PERL;

If the database server fails to start Perl, then the problem probably occurs because the database
server is not able to locate the Perl executable. In this case, you should execute an ALTER
EXTERNAL ENVIRONMENT statement to explicitly set the location of the Perl executable.
Make sure to include the executable file name.

ALTER EXTERNAL ENVIRONMENT PERL
LOCATION 'perl-path';

For example:

ALTER EXTERNAL ENVIRONMENT PERL
LOCATION 'c:\\Perl\\bin\\perl.exe';

Note that the START EXTERNAL ENVIRONMENT PERL statement is not necessary other than
to verify that the database server can start Perl. In general, making a Perl stored procedure or
function call starts Perl automatically.

Similarly, the STOP EXTERNAL ENVIRONMENT PERL statement is not necessary to stop an
instance of Perl since the instance automatically goes away when the connection terminates.
However, if you are completely done with Perl and you want to free up some resources, then
the STOP EXTERNAL ENVIRONMENT PERL statement releases the Perl instance for your
connection.

370

SAP Sybase 1Q

External Environment for UDFs

Once you have verified that the database server can start the Perl executable, the next thing to
do is to install the necessary Perl code into the database. Do this by using the INSTALL
statement. For example, you can execute the following statement to install a Perl script from a
file into the database.

INSTALL EXTERNAL OBJECT 'perl-script'
NEW
FROM FILE 'perl-file'
ENVIRONMENT PERL;

Perl code also can be built and installed from an expression, as follows:

INSTALL EXTERNAL OBJECT 'perl-script'
NEW
FROM VALUE 'perl-statements'
ENVIRONMENT PERL;

Perl code also can be built and installed from a variable, as follows:
CREATE VARIABLE PerlVariable LONG VARCHAR;

SET PerlVariable = 'perl-statements';
INSTALL EXTERNAL OBJECT 'perl-script'
NEW

FROM VALUE PerlVariable
ENVIRONMENT PERL;

To remove Perl code from the database, use the REMOVE statement, as follows:
REMOVE EXTERNAL OBJECT 'perl-script'

To modify existing Perl code, you can use the UPDATE clause of the INSTALL EXTERNAL
OBJECT statement, as follows:

INSTALL EXTERNAL OBJECT 'perl-script'
UPDATE
FROM FILE 'perl-file'
ENVIRONMENT PERL

INSTALL EXTERNAL OBJECT 'perl-script'
UPDATE
FROM VALUE 'perl-statements'
ENVIRONMENT PERL

SET PerlVariable = 'perl-statements';
INSTALL EXTERNAL OBJECT 'perl-script'
UPDATE

FROM VALUE PerlVariable
ENVIRONMENT PERL

Once the Perl code is installed in the database, you can then create the necessary Perl stored
procedures and functions. When creating Perl stored procedures and functions, the
LANGUAGE is always PERL and the EXTERNAL NAME string contains the information
needed to call the Perl subroutines and to return OUT parameters and return values. The
following global variables are available to the Perl code on each call:

* $sa perl_return —This is used to set the return value for a function call.

User-Defined Functions 371

External Environment for UDFs

* $sa perl_argN —where N is a positive integer [0 .. n]. This is used for passing the SQL
arguments down to the Perl code. For example, $sa_perl argO refers to argument 0,
$sa_perl argl refers to argument 1, and so on.

* $sa perl_default_connection — This is used for making server-side Perl calls.

* $sa output_handle—This is used for sending output from the Perl code to the database
server messages window.

A Perl stored procedure can be created with any set of data types for input and output
arguments, and for the return value. However, all non-binary data types are mapped to strings
when making the Perl call while binary data is mapped to an array of numbers. A simple Perl
example follows:

INSTALL EXTERNAL OBJECT 'SimplePerlExample'
NEW
FROM VALUE 'sub SimplePerlSub{
return(($_[0] * 1000) +
($_[1] * 100) +
($_[2] * 10) +
$_[31)
} |l
ENVIRONMENT PERL;

CREATE FUNCTION SimplePerlDemo (
IN thousands INT,
IN hundreds INT,
IN tens INT,
IN ones INT)
RETURNS INT
EXTERNAL NAME '<file=SimplePerlExample>
$sa perl return = SimplePerlSub (
$sa_perl argO,
$sa perl argl,
$sa perl arg2,
$sa perl arg3)'
LANGUAGE PERL;

// The number 1234 should appear
SELECT SimplePerlDemo(1,2,3,4);

The following Perl example takes a string and writes it to the database server messages
window:

INSTALL EXTERNAL OBJECT 'PerlConsoleExample'

NEW

FROM VALUE 'sub WriteToServerConsole { print $sa output handle
$_[0]; }!

ENVIRONMENT PERL;

CREATE PROCEDURE PerlWriteToConsole(IN str LONG VARCHAR)
EXTERNAL NAME '<file=PerlConsoleExample>
WriteToServerConsole($sa perl arg0)'
LANGUAGE PERL;

372

SAP Sybase 1Q

External Environment for UDFs

// '"Hello world' should appear in the database server messages window
CALL PerlWriteToConsole('Hello world');

To use server-side Perl, the Perl code must use the $sa_per!_default connectionvariable. The
following example creates a table and then calls a Perl stored procedure to populate the table:

CREATE TABLE perlTab(cl int, c2 char(128));

INSTALL EXTERNAL OBJECT 'ServerSidePerlExample'
NEW
FROM VALUE 'sub ServerSidePerlSub
{ $sa perl default connection->do(
"INSERT INTO perlTab SELECT table id, table name FROM
SYS.SYSTAB");
$sa _perl default connection->do (
"COMMIT");
} |l
ENVIRONMENT PERL;

CREATE PROCEDURE PerlPopulateTable ()
EXTERNAL NAME '<file=ServerSidePerlExample> ServerSidePerlSub ()"
LANGUAGE PERL;

CALL PerlPopulateTable();

// The following should return 2 identical rows
SELECT count (*) FROM perlTab

UNION ALL

SELECT count (*) FROM SYS.SYSTAB;

PHP External Environment

A PHP stored procedure or function behaves the same as a SQL stored procedure or function
except that the code for the procedure or function is written in PHP and the execution of the
procedure or function takes place outside the database server (that is, within a PHP executable
instance).

There is a separate instance of the PHP executable for each connection that uses PHP stored
procedures and functions. This behavior is quite different from Java stored procedures and
functions. For Java, there is one instance of the Java VM for each database rather than one
instance per connection. The other major difference between PHP and Java is that PHP stored
procedures do not return result sets, whereas Java stored procedures can return result sets. PHP
only returns an object of type LONG VARCHAR, which is the output of the PHP script.

There are two prerequisites to using PHP in the database support:

1. Acopy of PHP must be installed on the database server computer and the database server
must be able to locate the PHP executable.

2. The PHP extension must be installed on the database server computer.

In addition to the above two prerequisites, the database administrator must also install the PHP
External Environment module. Prebuilt modules for several versions of PHP are included. To

User-Defined Functions 373

External Environment for UDFs

install prebuilt modules, copy the appropriate driver module to your PHP extensions directory
(which can be found in php . ini). On UNIX, you can also use a symbolic link.

To install the external environment module (Windows):

1

Locate the php . ini file for your PHP installation, and open it in a text editor. Locate the
line that specifies the location of the extension dir directory. If extension dir
is not set to any specific directory, it is a good idea to set it to point to an isolated directory
for better system security.

Copy the desired external environment PHP module from the installation directory to your
PHP extensions directory. Change the x.y to reflect the version you have selected.

copy "$SQLANY12%\Bin32\php-5.x.y sglanywhere extenvl12.dll"
php-dir\ext

Add the following line to the Dynamic Extensions section of the php . ini file to load the

external environment PHP module automatically. Change the x.y to reflect the version you

have selected.

extension=php-5.x.y sqglanywhere extenvl2.dll

Save and close php. ini.

Make sure that you have also installed the PHP driver from the installation directory into
your PHP extensions directory. This file name follows the pattern

php-5.x.y sglanywhere.dll where x and y are the version numbers. It should
match the version numbers of the file that you copied in step 2.

To install the external environment module (UNIX):

1

Locate the php . ini file for your PHP installation, and open it in a text editor. Locate the
line that specifies the location of the extension dir directory. If extension dir
is not set to any specific directory, it is a good idea to set it to point to an isolated directory
for better system security.

Copy the desired external environment PHP module from the installation directory to your
PHP installation directory. Change the x.y to reflect the version you have selected.

cp $SQLANY12/bin32/php-5.x.y sglanywhere extenvl2.so
php-dir/ext

Add the following line to the Dynamic Extensions section of thephp . ini filetoloadthe
external environment PHP module automatically. Change the x.y to reflect the version you
have selected.

extension=php-5.x.y sqlanywhere extenvl2.so

Save and close php.ini.

Make sure that you have also installed the PHP driver from the installation directory into
your PHP extensions directory. This file name follows the pattern

php-5.x.y sglanywhere.so where x and y are the version numbers. It should
match the version numbers of the file that you copied in step 2.

374

SAP Sybase 1Q

External Environment for UDFs

To use PHP in the database, the database server must be able to locate and start the PHP
executable. You can verify if the database server is able to locate and start the PHP executable
by executing the following statement:

START EXTERNAL ENVIRONMENT PHP;

If you see a message that states that 'external executable' could not be found, then the problem
is that the database server is not able to locate the PHP executable. In this case, you should
execute an ALTER EXTERNAL ENVIRONMENT statement to explicitly set the location of the
PHP executable including the executable name or you should ensure that the PATH
environment variable includes the directory containing the PHP executable.

ALTER EXTERNAL ENVIRONMENT PHP
LOCATION 'php-path';

For example:

ALTER EXTERNAL ENVIRONMENT PHP
LOCATION 'c:\\php\\php-5.2.6-win32\\php.exe';

To restore the default setting, execute the following statement:

ALTER EXTERNAL ENVIRONMENT PHP
LOCATION 'php';

The START EXTERNAL ENVIRONMENT PHP statement is not necessary other than to verify
that the database server can start PHP. In general, making a PHP stored procedure or function
call starts PHP automatically.

Similarly, the STOP EXTERNAL ENVIRONMENT PHP statement is not necessary to stop an
instance of PHP since the instance automatically goes away when the connection terminates.
However, if you are completely done with PHP and you want to free up some resources, then
the STOP EXTERNAL ENVIRONMENT PHP statement releases the PHP instance for your
connection.

Once you have verified that the database server can start the PHP executable, the next thing to
do is to install the necessary PHP code into the database. Do this by using the INSTALL
statement. For example, you can execute the following statement to install a particular PHP
script into the database.

INSTALL EXTERNAL OBJECT 'php-script'
NEW
FROM FILE 'php-file'
ENVIRONMENT PHP;

PHP code can also be built and installed from an expression as follows:

INSTALL EXTERNAL OBJECT 'php-script’
NEW
FROM VALUE 'php-statements'
ENVIRONMENT PHP;

PHP code can also be built and installed from a variable as follows:

CREATE VARIABLE PHPVariable LONG VARCHAR;
SET PHPVariable = 'php-statements';

User-Defined Functions 375

External Environment for UDFs

INSTALL EXTERNAL OBJECT 'php-script'
NEW
FROM VALUE PHPVariable
ENVIRONMENT PHP;

To remove PHP code from the database, use the REMOVE statement as follows:
REMOVE EXTERNAL OBJECT 'php-script';

To modify existing PHP code, you can use the UPDATE clause of the INSTALL statement as
follows:

INSTALL EXTERNAL OBJECT 'php-script'
UPDATE
FROM FILE 'php-file'
ENVIRONMENT PHP;

INSTALL EXTERNAL OBJECT 'php-script'
UPDATE
FROM VALUE 'php-statements'
ENVIRONMENT PHP;

SET PHPVariable = 'php-statements';
INSTALL EXTERNAL OBJECT 'php-script'
UPDATE

FROM VALUE PHPVariable
ENVIRONMENT PHP;

Once the PHP code is installed in the database, you can then go ahead and create the necessary
PHP stored procedures and functions. When creating PHP stored procedures and functions,
the LANGUAGE is always PHP and the EXTERNAL NAME string contains the information
needed to call the PHP subroutines and for returning OUT parameters.

The arguments are passed to the PHP script in the $argv array, similar to the way PHP would
take arguments from the command line (that is, $argv[1] is the first argument). To set an output
parameter, assign it to the appropriate $argv element. The return value is always the output
from the script (as a LONG VARCHAR).

A PHP stored procedure can be created with any set of data types for input or output
arguments. However, the parameters are converted to and from a boolean, integer, double, or
string for use inside the PHP script. The return value is always an object of type LONG
VARCHAR. A simple PHP example follows:

INSTALL EXTERNAL OBJECT 'SimplePHPExample'
NEW
FROM VALUE '<?php function SimplePHPFunction (
Sargl, $arg2, $arg3, Sargd)
{ return ($argl * 1000) +
(Sarg2 * 100) +
($arg3 * 10) +
Sarg4;
} o>t
ENVIRONMENT PHP;

CREATE FUNCTION SimplePHPDemo (
IN thousands INT,
IN hundreds INT,

376 SAP Sybase IQ

External Environment for UDFs

IN tens INT,
IN ones INT)
RETURNS LONG VARCHAR
EXTERNAL NAME '<file=SimplePHPExample> print SimplePHPFunction (
Sargv[l], Sargv[2], $Sargv([3], Sargv[4]);'
LANGUAGE PHP;

// The number 1234 should appear
SELECT SimplePHPDemo(1,2,3,4);

For PHP, the EXTERNAL NAME string is specified in a single line of SQL.

To use server-side PHP, the PHP code can use the default database connection. To get a handle
to the database connection, call sasql_pconnect with an empty string argument (" or "*). The
empty string argument tells the PHP driver to return the current external environment
connection rather than opening a new one. The following example creates a table and then
calls a PHP stored procedure to populate the table:

CREATE TABLE phpTab(cl int, c2 char(128));

INSTALL EXTERNAL OBJECT 'ServerSidePHPExample'

NEW
FROM VALUE '<?php function ServerSidePHPSub () {
Sconn = sasqgl pconnect('''');

sasql query($conn,
"INSERT INTO phpTab
SELECT table_id, table name FROM SYS.SYSTAB");
sasqgl commit ($Sconn);
}o2>!
ENVIRONMENT PHP;

CREATE PROCEDURE PHPPopulateTable ()
EXTERNAL NAME '<file=ServerSidePHPExample> ServerSidePHPSub ()"
LANGUAGE PHP;

CALL PHPPopulateTable () ;

// The following should return 2 identical rows
SELECT count (*) FROM phpTab

UNION ALL

SELECT count (*) FROM SYS.SYSTAB;

For PHP, the EXTERNAL NAME string is specified in a single line of SQL. In the above
example, note that the single quotes are doubled-up because of the way quotes are parsed in
SQL. If the PHP source code was in a file, then the single quotes would not be doubled-up.

To return an error back to the database server, throw a PHP exception. The following example
shows how to do this.

CREATE TABLE phpTab(cl int, c2 char(128));

INSTALL EXTERNAL OBJECT 'ServerSidePHPExample'

NEW
FROM VALUE '<?php function ServerSidePHPSub () {
Sconn = sasqgl pconnect('''');

User-Defined Functions 377

External Environment for UDFs

if (!sasgl query($conn,
"INSERT INTO phpTabNoExist
SELECT table_id, table name FROM SYS.SYSTAB")
) throw new Exception (
sasql error($conn),
sasql errorcode($conn)
)
sasql commit ($conn);
}oe>t T
ENVIRONMENT PHP;

CREATE PROCEDURE PHPPopulateTable ()
EXTERNAL NAME
'<file=ServerSidePHPExample> ServerSidePHPSub ()
LANGUAGE PHP;

CALL PHPPopulateTable () ;

The above example should terminate with error
SQLE_UNHANDLED_ EXTENV_EXCEPTION indicating that the table phpTabNoExist
could not be found.

378 SAP Sybase IQ

Index

_close_extfn

v4 APl method 324
_describe_extfn 208, 290
_enter_state_extfn 291
_fetch_block_extfn

v4 APl method 322
_fetch_into_extfn

v4 APl method 322
_finish_extfn 289
_leave_state_extfn 291
_open_extfn

v4 APl method 321
_rewind_extfn

v4 APl method 323
_start_extfn 289
.NET external environment 329

A

a_v3_extfn API

Upgrading to a_v4_extfn APl 16
a_v4_extfn API

Upgrading from a_v3_extfn API 16
a_v4_extfn_blob

blob 199

blob_length 200

close_istream 201

open_istream 201

release 202

structure 199
a_v4_extfn_blob_istream

blob input stream 203

get 203

structure 203
a_v4_extfn_col_subset_of _input

column values subset 207

structure 207
a_v4_extfn_column_data

column data 204

structure 204
a_v4_extfn_column_list

column list 206

structure 206
a_v4_extfn_describe_col_type enumerator 281
a_v4_extfn_describe_parm_type enumerator 282

Index

a_v4 extfn_describe_return enumerator 284
a_v4_extfn_describe_udf_type enumerator 286
a_v4 extfn_estimate
optimizer estimate 306
structure 306
a_v4 extfn_license_info 305
a_v4 extfn_order_el
column order 206
structure 206
a_v4_extfn_orderby _list
order by list 307
structure 307
a_v4_extfn_partitionby_col_num enumerator 307
a_v4_extfn_proc 97
external function 288
structure 288
a_v4_extfn_proc_context
convert_value method 300
external procedure context 292
get_blob method 304
get_is_cancelled method 298
get_value method 294
get_value_is_constant method 296
log_message method 299
set_error method 298
set_value method 297
structure 292
a_v4 extfn_row 309
a_v4 extfn_row_block 309
a_v4 extfn_state enumerator 287
a_v4 extfn_table
structure 310
table 310
a_v4 extfn_table_context
get_blob method 318
structure 311
table context 311
a_v4 extfn_table_func
structure 319
table functions 319
aCC
HP-UX 22
Itanium 22
aggregate
calculation context 59

User-Defined Functions

379

Index

context structure 60

descriptor structure 55
aggregate functions

declaring 47

defining 53

my_bit_or example 51, 71

my_bit_xor example 50, 68

my_interpolate example 51, 74

my_sum example 50, 64
AIX

PowerPC 21

xIC 21
aliases

for columns 188

in SELECT statement 188
ALL keyword in SELECT statement 188
alloc 135

v4 API method 301, 302
ALTER EXTERNAL ENVIRONMENT JAVA 341
ALTER PROCEDURE statement

syntax 167
annotation state 122
API

declaring version 93

external functions 93

B

BIGINT data type 9
BINARY (<n>) data type 9
BIT data type 14
blob

a_v4 _extfn_blob 199
BLOB data type 9, 14
blob input stream

a_v4 extfn_blob_istream 203
build.bat 20
build.sh 21
building

shared libraries 19, 21-24

C

C/C++

new operator 31

restrictions 31
C/C++ external environment 329, 331
calculation

aggregate context 59

call tracing
configuring 27
calling pattern
aggregate 84
aggregate with unbounded window 85
optimized cumulative moving window
aggregate 89
optimized cumulative window aggregate 87
optimized moving window following
aggregate 90
optimized moving window without current 92
scalar syntax 84
simple aggregate grouped 85
simple aggregate ungrouped 84
unoptimized cumulative moving window
aggregate 88
unoptimized cumulative window aggregate 86
unoptimized moving window following
aggregate 89
unoptimized moving window without current
91
catalog store 180, 188
CHAR(<n>) data type 9
classes
installing 358
removing 367
CLOB data type 9, 14
close_result_set
v4 API method 304
column data
a_v4_extfn_column_data 204
column list
a_v4_extfn_column_list 206
column number
partition by 307
column order
a_v4_extfn_order_el 206
column subset
a_v4_extfn_col_subset_of input 207
columns
aliases 188
compile
switches 19, 21-24
consumer 101
contains-expression
FROM clause 180
context
aggregate structure 60
scalar structure 39

380

SAP Sybase 1Q

context area 81
context variables 81
convert_value method
a_v4_extfn_proc_context 300
CREATE AGGREGATE FUNCTION statement
98
syntax 47
CREATE FUNCTION statement 98
external environment 363
Java 363
syntax 33, 81, 173
UDF 363
CREATE PROCEDURE statement for external
procedures
syntax 169, 361
creating
external stored procedures 169, 361
user-defined functions 32
CUBE operator 188
SELECT statement 188
cumulative window aggregate
OLAP-style optimized calling pattern 87
OLAP-style unoptimized calling pattern 86

D
data type conversion 348
Java to SQL 349
SQL to Java 348
data types
LONG BINARY 36, 45
performance for joins 187
supported 9
unsupported 14
debug environment
Microsoft Visual Studio 28
DECIMAL (<precision>, <scale>) data type 14
declaration
aggregate 47
aggregate my_bit_or example 51
aggregate my_bit_xor example 50
aggregate my_interpolate example 51
aggregate my_sum example 50
scalar 33
scalar my_byte length example 36
scalar my_plus example 34
scalar my_plus_counter example 35
declaring
API version 93
DEFAULT_TABLE_UDF_ROW_COUNT option
179

Index

definition
aggregate functions 53
aggregate my_bit_or example 71
aggregate my_bit_xor example 68
aggregate my_interpolate example 74
aggregate my_sum example 64
scalar functions 37
scalar my_byte_length example 45
scalar my_plus example 41
scalar my_plus_counter example 43
describe
return value 284
describe_column
errors, generic 325
describe_column_get 209
attributes 209
describe_column_set 225
attributes 226
describe_parameter
errors, generic 326
describe_parameter_get 141, 242
describe_parameter_set 141, 261
describe_udf
errors, generic 326
describe_udf_get 277
attributes 278
describe_udf_set 279
description
aggregate structure 55
scalar structure 38
disable
user-defined functions 25
disjunction of subquery predicates 188
DISTINCT keyword in SELECT statement 188
DOUBLE data type 9
DQP 347
dropping
user-defined functions 30
dummy 1Q table 180
dynamic library interface
configuring 15

E

enabling
user-defined functions 3, 25
enumerated type
a_v4_extfn_describe_col_type 281
a_v4_extfn_describe_parm_type 282
a_v4_extfn_describe_return 284

User-Defined Functions

381

Index

a_v4_extfn_describe_udf_type 286
a_v4_extfn_partitionby_col_num 307
a_vé_extfn_state 287
error checking
configuring 27
UDF does not exist 327
ESQL external environment 331
evaluate_extfn 290
evaluating statements 27
executing partition state 128
execution phase
a_v4_extfn_state enumerator 287
execution state 128
exporting data
SELECT statement 188
External environment 329
restrictions 331, 347
external function
a_v4_extfn_proc 288
prototypes 93
external library
unloading 26
EXTERNAL NAME clause 33
external procedure context
a_v4_extfn_proc_context 292
alloc method 301, 302
close_result_set method 304
get_option method 301
open_result_set method 303
set_cannot_be_distributed 305
external procedures
creating 169, 361
external stored procedures
creating 169, 361
external_udf_execution_mode option 27
extfn_get_library_version
method 17
extfn_get_license_info 18, 19
extfn_use_new_api 97
EXTFNAPIV4 DESCRIBE_COL_CAN_BE_NU
LL
get 213
set 231
EXTFNAPIV4 DESCRIBE_COL_CONSTANT_
VALUE
get 218
set 234

EXTFNAPIV4_DESCRIBE_COL_DISTINCT_V
ALUES
set 214, 232
EXTFNAPIV4_DESCRIBE_COL_IS_CONSTAN
T
get 217
set 234
EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE
get 216
set 233
EXTFNAPIV4_DESCRIBE_COL_IS USED_BY
_CONSUMER
get 219
set 235
EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_
VALUE
get 223
set 239
EXTFNAPIV4_DESCRIBE_COL_MINIMUM_V
ALUE
get 221
set 237
EXTFNAPIV4_DESCRIBE_COL_NAME
set 210, 227
EXTFNAPIV4_DESCRIBE_COL_SCALE
get 212
set 230
EXTFNAPIV4_DESCRIBE_COL_TYPE
get 211
set 228
EXTFNAPIV4_DESCRIBE_COL_VALUES_SU
BSET_OF_INPUT
get 225
set 240
EXTFNAPIV4_DESCRIBE_COL_WIDTH
set 212, 229
EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_N
ULL
get 248
set 266
EXTFNAPIV4_DESCRIBE_PARM_CONSTANT
_VALUE
get 252
set 268
EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_
VALUES
get 250
set 267

382

SAP Sybase 1Q

EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTA
NT
get 251
set 267
EXTFNAPIV4_DESCRIBE_PARM_NAME
get 243
set 262
EXTFNAPIV4_DESCRIBE_PARM_SCALE
get 246
set 265
EXTFNAPIV4_DESCRIBE_PARM_TABLE_HA
S_REWIND
get 259
set 275
EXTFNAPIV4_DESCRIBE_PARM_TABLE_NU
M_COLUMNS
get 253
set 268
EXTFNAPIV4_DESCRIBE_PARM_TABLE_NU
M_ROWS
get 254
set 269
EXTFNAPIV4_DESCRIBE_PARM_TABLE_OR
DERBY
get 255
set 270
EXTFNAPIV4_DESCRIBE_PARM_TABLE_PA
RTITIONBY 140, 141
get 256
set 272
EXTFNAPIV4_DESCRIBE_PARM_TABLE_PA
RTITIONBY UDF 143
EXTFNAPIV4_DESCRIBE_PARM_TABLE_RE
QUEST_REWIND
get 258
set 273
EXTFNAPIV4_DESCRIBE_PARM_TABLE_UN
USED_COLUMNS
get 260
set 276
EXTFNAPIV4_DESCRIBE_PARM_TYPE
get 244
set 263
EXTFNAPIV4_DESCRIBE_PARM_WIDTH
get 245
set 264
EXTFNAPIV4_DESCRIBE_UDF_NUM_PARM
S
get 278

Index

set 280
extfnapiv4.h 97

F

fetch_block
producing data 132
v4 API method 129, 130, 316
fetch_into
producing data 131
v4 API method 129, 130, 313
FIRST
to return one row 188
FLOAT data type 9
free 135
FROM clause 180, 188
contains-expression 180
SELECT statement 188
selects from stored procedure result sets 188
syntax 180
functions
callback 82
creating 173
external, prototypes 93
get_piece 94
get_value 94
GETUID 35
NUMBER 35
prototypes 93
user-defined 3

g++
Linux 22
x86 22
get_blob method
a_v4_extfn_proc_context 304
a_v4_extfn_table_context 318
get_is_cancelled method
a_v4_extfn_proc_context 298
get_option
v4 API method 301
get_value method
a_v4_extfn_proc_context 294
get_value_is_constant method
a_v4_extfn_proc_context 296
GETUID function 35

User-Defined Functions

383

Index

GRANT statement
procedures 29

GROUP BY clause 35
SELECT statement 188

H

HAVING clause 35
heading name 188
HP-UX
aCC 22
Itanium 22

IGNORE NULL VALUES 34, 35
initial state 121
input argument
LONG BINARY 36, 45
INSTALL JAVA statement
syntax 358
installing the Java class code 341
INT data type 9
interface
dynamic library 15
INTO clause
SELECT statement 188
iq_dummy table 180
1Q_UDF license 3
Itanium
aCC 22
HP-UX 22

J

jar files
installing 358
removing 367
Java
installing classes 358
removing classes 367
Java class
in multiplex 346
installing 341, 346
removing 341
Java external environment 329, 347, 350, 352, 354
Java External Environment 341
Java JAR
in multiplex 346

installing 341
removing 341

Java method
calling 341

Java table UDF 361
Creating 354

Java UDF
creating 350, 352

Java VM
setting location of 341
starting 341, 368
stopping 369

JDBC API 329

join columns
and data types 187

joins
FROM clause syntax 180
SELECT statement 188

L

library
dynamic interface 15
external 26
interface style 15
library version
extfn_get_library_version 17
libvdapiex dynamic library 111, 114, 118, 160, 162,
166
license
IQ_UDF 3
link
switches 19, 21-24
Linux
g++4.1.122
PowerPC 22
X86 22
xIC 22
LOB data type 9, 14
log files 28
log_message method
a_v4_extfn_proc_context 299
LONG BINARY
input argument 36, 45
LONG BINARY data type 14
LONG BINARY/(<n>) data type 9
LONG VARCHAR data type 14
LONG VARCHAR(<n>) data type 9

384

SAP Sybase 1Q

M

memory tracking 135
moving window aggregate
OLAP-style optimized calling pattern 89
OLAP-style unoptimized calling pattern 88
moving window following aggregate
OLAP-style optimized calling pattern 90
OLAP-style unoptimized calling pattern 89
moving window without current
OLAP-style optimized calling pattern 92
OLAP-style unoptimized calling pattern 91
my_bit_or example
declaration 51
definition 71
my_bit_xor example
declaration 50
definition 68
my_byte_length example 36
declaration 36
definition 45
my_interpolate example
declaration 51
definition 74
my_plus example
declaration 34
definition 41
my_plus_counter example
declaration 35
definition 43
my_sum example
declaration 50
definition 64

N

naming conventions 8
new operator
C/C++31
NULL 34, 35, 43, 94
NUMBER function 35
NUMERIC(<precision>, <scale>) data type 14

O

ODBC external environment 331
OLAP-style calling pattern
aggregate with unbounded window 85
optimized cumulative moving window
aggregate 89

Index

optimized cumulative window aggregate 87
optimized moving window following
aggregate 90
optimized moving window without current 92
unoptimized cumulative moving window
aggregate 88
unoptimized cumulative window aggregate 86
unoptimized moving window following
aggregate 89
unoptimized moving window without current
91
ON clause 35
open_result_set
v4 API method 303
optimized calling pattern
OLAP-style cumulative window aggregate 87
OLAP-style moving window aggregate 89
OLAP-style moving window following
aggregate 90
OLAP-style moving window without current
92
optimizer estimate
a_v4_extfn_estimate 306
options
unexpected behavior 180, 188
order by 140
ORDER BY clause 47, 188
order by list
a_vé_extfn_orderby_list 307
OVER clause 47

P

packages

installing 358

removing 367
Parallel TPF 140
parameter type

a_v4_extfn_describe_parm_type 282
partition by

column number 307
pattern

calling, aggregate 84

calling, scalar 84
performance

impact of FROM clause 180
Perl external environment 329
PERL external environment 369
phases

query processing 121

User-Defined Functions

385

Index

PHP external environment 329, 373
plan building state 127
PowerPC
AIX 21
Linux 22
xIC 22
xIC 21
predicates
disjunction of 188
privileges
procedures 29
procedures
privileges 29
replicating 167
select from result sets 188
variable result sets 169
processing queries without 180, 188
producer 101
prototypes
external function 93

Q

queries
LIMIT keyword 188
processing by SQL Anywhere 180, 188
SELECT statement 188
query optimization state 124
query processing 121, 122, 124, 127, 128
query processing phases
annotation 287
execution 287
optimization 287
plan building 287
querying tables 180, 188

R

REAL data type 9
REMOVE JAVA 341
REMOVE statement

syntax 367
replication

of procedures 167
RESPECT NULL VALUES 34, 35
restrictions

C/IC++31
result sets

SELECT from 188

variable 169
return value
describe 284
rewind
v4 APl method 318
ROLLUP operator 188
SELECT statement 188
row block 309
allocating 132
row blocks
about 128
fetch methods for 129
producing data 131

S

samples

table UDF 99

TPF 99
SAP Sybase 1Q

description 1
scalar functions

callback functions 82

context structure 39

declaring 33

defining 37

descriptor structure 38

my_byte length example 36, 45

my_plus example 34, 41

my_plus_counter example 35, 43
security

procedures 29

user-defined functions 25
SELECT INTO

returning results in a base table 188

returning results in a host variable 188

returning results in a temporary table 188
select list

SELECT statement 188
SELECT statement

FIRST 188

FROM clause syntax 180

syntax 188

TOP 188
server

disabling UDFs 25

enabling UDFs 25
SET clause 35
set_cannot_be_distributed

v4 API method 305

386

SAP Sybase 1Q

set_error method
a_v4_extfn_proc_context 298
set_value method
a_v4_extfn_proc_context 297
shared libraries
building 19, 21-24
simple aggregate grouped
calling pattern 85
simple aggregate ungrouped
calling pattern 84
Solaris
SPARC 23
Sun Studio 12 23
X86 23
SPARC
Solaris 23
Sun Studio 12 23
SQL statements 166
START EXTERNAL ENVIRONMENT JAVA 341
START JAVA statement
syntax 368
starting
Java VM 368
states
annotation 122
execution 128
initial 121
plan building 127
query optimization 124
query processing 121
STOP JAVA statement
syntax 369
stopping
Java VM 369
stored procedures
selecting into result sets 188
structure
a_v4_extfn_blob 199
a_v4_extfn_blob_istream 203
a_v4_extfn_col_subset_of input 207
a_v4_extfn_column_data 204
a_v4_extfn_column_list 206
a_v4_extfn_estimate 306
a_v4_extfn_order_el 206
a_vé_extfn_orderby_list 307
a_v4_extfn_proc 288
a_v4_extfn_proc_context 292
a_v4_extfn_table 310
a_v4_extfn_table_context 311

a_v4_extfn_table_func 319
aggregate context 60
aggregate descriptor 55
scalar context 39
scalar descriptor 38
Studio 12
See Sun Studio 12
subqueries
disjunction of 188
Sun Studio 12
Solaris 23
SPARC 23
x86 23
switches
compile 19, 21-24
link 19, 21-24
syntax
aggregate context 60
aggregate declaration 47
aggregate definition 53
aggregate description 55
API version 93
calculation context 59
calling user-defined functions 81
CREATE FUNCTION statement 81
disabling user-defined functions 25
dropping user-defined functions 30
dynamic library interface 15
enabling user-defined functions 25
function prototypes 93
scalar context 39
scalar declaration 33
scalar definition 37
scalar description 38
SYSTEM dbspace 180, 188
system tables

DUMMY 180

T

table
a_v4_extfn_table 310
temporary 363

table context
a_v4_extfn_table_context 311
fetch_block method 130, 316
fetch_into method 130, 313
rewind method 318

TABLE data type 9

Index

User-Defined Functions

387

Index

table functions
_close_extfn method 324
_fetch_block_extfn method 322
_fetch_into_extfn method 322
_open_extfn method 321
_rewind_extfn method 323
a_v4_extfn_table_func 319
Table parameterized function
definition 136
table UDF
creation steps 103
definition 97
developing 97, 103
example udf_rg_2 114
examples 105
restrictions 99
sample udf_rg_1 106
sample udf_rg_2 111
sample udf_rg_3 115
samples directory udf_rg_1.cxx 106
samples directory udf_rg_2.cxx 111, 114
samples directory udf_rg_3.cxx 115
users 97, 98
Table UDF
example udf_rg_1111
example udf_rg_3 118
samples directory udf_rg_1l.cxx 111
samples directory udf_rg_3.cxx 118
TABLE_UDF_ROW_BLOCK_CHUNK_SIZE_K
B Option 180
tables
iq_dummy 180
temporary table 363
temporary tables
populating 188
testing 25
text search
FROM contains-expression 180
TIME data type 9
TINYINT data type 9
TOP
specify number of rows 188
TPF
definition 136
developing 97, 136
example tpf_blob 166
example tpf_rg_1 160
example tpf_rg_2 162
restrictions 99

samples directory tpf_blob.cxx 166
samples directory tpf_rg_1.cxx 160
samples directory tpf_rg_2.cxx 162
users 98
tpf_blob.cxx
running the TPF 166
tpf_rg_l.cxx
running the TPF 160
TPF samples 160
tpf_rg_2.cxx
running the TPF 162
TPF samples 162
ttpf_blob.cxx
TPF samples 166

U

UDF
See user-defined functions
udf_proc_describe 97
udf_proc_evaluate 97
udf_proc_version 97
udf_rg_l.cxx
running the Table UDF 111
table UDF sample 1 106
Table UDF samples 111
udf_rg_2.cxx
running the table UDF 114
table UDF sample 2 111
Table UDF samples 114
udf_rg_3.cxx
running the Table UDF 118
table UDF sample 3 115
Table UDF samples 118
unbounded window
OLAP-style aggregate calling pattern 85
unloading
external library 26
unoptimized calling pattern
OLAP-style cumulative window aggregate 86
OLAP-style moving window aggregate 88
OLAP-style moving window following
aggregate 89
OLAP-style moving window without current
91
UNSIGNED data type 9
UNSIGNED INT data type 9
UPDATE statement 35
user-defined functions 25, 36
callback functions 82

388

SAP Sybase 1Q

Vv

calling 81

calling non-existent UDF 327
calling pattern, aggregate 84
calling pattern, scalar 84
creating 32

debugging 28

disabling 25

dropping 30

enabling 3, 25

error 327

my_bit_or example 51, 71
my_bit_xor example 50, 68
my_byte_length example 45
my_interpolate example 51, 74
my_plus example 34, 41
my_plus_counter example 35, 43
my_sum example 50, 64
security 25

using 3

v4 API

_close_extfn method 324
_fetch_block_extfn method 322
_fetch_into_extfn method 322
_open_extfn method 321
_rewind_extfn method 323
alloc method 301, 302
backward-compatibility 16
close_result_set method 304
fetch_block method 130, 316
fetch_into method 130, 313
get_option method 301
open_result_set method 303
rewind method 318
set_cannot_be_distributed method 305

v4_extfn_partitionby_col_num 141

VARBINARY (<n>) data type 9
VARCHAR(<n>) data type 9
variable result sets

from procedures 169
variables

select into 188
version

declaring for API 93
Visual Studio

debugging UDFs 28
Visual Studio 2009

Windows 24

X86 24

w

WHERE clause 35
SELECT statement 188
Windows
Visual Studio 2009 24
X86 24

x86
g++ 22
Linux 22
Solaris 23
Sun Studio 12 23
Visual Studio 2009 24
Windows 24

xIC
Linux 22
PowerPC 22

xIC
AIX 21
PowerPC 21

Index

User-Defined Functions

389

Index

390 SAP Sybase IQ

	User-Defined Functions
	Contents
	Audience
	Understanding User-Defined Functions
	Learning Roadmap: Types of UDFs
	Learning Roadmap: Types of External C and C++ UDFs
	User-Defined Functions Compliance with SAP Sybase IQ Databases
	Practices to Avoid
	Naming Conventions for User-Defined Functions
	SQL Data Types
	Unsupported Data Types

	Building UDFs
	Design Basics of User-Defined Functions
	Sample Code

	Setting the Dynamic Library Interface
	Upgrading to the v4 API
	Library Version (extfn_get_library_version)
	Library Version Compatibility (extfn_check_version_compatibility)
	License Information (extfn_get_license_info)
	Adding the extfn_get_license_info Method

	Compile and Link Source Code to Build Dynamically Linkable Libraries
	Compiling and Linking the Sample UDFs for Windows
	Compiling and Linking the Sample UDFs for UNIX
	AIX Switches
	HP-UX Switches
	Linux Switches
	Solaris Switches
	Windows Switches

	Testing User-Defined Functions
	Enabling and Disabling User-Defined Functions
	Initially Executing a User-Defined Function
	Managing External Libraries

	Controlling Error Checking and Call Tracing
	Viewing SAP Sybase IQ Log Files
	Using Microsoft Visual Studio Debugger for User-Defined Functions

	Modifying the UDF at Runtime
	Granting the Privilege To Run a Procedure
	Dropping User-Defined Functions

	Scalar and Aggregate UDFs
	Scalar and Aggregate UDF Restrictions
	Creating a Scalar or Aggregate UDF
	Declaring and Defining Scalar User-Defined Functions
	Declaring a Scalar UDF
	UDF Example: my_plus Declaration
	UDF Example: my_plus_counter Declaration
	UDF Example: my_byte_length Declaration

	Defining a Scalar UDF
	Scalar UDF Descriptor Structure
	Scalar UDF Context Structure
	Example: my_plus Definition
	Example: my_plus _counter Definition
	Example: my_byte_length Definition

	Declaring and Defining Aggregate UDFs
	Declaring an Aggregate UDF
	Example: my_sum Declaration
	Example: my_bit_xor Declaration
	Example: my_bit_or Declaration
	Example: my_interpolate Declaration

	Defining an Aggregate UDF
	Aggregate UDF Descriptor Structure
	Calculation Context
	Aggregate UDF Context Structure
	Example: my_sum Definition
	Example: my_bit_xor Definition
	Example: my_bit_or Definition
	Example: my_interpolate definition

	Context Storage of Aggregate User-Defined Functions

	Calling Scalar and Aggregate UDFs
	Scalar and Aggregate UDF Calling Patterns
	Scalar and Aggregate UDF Callback Functions
	Scalar UDF Calling Pattern
	Aggregate UDF Calling Patterns
	Simple Aggregate Ungrouped
	Simple Aggregate Grouped
	OLAP-Style Aggregate Calling Pattern with Unbounded Window
	OLAP-Style Unoptimized Cumulative Window Aggregate
	OLAP-Style Optimized Cumulative Window Aggregate
	OLAP-Style Unoptimized Moving Window Aggregate
	OLAP-Style Optimized Moving Window Aggregate
	OLAP-Style Unoptimized Moving Window Following Aggregate
	OLAP-Style Optimized Moving Window Following Aggregate
	OLAP-Style Unoptimized Moving Window without Current
	OLAP-Style Optimized Moving Window without Current
	External Function Prototypes

	Table UDFs and TPFs
	User Roles
	Learning Roadmap for Table UDF Developers
	Learning Roadmap for SQL Analysts
	Table UDF Restrictions
	Get Started
	Sample Files
	Understanding Producers Versus Consumers

	Developing a Table UDF
	Table UDF Implementation Examples
	Implementing Sample Table UDF udf_rg_1
	Running the Sample Table UDF in udf_rg_1.cxx

	udf_rg_2
	Running the Sample Table UDF in udf_rg_2.cxx

	udf_rg_3
	Running the Sample Table UDF in udf_rg_3.cxx

	apache_log_reader
	Running the Sample Table UDF in apache_log_reader.cxx

	udf_blob
	Running the Sample Table UDF udf_blob.cxx

	Query Processing States
	Initial State
	Annotation State
	Query Optimization State
	Plan Building State
	Execution State

	Row Block Data Exchange
	Fetch Methods for Row Blocks
	The fetch_block Method
	The fetch_into Method

	Using a Row Block to Produce Data
	Producing Data Using fetch_into
	Producing Data Using fetch_block

	Row Block Allocation
	Table UDF Query Plan Objects
	Enabling Memory Tracking
	Table Parameterized Functions
	Learning Roadmap for TPF Developers
	Developing a TPF
	Consume TABLE Parameters
	Obtain a Table Object
	Open the Result Set
	Fetch from the Result Set
	Consume Table Data Using a Row Block
	Close the Result Set

	Order Input Table Data
	Partitioning Input Data
	V4 API describe_parameter and EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY
	Parallel TPF PARTITION BY Examples Using EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY
	Example Procedure Definition
	describe_parameter_set Example # 1: One-Column Partitioning on Column 1
	SQL Writer Semantics for One-Column Partitioning on Column 1
	SQL Exceptions for One Column Partitioning on Column 1

	describe_parameter_set Example # 2: Two-Column Partitioning
	SQL Writer Semantics for Two-Column Partitioning
	SQL Exceptions for Two-Column Partitioning

	describe_parameter_set Example # 3: Any-Column Partitioning
	SQL Writer Semantics for Any-Column Partitioning

	describe_parameter_set Example # 4: No Support for PARTITION BY ANY Clause
	SQL Writer Semantics for No Support for PARTITION BY ANY Clause

	describe_parameter_set Example # 5: No Partitioning Support
	SQL Writer Semantics for No Partitioning Support
	SQL Exceptions for No Partitioning Support

	describe_parameter_set Example # 6: One-Column Partitioning on Column 2
	SQL Writer Semantics for One-Column Partitioning on Column 2
	SQL Exceptions for One-Column Partitioning on Column 2

	TPF Implementation Examples
	tpf_rg_1
	Running the Sample TPF in tpf_rg_1

	tpf_rg_2
	Running the Sample TPF in tpf_rg_2

	Pass-Through TPF in tpf_blob
	Dynamic Schema Support
	Processing LOB and CLOB Columns in Input Tables
	Passing Input Table Columns to the Result Set
	Running the Sample TPF in tpf_blob.cxx

	SQL Reference for Table UDF and TPF Queries
	ALTER PROCEDURE Statement
	CREATE PROCEDURE Statement (Table UDF)
	CREATE FUNCTION Statement
	DEFAULT_TABLE_UDF_ROW_COUNT Option
	TABLE_UDF_ROW_BLOCK_CHUNK_SIZE_KB Option
	FROM Clause
	SELECT Statement

	API Reference for a_v4_extfn
	Blob (a_v4_extfn_blob)
	blob_length
	open_istream
	close_istream
	release

	Blob Input Stream (a_v4_extfn_blob_istream)
	get

	Column Data (a_v4_extfn_column_data)
	Column List (a_v4_extfn_column_list)
	Column Order (a_v4_extfn_order_el)
	Column Subset (a_v4_extfn_col_subset_of_input)
	Describe API
	*describe_column_get
	Attributes for *describe_column_get
	EXTFNAPIV4_DESCRIBE_COL_NAME (Get)
	EXTFNAPIV4_DESCRIBE_COL_TYPE (Get)
	EXTFNAPIV4_DESCRIBE_COL_WIDTH (Get)
	EXTFNAPIV4_DESCRIBE_COL_SCALE (Get)
	EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL (Get)
	EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES (Get)
	EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT (Get)
	EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER (Get)
	EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT (Get)

	*describe_column_set
	Attributes for *describe_column_set
	EXTFNAPIV4_DESCRIBE_COL_NAME (Set)
	EXTFNAPIV4_DESCRIBE_COL_TYPE (Set)
	EXTFNAPIV4_DESCRIBE_COL_WIDTH (Set)
	EXTFNAPIV4_DESCRIBE_COL_SCALE (Set)
	EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL (Set)
	EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES (Set)
	EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT (Set)
	EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER (Set)
	EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT (Set)

	*describe_parameter_get
	Attributes for *describe_parameter_get
	EXTFNAPIV4_DESCRIBE_PARM_NAME Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_SCALE Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL Attribute (Get)
	Examples: EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL (Get)

	EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS Attribute (Get)

	*describe_parameter_set
	Attributes for *describe_parameter_set
	EXTFNAPIV4_DESCRIBE_PARM_NAME Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_SCALE Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS Attribute (Set)

	*describe_udf_get
	Attributes for *describe_udf_get
	EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS Attribute (Get)

	*describe_udf_set
	Attributes for *describe_udf_set
	EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS Attribute (Set)

	Describe Column Type (a_v4_extfn_describe_col_type)
	Describe Parameter Type (a_v4_extfn_describe_parm_type)
	Describe Return (a_v4_extfn_describe_return)
	Describe UDF Type (a_v4_extfn_describe_udf_type)
	Execution State (a_v4_extfn_state)
	External Function (a_v4_extfn_proc)
	_start_extfn
	_finish_extfn
	_evaluate_extfn
	_describe_extfn
	_enter_state_extfn
	_leave_state_extfn

	External Procedure Context (a_v4_extfn_proc_context)
	get_value
	get_value_is_constant
	set_value
	get_is_cancelled
	set_error
	log_message
	convert_value
	get_option
	alloc
	free
	open_result_set
	close_result_set
	get_blob
	set_cannot_be_distributed

	License Information (a_v4_extfn_license_info)
	Optimizer Estimate (a_v4_extfn_estimate)
	Order By List (a_v4_extfn_orderby_list)
	Partition By Column Number (a_v4_extfn_partitionby_col_num)
	Row (a_v4_extfn_row)
	Row Block (a_v4_extfn_row_block)
	Table (a_v4_extfn_table)
	Table Context (a_v4_extfn_table_context)
	fetch_into
	fetch_block
	rewind
	get_blob

	Table Functions (a_v4_extfn_table_func)
	_open_extfn
	_fetch_into_extfn
	_fetch_block_extfn
	_rewind_extfn
	_close_extfn

	API Troubleshooting for a_v4_extfn
	Generic describe_column Errors
	Generic describe_udf Errors
	Generic describe_parameter Errors
	Missing UDF Returns an Error

	External Environment for UDFs
	Executing UDFs from an External Environment
	External Environment Restrictions
	The ESQL and ODBC External Environments
	The Java External Environment
	Java External Environment in a Multiplex
	Installing a Class Using Interactive SQL

	Java External Environment Restrictions
	Java VM Memory Options
	SQL Data Type Conversions for Java UDFs
	SQL to Java Data Type Conversion
	Java to SQL Data Type Conversion

	Creating a Java Scalar UDF
	Example: Executing a Java Scalar UDF
	Creating a Java Scalar UDF Version of the SQL substr Function
	Creating a Java Table UDF
	Example: Executing a Java Table UDF
	Example: Executing a Java Table UDF with Java Result Set Construction
	Java External Environment SQL Statement Reference
	INSTALL JAVA Statement
	CREATE PROCEDURE Statement (Java UDF)
	Referencing Temporary Tables Within Procedures

	CREATE FUNCTION Statement (Java UDF)
	REMOVE Statement
	START JAVA Statement
	STOP JAVA Statement

	PERL External Environment
	PHP External Environment

	Index

