SYBASE

Cmpy

User-Defined Functions

Sybase IQ 15.4

DOCUMENT ID: DC01034-01-1540-01

LAST REVISED: November 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

AUAIBNCE . 1
Understanding User-Defined FUNCLIONScccooevvvvviiineeennne. 3
Learning Roadmap: Types of UDFS.........ccccovvevviviininnnnn. 5
Learning Roadmap: Types of External C and C++
UD S .t 6
User-Defined Functions Compliance with Sybase 1Q
Databasesccooeiiiiiiiii s 7
Practices t0 AVOIdeuuuviiiiiiiiiiiiiienre e 8
Naming Conventions for User-Defined Functions............ 8
SQL Data TYPES oveiiiiiieeiei ettt 9
BUIlAING UDFS ..ccoiiiciis e 15
Design Basics of User-Defined Functions..................... 15
Setting the Dynamic Library Interfacecccccevvvne. 15
Upgrading to the v4 APloovvviiiiiiii e, 16
Library Version (extfn_get_library_version).................. 17
Library Version Compatibility
(extfn_check_version_compatibility)cccceeeeee 17
License Information (extfn_get_license_info)............... 18
Adding the extfn_get_license_info Method.......... 19
Compile and Link Source Code to Build Dynamically
Linkable Librariesccooveeiiiiiiiiiiieeieeeiee e, 19
Compiling and Linking the Sample UDFs for
WINAOWS ...t 21
Compiling and Linking the Sample UDFs for
UNDX e e 21
ADX SWILCNES ... 21
HP-UX SWItCheSoiiiiiiiiiiiii e 22
LinUX SWItChES ... 22
Solaris SWItChescoviiiiiiiii e, 23
WINdows SWILChEeSccovvviiiiiiiiiiiiiiiiiiiiieee 24
Testing User-Defined FUNCLIONSccooeviiiiiiiiiniiinnnn. 25

User-Defined Functions iii

Contents

Enabling and Disabling User-Defined Functions

... 25
Initially Executing a User-Defined Function......... 26
Controlling Error Checking and Call Tracing......... 27
Viewing Sybase IQ Log Files ... 28
Using Microsoft Visual Studio Debugger for
User-Defined Functionsccccciiiiinnnnnne 28
Modifying the UDF at RUNtimeccccoeeeeeeeviveveeeiinnn, 28
Granting and Revoking Permissions.............ccccccuuveeee. 29
Dropping User-Defined Functions................ccccveveeeennn. 29
Scalar and Aggregate UDFScccooveiiiiiiiiiiie e, 31
Scalar and Aggregate UDF Restrictions.............cccc....... 31
Creating a Scalar or Aggregate UDFcovvvivinnnnes 31
Creating a UDF Using SQL Anywhere Dialects
in Sybase Centralccooooiiiiiiiiiie 32
Declaring and Defining Scalar User-Defined
FUNCHIONS ... 33
Declaring and Defining Aggregate UDFs............. a7
Calling Scalar and Aggregate UDFs..............cuvvvviiinnnnee 83
Scalar and Aggregate UDF Calling Patterns................ 83
Scalar and Aggregate UDF Callback Functions
... 84
Scalar UDF Calling Pattern.............ccccccvvvvininnnee. 85
Aggregate UDF Calling Patterns................cc....... 85
Table UDFs and TPFS ..., 97
USEI ROIES ...oooviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 97
Learning Roadmap for Table UDF Developers............. 97
Learning Roadmap for SQL Analysts..........cccceeeeeeeennen. 98
Table UDF ReSIICHONSvvieiiieiiiiiieeeeeeeeeeiiie e 99
Get Startedooooveieeee 99
Sample FileSuuuiiiiiiiiiiiiiiiiiiiie 99
Understanding Producers Versus Consumers...101
Developing a Table UDF ..., 103
Table UDF Implementation Examples............... 105
Query Processing Statescccovvvveeeeeeeiiiieiiiiiiiiiiiienns 121

iv Sybase 1Q

Contents

INitial Stateooeeeeeeeiie e 121
ANNOtation Stateuvvvvviiiiiiiiiie e 122
Query Optimization Statecoevveiiiieeeiennnns 124
Plan Building Statecccoooevviiiiiiieeeeiee e, 127
Execution Stateoooovvviiiiiiiiiiiii e 128
Row Block Data Exchangecccccceeeeeevieiiiinieceeennnnn, 128
Fetch Methods for Row Blocks..............cccevveeee. 129
Using a Row Block to Produce Data.................. 131
Row Block Allocationccooeevveeiiiiiiiiiieicie e, 132
Table UDF Query Plan Objects..........cccccceeiiiiiieeeennnn. 134
Enabling Memory Trackingccooooeviviiiiiiiiiniieeee, 135
Table Parameterized Functionsccccoooeevvveviinnnnnn. 136
Learning Roadmap for TPF Developers............ 136
Developing a TPF ..o, 136
Consume Table Parameters.........c.ccocceevvveeennnn. 137
Order Input Table Data.............cccccoeeevvvviieeeeeennnn. 140
Partitioning Input Dataccooeeeeeiiiiiiiiiiiiiins 140
TPF Implementation Examples...........cccccceeeennn. 156
SQL Reference for Table UDF and TPF Queries......... 166
ALTER PROCEDURE Statement...................... 167
CREATE PROCEDURE Statement (Table UDF)
... 169
CREATE FUNCTION Statement................ccce.... 172

DEFAULT_TABLE_UDF_ROW_COUNT Option 178
TABLE_UDF_ROW_BLOCK_SIZE_KB Option. 179

FROM ClausSecoovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiias 179

SELECT Statement.........ccoiiiiiiiiiiiiiieeeieeeeennn 185

APl Reference for a_v4_extfncccoviiiiiiiiiici e 195
Blob (a_v4_extfn_blob)cccoooviiiiiiiiiiiii e, 195
blob_lengthccooiiiiii e, 196
OPEN_ISIIEAM ... 197
Close_istreamccceciiiieiiieeeeeeeeee 197

FEIEASE .o 198

Blob Input Stream (a_v4_extfn_blob_istream) 199

[0] TP 199

User-Defined Functions %

Contents

Column Data (a_v4_extfn_column_data)................... 200
Column List (a_v4_extfn_column_list)ccouunn... 202
Column Order (a_v4_extfn_order_el)ccccoeeeennie. 202
Column Subset (a_v4_extfn_col_subset_of input)....203
DeSCrDE APl ... e 204
*describe_column_get..........ccovvviiiiiiiiiiiiee, 204
*describe_column_set.......cccccoovviviiiiiiniiiiii, 221
*describe_parameter_get.........ccoooovviiiieiiiinnnnnn. 238
*describe_parameter_set.........cccoooevviiiiiiiiineenee. 257
*describe_udf get.....ccoooeeeiiiiiiii 273
*describe_udf _Set.......cveiiiiiiii 275
Describe Column Type
(a_v4_extfn_describe_col_type)cccevvviiiieernnnns 277
Describe Parameter Type
(a_v4_extfn_describe_parm_type)cceeeeeveennnnnn 278
Describe Return (a_v4_extfn_describe_return).......... 280
Describe UDF Type (a_v4_extfn_describe_udf_type)
.. 282
Execution State (a_v4_extfn_state)...........cccvverennnn.. 283
External Function (a_v4_extfn_proc)........ccccceeeevvunnnn.. 284
Start. extfin ... 285
_finish_extfn ... 285
_evaluate_extfn........ccceeviiiiiii 286
_describe_extfn........cccccceeiiiiii 286
_enter_state_extfn........ccccoeeiiiiiiiiii 287
_leave_state_extfn..........ccccciiiiii i 287
External Procedure Context
(a_v4_extfn_proc_context)cccceveeeeriiiiiieeeennnnnn. 287
get_value ... 289
get _value_is_constant...........cccceeeeevveiiinieeeennnnnn. 292
Set ValUe ..ouvei i 292
get is_cancelled............ccooeieiiiiiiiiiiiie e 293
SEL _BITON e e 294
|00 _MESSAQE ...vvvi et 295
CONVEIt_ValUeoooviiiiiiieeeeee e 295

Vi

Sybase 1Q

Contents

0L _OPLION .o 296
AllOC s 297
frBE o 298
open_result_Set.........ccceevviiiiiiiiiiie e, 298
close_result_Set.........cccvvviiiiiiiiiie e, 299
get_bIoD ...ueeiei i 300
set_cannot_be_distributed.............ccccceeiiiiiinnnnnn. 301
License Information (a_v4_extfn_license_info)........... 301
Optimizer Estimate (a_v4_extfn_estimate) 302
Order By List (a_v4_extfn_orderby _list)..................... 302
Partition By Column Number
(a_v4_extfn_partitionby _col_num)......................... 303
RoOw (a_V4_extin_row)coovvieiiiiiiiiieiee e 304
Row Block (a_v4_extfn_row_block)ccceeeeee. 305
Table (a_v4_extfn_table)cccoovviiiiiin s 306
Table Context (a_v4_extfn_table_context) 306
fetCh_iNtOooeeeieiei e 308
fetch_BlOCKccccoviiiiicc e 311
=201V o SR 313
get_bIoD ...ueeii i 314
Table Functions (a_v4_extfn_table_func) 314
_0peN_exXtiN ... 316
_fetch_into_extfn ..., 317
_fetch_block_extfn.......cccoooeeeiiiiiiicee 318
_rewind_extin ... 318
_Close_extfncoiieee e 319
API Troubleshooting for a v4 _extfn..........ccooeeviiiiiinnnnn. 321
Generic describe_column Errorscccoeevveeeviveeeennnnnn, 321
Generic describe_udf Errorscccceeeveeeeeieeveeeiiiiininnnnn. 322
Generic describe_parameter Errors..........ccceeeeeeeeeennns 322
Missing UDF Returns an Error.............evvvviiiiiiinnennnn. 323
External Environment for UDFScccooooevviiiiiiiiiiciiiee e 325
Executing UDFs from an External Environment......... 326
External Environment Restrictionsccccccceeeennn. 327
The CLR External Environmentccccceeeeeiieeeeeeeennn. 327

User-Defined Functions Vi

Contents

The ESQL and ODBC External Environments........... 330
The Java External Environment............cccccceeveeeeeeeennn, 339
Java External Environment in a Multiplex.......... 345
Java External Environment Restrictions............. 346
Java VM Memory OptionScovveeevvviininnneennn. 346
SQL Data Type Conversions for Java UDFs...... 347
Creating a Java Scalar UDF...............ccccevviennnne 349

Creating a Java Scalar UDF Version of the SQL
SUbStr FUNCLION ... 351
Creating a Java Table UDFccoooevvvvvnnnnnn. 352

Java External Environment SQL Statement

Reference ..o 355
The PERL External Environment............ccccoeeveeeiieennns 362
The PHP External Environment............ccccceevieeeeveennnns 366
INAEX 373

viii Sybase 1Q

Audience

Audience

The User-Defined Functions Guide is intended for SQL analysts, C developers, C++
developers, and Java developers who want to extend the functionality of Sybase® 1Q.

As a developer, use the tasks, concepts, and API reference material to program non-SQL
external user-defined functions.

As a SQL analyst, use this guide to develop SQL queries that reference non-SQL external
user-defined functions.

User-Defined Functions 1

Audience

2 Sybase 1Q

Understanding User-Defined Functions

Understanding User-Defined Functions

Learn how user-defined functions are used within Sybase 1Q.

Sybase 1Q allows user defined functions (UDFs), which execute within the database container.
The UDF execution feature is available as an optional component for use within Sybase 1Q or
within the RAPStore component of RAP — The Trading Edition Enterprise®.

You must be specifically licensed to use these external C/C++ UDFs interfaces.

These external C/C++ UDFs differ from the Interactive SQL UDFs available in earlier
versions of Sybase 1Q. Interactive SQL UDFs are unchanged and do not require a special
license.

UDFs that execute within Sybase 1Q take advantage of the extreme performance of the server,
while also providing users the flexibility of analyzing their data with the flexibility of a
programmatic solution. User-Defined Functions consist of two components:

« UDF declaration, and
* UDF executable code

A UDF isdeclared in the SQL environment through a SQL function or stored procedure which
describes the parameters and provides a reference to the external library.

The actual executable portion of the UDF is contained within an external (shared object or
dynamic load) library file, which is automatically loaded by the server upon the first
invocation of a UDF Declaration function or stored procedure associated with that library.
Once loaded, the library remains resident in the server for rapid access through subsequent
invocations of SQL functions or stored procedures that reference the library.

The Sybase 1Q user-defined function architecture is represented in the diagram below.

User-Defined Functions 3

Understanding User-Defined Functions

\IQ-/
SQL Client

3 saL ﬂl
Functions &

or Stored

Procedures
Executable User-Defined Function code, »
contained within external library files,

which are dynamically-loaded into the IG
server upon first use

Sybase 1Q supports high-performance in-process external C/C++ user-defined functions. This
style of UDF supports functions written in C or C++ code that adhere to the interfaces
described in this guide.

The C/C++ source code for the UDFs is compiled into one or more external libraries that are
subsequently loaded into the server's process space when needed. The UDF calling

mechanism is defined to the server through a SQL function. When the SQL function is invoked
from a SQL query, the server loads the corresponding library if it has not already been loaded.

For simplicity of managing the UDF installation, Sybase recommends that UDF developers
package many UDF functions within a single library.

To facilitate the construction of UDFs, Sybase 1Q includes a C-based API. The APl comprises
aset of predefined entry points for the UDFs, a well-defined context data structure, and a series
of SQL callback functions that provide a communication mechanism from the UDF back to

4 Sybase 1Q

Understanding User-Defined Functions

the server. The Sybase 1Q UDF API allows software vendors and expert end-users to develop,
package, and sell their own UDFs.

Learning Roadmap: Types of UDFs

The types of user-defined functions (UDFs) available in Sybase 1Q.

Adggregate UDFs are also some-
times known as UDAs or
UDAFs. The context structure
for coding aggregate UDFs is
slightly different than the context
structure used for coding scalar
UDFs.

UDF Type Description Required Li- | See
cence
UDF (SQL) A user-defined function written | none System Administra-
in SQL. tion Guide Volume 2
> Using Procedures
and Batches > Intro-
duction to User-De-
fined Functions
Scalar C or C++ V3 external C or C++ procedure | 1Q_UDF Learning Roadmap.
UDF that operates on a single value. Types of External C
and C++ UDFson
page 6
Scalar C or C++ V4 external C or C++ procedure | 1Q_IDA Learning Roadmap:
UDF that operates on a single value. Types of External C
and C++ UDFson
page 6
Aggregate C or C++ | V3 external C or C++ procedure | 1Q_UDF Learning Roadmap:
UDF that operates on multiple values. Types of External C
Aggregate UDFs are also some- and C++ UDFson
times known as UDAs or page 6
UDAFs. The context structure
for coding aggregate UDFs is
slightly different than the context
structure used for coding scalar
UDFs.
Aggregate C or C++ | V4 external C or C++ procedure | 1Q_IDA Learning Roadmap:
UDF that operates on multiple values. Types of External C

and C++ UDFson
page 6

User-Defined Functions

Understanding User-Defined Functions

vironment) table UDF imple-
mented in Java code.

UDF Type Description Required Li- | See
cence

Table UDF External C or C++ procedure that | 1Q_IDA Learning Roadmap.
produces a set of rows and can be Types of External C
used as a table expression in the and C++ UDFson
FROM clause of a SQL statement page 6

Table parameterized | A table UDF that accepts table | 1Q_IDA Learning Roadmap:

function (non-scalar) parameters in addi- Types of External C
tion to scalar parameters, and can and C++ UDFson
be executed in parallel over par- page 6
titions of row-sets. Also known
as table parameterized user-de-
fined functions.

Java scalar UDF An out-of-process (external en- | none The Java External
vironment) scalar user-defined Environmenton page
function implemented in Java 339
code.

Java table UDF An out-of-process (external en- | none The Java External

Environmenton page
339

Learning Roadmap: Types of External C and C++ UDFs

The high-performance, in-process, external C and C++ user-defined functions available with

the 1Q_IDA license.

The v3 API requires either the IQ_UDF or IQ_IDA license. The v4 API requires the IQ_IDA

license.
UDF Type Input Param- | Return API See:
eters
Scalar UDF Scalar Single scalar val- | v3, v4 Declaring and
ue Defining Scalar
User-Defined
Functions on
page 33
Aggregate UDF | Scalar Single scalar val- | v3, v4 Declaring and
ue Defining Aggre-
gate UDFson
page 47

Sybase 1Q

Understanding User-Defined Functions

UDF Type Input Param- | Return API See:
eters
Table UDF Scalar Table v4 Table UDFs and
TPFson page
97
Table parameter- | Scalar and table | Table v4 Table Parameter-
ized function ized Functions
(TPF) on page 136

These UDFs can be deterministic or nondeterministic. The result of a function can be
determined by the input parameters and data (deterministic), or by some random behavior
(nondeterministic). Parameters of nondeterministic UDFs typically need a random seed as
one of the input parameters.

User-Defined Functions Compliance with Sybase 1Q
Databases

Develop user-defined functions to work with Sybase 1Q databases.

Seamless Execution

UDFs must run seamlessly within the database container. Although Sybase 1Q is a complex
product consisting of many files, the main user interaction is through a server process
(igsrv15), using industry-standard Structured Query Language (SQL). Execution of UDFs
should be accomplished entirely through SQL commands; the user does not need to
understand the underlying implementation method to use the UDFs.

The EXTFN_V3_API and EXTFN_V4_API provide callback functions enabling the UDF to
write to the message file (. i gnsg).

UDFs should manage memaory and temporary results as defined by the EXTFN_V3_API and
EXTFN_V4_API .

Sybase 1Q is a multiuser application. Many users can simultaneously execute the same UDF.
Certain OLAP queries cause a UDF to be executed multiple times within the same query,
sometimes in parallel. For details on setting UDFs to run in parallel, see Aggregate UDF
calling patterns on page 85.

Internationalization

Sybase 1Q has been internationalized for global use. Error messages are in external files,
which allows you to localize error messages to new languages without having to make
extensive code changes.

To support multiple languages, UDFs should also be internationalized. In general, most UDFs
operate on numeric data. In some cases, a UDF may accept string keywords as one or more of

User-Defined Functions 7

Understanding User-Defined Functions

the parameters. Place these keywords in external files, in addition to any exception text and log
messages used by the UDF.

Sybase 1Q has also been localized for a few non-English languages. To support localization to
the same languages that Sybase 1Q supports, Sybase recommends that you internationalize
UDFs, so that an independent organization can localize them at a later date.

For details about international language support in Sybase 1Q, see the System Administration
Guide.: Volume 1 > International Languages and Character Sets.

See also Debugging Using Cross-Character-Set Maps at www.Sybase.com. This paper
discusses how to debug with multi byte data, as opposed to input keywords, exception
messages, and log entries.

Platform Differences

Develop UDFs to run on a variety of platforms supported by Sybase 1Q. The Sybase 1Q 15.x
server runs on 64-bit architectures, and is supported under several platforms of the MS
Windows (64-bit) family of operating systems. Sybase 1Q is also supported on versions of
UNIX (64-bit), including Solaris, HP-UX, AlX, and Linux.

Practices to Avoid

Learn good practices for creating user-defined functions.

« Do not hard-code library paths in SQL registration scripts. This practice makes it difficult
to provide flexibility to the user to install the UDFs into the same directory as Sybase 1Q.

« Do not write ambiguous code, or constructs that can unexpectedly loop forever, without
providing a mechanism for the user to cancel the UDF invocation (see the function
‘get_is_cancelled()'.

« Do not perform complex, or memory-intensive operations that are repeated every
invocation. When a UDF call is made against a table that contains many thousands of rows,
efficient execution becomes paramount. Sybase recommends that you allocate blocks of
memory for a thousand to several thousand rows at a time, rather than on a row-by-row
basis.

« Do notopen adatabase connection, or perform database operations from within a UDF. Al
parameters and data required for UDF execution must be passed as parameters to the UDF.

« Do not use reserved words when naming UDFs.

Naming Conventions for User-Defined Functions

UDF names must follow the same restrictions as other identifiers in Sybase 1Q.

Sybase I1Q identifiers have a maximum length of 128 bytes. For simplicity of use, UDF names
should start with an alphabetic character. Alphabetic characters as defined by Sybase 1Q
include the letters of the alphabet, plus underscore (), at sign (@), number or pound sign (#)

8 Sybase 1Q

Understanding User-Defined Functions

and dollar sign ($). UDF names should consist entirely of these alphabetic characters as well
as digits (the numbers 0 through 9). UDF names should not conflict with SQL reserved words.
There is a list of SQL reserved words in Sybase 1Q Reference. Building Blocks, Tables, and
Procedures > SQL Language Elements > Reserved Words.

Although UDF names (as other identifiers) may also contain reserved words, spaces,
characters other than those listed above, and may start with a non-alphabetic character, this is
not recommended. If UDF names have any of these characteristics, you must enclose them in
quotes or square brackets, which makes it more difficult to use them.

The UDFs reside in the same name space as other SQL functions and stored procedures. To
avoid conflicts with existing stored procedures and functions, preface UDFs with a unique
short (2-letter to 5-letter) acronym and underscore. Choose UDF names that do not conflict
with other SQL functions or stored procedures already defined in the local environment.

These are some of the prefixes that are already in use:

» debugger_tutorial — a stored procedure delivered with the native Sybase 1Q installation.
* ManageContacts — a stored procedure delivered with the Sybase 1Q demo database.
* Show — stored procedures used to display data from the Sybase 1Q demo database.

e sp_Detect_MPX_DDL_conflicts —a stored procedure delivered with the native Sybase 1Q
installation.

e sp_igevbegintxn — a stored procedure delivered with the native Sybase IQ installation.

* sp_igmpx — functions and stored procedures provided bySybase 1Q to assist in multiplex
administration.

» ts_—optional financial time series and forecasting functions.

SQL Data Types
UDF declarations support only certain SQL data types.

You can use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef
Type
Identifier
UNSI GNED DT_UN- a_sql_uint6 | An unsigned 64-bit integer, requiring 8 bytes of
Bl G NT SBIGINT 4 storage.
Bl G NT DT_BI- a_sql_int64 | A signed 64-bit integer, requiring 8 bytes of stor-
GINT age.

User-Defined Functions 9

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description

Type Data Typedef
Type
Identifier

UNSI GNED DT_UN- a_sql_uint3 | An unsigned 32-bit integer, requiring 4 bytes of

| NT SINT 2 storage.

I NT DT_INT a_sql_int32 | A signed 32-bit integer, requiring 4 bytes of stor-

age.

SMALLI NT DT_SMAL | short A signed 16-bit integer, requiring 2 bytes of stor-
LINT age.

TI NYI NT DT_TI- unsigned An unsigned 8-bit integer, requiring 1 byte of stor-
NYINT char age.

DOUBLE DT_DOU- | double A signed 64-bit double-precision floating point
BLE number, requiring 8 bytes of storage.

REAL DT_FLOA | float A signed 32-bit floating point number, requiring 4
T bytes of storage.

FLOAT DT_FLOA | float In SQL, depending on the associated precision, a
T FLQOAT is either a signed 32-bit floating point

number requiring 4 bytes of storage, or a signed
64-bit double-precision floating point number re-
quiring 8 bytes of storage. You can use the SQL
data type FLOAT only in a UDF declaration if the
optional precision for FLOAT data types is not
supplied. Without a precision, FLOAT is a syno-

nym for REAL.
CHAR(<n>) DT_FIX- char A fixed-length blank-padded character string, in
CHAR the database default character set. The maximum

possible length, “<n>", is 32767. The data is not
null-byte terminated.

VARCHAR(<n>) | DT_VAR- | char A varying-length character string, in the database
CHAR default character set. The maximum possible
length, “<n>", is 32767. The data is not null-byte
terminated. For UDF input arguments, the actual
length, when the value is not NULL, must be re-
trieved from the fotal /en field within the
an_ext f n_val ue structure. Similarly, for a
UDF result of this type, the actual length must be
set in the fotal_/enfield.

10 Sybase 1Q

Understanding User-Defined Functions

SQL Data
Type

Cor C++
Data
Type
Identifier

Cor C++
Typedef

Description

LONG VAR-
CHAR(<n>) or
CLOB

DT_VAR-
CHAR

char

A varying-length character string, in the database
default character set. Use the LONG VARCHAR
data type only as an input argument, notasareturn-
value data type. The maximum possible length,
“<n>", is 4GB (gigabytes) for v3 UDFs. The data
is not null-byte terminated. LONG VARCHAR
data type can have a WD or TEXT index. For UDF
input arguments, the actual length, when the value
is not NULL, must be retrieved from the zotal _fen
field within the an_extfn_value structure.

You need not rebuild or recompile an existing sca-
lar or aggregate UDF to use a LOB data type as an
input parameter, if the function contains a loop that
reads pieces of the value viathe get _val ue()
and get _pi ece() methods. The loop contin-
ues until remain_/len> 0 or until 4GB is reached for
v3 UDFs (there is no 4GB limit in v4).

Table UDFs and TPFs do not use the

get _pi ece() method to process and retrieve
data. Table UDFs and TPFs must use the Bl ob
(a_v4_extfn_bl ob) APl instead. Use

bl ob_I engt h to determine length of input
parameters.

Large object data support requires a separately li-
censed Sybase 1Q option.

Bl NARY(<n>)

DT_BINA-
RY

unsigned
char

A fixed-length null-byte padded binary, value with
a maximum possible binary length, “<n>”", of
32767. The data is not null-byte terminated.

VARBI NA-
RY(<n>)

DT_BINA-
RY

unsigned
char

A varying-length binary value, for which the max-
imum possible length, “<n>", is 32767. The data is
not null-byte terminated. For UDF input argu-
ments, the actual length, when the value is not
NULL, must be retrieved from the fofal_lenfield
within the an_extfn_value structure. Similarly, for
a UDF result of this type, you must set the actual
length in the fotal_/enfield. The data is not null-
byte terminated.

User-Defined Functions

11

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef

Type

Identifier
LONG BI NA- | DT_BINA- | unsigned A fixed-length null-byte padded binary, value with
RY(<n>) or RY char amaximum possible binary length, “<n>”, of 4GB
BLOB (gigabytes) for v3 UDFs. Use the LONG Bl -

NARY data type only as an input argument, notas a
return-value data type.

You need not rebuild or recompile an existing sca-
lar or aggregate UDF to use a LOB data type as an
input parameter, if the function contains a loop that
reads pieces of the value viathe get _val ue()
and get _pi ece() methods. The loop contin-
ues until remain_/len> 0 or until 4GB is reached for
v3 UDFs (there is no 4GB limit in v4).

Table UDFs and TPFs do not use the

get _pi ece() method to process and retrieve
data. Table UDFs and TPFs must use the Bl ob
(a_v4_extfn_bl ob) APl instead. Use

bl ob_I engt h to determine length of input
parameters.

Large object data support requires a separately li-
censed Sybase 1Q option.

12

Sybase 1Q

Understanding User-Defined Functions

SQL Data
Type

Cor C++
Data
Type
Identifier

Cor C++
Typedef

Description

DATE

DT_TIME-
STAMP_S
TRUCT

unsigned in-
teger

A calendar date value, which is passed to or from a
UDF as an unsigned integer. The value given to the
UDF is guaranteed to be usable in comparison and
sorting operations. A larger value indicates a later
date. If the actual date components are required,
the UDF must invoke the convert _val ue
function in order to convert to the type DT_TIME-
STAMP_STRUCT. This date type represents date
and time with this structure:

typedef struct sqldatetine {
unsi gned short
year; /* e.g.
unsi gned char
nmont h; /* 0-11
*/

1992*/

unsi gned char
day_of week; /* 0-6 0=Sunday,
1=Monday, ... */
unsi gned short
day_of vyear; /* 0-365
*/
unsi gned char
day; /* 1-31
*/
unsi gned char
hour ; /[* 0-23
*/
unsi gned char m -
nut e; /* 0-59
*/
unsi gned char sec-
ond; /* 0-59 */
a_sql _uint32 n crosec-
ond; /* 0-999999 */
} SQLDATETI MVE

DT_TIME-
STAMP_S
TRUCT

unsigned bi-
gint

A value that precisely describes amoment within a
given day. . The value given to the UDF is guar-
anteed to be usable in comparison and sorting op-
erations. A larger value indicates a later time. If the
actual time components are required, the UDF
must invoke the convert _val ue function to
convert to the type DT_TI ME-
STAMP_STRUCT.

User-Defined Functions

13

Understanding User-Defined Functions

SQL Data Cor C++ [Cor C++ |Description
Type Data Typedef

Type

Identifier
DATETI ME, DT_TIME- | unsigned bi- | A calendar date and time value. The value given to
SVALLDATE- | STAMP_S | gint the UDF is guaranteed to be usable in comparison
TI ME, or TRUCT and sorting operations. A larger value indicates a
TI MESTAMP later datetime. If the actual time components are

required, the UDF must invoke the con-
vert _val ue function to convert to the type
DT_TI MESTAMP_STRUCT.

TABLE DT_EXTF | a_v4_extfn_ | Representsan inputtable parameter result set. This
N_TABLE | table datatype is only available on TPFs.

Unsupported Data Types
You cannot use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

e BI T -should typically be handled in the UDF declaration as a TI NYI NT data type, and
then the implicit data type conversion from Bl T automatically handles the value
translation.

» DECI MAL(<precision>, <scale>) or NUMERI C(<precision>, <scale>) —depending on the
usage, DECI MAL is typically handled as a DOUBLE data type, but various conventions
may be imposed to enable the use of | NT or Bl G NT data types.

« LONG VARCHAR (CLOB) - supported only as an input argument, not as a return-value
data type. An exception exists for pass-through TPFs, where LONG VARCHAR is
supported as a return-value data type.

« LONG BI NARY (BLOB) - supported only as an input argument, not as a return-value data
type. An exception exists for pass-through TPFs, where LONG Bl NARY is supported as a
return-value data type.

e TEXT - not currently supported.

See also

e Blob (a_ v4_extfn_blob)on page 195

e Blob Input Stream (a_v4_extfn_blob_istream) on page 199
e convert_value on page 295

o Table (a_v4_extfn_table) on page 306

14

Sybase 1Q

Building UDFs
Building UDFs
Design, build, and test UDFs.

Design Basics of User-Defined Functions

There are some basic considerations to keep in mind while developing UDFs.

This document assumes that the UDF developer is familiar with the basics of developing
software, including good program design and development and independent testing.

In addition to standard software development practices, developers of non-Java UDFs should
remember that they are developing code to be executed within the Sybase 1Q database
container, and to understand the limitations imposed by the database container.

Developers of aggregate UDFs should also be familiar with OLAP queries, and how they
translate into UDF calling patterns.

Because the UDFs may be invoked by several threads simultaneously, they must be
constructed to be thread-safe.

Sample Code

Sample UDF source code is delivered with the product. The newest version of the sample code
is always delivered with the most current version of Sybase 1Q.

On UNIX platforms, the sample UDF code is in $SYBASE/ | Q- 15_4/ sanpl es/ udf
(where $SYBASE is the installation root).

On Windows platforms, the sample UDF code is in C: \ Docurment s and Setti ngs
\Al'l Users\ Sybasel Q sanpl es\ udf.

The sample UDF code documented in the User-Defined Functions Guidemay not be the latest
version as delivered with the Sybase 1Q product. Last-minute changes to the sample UDF
source code are documented in the Sybase 1Q Release Bulletin for your operating system
platform.

Setting the Dynamic Library Interface
Specify the interface style to be used in the dynamically linkable library.

Each dynamically loaded library must contain exactly one copy of this definition:

extern "C' a_sql _uint32 extfn_use_new api(void)

{

User-Defined Functions 15

Building UDFs

return EXTFN_V4_API ;
}

This definition informs the server of which interface style is being used, and therefore how to
access the UDFs defined in this dynamically linkable library. For high-performance UDFs,
only new interface styles EXTFN_V3_API and EXTFN_V4_API are supported.

Upgrading to the v4 API

Sybase recommends that you upgrade to the v4 API included with 15.4.

Prerequisites
Install Sybase 1Q server version 15.4.

Task

If you have existing scalar or aggregate UDFs developed for Sybase 1Q server versions 15.1,
15.2, or 15.3, those UDFs use the V3 APl interface style and reference the ext f napi v3. h
header file. Modify your legacy C or C++ external library files to reference the

ext f napi v4. h header file.

Existing v3 scalar and aggregate functions continue to work as designed. However, to take
advantage of scalar and aggregate distribution in PlexQ, you must upgrade the header file and
library version to v4. You need not change the name of the typedefs for your scalar or
aggregate function.

1. Open the C or C++ external library file defining the scalar or aggregate user-defined
function.

2. Locate all instances of #i ncl ude ' ext f napi v3. h' and change to #i ncl ude
"extfnapiva. h'.

3. Set the dynamic library interface to EXTFN_V4_API .

4, Rebuild.

Next
Sybase partners must ensure the library exportsext f n_get | i cense_i nf o asanentry
point.

See also

e External Function Prototypes on page 94

o License Information (a_v4_extfn_license_info) on page 301
o Defining an Aggregate UDF on page 54

e Defining a Scalar UDF on page 38

» Developing a Table UDF on page 103

16

Sybase 1Q

Building UDFs

» Developing a TPF on page 136

Library Version (extfn_get library version)

Usetheextfn_get |ibrary_versi on method to extract the library version from the
current multiplex node. The server considers partitioning a query across multiplex nodes only
if the installed library is compatible with the other nodes.

Implementation
A v4 library can define this optional entry point:

size_t extfn_get_library_version(uint8 *buff, size_t len);

Description
Library versioning methods are at the library level, and do not have the a_v4 prefix in their
method name.

If the v4 library defines the optional entry point, the server allows query distribution to other
nodes. The entry point populates the supplied buffer with the library version string (a C-style
character string containing only ASCII characters, terminated with \0) and returns the actual
size of the populated version string, which is constrained to a maximum of 256 bytes.

If an entry point is not defined, the server does not distribute the UDF to the other nodes in the
multiplex.

See also
o Library Version Compatibility (extfn_check version_compatibility) on page 17
« Setting the Dynamic Library Interface on page 15

Library Version Compatibility
(extfn_check version compatibility)

Use the ext f n_check_versi on_conpati bi | i ty method to define compatibility
criteria for library versions across nodes in a multiplex.

Implementation
A v4 library can define this optional entry point:

a_bool extfn_check_version_conpatibility(uint8 *buff, size_t
len);

Description
Library versioning methods are at the library level, and do not have the a_v4 prefix in their
method name.

User-Defined Functions 17

Building UDFs

This optional entry point accepts a buffer containing the version string and the version string
length. It returns whether or not the library version on the target node is compatible with the
version string parameter. The library developer defines the compatibility criteria.

Interaction with ext f n_get | i brary_versi on

The leader node callsext fn_get _|i brary_ver si on before checking version
compatibility. Ifext f n_get _| i brary_ver si onisnotimplemented on the leader node,
then there is no distribution. If ext f n_get | i brary_ver si on is implemented on the
leader node, then the UDF or TPF is eligible for distribution. Being eligible for distribution is
not a guarantee that distributed query processing will occur.

Theextfn_get |ibrary_versi on method can return a 0-length string; however, this
does not mean that ext f n_get _| i brary_ver si on is not implemented.

Note: A TPF or UDF is still eligible for distributionifext fn_get |i brary_versi on
returns a 0-length string.

Ifextfn_get _|ibrary_version returns a 0-length string, whether or not the worker
node accepts the distributed work depends on the

ext fn_check_versi on_conpati bi | i ty implementation on the worker node. A
worker node requires a compatible library to process distributed work.

See also
o Library Version (extfn_get library version)on page 17
» Setting the Dynamic Library Interface on page 15

License Information (extfn _get license info)

If you are a Sybase design partner, implement the ext f n_get | i cense_i nf o library-
level function to enable the server to obtain licensing information from a v4 UDF.

Data Type
an_extfn_license_info

Implementation

(_entry an_extfn_get_license_info) (an_extfn_|license_info
**|jcense_info);

Parameters

license_info is an output parameter that returns the license information as received from the
library. You define the license informationinthea_v4 _extfn_license_info
structure.

18

Sybase 1Q

Building UDFs

Description

Sybase partners must specify the Sybase-supplied license key in the
a_v4_extfn_license_inf o structure, and must ensure that the library exports
extfn_get _|icense_infoasan entry point.

Adding the extfn get license info Method
If you are a Sybase design partner, populate stringsina_v4_extfn_l i cense_i nf oand
defineextfn_get |icense_i nf o asav4entry point.

1. Inthea_v4_extfn_license_inf o structure, specify your company name. The
maximum length is 255 characters.

2. Inthea_v4_extfn_Iicense_i nf ostructure, specify additional library information
such as library version and build numbers. The maximum length is 255 characters.

3. Inthea_v4_extfn_Ilicense_info structure, enter the license key provided by
Sybase.

4. Ensure the library exports ext f n_get _| i cense_i nf o as an entry point.

a_va_extfn_license_info ny_info = {

i,
" Company Name",
"Library Info String",
(void *)"KEY_STRI NG'
}
void SQL_CALLBACK extfn_get_license_info(an_extfn_license_info

**|jcense_info)
/

Rk R I bk kS R R R R I S Rk R R Ok I R Ik Rk S kR I O S

************************/

*|icense_info = (an_extfn_license_info *)& my_info;

Compile and Link Source Code to Build Dynamically
Linkable Libraries

Use compile and link switches when building dynamically linkable libraries for any user-
defined function.

1. A UDF dynamically linkable library must include an implementation of the function
extfn_use_new_api(). The source code for this function is in Setting the dynamic library
interface on page 15. This function informs the server of the API style that all functions in
the library adhere to. The sample source file my _nai n. cxx contains this function; you
can use it without modification.

User-Defined Functions 19

Building UDFs

2. A UDF dynamically linkable library must also contain object code for at least one UDF
function. A UDF dynamically linkable library may optionally contain multiple UDFs.
3. Link together the object code for each UDF as well as the extfn_use_new_api() to form a
single library.
For example, to build the library "libudfex:"

Compile each source file to produce an object file:

my_nai n. cxx
my_bit_or.cxx
nmy_bit_xor.cxx
nmy_i nter pol at e. cxx
nmy_pl us. cxx

ny_pl us_count er . cxx
ny_sum CXX
nmy_byte_ | engt h. cxx
nmy_nmd5. cxx

ny_t oupper . cxx

t pf _agg. cxx

t pf _bl ob. cxx

t pf _dt. cxx
tpf_filt.cxx

t pf _oby. cxx

t pf _pby. cxx
tpf_rg_1.cxx
tpf_rg_2.cxx

udf bl ob. cxx

udf _mai n. cxx

udf _rg_1. cxx

udf _rg_2. cxx

udf _rg_3. cxx

udf _utils.cxx

Link together each object produced into a single library.

After the dynamically linkable library has been compiled and linked, complete one of
these tasks:

(Recommended) update the CREATE FUNCTION ... EXTERNAL NAME or CREATE
PROCEDURE ... EXTERNAL NAME to include an explicit path name for the UDF
library.

Place the UDF library file into the directory where all the Sybase 1Q libraries are
stored.

Start the server with a library load path that includes the location of the UDF library.
On UNIX modify the LD_LIBRARY_PATH withinthestart i q startup
script. While LD_LIBRARY_PATH is universal to all UNIX variants, SHLIB_PATH
is preferred on HP, and LIB_PATH is preferred on AlX.

On UNIX platforms, the external name specification can contain a fully qualified
name, in which case the LD_LIBRARY_PATH is not used. On the Windows platform,
a fully qualified name cannot be used and the library search path is defined by the
PATH environment variable.

20

Sybase 1Q

Building UDFs

4, Runi qdi r 15/ sanpl es/ udf / bui | d. bat on Windows. Runi qdi r 15/

sanpl es/ udf/ bui | d. sh on UNIX.

Compiling and Linking the Sample UDFs for Windows

Runthe bui | d. bat script to compile and link the sample scalar and aggregate UDFs, table
UDFs, and TPFs found in the sanpl es\ udf directory.

1. Navigate to %ALLUSERSPROFI LE% sanpl es\ udf.

2. Runbuil d. bat:

Parameter Description

~clean Deletes the object and the build directory

-v3 Builds sample scalar and aggregate UDFs with
the v3 API

-v4 (Default) Builds sample table UDFs and TPFs
with the v4 API

Compiling and Linking the Sample UDFs for UNIX

Run the bui | d. sh script to compile and link the sample scalar and aggregate UDFs, table
UDFs, and TPFs found in the sanpl es/ udf directory.

1. Navigate to $1 QDI R15/ sanpl es/ udf .

2. Runbuil d. sh:

Parameter Description
-clean Deletes the object and the build directory
-v3 Builds sample scalar and aggregate UDFs with
the v3 API
-v4 (Default) Builds sample table UDFs and TPFs
with the v4 API
AlIX Switches

Use the following compile and link switches when building shared libraries on AlX.

xIC 10. 0 on a PowerPC

Important: Include the code for extfn_use_new _api() in each UDF library.

Note: To compile on AlX 6.1 systems, the minimum level of the xIC compiler is 10. 0.

compile switches

User-Defined Functions

21

Building UDFs

-q64 -qgarch=ppc64 -qtbtable=full -qgsrcnsg -qgalign=natural -
gnoansi al i as

-gmaxnem=-1 - genunFi nt -ghalt=e -qfl ag=w -qt hreaded -

gxf 1l ags=NLOCPI NG

-qt mpl i nst =none - qt hr eaded

link switches

-brtl -G-lg -Ilpthreads_conpat -lpthreads -Imr -1dl -bnolibpath -
%

HP-UX Switches

Use the following compile and link switches when building shared libraries on HP-UX.

aCC 6. 24 on Itanium

Important: Include the code for extfn_use_new_api() in each UDF library.

compile switches
+noeh -ext +W40, 749, 829 +W.031 +DD64 +DSbl ended +FPD - Aa +ub
-U_HP_I NSTANTI ATE_T_IN LIB -W, -ansi _for_scope,on -nt -z
link switches
-b -W, +s

Linux Switches

Use the following compile and link switches when building shared libraries on Linux.

g++ 4.1.1 on x86

Important: Include the code for extfn_use new_api() in each UDF library.

compile switches

-fPI C -fsigned-char -fno-exceptions -pthread -fno-omt-frame-
poi nt er
-Who- deprecat ed -Who-ctor-dtor-privacy -2 -Wall

Note: When compiling C++ applications for building shared libraries on Linux, adding the
-02 and -wall switches to the list of compile UDF switches decreases computation time.

link switches
-ldl -Insl -Im-Ipthread -shared -W, -Bsynbolic -W, -shared

Note: You can use gcc on Linux as well. While linking with gcc, link in the C++ run time
library by adding - | st dc++ to the link switches.

Examples
e Example 1

g++ -c nmy_interpolate.cxx -fPlIC -fsigned-char -fno-exceptions -
pt hr ead

22

Sybase 1Q

Building UDFs

-fno-omt-frane-poi nter -Wo-deprecated -Wo-ctor-dtor-
privacy
-1 ${1 QDI R15}/ sdk/ i ncl ude/

o Example 2

g++ -c my_main.cxx -fPIC -fsigned-char -fno-exceptions -pthread
-fno-onmt-frane-poi nter -Wo-deprecated -Wo-ctor-dtor-
privacy
-1 ${1 QDI R15}/ sdk/ i ncl ude/

e Example 3

ld -Gmy_main.o ny_interpolate.o -1dl -Insl -Im-Ipthread -shared
-o my_udf _library.so

xIC 10. 0 on a PowerPC

compile switches

-q64 -garch=ppc64 -qcheck=nullptr -qi nfo=gen -qtbtable=full -
gsrcmnsg

-qnoansi al i as -qm ni mal toc - gmaxnmem=-1 - genun¥i nt -ghal t=e -qfl ag=w
- gt hr eaded

- gxfl ags=NLOOPI NG - qt npl i nst =none

link switches

-qnkshrobj -1dl -lg -qgthreaded -lInsl -Im

Solaris Switches
Use the following compile and link switches when building shared libraries on Solaris.

Sun Studio 12 on SPARC

Important: Include the code for extfn_use _new_api() in each UDF library.

compile switches

-m -noex +w -KPIC -i -instances=explicit -V -xtarget=ultra3cu -nb4
- xl'i bnopt

-xlibm | -features=no%onststrings

-errof f=truncwar n, nokeywor ddef i ne, di f f enunt ype

link switches

-z defs -G -1dl -Insl -lIsocket -ladm-Iposix4 -1Crun -1Cstd -lc -Im
- | ef
-1iostream -1 kst at

Sun Studio 12 on x86

compile switches

+wW2 -nb4 -features=no%onststrings

-errof f =t runcwar n, nokeywor ddefi ne, di f f enunt ype, doubunder -errtags -
n -noex

-KPIC -instances=explicit -xlibmopt -xlibml

link switches

User-Defined Functions 23

Building UDFs

-z defs -G -1dl -Insl -lsocket -ladm-Iposix4 -1Crun -1Cstd -lIc -Im
-l efi
-liostream -1 kstat -nb4

Windows Switches

Use the following compile and link switches when building shared libraries on Windows.

Visual Studio 2008 on x86

Important: Include the code for extfn_use _new_api() in each UDF library.

compile and link switches

This example is for a DLL containing the my_plus function. You must include an EXPORT
switch for the descriptor function for each UDF contained in the DLL.

cl /zi /LD /I includefilepath nmy_mai n. cxx ny_plus.cxx /link /
map

/1 NCREMENTAL: NO - EXPORT: ext f n_use_new_api - EXPORT: my_plus /

out: i bi qudfex.dll

Example

Environment setup

set VCBASE=c: \dev\vc9
set MSSDK=C: \ dev\ mssdk6. Oa
set | Q NSTALLDI R=C:\ Sybase\l Q
set OBJ_DI R=% Q NSTALLDI RoA | Q 15_4\ sanpl es\ udf\ obj s
set SRC DI R=% Q NSTALLDI R 1 Q 15_4\ sanpl es\udf\src
cal | %/CBASE% VC\ bi n\ vcvar s32. bat

e Example 1

%/CBASE% VC\ bi n\ and64\ cl -c -nol ogo - DNDEBUG - DW NNT - D_USRDLL
-D WNDLL -D WN64 -DW N64 -
D_W N32_W NNT=_W N32_W NNT_W NXP
- DW NVER=_W N32_ W NNT_W NXP - D MBCS -GS -WB -Zi -favor: AVD64
-DSYB_LP64 - D LARGEFI LE_SOURCE - D _FI LE_OFFSET Bl TS=64 -
DHVBWNT
- D_CRT_SECURE_NO DEPRECATE - D_CRT_NONSTDC_NO DEPRECATE
- DPOl NTERS_ARE 64BI TS - DLONG IS 64BI TS -
D _RWSTD _NO_EXCEPTI ONS
-1 " 9%/CBASE% VC\i ncl ude" -1"9%VBSDK% i ncl ude "-1"9%VBSDK% Li b
\ AMD64"
- 1" %/CBASE% VQ\ | i b\ and64" - DMSDCXX - DI NT64 WORKAROUND
- DSUPPORTS UDAF -Qd -Zi -MD -1"9% Q NSTALLDI R | Q 15_4\ sdk
\'i ncl ude"
-Fo"%0BJ_Dl R nmy_i nterpol ate. 0" %SRC DI R®W nmy_i nt er pol at e. cxx

e Example 2

9%/CBASE% VC\ bi n\ amd64\ cI -c¢ -nol ogo - DNDEBUG - DW NNT - D_USRDLL
-D WNDLL -D W N64 - DW N64 -
D_W N32_W NNT=_W N32_W NNT_W NXP
- DW NVER=_W N32_W NNT_W NXP - D_MBCS -GS -8 -Zi -favor: AMD64
-DSYB_LP64 - D LARGEFI LE_SOURCE - D _FI LE_OFFSET_BI TS=64 -

24

Sybase 1Q

Building UDFs

DHVBWWNT
- D_CRT_SECURE_NO DEPRECATE - D_CRT_NONSTDC_NO DEPRECATE
- DPOl NTERS_ARE_64BI TS - DLONG 'S 64BI TS -

D_RWSTD_NO EXCEPTI ONS

- 1" %/CBASE% VCQ\ i ncl ude" -1"9%\VBSDK% i ncl ude "- 1" %VBSDK% Li b
\ AMD64"
-1 " %W/CBASE% VQ\ | i b\ and64" - DMSDCXX - DI NT64_WORKAROUND
- DSUPPORTS_UDAF -Qd -Zi -MD -1"% Q NSTALLDI RO | Q 15_4\ sdk
\incl ude"
- Fo" %OBJ_DI R% nmy_mai n. 0" %SRC_DI R% ny_mai n. cXxX
e Example 3

%/CBASE% VC\ bi n\ anmd64\ | i nk / LI BPATH: %/CBASE% VC\ | i b\ and64
/ L1 BPATH: %BSSDK% | i b\ bi n64 kernel 32.1ib -manifest -DLL -
nol ogo
- VAP: "9%0BJ_ DI RoA | i budf ex. map_deco" / OUT: " %0BJ_Dl R%
\libudfex.dl "
"o%OBJ_DlI RA ny_interpol ate. 0" "%BJ_DI R my_rmmai n. 0" /DLL
- EXPORT: ext f n_use_new_api - EXPORT: ny_i nterpol ate
e Example 4

%VBSDK% bi n\ nt - nol ogo - mani fest "%BJ_DI R%
\l'i budfex.dll.manifest"
-out put resource: "%BJ_DI Rl i budfex.dll ;2"

Testing User-Defined Functions

After UDF external code has been coded, compiled and linked, and the corresponding SQL
functions and stored procedures have been defined, the UDFs are ready to be tested.

The reliability required by a database is extremely high. UDFs running within a database
environment must maintain this high level of reliability. With the first implementation of the
UDF API, UDFs run within the Sybase 1Q server. If a UDF aborts prematurely or
unexpectedly, the Sybase 1Q server may abort. Ensure via thorough testing in a development
or test environment, that UDFs do not terminate prematurely or abort unexpectedly under any
circumstances.

Enabling and Disabling User-Defined Functions

Use thei nmenory_ext ernal _pr ocedur e security feature to enable or disable the
server's ability to make use of high performance in-process UDFs.

A database should maintain data integrity. Under no circumstances should data be lost,
modified, augmented, or corrupted. Since UDF execution happens within the Sybase 1Q
server, there is a risk of corrupting data; practice caution with memory management and any
other use of pointers. Sybase strongly recommends that you install and execute UDFs within a
read-only multiplex node. For additional protection, use the secured feature (-sf) startup
option with each server to enable or disable the execution of UDF.

Note: By default, UDF execution on a multiplex writer and coordinator nodes is disabled. All
other nodes are enabled by default.

User-Defined Functions 25

Building UDFs

Administrators can enable v3 and v4 UDFs for any server by specifying this in the server
startup command or in the configuration file:

-sf -innmenory_external _procedure

Administrators can disable v3 and v4 UDFs for any server by specifying this in the server
startup command or in the configuration file:
-sf i nmenory_external _procedure

Additional information on the -sf flag is available in SQL Anywhere Server - Database
Administration. The values listed in the SQL Anywhere document are not applicable to
Sybase 1Q and should not be used.

Initially Executing a User-Defined Function

To ensure the safest environment possible, Sybase strongly recommends that you install and
invoke UDFs from a read-only server node in a multiplex installation.

The Sybase 1Q server does not load the library containing the UDF code until the first time the
UDF is invoked. The first execution of a UDF residing in a library that has not yet been loaded
may be unusually slow. After the library is loaded, the subsequent invocation of the same UDF
or another UDF contained in the same library have the expected performance.

e Librariesusingthe stored procedure SA_EXTERNAL_LIBRARY_UNLOAD — These
libraries are not reloaded when the Sybase 1Q server is stopped and restarted.

In environments where after-hours maintenance operations require a shutdown and restart of
the 1Q server, run some test queries after the server has been restarted. This ensures that the
appropriate libraries are loaded in memory for optimal query performance during business
hours.

Managing External Libraries

Each external library is loaded the first time a UDF that requires it is invoked. A loaded library
remains loaded for the life of the server. It is not loaded when a CREATE FUNCTION or
CREATE PROCEDURE call is made, nor is it automatically unloaded when a DROP
FUNCTION or DROP PROCEDURE call is made.

If the library version must be updated, the dbo.sa_external_library_unload procedure forces
the library to be unloaded without restarting the server. The call to unload the external library
is successful only if the library in question is not currently in use. The procedure takes one
optional parameter, a long varchar, that specifies the name of the library to be unloaded. If no
parameter is specified, all external libraries not in use are unloaded.

Note: Unload existing libraries from a running Sybase 1Q server before replacing the dynamic
link library. The server may fail, if you do not unload the library. Before replacing a
dynamically linkable library, either shut down the Sybase 1Qserver or use the
sa_external_library_unload function to unload the library.

For Windows, unload an external function library using:
call sa_external _library_unload('library.dll")

26

Sybase 1Q

Building UDFs

For UNIX, unload an external function library using:
call sa external library_unload('library.so')

If a registered function uses a complete path, for example, / abc/ def / 1'i brary, first
unregister the function.

In Windows, use

call sa_external _library_unload('\abc\def\library.dll")
In UNIX, use
call sa_external library_unload('/abc/def/library.so')

Note: The library path is required in the SQL function declaration only if the library is not
already located within a directory in the library load path.

Controlling Error Checking and Call Tracing

The external_UDF_execution_mode option controls the amount of error checking and call
tracing that is performed when statements involving v3 and v4 external user-defined functions
are evaluated.

You can use external_UDF_execution_mode during development of a UDF to aid in
debugging while you are developing UDFs.

Allowed Values
0,1,2

Default Value
0

Scope
Can be set as public, temporary, or user.

Description
When set to 0, the default, external UDFs are evaluated in a manner that optimizes the
performance of statements using UDFs.

When set to 1, external UDFs are evaluated to validate the information passed back and forth
to each UDF. This setting is intended for scalar and aggregate UDFs.

When set to 2, external UDFs are evaluated to not only validate the information passed back
and forth to the UDF, but also to log, inthe i gnsg file, every call to the functions provided by
the UDFs and every callback from those functions back into the server. This setting is intended
for all C or C++ external UDFs. Memory tracing is turned on for table UDFs and TPFs.

User-Defined Functions 27

Building UDFs

Viewing Sybase IQ Log Files

Sybase 1Q provides extensive logging and tracing capabilities. UDFs should provide the same
or better level of detailed logging, in the event of problems in the UDF code.

Log files for the database are generally located with the database file and configuration file.
On UNIX platforms, there are two files named after the database instance, one with

a. stderr extension and one with a. st dout extension. On Windows, by default, the
st derr file is not generated.

To capture the st der r messages along withthe st dout messages under Windows, redirect
the st dout and st derr:

i gsrvl5. exe @qdeno.cfg i gdeno.db 2>&1 > i qdeno. st dout

The Windows output messages are slightly different from the output messages generated on
UNIX platforms.

Using Microsoft Visual Studio Debugger for User-Defined Functions

Microsoft Visual Studio 2008 developers use Microsoft Visual Studio Debugger to step
through the user-defined function code.

1. Attach the debugger to a running server:
devenv /debugexe "% QDI R15% Bi n64\ i gsrv15. exe"
2. Goto Debug | Attach to Process

3. To start the server and debugger together:

devenv /debugexe "% QDI R15% bi n32\i gsrv15. exe" [conmandl i ne
options for your server]

Each platform will have a debugger and each will have their own command line syntax.
Sybase 1Q source code is not required. The msvs debugger will recognize when the user-
defined functions source is executed and break at the set breakpoints. When control returns
from the user-defined functions to the server, you will only see machine code.

Modifying the UDF at Runtime

Many Sybase 1Q installations are in mission-critical environments, where customers require
an extremely high level of availability. System Administrators must be able to install and
upgrade UDFs with little or no impact to the Sybase 1Q server.

An application must not attempt to access an external library while the associated library file is
being moved, overwritten, or deleted. Since libraries are automatically loaded whenever an
associated SQL function is invoked, it is important to follow these steps in the exact order
whenever performing any type of maintenance on existing UDF libraries:

1. Ensure all users who invoke UDFs do not have any pending queries in progress

28

Sybase 1Q

Building UDFs

2. Revoke the execute permission from users, and drop the SQL functions and stored
procedures which reference external UDF code modules

3. Unload the library from the Sybase 1Q server, using the call sa_external_library_unload
command (shutting down the 1Q server also automatically unloads the library).

4. Perform the desired maintenance on the external library files (copy, move, update, delete).

5. Edit SQL function and stored procedure definitions in the registration scripts to reflect
external library locations, if the libraries were moved.

6. Grant the execute permission to users, and run registration scripts to re-create the SQL
functions and stored procedures which reference external UDF code modules.

7. Invokea SQL function or stored procedure that references the external UDF code to ensure
the Sybase 1Q server can dynamically load the external library.

Granting and Revoking Permissions

A user-defined function is owned by the user who created it, by default, although the creator
can specify another owner at creation time.

The owner can grant permissions to other users using the GRANT EXECUTE command. For
example, the creator of the function fu/lname can allow another_userto use fullname by
issuing:

CRANT EXECUTE ON ful I name TO anot her _user

Or can revoke permissions by issuing:

REVOKE EXECUTE ON ful | nane FROM anot her _user

See System Administration Guide. Volume 1 > Managing User IDs and Permissions >

Managing Individual User IDs and Permissions > Granting Permissions on Procedures in
Interactive SQL.

Dropping User-Defined Functions

Once you create a user-defined function, it remains in the database until it is explicitly
removed. Only the owner of the function or procedure, or a user with DBA authority, can drop
a function or procedure from the database.

For example, to remove the scalar or aggregate function fu//name from the database, enter:
DROP FUNCTI ON ful | nane

To remove a table UDF or TPF named fullname from the database, enter:
DROP PROCEDURE f ul | nane

User-Defined Functions 29

Building UDFs

30

Sybase 1Q

Scalar and Aggregate UDFs

Scalar and Aggregate UDFs

Scalar and aggregate user-defined functions return a single value to the calling environment.

Note: Scalar and aggregate UDFs are a licensable option, and require the IQ_UDF or 1Q_IDA
license. Installing the license enables user-defined functions.

You can install Sybase IQ in a wide variety of configurations. UDFs must be easily installed
within this environment, and must be able to run within all supported configurations. The
Sybase 1Q installer provides a default installation directory, but allows users to select a
different installation directory. UDF developers should consider providing the same
flexibility when installing the UDF libraries and associated SQL function definition scripts.

Scalar and Aggregate UDF Restrictions

External C/C++ scalar and aggregate user-defined functions have some restrictions.

Write all UDFs in a manner that allows them to be called simultaneously by different users
while receiving different context functions.

If a UDF accesses a global or shared data structure, the UDF definition must implement the
appropriate locking around its accesses to that data, including the releasing of that locking
under all normal code paths and all error handling situations.

UDFs implemented in C++ may provide overloaded "new" operators for their classes, but
they should never overload the global "new" operator. On some platforms, the effect of
doing so is not limited to the code defined within that specific library.

Write all aggregate UDFs and all deterministic scalar UDFs such that the receipt of the
same input values always produces the same output values. Any scalar function for which
this is not true must be declared as NONDETERMINISTIC to avoid the potential for
incorrect answers.

Users can create a standard SQL function without a DBA authority, but they cannot create
a function which will invoke an external library without having DBA permissions.
Attempting to do this results in an error message " You do not have perni ssion
to use the create function statenent."

Creating a Scalar or Aggregate UDF

Learn how to create and configure external C or C++ scalar and aggregate user-defined
functions.

For instructions on creating UDFs using Interactive SQL, see System Administration Guide:
Volume 2 > Using Procedures and Batches.

User-Defined Functions 31

Scalar and Aggregate UDFs

5.
6.

Declare the UDF to the server by using the CREATE FUNCTION or CREATE AGGREGATE
FUNCTION statements. Write and execute these statements as commands, or use the
appropriate CREATE statement using the Sybase Central New Function wizard.

The external C/C++ form of the CREATE FUNCTION statement requires DBA or
RESOURCE authority, so standard users do not have the authority to declare any UDFs of
this type.

Write the UDF library identification function. on page 15.

Define the UDF as a set of C or C++ functions. See Defining a scalar UDF on page 38 or
Defining an aggregate UDF on page 54.

Implement the function entry points in C/C++.
Compile the UDF functions and the library identification functions. on page 19.
Link the compiled file into a dynamically linkable library.

Any reference to a UDF in a SQL statement first, if necessary, links the dynamically linkable
library. The calling patterns on page 83 are then called.

Because these high-performance external C/C++ user-defined functions involve the loading
of non-server library code into the process space of the server, there are potential risks to data
integrity, data security, and server robustness from poorly or maliciously written functions. To
manage these risks, each Sybase 1Q server can explicitly enable or disable this functionalityon
page 25.

Creating a UDF Using SQL Anywhere Dialects in Sybase Central

Watcom-SQL and Transact-SQL are SQL dialects supported by SQL Anywhere, and can be
used when creating user-defined functions.

o ok~ w NP

© N

In Sybase Central, connect to the database as a user with DBA or Resource authority.
Select View > Folders.

In the left pane, right-click Procedures & Functionsand select New > Function.
Enter a name for the function and select the user who will own the function.

Select the SQL dialect or language for the function. Click Next.

Select the type of value to be returned in the function, and specify the size, units, and scale
for the value.

Type a name for the return value and click Next.
Add a comment describing the purpose of the new function. Click Finish.
In the right pane, click the SQL tab to complete the procedure code.

32

Sybase 1Q

Scalar and Aggregate UDFs

Declaring and Defining Scalar User-Defined Functions

Sybase 1Q supports simple scalar user-defined functions (UDFs) that can be used anywhere
the SQRT function can be used.

These scalar UDFs can be deterministic, which means that for a given set of argument values
the function always returns the same result value, or they can be nondeterministic scalar
functions, which means that the same arguments can return different results.

Note: The scalar UDF examples referenced in this chapter are installed with the 1Q server, and
can be found as .cxx files in $I QDI R15/ sanpl es/ udf . You can also find them in the
$I1 QDI R15/1i b64/ 1 i budf ex dynamically linkable library.

Declaring a Scalar UDF

Only a DBA, or someone with DBA authority can declare an in-process external UDF. There
is also a server startup option that allows an administrator to enable or disable this style of
user-defined function.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

Note: You can also create the user-defined function declaration in Sybase Central on page
38.

By default, all user-defined functions use the access permissions of the owner of the UDF.

Note: Users are required to have DBA authority in order to declare UDF functions.

The syntax for creating a scalar UDF is:

scal ar - udf -decl arati on:
CREATE FUNCTI ON [owner.]function-name

[paraneter , ...])
RETURNS dat a-t ype
[routine-characteristics ...]

EXTERNAL NAME | i brary-and-entry-poi nt-nanme-string

par anet er :
param nane data-type [DEFAULT val ue]

routine-characteristics:
[NOT] DETERM NI STI C
| { I1GNORE | RESPECT } NULL VALUES
| SQL SECURITY { I NVCKER | DEFI NER }

The defaults for the characteristics in the above syntax are:

DETERM NI STI C
RESPECT NULL VALUES
SQL SECURI TY DEFI NER

User-Defined Functions 33

Scalar and Aggregate UDFs

To minimize potential security concerns, Sybase recommends that you use a fully qualified
path name to a secure directory for the library name portion of the EXTERNAL NAME
clause.

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

SQL SECURITY INVOKERuses additional memory, because each user that calls the procedure
requires annotation. Additionally, name resolution is performed on both the user name and the
INVOKER. Qualify all object names (tables, procedures, and so on) with their appropriate
owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following the
RETURNS clause. The library name may include the file extension, which is typically . dl |
on Windows and . so on UNIX. In the absence of the extension, the software appends the
platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions. See SQL Anywhere
Server - Programming > SQL Anywhere external call interface.

Note: This reference points to SQL Anywhere documentation.

You can start the server with a library load path that includes the location of the UDF library.
On UNIX variants, modify the LD_LIBRARY PATH inthestart i q startup script.
While LD_LIBRARY_PATH is universal to all UNIX variants, SHLIB_PATH is preferred on
HP, and LIB_PATH is preferred on AlX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which casethe LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
e Defining a Scalar UDF on page 38

UDF Example: my plus Declaration
The “my_plus” example is a simple scalar function that returns the result of adding its two
integer argument values.

my_plus declaration

When my_plus resides within the dynamically linkable library my_shared_lib, the
declaration for this example looks like this:

34

Sybase 1Q

http://dcx.sybase.com/index.html#1201/en/dbprogramming/pg-extfun.html
http://dcx.sybase.com/index.html#1201/en/dbprogramming/pg-extfun.html

Scalar and Aggregate UDFs

CREATE FUNCTION ny_plus (IN argl INT, IN arg2 |NT)
RETURNS | NT
DETERM NI STI C
| GNORE NULL VALUES
EXTERNAL NAME ' ny_plus@i budf ex'

This declaration says that my_plus is a simple scalar UDF residing in my_shared_lib with a
descriptor routine named describe_my_plus. Since the behavior of a UDF may require more
than one actual C/C++ entry point for its implementation, this set of entry points is not directly
part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure that is defined in detail in the next
section. That descriptor structure contains the required and optional function pointers that
embody the implementation of this UDF.

This declaration says that my_plus accepts two INT arguments and returns an INT result
value. If the function is invoked with an argument that is notan INT, and if the argument can be
implicitly converted into an INT, the conversion happens before the function is called. If this
function is invoked with an argument that cannot be implicitly converted into an INT, a
conversion error is generated.

Further, the declaration states that this function is deterministic. A deterministic function
always returns the identical result value when supplied the same input values. This means the
result cannot depend on any external information beyond the supplied argument values, or on
any side effects from previous invocations. By default, functions are assumed to be
deterministic, so the results are the same if this characteristic is omitted from the CREATE
statement.

The last piece of the above declaration is the IGNORE NULL VALUES characteristic. Nearly
all built-in scalar functions return a NULL result value if any of the input arguments are
NULL. The IGNORE NULL VALUES states that the my_plus function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values are NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return anon-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

In the following example query, my_plus appears in the SELECT list along with the
equivalent arithmetic expression:

SELECT ny_plus(t.x, t.y) AS x_plus_y one, (t.x + t.y)AS x_plus_y_two
FROM t

WHERE t.z = 2

Inthe following example, my_plusis used in several different places and different ways within
the same query:

SELECT ny_plus(t.x, t.y), count(*)
FROM t
WHERE t.z = 2

User-Defined Functions 35

Scalar and Aggregate UDFs

AND ny plus(t.x, 5) > 10
AND ny_plus(t.y, 5) > 10
GROUP BY ny_plus(t.x, t.y)

UDF Example: my plus_counter Declaration

The ny_pl us_count er example is a simple nondeterministic scalar UDF that takes a
single integer argument, and returns the result of adding that argument value to an internal
integer usage counter. If the input argument value is NULL, the result is the current value of
the usage counter.

my_plus_counter declaration

Assuming that my_plus_counter also resides within the dynamically linkable library
my_shared_lib, the declaration for this example is:
CREATE FUNCTION ny_plus_counter (IN argl |INT DEFAULT 0)

RETURNS | NT

NOT DETERM NI STI C

RESPECT NULL VALUES
EXTERNAL NAME ' descri be_ny_pl us_count er @wy_shared_Ii b’

The RESPECT NULL VALUES characteristic means that this function is called even if the
input argument value is NULL. This is necessary because the semantics of my_plus_counter
includes:

« Internally keeping a usage count that increments even if the argument is NULL.
e A non-null value result when passed a NULL argument.

Because RESPECT NULL VALUES is the default, the results are the same if this clause is
omitted from the declaration.

Sybase 1Q restricts the usage of all nondeterministic functions. They are allowed only within
the SELECT list of the top-level query block or in the SET clause of an UPDATE statement.
They cannot be used within subqueries, or within a WHERE, ON, GROUP BY, or HAVING
clause. This restriction applies to nondeterministic UDFs as well as to the nondeterministic
built-in functions like GETUID and NUMBER.

The last detail in the above declaration is the DEFAULT qualifier on the input parameter. The
qualifier tells the server that this function can be called with no arguments, and that when this
happens the server automatically supplies a zero for the missing argument. If a DEFAULT
value is specified, it must be implicitly convertible into the data type of that argument.

In the following example, the first SELECT list item adds the running counter to the value of
t.x for each row. The second and third SELECT list items each return the same value for each
row as the NUMBER function.

SELECT ny_pl us_counter (t.x),
my_pl us_counter (0),
my_plus_counter(),
NUVMBER()

FROM t

36

Sybase 1Q

Scalar and Aggregate UDFs

UDF Example: my byte length Declaration
my_byte_length is a simple scalar user-defined function that returns the size of a column in
bytes.

my_byte length declaration

When my_byte_length resides within the dynamically linkable library my_shared_lib, the
declaration for this example is:

CREATE FUNCTION ny_byte | ength(I N argl LONG Bl NARY)

/1 RETURNS UNSI GNED | NT

[/ DETERM NI STI C

/1 | GNORE NULL VALUES
/1 EXTERNAL NAME ' ny_byte_ | engt h@i budf ex'

This declaration says that my_byte_length is a simple scalar UDF residing in my_shared_lib
with a descriptor routine named describe_my_byte_length. Since the behavior of a UDF may
require more than one actual C/C++ entry point for its implementation, this set of entry points
is not directly part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION
statement EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure. That descriptor structure contains the
required and optional function pointers that embody the implementation of this UDF.

This declaration also says that my_byte_length accepts one LONG Bl NARY argument and
returns an UNSI GNED | NT result value.

Note: Large object data support requires a separately licensed Sybase 1Q option.

The declaration states that this function is deterministic, which always returns the identical
result value when supplied the same input values. This means the result cannot depend on any
external information beyond the supplied argument values, or on any side effects from
previous invocations. By default, functions are assumed to be deterministic, so the results are
the same if this characteristic is omitted from the CREATE statement.

The last piece of this declaration is the IGNORE NULL VALUES characteristic. Nearly all
built-in scalar functions return a NULL result value if any of the input arguments are NULL.
The IGNORE NULL VALUES states that the my_byte_length function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values is NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

This example query with my_byte_length in the SELECT list returns a column with one row
for each row in exTabl e, with an | NT representing the size of the binary file:

SELECT ny_byte_| engt h(exLOBCol umm)
FROM exTabl e

User-Defined Functions 37

Scalar and Aggregate UDFs

Declaring a Scalar User-Defined Function in Sybase Central

Sybase 1Q supports simple scalar UDFs that can be used anywhere the SQRT function can be
used. These scalar UDFs can be deterministic, which means that for a given set of argument
values, the function always returns the same result value. Sybase 1Q also supports
nondeterministic scalar functions, which means that the same arguments can return different
results.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.
2. Inthe left pane, right-click Procedures & Functionsand select New > Function.

3. Inthe Welcomedialog, type a name for the function and select the user to be the owner of
the function.

To create a user-defined function, select External C/C++. Click Next.

In the External Function Attributes dialog, select Scalar.

Type the name of the dynamically linkable library file, omitting the .so or .dll extension.
Type a name for the descriptor function. Click Next.

Select the type of value to be returned in the function, and specify the size, units, and scale
for the value. Click Next.

9. Select whether or not the function is deterministic.
10. Specify if the function respects or ignores NULL values.

11. Select whether the privileges used for running the function are from the defining user
(definer) or the calling user (invoker).

12. Add a comment describing the purpose of the new function. Click Finish.
13. In the right pane, click the SQL tab to complete the procedure code.

© N o o s

Defining a Scalar UDF
The C/C++ code for defining a scalar user-defined function includes four mandatory pieces.

» extfnapiv3.h —inclusion of the UDF interface definition header file.
e _evaluate_extfn — An evaluation function. All evaluation functions take two arguments:
« aninstance of the scalar UDF context structure that is unique to each usage of a UDF
that contains a set of callback function pointers, and a pointer where a UDF can store
UDF-specific data.
* apointer to a data structure that allows access to the argument values and to the result
value through the supplied callbacks.
e a_ v3_extfn_scalar — an instance of the scalar UDF descriptor structure that contains a
pointer to the evaluation function.
e Descriptor function — returns a pointer to the scalar UDF descriptor structure.

These parts are optional:

e _start_extfn —an initialization function generally invoked once per SQL usage. If
supplied, you must also place a pointer to this function into the scalar UDF descriptor

38

Sybase 1Q

Scalar and Aggregate UDFs

structure. All initialization functions take one argument, a pointer to the scalar UDF
context structure that is unique to each usage of a UDF. The context structure passed is the
same one that is passed to the evaluation routine.

e _finish_extfn —ashutdown function generally invoked once per SQL usage. If supplied, a
pointer to this function must also be placed into the scalar UDF descriptor structure. All
shutdown functions take one argument, a pointer to the scalar UDF context structure that is
unique to each usage of a UDF. The context structure passed is the same one that is passed
to the evaluation routine.

See also
e Declaring a Scalar UDF on page 33

Scalar UDF Descriptor Structure
The scalar UDF descriptor structure, a_v3_extfn_scalar, is defined as:

typedef struct a_v3 _extfn_scalar { /1
/1 Metadata descriptor for a scalar UDF
/1 supplied by the UDF Iibrary to the server
/1 An optional pointer to an initialize function
void (*_start_extfn)(a_v3 extfn_scalar_context * cntxt);

I

I/ An optional pointer to a shutdown function

void (*_finish_extfn)(a_v3_extfn_scal ar_context * cnt xt);
/1

/1 Arequired pointer to a function that will be
/1 called for each invocation of the UDF on a
/1 new set of argunment val ues
void (*_evaluate_extfn)(a_v3_extfn_scalar_context * cntxt, void
*args_handl e) ;
/] RESERVED FI ELDS MUST BE | NI TI ALI ZED TO NULL
void *reservedl nmust _be null;
void *reserved2_nust_be null;
void *reserved3_rnust_be null;
void *reserved4_nust_be_nul | ;
void *reserved5 nmust _be null;

} a_v3_extfn_scal ar;

There should always be asingle instance of a_v3_extfn_scalar for each defined scalar UDF. If
the optional initialization function is not supplied, the corresponding value in the descriptor
structure should be the null pointer. Similarly, if the shutdown function is not supplied, the
corresponding value in the descriptor structure should be the null pointer.

The initialization function is called at least once before any calls to the evaluation routine, and
the shutdown function is called at least once after the last evaluation call. The initialization and
shutdown functions are normally called only once per usage.

User-Defined Functions 39

Scalar and Aggregate UDFs

Scalar UDF Context Structure
The scalar UDF context structure, a_v3_extfn_scalar_context that is passed to each of the
functions specified within the scalar UDF descriptor structure, is defined as:

typedef struct a_v3 extfn_scal ar_context {

[l---aea - Cal | backs avail able via the context --------
11
short (SQL_CALLBACK *get _val ue)(
voi d *ar g_handl e,

a_sql _uint32 arg_num
an_ext fn_val ue *val ue

IE

short (SQL_CALLBACK *get pi ece)(
void * ar g_handl e,
a_sql _uint 32 arg_num
an_extfn_val ue *val ue,
a_sql _uint32 of f set

iE
short (SQL_CALLBACK *get_val ue_i s_constant) (
void * ar g_handl e,
a_sqgl _uint32 arg_num
a_sqgl _uint32 * value_is_constant

)&
short (SQL_CALLBACK *set _val ue)(

void * arg_handl e,
an_ext f n_val ue *val ue,
short append

JE
a_sqgl _uint32 (SQL_CALLBACK *get i s_cancel | ed) (
a_v3_extfn_scal ar_context * cntxt

);

short (SQL_CALLBACK *set _error)(
a_v3 _extfn_scal ar_context * cntxt,
a_sql _uint32 error_nunber,
const char * error_desc_string

I

voi d (SQL_CALLBACK *| og_nessage) (
const char *nsg,
short meg_l ength

short (SCL_CALLBACK *convert _val ue) (
an_ext fn_val ue *input,
an_ext fn_val ue *out put

I Data avail able fromthe context ----------
void * _user_data; /Il read-wite field
[]--eeaem - For Server Internal Use Only -------------

void * _for_server_internal _use
} a_v3_extfn_scal ar_cont ext;

Note: The get_piece callback is valid in v3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_i stream structures instead.

40 Sybase 1Q

Scalar and Aggregate UDFs

The _user_data field within the scalar UDF context structure can be populated with data the
UDF requires. Usually, it is filled in with a heap allocated structure by the _start _extfn
function, and deallocated by the _finish_extfn function.

The rest of the scalar UDF context structure is filled with the set of callback functions,
supplied by the engine, for use within each of the user's UDF functions. Most of these callback
functions return a success status through a short result value; a true return indicates success.
Well-written UDF implementations should never cause a failure status, but during
development (and possibly in all debug builds of a given UDF library), Sybase recommends
that you check that the return status values from the callbacks. Failures can come from coding
errors within the UDF implementation, such as asking for more arguments than the UDF is
defined to take.

The common set of arguments used by most of the callbacks includes:

« arg_handle—A pointer received by all forms of the evaluation methods, through which the
values for input arguments passed to the UDF are available, and through which the UDF
result value can be set.

e arg_num—Aninteger indicating which input argument is being accessed. Input arguments
are numbered left to right in ascending order starting at one.

e cntxt — A pointer to the context structure that the server passes to all UDF entry points.

« value—A pointerto an instance of the an_extfn_value structure that is used to either get an
input argument value from the server or to set the result value of the function. The
an_extfn_value structure has this form:

typedef struct an_extfn_val ue {
void * data;
a_SQ _uint32 piece_len;
uni on {
a_SQ_ _uint32 total _Ilen;
a_SQ__uint32 renain_| en;
} len;
a_SQ._data_type type;
} an_extfn_val ue;

Table 1. Scalar External Function Context: a_v3_extfn_scalar_context

Method of Description
a v3_extfn_sca-
lar_context struc-

ture
void set_cannot_be_dis- Distribution can be disabled at the UDF level, even if distribution cri-
tributed(a_v3_extfn_sca- | teria are met at the library level. By default, the UDF is assumed to be
lar_context * cntxt) distributable if the library is distributable. It is the responsibility of the
UDF to push the decision to disable distribution to the server.
See also

» Blob (a_v4_extfn_blob)on page 195

User-Defined Functions 41

Scalar and Aggregate UDFs

e Blob Input Stream (a_v4_extfn_blob_istream) on page 199

Example: my plus Definition
The definition for the my_plus scalar UDF example.

my_plus definition

Because this UDF needs no initialization or shutdown function, those values within the
descriptor structure are set to 0. The descriptor function name matches the EXTERNAL
NAME used in the declaration. The evaluate method does not check the data type for

arguments, because they are declared as INT.

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>

/ Corresponding SQL decl arati on:

"nmy_plus@ i budf ex'
I

#i f defined _ cplusplus
extern "C' {
#endi f

/ A sinple determnistic scalar UDF that just adds
/ two integer argunents and then returns the result.

/ CREATE FUNCTI ON nmy_plus(IN argl INT, IN arg2 | NT)
RETURNS | NT

/ DETERM NI STI C

/ | GNORE NULL VALUES

/ EXTERNAL NAME

static void ny_plus_eval uate(a_v3_extfn_scal ar_context *cntxt,

voi d *arg_handl e)

{

an_extfn_value arg;
an_extfn_value outval;
a_sql _int32 argl, arg2, result;
/1l Get first argunent
(void) cntxt->get_val ue(arg_handl e,
if (arg.data == NULL)
return;
argl = *((a_sql _int32 *)arg.data);
/Il Get second argument
(void) cntxt->get _val ue(arg_handl e,
if (arg.data == NULL)
return;

arg2 = *((a_sql _int32 *)arg.data);

1, &arg);

2, &arg);

42

Sybase 1Q

Scalar and Aggregate UDFs

/'l Set the result value

outval .type = DT_I NT;

out val . pi ece_|l en = si zeof (a_sql _i nt 32);
result = argl + arg2;

outval .data = &result;

cnt xt->set _val ue(arg_handl e, &outval, 0);

static a_v3_extfn_scalar my_plus_descriptor = {
0,
0,
&ny_pl us_eval uat e,

0, /! Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /! Reserved - initialize to NULL
NULL // _for_server _internal use
b
a_v3_extfn_scalar *my_plus()
{
return &my_pl us_descri ptor;
}

#i f defined _ cplusplus
}
#endi f

Example: my plus counter Definition

This scalar UDF example checks the argument value pointer data to see if the input argument
value is NULL. It also has an initialization function and a shutdown function, each of which
can tolerate multiple calls.

my_plus _counter definition

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>

/1 A sinple non-determ nistic scalar UDF that adds
/1 an internal integer usage counter to its integer
[/ argunment and then returns the resulting integer.

// Here, the start function creates a little structure for
// the counter, and then the finish function deallocates it.

/1

/1 Correspondi ng SQ. decl arati on:

I/

/1 CREATE FUNCTI ON pl us_counter (I N argl I NT)
I RETURNS | NT

I NOT DETERM NI STI C

/1 RESPECT NULL VALUES

User-Defined Functions 43

Scalar and Aggregate UDFs

I EXTERNAL NAME ' ny_pl us_counter @i budf ex

typedef struct ny_counter {
a_sqgl __int32 _counter;
} my_counter;

#i f defined __ cplusplus
extern "C' {
#endi f

static void ny_plus_counter_start(a_v3_extfn_scal ar_context *cntxt)
{
my_counter *cptr = (ny_counter *)cntxt->_ user_data
/1 If we have not already allocated the
// counter structure, then do so now
if (lteptr) {
cptr = (nmy_counter *)mall oc(sizeof (my_counter));
cntxt-> user_data = cptr;
}

cptr->_counter = O;

static void my_plus_counter_finish(a_v3 extfn_scal ar_context *cntxt)

/[l 1f we still have an allocated the
// counter structure, then free it now
if (cntxt->_user_data) {
free(cntxt->_user_data);
cntxt-> user_data = O;
}
}

static void ny_plus_counter_eval uate(a_v3_extfn_scal ar_cont ext
*cnt xt

{

voi d *arg_handl e)

an_extfn_value arg;
an_extfn_value outval;
a_sql _int32 argl, result;

/1l Increment the usage counter
nmy_counter *cptr = (ny_counter *)cntxt->_user_data;
cptr->_counter += 1;

/Il Get the one argunent
(void) cntxt->get_value(arg_handle, 1, &arg)
if (larg.data) {

/1 argument val ue was NULL

argl = 0;
} else {
argl = *((a_sql _int32 *)arg.data);

44

Sybase 1Q

outval .type = DT_I NT;
out val . pi ece_|l en = si zeof (a_sql _i nt 32);
= argl + cptr->_counter
outval .data = &result;

resul t

cnt xt->set _val ue(arg_handl e,

&outval, 0);

Scalar and Aggregate UDFs

static a_v3_extfn_scalar my_plus_counter_descriptor =

{ &y
&ny

)

_plus_counter_start,
_plus_counter_finish,

&nmy_pl us_count er _eval uat e,

NULL,
NULL,

/1
Il
Il
11
/1

Reser ved
Reser ved
Reser ved
Reser ved
Reser ved

initialize to NULL
initialize to NULL
initialize to NULL
initialize to NULL
initialize to NULL

/1 _for_server_internal _use

a_v3_extfn_scalar *ny_plus_counter()

return &mry_plus_counter_descriptor;

}

#i f defined __cplusplus

L
#endi f

Example: my byte length Definition

The my_byte_length scalar UDF example computes the size of a column by streaming the
data in piece by piece, then returns the size of the column in bytes.

my_byte_length definition

Note: Large object data support requires a separately licensed Sybase 1Q option.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

/
/
/
Il
/1
Il
Il

"ext f napi v4. h"
<stdlib. h>
<string. h>
<mat h. h>
<assert. h>

/A sinple function that

RETURNS UNSI GNED | NT
DETERM NI STI C

| GNORE NULL VALUES
EXTERNAL NAME ' ny_byte_| engt h@ i budf ex’

#i f defined _ cplusplus
extern "C' {

returns the size of a cell value in bytes

/ CREATE FUNCTI ON ny_byte_| engt h(I N argl LONG Bl NARY)

User-Defined Functions

45

Scalar and Aggregate UDFs

#endi f
static void ny_byte | ength_eval uate(a_v3_extfn_scal ar _cont ext
*cnt xt,
voi d *arg_handl e)

{

if (cntxt == NULL || arg_handl e == NULL)

{

return;
}

an_extfn_value arg;
an_extfn_value outval;

a_sqgl _uint64 total _|en;

Il Get first argunent

a_sqgl _uint32 fetchedLength = 0;

(voi d) cntxt->get val ue(arg_handl e,
if (arg.data == NULL)

{

return;

}
fet chedLength += arg. pi ece_l en;

/'l saving total length as it |oses s
total _len = arg.len.total | en;

whil e (fetchedLength < total _| en)

(voi d) cntxt->get _piece(arg_handl
fet chedLength += arg. pi ece_l en;

}
/lif this fails, the function did not
cel l
assert (fetchedLength == total _|en);
outval . type = DT_UNSI NT;
outval . piece_len = 4;
out val . data = &f et chedLengt h;
cnt xt - >set _val ue(arg_handl e, &outval,
}
static a_v3_extfn_scalar ny_byte | ength_
0,
0,
&nmy_byte_| engt h_eval uat e,
0, /! Reserved - initialize
0, // Reserved - initialize
0, /!l Reserved - initialize
0, /'l Reserved - initialize
0, /! Reserved - initialize
NULL /Il _for

1, &arg);

cope inside get_piece

e, 1, &rg, fetchedLength);

get the full data fromthe

0);

descriptor = {

to NULL
to NULL
to NULL
to NULL
to NULL

_server _internal use

46

Sybase 1Q

Scalar and Aggregate UDFs

b
a_v3_ extfn_scalar *ny_byte_I| ength()

return &ry_byte | ength_descriptor;
}

#i f defined __ cplusplus
}
#endi f

See also
o Example: my_byte length Definition on page 45

Declaring and Defining Aggregate UDFs

Sybase 1Q supports aggregate UDFs. The SUM function is an example of a built-in aggregate
function. A simple aggregate function produces a single result value from a set of argument
values. You can write aggregate UDFs that can be used anywhere the SUM aggregate can be
used.

Note: The aggregate UDF examples referenced here are installed with the server, and can be
found as .cxx files in $1 QDI R15/ sanpl es/ udf . You can also find them in the
$I QDI R15/ 1'i b64/ 11 budf ex dynamically linkable library.

An aggregate function can produce either asingle result, or a set of results. The number of data
points in the output result set may not necessarily match the number of data points in the input
set. Multiple-output aggregate UDFs must use a temporary output file to hold the results.

Declaring an Aggregate UDF
Aggregate UDFs are more powerful and more complex to create than scalar UDFs.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

Note: You can also create the user-defined function declaration in Sybase Central on page
38.

When implementing an aggregate UDF, you must decide:

* Whether it will operate only across an entire data set or partition as an online analytical
processing (OLAP) -style aggregate, like RANK.

« Whether it will operate as either a simple aggregate or an OLAP-style aggregate, like
SUM.

« Whether it will operate only as a simple aggregate over an entire group.
The declaration and the definition of an aggregate UDF reflects these usage decisions.
The syntax for creating user-defined aggregate functions is:

aggr egat e- udf - decl arati on:
CREATE AGGREGATE FUNCTI ON [owner.]functi on-nanme

User-Defined Functions 47

Scalar and Aggregate UDFs

([paraneter , ...])
RETURNS dat a-t ype
[aggregate-routine-characteristics ...]

EXTERNAL NAME | i brary-and-entry-poi nt-name-string

par anet er :
par am name data-type [DEFAULT val ue]

aggr egat e-routi ne-characteristics:
DUPLI CATE { SENSI TI VE | | NSENSI TI VE }
-- is the server allowed to elimnate DI STI NCT
| SQ SECURITY {I NVOKER | DEFI NER}
| OVER restrict
ORDER order-restrict
| W NDOW FRAME
{ { ALLOWED | REQUI RED }
[windowfranme-constraints ...]
| NOT ALLOVED }
| ON EMPTY | NPUT RETURNS { NULL | VALUE }
-- Call or skip function on NULL inputs

wi ndow- f rane-constrai nts:
VALUES { [NOT] ALLOWED }
CURRENT ROW{ REQUI RED | ALLOWED }
| [UNBOUNDED] { PRECEDI NG | FOLLON NG } restrict

restrict: { [NOT] ALLOWED } | REQUI RED

order-restrict:
{ NOT ALLOWED | SENSITIVE | |INSENSITIVE | REQU RED

The handling of the return data type, arguments, data types, and default values are identical to
that in the scalar UDF definition.

If an aggregate UDF can be used as a simple aggregate, then it can potentially be used with the
DISTINCT qualifier. The DUPLICATE clause in the aggregate UDF declaration determines:

* Whether duplicate values can be considered for elimination before the aggregate UDF is
called because the results are sensitive to duplicates (such as for the built-in
“COUNT(DISTINCT T.A)”) or,

« Whether the results are insensitive to the presence of duplicates (such as for
“MAX(DISTINCT T.A)").

The DUPLICATE INSENSITIVE option allows the optimizer to consider removing the
duplicates without affecting the result, giving the optimizer the choice on how to execute the
query. Write the aggregate UDF to expect duplicates. If duplicate elimination is required, the
server performs it before starting the set of _next value_extfn calls.

Most of the remaining clauses that are not part of the scalar UDF syntax allow you to specify
the usages for this function. By default, an aggregate UDF is assumed to be usable as both a
simple aggregate and as an OLAP-style aggregate with any kind of window frame.

For an aggregate UDF to be used only as a simple aggregate function, declare it using:

48

Sybase 1Q

Scalar and Aggregate UDFs

OVER NOT ALLOWED
Any attempt to then use this aggregate as an OLAP-style aggregate generates an error.

For aggregate UDFs that allow or require an OVER clause, the UDF definer can specify
restrictions on the presence of the ORDER BY clause within the OVER clause by specifying
“ORDER?” followed by the restriction type. Window-ordering restriction types:

e REQUIRED — ORDER BY must be specified and cannot be eliminated.

e SENSITIVE — ORDER BY may or may not be specified, but cannot be eliminated when
specified.

* INSENSITIVE — ORDER BY may or may not be specified, but the server can do ordering
elimination for efficiency.

* NOT ALLOWED — ORDER BY cannot be specified.

Declare an aggregate UDF that makes sense only as an OLAP-style aggregate over an entire
set or partition that has been ordered, like the built-in RANK, with:

OVER REQUI RED
ORDER REQUI RED
W NDOW FRAME NOT ALLOWED

Declare an aggregate UDF that makes sense only as an OLAP-style aggregate using the
default window frame of UNBOUNDED PRECEDING to CURRENT ROW, with:

OVER REQUI RED
ORDER REQUI RED
W NDOW FRAME ALLOWED
RANGE NOT ALLOWED
UNBOUNDED PRECEDI NG REQUI RED
CURRENT ROW REQUI RED
FOLLOW NG NOT ALLOWED

The defaults for the all various options and restriction sets are:

DUPLI CATE SENSI Tl VE

SQL SECURI TY DEFI NER

OVER ALLOWED

ORDER SENSI Tl VE

W NDOW FRAME ALLOWED
CURRENT ROW ALLOWED

PRECEDI NG ALLOWED

UNBOUNDED PRECEDI NG ALLOWED
FOLLOW NG ALLOWED

UNBOUNDED FOLLOW NG ALLOWED

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because each user that
calls the procedure requires annotation. Also, when SQL SECURITY INVOKER is specified,

User-Defined Functions 49

Scalar and Aggregate UDFs

name resolution is performed on both the user name and the INVOKER. Qualify all object
names (tables, procedures, and so on) with their appropriate owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following the
RETURNS clause. The library name may include the file extension, which is typically . dl |
on Windows and . so on UNIX. In the absence of the extension, the software appends the
platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions. See SQL Anywhere
Server - Programming > SQL Anywhere external call interface.

Note: This reference points to SQL Anywhere documentation.

The server can be started with a library load path that includes the location of the UDF library.
On UNIX variants, this can be done by modifying the LD_LIBRARY_PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AlX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
» Defining an Aggregate UDF on page 54
o Context Storage of Aggregate User-Defined Functions on page 82

Example: my sum Declaration
The “my_sum” example is similar to the built-in SUM, except it operates only on integers.

my_sum declaration

Since my_sum, like SUM, can be used in any context, it has a relatively brief declaration:

CREATE AGGREGATE FUNCTI ON ny_sun(I N argl | NT)
RETURNS BI G NT
ON EMPTY | NPUT RETURNS NULL
EXTERNAL NAME ' descri be_ny_integer_sum@y_shared_lib'

The various usage restrictions all default to ALLOWED to specify that this function can be
used anywhere in a SQL statement that any aggregate function is allowed.

Without any usage restrictions, my_sum is usable as a simple aggregate across an entire set of
rows, as shown here:

50

Sybase 1Q

http://dcx.sybase.com/index.html#1201/en/dbprogramming/pg-extfun.html
http://dcx.sybase.com/index.html#1201/en/dbprogramming/pg-extfun.html

Scalar and Aggregate UDFs

SELECT M N(t.x), COUNT (*), ny_sun(t.y)
FROM t

Without usage restrictions, my_sum is also usable as a simple aggregate computed for each
group as specified by a GROUP BY clause:

SELECT t.x, COUNT(*), my_sun{t.y)
FROM t
GROUP BY t.x

Because of the lack of usage restrictions, my_sum is usable as an OLAP-style aggregate with
an OVER clause, as shown in this cumulative summation example:

SELECT t. X,
my_sum(t. x)
OVER (ORDER BY t.x ROAS BETWEEN UNBOUNDED PRECEDI NG AND
CURRENT ROW
AS cunmul ative_x,
COUNT(*)
FROM t
GROUP BY t.x
ORDER BY t. x

Example: my bit xor Declaration
The “my_bit_xor” example is analogous to the SQL Anywhere (SA) built-in BIT_XOR,
except it operates only on unsigned integers.

my_bit_xor declaration

The resulting declaration is:

CREATE AGGREGATE FUNCTI ON ny_bit_xor (I N argl UNSI GNED I NT)
RETURNS UNSI GNED | NT
ON EMPTY | NPUT RETURNS NULL
EXTERNAL NAME ' describe_ny_bit_xor @y_shared_lib'

Like the my_sum example, my_bit_xor has no associated usage restrictions, and is therefore
usable as a simple aggregate or as an OLAP-style aggregate with any kind of a window.

Example: my bit_or Declaration
The “my_bit_or” example is similar to the SA built-in BIT_OR except it operates only on
unsigned integers and can be used only as a simple aggregate.

my_bit_or declaration

The resulting declaration looks like:

CREATE AGGREGATE FUNCTI ON ny_bit_or (I N argl UNSI GNED | NT)
RETURNS UNSI GNED | NT
ON EMPTY | NPUT RETURNS NULL
OVER NOT ALLOWED
EXTERNAL NAME ' describe_ny _bit_or@ny_shared_lib’

User-Defined Functions 51

Scalar and Aggregate UDFs

Unlike the my_bit_xor example, the OVER NOT ALLOWED phrase in the declaration
restricts the use of this function to a simple aggregate. Because of that usage restriction,
my_bit_or is only usable as a simple aggregate across an entire set of rows, or as a simple
aggregate computed for each group as specified by a GROUP BY clause shown in the
following example:

SELECT t.x, COUNT(*), my_bit_or(t.y)

FROM t
GROUP BY t.x

Example: my interpolate Declaration

The “my_interpolate” example is an OLAP-style UDAF that attempts to fill in any missing
values in a sequence (where missing values are denoted by NULLS) by performing linear
interpolation across any set of adjacent NULL values to the nearest non-NULL value in each
direction.

my_interpolate declaration

If the input at a given row is not NULL, the result for that row is the same as the input value.

Figure 1: my_interpolate results

t.tran_time t.price my_interpolate(t.price)
4/12/08 1:40 29.50 29.50
4/12/08 1:45 29.60 29.60
4(12/08 1.50 NULL 29.70

4/12/08 1:55 2980 29.80

4/12/08 200 20.65 I 29.65

4/12/08 205 NULL 29.60
4/12/08 210 NULL 29.55
4/12/08 215 29.50 29.50

To operate at asensible cost, my_interpolate must run using a fixed-width, row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values he or she expects to see. This function takes a set of double-precision floating point
values and produces a resulting set of doubles.

The resulting UDAF declaration looks like this:

CREATE AGGREGATE FUNCTION nmy_interpolate (I N argl DOUBLE)
RETURNS DOUBLE
OVER REQUI RED
W NDOW FRAME REQUI RED
RANGE NOT ALLOWED
PRECEDI NG REQUI RED
UNBOUNDED PRECEDI NG NOT ALLOWED
FOLLOW NG REQUI RED

52 Sybase 1Q

Scalar and Aggregate UDFs

UNBOUNDED FOLLOW NG NOT ALLOWED
EXTERNAL NAME ' descri be_ny_interpol ate@ry_shared_li b’

OVER REQUIRED means that this function cannot be used as a simple aggregate (ON
EMPTY INPUT, if used, is irrelevant).

WINDOW FRAME details specify that you must use a fixed-width, row-based window that
extends both forward and backward from the current row when using this function. Because of
these usage restrictions, my_interpolate is usable as an OLAP-style aggregate with an OVER
clause similar to:

SELECT t. X,
ny_interpol ate(t. x)
OVER (ORDER BY t.x ROWS BETWEEN 5 PRECEDI NG AND 5 FOLLOW NG
AS x_with_gaps_filled,
COUNT(*)
FROM t
GROUP BY t.x
ORDER BY t.x

Within an OVER clause for my_interpolate, the precise number of preceding and following
rows may vary, and optionally, you can use a PARTITION BY clause; otherwise, the rows
must be similar to the example above given the usage restrictions in the declaration.

Declaring an Aggregate UDF in Sybase Central

Sybase 1Q supports aggregate UDFs. The SUM function is an example of a built-in aggregate
function. A simple aggregate function takes a set of argument values and produces a single
result value from that set of inputs. User-defined aggregate functions can be written that can be
used anywhere the SUM aggregate can be used.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.
2. In the left pane, right-click Procedures & Functionsand select New > Function.

In the Welcome dialog, type a name for the function and select which user will be the
owner of the function.

To create a user-defined function, select External C/C++. Click Next.
Select Aggregate.
Type the name of the dynamically linkable library file, omitting the .so or .dll extension.

w

Type a name for the descriptor function. Click Next.

Select the type of value to be returned in the function, and specify the size, units, and scale
for the value. Click Next.

9. Select whether the privileges used for running the function are from the defining user
(definer) or the calling user (invoker).

10. Specify whether the function is allowed to be, required to be, or not allowed to be, used in
an OVER clause. Click Next.

© N o ok~

If the function is not allowed to be used in an OVER clause, proceed with step 14.

User-Defined Functions 53

Scalar and Aggregate UDFs

11. Specify if the function requires the user of an ORDER BY clause when it is used to define a
window. Click Next.

12. Specify if the function is allowed to be used in a WINDOW FRAME clause, is required to be
used in an WINDOW FRAME clause, or is not allowed to be used in a WINDOW FRAME
clause. Click Next.

If the function is not allowed to be used in a WINDOW FRAME clause, skip to step 14.

13. Identify the constraints on the WINDOW FRAME clause. Click Next.

14. Specify if duplicate input values need to be filtered out by the database server prior to
calling the function.

15. Identify if the return value of the function is NULL or a fixed value when it is called with no
data. Click Next.

16. Add a comment describing the purpose of the new function. Click Finish.
17. In the right pane, click the SQL tab to complete the procedure code.

The new function appears in Procedures & Functions.
Defining an Aggregate UDF

The C/C++ code for defining an aggregate user-defined function includes eight mandatory
pieces.

» extfnapiv3.h — the UDF interface definition header file. The file is ext f napi v4. h for
the v4 API.

e _start_extfn —an initialization function invoked once per SQL usage. All initialization
functions take one argument: a pointer to the aggregate UDF context structure that is
unique to each usage of an aggregate UDF. The context structure passed is the same one
that is passed to all the supplied functions for that usage.

» _finish_extfn —ashutdown function invoked once per SQL usage. All shutdown functions
take one argument: a pointer to the aggregate UDF context structure that is unique to each
usage of an aggregate UDF.

» _reset_extfn —a reset function called once at the start of each new group, new partition,
and if necessary, at the start of each window motion. All reset functions take one argument:
a pointer to the aggregate UDF context structure that is unique to each usage of an
aggregate UDF.

e _next_value_extfn —a function called for each new set of input arguments.
_next_value_extfn takes two arguments:

* A pointer to the aggregate UDF context, and

* Anargs_handle.

As in scalar UDFs, the arg_handle is used with the supplied callback function pointers to
access the actual argument values.

* _evaluate_extfn — an evaluation function similar to the scalar UDF evaluation function.
All evaluation functions take two arguments:

« A pointer to the aggregate UDF context structure, and

54

Sybase 1Q

Scalar and Aggregate UDFs

e Anargs_handle.

e a v3_extfn_aggregate — an instance of the aggregate UDF descriptor structure that
contains the pointers to all of the supplied functions for this UDF.

* Descriptor function — a descriptor function that returns a pointer to that aggregate UDF
descriptor structure.

In addition to the mandatory pieces, there are several optional pieces that enable more
optimized access for specific usage situations:

e _drop_value_extfn — an optional function pointer that is called for each input set of
argument values that has fallen out of a moving window frame. This function should not
set the result of the aggregation. Use the get_value callback function to access the input
argument values, and, if necessary, through repeated calls to the get_piece callback
function.

Set the function pointer to the null pointer if:

« This aggregate cannot be used with a window frame,

« The aggregate is not reversible in some way, or

e The user is not interested in optimal performance.

If _drop_value_extfn is not supplied and the user has specified a moving window, each
time the window frame moves, the reset function is called and each row within the window
is included by a call to the next_value function, and finally the evaluate function is called.
If _drop_value_extfnis supplied, then each time the window frame moves, this drop value
function is called for each row falling out of the window frame, then the next_value
function is called for each row that has just been added into the window frame, and finally
the evaluate function is called to produce the aggregate result.

e _evaluate_cumulative_extfn — an optional function pointer that may be called for each
new input set of argument values. If this function is supplied, and the usage is in a row-
based window frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then
this function is called instead of calling the next value function immediately followed by
calling the evaluate function.

_evalutate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to its set of input argument values is through the usual get_value callback
function. This function pointer should be set to the null pointer if:

e This aggregate will never be used is this manner, or

e The user is not worried about optimal performance.

e _next_subaggregate_extfn —an optional callback function pointer that works together
with an _evaluate_superaggregate_extfn to enable some usages of this aggregate to be
optimized by running in parallel.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style
aggregates with an OVER clause) can be partitioned by first producing a set of
intermediate aggregate results where each intermediate result is computed from a
disjointed subset of the input rows.

Examples of such partitionable aggregates include:

User-Defined Functions 55

Scalar and Aggregate UDFs

e SUM, where the final SUM can be computed by performing a SUM for each disjointed
subset of the input rows and then performing a SUM over the sub-SUMs; and

e COUNT(¥*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the
computation of that aggregate parallel. For aggregate UDFs, this parallel optimization can
be applied only if both the _next_subaggregate extfn function pointer and the
_evaluate_superaggregate_extfn pointer are supplied.

The _reset_extfn function does not set the final result of the aggregation, and by definition,
has exactly one input argument value that is the same data type as the defined return value
of the aggregate UDF.

Access to the subaggregate input value is through the normal get_value callback function.
Direct communication between subaggregates and the superaggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share a context structure. Instead, individual sub-aggregates are treated exactly the
same as nonpartitioned aggregates. The independent super-aggregate sees a calling pattern
that looks like this:

_start_extfn

_reset_extfn

_next _subaggregate_extfn (repeated O to N times)

_eval uat e_super aggregate_extfn
_finish_extfn

Or like this:

_start_extfn

_reset_extfn

_next _subaggregate_extfn (repeated O to N tinmes)
_eval uat e_superaggregate_extfn

_reset_extfn

_next _subaggregate_extfn (repeated O to N tinmes)
_eval uat e_super aggregate_extfn

_reset_extfn

_next _subaggregate_extfn (repeated 0 to N tines)
_eval uat e_superaggregate_extfn

_finish_extfn

If neither _evaluate _superaggregate_extfn or _next subaggregate extfn is supplied, then
the aggregate UDF is restricted, and not allowed as a simple aggregate within a query
block containing GROUP BY CUBE or GROUP BY ROLLUP.
_evaluate_superaggregate_extfn —the optional callback function pointer that works with
the _next_subaggregate_extfn to enable some usages as a simple aggregate to be
optimized through parallelization. _evaluate_superaggregate_extfn is called to return the
result of a partitioned aggregate. The result value is sent to the server using the normal
set_value callback function from the a_v3_extfn_aggregate_context structure.

56

Sybase 1Q

Scalar and Aggregate UDFs

See also

Declaring an Aggregate UDF on page 47

Context Storage of Aggregate User-Defined Functions on page 82
Blob (a_v4_extfn_blob) on page 195

Blob Input Stream (a_v4_extfn_blob_istream) on page 199

Aggregate UDF Descriptor Structure

The aggregate UDF descriptor structure comprises several pieces.

typedef struct a_v3_extfn_aggregate — the metadata descriptor for an aggregate UDF
function supplied by the library.

_start_extfn —required pointer to an initialization function for which the only argument is
apointertoa_v3_extfn_aggregate_context. Typically, used to allocate some structure and
store its address in the _user_data field within the a_v3_extfn_aggregate_context.
_start_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (*_start_extfn)(a_v3_extfn_aggregate_context *);

_finish_extfn — required pointer to a shutdown function for which the only argument is a
pointer to a_v3_extfn_aggregate _context. Typically, used to deallocate some structure
with the address stored within the _user_data field in the a_v3_extfn_aggregate_context.
_finish_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (*_finish_extfn)(a_v3_extfn_aggregate_context *);

_reset_extfn — required pointer to a start-of-new-group function, for which the only
argument is a pointer to a_v3_extfn_aggregate_context. Typically, used to reset some
values in the structure for which the address was stashed within the _user_data field in the
a_v3_extfn_aggregate_context. _reset_extfn is called repeatedly.

void (*_reset_extfn)(a_v3_extfn_aggregate_context *);
_next_value_extfn — required function pointer to be called for each new input set of
argument values. The function does not set the result of the aggregation. Access to input
argument values are through the get_value callback function and, if necessary, through
repeated calls to the get_piece callback function, which is required only if piece_len is less
than total_len.

voi d (*_next_val ue_extfn)(a_v3_extfn_aggregate_context *cntxt,
voi d *args_handl e) ;

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_i strean structures instead.

_evaluate_extfn — required function pointer to be called to return the resulting aggregate
result value. _evaluate_extfn is sent to the server using the set_value callback function.

voi d (*_eval uate_extfn)(a_v3_extfn_aggregate_context *cntxt, void
*ar gs_handl e) ;

_drop_value_extfn —Optional function pointer that is called for each input set of argument
values that has fallen out of a moving window frame. Do not use this function to set the
result of the aggregation. Access to input argument values are through the get_value

User-Defined Functions 57

Scalar and Aggregate UDFs

callback function and, if necessary, through repeated calls to the get piece callback
function; however, access is required only if piece_len is less than total_len. Set
_drop_value_extfn to the null pointer if:

» The aggregate cannot be used with a window frame.
» The aggregate is not reversible in some way.
e The user is not interested in optimal performance.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_istrean structures instead.

If this function is not supplied, and the user has specified a moving window, then each time
the window frame moves, the reset function is called and each row now within the window
is included by a call to the next_value function. Finally, the evaluate function is called.
However, if this function is supplied, each time the window frame moves, this drop_value
function is called for each row falling out of the window frame, then the next_value
function is called for each row that has just been added into the window frame. Finally, the
evaluate function is called to produce the aggregate result.

voi d (*_drop_val ue_extfn)(a_v3_extfn_aggregate_cont ext *cnt xt,
voi d *args_handl e);

_evaluate_cumulative_extfn — optional function pointer to be called for each new input
set of argument values. If this function is supplied, and the usage is in a row-based window
frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then this function is
called instead of next_value, immediately followed by calling evaluate.
_evaluate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to input argument values are through the get_value callback function and,
if necessary, through repeated calls to the get_piece callback function, which is only
required if piece_len is less than total_len.

voi d (*_evaluate_cunul ative_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handl e);

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_istreamn structures instead.

_next_subaggregate_extfn — optional callback function pointer that, with the

_evaluate_superaggregate_extfn function (and in some usages also with the

_drop_subaggregate_extfn function), enables some usages of the aggregate to be

optimized through parallel and partial results aggregation.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style

aggregates with an OVER clause) can be partitioned by first producing a set of

intermediate aggregate results where each of the intermediate results is computed from a

disjoint subset of the input rows. Examples of such partitionable aggregates include:

e SUM, where the final SUM can be computed by performing a SUM for each disjoint
subset of the input rows and then performing a SUM over the sub-SUMs; and

58

Sybase 1Q

Scalar and Aggregate UDFs

e COUNT(¥*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the

computation of that aggregate parallel. For aggregate UDFs, this optimization can be

applied only if both the _next_subaggregate extfn callback and the

_evaluate_superaggregate_extfn callback are supplied. This usage pattern does not

require _drop_subaggregate_extfn.

Similarly, if an aggregate can be used witha RANGE-based OVER clause, an optimization

can be applied if _next_subaggregate extfn, _drop_subaggregate_extfn, and

_evaluate_superaggregate_extfn) functions are all supplied by the Aggregate UDF

implementation.

_next_subaggregate_extfn does not set the final result of the aggregation, and by

definition, has exactly one input argument value that is the same data type as the return

value of the aggregate UDF. Access to the sub-aggregate input value is through the
get_value callback function and, if necessary, through repeated calls to the get_piece
callback function, which is required only if piece_len is less than total_len.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_istrean structures instead.

Direct communication between sub-aggregates and the super-aggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share the context structure. Individual sub-aggregates are treated exactly the same as
nonpartitioned aggregates. The independent super-aggregate sees a calling pattern that
looks like this:

_start_extfn

_reset_extfn
_next _subaggregate_extfn (repeated O to N tinmes)

_eval uat e_superaggregate_extfn
_finish_extfn

voi d (*_next _subaggregate_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handl e);

e _drop_subaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn and _evaluate_superaggregate_extfn, enables some usages
involving RANGE-based OVER clauses to be optimized through a partial aggregation.
_drop_subaggregate_extfn is called whenever a set of rows sharing a common ordering
key value have collectively fallen out of a moving window. This optimization is applied
only if all three functions are provided by the UDF.
voi d (*_drop_subaggregate_extfn)(a_v3_extfn_aggregate_context
*cnt xt, voi d *args_handl e);

e _evaluate_superaggregate_extfn —optional callback function pointer that, together with
_next_subaggregate_extfn (and in some cases also with _drop_subaggregate_extfn),
enables some usages to be optimized by running in parallel.

User-Defined Functions 59

Scalar and Aggregate UDFs

_evaluate_superaggregate_extfnis called, as described above, when it is time to return the
result of a partitioned aggregate. The result value is sent to the server using the set_value
callback function from the a_v3_extfn_aggregate_context structure:

voi d (*_eval uat e_super aggr egat e_ext f n)
(a_v3_extfn_aggregate_context *cntxt, void *args_handl e);

NULL fields — initialize these fields to NULL:

void * reservedl_nust _be_nul | ;

void * reserved2_nust _be_nul | ;

void * reserved3 nmust _be nul | ;

void * reserved4_nust _be_nul | ;
*

voi d reserved5_nust _be_nul | ;

Status indicator bit field — a bit field containing indicators that allow the engine to

optimize the algorithm used to process the aggregate.

a_sqgl _uint32 indicators;

_calculation_context_size — the number of bytes for the server to allocate for each UDF

calculation context. The server may allocate multiple calculation contexts during query

processing. The currently active group context is available in

a_v3_extfn_aggregate_context_user_calculation_context.

short _cal cul ati on_cont ext _si ze;

_calculation_context_alignment — specifies the alignment requirement for the user's

calculation context. Valid values include 1, 2, 4, or 8.

short _cal cul ati on_context _al i gnnment ;

External memory requirments — the following fields allow the optimizer to consider the

cost of externally allocated memory. With these values, the optimizer can consider the

degree to which multiple simultaneous calculations can be made. These counters should

be estimates based on a typical row or group, and should not be maximum values. If no

memory is allocated by the UDF, set these fields to zero.

« external_bytes per_group — The amount of memory allocated to a group at the start of
each aggregate. Typically, any memory allocated during the reset() call.

« external_bytes per_row — The amount of memory allocated by the UDF for each row
of a group. Typically, the amount of memory allocated during next_value().

doubl e ext ernal _bytes_per_group;
doubl e ext ernal _bytes_per_row,
Reserved fields for future use — initialize these fields:
a_sql _uint64 reserved6_nust _be_nul | ;
a_sql _uint64 reserved7_nust _be_nul | ;
a_sql _uint64 reserved8_nust _be_nul | ;
a_sql _ui nt 64 reserved9 rnmust _be nul |l ;
a_sql _uint64 reservedl10_nust _be_nul | ;
Closing syntax — Complete the descriptor with this syntax:
R For Server Internal Use Only ----------

void * _for_server_internal _use;
} a_extfn_aggregate;

60

Sybase 1Q

Scalar and Aggregate UDFs

See also
e Blob (a_v4_extfn_blob)on page 195
» Blob Input Stream (a_v4_extfn_blob_istream) on page 199

Calculation Context
The _user_calculation_context field allows the server to concurrently execute calculations on
multiple groups of data.

An Aggregate UDF must keep intermediate counters for calculations as it is processing rows.
The simple model for managing these counters is to allocate memory at the start API function,
store a pointer to it in the aggregate context's _user_data field, then release the memory at the
aggregate’s finish API. An alternative method, based on the _user_calculation_context field,
allows the server to concurrently execute calculations on multiple groups of data.

The _user_calculation_context field is a server-allocated memory pointer, created by the
server for each concurrent processing group. The server ensures that the
_user_calculation_context always points to the correct calculation context for the group of
rows currently being processed. Between UDF API calls, depending on the data, the server
may allocate new _user_calculation_context values. The server may save and restore
calculation context areas to disk while processing a query.

The UDF stores all intermediate calculation values in this field. This illustrates a typical

usage:
struct ny_average_cont ext
{

i nt sum

i nt count ;
i
reset (a_v3_aggregat e_cont ext *context)
{

mycontext = (ny_average_context *) context-

> user _cal cul ati on_cont ext;
nycont ext - >count = O;
mycont ext - >sum = 0;

next _val ue(a_v3_aggregate_context *context, void *args_handl e)

{

mycontext = (ny_average_context *) context-
> user_cal cul ati on_cont ext;

nmycont ext - >count ++;

}

Inthis model, the _user_data field can still be used, but no values relating to intermediate result
calculations can be stored there. The _user_calculation_context is NULL at both the start and
finish entry points.

User-Defined Functions 61

Scalar and Aggregate UDFs

To use the _user_calculation_context to enable concurrent processing, the UDF must specify
the size and alignment requirements for its calculation context, and define a structure to hold
its values and set a_v3_extfn_aggregate and _calculation_context_size to the sizeof() of that
structure.

The UDF must also specify the data alignment requirements of _user_calculation_context
through _calculation_context_alignment. If user_calculation_context memory contains only
a character byte array, no particular alignment is necessary, and you can specify an alignment
of 1. Likewise, double floating point values might require an 8-byte alignment. Alignment
requirements vary by platform and data type. Specifying a larger alignment than necessary
always works; however, using the smallest alignment uses memory more efficiently.

Aggregate UDF Context Structure
The aggregate UDF context structure, a_v3_extfn_aggregate _context, has exactly the same
set of callback function pointers as the scalar UDF context structure.

In addition, it has a read/write _user_data pointer just like the scalar UDF context, and a set of
read-only data fields that describe the current usage and location. Each unique instance of the
UDF within a statement has one aggregate UDF context instance that is passed to each of the
functions specified within the aggregate UDF descriptor structure when they are called. The
aggregate context structure is defined as:

* typedef struct a_v3_extfn_aggregate_context — One created for each instance of an
external function referenced within a query. If used within a parallelized subtree within a
query, there is a separate context for parallel subtree.

e Callbacks available via the context — Common arguments to the callback routines
include:

» arg_handle — A handle to function instance and arguments provided by the server.
e arg_num - The argument number. Return values are 0..N.
e data— The pointer to argument data.

The context must call get_value before get_piece, but needs to call get_piece only if
piece_len is less than total_len.
short (SQL_CALLBACK *get _val ue)(
void * arg_handl e,
a_sql _uint32 arg_num
an_ext fn_val ue *val ue

)

short (SQL_CALLBACK *get _pi ece) (
void * ar g_handl e,
a_sql _ui nt 32 arg_num
an_extfn_val ue *val ue,
a_sql _uint32 of f set

)

e Determining whether an argument is a constant — The UDF can ask whether a given
argument is a constant. This can be useful, for example, to allow work to be done once at
the first call to the _next_value function rather than for every call to the next_value
function.

62

Sybase 1Q

Scalar and Aggregate UDFs

short (SQL_CALLBACK *get _val ue_is_constant) (
void * arg_handl e,

a_sql _uint 32 arg_num

a_sqgl _uint32 * value_is_constant

i

e Returning anull value —To return a null value, set "data" to NULL inan_extfn_value. The

total_len field is ignored on calls to set_value, the data supplied becomes the value of the
argument if append is FALSE; otherwise, the data is appended to the current value of the
argument. It is expected that set_value is called with append=FALSE for an argument
before being called with append=TRUE for the same argument. The append field is
ignored for fixed-length data types (in other words, all numeric data types).

short (SQL_CALLBACK *set _val ue) (

void * arg_handl e,
an_ext fn_val ue *val ue,
short append
)

e Determining whether the statement was interrupted — If a UDF entry point performs
work for an extended period of time (many seconds), then it should, if possible, call the
get_is_cancelled callback every second or two to see if the user has interrupted the current
statement. If the statement has been interrupted, a nonzero value is returned, and the UDF
entry point should then immediately perform. Eventually, the _finish_extfn function is
called to do any necessary cleanup, but no other UDF entry points are subsequently called.

a_sqgl _uint32 (SQ._CALLBACK *get i s_cancel | ed)
(a_v3_extfn_aggregate_context * cntxt);

* Sending error messages — If a UDF entry point encounters some error that should result
in an error message being sent back to the user and the current statement being shut down,
the set_error callback routine should be called. set_error causes the current statement to
roll back;theuserseesEr ror fromexternal UDF: <error_desc_string>,
and the SQLCODE is the negated form of <error_number>. After a call to set_error, the
UDF entry point immediately performs a return. Eventually, _finish_extfn is called to
perform any necessary cleanup, but no other UDF entry points are subsequently called.
voi d (SQL_CALLBACK *set _error)(

a_v3_extfn_aggregate_context * cntxt,
a_sql _uint32 error_nunber,

/1 use error_nunber values >17000 & <100000
const char * error_desc_string

)
e Writing messages to the message log — Messages longer than 255 bytes may be
truncated.

voi d (SQL_CALLBACK *I og_nessage) (
const char *nsg,
short msg_l ength
)

e Converting one data type to another — for input:
e an_extfn_value.data — input data pointer.
e an_extfn_value.total_len — length of input data.

User-Defined Functions 63

Scalar and Aggregate UDFs

* an_extfn_value.type — DT_ datatype of input.

For output:

e an_extfn_value.data — UDF-supplied output data pointer.

e an_extfn_value.piece_len — maximum length of output data.

e an_extfn_value.total_len — server set length of converted output.
e an_extfn_value.type — DT_ datatype of desired output.

short (SQL_CALLBACK *convert _val ue) (
an_extfn_val ue *input,
an_extfn_value *out put

)i

* Fields reserved for future use — These are reserved for future use:
void * reservedil;

void * reserved?;
void * reserved3;
void * reserved4;
void * reser ved5;

* Dataavailable from the context — This data pointer can be filled in by any usage with any
context data the external routine requires. The UDF allocates and deallocates this memory.
A single instance of _user_data is active for each statement. Do not use this memory for
intermediate result values.
void * _user_data;

e Currently active calculation context — UDFs should use this memory location to store
intermediate values that calculate the aggregate. This memory is allocated by the server
based on the size requested in the a_v3_extfn_aggregate. Intermediate calculations must
be stored in this memory, since the engine may perform simultaneous calculations over
more than one group. Before each UDF entry point, the server ensures that the correct
context data is active.
void * _user_cal cul ation_context;

e Other available aggregate information — Available at all external function entry points,
including start_extfn. Zero indicates an unknown or not-applicable value. Estimated
average number of rows per partition or group.

e a_sgl_uinté4 _max_rows_in_frame; — Calculates the maximum number of rows
defined in the window frame. For range-based windows, this indicates unique values.
Zero indicates an unknown or not-applicable value.

e a_sqgl_uint64 _estimated_rows_per_partition; — Displays the estimated average
number of rows per partition or group. 0 indicates an unknown or not-applicable value.

* a_sgl_uint32 is_used_as_a_superaggregate; — ldentifies whether this instance is a
normal aggregate or a superaggregate. Returns a result of 0 if the instance is a normal
aggregate.

* Determining window specifications — Window specifications if a window is present on
the query:

e a_sql_uint32 _is_window_used; — Determines if the statement is windowed.

64 Sybase 1Q

Scalar and Aggregate UDFs

* a_sgl_uint32 _window_has_unbounded_preceding; — A return value of 0 indicates
the window does not have unbounded preceding.
* a_sgl_uint32 _window_contains_current_row; — A return value of 0 indicates the
window does not contain the current row.
* a_sql_uint32 _window_is_range_based; — If the return code is 1, the window is
range-based. If the return code is 0, the window is row-based.
e Available at reset_extfn() calls — Returns the actual number of rows in current partition, or
0 for nonwindowed aggregate.
a_sqgl _uint64 numrows_in_partition;
e Available only at evaluate_extfn() calls for windowed aggregates — Currently evaluated
row number in partition (starting with 1). This is useful during the evaluation phase of

unbounded windows.

a_sql _uint64 _result_row fromstart_of_partition;
e Closing syntax — Complete the context with:

[]---amm--- For Server Internal Use Only ----------
void * _for_server_internal _use;
} a_v3_extfn_aggregate_context;

Aggregate external function context: a v3_extfn_aggregate context :

Method of

a v3_extfn_aggre-
gate_context struc-
ture

Description

void set_cannot_be_distrib-
uted(a_v3_extfn_aggre-
gate_context * cntxt)

Distribution can be disabled at the UDF level, even if distribution

criteria are met at the library level. By default, the UDF is assumed to
be distributable if the library is distributable. It is the responsibility of

the UDF to push the decision to disable distribution to the server.

See also

e Blob (a_ v4_extfn _blob)on page 195
e Blob Input Stream (a_v4_extfn_blob_istream) on page 199

Example: my sum Definition

The aggregate UDF my_sum example operates only on integers.

my_sum definition

Since my_sum, like SUM, can be used in any context, all the optimized optional entry points
have been supplied. In this example, the normal _evaluate_extfn function can also be used as
the _evaluate_superaggregate_extfn function.
#i ncl ude "extf napi v4. h"

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

User-Defined Functions

65

Scalar and Aggregate UDFs

/1 Sinple aggregate UDF that adds up a set of

/1 integer argunments, and whenever asked returns
/1 the resulting big integer total. For int

/'l arguments, the only difference between this

// UDF and the SUM built-in aggregate is that this
[/ UDF will return NULL if there are no input rows.

// The start function creates a little structure for
/1 the running total, and the finish function then
// deallocates it.

/1l Since there are no aggregate usage restrictions
/1 for this aggregate UDF, the correspondi ng SQL decl aration

[l will ook Iike:

Il

I CREATE AGGREGATE FUNCTI ON nmy_sun(I N argl | NT)
11 RETURNS Bl G NT

I/ ON EMPTY | NPUT RETURNS NULL

I EXTERNAL NAME ' mmy_i nt eger _sum@ i budf ex'

typedef struct ny_total {
a_sqgl _int64 _total;
a_sqgl _uint64 _num nonnulls_seen;

} ny_total;

extern "C'

void ny_integer_sumstart(a_v3_extfn_aggregate_context *cntxt)
{

}

extern "C'

voi d ny_integer_sumfinish(a_v3_extfn_aggregate_context *cntxt)
{

}

extern "C'

voi d ny_integer_sumreset(a_v3_extfn_aggregate_context *cntxt)

my_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;
cptr->_total = O;
cptr->_numnonnul I s_seen = 0;

}

extern "C'
voi d my_i nteger _sum next _val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;
a_sql _int32 argl;

my_total *cptr = (my_total *)cntxt->_user_cal cul ati on_context;

66 Sybase 1Q

Scalar and Aggregate UDFs

/1l Get the one argunent, and if non-NULL then add it to the total
I
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int32 *)arg.data);
cptr->_total += argl;
cptr->_num nonnul | s_seen++;
}
}

extern "C'

voi d nmy_i nteger _sum drop_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{

an_extfn_value arg;
a_sql _int32 argl;
my_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/1l Get the one argunent, and if non-NULL then subtract it fromthe
t ot al
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int32 *)arg.data);
cptr->_total -= argl,;
cptr->_numnonnul | s_seen--;
}
}

extern "C'

voi d ny_integer_sum eval uat e(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{

an_extfn_value outval;
my_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/1l Set the output result value. |If the inputs
I/ were all NULL, then set the result as NULL.
I
outval .type = DT_BI @ NT;
out val . pi ece_l en = si zeof (a_sql _i nt64);
if (cptr->_nummnonnulls_seen > 0) {
outval .data = &cptr-> total;
} else {
outval .data = 0;

}

cnt xt->set _val ue(arg_handl e, &outval, 0);
}
extern "C'

voi d ny_i nteger_sum cum eval uat e(
a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value outval;

User-Defined Functions 67

Scalar and Aggregate UDFs

an_extfn_value arg;
int argl;
my_total *cptr = (my_total *)cntxt->_ user_cal cul ati on_cont ext;

/1l Get the one argunment, and if non-NULL then add it into the

total .

I/

if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int32 *)arg.data);
cptr->_total += argl;
cptr->_num nonnul | s_seen++;

}

[/ Then set the output result value. [If the inputs
// were all NULL, then set the result as NULL.

/1

outval .type = DT_BI d NT;
out val . pi ece_|l en = si zeof (a_sql _i nt 64);
if (cptr->_numnonnulls_seen > 0) {
outval .data = &cptr->_total;
} else {
outval .data = 0;

cnt xt->set _val ue(arg_handl e, &outval, 0);

extern "C'
voi d ny_i nteger_sum next _subagg_val ue(

a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;
a_sql _int64 argil;

nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/1l Get the one argunent, and if non-NULL then add it to the total
I
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {

argl = *((a_sql _int64 *)arg.data);

cptr->_total += argl;

cptr->_num nonnul | s_seen++;

}

extern "C'
voi d ny_integer_sum drop_subagg_val ue(

a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;
a_sql _int64 argil;

my_total *cptr = (my_total *)cntxt->_user_cal cul ati on_context;

68

Sybase 1Q

/1

CGet the one argument, and if non-NULL t hen subtract

t ot al

}

/1
if

}

(cnt xt->get _val ue(arg_handl e,

Scalar and Aggregate UDFs

1, &arg) && arg.data) {

argl = *((a_sql _int64 *)arg.data);

cptr->_total -= argl;
cptr->_numnonnul | s_seen--;

a_v3_extfn_aggregate my_i nteger _sum descriptor =

val ue,
val ue,

[/l context size

{
&nmy_integer_sumstart,
&y _integer_sum fini sh
&my_i nt eger _sum reset,
&y _i nt eger _sum next _val ue,
&nmy_i nt eger _sum eval uat e,
&y _i nt eger _sum dr op_val ue,
&nmy_i nteger _sum cum eval uat e,
&nmy_i nt eger _sum next _subagg_
&nmy_i nt eger _sum dr op_subagg_
&y _i nteger _sum eval uat e,
NULL, // reservedl_nust _be_nul
NULL, // reserved2_rnust_be_nul
NULL, // reserved3 must be nul
NULL, // reserved4_nust_be_nul
NULL, // reserved5_nust _be_nul
0, // indicators
(short)sizeof(ny_total),
8, // context alignnent
0.0, //external _bytes_per_group
0.0, // external bytes per row
0, // reserved6_must be nul
0, // reserved7_nust_be_null
0, // reserved8 nust_be_nul |
0, // reserved9 _nust_be_nul
0, // reservedl0 nust be nul
NULL // _for_server _internal _use
-5
extern "C'

a_v3_extfn_aggregate *nmy_i nteger_sum()

{
}

return &my_i nteger_sum descriptor;

it fromthe

User-Defined Functions

69

Scalar and Aggregate UDFs

Example: my bit xor Definition
The aggregate UDF my_bit_xor example is similar to the SA built-in BIT_XOR, except
my_bit_xor operates only on unsigned integers.

my_bit_xor definition

Because the input and the output data types are identical, use the normal _next_value_extfn
and _evaluate_extfn functions to accumulate subaggregate values and produce the
superaggregate result.

#i ncl ude "extfnapiv4. h"
#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

/1 Ceneric aggregate UDF that exclusive-ORs a set of
/1 unsigned integer arguments, and whenever asked
// returns the resulting unsigned integer result.

The start function creates a little structure for
the running result, and the finish function then
deal | ocates it.

Since there are no aggregate usage restrictions
for this aggregate UDF, the corresponding SQL decl aration
will ook like:

CREATE AGGREGATE FUNCTI ON ny_bi t _xor (I N argl UNSI GNED
RETURNS UNSI GNED | NT

ON EMPTY | NPUT RETURNS NULL
EXTERNAL NAME ' ny_bit _xor @i budf ex'

—~— e e e e e e e e~~~
\\\5\\\\\\\\\\

typedef struct ny_xor_result {
a_sql _uint64 _num nonnul | s_seen;
a_sqgl _uint32 _xor_result;

} my_xor_result;

#i f defined __cplusplus
extern "C' {
#endi f

static void ny_xor_start(a_v3_extfn_aggregate_context *cntxt)
{
}

static void ny_xor_finish(a_v3_extfn_aggregate_context *cntxt)

{
}

static void ny_xor_reset(a_v3_extfn_aggregate_context *cntxt)

70

Sybase 1Q

Scalar and Aggregate UDFs

{
my_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext ;
cptr->_xor_result = O;
cptr->_numnonnulls_seen = 0

}

static void ny_xor_next_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;
a_sqgl _uint32 argl;

my_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

/1l Get the one argunment, and add it to the tota
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _uint32 *)arg.data);
cptr->_xor_result ~= argl;
cptr->_numnonnul | s_seen++
}
}

static void ny_xor_drop_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value arg;

a_sqgl _uint32 argl;

nmy_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

[/l Get the one argument, and renove it fromthe tota
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _uint32 *)arg.data);
cptr->_xor_result "= argil;
cptr->_numnonnul | s_seen--;
}
}

static void ny_xor_eval uate(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value outval;
nmy_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

outval . type = DT_UNSI NT;

out val . pi ece_|l en = sizeof (a_sql _ui nt 32);

if (cptr->_numnonnulls_seen > 0) {
outval .data = &cptr->_ xor_result;

} else {
outval . dat a

0;

User-Defined Functions 71

Scalar and Aggregate UDFs

}
cntxt->set _val ue(arg_handl e, &outval, 0);
}
static void ny_xor_cum eval uat e(a_v3_extfn_aggregat e_cont ext
*cnt xt,
voi d *arg_handl e)
{

an_extfn_value outval;

an_extfn_value arg;

a_sql _uint32 argl;

nmy_xor_result *cptr = (my_xor _result *)cntxt-
> user _cal cul ati on_cont ext;

/]l Get the one argunment, and include it in the result,
/1 unless that input value is null.
/Il
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _uint32 *)arg.data);
cptr->_xor_result ~= argl;
cptr->_numnonnul | s_seen++;

}

/1l Then set the output result val ue

outval . type = DT_UNSI NT;

out val . pi ece_l en = sizeof (a_sql _ui nt 32);

if (cptr->_numnonnulls_seen > 0) {
outval . data &cptr->_ xor_result;

} else {
outval . dat a

0;

cnt xt->set _val ue(arg_handl e, &outval, 0);

}

static a_v3_extfn_aggregate ny_xor_descriptor =

{
&ny_xor_start,
_xor_finish,
Xor _reset,
xor _next _val ue,
xor _eval uat e,

&y _
&y _
&y _
&nmy_xor _drop_val ue,
&y _
&y _
&y _

o]

xor _cum eval uat e,

xor _next _val ue,

xor _drop_val ue,
&my_xor _eval uat e,
NULL, // reservedl nust_be null
NULL, // reserved2_nust_be_nul |
NULL, // reserved3_rnust_be nul |
NULL, // reserved4 rnust be nul |
NULL, // reserved5_nust_be _nul |
, /] indicators
(short)sizeof(ny_xor_result), // context size
8, [/ context alignment

o

72 Sybase 1Q

Scalar and Aggregate UDFs

/| external bytes_ per_group
/'l external bytes per row
/1 reserved6_rnust _be_ nul

/'l reserved7_must be nul

/'l reserved8 nust_be_ nul

/'] reserved9_nust _be_nul

/1 reservedlO0_rust _be_ null
// _for_server _internal use

LEe

ZOO0OO0OOO0OO

E-
=
-

b

a_v3_extfn_aggregate *my_bit_xor ()

}

return &mry_xor_descriptor;

#i f defined __ cplusplus

L
#endi f

Example: my bit or Definition

The aggregate UDF my_bit_or example is similar to the SA built-in BIT_OR, except
my_bit_or operates only on unsigned integers, and can be used only as a simple aggregate.

my_bit_or definition

The my_bit_or definition is somewhat simpler than the my_bit_xor example.

#i ncl ude "extfnapi v4. h"
#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

I
Il
Il
Il
I
Il
Il
Il
Il
I

A sinple (non-CLAP) aggregate UDF that ORs a set
of unsigned integer argunents, and whenever asked
returns the resulting unsigned integer result.

The start function creates a little structure for
the running result, and the finish function then
deal | ocates it.

The aggregate usage restrictions for this aggregate UDF
only allowits use as a sinple aggregate, so the
correspondi ng SQL declaration will |ook Ilike

CREATE AGGREGATE FUNCTI ON ny_bit_or (I N argl UNSI GNED | NT)
RETURNS UNSI GNED | NT
ON EMPTY | NPUT RETURNS NULL
OVER NOT ALLOWED
EXTERNAL NAME ' ny_bit _or @i budf ex’

typedef struct ny_or_result {

a_sqgl _uint32 _or_result;
a_sqgl _uint32 _non_null_seen;

} my_or_result;

User-Defined Functions 73

Scalar and Aggregate UDFs

#i f defined __ cplusplus
extern "C' {
#endi f

static void ny_or_start(a_v3_extfn_aggregate_context *cntxt)
{
}

static void ny_or_finish(a_v3_extfn_aggregate_context *cntxt)
{
}

static void ny_or_reset(a_v3_extfn_aggregate_context *cntxt)

{

my_or_result *cptr = (my_or_result *)cntxt-
> user _cal cul ati on_cont ext;

cptr->_or_result = 0;

cptr-> non_null_seen = 0

}

static void ny_or_next_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;
a_sqgl _uint32 argl;

my_or_result *cptr = (my_or_result *)cntxt-
> user _cal cul ati on_cont ext;

/1l Get the one argunment, and add it to the tota
if (cntxt->get_value(arg_handle, 1, &rg) && arg.data)

argl = *((a_sql _uint32 *)arg.data);
cptr->_or_result |= argl
cptr->_non_null _seen = 1,

static void ny_or_eval uate(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value outval;
my_or_result *cptr = (my_or_result *)cntxt-
> user _cal cul ati on_cont ext;

outval . type = DT_UNSI NT;
out val . pi ece_|l en = sizeof (a_sql _ui nt 32);
if (cptr->_non_null _seen)

{
}

outval .data = &cptr-> or_result;

74

Sybase 1Q

Scalar and Aggregate UDFs

el se
/1l Return null if no values seen
outval .data = 0O;

}

cnt xt->set _val ue(arg_handl e, &outval, 0);

}

static a_v3_extfn_aggregate my_or_descriptor =

{
&my_or_start,
&my_or _finish,
&ny_or _reset,
&nmy_or _next _val ue,
&nmy_or _eval uate,
NULL, // drop_val _extfn
NULL, // cume_eval,
NULL, // next_subaggregate_extfn
NULL, // drop_subaggregate_extfn
NULL, // eval uate_superaggregate_extfn
NULL, // reservedl rnust_be_nul |
NULL, // reserved2 rnust _be nul |
NULL, // reserved3_nust_be null
NULL, // reserved4_nust_be_nul |
NULL, // reserved5_rust_be nul |
0, // indicators
(short)sizeof(ny_or _result), // context size
8, // context alignnent
0.0, //external _bytes per_group
0.0, // external bytes per row
0, // reserved6_nust_be_null
0, // reserved7_nust_be_nul |
0, // reserved8 nust_be_null
0, // reserved9 must _be null
0, // reservedl0_nust _be nul |
NULL // _for_server_internal _use
b

extern "C'

a_v3_ extfn_aggregate *my_bit_or()
return &mry_or_descriptor;

}

#i f defined _ cplusplus

L
#endi f

User-Defined Functions 75

Scalar and Aggregate UDFs

Example: my interpolate definition

The aggregate UDF my_interpolate example is an OLAP-style aggregate UDF that attempts
to fill in NULL values within a sequence by performing linear interpolation across any set of
adjacent NULL values to the nearest non-NULL value in each direction.

my_interpolate definition

To operate at a sensible cost, my_interpolate must run using a fixed-width, row-based
window, but the user can set the width of the window based on the maximum number of
adjacent NULL values expected. If the input ata given row is not NULL, the result for that row
is the same as the input value. This function takes a set of double-precision floating-point
values and produces a resulting set of doubles.

#i ncl ude "extfnapiv4. h"

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

/1 MY_I NTERPOLATE

I/
/1 OLAP-style aggregate UDF that accepts a doubl e precision
[/ floating point argument. |f the current argunment value is

/1 not NULL, then the result value is the sane as the

/1 argunent value. On the other hand, if the current row s
[/ argunent value is NULL, then the result, where possible,
/1 will be the arithnetic interpolation across the nearest
/1l preceding and nearest follow ng values that are not NULL.
I/ In all cases the result is also a double precision val ue.

/Il The start function creates a structure for maintaining the
/1l argument val ues within the wi ndow i ncluding their NULLness.
I/ The finish function then deallocates this structure.

/1l Since there are sonme strict aggregate usage restrictions
/1l for this aggregate (nust be used with a row based w ndow
[/ frame that includes the current row), the correspondi ng

/[l SQ. declaration will |ook |ike:

11/

/1 CREATE AGGREGATE FUNCTI ON ny_interpol ate(I N argl DOUBLE)
I RETURNS DOUBLE

I OVER REQUI RED

11/ W NDOW FRAMVE REQUI RED

/1 RANGE NOT ALLOWED

I PRECEDI NG REQUI RED

I UNBOUNDED PRECEDI NG NOT ALLOWED
/1 FOLLOW NG REQUI RED

11 UNBOUNDED FOLLOW NG NOT ALLOWED
I EXTERNAL NAME ' ny_interpol ate@i budfex’

typedef struct ny_wi ndow {

i nt _allocated_el em
i nt _first_used;
i nt _next _insert _|oc;

76

Sybase 1Q

Scalar and Aggregate UDFs

i nt * is_null;

double *_dbl _val;

i nt _num rows_in_frane;
} nmy_wi ndow;

#i f defined __ cplusplus
extern "C' {
#endi f

static void ny_interpol ate_reset (a_v3_extfn_aggregate_cont ext
*cnt xt)
{

assert (cntxt-> user_data);

nmy_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

cptr-> first_used = O;
cptr->_next_insert_loc = O;
cptr-> numrows_in_frame = O;

for (int i=0; i<cptr->_allocated_elem i++) {

cptr->_is null[i] = 1;
}
}
static void ny_interpol ate_start(a_v3_extfn_aggregate_context
*cnt xt)
{

my_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

/1 Make sure function was defined correctly

if (!cntxt->_is_w ndow_used)

{
cntxt->set _error(cntxt, 20001, "Function requires w ndow');
return;

i f (cntxt->_w ndow_has_unbounded_precedi ng ||
cnt xt ->_wi ndow_has_unbounded_f ol | owi ng)
{

cntxt->set _error(cntxt, 20002, "W ndow cannot be unbounded");
return;

if (cntxt->_w ndow_is_range_based)

{

cntxt->set _error(cntxt, 20003, "W ndow must be row based");
return;

}
if (lteptr) {
I

cptr = (nmy_wi ndow *)nal | oc(si zeof (ny_wi ndow)) ;

if (cptr) {
cptr->_is_null
cptr->_dbl _val

0;
0;

User-Defined Functions 77

Scalar and Aggregate UDFs

cptr-> numrows_in_frame = O;
cptr->_allocated_elem= (int)cntxt->_max_rows_i n_frane;

cptr->_is_null = (int *)malloc(cptr->_all ocated_el em
* sizeof (int));
cptr->_dbl _val = (double *)nalloc(cptr->_allocated_el em

* sizeof (doubl e));
cntxt-> user_data = cptr;

}

}

if (leptr || !'eptr->_is_null || 'cptr->_dbl_val) {
[/ Termi nate this query
cntxt->set _error(cntxt, 20000, "Unable to allocate nenmory");
return;

}

nmy_interpolate_reset(cntxt);

static void ny_interpol ate_finish(a_v3_extfn_aggregate_context
*cnt xt)

if (cntxt->_user_data) {
my_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;
if (cptr->_is null) {
free(cptr->_is_null);
cptr->_is_null = 0;

}

if (cptr->_dbl _val) {
free(cptr->_dbl _val);
cptr->_dbl _val = 0;

free(cntxt->_user_data);
cntxt-> user_data = O;

}
}
static void ny_interpol ate_next _val ue(a_v3_extfn_aggregat e_cont ext
*cnt xt,

voi d *arg_handl e)

{

an_extfn_value arg;

doubl e argil;

nmy_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

/1l Get the one argument, and stash its val ue
[/ within the rotating w ndow arrays
/1
int curr_cell_num= cptr->_next_insert_loc %cptr-
> all ocated_el em
if (cntxt->get_value(arg_handle, 1, &rg) &% arg.data != NULL) {
argl = *((double *)arg.data);

cptr->_dbl _val[curr_cell _nun] = argl;
cptr->_is_null[curr_cell _nunl = O;

} else {
cptr->_is_null[curr_cell_num = 1;

78 Sybase 1Q

Scalar and Aggregate UDFs

}

/1 Then increnent the insertion |ocation and nunber of rows in
frame
cptr->_next_insert_loc = ((cptr->_next_insert_loc + 1)
% cptr->_allocated_el em;
cptr->_numrows_in_frame++;

}
static void ny_interpol ate_drop_val ue(a_v3_extfn_aggregat e_cont ext
*cnt xt,
void * /*arg_handl e*/)
{

my_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

/1 Drop one value fromthe w ndow by increnmenting past it and
/| decrement the nunber of rows in the frame
cptr-> first_used = ((cptr-> first_used + 1) %cptr-
> all ocated_el em;
cptr-> numrows_in_frane--;

}
static void ny_interpol ate_eval uate(a_v3_extfn_aggregat e_cont ext
*cnt xt,
voi d *arg_handl e)
{

an_extfn_value outval;
my_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;
double result;

i nt result_is_null = 1;
doubl e precedi ng_val ue;
i nt precedi ng_value_is_null = 1;

doubl e precedi ng_di stance = 0;
doubl e follow ng_val ue;

i nt followi ng_value_is_null = 1;

doubl e follow ng_distance = 0;

int j;

/] Determine which cell is the current cell

int curr_cell _num=
((int)(cntxt->_result_row fromstart_of partition-1))%ptr-
> allocated_el em
int tnmp_cell _num

int result_row offset_fromstart_of _franme = cptr->_first_used <=
curr_cell _num ?
(curr_cell _num- cptr->_first_used)
(curr_cell_num+ cptr->_allocated_elem- cptr-
> first_used);

User-Defined Functions 79

Scalar and Aggregate UDFs

/1 Conpute the result val ue
if (cptr->_is_null[curr_cell_nunl == 0) {
Il

[/ 1If the current rows input value is not NULL, then there is
/1 no need to interpolate, just use that input val ue.

I/
result = cptr->_dbl _val[curr_cell _nuni;
result is null = 0;
Il
} else {
/Il

[/ 1f the current rows input value is NULL, then we do
/1l need to interpolate to find the correct result val ue.
Il First, find the nearest follow ng non-NULL argument

/1 value after the current row
/1
int rows_following = cptr-> numrows_in_frame -
result_row offset_fromstart_of _frane -
for (j=0; j<rows_follow ng; j++)
tnp_cell _num = ((curr_cell _num+ j + 1) %cptr-
> allocated_el em;
if (cptr->_is_null[tnp_cell_nun] == 0)

1

foll owi ng_value = cptr->_dbl _val [tnp_cell _nuni;

foll owi ng_val ue_i s_nul | 0;
followi ng distance = j + 1;
br eak;

}

}
/1 Second, find the nearest precedi ng non- NULL
/1 argunent value before the current row.

/1

int rows before = result _row offset fromstart_ of frane;

for (j=0; j<rows_before; j++) {

tnp_cell _num= ((curr_cell _num+ cptr->_allocated_elem- j - 1)

% cptr->_allocated_el em;
if (cptr->_is_null[tnmp_cell_num ==

precedi ng_value = cptr->_dbl _val[tnp_cell _nunm;

preceding_value_is_null = 0;
precedi ng_di stance = + 1;
br eak;

/1 Finally, see what we can come up with for a result val ue

I

if (preceding_value_ is null && !follow ng value_is null) {

40.0
40.0
40.0

Il

/1 No choice but to mirror the nearest follow ng non-NULL val ue
/1l Exanpl e:

Il

I I nputs: NULL Result of my_interpol ate:
/1 NULL

I 40.0

Il

result = foll ow ng_val ue;

result_is_null = 0;

I

80

Sybase 1Q

Scalar and Aggregate UDFs

} elseif (!preceding value_is_null & followi ng value_is null) {

Il

/1 No choice but to mirror the nearest precedi ng non-NULL val ue
/1l Exanpl e:

/1

I I nputs: 10.0 Result of my_interpolate: 10.0

/Il NULL 10.0

I

result = precedi ng_val ue;

result_is_null =0

Il

} elseif (!preceding value_is_null & !follow ng_value_is_null)

/1l Here we get to do real interpolation based on the
/'l nearest preceding non-NULL val ue, the nearest follow ng
/1 non-NULL value, and the relative distances to each

/| Exanpl es

/Il

I Inputs: 10.0 Result of ny_interpolate: 10.0
/1 NULL 20.0
I NULL 30.0
/Il 40.0 40.0
I

I I nputs: 10.0 Result of ny_interpolate: 10.0
I NULL 25.0
/Il 40.0 40.0
I

result = (precedi ng_val ue
+ ((followi ng_value - precedi ng_val ue)
* (precedi ng_di stance
[(precedi ng_di stance +
foll owi ng_distance))));
result_is_null =0
}
}

/1 And | ast, pass the result val ue out
outval .type = DT_DOUBLE
out val . pi ece_|l en = sizeof (doubl e);
if (result_is_null) {
outval .data = 0;
} else {
outval .data = &result;
}

cnt xt->set _val ue(arg_handl e, &outval, 0);

static a_v3_extfn_aggregate ny_interpol ate_descriptor =
{
&nmy_interpol ate_start,
&nmy_interpol ate_finish
&nmy_interpol ate_reset,
&nmy_interpol ate_next_value, //(tineseries_expression)
&nmy_int erpol at e_eval uate

User-Defined Functions 81

Scalar and Aggregate UDFs

&nmy_i nt er pol at e_dr op_val ue,

NULL, // cune_eval,

NULL, // next_subaggregate_extfn

NULL, // drop_subaggregate_extfn

NULL, // eval uate_superaggregate_extfn
NULL, // reservedl_nust_be_nul |

NULL, // reserved2_must_be_nul

NULL, // reserved3 must_be nul

NULL, // reserved4_must_be_null

NULL, // reserved5_nust_be_nul |
0, // indicators

0, // context size

0, // context alignnent

0.0, //external _bytes_per_group
(double)sizeof(double), // external bytes per row
0, // reserved6_rnust be nul

0, // reserved7_nust_be_null

0, // reserved8_nust_be_null

0, // reserved9_nust _be_nul

0, // reservedl0 nust be nul
NULL // _for_server_internal _use

b

a_v3_extfn_aggregate *my_interpol ate()
{ return &nmy_interpol ate_descriptor; }

#i f defined __cplusplus
}
#endi f
Context Storage of Aggregate User-Defined Functions

The context area is used to transfer or communicate data between multiple invocations of the
UDF within the same query (particularly within OLAP-style queries).

Context variables control whether the intermediate results of aggregate functions are to be
managed by the UDF itself (forcing the Sybase 1Q server to run the UDFs serially), or whether
the memory is to be managed by the Sybase 1Q server.

If the _calculation_context_size is set to 0, then the UDF is required to manage all interim
results in memory, (forcing the Sybase IQ server to invoke the UDF sequentially over the data
(instead of being able to invoke many instances of the UDF in parallel during an OLAP query).

If the _calculation_context_size is set to a nonzero value, the Sybase 1Q server manages a
separate context area for each invocation of the UDF, allowing multiple instances of the UDF
to be invoked in parallel. To make the most efficient use of memory, consider setting the
_calculation_context_alignment a value smaller than the default (depending on the size of the
context storage needed).

For details on context storage, refer to the description of _calculation_context_size and
_calculation_context_alignment in the section Aggregate UDF descriptor structure on page
57. These variables are near the end of the descriptor structure.

82

Sybase 1Q

Scalar and Aggregate UDFs

For a detailed discussion about the use of context storage, see Calculation contexton page
61.

Important: To store intermediate results in memory within an aggregate UDF, initialize the
memory with the _start_extfn function, and clean up and de-allocate any memory with the
_finish_extfn function.

See also
» Declaring an Aggregate UDF on page 47
» Defining an Aggregate UDF on page 54

Calling Scalar and Aggregate UDFs

You can use a user-defined function, subject to permissions, any place you use a built-in
nonaggregate function.

This Interactive SQL statement returns a full name from two columns containing a first and
last name:

SELECT ful |l nane (G venNane, Last Nane)
FROM Enpl oyees;

fullname (Employees.GivenName,Employees.SurName)

Fran Whitney

Matthew Cobb

Philip Chin

The following statement returns a full name from a supplied first and last name:
SELECT ful Il nanme ('Jane', 'Smith');

fullname (‘Jane','Smith")

Jane Smith

Any user who has been granted Execute permissions for the function can use the fullname
function.

Scalar and Aggregate UDF Calling Patterns

Calling patterns are steps the functions perform as results are gathered.

User-Defined Functions 83

Scalar and Aggregate UDFs

Scalar and Aggregate UDF Callback Functions

The set of callback functions are supplied by the engine through the
a_v3_extfn_scal ar_cont ext structure and used within the user's UDF functions.

get_value — The function used within an evaluation method to retrieve the value of each
input argument. For narrow argument data types (smaller than 256 bytes), a call to
get_value is sufficient to retrieve the entire argument value. For wider argument data types,
if the piece_len field within the an_extfn_value structure passed to this callback comes
back with a value smaller than the value in the total_len field, use the get_piece callback to
retrieve the rest of the input value.

get_piece— The function used to retrieve subsequent fragments of a long argument input
value.

Note: The get_piece callback is valid inv3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_i streamn structures instead.

get_is_constant —A function that determines whether the specified input argument value
is a constant. This can be useful for optimizing a UDF, for example, where work can be
performed once during the first call to the _evaluate_extfn function, rather than for every
evaluation call.

set_value— The function used within an evaluation function to tell the server the result
value of the UDF for this call. If the result data type is narrow, one call to set_value is
sufficient. However, if the result data value is wide, then multiple calls to set_value are
required to pass the entire value, and the append argument to the callback should be true for
each fragment except the last. To return a NULL result, the UDF should set the data field
within the result value's an_extfn_value structure to the null pointer.

get_is cancelled — A function to determine whether the statement has been cancelled. If a
UDF entry point is performing work for an extended period of time (many seconds), then it
should, if possible, call the get_is_cancelled callback every second or two to see if the user
has interrupted the current statement. The return value is 0 if the statement has not been
interrupted.

Sybase 1Q can handle extremely large data sets, and some queries can run for long periods
of time. Occasionally, a query takes an unusually long time to execute. The SQL client lets
the user cancel a query if it is taking too long to complete. Native functions track when a
user has canceled a query. UDFs must also be written in a manner that tracks whether a
query has been canceled by the user. In other words, UDFs should support the ability for
users to cancel long-running queries that invoke UDFs.

set_error — A function that can be used to communicate an error back to the server, and
eventually to the user. Call this callback routine if a UDF entry point encounters an error
that should result in an error message being sent back to the user. When called, set_error
rolls back the current statement, and the user receives Er r or fr om ext er nal UDF:
error_desc_string, and the SQLCODE is the negated form of the supplied
error_number. To avoid collisions with existing errors, UDFs should use error_number

84

Sybase 1Q

Scalar and Aggregate UDFs

values between 17000 and 99999. The maximum length of “error_desc_string” is 140
characters.

* log_message—The function used to send a message to the server's message log. The string
must be a printable text string no longer than 255 bytes.

« convert_value—The function allows data conversion between data types. The primary use
is the conversion between DT_DATE, DT_TIME, and DT_TIMESTAMP, and
DT_TIMESTAMP_STRUCT. An input and output an_extfn_value is passed to the
function.

See also

e Scalar UDF Calling Pattern on page 85

» Aggregate UDF Calling Patterns on page 85

* Blob (a_v4_extfn_blob)on page 195

e Blob Input Stream (a_v4_extfn_blob_istream) on page 199

Scalar UDF Calling Pattern
Expected calling pattern for supplied function pointers for a scalar UDF calling pattern.

_start_extfn(if supplied)
_evaluate_extfn (repeated 0 to numerous tines)
_finish_extfn(if supplied)

See also
o Scalar and Aggregate UDF Callback Functions on page 84
» Aggregate UDF Calling Patterns on page 85

Aggregate UDF Calling Patterns

The calling patterns for the user-supplied aggregate UDF functions are more complex and
varied than the scalar calling patterns.

The examples that follow this table definition:
create table t (a int, bint, c int)

insert intot values (1, 1, 1)
insert intot values (2, 1, 1)
insert intot values (3, 1, 1)
insert intot values (4, 2, 1)
insert intot values (5, 2, 1)
insert intot values (6, 2, 1)

The following abbreviation is used:

RR = a_v3_extfn_aggregate_context. _result_row_offset_from_start_of_partition — This
value indicates the current row number inside the current partition for which a value is
calculated. The value is set during windowed aggregates and is intended to be used during the
evaluation step of unbounded windows; it is available at all evaluate calls.

User-Defined Functions 85

Scalar and Aggregate UDFs

Sybase 1Q is a multi user application. Many users can simultaneously execute the same UDF.
Certain OLAP queries excute UDFs multiple times within the same query, sometimes in

parallel.

See also

o Scalar and Aggregate UDF Callback Functions on page 84
e Scalar UDF Calling Pattern on page 85

Simple Aggregate Ungrouped

The simple aggregate ungrouped calling pattern totals the input values of all rows and

produces a result.

Query
select nmy_sun(a) fromt

Calling pattern

_start_extfn(cntxt)

_reset_extfn(cntxt)

_next _val ue_extfn(cntxt,
_next _val ue_extfn(cntxt,
_next _val ue_ext fn(cntxt,
_next _val ue_ext fn(cntxt,
_next _val ue_extfn(cntxt,
_next _val ue_extfn(cntxt,

ar gs)
ar gs)
ar gs)
ar gs)
ar gs)
ar gs)

_eval uate_extfn(cntxt, args)

_finish_extfn(cntxt)

Result
my_sunt(a)
21

Simple Aggregate Grouped

>

©

e

=2
oL D
NOOTAWNPEP

1

The simple aggregate grouped calling pattern totals the input values of all rows in the group

and produces a result. _reset_extfn identifies the beginning of a group.

Query

select b, nmy_sum(a) fromt group by b order

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next _val ue_extfn(cntxt,
_next _val ue_ext fn(cntxt,
_next _val ue_extfn(cntxt,

ar gs)
ar gs)
ar gs)

_eval uate_extfn(cntxt, args)

_reset_extfn(cntxt)
_next _val ue_ext fn(cnt xt,

ar gs)

i nput a=1
i nput a=2
i nput a=3
returns

i nput a=4

by b

6

86

Sybase 1Q

Scalar and Aggregate UDFs

_next_val ue_extfn(cntxt, args) -- input a=5
_next_val ue_extfn(cntxt, args) -- input a=6
_eval uate_extfn(cntxt, args) -- returns 15

_finish_extfn(cntxt)

Result

b, nmy_sun(a)
1, 6

2, 15

OLAP-Style Aggregate Calling Pattern with Unbounded Window

Partitioning on “b” creates the same partitions as grouping on “b”. An unbounded window
causes the “a” value to be evaluated for each row of the partition. Because this is an unbounded
query, all values are fed to the UDF first, followed by an evaluation cycle. Context indicators
are set to 1 for _window_has_unbounded_preceding and
_window_has_unbounded_following

Query

select b, nmy_sum(a) over (partition by b rows between
unbounded precedi ng and

unbounded f ol | owi ng)

fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1

_next _val ue_extfn(cntxt, args) i nput a=2

_next _val ue_extfn(cntxt, args) i nput a=3

_eval uate_extfn(cntxt, args) rr=1 returns 6
_eval uate_extfn(cntxt, args) rr=2 returns 6
_evaluate_extfn(cntxt, args) rr=3 returns 6
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4

_next _val ue_extfn(cntxt, args) i nput a=5

_next _val ue_extfn(cntxt, args) i nput a=6

_eval uate_extfn(cntxt, args) rr=1 returns 15
_eval uate_extfn(cntxt, args) rr=2 returns 15
_eval uate_extfn(cntxt, args) rr=3 returns 15

_finish_extfn(cntxt)

Result
, ny_sun(a)
, 6
6
6
15

15
15

NNNRPRPRPRT

User-Defined Functions 87

Scalar and Aggregate UDFs

OLAP-Style Unoptimized Cumulative Window Aggregate
If _evaluate_cumulative_extfn is not supplied, this cumulative sum is evaluated through this
calling pattern, which is less efficient than _evaluate_cumulative_extfn.

Query

select b, ny_sum(a) over (partition by b

rows between unbounded precedi ng and current row)
fromt

order by b

Calling pattern

_start_extfn(cntxt)
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) -- input a=1
_eval uate_extfn(cntxt, args) -- returns 1
_next_val ue_extfn(cntxt, args) -- input a=2
_eval uate_extfn(cntxt, args) -- returns 3
_next _val ue_extfn(cntxt, args) -- input a=3
_eval uate_extfn(cntxt, args) -- returns 6
_reset_extfn(cntxt)

_next_val ue_extfn(cntxt, args) -- input a=4
_evaluate_extfn(cntxt, args) -- returns 4
_next_val ue_extfn(cntxt, args) -- input a=5
_eval uate_extfn(cntxt, args) -- returns 9
_next_val ue_extfn(cntxt, args) -- input a=6
_evaluate_extfn(cntxt, args) -- returns 15

_finish_extfn(cntxt)

Result

b, ny_suma)
1, 1

1, 3

1, 6

2, 4

2, 9

2, 15

OLAP-Style Optimized Cumulative Window Aggregate

If _evaluate_cumulative_extfn is supplied, this cumulative sum is evaluated where the
next_value/evaluate sequence is combined into a single _evaluate_cumulative_extfn call for
each row within each partition.

Query

select b, my_sum(a) over (partition by b rows between unbounded
precedi ng and current row)

fromt

order by b

88

Sybase 1Q

Scalar and Aggregate UDFs

Calling pattern

_start_extnfn(cntxt)
_reset _extfn(cntxt)

_evaluate_cumul ative_extfn(cntxt, args) -- input a=1 returns 1

_evaluate_cumul ati ve_extfn(cntxt, args) -- input a=2 returns 3

_evaluate_cunul ative_extfn(cntxt, args) -- input a=3 returns 6

_reset _extfn(cntxt)

_evaluate_cumul ative_extfn(cntxt, args) -- input a=4 returns 4

_evaluate_cumul ati ve_extfn(cntxt, args) -- input a=5 returns 9

_eval uate_cumul ati ve_extfn(cntxt, args) -- input a=6 returns 15

_finish_extfn(cntxt)

Result
, ny_sun(a)
1

NN PR T
O©hrhOW

15

OLAP-Style Unoptimized Moving Window Aggregate
If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
this significantly less efficient than using _drop_value_extfn.

Query

sel ect b, nmy_sum(a) over (partition by b rows between 1 precedi ng and
current row)

fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1
_eval uate_extfn(cntxt, args) returns 1
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=2
_eval uate_extfn(cntxt, args) returns 3
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3
_eval uate_extfn(cntxt, args) returns 5
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4
_eval uate_extfn(cntxt, args) returns 4
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4
_next _val ue_extfn(cntxt, args) i nput a=5

User-Defined Functions 89

Scalar and Aggregate UDFs

_eval uate_extfn(cntxt, args) returns 9
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=5
_next _val ue_extfn(cntxt, args) i nput a=6
_eval uate_extfn(cntxt, args) returns 11

_finish_extfn(cntxt)

Result
b, ny_sun(a)
1, 1
1, 3
1, 5
2, 4
2, 9
2, 11

OLAP-Style Optimized Moving Window Aggregate
Ifthe _drop_value_extfn function is supplied, this moving window sum is evaluated using this
calling pattern, which is more efficient than using _drop_value_extfn.

Query

select b, nmy_sum(a) over (partition by b rows between 1 precedi ng and
current row)

fromt

Calling pattern

_start_extfn(cntxt)
_reset _extfn(cntxt)

_eval uat e_aggregate_extfn(cntxt, args) -- returns 1
_eval uat e_aggregate_extfn(cntxt, args) -- returns 3
_drop_val ue_extfn(cntxt) -- input a=1
_next _val ue_extfn(cntxt, args) -- input a=3

_eval uat e_aggregate_extfn(cntxt, args) -- returns 5
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) -- input a=4

_eval uat e_aggregate_extfn(cntxt, args) -- returns 4
_next _val ue_extfn(cntxt, args) -- input a=5

_eval uat e_aggregate_extfn(cntxt, args) -- returns 9
_drop_val ue_extfn(cntxt) -- input a=4

_next _val ue_extfn(cntxt, args) -- input a=6

_eval uat e_aggregate_extfn(cntxt, args) -- returns 11

_finish_extfn(cntxt)

Result

b, ny_sum(a)
1, 1

1, 3

1, 5

2, 4

2, 9

2, 11

90 Sybase 1Q

Scalar and Aggregate UDFs

OLAP-Style Unoptimized Moving Window Following Aggregate

If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
the following calling pattern. This case is similar to the previous moving window example, but
the row being evaluated is not the last row given by next value function.

Query

sel ect b, ny_sum(a) over (partition by b rows between 1 precedi ng and
1 follow ng)
fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=2
_eval uate_extfn(cntxt, args) returns 3
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3
_eval uate_extfn(cntxt, args) returns 6
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3
_eval uate_extfn(cntxt, args) returns 5
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4
_next _val ue_extfn(cntxt, args) i nput a=5
_eval uate_extfn(cntxt, args) returns 9
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4
_next _val ue_extfn(cntxt, args) i nput a=5
_next _val ue_extfn(cntxt, args) i nput a=6
_evaluate_extfn(cntxt, args) returns 15
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=5
_next _val ue_extfn(cntxt, args) i nput a=6
_eval uate_extfn(cntxt, args) returns 11

_finish_extfn(cntxt)

Result
, ny_sun(a)
, 3
6
5
9

15
11

NNNRPRPRPRT

User-Defined Functions 91

Scalar and Aggregate UDFs

OLAP-Style Optimized Moving Window Following Aggregate

If _drop_value_extfn function is supplied, this moving window sum is evaluated through the
following calling pattern. Again, this case is similar to the previous moving window example,
but the row being evaluated is not the last row given by next value function.

Query

sel ect b, ny_sum(a) over (partition by b rows between 1 precedi ng and
1 follow ng)

fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1

_next _val ue_extfn(cntxt, args) i nput a=2

_eval uate_extfn(cntxt, args) returns 3

_next _val ue_extfn(cntxt, args) i nput a=3

_eval uate_extfn(cntxt, args) returns 6

_dropval ue_ext fn(cnt xt) i nput a=1
_eval uate_extfn(cntxt, args) returns 5
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4

_next _val ue_extfn(cntxt, args) i nput a=5

_eval uate_extfn(cntxt, args) returns 9

_next _val ue_extfn(cntxt, args) i nput a=6

_eval uate_extfn(cntxt, args) returns 15

_dropval ue_ext f n(cnt xt) i nput a=4
_eval uate_extfn(cntxt, args) returns 11

_finish_extfn(cntxt)

Result
, ny_sun(a)
3

6
5
9
, 15
, 11

NNNRFRPRFRPRPR,T

OLAP-Style Unoptimized Moving Window without Current

Assume the UDF my_sum works like the built-in SUM. If _drop_value_extfn function is not
supplied, this moving window count is evaluated through the following calling pattern. This
case is similar to the previous moving window examples, but the current row is not part of the
window frame.

Query
select b, ny_sum(a) over (rows between 3 precedi ng and 1 preceding)
fromt

92 Sybase 1Q

Scalar and Aggregate UDFs

Calling pattern

_start_extfn(cntxt)

_reset _extfn(cntxt)

_evaluate_extfn(cntxt, args) returns NULL
_reset_extfn(cntxt)

next val ue_extfn(cntxt, args) nput a=1
_eval uate_extfn(cntxt, args) returns 1
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) nput a=1
next val ue_extfn(cntxt, args) nput a=2
_eval uate_extfn(cntxt, args) returns 3
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3

_eval uate_extfn(cntxt, args) returns 6
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3
_next _val ue_extfn(cntxt, args) i nput a=4

_eval uate_extfn(cntxt, args) returns 9
reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=3
_next _val ue_extfn(cntxt, args) i nput a=4
_next _val ue_extfn(cntxt, args) i nput a=5

_eval uate_extfn(cntxt, args) returns 12
_finish_extfn(cntxt)

Result

OLAP-Style Optimized Moving Window without Current

If _drop_value_extfn function is supplied, this moving window count is evaluated through the
following calling pattern. This case is similar to the previous moving window examples, but
the current row is not part of the window frame.

Query

select b, ny_sum(a) over (rows between 3 precedi ng and 1 precedi ng)
fromt

Calling pattern

_start_extfn(cntxt)
_reset _extfn(cntxt)

User-Defined Functions 93

Scalar and Aggregate UDFs

_eval uate_extfn(cntxt, args) returns NULL
_next _val ue_extfn(cntxt, args) i nput a=1
_eval uate_extfn(cntxt, args) returns 1
_next _val ue_extfn(cntxt, args) i nput a=2
_eval uate_extfn(cntxt, args) returns 3
_next _val ue_extfn(cntxt, args) i nput a=3
_evaluate_extfn(cntxt, args) returns 6
_dropval ue_ext fn(cntxt) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=4
_eval uate_extfn(cntxt, args) returns 9
_dropval ue_ext f n(cnt xt) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=5
_eval uate_extfn(cntxt, args) returns 12

_finish_extfn(cntxt)

Result

External Function Prototypes

Define the API by a header file named ext f napi v3. h (ext f napi v4. h for the v4 API)
in the subdirectory of your Sybase 1Q installation directory. This header file handles the
platform-dependent features of external function prototypes.

To notify the database server that the library is not written using the old API, provide a
function as follows:

ui nt 32 extfn_use_new api()

This function returns an unsigned 32-bit integer. If the return value is nonzero, the database
server assumes that you are using the new API.

If the DLL does not export this function, the database server assumes that the old APl is in use.
When using the new API, the returned value must be the API version number defined in
ext f napi . v4h.

Each library should implement and export this function as:

unsi gned int extfn_use_new api (voi d)

{

}

The presence of this function, and that it returns EXTFN_V4_API informs the Sybase 1Q
engine that the library contains UDFs written to the new APl documented in this book.

return EXTFN_V4_API ;

94

Sybase 1Q

Scalar and Aggregate UDFs

Function prototypes
The name of the function must match that referenced in the CREATE PROCEDURE or
CREATE FUNCTION statement. Declare the function as:

voi d function-name (an_extfn_api *api, void *argunent-handle)

The function must return void, and must take as arguments a structure used to pass the
arguments, and a handle to the arguments provided by the SQL procedure.

The an_ext f n_api structure has this form:

typedef struct an_extfn_api {

short (SQL_CALLBACK *get val ue)(
void * arg_handl e,
a_sql _ui nt 32 arg_num
an_extfn_val ue *val ue

)

short (SQL_CALLBACK *get _piece)(
void * ar g_handl e,
a_sql _uint 32 arg_num
an_extfn_val ue *val ue,
a_sql _uint32 of f set

)

short (SQL_CALLBACK *set _val ue)(
void * arg_handl e,
a_sql _ui nt 32 arg_num
an_ext fn_val ue *val ue

short append
)

voi d (SQL_CALLBACK *set _cancel) (
void * arg_handl e,
void * cancel _handl e
)

} an_extfn_api;

Note: The get_piece callback is valid in v3 and v4 scalar and aggregate UDFs. For v4 table
UDFs and TPFs, use the Blob (a_v4_ext f n_bl ob) and Blob Input Stream
(a_v4_extfn_bl ob_i strean structures instead.

The an_extfn_value structure has this form:

typedef struct an_extfn_val ue {

void * dat a;
a_sql _uint 32 pi ece_l en;
uni on {
a_sql _uint 32 total _I en;
a_sql _ui nt 32 remai n_| en;
} len;
a_sql _data_type type;

} an_extfn_val ue;

User-Defined Functions 95

Scalar and Aggregate UDFs

Notes
Callingget _val ue onan OUT parameter returns the data type of the argument, and returns
data as NULL.

The get _pi ece function for any given argument can be called only immediately after the
get_value function for the same argument.

To return NULL, set data to NULL inan_ext f n_val ue.

The append field of set _val ue determines whether the supplied data replaces (false) or
appends to (true) the existing data. You must call set _val ue with append=FALSE before
calling it with append=TRUE for the same argument. The append field is ignored for fixed-
length data types.

The header file itself contains additional notes.

See also
» Blob (a_v4_extfn _blob)on page 195
e Blob Input Stream (a_v4_extfn_blob_istream) on page 199

96

Sybase 1Q

Table UDFs and TPFs

Table UDFs and TPFs

Table UDFs are external user-defined C, C++, or Java table functions. Unlike scalar and
aggregate UDFs, table UDFs produce row sets as output. SQL queries consume a table UDF's
output sets as table expressions.

Scalar and aggregate UDFs can use either the v3 or v4 API, but table UDFs can use only v4.

Declare a table UDF SQL function using the CREATE PROCEDURE statement. Scalar and
aggregate UDFs use the CREATE FUNCTION statement.

Table parameterized functions (TPFs) are enhanced table UDFs that accept either scalar
values or row sets as input.

See also

e Table Parameterized Functions on page 136

e Declaring and Defining Scalar User-Defined Functions on page 33
» Declaring and Defining Aggregate UDFs on page 47

e Learning Roadmap. Types of External C and C++ UDF5s on page 6
e Creating a Java Table UDF on page 352

User Roles
Two types of users work with table UDFs: UDF developers, and SQL analysts.

* UDF developer —develops the table UDF in C or C++,

e SQL analyst —develops and analyzes the SQL queries that reference the table expression
in the FROM clause. The table expression is the set of rows produced by the table UDF.

See also
« Learning Roadmap for Table UDF Developers on page 97
e Learning Roadmap for SQL Analysts on page 98

Learning Roadmap for Table UDF Developers

Use annotated examples to learn how to develop a C or C++ table UDF. After completing the
development tasks, the SQL analyst can then reference your UDF in a SQL query.

This roadmap assumes:

* You have a C or C++ development environment on your machine.

User-Defined Functions 97

Table UDFs and TPFs

< You are familiar with standard programming practices.

Task

See

Become familiar with table UDF and TPF re-
strictions.

Table UDF Restrictions on page 99

Create a table UDF.

Developing a Table UDF on page 103

(Optional) Define the library version validators
for distributed query processing (DQP).

Library \Version (extfn_get_library_version) on
page 17

Library Version Compatibility (extfn_check ver-
sion_compatibility) on page 17

Compile and link source code.

Compile and Link Source Code to Build Dynam-
ically Linkable Libraries on page 19

Declare the UDF to the server using the CREATE
PROCEDURE statement. Write and execute these
statements as commands, or issue the CREATE
statement using Sybase Central or Sybase Con-
trol Center.

Learning Roadmap for SQL Analysts on page
98

Learning Roadmap for SQL Analysts

Reference a C or C++ table UDF in your SQL query.

Task

See:

Obtainthe . dl | or. so file (for example,
myudf . dl |) from the UDF developer.

Place the . dl | file in the bi n64 directory;
place the . so fileinthel i b64 or LD LI -
BRARY_PATHdirectory.

Not applicable.

Define the CREATE PROCEDURE statement, ref-
erencingthe. dl | file and the callback function.

For example:

CREATE PROCEDURE ny_udf (I N
numrow | NT)

RESULT(id INT)

EXTERNAL NAME

"udf _rg_proc@yudf.dl I’

CREATE PROCEDURE Statement (Table UDF)
on page 169

98

Sybase 1Q

Table UDFs and TPFs

Task See:

Select rows from the UDF. SELECT Statement on page 185
For example: FROM Clause on page 179
SELECT * FROM ny_udf (5)

See also
o SQL Reference for Table UDF and TPF Queries on page 166

Table UDF Restrictions

Table UDFs and TPFs have some restrictions.

« 1Q_IDA license users can run table UDFs and TPFs only on reader nodes of a multiplex.
e The TEMPORARY PROCEDURE clause is not allowed for any external procedures.
Attempting to create a temporary external procedure results in an error at creation time.

e The NO RESULT SET clause is not allowed. Table UDFs and TPFs must explicitly declare
the contents of their results.

« Ifthe optional DYNAMIC RESULT SETS integer-expression clause is specified, the value
must be set to 1. Table UDFs and TPFs do not return multiple result sets.

« Atable UDF or TPF cannot be referenced in a CALL SQL statement or EXEC embedded
SQL statement. A table UDF or TPF can be referenced only in a FROM clause of a SQL
statement.

* The LANGUAGE clause cannot be used for table UDFs or TPFs. If the LANGUAGE clause
is present, syntax errors are reported at execution time.

e The parameter clause is limited to keyword IN; INOUT and OUT keywords are not
supported for table UDFs or TPFs.

e The EXTERNAL NAME clause has the same syntax as scalar and aggregate UDFs.

Get Started

Familiarize yourself with sample files, concepts, and restrictions before developing table
UDFs and TPFs.

Sample Files

Sample table UDF files are installed with the server. Use the samples as models when defining
your own table UDFs.

Sample files are located in:

e Y%ALLUSERSPROFI LE% sanpl es\ udf (Windows)

User-Defined Functions 99

Table UDFs and TPFs

$I QDI R15/ sanpl es/ udf (UNIX)

File

Description

apache_I| og_reader. cxx

Implementation of a table UDF that reads an
Apache log file and presents the rows from the file
in table format. This UDF illustrates a real-world
example of how you can use a UDF to make
computer-generated data available to a SQL
query writer in real time.

build.sh / build. bat

Script that compiles and links the sample scalar
and aggregate UDFs, table UDFs, and TPFs
found in the sanpl es/ udf directory.

my_nmd5. cxx

Asimple deterministic scalar UDF that calculates
the MD5 hash value of an input file (a LOB binary
argument).

t pf _agg. cxx

Consumes rows from an input table, performs an
aggregation on the input data, and returns rows
back to the server.

t pf _bl ob. cxx

Implementation of a TPF that reads LOB data
from an input table and passes the data to the
result set, if an even number of the specified
character or digit is present. This TPF illustrates
how to read LOB data and how a user can pass
LOB datatypes through to the result set.

t pf _dt.cxx

tpf_filt.cxx

Illustrates how a TPF can be used to filter rows.
The example uses the row block provided by
caller and passes it to the input table parameter.
The input table schema must match the output
result set of this function.

t pf _oby. cxx Illustrates how a TPF can generate ordered output
and pass it along.
t pf _pby. cxx Illustrates how a TPF can generate partitioned

output and pass it along.

tpf_rg_1.cxx

Similar to the table UDF sample
udf _rg_2. cxx. Itproduces rows of data
based on an input parameter.

tpf_rg_2.cxx

Builds upon the samplein t pf _rg_1. cxXx,
but uses f et ch_i nt o instead of

f et ch_bl ock to read rows from the input
table.

100

Sybase 1Q

Table UDFs and TPFs

File Description

udf _mai n. cxx This file is linked into all of the examples and
includes a common set of required entry points
for the v4 API. This allows you to reuse the code
rather than including it in each example.

udf _rg 1. cxx A simple table UDF that generates rows of integer
data.
udf _rg 2. cxx A simple table UDF that generates rows of integer

data that uses descr i bes to ensure the sche-
ma defined in SQL matches the UDF's imple-
mentation. It also describes some optimizer at-

tributes.

udf _rg_3. cxx A simple table UDF that generates integer data in
blocks of 100 usingthe f et ch_bl ock fetch
method.

udf _utils. cxx A set of utility functions and macros that are use-

ful to UDF/TPF developers. The examplesrely on
items in this file.

udf _utils.h A set of utility functions and macros that are use-
ful to UDF/TPF developers. The examples rely on
items in this file.

Understanding Producers Versus Consumers

The server and UDF form a producer and consumer relationship when exchanging rows of
data.

Production and consumption refer to table row data. The producer produces table rows; the
consumer consumes table rows.

The server executes scalar and aggregate UDFs once for each matching row of a query. These
UDFs consume input scalar parameters and produce, and return, a single scalar parameter.
This data exchange occurs during the eval uat e method using the get _val ue() and
set _val ue() APIs.

However, scalar production and consumption is an inefficient method of data exchange if your
UDF must produce or consume a table. Table UDFs that produce a table, and TPFs that
consume atable, use ther ow bl ock data structure of the v4 API. Row blocks allow for bulk
row and column data exchange. The row block is populated by a producer, and read from by a
consumer.

In this example, the table UDF my _t abl e_udf () is a producer of data. Sybase 1Q, the
server, is the consumer of the data:
SELECT * FROM ny_t abl e_udf ()

User-Defined Functions 101

Table UDFs and TPFs

In general, a table UDF is always a producer of data. The server, however, may not always be
the consumer:

SELECT * FROM ny_t pf (TABLE(SELECT * FROM ny_table_udf()))

The outer TPF, my _t pf (), is the consumer for the table input parameter specified by
SELECT *from my_table_udf(). Sybase 1Q is the consumer of the table produced by the
my_t pf () TPF. A TPF, therefore, can be both a consumer and a producer.

The TPF does not have to consume from a table UDF. In this example, the TPF consumes the
table data produced by the inner query, which is produced by the Sybase 1Q server:

SELECT * FROM ny_t pf (TABLE(SELECT * FROM ny_t abl e where ny_table.cl
<10))

In a TPF, therefore, Sybase 1Q can be both the consumer and producer of table data.

In the v4 API, a row block defines a memory area where data is produced to, and consumed
from. In general, the layout of a row block conceptually matches the row and column format of
the table; a row block consists of a number of rows, and each row consists of a number of
columns. Either the producer or consumer must allocate the row block, and must also
deallocate it when the time comes.

Rows and column have their own specific attributes that only apply to them. For example,
rows have a status flag which indicates if the row is present or not. This flag lets a TPF change
the row status without having to move the column data. Columns have a null mask that
indicates if the data value is null or not. Row blocks also have some additional attributes:
maximum number of rows, and current number of rows, for example. These row block
attributes are useful when a UDF wants to create a row block to handle a large set of rows, but
produce a smaller number of rows as required.

The process of consuming a row is handled via one of the two fetch APIs:

« fetch_into
« fetch_ bl ock

The f et ch_i nt o is called when the consumer allocates the row block and passes it to the
producer. The producer is then requested to populate as many rows as possible, up to the
maximum number of rows. The f et ch_bl ock is called when the consumer wants the
producer to allocate the row block. Fet ch_bl ock is efficient if you are developing a TPF
that filters rows of data. The server (consumer) allocates the row block and fetches from the
TPF using the f et ch_i nt o API. The TPF can then pass the same row block to the input
parameter using the f et ch_bl ock API.

See also
» Row Block Data Exchange on page 128

102

Sybase 1Q

Table UDFs and TPFs

Developing a Table UDF

The general steps for developing a table UDF include determining input and output, declaring
the v4 library, defining the a_v4_ext f n_pr oc descriptor, defining a library entry point
function, defining how the server gets row information, implementing the

a_v4_ext f n_proc structure functions, and implement the

a_v4_extfn_tabl e_func structure functions.

1. Determine the input and output for the table UDF.

The input is defined by the parameters the procedure accepts, and the output is defined by
how the RESULT clause for the procedure is declared. The declaration of the table UDF in
SQL is separate from the implementation of the table UDF. This means that a particular
implementation of a table UDF may be bound to a specific declaration. When developing a
table UDF, ensure that the implementation and declaration match.

2. Declare the library as a v4 Library.

For Sybase 1Q to recognize the library as a v4 library, the library must include the
ext f napi v4. h header file located in the subdirectory of your Sybase IQ installation
directory.

This header defines the v4 API features and functions and is a superset of the v3 API;
ext f napi v4. hincludes ext f napi v3. h.

To create table UDF or TPFs, the library must provide the ext f n_use_new_api ()
entry point. For v4 libraries, ext f n_use_new_api () must return
EXTEN_V4_API .

3. Definethe a_v4_ext f n_pr oc descriptor.

When developing a v4 table UDF or TPF, the library must declare what functions are
available for the server to call.

Create a variable of type a_v4_ext f n_pr oc and set each member of this structure to
the address of the function within the table UDF that implements the function. The
information in this variable is made available to the server via a library entry pointer. Not
allmembersofa_v4 _ext f n_pr oc arerequired and there are two reserved fields which
you must set to NULL.

Use this descriptor function as a model when developing your own function:

static a_v4_extfn_proc udf_proc_descriptor =

{
udf _proc_start, /1 optional
udf _proc_fini sh, /1 optional
udf _proc_eval uat e, /1 required
udf _proc_descri be, /'l required
udf _proc_enter_state,// optional
udf _proc_| eave_state,// optional

User-Defined Functions 103

Table UDFs and TPFs

NULL, /! Reserved: must be NULL
NULL // Reserved: nmust be NULL

H

. Define a library entry-point function.

The table UDF library must provide a function entry point that returns an
a_v4_ext f n_pr oc descriptor pointer. This is the same descriptor as described in step
3.

This callback function is the main required entry point for the library.

Use this function as a model when developing your own library entry point:

extern "C'
a_v4 _extfn_proc * SQL_CALLBACK udf _rg_proc()

/**/

{
}

return &udf _proc_descriptor;

. Define how the server gets row information from the table UDF.

When developing a v4 table UDF or TPF, the library must declare how row information is
transferred to the server.

Create a variable of type a_v4_ext f n_t abl e_f unc and set each member of this
structure to the address of the function within the table UDF that implements the function.
The information in this variable is made available to the server at runtime.

Not all members of a_v4_ext f n_t abl e_f unc are required and there are two
reserved fields which must be set to NULL.

Use this descriptor as a model when developing your own table UDF:

udf _t abl e_func_open, /1 required

udf _table func_fetch_ into, // one of fetch_ into or
fetch_bl ock required

udf table func_fetch_block, // one of fetch_into or
fetch_bl ock required

udf _tabl e _func_rew nd, /1 optional
udf _tabl e_func_cl ose, /'l required
NULL, /'l Reserved: nust be NULL
NULL /'l Reserved: must be NULL

I

At the start of execution, the server calls the a_v4_ext f n_pr oc function

_eval uat e_ext f n to give the table UDF an opportunity to tell the server what table
functions it is implementing. To do this, the table UDF must create an instance of
a_v4_ext fn_tabl e thatis given to the server. This structure contains a pointer to the
a_v4_extfn_tabl e_func descriptor and the number of columns in the result set.

Use this descriptor as a model when developing your own table UDF:

104

Sybase 1Q

Table UDFs and TPFs

static a v4_extfn_table udf _rg_table = {
&udf _table _funcs, // Table function descriptor
1 /1 nunber _of col ums

implement the a_v4_ext f n_pr oc structure functions.

The table UDF must provide an implementation for each of thea_v4_extfn_proc
functions that it declares in the a_v4_ext f n_pr oc descriptor in step 3.

Implement the a_v4_ext f n_t abl e_f unc structure functions.

The table UDF must provide an implementation for each of the

a_v4_extfn_tabl e_func functions that it declares in the
a_v4_extfn_tabl e _func descriptor in step 5.

See also

Scalar and Aggregate UDF Calling Patterns on page 83
udf rg 2on page 111

udf rg 3on page 115

Implementing Sample Table UDF udf rg 1 on page 106
Table UDF Implementation Examples on page 105
External Function (a_v4_extfn_proc) on page 284

Table Functions (a_v4_extfn_table_func) on page 314
_evaluate_extfnon page 286

Table UDF Implementation Examples

Implementation examples start with a simple table UDF and increase in complexity.

The table UDF implementation examples are included in the samples directory. These
examples start with a simple table UDF and build upon its complexity and functionality as the
examples progress.

The examples are available in a precompiled dynamic library called | i bv4api ex. (The
extension of this library name is platform dependent.) This library has linked in the functions
defined in udf _mai n. cxx, which contains the library level functions, such as
extfn_use_new_api. Putl i bv4api ex in a directory the server can read.

See also

Running the Sample Table UDF in udf _rg_1.cxxon page 111
Running the Sample Table UDF in udf rq 2.cxxon page 114
Running the Sample Table UDF in udf rg 3.cxxon page 118

User-Defined Functions 105

Table UDFs and TPFs

Implementing Sample Table UDF udf rg 1

The sample table UDF called udf_rg_1 illustrates how a v4 Table UDF can generate n rows of
data. The implementation of the table UDF is in the samples directory inudf _rg_1. cxx.

1

Determine the input and output for the table UDF.

This example produces n7rows of data based on the value of an input parameter. The input
is a single integer parameter and the output is rows that consist of a single column of type
i nt eger.

The CREATE PROCEDURE statement required to define this procedure is:

CREATE OR REPLACE PROCEDURE udf rg_1(I N num I NT)
RESULT(c1 INT)
EXTERNAL NAME ‘ udf rg_1@i bv4api ex’

Declare the library as a v4 library.
In this example, udf _r g_1. cxx includes the ext f napi v4. h header file:

#i ncl ude “extfnapiv4.h”

To inform the server that this library contains v4 table UDFs, this function export is defined
in udf _mai n. cxx:

sql _uint32 SQL_CALLBACK extfn_use_new api (void)

a
/;**/
{

return EXTFN_V4_API ;

}
Define the a_v4_ext f n_proc descriptor.

This declares the necessary descriptor inudf _rg_1. cxx:

static a_v4_extfn_proc udf _rg_descriptor =

{
NULL, /[l _start_extfn
NULL, /1 _finish_extfn
udf _rg_evaluate, // _evaluate_extfn
udf _rg_describe, // _describe_extfn
NULL, /Il _leave state extfn
NULL, /1l _enter_state_extfn
NULL, /1 Reserved: must be NULL
NULL /1 Reserved: must be NULL
b

Define a library entry point function.

This callback function declares the main entry point function. It simply returns a pointer to
thea_v4_proc_descri pt or variable udf rg descriptor.

extern "C'
a_v4 _extfn_proc * SQL_CALLBACK udf _rg_1 proc()

/**/

{

106

Sybase 1Q

Table UDFs and TPFs

return &udf _rg_descriptor;

}
5. Define how the server gets row information from the table UDF.

This declaresthe a_v4_ext f n_t abl e_f unc descriptor that is used to tell the server
how to retrieve row data from the table UDF:

static a_v4_extfn_table_func udf_rg_table_funcs =

{
udf _rg_open, /1l _open_extfn
udf _rg_fetch_into, // _fetch_into_extfn
NULL, /| _fetch_block_extfn
NULL, /1l _rewi nd _extfn
udf _rg_cl ose, /1l _close_extfn
NULL, /1 Reserved: must be NULL
NULL /1 Reserved: must be NULL
}

In this example, the _f et ch_i nt o_ext f n function transfers row data to the server.
This isthe easiest data transfer method to understand and implement. This document refers
to data transfer methods as rowblock data exchange. There are two rowblock data
exchange functions: _fetch_into_extfnand_fetch_bl ock_extfn.

At runtime, when the _eval uat e_ext f n function is called, the UDF publishes the
table functions descriptor by setting the result set parameter. To do this, the UDF must
create an instance of a_v4_ext f n_t abl e:
static a_v4 _extfn_table udf _rg_table = {

&udf _rg_tabl e_funcs, [/ Table function descri ptor

1 /1 nunber _of _col ums
i
This structure contains a pointer to the udf _rg_t abl e_f uncs structure and the
number of columns in the result set. This table UDF produces a single column in its result
set.

6. Implement the a_v4_extfn_proc structure functions.

In this example, the required function _descri be_ext f n function does not do
anything. Other examples demonstrate how a table UDF can use the descr i be function:
static void UDF_CALLBACK udf_rg_descri be(

a_v4_extfn_proc_context *ctx)
/

R R R S Sk Sk S O S R Sk R R R R o S R R S R R Sk R R Sk R R O ok S

/

/1 This required function is not needed in this sinple exanple.

}

The _eval uat e_ext f n method sends the server information about getting the result
set from the UDF. This is done by calling the a_v4_ext f n_pr oc_cont ext method
set _val ue on argument 0. Argument O represents the return value, which for a table

User-Defined Functions 107

Table UDFs and TPFs

UDF isa DT_EXTFN_TABLE. This method constructs an_ext f n_val ue structure,
setting the data type to DT_EXTFN_TABLE and setting the value pointer of this to point
tothe a_v4_ext f n_t abl e object created in step 5. For table UDFs, the type must
always be DT_EXTFN_TABLE.

static void UDF_CALLBACK udf _rg_eval uat e(

a_v4_extfn_proc_context *ctx,
voi d *args_handl e)

/***********************************/

{
an_extfn_val ue result_table = { &udf _rg_table,
si zeof (udf _rg_table),
sizeof (udf _rg_table),
DT_EXTFN_TABLE };
I/ Tell the server what functions table functions are being
[/ inplenented and how many colums are in our result set.
ctx->set_val ue(args_handle, 0, &esult_table);
}

7. Implementthe a_v4_ext f n_t abl e_f unc structure functions.

In this example, the table UDF needs to read in the parameter passed in that contains the
number of rows to generate, and cache this information to be used later. Because the
_open_ext f n method is called for each new value that the parameter has, this is an
appropriate place to get this information.

In addition to the total number of rows to generate, the table UDF must also remember the
next row to generate. When the server begins fetching rows from the table UDF, it may

need to repeatedly call the _f et ch_i nt o_ext f n method. This means that the table

UDF must remember the last row that was generated.

This structure is created in udf _rg_1. cxx to contain the state information between

calls:

struct udf_rg_state {
a_sql _int32 next _row, // The next row to produce
a_sql __int32 max_row, /1 The nunmber of rows to generate.

I

The open method first reads in the value of argument 1 usingthea_v4_pr oc_cont ext
method get _val ue. Aninstance of udf r g_st at e is allocated using the
a_v4_proc_cont ext function al | oc. table UDFs should use the memory
management functions (al | oc and f r ee) onthe a_v4_pr oc_cont ext structure
whenever possible to manage their memory. The state object is then saved in the user_data
field of a_v4_proc_cont ext . Memory stored in this field is available to the table
UDF until execution finishes.

static short UDF_CALLBACK udf_rg_open(
a_v4_extfn_table_context * tctx)
/***************************************/

{

an_ext f n_val ue val ue;

108 Sybase 1Q

Table UDFs and TPFs

udf _rg_state * state = NULL;

/! Read in the value of the input paraneter and store it away in a
/| state object. Save the state object in the context.
if(!tctx->proc_context->get_val ue(tctx->args_handl e,

gvalue)) {

/1 Send an error to the client if we could not get the val ue.
t ct x- >proc_cont ext - >set _error(

t ct x- >proc_cont ext,

17001,

"Error: Could not get the value of paranmeter 1");

return O;

}

/Il Allocate nenory for the state using the a_v4_extfn_proc_context
/1 function alloc.
state = (udf_rg_state *)
t ct x- >proc_cont ext - >al | oc(tctx->proc_cont ext,
sizeof (udf_rg_state));

/'l Start generating at row zero.
state->next_row = 0;

/'l Save the value of paraneter 1
state->max_row = *(a_sql _int32 *)val ue. dat a;

/1l Save the state on the context
tctx->user_data = state;

return 1;

The_f et ch_i nf o_ext f n method returns row data to the server. This method is called
repeatedly until it returns false. For this example, the table UDF retrieves the state
information from the user_cdatafield of the a_v4_ext f n_proc_cont ext object to
determine the next row to generate and the total number of rows to generate. This method is
free to generate up to the maximum number of rows indicated in the rowblock structure
passed in.

For this example, the table UDF generates a single column of type | NT. It copies the data
for the next_rowsaved in the state into the data pointer of the first column. Each time
through the loop, the table UDF copies a new value into the data pointer and stops when
either the maximum number of rows to produce is reached or the row block is full.

static short UDF_CALLBACK udf _rg_fetch_into(

a_v4_extfn_table_context *tctx,
a_v4_extfn_row bl ock *rb)

/***/

{

udf _rg_state *state = (udf _rg_state *)tctx->user_data;

/! Because we are inplenmenting fetch_into, the server has provided
/1 us with a row bl ock. W need to informthe server how nmany rows
/'l this call to _fetch_into has produced.

rb->numrows = 0;

User-Defined Functions 109

Table UDFs and TPFs

/
/
/
/
/

~——

The server provided row bl ock structure contains a max_rows
field. This field is the maxi mum nunber of rows that this row
bl ock can handle. W can not exceed this nunber. W will also
stop produci ng rows when we have produced the nunber of rows
required as per the max_row in the state.

while(rb->numrows < rb->max_rows && state->next_row < state->max_row) {

}
11

/1 Get the current row fromthe row bl ock data.
a_v4_extfn_row & ow = rb->row_data[rb->numrows];

/1 Get the columm data for the current row.
a_v4_extfn_colum_data &col 0 = row. col um_data[0];

/'l Copy the integer value for the next row to generate

// into the colum data for the current row.

mencpy(col 0. data, &state->next_row, col 0. max_piece_len);
st at e- >next _r owt++;

rb->num rows++;

If we produced any rows, return true.

return(rb->numrows > 0);

The table UDF callsthe _cl ose_ext f n method once per new value for the parameters,
after all the rows have been fetched. In other words, foreach _open_ext f ncall, there is
asubsequent _cl ose_ext f n call. Inthis example, the table UDF must free the memory
allocated during the _open_ext f n call which it does by retrieving the state from the

user_datafieldofa_v4_ext fn_proc_cont ext objectand callingthe f r ee method.

static short UDF_CALLBACK udf_rg_cl ose(

a_v4_extfn_tabl e_context *tctx)
/*************************************/

udf _rg_state * state = NULL;

/'l Retrieve the state that was saved in user_data
state = (udf _rg_state *)tctx->user_dat a;

/1 Free the nmenory for the state using the
a_v4_extfn_proc_cont ext

/] function free.

tct x->proc_context->free(tctx->proc_context, state);

tctx->user _data = NULL;

return 1;

See also

udf rg 2on page 111

udf rg 3on page 115

Row Block Data Exchange on page 128
Describe API on page 204

_evaluate extfnon page 286

110

Sybase 1Q

Table UDFs and TPFs

» fetch_intoon page 308

o Table (a_v4_extfn_table) on page 306

e External Procedure Context (a_v4_extfn_proc_context) on page 287
e _gpen _extfnon page 316

e _close extfnon page 319

Running the Sample Table UDF in udf rg 1.cxx

The sample udf _rg_1 isincluded in a precompiled dynamic library called | i bv4api ex
(extension is platform-dependent). Its implementation is in the sanpl es directory in

udf _rg_1. cxx.

1. Putthe library | i bv4api ex in a directory that can be read by the server.
2. To declare the table UDF to the server, issue:

CREATE PROCEDURE udf _rg_1(I N num I NT)
RESULT(cl1 INT)
EXTERNAL NAME ‘udf_rg_1@i bv4api ex’

3. Select rows from the table UDF:
SELECT * FROM udf _rg_1(5);

udf rg 2
The sample table UDF udf _r g_2 builds on the sample in udf _rg_1. cxx and has the

same behavior. The procedure is called udf_rg_2 and its implementation is in the samples
directory inudf _rg_2. cxx.

The table UDF udf_rg_2 provides an alternate implementation of the _descri be_extfn
method in the a_v4_ext f n_pr oc descriptor.

static void UDF_CALLBACK udf _rg_descri be(

a_v4_extfn_proc_context *ctx)
/***/

a_sql __int32 desc_rc;

/1 The follow ng describes will ensure that the schema defined
/1 by the user matches the schema supported by this table udf.
/1l This is achieved by telling the server what our schema is
/1 using describe_xxxx_set methods.

i f(ctx->current_state == EXTFNAPI V4_STATE_ANNOTATI ON) {

a_sql _data_type type = DT_NOTYPE;
a_sql _uint32 num col s = 0;
a_sql _uint32 num par ns = 0;

/1l Informthe server that we support a single input
/] paraneter.
num parnms = 1;
desc_rc = ctx->descri be_udf_set
(ctx,

User-Defined Functions 111

Table UDFs and TPFs

EXTFNAPI V4_DESCRI BE_UDF_NUM_PARMS,
&num par ns,
sizeof (num.parns));

/'l Checks the return code and sets an error if the
/| describe was unsuccessful for any reason.
UDF_CHECK DESCRI BE(ctx, desc_rc);

/1l Informthe server that the type of paranmeter 1 is int.
type = DT_I NT;
desc_rc = ctx->descri be_paraneter_set
(ctx,

1,

EXTFNAPI V4_DESCRI BE_PARM TYPE,

&t ype,

si zeof (type));

UDF_CHECK DESCRI BE(ctx, desc_rc);

// Informthe server that the nunber of columms in our
// result set is 1.
numcols = 1;
desc_rc = ctx->descri be_paraneter_set
(ctx,

0,

EXTFNAPI V4_DESCRI BE_PARM TABLE _NUM_COLUMNS,

&num col s,

si zeof (numcols));

UDF_CHECK DESCRI BE(ctx, desc_rc);

/1l Informthe server that the type of colum 1 in our
/] result set is int.
type = DT_I NT;
desc_rc = ctx->describe_col unm_set
(ctx,

0,

1,

EXTFNAPI V4_DESCRI BE_COL_TYPE,

&t ype,

sizeof (type));

UDF_CHECK DESCRI BE(ctx, desc_rc);
}

/1 The follow ng describes will informthe server of various

/! optimzer related characteristics.
if(ctx->current_state == EXTFNAPI V4_STATE_OPTI M ZATION) {

an_ext fn_val ue pl_val ue;
a v4 extfn_estinmate num r ows;

/1 If the value of paranmeter 1 was constant, then we can
/1 informthe server how many distinct values will be.
desc_rc = ctx->descri be_paraneter_get

112 Sybase 1Q

Table UDFs and TPFs

(ctx,
1,
EXTFNAPI V4_DESCRI BE_PARM_CONSTANT VAL UE,
&pl val ue,
sizeof (pl_value));

UDF_CHECK DESCRI BE(ctx, desc_rc);
i f(desc_rc != EXTFNAPI V4_DESCRI BE_NOT_AVAI LABLE) {

/1l Informthe server that this UDF will produce n rows.
num rows. val ue = *(a_sql _int32 *)pl_val ue. dat a;
num rows. confi dence = 1;
desc_rc = ctx->descri be_paraneter_set
(ctx,
0,
EXTFNAPI V4_DESCRI BE_PARM TABLE_NUM ROWS,
&num r ows,
sizeof (numrows));

UDF_CHECK DESCRI BE(ctx, desc_rc);

/1l Informthe server that this UDF will produce n distinct
/1 values for colum 1 of its result set.
desc_rc = ctx->describe_col unm_set
(ctx,
0,
1,
EXTFNAPI V4_DESCRI BE_COL_DI STI NCT_VALUES,
&num r ows,
sizeof (numrows));

UDF_CHECK DESCRI BE(ctx, desc_rc);

This descr i be method has two primary functions:

« Inform the server what schema it supports.
« Inform the server of some known optimization attributes.

The descri be function is called during several states. However, not all descri be
attributes are usable in every state. The descr i be method determines the state in which it is
executing by checking the current state variable on the a_v4_ext f n_pr oc structure.

During the Annotation state, the udf_rg_2 table udf informs the server that it has one
parameter of type | NTEGER and its result set contains a single column of type | NTEGER.
This is accomplished by setting these attributes:

» EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS

User-Defined Functions 113

Table UDFs and TPFs

 EXTFNAPIV4_DESCRIBE_PARM_TYPE
* EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS
 EXTFNAPIV4_DESCRIBE_COL_TYPE

If the information set in these descr i be methods does not match the procedure definition
from the CREATE PROCEDURE statement, the descri be_par anet er _set and
descri be_col unm_set methods return

EXTFNAPI V4_DESCRI BE_| NVALI D_ATTRI BUTE_VALUE. The describe method then
sets an error to indicate to the client there is a mismatch.

This example uses the macro UDF_ CHECK DESCRI BE definedinudf _uti | s. htocheck
the return value from a describe and set an error, if it is not successful.

During optimization, the udf_rg_2 table udf informs the server that it returns the same number
of rows indicated in parameter one. Since the generated rows increment, the values are also
unique. During optimization, only parameters that have a constant value are available. Use the
descri be attribute EXTFNAPI V4_DESCRI BE_ PARM CONSTANT_ VAL UE to obtain
the value of a constant parameter. Once the table udf determines that the attribute value is
available, udf_rg_2 sets EXTFNAPI V4_DESCRI BE_PARM TABLE_NUM ROWS and
EXTFENAPI V4_DESCRI BE_COL_DI STI NCT_VALUES to the value obtained.

See also
e udf rg 3on page 115
o Implementing Sample Table UDF udf rg 1 on page 106

Running the Sample Table UDF in udf rg 2.cxx

The sample udf _r g_2 isincluded in a pre-compiled dynamic library called | i bv4api ex
(extension is platform-dependent). Its implementation is in the sanpl es directory in

udf _rg_2. cxx.

1. To declare the table UDF to the server, issue:

CREATE OR REPLACE PROCEDURE udf _rg_2(I N num I NT)
RESULT(c1 INT)
EXTERNAL NAME ' udf _rg_2@i bv4api ex'

2. Select rows from the table UDF:
SELECT * FROM udf _rg_2(5);

3. Toseehowthedescr i be affects behavior, issue a CREATE PROCEDURE statement that
has a different schema than the one published by the table UDF. For example:

CREATE OR REPLACE PROCEDURE udf _rg 2(IN numINT, IN extra INT)
RESULT(c1 INT)
EXTERNAL NAME 'udf _rg_2@i bv4api ex'

4. Select rows from the table UDF:
SELECT * FROM udf rg 2(5):

114

Sybase 1Q

Table UDFs and TPFs

1Q returns an error.

udf rg 3

The sample table UDF udf_rg_3 builds upon udf_rg_2 and has similar behavior. The
procedure is called udf_rg_3 and its implementation is in the sanpl es directory in
udf _rg_3. cxx.

The difference between the behavior of table UDFs udf_rg_3 and udf_rg_2 is that udf_rg_3
generates only 100 unique values from 0 to 99, then repeats the sequence as necessary. This
table UDF provides _start _extfnand _fi ni sh_extfn methods and has a modified
version of _descri be_ext f n to account for the different semantics of the function.

Using f et ch_bl ock instead of f et ch_i nt o allows the table UDF to own the row block
structure and use its own data layout. To illustrate this, the numbers generated are pre-
allocated in an array. When a fetch is performed, rather than copying data into the server
provided row block, the table UDF points the row block data pointers directly to the memory
containing the data, thus preventing additional copies.

The following ancillary structure stores the numbers array. This structure also keeps a pointer
to the allocated row block, which deallocates the row block.

#defi ne MAX_ROAS 100
struct RowData {

a_sql _int32 nunber s[MAX_RONE] ;
a_sqgl _uint32 pi ece_l en;
a_v4_extfn_row_ bl ock * rows;
void Init()
rows = NULL;
pi ece_l en = sizeof (a_sql __int32);
for(int i =0; i < MAX_ROA5; i++) {
nunbers[i] =i;
}
}

This structure is allocated when execution of the table UDF starts, and deallocated when
execution finishes, by providing _start _extfnand_fi ni sh_ext f n methods in the
a_v4_extfn_proc_context.

static void UDF_CALLBACK udf_rg_start(
a_v4_extfn_proc_context *ctx)

/*************************************/

{

/'l The start_extfn nmethod is a good place to allocate our row
/1l data. This nmethod is called only once at the begi nni ng of
/' execution.
RowDat a *row data = (RowData *)

ctx->alloc(ctx, sizeof(RowData));
row data->Init();

User-Defined Functions 115

Table UDFs and TPFs

ctx->_user_data = row_dat a;

The finish method performs two functions:

» Deallocates the RowData structure.
« Destroys the row block, if the table UDF encounters an error during fetch and cannot
destroy the row block.

static void UDF_CALLBACK udf_rg finish(
a_v4_extfn_proc_context *ctx)

/***********_**;************************/

if(ctx-> user_data !'= NULL) {

RowDat a *row _data = (RowData *)ctx->_user_dat a;

/1 If rows is non-null here, it nmeans an error occurred and
/1 fetch_block did not conplete.
if(rowdata->rows != NULL) {
Dest r oyRowBl ock(ctx, row data->rows, 0, false);
}

ctx->free(ctx, ctx-> user_data);
ctx-> user_data = NULL;

The f et ch_bl ock method is:

static short UDF_CALLBACK udf _rg_fetch_bl ock(
a_v4_extfn_table_context *tctx,

a_v4_extfn_row bl ock **rows)
/***/

udf _rg_state * state = (udf _rg_state*)tctx->user_data;
RowDat a * row_dat a = (RowData *)tctx->proc_context->_user_data;
/1 First call, we need to build the row bl ock

if(*rows == NULL) {

/1 This function will build a row bl ock structure that holds
/1 MAX_ROANS rows of data. See udf_utils.cxx for details.
*rows = Buil dRowBl ock(tctx->proc_context, 0, MAX ROA5, false);

/1 This pointer gets saved here because in sone circunstances
/!l when an error occurs, its possible we may have all ocat ed

/1 the rowbl ock structure but then never called back into

/1 fetch_block to deallocate it. |In this case, when the finish
/1 nethod is called, we will end up deallocating it there.
row_dat a- >rows = *rows;

}
(*rows)->numrows = 0;

The row bl ock we allocated contains a nmax_rows nenber that was
set to the macro MAX_ROAS (100 in this case). This field is the
maxi mum nunber of rows that this row bl ock can handle. W can
not exceed this nunber. We will also stop producing rows when

~—~———
~_~———

116 Sybase 1Q

Table UDFs and TPFs

/1 we have produced the nunber of rows required as per the nax_row
// in the state.
while((*rows)->numrows < (*rows)->max_rows &&

stat e->next _row < state->max_row) {

a_v4_extfn_row & ow = (*rows)->row_data[(*rows)->numrows]|;
a_v4_extfn_col um_data &col 0 = row. col um_data[0];

/!l Row generation here is a matter of pointing the data

/'l pointer in the rowblock to our pre-allocated array of

/! integers that was stored in the proc_context.

col 0. data = & ow_dat a- >nunber s[(*rows) - >num r ows % MAX_ROWE] ;
col 0. max_pi ece_l en = sizeof (a_sqgl_int32);

col 0. pi ece_l en = & ow_dat a- >pi ece_| en;

st at e- >next _r ow++;

(*rows) - >num r ows++;

if((*rows)->numrows > 0) {
return 1;

} else {
/1 When we are finished generating data, we can destroy the
/1 row bl ock structure.
Dest r oyRowBl ock(tctx->proc_context, *rows, 0, false);
row_dat a- >rows = NULL;
return O;

The first time this method is called, a row block is allocated using the helper function
BuildRowBlock, which is in udf _ut i | s. cxx. A pointer to this row block is saved in the
RowDat a structure for later use.

Row generation is achieved by setting the data pointer for the column data to the address of the
next number in sequence in the previously allocated numbers array. The pi ece_| en pointer
for the column data must also be initialized, by setting it to the address of the pi ece_| en
member of RowDat a. Since the rows are a fixed data length, this number is the same for all
rows.

When fetch is called the last time and there is no more data to produce, the row block structure
is destroyed using the DestroyRowBIlock helper function in udf _util s. cxx.

To accommodate this table UDF generating only 100 unique values,
EXTFNAPI V4_DESCRI BE_COL_DI STI NCT_VALUES s set to a value of 100. This code
excerpt from the describe method demonstrates this:

static void UDF_CALLBACK udf _rg_descri be(

a_v4_extfn_proc_context *ctx)
/***/

{

a v4 _extfn_estimate distinct = {
MAX_ROMS, 1.0
i

User-Defined Functions 117

Table UDFs and TPFs

/1l Informthe server that this UDF will produce MAX ROAS
/1 distinct values for colum 1 of its result set.
desc_rc = ctx->describe_col unm_set

(ctx,

1,

EXTFNAPI V4_DESCRI BE_COL_DI STI NCT_VALUES,
&di sti nct,

sizeof (distinct));

UDF_CHECK DESCRI BE(ctx, desc_rc);

See also
e udf rg 2on page 111
o Implementing Sample Table UDF udf rq 1 on page 106

Running the Sample Table UDF in udf rg 3.cxx

The sample udf _r g_3isincluded in a precompiled dynamic library called | i bv4api ex
(extension is platform-dependent). Its implementation is in the sanpl es directory in

udf _rg_3. cxx.

1. To declare the Table UDF to the server, issue:

CREATE OR REPLACE PROCEDURE udf _rg_3(I N num I NT)
RESULT(c1 INT)
EXTERNAL NAME ' udf _rg_3@i bv4api ex'

2. Select rows from the table UDF:
SELECT * FROM udf _rg_3(200);

This query produces values for c1 from 0...99 followed by 0...99.

apache log reader

The sample table UDF apache_| og_r eader reads the contents of an Apache access log
or an Apache error log into table data. It is implemented in the file

apache_| og _reader. cxx inthe sanpl es directory.

A sample access log (apache_access. | og) and sample error log
(apache_error. | og) are included in the sanpl es directory.

The apache_| og_r eader sample opens the log file in the _open_ext f n method. It
reads in the data and parses it into the schema supported by the procedure in the
_fetch_int o_extfn method. It then closes the log file using the _cl ose_extfn
method.

118

Sybase 1Q

Table UDFs and TPFs

See also

e ogpen_extfnon page 316

e _fetch into_extfnon page 317
e _close extfnon page 319

Running the Sample Table UDF in apache log reader.cxx

The sample apache_| og_r eader is included in a precompiled dynamic library called
I i bv4api ex (extension is platform-dependent). Its implementation is in the sanpl es
directory in apache_I| og_r eader. cxx.

1. To declare the table UDF to the server, issue:
create procedure apache_| og_reader

(
in file_nane varchar(4000),
in log_format varchar(32)
in ip_paddi ng varchar (1)

)

result

(
i p_address varchar(15),
| og_nane var char (4000),
user _name var char (4000),
access_tine datetine,
ti me_zone int,
request var char (4000),
response int,
bytes_sent int,
referer var char (4000),
br owser var char (4000),
error_type varchar(4000),
error_nsg var char (4000)

)

external nane 'apache_| og_reader @i bv4api ex
2. Selectrows from the table UDF. Use the full path to the access log when executing the SQL
query.

SELECT * FROM apache_| og_reader('apache_access.|log', 'access'
null);

udf blob
The sample table UDF udf _bl ob illustrates how a table UDF or TPF can read LOB input
parameters using the bl ob API.

udf _bl ob counts the number of occurrences of a letter in the first input parameter. The
datatype of parameter 1 can be LONG VARCHAR or VARCHAR(64) . If the type is LONG
VARCHAR, the table UDF uses the bl ob API to read in the value. If the type is
VARCHAR(64) , the entire value is available using get _val ue.

This code snippett fromthe _open_ext f n method illustrates how parameter 1 is read using
the bl ob API:

User-Defined Functions 119

Table UDFs and TPFs

static short UDF_CALLBACK udf_bl ob_open(
a_v4 _extfn_table_context * tctx)

/****;**********************************/

{

a_v4_extfn_bl ob *bl ob = NULL;

ret = tctx->proc_context->get_val ue(tctx->args_handle, 2,
&val ue);
UDF_SQLERROR_RT(tctx->proc_cont ext,
"get_value for argunent 2 failed",
ret == 1,
0);

letter_to find = *(char *)val ue. dat a;

ret = tctx->proc_context->get_val ue(tctx->args_handle, 1,
&val ue);
UDF_SQLERROR_RT(tctx->proc_cont ext,
"get _value for argunent 1 failed",
ret == 1,
0);

i f(EXTFN_I S_NULL(value) || EXTEN_IS_EMPTY(val ue)) {
state->return_val ue = 0;
return 1;

}

i f(EXTFN_I S_| NCOWLETE(val ue)) {
/1 1f the value is inconplete, then that nmeans we
/] are dealing with a bl ob.
tct x- >proc_cont ext - >get _bl ob(tctx->args_handle, 1, &blob);
return_val ue = ProcessBl ob(tctx->proc_context,
bl ob,
letter_to_find);
bl ob- >rel ease(bl ob);
} else {
/1 The entire value was put into the val ue pointer.
return_val ue = Count Num((char *)val ue. dat a,
val ue. pi ece_| en,
letter_to_find);
}

Parameter 1 is retrieved using get _val ue. If the value is empty or NULL, then no further
processing is required. If the value is determined to be a bl ob using the macro

EXTFN_| S_| NCOVPLETE, then the Table UDF gets an instance of a_v4_ext f n_bl ob
using the get _bl ob method of a_v4_extfn_proc_cont ext. The ProcessBl ob

120 Sybase 1Q

Table UDFs and TPFs

method reads from the bl ob to determine how many occurrences of the specified letter are
present.

See also

* Blob (a_v4_extfn_blob)on page 195

e _open_extfnon page 316

e get blobon page 300

» External Procedure Context (a_v4_extfn_proc_context) on page 287

Running the Sample Table UDF udf blob.cxx

The sample udf _bl ob is included in a precompiled dynamic library called | i bv4api ex
(extension is platform-dependent). Its implementation is in the sanpl es directory in

udf bl ob. cxx.

1. ITo declare the table UDF to the server, issue:

CREATE PROCEDURE udf _bl ob(IN data | ong varchar, letter char(1))
RESULT (cl1 BIG NT)
EXTERNAL NAME ' udf _bl ob@ i bv4api ex'

2. Select rows from the table UDF:

set tenporary option Enable LOB Variables = 'On';
create variable testblob | ong varchar;

set testblob = 'aaaaaaaaaabbbbbbbbbbbb';

sel ect * from udf _bl ob(testblob, "a');

The supplied string contains the letter "a" 10 times.

Query Processing States

The SQL statement that references a UDF goes through query processing states in the Sybase
1Q server. In each of these states, the server uses the v4 API to communicate and negotiate with
the UDF.

See also

e Generic describe_column Errors on page 321

o EXTFNAPIV4_DESCRIBE COL _TYPE (Set)on page 224
o EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 207

Initial State

Initial state on the server. The only UDF method called during the Initial state is
_start_extfn.

The server calls the start method for each instance of the UDF created. Ifa query is executed by
a single server thread, then the start method is called once. If a query is handled by several

User-Defined Functions 121

Table UDFs and TPFs

threads, or distributed across several nodes, the server creates different UDF instances and, as
a result, the start method is called several times.

UDFs can set function instance level data within the _user _dat a field of the
a_v4_extfn_proc_context structure, which is the argument to the start method.

Annotation State

During the annotation state the server updates the parse tree with the metadata necessary for
efficient and correct query optimization.

The[_enter_state],_describe_extfn,and[_| eave_st at e] methods are
called. The _enter_stateand | eave_st at e methods are optional and called if
provided by the UDF.

The annotation state is represented in the v4 API by EXTFNAPI V4_STATE_ANNOTATI ON
fromthe a_v4_ext f n_st at e enumeration:

typedef enum a_v4_extfn_state {
... EXTENAPI V4_STATE_ANNCTATI ON,
} a_v4 _extfn_state;

As a UDF developer, you can perform some initial schema negotiation in this phase. Schema
negotiation can occur either through the UDF describing to the server what it supports, or the
UDF asking the server how it was declared.

When the UDF describes itself to the server, the server detects mismatches and returns SQL
errors back to the client. For example, if a UDF describes that it requires four parameters and
the SQL writer only declared the UDF with two, the server detects this and returns a SQL error
back to the client.

When the UDF itself performs the validation by asking the server how it was declared, it
adjusts its runtime execution accordingly: it either matches the declaratio, or it returns an error
viatheset _err or v4 API. Forexample, assume you build a UDF that returns the maximum
value of up to five input scalar integers. At runtime, the UDF determines how many input
parameters were provided and adjusts its internal logic accordingly. SQL analysts could then
create the procedure as:

CREATE PROCEDURE my_sum2(IN a INT, IN b INT) EXTERNAL

"my_sum@ry_| i b"
CREATE PROCEDURE nmy_sum 3(IN a INT, INb INT, INc INT) EXTERNAL

"my_sum@ry_|l i b"

Both functions use the same underling implementation of ny_sum The UDF recognizes that
there are only two parameters for my_sum 2, and attempts to sum parameters 1 and 2. For
my_sum 3, the UDF sums parameters 1, 2 and 3.

As a UDF developer, you can obtain values for constant literal parameters only in the
Annotation state. No other values are available until the Execution state. To get parameter

122

Sybase 1Q

Table UDFs and TPFs

values during the annotation state use the descri be_par anet er _get method with the
PARM_CONSTANT_VALUE and PARM | S_CONSTANT attributes.

In the Annotation state, UDFs have access to schema descr i be attributes:

« EXTFNAPI V4_DESCRI BE_UDF_NUM_PARMS

« EXTFNAPI V4_DESCRI BE_PARM NAVE

« EXTFNAPI V4_DESCRI BE_PARM TYPE

« EXTFNAPI V4_DESCRI BE_PARM W DTH

« EXTFNAPI V4_DESCRI BE_PARM SCALE

« EXTFNAPI V4_DESCRI BE_PARM | S_CONSTANT

« EXTFNAPI V4_DESCRI BE_PARM CONSTANT_VALUE
« EXTFNAPI V4_DESCRI BE_PARM TABLE_NUM COLUWNS
« EXTFNAPI V4_DESCRI BE_COL_NAVE

« EXTFNAPI V4_DESCRI BE_COL_TYPE

« EXTFNAPI V4_DESCRI BE_COL_W DTH

« EXTFNAPI V4_DESCRI BE_COL_SCALE

« EXTFNAPI V4_DESCRI BE_COL_| S_CONSTANT

« EXTFNAPI V4_DESCRI BE_COL_CONSTANT_VALUE

During the Annotation phase the UDF can set the above values to define its schema to the
server. If the server detects a mismatch between what the UDF describes and the SQL
procedure declaration, it returns an error. This technique is referred to as se/f-describing.

An alternative technique, schema validation, can be employed by the UDF. This involves the
UDF getting the values for the schema describe types, and then setting an error if a mismatch is
detected. With this approach, validation is left to the UDF, but the UDF can choose to support
multiple schemas with a single implementation (for example, the ability to support multiple
datatypes for a given parameter or being able to support varying number of parameters).

See also

EXTFNAPIV4_DESCRIBE UDF NUM_PARMS Attribute (Get) on page 274

o EXTFNAPIV4 _DESCRIBE UDF NUM_PARMS Attribute (Set) on page 276

o EXTFNAPIV4_DESCRIBE PARM _NAME Attribute (Get) on page 239

o EXTFNAPIV4 DESCRIBE PARM_NAME Attribute (Set) on page 258

o EXTFNAPIV4_DESCRIBE PARM_TYPE Alttribute (Get) on page 240
EXTFNAPIV4_DESCRIBE PARM_TYPE Attribute (Set) on page 259
EXTFNAPIV4 _DESCRIBE PARM_WIDTH Attribute (Get) on page 241
EXTFNAPIV4 _DESCRIBE PARM_WIDTH Attribute (Set) on page 260

* EXTFNAPIV4 _DESCRIBE PARM_SCALE Afttribute (Get) on page 242

* EXTFNAPIV4 _DESCRIBE PARM _SCALE Afttribute (Set) on page 261

o EXTFNAPIV4 DESCRIBE PARM IS CONSTANT Attribute (Get) on page 247
o EXTFNAPIV4_DESCRIBE PARM IS CONSTANT Attribute (Set) on page 263

User-Defined Functions 123

Table UDFs and TPFs

EXTENAPIV4_DESCRIBE PARM_CONSTANT_VALUE Attribute (Get) on page

248

EXTFNAPIVA4_DESCRIBE_PARM_CONSTANT _VALUE Attribute (Set) on page

264

EXTFNAPIV4_DESCRIBE COL_NAME (Get) on page 206
EXTFNAPIV4_DESCRIBE COL_NAME (Set) on page 222
EXTFNAPIV4_DESCRIBE_COL_TYPE (Get) on page 207
EXTFNAPIV4_DESCRIBE_COL_TYPE (Set)on page 224
EXTFNAPIV4_DESCRIBE COL_WIDTH (Get) on page 207
EXTFNAPIV4_DESCRIBE COL_WIDTH (Set) on page 225
EXTFNAPIV4_DESCRIBE COL_SCALE (Get) on page 208
EXTFNAPIV4_DESCRIBE COL_SCALE (Set) on page 226
EXTFNAPIV4_DESCRIBE COL_IS CONSTANT (Get) on page 213
EXTFNAPIV4_DESCRIBE COL_IS CONSTANT (Set) on page 230
EXTFNAPIV4_DESCRIBE COL_CONSTANT VALUE (Get)on page 214
EXTFNAPIV4_DESCRIBE COL_CONSTANT_VALUE (Set) on page 230

Query Optimization State

During the Optimization state, the server is in the initial process of constructing a query plan.
The server collects schema information and some preliminary statistical information.

The[_enter_state], _describe_extfn,and[_| eave_st at e] methods are
called. The _enter_stateand | eave_st at e methods are optional, and called if
provided by the UDF.

The query optimization state is represented in the v4 APl by
EXTENAPI V4_STATE_OPTI M ZATI ONfrom the a_v4_ext f n_st at e enumeration:

typedef enum a_v4 _extfn_state {

... EXTENAPI V4_STATE_OPTI M ZATI ON,

} a_v4 _extfn_state;

Negotiations during the query optimization state include:

The server and UDF determine the partitioning/ordering/clustering already specified for

input tables.

The server and UDF determine the partitioning/ordering required for input tables.

The UDF declares physical properties (such as an ordering property) for the result table.

The UDF describes any properties and statistics (for example, cost estimates) which can be

used during the query optimization process.

« Table scope estimates include:

* Number of rows—the total number of rows present in the UDF during the

execution state. This value is available for both the input table parameter and the
returned table.

124

Sybase 1Q

Table UDFs and TPFs

* Row size—an estimate of the average number of bytes in each row.
e Column scope estimates include:
« Distinct count —the number of distinct values in a column over the total number of
rows in a table. This value is available for both the input table parameter and the
returned table.

In the Optimization state, UDFs have access to descr i be attributes:

« EXTFNAPI V4_DESCRI BE_PARM NAME
« EXTFNAPI V4_DESCRI BE_PARM TYPE

« EXTFNAPI V4_DESCRI BE_PARM W DTH

« EXTFNAPI V4_DESCRI BE_PARM SCALE

« EXTFNAPI V4_DESCRI BE_PARM | S_CONSTANT

« EXTFNAPI V4_DESCRI BE_PARM CONSTANT_VALUE

« EXTFNAPI V4_DESCRI BE_PARM TABLE_NUM COLUMNS

« EXTFNAPI V4_DESCRI BE_PARM TABLE_NUM RO/S

« EXTFNAPI V4_DESCRI BE_PARM TABLE_ORDERBY

« EXTFNAPI V4_DESCRI BE_PARM TABLE_PARTI TI ONBY

« EXTFNAPI V4_DESCRI BE_PARM TABLE_REQUEST REW ND
« EXTFNAPI V4_DESCRI BE_PARM TABLE_HAS_REW ND

« EXTFNAPI V4_DESCRI BE_COL_NAME

« EXTFNAPI V4_DESCRI BE_COL_TYPE

« EXTFNAPI V4_DESCRI BE_COL_W DTH

« EXTFNAPI V4_DESCRI BE_COL_SCALE

« EXTFNAPI V4_DESCRI BE_COL_CAN_BE_NULL

« EXTFNAPI V4_DESCRI BE_COL_| S_CONSTANT

« EXTFNAPI V4_DESCRI BE_COL_CONSTANT_VALUE

« EXTFNAPI V4_DESCRI BE_COL_| S_USED BY_ CONSUVER

« EXTFNAPI V4_DESCRI BE_COL_VALUES_SUBSET_OF | NPUT

See also

e DEFAULT TABLE UDF ROW COUNT Optionon page 178

o EXTFNAPIV4_DESCRIBE PARM _NAME Attribute (Get) on page 239
o EXTFNAPIV4_DESCRIBE PARM _NAME Attribute (Set) on page 258

o EXTFNAPIV4 DESCRIBE PARM _TYPE Attribute (Get) on page 240

o EXTFNAPIV4_DESCRIBE _PARM_TYPE Attribute (Set) on page 259

o EXTFNAPIV4_DESCRIBE PARM_WIDTH Aftribute (Get) on page 241
o EXTFNAPIV4_DESCRIBE PARM _WIDTH Aftribute (Set) on page 260
o EXTFNAPIV4_DESCRIBE PARM_SCALE Attribute (Get) on page 242
o EXTFNAPIV4_DESCRIBE PARM_SCALE Attribute (Set) on page 261
o EXTFNAPIV4_DESCRIBE PARM IS CONSTANT Attribute (Get) on page 247

User-Defined Functions 125

Table UDFs and TPFs

o EXTFNAPIV4_DESCRIBE PARM_IS CONSTANT Attribute (Set) on page 263

« EXTFNAPIV4 DESCRIBE PARM_CONSTANT VALUE Attribute (Get) on page
248

o EXTFNAPIV4_DESCRIBE PARM_CONSTANT_VALUE Attribute (Set) on page
264

o EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Get) on
page 249

EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_COLUMNS Attribute (Set) on
page 264

« EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Attribute (Get) on page
250

« EXTFNAPIV4_DESCRIBE PARM_TABLE NUM_ROWS Attribute (Set) on page
265

o EXTFNAPIV4 DESCRIBE PARM_TABLE ORDERBY Attribute (Get)on page 251
o EXTFNAPIV4_DESCRIBE PARM_TABLE ORDERBY Attribute (Set)on page 266
» EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Get)on page 252
EXTFNAPIV4_DESCRIBE PARM_TABLE PARTITIONBY (Set)on page 268

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Attribute (Get) on
page 254

o EXTFNAPIV4_DESCRIBE PARM_TABLE REQUEST REWIND Afttribute (Set)on
page 269

o EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Get) on page
255

« EXTFNAPIV4 DESCRIBE PARM_TABLE HAS REWIND Attribute (Set) on page
271

« EXTFNAPIV4_DESCRIBE COL_NAME (Get) on page 206

« EXTFNAPIV4_DESCRIBE COL_NAME (Set) on page 222

« EXTFNAPIV4_DESCRIBE COL_TYPE (Get)on page 207

« EXTFNAPIV4_DESCRIBE COL_TYPE (Set)on page 224

« EXTFNAPIV4_DESCRIBE COL_WIDTH (Get) on page 207

« EXTFNAPIV4 DESCRIBE COL_WIDTH (Set)on page 225

« EXTFNAPIV4_DESCRIBE COL_SCALE (Get)on page 208

« EXTFNAPIV4_DESCRIBE COL_SCALE (Set)on page 226

« EXTFNAPIV4_DESCRIBE COL_CAN_BE_NULL (Get)on page 209

« EXTFNAPIV4_DESCRIBE COL_CAN_BE_NULL (Set)on page 227

« EXTFNAPIV4_DESCRIBE COL_IS CONST