SYBASE

Cmpy

User-Defined Functions

Sybase IQ 15.3

DOCUMENT ID: DC01034-01-1530-01

LAST REVISED: May 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

AUAIBNCE . 1
Related DOCUMENTS ...uvuiiiieiiecieiiiie et 3
Understanding User-Defined Functionscccceeevvviiieenns 5
User-Defined Functions Compliance with Sybase 1Q
Databasesccooeiiiiiiiiici e 7
Practices t0 AVOIdeuuuviiiiiiiiiiiiiienre e 8
Types of User-Defined FUNCLIONSevviiiiieieeeeennnnne. 8
Naming Conventions for User-Defined Functions............ 9
Design Basics of User-Defined Functions..................... 10
Creating and Executing User-Defined Functions............. 11
Creating a User-Defined Functioncccceevvevevvinnnnnn. 11
Creating a User-Defined Function Using SQL
Anywhere DialectSuvvvieiiiiiieiiiiiiiiiieeeee 12
Declaring a Scalar User-Defined Function in
Sybase Central ... 12
Declaring a User-Defined Aggregate Function in
Sybase Central ... 13
User-Defined Function Restrictionscccoeeeeeeennenn. 14
Calling User-Defined Functionscccevvvvviiiininnnns 15
Setting the Dynamic Library Interface............cccccc..oe. 16
Dropping User-Defined FUNCLIONScccovviviiinnnnenen. 16
Granting and Revoking Permissions...........ccccccceeeeeeennn. 17
Maintenance of User-Defined Functions....................... 18
Compiling and Linking Source Code to Build
Dynamically Linkable Libraries............cccccceeiiiinnn. 19
ADX SWILCNES ... 20
HP-UX SWItChesSoiiiiiiiiiiiii e 20
LinUX SWItChES ... 21
Solaris SWItChescoviiiiiiiii e, 22
WINdows SWILChEeSccovvviiiiiiiiiiiiiiiiiiieieee 22

User-Defined Functions

Contents

Using Microsoft Visual Studio Debugger for User-

Defined FUNCLIONSooooeiiiiiiiieeeiiiiii e 24
SQL Data TYPES ...t 24
Testing User-Defined FUNCLIONS ... 29
Enabling and disabling user-defined functions.............. 29
Initially executing a user-defined function..................... 30
Managing External Libraries...........cccccevvvviviiinnnnes 30
Controlling error checking and call tracing 31
Enabling full tracing in a debug environment................. 31
Viewing Sybase IQ log filesccoooevvviiiiiiiiiiiieeees 32
Scalar User-Defined FUNCLIONScoovvviiiiiiiiiiiiiccciieees 33
Declaring a Scalar UDF..............coooviiiiiiiiiiiee e, 33
UDF Example: my_plus Declaration 35

UDF Example: my_plus_counter Declaration....... 36

UDF Example: my_byte length Declaration........ 37

UDF Example: my_md5 Declaration.................... 38

UDF Example: my_toupper Declaration.............. 39
Defining a Scalar UDFcccoooiiiiiiiiiiiiiieeeeeeeeen, 40
Scalar UDF Descriptor Structureccoeeeveeeen. 40
Scalar UDF Context Structureccooeeeeeevvennns 41

UDF Example: my_plus Definition 43

UDF Example: my_plus _counter Definition......... 44

UDF Example: my_byte length Definition........... 46

UDF Example: my_md5 Definition....................... 48

UDF Example: my_toupper Definition.................. 54
User-Defined Aggregate FUNCLIONScccevvevveveiiiieeeeiinnnnn. 57
Declaring @ UDAFooiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 57
UDAF example: my_sum declaration.................... 60
UDAF example: my_bit_xor declaration................ 61
UDAF example: my_bit_or declaration................ 61
UDAF example: my_interpolate declaration........ 61
Defining an aggregate UDFcccoovviiiiiiiievveeeiinn, 63
Aggregate UDF descriptor structure 65
Calculation contextccovvvvuviiiiiiinnne e 69
UDAF context StruCturecccoeevveviinevennneeennnnn. 70

iv Sybase 1Q

Contents

UDAF example: my_sum definition 73
UDAF example: my_bit_xor definition.................. 77
UDAF example: my_bit_or definition 81
UDAF example: my_interpolate definition 83
Context storage of aggregate user-defined functions...90
UDF Callback Functions and Calling Patterns 91
UDF and UDAF callback functionsccccceeeeeeneeene. 91
Scalar UDF calling patterncccooeeeevieiveiiiiiiiieeeeee, 92
Aggregate UDF calling patternsccccccevevenennennnns 92
Simple aggregate ungroupedcccceeveeeeeiiennnns 93
Simple aggregate groupedccceeeeeiieieiiiennnnns 93
OLAP-style aggregate calling pattern with
unbounded WINAOWccoeeeviiiiiiiiiiiiiiiieeeeee, 94
OLAP-style unoptimized cumulative window
AQIregaALE ...oeveeievi e 95
OLAP-style optimized cumulative window
AQIregaALE ...ceveieiev e 95
OLAP-style unoptimized moving window
AQIregaALE ...ceveieiev e 96
OLAP-style optimized moving window
AQIregaALE ...ceveieiev e 97
OLAP-style unoptimized moving window
following aggregateccccoovviiiiiiiiiinnn, 98
OLAP-style optimized moving window following
AQIregaALE ...ceveieiev e 99
OLAP-style unoptimized moving window without
CUITENT .. e 99
OLAP-style optimized moving window without
CUITENT ..o e 101
External function prototypes............cccccveeeeeennns 101
INAEX o 105

User-Defined Functions Y

Contents

Vi

Sybase 1Q

Audience

Audience

The User-Defined Functions Guide is intended for the users who wants to extend the
functionality of Sybase® 1Q. Use this book for building and incorporating very complicated
logic into the SQL queries or statements and for concepts about procedures for programming
scalar and aggregate user-defined functions with Sybase 1Q.

User-Defined Functions 1

Audience

2 Sybase 1Q

Related Documents

Related Documents

Additional information is available in Sybase 1Q and SQL Anywhere documents.

Related Sybase IQ Documents
The Sybase 1Q documentation set includes:

* Release Bulletinfor your platform — contains last-minute information that was too late to
be included in the books.

A more recent version of the release bulletin may be available. To check for critical product

or document information that was added after the release of the product CD, use the

Sybase Product Documentation Web site.

 Installation and Configuration Guidefor your platform — describes installation, upgrading,
and some configuration procedures for Sybase 1Q.

o New Features Summary Sybase 1Q - summarizes new features and behavior changes for
the current version.

* Advanced Security in Sybase 1Q - covers the use of user-encrypted columns within the
Sybase 1Q data repository. You need a separate license to install this product option.

e Error Messages - lists Sybase 1Q error messages referenced by Sybase error code,
SQLCode, and SQLState, and SQL preprocessor errors and warnings.

o IMSL Numerical Library User’s Guide. Volume 2 of 2 C Stat L ibrary— contains a concise
description of the IMSL C Stat Library time series C functions. This book is available only
to RAP — The Trading Edition® Enterprise users.

» Introduction to Sybase 1Q— includes exercises for those unfamiliar with Sybase 1Q or with
the Sybase Central™ database management tool.

» Performance and Tuning Guide— describes query optimization, design, and tuning issues
for very large databases.

e Quick Start- discusses steps to build and query the demo database provided with Sybase
1Q for validating the Sybase 1Q software installation. Includes information on converting
the demo database to multiplex.

e Reference Manual - reference guides to Sybase 1Q:

* Reference: Building Blocks, Tables, and Procedures — describes SQL, stored
procedures, data types, and system tables that Sybase 1Q supports.

* Reference: Statements and Options — describes the SQL statements and options that
Sybase 1Q supports.

» System Administration Guide — includes:

o System Administration Guide. Volume 1— describes start-up, connections, database
creation, population and indexing, versioning, collations, system backup and recovery,
troubleshooting, and database repair.

o System Administration Guide: Volume 2— describes how to write and run procedures
and batches, program with OLAP, access remote data, and set up 1Q as an Open Server.

User-Defined Functions 3

Related Documents

This book also discusses scheduling and event handling, XML programming, and
debugging.
Time Series Guide describes SQL functions used for time series forecasting and analysis.
You need RAP — The Trading Edition® Enterprise to use this product option.
Unstructured Data Analytics in Sybase 1Q explains how to store and retrieve unstructured
data within the Sybase 1Q data repository. You need a separate license to install this
product option.
User-Defined Functions Guide provides information about the user-defined functions,
their parameters, and possible usage scenarios.
Using Sybase 1Q Multiplex tells how to use multiplex capability, which manages large
query loads across multiple nodes.
Utility Guide provides Sybase 1Q utility program reference material, such as available
syntax, parameters, and options.

Related SQL Anywhere Documents

Note: Because Sybase 1Q shares many components with SQL Anywhere® Server, a
component of the SQL Anywhere package, Sybase 1Q supports many of the same features as
SQL Anywhere. The 1Q documentation set refers you to SQL Anywhere Studio
documentation where appropriate.

Documentation for SQL Anywhere includes:

SQL Anywhere Server — Database Administration describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database
server, database files, backup procedures, security, high availability, and replication with
Replication Server, as well as administration utilities and options.

SQL Anywhere Server — Programming describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages
such as Visual Basic and Visual C#. This book also describes a variety of programming
interfaces, such as ADO.NET and ODBC.

SQL Anywhere Server — SQL Reference provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of
the SQL Anywhere implementation of the SQL language (search conditions, syntax, data
types, and functions).

SQL Anywhere Server— SQL Usagedescribes how to design and create databases; how to
import, export, and modify data; how to retrieve data; and how to build stored procedures
and triggers.

You can also refer to the SQL Anywhere documentation in the SQL Anywhere Studio 11.0
collection at Product Documentation and in DocCommentXchange.

Sybase 1Q

http://www.sybase.com/support/manuals/
http://dcx.sybase.com/dcx_home.php

Understanding User-Defined Functions

Understanding User-Defined Functions

Learn how user-defined functions are used within Sybase 1Q.

Sybase 1Q allows user defined functions (UDFs), which execute within the database container.
The UDF execution feature is available as an optional component for use within Sybase 1Q or
within the RAPStore component of RAP - The Trading Edition™.

The use of these external C/C++ UDFs interfaces requires the 1Q_UDF license.

These external C/C++ UDFs differ from the Interactive SQL UDFs available in earlier
versions of Sybase 1Q. Interactive SQL UDFs are unchanged and do not require a special
license.

UDFs that execute within Sybase 1Q take advantage of the extreme performance of the 1Q
server, while also providing users the flexibility of analyzing their data with the flexibility of a
programmatic solution. User-Defined Functions consist of two components:

« UDF declaration, and
* UDF executable code

A UDF isdeclared in the SQL environment through a SQL function or stored procedure which
describes the parameters and provides a reference to the external library.

The actual executable portion of the UDF is contained within an external (shared object or
dynamic load) library file, which is automatically loaded by the 1Q server upon the first
invocation of a UDF Declaration function or stored procedure associated with that library.
Once loaded, the library remains resident in the 1Q server for rapid access through subsequent
invocations of SQL functions or stored procedures that reference the library.

The Sybase 1Q user-defined function architecture is represented in the diagram below.

User-Defined Functions 5

Understanding User-Defined Functions

\IQ-/
SQL Client

3 saL ﬂl
Functions &

or Stored

Procedures
Executable User-Defined Function code, »
contained within external library files,

which are dynamically-loaded into the IG
server upon first use

Sybase 1Q supports high-performance in-process external C/C++ user-defined functions. This
style of UDF supports functions written in C or C++ code that adhere to the interfaces
described in this guide.

The C/C++ source code for the UDFs is compiled into one or more external libraries that are
subsequently loaded into the 1Q server's process space when needed. The UDF calling
mechanism is defined to the Sybase 1Q server through a SQL function. When the SQL
function is invoked from a SQL query, the 1Q server loads the corresponding library if it has
not already been loaded.

For simplicity of managing the UDF installation, Sybase recommends that UDF developers
package many UDF functions within a single library.

To facilitate the construction of UDFs, Sybase 1Q includes a C-based API. The APl comprises
aset of predefined entry points for the UDFs, a well-defined context data structure, and a series

6 Sybase 1Q

Understanding User-Defined Functions

of SQL callback functions that provide a communication mechanism from the UDF back to
the Sybase 1Q server. The Sybase 1Q UDF API allows software vendors and expert end-users
to develop, package, and sell their own UDFs.

User-Defined Functions Compliance with Sybase 1Q
Databases

Developing user-defined functions to work with Sybase 1Q databases.

Seamless Execution

UDFs must run seamlessly within the database container. Although Sybase 1Q is a complex
product consisting of many files, the main user interaction is through an 1Q server process
(igsrv15), using industry-standard Structured Query Language (SQL). Execution of UDFs
should be accomplished entirely through SQL commands; the user not need understand the
underlying implementation method to use the UDFs.

UDFs run under the cover of Sybase 1Q, so do not write console messages. Present any
feedback to the user through predefined exception messages.

UDFs should manage memory and temporary results as defined by the Sybase 1Q UDF API.

Sybase 1Q manages disk 1/0 in a reliable manner to guarantee data availability and integrity.
UDFs should generally not write to or read from the file system.

Sybase 1Q is a multiuser application. Many users can simultaneously execute the same UDF.
Certain OLAP queries cause a UDF to be executed multiple times within the same query,
sometimes in parallel. For additional details on setting UDFs to run in parallel, see Aggregate
UDF calling patterns on page 92.

Internationalization

Sybase 1Q has been internationalized, so that it can be sold in different countries around the
world, to users who speak many different languages. Error messages have been extracted from
the code and put into external files. This lets you localize error messages to new languages,
without having to make extensive code changes.

To support multiple languages, UDFs should also be internationalized. In general, most UDFs
will operate on numeric data. In some cases, a UDF may accept string keywords as one or
more of the parameters. Place these keywords in external files, in addition to any exception
text and log messages used by the UDF.

Sybase 1Q has also been localized to a few non-English foreign languages. To support
localization to the same languages as Sybase 1Q supports, Sybase recommends that you
internationalize UDFs allowing them to be localized at a later date, by an independent
organization.

User-Defined Functions 7

Understanding User-Defined Functions

For details about international language support in Sybase 1Q, see the System Administration
Guide.: Volume 1 > International Languages and Character Sets.

See also Debugging Using Cross-Character-Set Maps at www.Sybase.com. This paper
discusses how to with multi byte data, as opposed to input keywords, exception messages, and
log entries.

Platform Differences

Develop UDFs to run on a variety of platforms supported by Sybase 1Q. The Sybase 1Q 15.x
server runs on 64-bit architectures, and is supported under several platforms of the MS
Windows (64-bit) family of operating systems. It is also supported on various types and
versions of UNIX (64-bit), including Solaris, HP-UX, AlX, and Linux.

Practices to Avoid

Learn good practices for creating user-defined functions.

« Do not hard-code library paths in SQL registration scripts. This practice makes it difficult
to provide flexibility to the user to install the UDFs into the same directory as Sybase 1Q.

« Do not write output files. Sybase 1Q includes an architectural limitation on UDF results
within Sybase 1Q. Due to this size limitation, some UDFs have been developed to write to
temporary results files outside of the Sybase 1Q container.

» Do not write ambiguous code, or constructs that can unexpectedly loop forever, without
providing a mechanism for the user to cancel the UDF invocation (see the function
'get_is_cancelled()' in (UDF and UDAF callback functions on page 91).

« Do not perform complex, or memory-intensive operations that are repeated every
invocation. When a UDF call is made against a table that contains many thousands of rows,
efficient execution becomes paramount. Sybase recommends that you allocate blocks of
memory for a thousand to several thousand rows at a time, rather than on a row-by-row
basis.

« Do notopen adatabase connection, or perform database operations from within a UDF. Al
parameters and data required for UDF execution must be passed as parameters to the UDF.

* Do not use reserved words when naming UDFs.

Types of User-Defined Functions

There are several types of user-defined functions.

» Scalar or aggregate — the UDF operates either on a single value (scalar) or multiple values
(aggregate). Aggregate UDFs are also sometimes known as UDAs or UDAFs. The context
structure for coding aggregate UDFs is slightly different than the context structure used for
coding scalar UDFs.

8 Sybase 1Q

Understanding User-Defined Functions

« Deterministic or non deterministic — the result of a function can be determined either
solely by the input parameters and data (deterministic), or by some random behavior (hon-
deterministic). Parameters of non-deterministic UDFs typically need arandom seed as one
of the input parameters.

« Aggregate UDFs only: single output or multiple outputs — an aggregate function can
produce either a single result, or a set of results. The number of data points in the output
result set may not necessarily match the number of data points in the input set. In Sybase
1Q, multiple-output aggregate UDFs must use a temporary output file to hold the results.

Naming Conventions for User-Defined Functions

UDF names must follow the same restrictions as other identifiers in Sybase 1Q.

Sybase IQ identifiers have a maximum length of 128 bytes. For simplicity of use, UDF names
should start with an alphabetic character. Alphabetic characters as defined by Sybase 1Q
include the letters of the alphabet, plus underscore (), at sign (@), number or pound sign (#)
and dollar sign ($). UDF names should consist entirely of these alphabetic characters as well
as digits (the numbers 0 through 9). UDF names should not conflict with SQL reserved words.
There is a list of SQL reserved words in Sybase 1Q Reference. Building Blocks, Tables, and
Procedures > SQL Language Elements > Reserved Words.

Although UDF names (as other identifiers) may also contain reserved words, spaces,
characters other than those listed above, and may start with a non-alphabetic character, this is
not recommended. If UDF names have any of these characteristics, you must enclose them in
quotes or square brackets, which makes it more difficult to use them.

The UDFs reside in the same name space as other SQL functions and stored procedures. To
avoid conflicts with existing stored procedures and functions, preface UDFs with a unique
short (2-letter to 5-letter) acronym and underscore. Choose UDF names that do not conflict
with other SQL functions or stored procedures already defined in the local environment.

These are some of the prefixes that are already in use:

» debugger_tutorial —a stored procedure delivered with the native Sybase 1Q installation.
* ManageContacts — a stored procedure delivered with the Sybase 1Q demo database.
e Show - stored procedures used to display data from the Sybase 1Q demo database.

e sp_Detect_MPX_DDL_conflicts —a stored procedure delivered with the native Sybase 1Q
installation.

* sp_igevbegintxn — a stored procedure delivered with the native Sybase 1Q installation.

* sp_igmpx — functions and stored procedures provided by Sybase I1Q to assist in multiplex
administration.

» ts_—optional financial time series and forecasting functions.

User-Defined Functions 9

Understanding User-Defined Functions

Design Basics of User-Defined Functions

There are some basic considerations to keep in mind while developing UDFs.

This document assumes that the UDF developer is familiar with the basics of developing
software, including good program design and development and independent testing.

In addition to standard software development practices, UDF developers should remember
that they are developing code to be executed within the Sybase 1Q database container, and to
understand the limitations imposed by the database container.

Developers of aggregate UDFs should also be familiar with OLAP queries, and how they
translate into UDF calling patterns.

Because the UDFs may be invoked by several threads simultaneously, they must be
constructed to be thread-safe.

Sample Code

Sample UDF source code is delivered with the product. The newest version of the sample code
is always delivered with the most current version of Sybase 1Q.

On UNIX platforms, the sample UDF code is in $SYBASE/ | Q- 15_3/ sanpl es/ udf
(where $SYBASE is the installation root).

On Windows platforms, the sample UDF code is in C: \ Docurmrent s and Setti ngs
\Al'l Users\ Sybasel Q sanpl es\ udf.

The sample UDF code documented in the User-Defined Functions Guide may not be the latest
version as delivered with the Sybase 1Q product. Last-minute changes to the sample UDF
source code are documented in the Sybase 1Q Release Bulletin for your operating system
platform.

10

Sybase 1Q

Creating and Executing User-Defined Functions

Creating and Executing User-Defined
Functions

User-defined functions (UDFs) return a single value to the calling environment.

Note: User-defined functions are a licensable option, and require the IQ_UDF license.
Installing the license enables user-defined functions.

You can install Sybase IQ in a wide variety of configurations. UDFs must be easily installed
within this environment, and must be able to run within all supported configurations. The
Sybase 1Q installer provides a default installation directory, but allows users to select a
different installation directory. UDF developers should consider providing the same
flexibility with the installation of the UDF libraries and associated SQL function definition
scripts.

Creating a User-Defined Function

Learn how to create and configure external C/C++ user-defined functions (UDFs).

For instructions on creating UDFs using Interactive SQL, see System Administration Guide:
Volume 2 > Using Procedures and Batches.

1. Declare the UDF to the server by using the CREATE FUNCTION or CREATE AGGREGATE
FUNCTION statements. Write and execute these statements as commands, or use the
appropriate CREATE statement using the Sybase Central New Function wizard.

The external C/C++ form of the CREATE FUNCTION statement requires DBA or
RESOURCE authority, so standard users do not have the authority to declare any UDFs of
this type.

2. Write the UDF library identification function. on page 16.

3. Define the UDF as a set of C or C++ functions. See Defining a scalar UDF on page 40 or
Defining an aggregate UDF on page 63.

4. Implement the function entry points in C/C++.
5. Compile the UDF functions and the library identification functions. on page 19.
6. Link the compiled file into a dynamically linkable library.

Any reference to a UDF in a SQL statement first, if necessary, links the dynamically linkable
library. The calling patterns on page 91 are then called.

Because these high-performance external C/C++ user-defined functions involve the loading
of non-server library code into the process space of the server, there are potential risks to data
integrity, data security, and server robustness from poorly or maliciously written functions. To

User-Defined Functions 11

Creating and Executing User-Defined Functions

manage these risks, each 1Q server can explicitly enable or disable this functionality on page
29.

See also

» User-Defined Function Restrictions on page 14

e Calling User-Defined Functions on page 15

» Setting the Dynamic Library Interface on page 16

* Dropping User-Defined Functions on page 16

e Granting and Revoking Permissions on page 17

» Maintenance of User-Defined Functions on page 18

o Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page

» Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Types on page 24

Creating a User-Defined Function Using SQL Anywhere Dialects

Watcom-SQL and Transact-SQL are SQL dialects supported by SQL Anywhere, and can be
used when creating user-defined functions.

In Sybase Central, connect to the database as a user with DBA or Resource authority.
Select View > Folders. > > >

In the left pane, right-click Procedures & Functionsand select New > Function.
Enter a name for the function and select the user who will own the function.

Select the SQL dialect or language for the function. Click Next.

Select the type of value to be returned in the function, and specify the size, units, and scale
for the value.

o ok wDhpE

~

Type a name for the return value and click Next.
8. Add a comment describing the purpose of the new function. Click Finish.
9. In the right pane, click the SQL tab to complete the procedure code.

Declaring a Scalar User-Defined Function in Sybase Central

Sybase 1Q supports simple scalar UDFs that can be used anywhere the SQRT function can be
used. These scalar UDFs can be deterministic, which means that for a given set of argument
values, the function always returns the same result value. Sybase 1Q also supports
nondeterministic scalar functions, which means that the same arguments can return different
results.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.
2. In the left pane, right-click Procedures & Functionsand select New > Function.

12 Sybase 1Q

Creating and Executing User-Defined Functions

3. Inthe Welcomedialog, type a name for the function and select the user to be the owner of
the function.

To create a user-defined function, select External C/C++. Click Next.

In the External Function Attributes dialog, select Scalar.

Type the name of the dynamically linkable library file, omitting the .so or .dll extension.
Type a name for the descriptor function. Click Next.

Select the type of value to be returned in the function, and specify the size, units, and scale
for the value. Click Next.

9. Select whether or not the function is deterministic.
10. Specify if the function respects or ignores NULL values.

11. Select whether the privileges used for running the function are from the defining user
(definer) or the calling user (invoker).

12. Add a comment describing the purpose of the new function. Click Finish.
13.In the right pane, click the SQL tab to complete the procedure code.

© N o g k&

Declaring a User-Defined Aggregate Function in Sybase Central

Sybase 1Q supports user-defined aggregate functions (UDAFs). The SUM function is an
example of a built-in aggregate function. A simple aggregate function takes a set of argument
values and produces a single result value from that set of inputs. User-defined aggregate
functions can be written that can be used anywhere the SUM aggregate can be used.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.
2. In the left pane, right-click Procedures & Functionsand select New > Function.

3. Inthe Welcome dialog, type a name for the function and select which user will be the
owner of the function.

To create a user-defined function, select External C/C++. Click Next.

Select Aggregate.

Type the name of the dynamically linkable library file, omitting the .so or .dll extension.

Type a name for the descriptor function. Click Next.

Select the type of value to be returned in the function, and specify the size, units, and scale

for the value. Click Next.

9. Select whether the privileges used for running the function are from the defining user
(definer) or the calling user (invoker).

10. Specify whether the function is allowed to be, required to be, or not allowed to be, used in

an OVER clause. Click Next.

© N o g k&

If the function is not allowed to be used in an OVER clause, proceed with step 14.

11. Specify if the function requires the user of an ORDER BY clause when it is used to define a
window. Click Next.

User-Defined Functions 13

Creating and Executing User-Defined Functions

12. Specify if the function is allowed to be used in a WINDOW FRAME clause, is required to be

used in an WINDOW FRAME clause, or is not allowed to be used in a WINDOW FRAME
clause. Click Next.

If the function is not allowed to be used in a WINDOW FRAME clause, skip to step 14.

13. Identify the constraints on the WINDOW FRAME clause. Click Next.
14. Specify if duplicate input values need to be filtered out by the database server prior to

calling the function.

15. Identify if the return value of the function is NULL or a fixed value when it is called with no

data. Click Next.

16. Add a comment describing the purpose of the new function. Click Finish.
17. In the right pane, click the SQL tab to complete the procedure code.

The new function appears in Procedures & Functions.

User-Defined Function Restrictions

External C/C++ user-defined functions have some restrictions.

Write all UDFs in a manner that allows them to be called simultaneously by different users
while receiving different context functions.

If a UDF accesses a global or shared data structure, the UDF definition must implement the
appropriate locking around its accesses to that data, including the releasing of that locking
under all normal code paths and all error handling situations.

UDFs implemented in C++ may provide overloaded "new" operators for their classes, but
they should never overload the global "new" operator. On some platforms, the effect of
doing so is not limited to the code defined within that specific library.

Write all aggregate UDFs and all deterministic scalar UDFs such that the receipt of the
same input values always produces the same output values. Any scalar function for which
this is not true must be declared as NONDETERMINISTIC to avoid the potential for
incorrect answers.

Users can create a standard SQL function without a DBA authority, but they cannot create
a function which will invoke an external library without having DBA permissions.
Attempting to do this results in an error message " You do not have perni ssion
to use the create function statenent."

See also

Creating a User-Defined Function on page 11
Calling User-Defined Functions on page 15
Setting the Dynamic Library Interface on page 16
Dropping User-Defined Functions on page 16
Granting and Revoking Permissions on page 17

14

Sybase 1Q

19

Creating and Executing User-Defined Functions

Maintenance of User-Defined Functions on page 18
Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page

Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
SQL Data Typeson page 24

Calling User-Defined Functions

You can use a user-defined function, subject to permissions, any place you use a built-in
nonaggregate function.

This Interactive SQL statement returns a full name from two columns containing a first and
last name:

SELECT ful |l nane (G venNane, Last Nane)
FROM Enpl oyees;

fullname (Employees.GivenName,Employees.SurName)

Fran Whitney

Matthew Cobb

Philip Chin

The following statement returns a full name from a supplied first and last name:
SELECT fullnane ('Jane', 'Smith');

fullname (‘Jane’,'Smith")

Jane Smith

Any user who has been granted Execute permissions for the function can use the fullname
function.

See also

Creating a User-Defined Function on page 11
User-Defined Function Restrictions on page 14
Setting the Dynamic Library Interface on page 16
Dropping User-Defined Functions on page 16
Granting and Revoking Permissions on page 17
Maintenance of User-Defined Functions on page 18

User-Defined Functions 15

Creating and Executing User-Defined Functions

e Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page
19

» Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Typeson page 24

Setting the Dynamic Library Interface

Specify the interface style to be used in the dynamically linkable library.

Each dynamically loaded library must contain exactly one copy of this definition:

extern "C' a_sqgl _uint32 extfn_use_new api (void)

{
return EXTEN_V3_API;
}

This definition informs the server of which interface style is being used, and therefore how to
access the UDFs defined in this dynamically linkable library. For high-performance 1Q UDFs,
only new interface style (EXTFN_V3_API) is supported.

See also

e Creating a User-Defined Function on page 11

» User-Defined Function Restrictions on page 14

o Calling User-Defined Functions on page 15

» Dropping User-Defined Functions on page 16

e Granting and Revoking Permissions on page 17

» Maintenance of User-Defined Functions on page 18

e Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page
19

» Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Typeson page 24

Dropping User-Defined Functions

Once you create a user-defined function, it remains in the database until it is explicitly
removed. Only the owner of the function or a user with DBA authority can drop a function
from the database.

For example, to remove the function fu/lname from the database, enter:

DROP FUNCTI ON ful | name

See also
e Creating a User-Defined Function on page 11

16

Sybase 1Q

Creating and Executing User-Defined Functions

» User-Defined Function Restrictions on page 14

e Calling User-Defined Functions on page 15

o Setting the Dynamic Library Interface on page 16

» Granting and Revoking Permissions on page 17

e Maintenance of User-Defined Functions on page 18

o Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page

« Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Typeson page 24

Granting and Revoking Permissions

A user-defined function is owned by the user who created it, and only that user can execute it
without permission. The owner can grant permissions to other users using the GRANT
EXECUTE command.

For example, the creator of the function fu/lname can allow another_userto use fullname by
issuing:
CRANT EXECUTE ON ful I name TO anot her _user

Or can revoke permissions by issuing:
REVOKE EXECUTE ON ful | nane FROM anot her _user

See System Administration Guide. Vblume 1 > Managing User IDs and Permissions >
Managing Individual User IDs and Permissions > Granting Permissions on Procedures in
Interactive SQL.

See also

» Creating a User-Defined Function on page 11

o User-Defined Function Restrictions on page 14

e Calling User-Defined Functions on page 15

o Setting the Dynamic Library Interface on page 16

* Dropping User-Defined Functions on page 16

e Maintenance of User-Defined Functions on page 18

o Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page

« Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Typeson page 24

User-Defined Functions 17

Creating and Executing User-Defined Functions

Maintenance of User-Defined Functions

Many Sybase IQ installations are in mission-critical environments, where customers require
an extremely high level of availability. System Administrators must be able to install and
upgrade UDFs with little or no impact to the Sybase 1Q server.

Anapplication must not attempt to access an external library while the associated library file is
being moved, overwritten, or deleted. Since libraries are automatically loaded whenever an
associated SQL function is invoked, it is important to follow these steps in the exact order
whenever performing any type of maintenance on existing UDF libraries:

1. Ensure all users who invoke UDFs do not have any pending queries in progress

2. Revoke the execute permission from users, and drop the SQL functions and stored
procedures which reference external UDF code modules

3. Unload the library from the 1Q server, using the call sa_external_library_unload
command (shutting down the 1Q server also automatically unloads the library).

4. Perform the desired maintenance on the external library files (copy, move, update, delete).

5. Edit SQL function and stored procedure definitions in the registration scripts to reflect
external library locations, if the libraries were moved.

6. Grant the execute permission to users, and run registration scripts to re-create the SQL
functions and stored procedures which reference external UDF code modules.

7. Invoke a SQL function or stored procedure that references the external UDF code to ensure
the 1Q server can dynamically load the external library.

See also

e Creating a User-Defined Function on page 11

» User-Defined Function Restrictions on page 14

e Calling User-Defined Functions on page 15

o Setting the Dynamic Library Interface on page 16
» Dropping User-Defined Functions on page 16

e Granting and Revoking Permissions on page 17

e Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page
19

» Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Typeson page 24

18

Sybase 1Q

Creating and Executing User-Defined Functions

Compiling and Linking Source Code to Build Dynamically
Linkable Libraries

Use compile and link switches when building dynamically linkable libraries for any user-
defined function.

1. A UDF dynamically linkable library must include an implementation of the function
extfn_use_new_api(). The source code for this function is in Setting the dynamic library
interface on page 16. This function informs the server of the API style that all functions in
the library adhere to. The sample source file my _nmai n. cxx contains this function; you
can use it without modification.

2. A UDF dynamically linkable library must also contain object code for at least one UDF
function. A UDF dynamically linkable library may optionally contain multiple UDFs.

3. Link together the object code for each UDF as well as the extfn_use_new_api() to form a
single library.

For example, to build the library "libudfex:"

» Compile each source file to produce an object file:

my_mai n. cxx
my_bit_or.cxx
my_bit_xor.cxx
ny_i nt er pol at e. cxx
ny_pl us. cxx
ny_pl us_count er. cxx
ny_sum CcXX
nmy_byte_| engt h. cxx
ny_nd5. cxx
ny_t oupper . cxx

« Link together each object produced into a single library.

After the dynamically linkable library has been compiled and linked, complete one of these
tasks:

* (Recommended) update the CREATE FUNCTION ... EXTERNAL NAME to include an
explicit path name for the UDF library.

* Place the UDF library file into the directory where all the 1Q libraries are stored.

« Start the 1Q server with a library load path that includes the location of the UDF library.
On UNIX modify the LD_LIBRARY_PATH withinthe start _i q st art up script.
While LD_LIBRARY_PATH isuniversal to all UNIX variants, SHLIB_PATH is preferred
on HP, and LIB_PATH is preferred on AlX.

On UNIX platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully

User-Defined Functions 19

Creating and Executing User-Defined Functions

qualified name cannot be used and the library search path is defined by the PATH
environment variable.

See also

* Creating a User-Defined Function on page 11

» User-Defined Function Restrictions on page 14

e Calling User-Defined Functions on page 15

o Setting the Dynamic Library Interface on page 16

» Dropping User-Defined Functions on page 16

» Granting and Revoking Permissions on page 17

» Maintenance of User-Defined Functions on page 18

» Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24
e SQL Data Typeson page 24

AlIX Switches
Use the following compile and link switches when building shared libraries on AlX.

xIC 8.0 on a PowerPC

Important: Include the code for extfn_use _new_api() in each UDF library.

Note: To compile on AlX 6.1 systems, the minimum level of the xIC compiler is 8.0.0.24.

compile switches

-q64 -qgarch=ppc64 -qtbtable=full -qgsrcnsg -galign=natural -
gnoansi al i as

-gmaxnmem=-1 -genunrint -ghalt=e -qfl ag=w -qt hreaded -

gxf | ags=NLOOPI NG

-qt mpl i nst =none - qt hr eaded

link switches

-brtl -G-lg -lpthreads _conpat -lpthreads -Imr -1dl -bnolibpath -
%

HP-UX Switches
Use the following compile and link switches when building shared libraries on HP-UX.

aCC 6.17 on Itanium

Important: Include the code for extfn_use new_api() in each UDF library.

compile switches

+noeh -ext +W40, 749, 829 +WL031 +DD64 +DSbl ended +FPD - Aa +ub
-U_HP_I NSTANTI ATE_T_IN LIB -W, -ansi _for_scope,on -nt -z

link switches

20 Sybase 1Q

Creating and Executing User-Defined Functions
-b -W, +s

Linux Switches
Use the following compile and link switches when building shared libraries on Linux.

g++ 4.1.1 on x86

Important: Include the code for extfn_use _new_api() in each UDF library.

compile switches

-fPIC -fsigned-char -fno-exceptions -pthread -fno-onit-frane-
poi nt er
-Who- deprecat ed -Who-ctor-dtor-privacy -2 -Wall

Note: When compiling C++ applications for building shared libraries on Linux, adding the
-02 and -Wall switches to the list of compile UDF switches decreases computation time.

link switches
-ldl -Insl -Im-I|pthread -shared -W, -Bsynbolic -W, -shared

Note: You can use gcc on Linux as well. While linking with gcc, link in the C++ run time
library by adding - | st dc++ to the link switches.

Examples
e Example 1
g++ -c nmy_interpolate.cxx -fPlIC -fsigned-char -fno-exceptions -
pt hr ead
-fno-onit-frane-poi nter -Wo-deprecated -Wo-ctor-dtor-
privacy
-1 ${1 QI R15}/ sdk/ i ncl ude/
e Example 2

g++ -c my_main.cxx -fPIC -fsigned-char -fno-exceptions -pthread
-fno-onit-frane-poi nter -Wo-deprecated -Wo-ctor-dtor-
privacy
-1 ${1 QDI R15}/ sdk/ i ncl ude/
e Example 3
Id -Gmy_main.o ny_interpolate.o -1dl -Insl -Im-Ipthread -shared
-0 my_udf _library.so

xIC 8.0 on a PowerPC
compile switches

-q64 -garch=ppc64 -qcheck=nullptr -qi nfo=gen -qtbtable=full -
gsrcnsg
-gnoansi al i as -qgm ni mal toc - gmaxnem=-1 - genun¥i nt -ghalt=e -qfl ag=w
- gt hr eaded
- gxfl ags=NLOOPI NG - gt npl i nst =none

link switches
-qnkshrobj -1dl -lg -qthreaded -lInsl -Im

User-Defined Functions 21

Creating and Executing User-Defined Functions

Solaris Switches

Use the following compile and link switches when building shared libraries on Solaris.

Sun Studio 12 on SPARC

Important: Include the code for extfn_use new_api() in each UDF library.

compile switches

-m -noex +w -KPIC -i -instances=explicit -V -xtarget=ultra3cu -nb4
- x| i bnopt

-xl'ibm | -features=no%onststrings

-errof f=truncwar n, nokeywor ddef i ne, di f f enunt ype

link switches

-z defs -G -1dl -Insl -lsocket -ladm-Iposix4 -1Crun -1Cstd -Ic -Im
-lefi
-1iostream -1 kst at

Sun Studio 12 on x86

compile switches

+wW2 -nb4 -features=no%onststrings

-errof f=truncwar n, nokeywor ddefi ne, di f f enunt ype, doubunder -errtags -
m - noex

-KPI C -instances=explicit -xlibnopt -xlibml

link switches

-z defs -G -1dl -Insl -lsocket -ladm-Iposix4 -1Crun -1Cstd -lc -Im
-lefi
-liostream -l kstat -nb4

Windows Switches

Use the following compile and link switches when building shared libraries on Windows.

Visual Studio 2008 on x86

Important: Include the code for extfn_use _new_api() in each UDF library.

compile and link switches

This example is for a DLL containing the my_plus function. You must include an EXPORT
switch for the descriptor function for each UDF contained in the DLL.

cl /zi /LD /I includefilepath my_mai n. cxx my_plus.cxx /link /
map

/ | NCREMENTAL: NO - EXPORT: ext f n_use_new_api - EXPORT: my_plus /

out: |ibi qudfex.dll

Example

22

Sybase 1Q

Creating and Executing User-Defined Functions

Environment setup

set VCBASE=c:\dev\vc9
set MSSDK=C: \ dev\ mssdk6. Oa
set | Q NSTALLDI R=C: \ Sybase\l Q
set OBJ_DI R=% Q NSTALLDI R 1 Q 15_3\ sanpl es\ udf\ obj s
set SRC DI R=% Q NSTALLDI R%A | Q 15 3\ sanpl es\ udf\src
cal | 9%/CBASE% VQ bi n\ vcvar s32. bat

o Example 1

%/CBASE% VQ\ bi n\ amd64\ cl -c -nol ogo - DNDEBUG - DW NNT - D_USRDLL

-D WNDLL -D W N64 -DW N64 -
D_W N32_W NNT=_W N32_ W NNT_W NXP

- DW NVER=_W N32_W NNT_W NXP -D_MBCS -GS -WB -Zi -favor: AVMDG4

-DSYB_LP64 - D _LARGEFI LE_SOURCE - D _FI LE_OFFSET_BI TS=64 -
DHVBWNT

- D_CRT_SECURE_NO DEPRECATE - D _CRT_NONSTDC_NO DEPRECATE

-DPO NTERS_ARE 64BI TS -DLONG | S 64BI TS -
D _RWSTD_NO_EXCEPTI ONS

-1 "9%/CBASE% VC\ i ncl ude" -1"%BSDK% i ncl ude "-1"%vBSDK% Li b
\ AMD64"

-1 " 9%W/CBASE% VQ\ | i b\ and64" - DMSDCXX - DI NT64_WORKAROUND

- DSUPPORTS _UDAF -Qd -Zi -MD -1"9% Q NSTALLDI RA | Q 15_3\ sdk
\'i ncl ude"

-Fo"%0BJ_Dl R my_i nterpol ate. 0" %SRC Dl R nmy_i nt er pol at e. cxx

e Example 2

%/CBASE% VQ\ bi n\ anmd64\ cl -c -nol ogo - DNDEBUG - DW NNT - D_USRDLL
-D WNDLL -D W N64 -DW N64 -
D_W N32_W NNT=_W N32_\W NNT_W NXP
- DW NVER=_W N32_W NNT_W NXP - D _MBCS -GS -WB -Zi -favor: AVDG4
-DSYB_LP64 - D _LARGEFI LE_SOURCE - D _FI LE_OFFSET_BI TS=64 -
DHVBWNT
- D_CRT_SECURE_NO DEPRECATE - D_CRT_NONSTDC NO_DEPRECATE
- DPOl NTERS_ARE_64BI TS - DLONG |'S_64BI TS -
D_RWSTD _NO_EXCEPTI ONS
-1 " 9%/CBASE% VC\i ncl ude" -1"9%VBSDK% i ncl ude "-1"9%VBSDK% Li b
\ AMD64"
-1 "9%/CBASE% VC\ | i b\ and64" - DMSDCXX - DI NT64_WORKAROUND
- DSUPPORTS_UDAF -Qd -Zi -MD -1"9% Q NSTALLDI RoA | Q 15_3\ sdk
\'i ncl ude"
- Fo" %0BJ_DI R% my_mai n. 0" %SRC_DI R% nmy_nmai n. cxx

e Example 3

%/CBASE% VC\ bi n\ anmd64\ | i nk / LI BPATH: %/CBASE% VC\ | i b\ and64

/ L1 BPATH: %BSSDK% | i b\ bi n64 kernel 32.1ib -manifest -DLL -
nol ogo

- MAP: " %0BJ_DI R | i budf ex. nap_deco" / OUT: " %0BJ_DI R%
\libudfex.dl "

"%OBJ_Dl R ny_i nterpol ate. 0" "%0BJ_DI R% nmy_nmmai n. 0" /DLL

- EXPORT: extfn_use_new_api - EXPORT: ny_interpol ate

e Example 4

%VBSDK% bi n\ nt - nol ogo - mani fest "%BJ_DI R%
\l'i budfex.dll.manifest"
-out put resource: "%BJ_DI Rl i budfex.dl ;2"

User-Defined Functions 23

Creating and Executing User-Defined Functions

Using Microsoft Visual Studio Debugger for User-Defined
Functions

These steps will give the Microsoft Visual Studio 2008 developers the ability to step through
the user-defined functions code.

1

2.
3.

Attach the debugger to a running server:

devenv /debugexe "% QDI R15% bi n32\i gsrv15. exe"

Goto Debug | Attach to Process

To start the server and debugger together:

devenv /debugexe "% QDI R15% bi n32\i gsrv15. exe" [comrandl i ne
options for your server]

Each platform will have a debugger and each will have their own command line syntax.
Sybase 1Q source code is not required. The msvs debugger will recognize when the user-
defined functions source is executed and break at the set breakpoints. When control returns
from the user-defined functions to the server, you will only see machine code.

See also

Creating a User-Defined Function on page 11

User-Defined Function Restrictions on page 14

Calling User-Defined Functions on page 15

Setting the Dynamic Library Interface on page 16

Dropping User-Defined Functions on page 16

Granting and Revoking Permissions on page 17

Maintenance of User-Defined Functions on page 18

Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page

SQL Data Typeson page 24

SQL Data Types

UDF declarations support only certain SQL data types.

You can use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

UNSI GNED BI G NT -an unsigned 64-bit integer, requiring 8 bytes of storage. The data
type identifier to be used within UDF code is DT_UNSBIGINT, and the C/C++ data type
typedef to be used for such values within a UDF is “a_sqgl_uint64”. Several C/C++

24

Sybase 1Q

Creating and Executing User-Defined Functions

typedefs are included with Sybase 1Q to make it easier for application developers to write
portable UDF implementations.

e Bl G NT -asigned 64-bit integer, requiring 8 bytes of storage. The data type identifier is
DT_BIGINT, and the C/C++ data type typedef to be used for such values is “a_sql_int64.”

e UNSI GNED | NT —an unsigned 32-bit integer, requiring 4 bytes of storage. The data type
identifier is DT_UNSINT, and the C/C++ data type typedef to be used for such values is
“a_sqgl_uint32.”

e | NT —asigned 32-bit integer, requiring 4 bytes of storage. The data type identifier is
DT_INT, and the C/C++ data type typedef to be used for such values is “a_sql_int32.”

e SMALLI NT -—asigned 16-bit integer, requiring 2 bytes of storage. The data type identifier
is DT_SMALLINT, and the C/C++ data type to be used for such values is “short.”

* TI NYI NT - An unsigned 8-bit integer, requiring 1 byte of storage. The data type identifier
is DT_TINYINT, and the C/C++ data type to be used for such values is “unsigned char.”

» DQOUBLE - a signed 64-bit double-precision floating point number, requiring 8 bytes of
storage. The data type identifier is DT_DOUBLE, and the C/C++ data type to be used for
such values is “double.”

* REAL -asigned 32-bit floating point number, requiring 4 bytes of storage. The data type
identifier is DT_FLOAT, and the C/C++ data type to be used for such values is “float.”

e FLOAT-inSQL, depending on the associated precision, a FLOAT is either a signed 32-bit
floating point number requiring 4 bytes of storage, or a signed 64-bit double-precision
floating point number requiring 8 bytes of storage. You can use the SQL data type FLOAT
only in a UDF declaration if the optional precision for FLOAT data types is not supplied.
Without a precision, FLOAT is a synonym for REAL, for which the data type identifier is
DT_FLOAT, and the C/C++ data type to be used for such values is “float.”

e CHAR(<n>) — a fixed-length blank-padded character string, in the database default
character set. The maximum possible length, “<n>", is 32767. The data is not null-byte
terminated. The data type identifier is DT_FIXCHAR, and the C/C++ data type to be used
for such values is “char *.”

* VARCHAR(<n>) — a varying-length character string, in the database default character set.
The maximum possible length, “<n>", is 32767. The data is not null-byte terminated. For
UDF input arguments, the actual length, when the value is not NULL, must be retrieved
from the fotal /enfield within the an_extfn_value structure. Similarly, for a UDF result of
this type, the actual length must be set in the fotal /enfield. The data type identifier is
DT_VARCHAR, and the C/C++ data type to be used for such values is “char *.”

« LONG VARCHAR(<n>) or CLOB - a varying-length character string, in the database
default character set. Use the LONG VARCHAR data type only as an input argument, not as
a return-value data type. The maximum possible length, “<n>", is 4GB (gigabytes). The
data is not null-byte terminated. LONG VARCHAR data type can have a WD or TEXT
index. For UDF input arguments, the actual length, when the value is not NULL, must be
retrieved from the fotal /enfield within the an_extfn_value structure. The data type
identifier is DT_VARCHAR, and the C/C++ data type to be used for such values is “char

*

User-Defined Functions 25

Creating and Executing User-Defined Functions

To use LOB data types as input parameters with an existing user-defined function, drop
and re-create the function, declaring a LOB data type as an input parameter.

You need not rebuild or recompile an existing user-defined function to use a LOB data type
as an input parameter, if the function contains a loop that reads pieces of the value via the
get _val ue() and get _pi ece() methods. The loop continues until remain_len> 0
or until 4GB is reached.

Large object data support requires a separately licensed Sybase 1Q option.

Bl NARY(<n>) - a fixed-length null-byte padded binary, value with a maximum possible
binary length, “<n>", of 32767. The data is not null-byte terminated. The data type
identifier is DT_BINARY, and the C/C++ data type usually used for such values is
“unsigned char *.”

VARBI NARY(<n>) — a varying-length binary value, for which the maximum possible
length, “<n>", is 32767. The data is not null-byte terminated. For UDF input arguments,
the actual length, when the value is not NULL, must be retrieved from the fotal /enfield
within the an_extfn_value structure. Similarly, for a UDF result of this type, you must set
the actual length in the fotal_/enfield. The data is not null-byte terminated. The data type
identifier is DT_BINARY, and the C/C++ data type usually used for such values is
“unsigned char *.”

LONG BI NARY(<n>) or BLOB - a fixed-length null-byte padded binary, value with a
maximum possible binary length, “<n>", of 4GB (gigabytes). Use the LONG Bl NARY
data type only as an input argument, not as a return-value data type. The data is not null-
byte terminated. The data type identifier is DT_BINARY, and the C/C++ data type usually
used for such values is “unsigned char *.”

To use LOB data types as input parameters with an existing user-defined function, drop
and re-create the function, declaring a LOB data type as an input parameter.

You need not rebuild or recompile an existing user-defined function to use a LOB data type
as an input parameter, if the function contains a loop that reads pieces of the value via the
get _val ue() and get _pi ece() methods. The loop continues until remain_len> 0
or until 4GB is reached.

Large object data support requires a separately licensed Sybase 1Q option.

DATE - a calendar date value, which is passed to or from a UDF as an unsigned integer.
The value given to the UDF is guaranteed to be usable in comparison and sorting
operations. A larger value indicates a later date. If the actual date components are required,
the UDF must invoke the convert _val ue function in order to convert to the type
DT_TIMESTAMP_STRUCT. This date type represents date and time with this structure:
typedef struct sqldatetine {

unsi gned short year; /* e.g. 1992 */
unsi gned char nmont h; /* 0-11 */
unsi gned char day_of _week; /* 0-6 0=Sunday, 1=Monday,
*/

unsi gned short day_of year; /* 0-365 */
unsi gned char day; /* 1-31 */
unsi gned char hour ; /[* 0-23 */
unsi gned char m nut e; /* 0-59 */

unsi gned char second; /* 0-59 */

26

Sybase 1Q

Creating and Executing User-Defined Functions

a_sql _uint32 m cr osecond; /* 0-999999 */
} SQLDATETI ME;

TI ME—a value that precisely describes a moment within a given day. The value is passed
to the UDF as an UNSI GNED BI @ NT. The value given to the UDF is guaranteed to be
usable in comparison and sorting operations. A larger value indicates a later time. If the
actual time components are required, the UDF must invoke the convert val ue
function to convert to the type DT_TIMESTAMP_STRUCT.

DATETI ME, SMALLDATETI ME, or TI MESTAMP —a calendar date and time value, which
is passed to or from a UDF as an UNSI GNED BI G NT. The value given to the UDF is
guaranteed to be usable in comparison and sorting operations. A larger value indicates a
later datetime. If the actual time components are required, the UDF must invoke the
convert _val ue function to convert to the type DT_TIMESTAMP_STRUCT.

Unsupported Data Types
You cannot use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

BI T - should typically be handled in the UDF declaration as a Tl NYI NT data type, and
then the implicit data type conversion from Bl T automatically handles the value
translation.

DECI MAL (<precision>, <scale>) or NUMERI C(<precision>, <scale>) —depending on the
usage, DECI MAL is typically handled as a DOUBL E data type, but various conventions
may be imposed to enable the use of | NT or Bl G NT data types.

LONG VARCHAR (CLOB) — supported only as an input argument, not as a return-value
data type.

LONG BI NARY (BLOB) - supported only as an input argument, not as a return-value data
type.

TEXT — not currently supported.

See also

Creating a User-Defined Function on page 11

User-Defined Function Restrictions on page 14

Calling User-Defined Functions on page 15

Setting the Dynamic Library Interface on page 16

Dropping User-Defined Functions on page 16

Granting and Revoking Permissions on page 17

Maintenance of User-Defined Functions on page 18

Compiling and Linking Source Code to Build Dynamically Linkable Libraries on page

Using Microsoft Visual Studio Debugger for User-Defined Functions on page 24

User-Defined Functions 27

Creating and Executing User-Defined Functions

28 Sybase 1Q

Testing User-Defined Functions

Testing User-Defined Functions

After UDF external code has been coded, compiled and linked, and the corresponding SQL
functions and stored procedures have been defined, the UDFs are ready to be tested.

The reliability required by a database is extremely high. UDFs running within a database
environment must maintain this high level of reliability. With the first implementation of the
UDF API, UDFs run within the Sybase 1Q server. If a UDF aborts prematurely or
unexpectedly, the Sybase 1Q server may abort. Ensure via thorough testing in a development
or test environment, that UDFs do not terminate prematurely or abort unexpectedly under any
circumstances.

Enabling and disabling user-defined functions

Sybase 1Q includes a security feature, external_procedure_v3, which enables or disables the
ability of a server to make use of high performance in-process UDFs.

A database should maintain data integrity. Under no circumstances should data be lost,
modified, augmented, or corrupted. Since UDF execution happens within the Sybase 1Q
server, there is a risk of corrupting data; practice caution with memory management and any
other use of pointers. Sybase strongly recommends that you to install and execute UDFs
within a read-only multiplex node. For added protection, use a startup option in each 1Q server
to enable or disable the execution of UDF.

Note: By default, UDF execution on a multiplex writer and coordinator nodes are disabled..
All other nodes are enabled by default.

Administrators can enable version 3 UDFs for any server by specifying this in the server
startup command or in the configuration file:

-sf -external _procedure_v3

Administrators can disable version 3 UDFs for any server by specifying this in the server
startup command or in the configuration file:
-sf external _procedure_v3

Additional information on the -sf flag is available in the SQL Anywhere Server - Database
Administrationguide. Do not use the values listed in the SQL Anywhere document which are
applicable to Sybase 1Q.

User-Defined Functions 29

Testing User-Defined Functions

Initially executing a user-defined function

To ensure the safest environment possible, Sybase strongly recommends that you install and
invoke UDFs from a read-only 1Q server node in a multiplex installation.

The Sybase 1Q server does not load the library containing the UDF code until the first time the
UDF is invoked. The first execution of a UDF residing in a library that has not yet been loaded
may be unusually slow. After the library is loaded, the subsequent invocation of the same UDF
or another UDF contained in the same library have the expected performance.

Libraries using the stored procedure SA_EXTERNAL_LIBRARY_UNLOAD. These
libraries are not reloaded when 1Q server is stopped and restarted.

In environments where after-hours maintenance operations require a shutdown and restart of
the 1Q server, run some test queries after the Sybase 1Q server has been restarted. This ensures
that the appropriate libraries are loaded in memory for optimal query performance during
business hours.

Managing External Libraries

Each external library is loaded the first time a UDF that requires it is invoked. A loaded library
remains loaded for the life of the server. It is not loaded when a CREATE FUNCTION call is
made, nor is it automatically unloaded when a DROP FUNCTION call is made.

If the library version must be updated, the dbo.sa_external_library_unload procedure forces
the library to be unloaded without restarting the server. The call to unload the external library
is successful only if the library in question is not currently in use. The procedure takes one
optional parameter, a long varchar, that specifies the name of the library to be unloaded. If no
parameter is specified, all external libraries not in use are unloaded.

Note: Unload existing libraries from a running Sybase 1Q server before replacing the
dynamically link library. Failure to unload the library can result in a server crash. Before
replacing a dynamically linkable library, either shut down the Sybase 1Q server or use the
sa_external_library_unload function to unload the library.

For Windows, unload an external function library using:
call sa_external _library unload('library.dll")

For UNIX, unload an external function library using:
call sa_external _library_unload('library.so")

If a registered function uses a complete path, for example, / abc/ def / 1 i brary, first
unregister the function.

In Windows, use

30

Sybase 1Q

Testing User-Defined Functions

call sa_external library_unload('\abc\def\library.dll")
In UNIX, use
call sa_external _library_unload('/abc/def/library.so")

Note: The library path is required in the SQL function declaration only if the library is not
already located within a directory in the library load path.

Controlling error checking and call tracing

The external_UDF_execution_mode option controls the amount of error checking and call
tracing that is performed when statements involving external V3 user-defined functions are
evaluated.

You can use external_UDF_execution_mode during development of a UDF to aid in
debugging while you are developing UDFs.

Allowed values
0,1,2

Default value
0

Scope
Can be set as public, temporary, or user.

Description
When set to 0, the default, external UDFs are evaluated in a manner that optimizes the
performance of statements using UDFs.

When set to 1, external UDFs are evaluated to validate the information passed back and forth
to each UDF function.

When set to 2, external UDFs are evaluated to not only validate the information passed back
and forth to the UDF, but also to log, inthe i gns(file, every call to the functions provided by
the UDFs and every callback from those functions back into the server.

Enabling full tracing in a debug environment

Consider turning on full tracing within Sybase IQ in a debug environment. To enable 1Q
tracing, add the following flags to the Sybase 1Q server startup command line or the Sybase 1Q
config file:

-zr all -zo filenane

User-Defined Functions 31

Testing User-Defined Functions

where filename is the complete path to the tracing output file.

Viewing Sybase 1Q log files

Sybase 1Q provides extensive logging and tracing capabilities. UDFs should provide the same
or better level of detailed logging, in the event of problems in the UDF code.

Log files for the database are generally located with the database file and configuration file.
On Unix platforms, there are two files named after the database instance, one with a .stderr
extension and one with a .stdout extension. On Windows, by default, the stderr file is not
generated. To capture the stderr messages along with the stdout messages under Windows,
redirect the stdout and stderr:

i gsrvl5. exe @qdeno.cfg i gdeno.db 2>&1 > i qdeno. st dout

The Windows output messages are slightly different from what is generated on Unix
platforms.

32 Sybase 1Q

Scalar User-Defined Functions

Scalar User-Defined Functions

Sybase 1Q supports simple scalar user-defined functions (UDFs) that can be used anywhere
the SQRT function can be used.

These scalar UDFs can be deterministic, which means that for a given set of argument values
the function always returns the same result value, or they can be nondeterministic scalar
functions, which means that the same arguments can return different results.

Note: The scalar UDF examples referenced in this chapter are installed with the 1Q server, and
can be found as .cxx files in $| QDI R15/ sanpl es/ udf . You can also find them in the
$1 QDI R15/1i b64/ 1 i budf ex dynamically linkable library.

Declaring a Scalar UDF

Only a DBA, or someone with DBA authority can declare an in-process external UDF. There
is also a server startup option that allows an administrator to enable or disable this style of
user-defined function.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

Note: You can also create the user-defined function declaration in Sybase Central on page
12.

By default, all user-defined functions use the access permissions of the owner of the UDF.

Note: Users are required to have DBA authority in order to declare UDF functions.

The syntax for creating an 1Q scalar UDF is:

scal ar - udf - decl arati on
CREATE FUNCTION [owner.]function-name

([paranmeter , ... 1)
RETURNS dat a-t ype
[routine-characteristics ...]

EXTERNAL NAME | i brary-and-entry-poi nt-name-string

par anet er :
par am name data-type [DEFAULT val ue]

routi ne-characteristics:
[NOT] DETERM NI STI C
| { IGNORE | RESPECT } NULL VALUES
| SQL SECURITY { | NVOKER | DEFI NER }

The defaults for the characteristics in the above syntax are:

User-Defined Functions 33

Scalar User-Defined Functions

DETERM NI STI C
RESPECT NULL VALUES
SQL SECURI TY DEFI NER

To minimize potential security concerns, Sybase recommends that you use a fully qualified
path name to a secure directory for the library name portion of the EXTERNAL NAME
clause.

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

SQL SECURITY INVOKERuses additional memory, because each user that calls the procedure
requires annotation. Additionally, name resolution is performed on both the user name and the
INVOKER. Qualify all object names (tables, procedures, and so on) with their appropriate
owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following the
RETURNS clause. The library name may include the file extension, which is typically . dl |
on Windows and . so on UNIX. In the absence of the extension, the software appends the
platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions. See SQL Anywhere
11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data Access APIs > SQL
Anywhere External Function API.

You can start the 1Q server with a library load path that includes the location of the UDF
library. On Unix variants, modify the LD_LIBRARY_PATH inthestart _iq startup
script. While LD_LIBRARY _PATH is universal to all UNIX variants, SHLIB_PATH is
preferred on HP, and LIB_PATH is preferred on AlX.

On Unix platforms, the external name specification can contain a fully qualified name, in
which casethe LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
» Defining a Scalar UDF on page 40

34 Sybase 1Q

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html

Scalar User-Defined Functions

UDF Example: my plus Declaration

The “my_plus” example is a simple scalar function that returns the result of adding its two
integer argument values.

my_plus declaration

When my_plus resides within the dynamically linkable library my_shared_lib, the
declaration for this example looks like this:
CREATE FUNCTION ny_plus (IN argl INT, IN arg2 |NT)

RETURNS | NT

DETERM NI STI C

| GNORE NULL VALUES
EXTERNAL NAME ' ny_pl us@i budf ex’

This declaration says that my_plus is a simple scalar UDF residing in my_shared_lib with a
descriptor routine named describe_my_plus. Since the behavior of a UDF may require more
than one actual C/C++ entry point for its implementation, this set of entry points is not directly
part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure that is defined in detail in the next
section. That descriptor structure contains the required and optional function pointers that
embody the implementation of this UDF.

This declaration says that my_plus accepts two INT arguments and returns an INT result
value. If the function is invoked with an argument that is not an INT, and if the argument can be
implicitly converted into an INT, the conversion happens before the function is called. If this
function is invoked with an argument that cannot be implicitly converted into an INT, a
conversion error is generated.

Further, the declaration states that this function is deterministic. A deterministic function
always returns the identical result value when supplied the same input values. This means the
result cannot depend on any external information beyond the supplied argument values, or on
any side effects from previous invocations. By default, functions are assumed to be
deterministic, so the results are the same if this characteristic is omitted from the CREATE
statement.

The last piece of the above declaration is the IGNORE NULL VALUES characteristic. Nearly
all built-in scalar functions return a NULL result value if any of the input arguments are
NULL. The IGNORE NULL VALUES states that the my_plus function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values are NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

In the following example query, my_plus appears in the SELECT list along with the
equivalent arithmetic expression:

User-Defined Functions 35

Scalar User-Defined Functions

SELECT ny_plus(t.x, t.y) AS x_plus_y one, (t.x + t.y)AS x_plus_y_two
FROM t
WHERE t.z = 2

Inthe following example, my_plusis used in several different places and different ways within
the same query:

SELECT my_plus(t.x, t.y), count(*)
FROM t

VWHERE t.z = 2

AND ny_plus(t.x, 5) > 10

AND ny_plus(t.y, 5) > 10

GROUP BY ny_plus(t.x, t.y)

UDF Example: my plus counter Declaration

The “my_plus_counter” example is a simple nondeterministic scalar UDF that takes a single
integer argument, and returns the result of adding that argument value to an internal integer
usage counter. If the input argument value is NULL, the result is the current value of the usage
counter.

my_plus_counter declaration

Assuming that my_plus_counter also resides within the dynamically linkable library
my_shared_lib, the declaration for this example is:
CREATE FUNCTION ny_plus_counter (IN argl |INT DEFAULT 0)
RETURNS | NT
NOT DETERM NI STI C

RESPECT NULL VALUES
EXTERNAL NAME ' descri be_ny_pl us_count er @vy_shared_|i b’

The RESPECT NULL VALUES characteristic means that this function is called even if the
input argument value is NULL. This is necessary because the semantics of my_plus_counter
includes:

< Internally keeping a usage count that increments even if the argument is NULL.
e A non-null value result when passed a NULL argument.

Because RESPECT NULL VALUES is the default, the results are the same if this clause is
omitted from the declaration.

1Q restricts the usage of all nondeterministic functions. They are allowed only within the
SELECT list of the top-level query block or inthe SET clause of an UPDATE statement. They
cannot be used within subqueries, or withina WHERE, ON, GROUP BY, or HAVING clause.
This restriction applies to nondeterministic UDFs as well as to the nondeterministic built-in
functions like GETUID and NUMBER.

The last detail in the above declaration is the DEFAULT qualifier on the input parameter. The
qualifier tells the server that this function can be called with no arguments, and that when this
happens the server automatically supplies a zero for the missing argument. If a DEFAULT
value is specified, it must be implicitly convertible into the data type of that argument.

36

Sybase 1Q

Scalar User-Defined Functions

In the following example, the first SELECT list item adds the running counter to the value of
t.x for each row. The second and third SELECT list items each return the same value for each
row as the NUMBER function.
SELECT ny_pl us_counter(t.x),

my_pl us_counter (0),

my_plus_counter(),

NUVBER()
FROM t

UDF Example: my byte length Declaration

my_byte_length is a simple scalar user-defined function that returns the size of a column in
bytes.

my_byte length declaration

When my_byte_length resides within the dynamically linkable library my_shared_lib, the
declaration for this example is:

CREATE FUNCTION ny_byte | ength(I N argl LONG Bl NARY)

I RETURNS UNSI GNED | NT

I DETERM NI STI C

/1 | GNORE NULL VALUES

/1 EXTERNAL NAME 'ny_byte | engt h@i budf ex'

This declaration says that my_byte_length is a simple scalar UDF residing in my_shared_lib
with a descriptor routine named describe_my_byte length. Since the behavior of a UDF may
require more than one actual C/C++ entry point for its implementation, this set of entry points
is not directly part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION
statement EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure that is defined in detail in the next
section. That descriptor structure contains the required and optional function pointers that
embody the implementation of this UDF.

This declaration also says that my_byte_length accepts one LONG Bl NARY argument and
returns an UNSI GNED | NT result value.

Note: Large object data support requires a separately licensed Sybase 1Q option.

The declaration states that this function is deterministic. A deterministic function always
returns the identical result value when supplied the same input values. This means the result
cannot depend on any external information beyond the supplied argument values, or on any
side effects from previous invocations. By default, functions are assumed to be deterministic,
so the results are the same if this characteristic is omitted from the CREATE statement.

The last piece of this declaration is the IGNORE NULL VALUES characteristic. Nearly all
built-in scalar functions return a NULL result value if any of the input arguments are NULL.
The IGNORE NULL VALUES states that the my_byte_length function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values is NULL. Since RESPECT NULL VALUES is the default for functions, this

User-Defined Functions 37

Scalar User-Defined Functions

characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

This example query with my_byte_length in the SELECT list returns a column with one row
for each row in exTabl e, with an | NT representing the size of the binary file:

SELECT ny_byt e_| engt h(exLOBCol umm)
FROM exTabl e

UDF Example: my md5 Declaration

my_md5 is a simple function that calculates the MD5 hash value of an input file.
my_md>5 declaration

When my_mds5 resides within the dynamically linkable library my_shared_lib, the
declaration for this example is:

CREATE FUNCTI ON ny_md5(I N argl LONG Bl NARY)

/1 RETURNS VARCHAR(32)

/1 DETERM NI STI C

/1 | GNORE NULL VALUES

/1 EXTERNAL NAME ' ny_md5@i budf ex’

This declaration says that my_md5 is a simple scalar UDF residing in my_shared_lib with a
descriptor routine named describe_my_md5. Since the behavior of a UDF may require more
than one actual C/C++ entry point for its implementation, this set of entry points is not directly
part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor function,
when invoked, returns a descriptor structure that is defined in detail in the next section. That
descriptor structure contains the required and optional function pointers that embody the
implementation of this UDF.

This declaration also says that my_md5 accepts one LONG Bl NARY argument and returns an
VARCHAR(32) result value.

Note: Large object data support requires a separately licensed Sybase 1Q option.

The declaration states that this function is deterministic. A deterministic function always
returns the identical result value when supplied the same input values. This means the result
cannot depend on any external information beyond the supplied argument values, or on any
side effects from previous invocations. By default, functions are assumed to be deterministic,
so the results are the same if this characteristic is omitted from the CREATE statement.

The last piece of this declaration is the IGNORE NULL VALUES characteristic. Nearly all
built-in scalar functions return a NULL result value if any of the input arguments are NULL.
The IGNORE NULL VALUES states that the my_md5 function follows that convention, and
therefore this UDF routine is not actually invoked when either of its input values is NULL.
Since RESPECT NULL VALUES is the default for functions, this characteristic must be

specified in the declaration for this UDF to get the performance benefits. All functions that

38

Sybase 1Q

Scalar User-Defined Functions

may return a non-NULL result given a NULL input value must use the default RESPECT
NULL VALUES characteristic.

UDF Example: my toupper Declaration

my_toupper is a simple function that takes an arbitrary size input string and converts it to
upper case.

my_toupper declaration

When my_toupper resides within the dynamically linkable library my shared_lib, the
declaration for this example is:

CREATE FUNCTI ON ny_t oupper (I N argl VARCHAR(32767))

I RETURNS VARCHAR(32767)

I/ DETERM NI STI C

I/ | GNORE NULL VALUES

I EXTERNAL NAME ' ny_t oupper @i budf ex'

This declaration says that my_toupper is a simple scalar UDF residing in my_shared_lib with
a descriptor routine named describe_my_toupper. Since the behavior of a UDF may require
more than one actual C/C++ entry point for its implementation, this set of entry points is not
directly part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor function,
when invoked, returns a descriptor structure that is defined in detail in the next section. That
descriptor structure contains the required and optional function pointers that embody the
implementation of this UDF.

This declaration also says that my_toupper accepts one VARCHAR(32767) argument and
returns an VARCHAR(32767) result value.

Note: Large object data support requires a separately licensed Sybase 1Q option.

The declaration states that this function is deterministic. A deterministic function always
returns the identical result value when supplied the same input values. This means the result
cannot depend on any external information beyond the supplied argument values, or on any
side effects from previous invocations. By default, functions are assumed to be deterministic,
so the results are the same if this characteristic is omitted from the CREATE statement.

The last piece of this declaration is the IGNORE NULL VALUES characteristic. Nearly all
built-in scalar functions return a NULL result value if any of the input arguments are NULL.
The IGNORE NULL VALUES states that the my_toupper function follows that convention,
and therefore this UDF routine is not actually invoked when either of its input values is NULL.
Since RESPECT NULL VALUES is the default for functions, this characteristic must be
specified in the declaration for this UDF to get the performance benefits. All functions that
may return a non-NULL result given a NULL input value must use the default RESPECT
NULL VALUES characteristic.

This example query with my_toupper2 inthe SELECT list returns astring ABC in iq_dummy:

User-Defined Functions 39

Scalar User-Defined Functions

SELECT ny_t oupper 2(' abc')
FROM i q_dumry

nmy_t oupper 2(' abc')

" AR

Defining a Scalar UDF

The C/C++ code for defining a scalar user-defined function includes four mandatory pieces.

» extfnapiv3.h —inclusion of the UDF interface definition header file.
e _evaluate_extfn — An evaluation function. All evaluation functions take two arguments:
« aninstance of the scalar UDF context structure that is unique to each usage of a UDF
that contains a set of callback function pointers, and a pointer where a UDF can store
UDF-specific data.
* apointer to a data structure that allows access to the argument values and to the result
value through the supplied callbacks.
e a_ v3_extfn_scalar — an instance of the scalar UDF descriptor structure that contains a
pointer to the evaluation function.
e Descriptor function — returns a pointer to the scalar UDF descriptor structure.

These parts are optional:

e _start_extfn — an initialization function generally invoked once per SQL usage. If
supplied, you must also place a pointer to this function into the scalar UDF descriptor
structure. All initialization functions take one argument, a pointer to the scalar UDF
context structure that is unique to each usage of a UDF. The context structure passed is the
same one that is passed to the evaluation routine.

» _finish_extfn —ashutdown function generally invoked once per SQL usage. If supplied, a
pointer to this function must also be placed into the scalar UDF descriptor structure. All
shutdown functions take one argument, a pointer to the scalar UDF context structure that is
unique to each usage of a UDF. The context structure passed is the same one that is passed
to the evaluation routine.

See also
e Declaring a Scalar UDF on page 33

Scalar UDF Descriptor Structure

The scalar UDF descriptor structure, a_v3_extfn_scalar, is defined as:

typedef struct a_v3_extfn_scalar { I
/! Metadata descriptor for a scal ar UDF
/1 supplied by the UDF |ibrary to the server
/1 An optional pointer to an initialize function
void (*_start_extfn)(a_v3_extfn_scalar_context * cntxt);

/1
/1 An optional pointer to a shutdown function
void (*_finish_extfn)(a_v3_extfn_scal ar_context * cntxt);

40

Sybase 1Q

Scalar User-Defined Functions

I
/1 Arequired pointer to a function that will be
/1 called for each invocation of the UDF on a
/'l new set of argunent val ues
voi d (*_evaluate_extfn)(a_v3_extfn_scalar_context * cntxt, void
*args_handl e) ;
/] RESERVED FI ELDS MUST BE | NI Tl ALI ZED TO NULL
void *reservedl must _be null;
void *reserved2_nust_be null;
void *reserved3_nust_be null;
void *reserved4_nust_be null;
void *reserved5 must _be null;

} a_v3_ extfn_scal ar;

There should always be asingle instance of a_v3_extfn_scalar for each defined scalar UDF. If
the optional initialization function is not supplied, the corresponding value in the descriptor
structure should be the null pointer. Similarly, if the shutdown function is not supplied, the
corresponding value in the descriptor structure should be the null pointer.

The initialization function is called at least once before any calls to the evaluation routine, and
the shutdown function is called at least once after the last evaluation call. The initialization and
shutdown functions are normally called only once per usage.

Scalar UDF Context Structure

The scalar UDF context structure, a_v3_extfn_scalar_context that is passed to each of the
functions specified within the scalar UDF descriptor structure, is defined as:

typedef struct a_v3_extfn_scal ar_context {

[]-=------- Cal | backs available via the context --------
I
short (SQL_CALLBACK *get _val ue) (
voi d *ar g_handl e,

a_sql _uint 32 arg_num
an_extfn_val ue *val ue

)

short (SQL_CALLBACK *get _pi ece) (
void * ar g_handl e,
a_sqgl _uint32 arg_num
an_ext f n_val ue *val ue,
a_sql _uint 32 of f set

);
short (SQL_CALLBACK *get _val ue_i s_constant) (
void * arg_handl e,
a_sql _uint32 arg_num
a_sqgl _uint32 * value_is_constant

IE
short (SQL_CALLBACK *set _val ue)(

void * ar g_handl e,
an_extfn_val ue *val ue,
short append
)

User-Defined Functions 41

Scalar User-Defined Functions

a_sqgl _uint32 (SQL_CALLBACK *get i s_cancel | ed)(
a_v3_extfn_scal ar_context * cntxt

);

short (SQL_CALLBACK *set _error)(
a_v3 _extfn_scalar_context * cntxt,
a_sql _uint32 error_nunber,
const char * error_desc_string

I

voi d (SQL_CALLBACK *| og_nessage) (
const char *nsg,
short msg_l ength

short (SQ._CALLBACK *convert _val ue) (
an_ext fn_val ue *input,
an_ext fn_val ue *out put

I Data avail able fromthe context ----------
void * _user_data; /Il read-wite field
[]--eeeemm - For Server Internal Use Only -------------

void * _for_server_internal _use;
} a_v3_extfn_scal ar_cont ext;

The _user_data field within the scalar UDF context structure can be populated with data the
UDF requires. Usually, it is filled in with a heap allocated structure by the _start_extfn
function, and deallocated by the _finish_extfn function.

The rest of the scalar UDF context structure is filled with the set of callback functions,
supplied by the engine, for use within each of the user's UDF functions. Most of these callback
functions return a success status through a short result value; a true return indicates success.
Well-written UDF implementations should never cause a failure status, but during
development (and possibly in all debug builds of a given UDF library), Sybase recommends
that you check that the return status values from the callbacks. Failures can come from coding
errors within the UDF implementation, such as asking for more arguments than the UDF is
defined to take.

The common set of arguments used by most of the callbacks includes:

* arg_handle— A pointer received by all forms of the evaluation methods, through which the
values for input arguments passed to the UDF are available, and through which the UDF
result value can be set.

e arg_num—Aninteger indicating which input argument is being accessed. Input arguments
are numbered left to right in ascending order starting at one.

e cntxt — A pointer to the context structure that the server passes to all UDF entry points.

« value—A pointer to an instance of the an_extfn_value structure that is used to either get an
input argument value from the server or to set the result value of the function. The
an_extfn_value structure has this form:

typedef struct an_extfn_val ue {
void * data;
a_SQ__uint32 piece_len;
uni on {
a SQ. uint32 total |en;
a_SQ._uint32 renmin_|en;
} len;

42 Sybase 1Q

Scalar User-Defined Functions

a_SQ._data_type type;
} an_extfn_val ue;

UDF Example: my plus Definition
The definition for the my_plus example.

my_plus definition

Because this UDF needs no initialization or shutdown function, those values within the
descriptor structure are set to 0. The descriptor function name matches the EXTERNAL
NAME used in the declaration. The evaluate method does not check the data type for
arguments, because they are declared as INT.

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>

I/l A sinple determnistic scalar UDF that just adds

// two integer argunments and then returns the result.

/

/1l Correspondi ng SQ. decl arati on:

/

I CREATE FUNCTI ON mmy_plus(IN argl INT, IN arg2 | NT)

/ RETURNS | NT
I DETERM NI STI C
I/ | GNORE NULL VALUES

I/ EXTERNAL NAME

"my_plus@ i budf ex’
I

#i f defined __cplusplus
extern "C' {
#endi f

static void ny_plus_eval uate(a_v3_extfn_scal ar_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value arg;
an_extfn_value outval;
a_sql _int32 argl, arg2, result;
/Il Get first argunent
(void) cntxt->get_value(arg_handle, 1, &arg);
if (arg.data == NULL)
{
return;
argl = *((a_sql _int32 *)arg.data);
/'l Get second argunment
(void) cntxt->get_value(arg_handle, 2, &arg);
if (arg.data == NULL)
{

return;

User-Defined Functions 43

Scalar User-Defined Functions

st

b

a_

{

}
#i

arg2 = *((a_sql _int32 *)arg.data);

/'l Set the result val ue

outval .type = DT_I NT;

outval . piece_l en = sizeof (a_sql _i nt 32);
result = argl + arg2;

outval .data = &result;

cnt xt->set _val ue(arg_handl e, &outval, 0);

atic a_v3_extfn_scal ar ny_plus_descriptor = {

0,

0,

&ny_pl us_eval uat e,

0, // Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /! Reserved - initialize to NULL
0 // Reserved - initialize to NULL

NULL /1 _for_server_internal _use

v3_extfn_scalar *my_plus()

return &my_plus_descri ptor;

f defined __cplusplus

L
#endi f

UDF Example: my plus counter Definition

This example checks the argument value pointer data to see if the input argument value is
NULL. It also has an initialization function and a shutdown function, each of which can
tolerate multiple calls.

my_plus _counter definition

#i
#i

Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il

ncl ude "extfnapiv3. h"
ncl ude <stdlib. h>

A sinple non-determnistic scalar UDF that adds
an internal integer usage counter to its integer
argunent and then returns the resulting integer.

Here, the start function creates a |little structure for
the counter, and then the finish function deallocates it

Correspondi ng SQL decl arati on:
CREATE FUNCTI ON pl us_counter (I N argl I NT)

RETURNS | NT
NOT DETERM NI STI C

44

Sybase 1Q

Scalar User-Defined Functions

I RESPECT NULL VALUES
I/ EXTERNAL NAME ' ny_pl us_count er @i budf ex

typedef struct ny_counter ({
a_sql _int32 _counter;
} my_counter;

#i f defined __ cplusplus
extern "C' {
#endi f

static void nmy_plus_counter_start(a_v3_extfn_scal ar_context *cntxt)
{
nmy_counter *cptr = (my_counter *)cntxt-> user_data
/1 1f we have not already allocated the
/1l counter structure, then do so now
if (leptr) {
cptr = (my_counter *)mall oc(sizeof (my_counter));
cntxt-> user_data = cptr;
}

cptr->_counter = O;

static void my_plus_counter_finish(a_v3_extfn_scal ar_context *cntxt)

// |If we still have an allocated the
/1 counter structure, then free it now
if (cntxt->_user_data) {
free(cntxt->_user_data);
cntxt-> user_data = 0;

}
}
static void ny_plus_counter_eval uate(a_v3_extfn_scal ar_cont ext
*cnt xt
voi d *arg_handl e)
{

an_extfn_value arg;
an_extfn_value outval;
a_sqgl _int32 argl, result;

/1 Increment the usage counter
my_counter *cptr = (ny_counter *)cntxt->_ user_data
cptr->_counter += 1;

/1l Get the one argunent
(void) cntxt->get_value(arg_handle, 1, &arg);
if (larg.data) {
/] argunent val ue was NULL
argl = 0;
} else {
argl = *((a_sql _int32 *)arg.data);

User-Defined Functions 45

Scalar User-Defined Functions

outval .type = DT_I NT;

out val . pi ece_|l en = si zeof (a_sql _i nt32);
result = argl + cptr-> counter;

outval .data = &result;

cnt xt->set _val ue(arg_handl e, &outval, 0);

static a_v3_extfn_scalar my_plus_counter_descriptor =
{ &my_plus_counter_start,
&nmy_pl us_count er _fi ni sh,
&my_pl us_count er _eval uat e,

NULL, /'l Reserved - initialize to NULL
NULL, /! Reserved - initialize to NULL
NULL, // Reserved - initialize to NULL
NULL, /'l Reserved - initialize to NULL
NULL, /'l Reserved - initialize to NULL
NULL, [l _for_server_internal use

)

a_v3_extfn_scalar *ny_plus_counter()

return &my_plus_counter_descriptor;

}
#i f defined __ cplusplus

L
#endi f

UDF Example: my byte length Definition

my_byte_length computes the size of a column by streaming the data in piece by piece, then
returns the size of the column in bytes.

my_byte_length definition

The sample UDF my_byte_length measures the size of a column by streaming the data in
piece by piece, then returns the computed size in bytes.

Note: Large object data support requires a separately licensed Sybase 1Q option.

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <mat h. h>

#i ncl ude <assert. h>

/1 A sinple function that returns the size of a cell value in bytes

I CREATE FUNCTION ny_byte | ength(I N argl LONG Bl NARY)
/1 RETURNS UNSI GNED | NT
I DETERM NI STI C

46

Sybase 1Q

Scalar User-Defined Functions

I | GNORE NULL VALUES
I/ EXTERNAL NAME ' ny_byte_| engt h@ i budf ex’

#i f defined __ cplusplus
extern "C' {

#endi f
static void ny_byte | ength_eval uate(a_v3_extfn_scal ar_cont ext
*cnt xt,
voi d *arg_handl e)

{

if (cntxt == NULL || arg_handl e == NULL)

{

return;
}

an_extfn_value arg;
an_extfn_value outval;

a_sqgl _uint64 total _|en;

[l Get first argunent

a_sql _uint32 fetchedLength = 0;

(void) cntxt->get _value(arg_handle, 1, &arg);
if (arg.data == NULL)

{

return;

}
f et chedLength += arg. pi ece_l en;

/'l saving total length as it |oses scope inside get_piece
total _len = arg.len.total _| en;

while (fetchedLength < total _I en)

(voi d) cntxt->get_piece(arg_handl e, 1, &arg, fetchedLength);
f et chedLength += arg. pi ece_l en;

}

[1if this fails, the function did not get the full data fromthe
cell

assert(fetchedLength == total _| en);

outval . type = DT_UNSI NT;

outval . piece_l en = 4;

out val . data = &f et chedLengt h;

cnt xt->set _val ue(arg_handl e, &outval, 0);

}
static a_v3_extfn_scalar nmy_byte | ength_descriptor = {
0,
0,
&nmy_byt e_| engt h_eval uat e,
0, // Reserved - initialize to NULL

User-Defined Functions 47

Scalar User-Defined Functions

0, // Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /! Reserved - initialize to NULL
0, // Reserved - initialize to NULL
NULL /1l _for_server_internal _use
)¢
a_v3_extfn_scalar *ny_byte_| ength()
{
return &my_byte | ength_descriptor;
}

#i f defined __ cplusplus

L
#endi f

UDF Example: my md5 Definition

Use my_md5 function to calculate the MD5 hash value of an input file.

my_md>5 definition

my_md5. cxx is asimple deterministic scalar user-defined function that calculates the MD5
hash value of an input file (a LONG Bl NARY argument). You can use the sample
my_md5. cxx to process up to 4GB of input data.

Note: Large object data support requires a separately licensed Sybase 1Q option.

my_md5 functions uses the get_piece() API to stream data in pieces. The streaming approach
allow the UDF to allocate chunks of memory that are filled in each time the get_piece() APl is
called. By allocating pieces or chunks, the UDF does not have to allocate enough storage to
hold the entire data of the column value. For example, if a UDF wants to process a column
value with a size 400MB, then it needs to allocate a memory block of 400MB in order to hold
the value. However, by using the the get_piece() API the UDF is able to process the data value
in blocks of 4MB.

#i ncl ude "extfnapiv3.h"
#i nclude <stdlib. h>

#i nclude <string. h>

#i ncl ude <math. h>

A sinple deterministic scalar UDF that cal cul ates
the MD5 hash value of an input file (a LOB binary argunent)

/
/

/

/ CREATE FUNCTI ON ny_nd5(1 N ar g1 LONG BI NARY)
/ RETURNS VARCHAR(32)

/ DETERM NI STI C

/ I GNORE NULL VALUES

/ EXTERNAL NAME ' ny_nd5@i budf ex’

/INMD5 F, G Hand | functions
#define F_nd5(X Y, 2) (((X) & (Y)) | ((=X) & (2)))
#define G.md5(X Y,2) (((X) & (2) | ((V) & (~2)))
#define H.nd5(X Y, 2) ((X) ~ (Y) ~ (2)
#define | _md5(X, Y,2) ((Y) » ((X) | (~2)))

f

48 Sybase 1Q

Scalar User-Defined Functions

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

/* ROTATE_LEFT rotates x left n bits. */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

void FF_nd5(a_sql _uint32 & a, a_sql _uint32 b, a_sql_uint32 ¢, a_sql _uint32 d,
a_sql _uint32 x,
a_sqgl_uint32 s,a_sql _uint32t) {
a_sqgl_uint32 temp = (a + F_md5(b,c,d)) + x + t;
a = b + ROTATE_LEFT(tenp, s);
}

void GG mid5(a_sql _uint32 & a, a_sql _uint32 b, a_sqgl _uint32 c, a_sql _uint32 d,
a_sql _uint32 x,
a_sqgl _uint32 s,a_sql_uint32t) {
a_sqgl _uint32 tenp = (a + G.md5(b,c,d)) + x + t;
a = b + ROTATE _LEFT(tenp,s);
}

void HH nd5(a_sql _uint32 & a, a_sql _uint32 b, a_sql _uint32 ¢, a_sql _uint32 d,
a_sql _uint32 x,
a_sqgl_uint32 s,a_sql _uint32t) {
a_sql _uint32 tenp = (a + H.nd5(b,c,d)) + x + t;
a = b + ROTATE_LEFT(tenp,s);
}

void Il _nmd5(a_sql _uint32 & a, a_sql _uint32 b, a_sql_uint32 ¢, a_sqgl _uint32 d,
a_sql _ui nt32 x,
a_sql _uint32 s,a_sql _uint32 t) {
a_sql _uint32 tenp = (a + | _nmd5(b,c,d)) + x + t;
a = b + ROTATE _LEFT(tenp,s);
}

/1 Appends the nessage length to the end of the buffer
voi d appendMsgLength(char * buffer, a_sql _uint64 argLen, a_sqgl_uint64 bufLen) {
a_sql _uint32 i;
a_sql _uint64 bitLen = arglLen*8; //since argLen is in bytes...
for(i=8;i>=1;i--) {
buffer[buflLen-i] = ((char)(bitLen & OxFF));
bitLen = (bitLen >> 8);

}
voi d digestlnput(a_sql _uint32 * x, a_sql_uint32 & a, a_sql _uint32 & b,

a_sql _uint32 & ¢, a_sql _uint32 & d) {

//Round 1

FF_md5(a, b, c, d, x[0], S11, Oxd76aa478) ;
FF_md5(d, a, b, c, x[1], S12, 0xe8c7b756) ;
FF_nd5(c, d, a, b, X[2], S13, 0x242070db) ;
FF_nd5(b, c, d, a, x[3], S14, Oxclbdceee);
FF_nd5(a, b, c, d, x[4], S11, Oxf 57cO0f af) ;
FF_md5(d, a, b, ¢, x[5], S12, 0x4787c62a) ;
FF_md5(c, d, a, b, x[6], S13, 0xa8304613) ;
FF_md5(b, c, d, a, x[7], S14, Oxf d469501) ;

User-Defined Functions

49

Scalar User-Defined Functions

FF_md5(a, b, c, d, x
FF_md5(d, a, b, c, x
FF_md5(c, d, a, b, x
FF_md5(b, c, d, a, x
FF_nd5(a, b, c, d, x
FF_nmd5(d, a, b, c, x
FF_nmd5(c, d, a, b, x
FF_md5(b, c, d, a, x
// Round 2

GG nmd5(a, b, ¢, d, x
GG md5(d, a, b, ¢, x
GG nd5(c, d, a, b, x
GG nd5(b, c, d, a, x
GG nd5(a, b, c, d, x
GG nmd5(d, a, b, ¢, x
GG nmd5(c, d, a, b, x
GG nmd5(b, c, d, a, x
GG nmd5(a, b, ¢, d, x
GG nmd5(d, a, b, ¢, x
GG md5(c, d, a, b, x
GG md5(b, c, d, a, x
GG nd5(a, b, c, d, x
GG nd5(d, a, b, ¢, x
GG nd5(c, d, a, b, x
GG md5(b, c, d, a, x
// Round 3

HH nd5(a, b, c, d, x
HH nd5(d, a, b, c, x
HH nmd5(c, d, a, b, x
HH_md5(b, c, d, a, x
HH_md5(a, b, c, d, x
HH_md5(d, a, b, c, x
HH_md5(c, d, a, b, x
HH_md5(b, c, d, a, x
HH nd5(a, b, c, d, x
HH nd5(d, a, b, c, x
HH nd5(c, d, a, b, x
HH nmd5(b, c, d, a, x
HH_nmd5(a, b, c, d, x
HH_md5(d, a, b, ¢, x
HH_md5(c, d, a, b, x
HH_md5(b, c, d, a, x
// Round 4

Il _md5(a, b, c, d, x
Il _md5(d, a, b, c, x
Il _md5(c, d, a, b, x
I'l _md5(b, c, d, a, x
I'l _md5(a, b, c, d, x
I'l _md5(d, a, b, c, x
I'l _md5(c, d, a, b, x
Il _md5(b, c, d, a, x
Il _md5(a, b, c,d, x
11 _md5(d, a, b, c, x
Il _md5(c, d, a, b, x
I'l _md5(b, c, d, a, x
Il _md5(a, b, c, d, x
Il _md5(d, a, b, c, x
I'l _md5(c, d, a, b, x
I'l _md5(b, c, d, a, x

8], S11, 0x698098d8) ;
9], S12, 0x8b44f 7af) ;
10], S13, Oxf f ff5bbl);
11], S14, 0x895cd7be) ;

12], S11, 0x6b901122) ;
13], S12, 0xf d987193) ;
14], S13, 0xa679438e) ;
15], S14, 0x49b40821) ;

1], S21, O0xf 61e2562) ;
6], S22, 0xc040b340) ;
11], S23, 0x265e5a51) ;
0], S24, 0xe9b6c7aa) ;

5], S21, 0xd62f 105d) ;
10], S22, 0x2441453) ;
15], S23, 0xd8ale681);
4], S24, 0xe7d3f bc8) ;

9], S21, 0x21elcde®b) ;
14], S22, 0xc33707d6) ;
3], S23, 0xf 4d50d87) ;
8], S24, 0x455al4ed) ;

13], S21, 0xa9e3e905) ;
2], S22, 0xf cef a3f 8) ;
7], S23, 0x676f 02d9) ;
12], S24, 0x8d2a4c8a) ;

5], S31, Oxf f f a3942) ;
8], S32, 0x8771f 681) ;
11], S33, 0x6d9d6122) ;
14] , S34, 0xf de5380c) ;

1], S31, Oxadbeeadd);
4], S32, Ox4bdecf a9) ;
7], S33, 0xf 6bb4b60) ;
10], S34, Oxbebf bc70);

13], S31, 0x289b7ech) ;
0], S32, Oxeaal27f a);
3], S33, Oxd4ef 3085) ;
6] , S34, 0x4881d05) ;

9], S31, 0xd9d4d039) ;
12], S32, 0xe6db99e5) ;
15], S33, 0x1f a27cf 8);
2], S34, 0xc4ac5665) ;

0], S41, Oxf 4292244) ;
7], S42, 0x432af f 97) ;
14], $43, 0xab9423a7) ;
5], S44, Oxf c93a039) ;

12], S41, 0x655b59c3) ;
3], S42, 0x8f 0ccc92) ;
10], S43, Oxffeff47d);
1], S44, 0x85845dd1) ;

8], S41, Ox6f a87e4f) ;
15], S42, Oxf e2ce6e0) ;
6], S43, 0xa3014314) ;
13], S44, 0x4e0811al);

4], S41, Oxf 7537e82) ;
11], S42, Oxbd3af 235) ;
2], S43, 0x2ad7d2bb) ;
9], S44, 0xeb86d391) ;

50

Sybase 1Q

Scalar User-Defined Functions

}

void setPartition(a_sql _uint32 * p, char * input) {
int k =0;
for(int i=0;i<64;i+=4) {
p[k] = 0; //zero out p[k] first
p[k] = (((a_sql _uint32)input[i])&xFF) | ((((a_sql _uint32)input[i+1])&xFF) << 8)

((((a_sql _uint32)input[i+2])&xFF) << 16) | ((((a_sql _uint32)input[i+3])&xFF) <<
24);
K++;

}

/1 Hel per method to convert the integers to a char buffer

/1 of hex characters

void setResult(char * res_buff, a_sql_uint32 A a_sql_uint32 B,
a_sql _uint32 C, a_sql_uint32 D) {

char alpha[16] ={ '0","1",'2",

=R ®eERey
® T 0

/1 Put char representatlon for Ainto the buffer
res_buff[6] = alpha[(int)((A >> 28) & O0xF)];

res_buff[7] = alpha[(int)((A >> 24) & OxF)];
res_buff[4] = alpha[(int)((A >> 20) & OxF)];
res_buff[5] = alpha[(int)((A >> 16) & OxF)];
res_buff[2] = alpha[(int)((A >> 12) & OxF)];
res_buff[3] = alpha[(int)((A >> 8) & OxF)];
res_buff[0] = alpha[(int)((A >> 4) & OxF)];
res_buff[1] = alpha[(int)((A & OxF)];

/1 Put char representation for B into the buffer
res_buff[14] = alpha[(int)((B >> 28) & OxF)];
res_buff[15] = alpha[(int)((B >> 24) & OxF)];
res_buff[12] = alpha[(int)((B >> 20) & OxF)];
res_buff[13] = alpha[(int)((B >> 16) & OxF)];
res_buff[10] = alpha[(int)((B >> 12) & OxF)];
res_buff[11] = alpha[(int)((B >> 8) & OxF)];
res_buff[8] = alpha[(int)((B >> 4) & 0xF)];
res_buff[9] = alpha[(int)((B) & OxF)];

/1 Put char representation for Cinto the buffer
res_buff[22] =alpha[(|nt)((C >> 28) & OxF)];
res_buff[23] = alpha[(int)((C >> 24) & OxF)];
res_buff[20] = alpha[(int)((C >> 20) & OxF)];
res_buff[21] = alpha[(int)((C >> 16) & OxF)];
res_buff[18] = alpha[(int)((C >> 12) & OxF)];
res_buff[19] = alpha[(int)((C >> 8) & OxF)];
res_buff[16] = alpha[(int)((C >> 4) & O0xF)];
res_buff[17] = alpha[(int)((C) & OxF)];

/1 Put char representation for Dinto the buffer
res_buff[30] = alpha[(int)((D >> 28) & OxF)];
res_buff[31] al pha[(int)((D >> 24) & 0xF)];

res_buf f[28]
res_buff[29]

al pha[(int)((D >> 20) & O0xF)];
al pha[(int)((D >> 16) & OxF)];

User-Defined Functions 51

Scalar User-Defined Functions

res_buf f[26]

_ al pha[(i nt
res_buff[27]

al pha[(i nt

D >> 12) & O0xF)];
D >> 8) & 0xF)];
D

res_buff[24]
res_buff[25]

>> 4) & O0xF)];
D) & 0xF)];

) ((
) ((
al pha[(int)((
al pha[(int)((
}

#i f defined __cplusplus
extern "C' {
#endi f

static void ny_nd5_eval uate(a_v3_extfn_scal ar_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value arg;
an_extfn_value outval;

a_sql _int64 total _len;

/1 Get first argument

a_sql _uint32 fetchedLength = 0;

(void) cntxt->get_value(arg_handle, 1, &arg);
if (arg.data == NULL)

{

return;

/1 ND5 Algorithmlnitialization

/1 Init A B, Cand D digest variables

a_sql _uint32 A = 0x67452301;
a_sql _uint32 B = OxEFCDABS9;
a_sql _uint32 C = 0x98BADCFE;
a_sql _uint32 D = 0x10325476;

/1 Make copi es of digest variables
a_sql _uint32 AA;
a_sql _ui nt 32 BB;
a_sql _uint32 CC
a_sql _ui nt 32 DD

/1 Try to streamwith every 1MB and cal cul ate MD5 for each bl ock

a_sql _int32 block_l en = 1024*1024;

total _len = O; /1 Total |ength cal cul ated
char* buffer = new char[bl ock_len]; /] Buffer to store streaming data

a_sql _int64 remain_len = arg.len.total _len - total _|en;
streanmed and cal cul ated

/1 Length that need to be

a_sql _i nt 32 buf Len = bl ock_I| en; /'l Size of data that need to be streaned

in
a_sql _uint32 * partition = new a_sql _uint32[16];
a_sql _uint64 i;

/1 Streamin data buffer of size 1MB until renain size is smaller or equal to 1MB

/1 Calculate M5 for each bl ock

while (remain_len > block_len) {

// Starting fetch data

f et chedLength = 0;

whil e (fetchedLength < bufLen) {
if (arg.piece_len <= (bufLen - fetchedLength)) {
/'l When buffer has enough space for next piece

mencpy(buffer + fetchedLength, (char*)arg.data, arg.piece_|len);

fetchedLength += arg. pi ece_l en;

} else {

/1 Wen only part of next piece fits in the buffer
i = bufLen - fetchedLength;

mencpy(buffer + fetchedLength, (char*)arg.data, i);
fetchedLength +=i;

}
(void) cntxt->get_piece(arg_handle, 1, &arg, total _len + fetchedLength);

/1 Buffer is nowfilled, try to calculate

52

Sybase 1Q

Scalar User-Defined Functions

/1 Start the algorithmwi th partitions of 512 bits (16 32-bit words)
for(i=0;i<block_|en;i+=64) {
AA

= A
BB = B;
CC =C
DD = D;

setPartition(partition,buffer+i);
di gestlnput (partition, A B,C D);

/lincrement A, B, C and D by their original values
A= A+ AA
B = B + BB;
C=C+ CG
D =D+ DD

}

/1 increase total _| en decrease renmin_len
total _| en += fetchedLength;
renmain_|l en -= fetchedLength;

}

/1 Stream and cal culate MD5 for the |ast block

/'l Calculate size of the last block

/1 Round up so size is dividable by 64 bytes

bl ock_len = (64 - (remain_len %64)) + remain_|en;

if ((block_len - remain_len) < 9) {

/1 1f the remaining roomis not enough for appending 1 byte
// of a1 bit and 7 0's, and a 64 bit |ong nessage

bl ock_l en += 64;

}

/1 Since the last block probably has a different size than 1MB,
/1 delete the old buffer and allocate a new one to store the data
del ete[] buffer;

buffer = new char[bl ock_len];

bufLen = remain_| en;

/1 Starting fetch data

f et chedLength = 0;

while (fetchedLength < bufLen) {

mencpy(buffer + fetchedLength, (char*)arg.data, arg.piece_|len);
fetchedLength += arg. pi ece_l en;

(void) cntxt->get_piece(arg_handle, 1, &rg, total _len + fetchedLength);

//append a 1 bit with 7 0's after

buf f er[buf Len] = (char) (0x80);

/1 Pad with Os and | eave 8 bytes at the end for the nessage |ength
for(i = bufLen+l;i<(block_|len-8);i++) {

buffer[i] = 0;

/1 Append nessage |length as a 64-bit integer
/'l Message append at the end of buffer, indicating the length of entire file
appendMsgLengt h(buffer, (buflLen+total _Ilen) , block_|len);

/] Buffer is nowfilled, try to calculate
/] Start the algorithmwi th partitions of 512 bits (16 32-bit words)
for(i=0;i<block_|len;i+=64) {

AA = A
BB = B;
CC = C
DD = D

setPartition(partition,buffer+i);
di gest | nput (partition, A B,C D);

/lincrement A, B, Cand D by their original values
A= A+ AA
B = B + BB;
C=C+ CG
D =D + DD

User-Defined Functions 53

Scalar User-Defined Functions

}

/1 Set the result value
char * res_buff = new char[32];

setResul t(res_buff,A B,CD);

a_sql _int32 idx;

for(idx=0;idx<32;idx++)
outval .type = DT_VARCHAR
outval . piece_len = 1;

outval .data = &(res_buff[idx]);

cnt xt - >set _val ue(arg_handl e, &outval, idx);

}

del ete[] buffer;
del ete[] partition;
del ete[] res_buff;

static a_v3_extfn_scalar ny_nd5_descriptor = {

15

0,

0,

&nmy_nmd5_eval uat e,

0, /1 Reserved - initialize to NULL
0, /l Reserved - initialize to NULL
0, /l Reserved - initialize to NULL
0, /'l Reserved - initialize to NULL
0, /'l Reserved - initialize to NULL

NULL /] _for_server_internal _use

a_v3_extfn_scalar *my_md5()
{

return &my_nd5_descri ptor;

#if defined __cplusplus

oo
#endi f

UDF Example: my toupper Definition

Use my_toupper function to convert an arbitrary size input string to upper case.

my_toupper definition

my_toupper function takes a CHAR(x) column, where X is the maximum length of the
characters in each cell of the column, and converts all alphabetical characters to uppercase.

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>

Il
I
/1
Il
Il
I
/1

A sinple deterministic scalar UDF that
takes an arbitrary size input string
and converts it to upper case.
Correspondi ng SQL decl arati on:

CREATE FUNCTI ON ny_t oupper (I N argl varchar (32767))

54

Sybase 1Q

Scalar User-Defined Functions

I RETURNS var char (32767)

I DETERM NI STI C

Il | GNORE NULL VALUES

I EXTERNAL NAME ' nmy_t oupper @i budf ex'
Il

#i f defined __cplusplus
extern "C' {
#endi f

static void ny_toupper_eval uate(a_v3_extfn_scal ar_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value arg;
an_extfn_value outval;
char c, uc;

a_sqgl _int32 | en, offset;

/] Get input string

(void) cntxt->get_value(arg_handle, 1, &arg);
if (arg.data == NULL)

{

return;
c = *(char *)arg.data;

len = arg.len.total _| en;
for (offset = 0; offset < len; offset++)

{
uc = toupper(c);
outval .type = DT_VARCHAR;
outval . piece_len = 1;
outval .data = &uc;
cnt xt->set _val ue(arg_handl e, &outval, offset);
(void) cntxt->get _piece(arg_handle, 1, &arg, offset + 1);
¢ = *(char *)arg.data;
}
}
static a_v3_extfn_scal ar nmy_t oupper_descriptor = {
0,
0,
&ny_t oupper _eval uat e,
0, /! Reserved - initialize to NULL
0, // Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /!l Reserved - initialize to NULL
0, /! Reserved - initialize to NULL
NULL // _for_server _internal use
b
a_v3_extfn_scalar *my_toupper ()
{
return &my_toupper_descriptor;
}

User-Defined Functions 55

Scalar User-Defined Functions

#i f defined _ cplusplus

L
#endi f

56 Sybase 1Q

User-Defined Aggregate Functions

User-Defined Aggregate Functions

Sybase 1Q supports user-defined aggregate functions (UDAFs). The SUM function is an
example of a built-in aggregate function. A simple aggregate function produces a single result
value from a set of argument values. You can write UDAFs that can be used anywhere the
SUM aggregate can be used.

Note: The aggregate UDF examples referenced here are installed with the 1Q server, and can
be found as .cxx files in $1 QDI R15/ sanpl es/ udf . You can also find them in the
$1 QDI R15/ 1 i b64/ 1 i budf ex dynamically linkable library.

Declaring a UDAF

Aggregate UDAFs are more powerful and more complex to create than scalar UDFs.

After the UDF code has been written and compiled, create a SQL function that invokes the
UDF from the appropriate library file, sending the input data to the UDF.

Note: You can also create the user-defined function declaration in Sybase Central on page
12.

When implementing a UDAF, you must decide:

< Whether it will operate only across an entire data set or partition as an online analytical
processing (OLAP) -style aggregate, like RANK.

« Whether it will operate as either a simple aggregate or an OLAP-style aggregate, like
SUM.

* Whether it will operate only as a simple aggregate over an entire group.
The declaration and the definition of a UDAF reflects these usage decisions.

The syntax for creating 1Q user-defined aggregate functions is:

aggr egat e- udf - decl arati on:
CREATE AGGREGATE FUNCTI ON [owner.]functi on-nane

([paranmeter , ...])
RETURNS dat a-t ype
[aggregate-routine-characteristics ...]

EXTERNAL NAME | i brary-and-entry-poi nt-name-string

par anet er :
par am name data-type [DEFAULT val ue]

aggr egat e-routi ne-characteristics:
DUPLI CATE { SENSI TI VE | | NSENSI TI VE }
-- is the server allowed to elimnate DI STI NCT
| SQ SECURITY {I NVOKER | DEFI NER}
| OVER restrict

User-Defined Functions 57

User-Defined Aggregate Functions

| ORDER order-restrict
-- Must the wi ndow spec contain an ORDER BY?

| W NDOW FRAME
{ { ALLOAED | REQUI RED }
[windowfranme-constraints ...]

| NOT ALLOWED }
| ON EMPTY | NPUT RETURNS { NULL | VALUE }
-- Call or skip function on NULL inputs

wi ndow- f rane-constrai nts:
VALUES { [NOT] ALLOWED }
CURRENT ROW{ REQUI RED | ALLOWED }
| [UNBOUNDED] { PRECEDI NG | FOLLON NG } restrict

restrict: { [NOT] ALLOWED } | REQUI RED

order-restrict:
{ NOT ALLOWED | SENSITIVE | |INSENSITIVE | REQU RED

The handling of the return data type, arguments, data types, and default values are identical to
that in the scalar UDF definition.

If a UDAF can be used as a simple aggregate, then it can potentially be used with the
DISTINCT qualifier. The DUPLICATE clause in the UDAF declaration determines:

* Whether duplicate values can be considered for elimination before the UDAF is called
because the results are sensitive to duplicates (such as for the built-in
“COUNT(DISTINCT T.A)”) or,

« Whether the results are insensitive to the presence of duplicates (such as for
“MAX(DISTINCT T.A)").

The DUPLICATE INSENSITIVE option allows the optimizer to consider removing the
duplicates without affecting the result, giving the optimizer the choice on how to execute the
query. Write the UDAF to expect duplicates. If duplicate elimination is required, the server
performs it before starting the set of _next value_extfn calls.

Most of the remaining clauses that are not part of the scalar UDF syntax allow you to specify
the usages for this function. By default, a UDAF is assumed to be usable as both a simple
aggregate and as an OLAP-style aggregate with any kind of window frame.

For a UDAF to be used only as a simple aggregate function, declare it using:
OVER NOT ALLOWED
Any attempt to then use this aggregate as an OLAP-style aggregate generates an error.

For UDAFs that allow or require an OVER clause, the UDF definer can specify restrictions on
the presence of the ORDER BY clause within the OVER clause by specifying “ORDER”
followed by the restriction type. Window-ordering restriction types:

e REQUIRED — ORDER BY must be specified and cannot be eliminated.

58

Sybase 1Q

User-Defined Aggregate Functions

* SENSITIVE — ORDER BY may or may not be specified, but cannot be eliminated when
specified.

* INSENSITIVE — ORDER BY may or may not be specified, but the server can do ordering
elimination for efficiency.

e NOT ALLOWED — ORDER BY cannot be specified.

Declare a UDAF that makes sense only as an OLAP-style aggregate over an entire set or
partition that has been ordered, like the built-in RANK, with:

OVER REQUI RED
ORDER REQUI RED
W NDOW FRAME NOT ALLOWED

Declare a UDAF that makes sense only as an OLAP-style aggregate using the default window
frame of UNBOUNDED PRECEDING to CURRENT ROW, with:

OVER REQUI RED
ORDER REQUI RED
W NDOW FRAME ALLOWED
RANGE NOT ALLOWED
UNBOUNDED PRECEDI NG REQUI RED
CURRENT ROW REQUI RED
FOLLOW NG NOT ALLOWED

The defaults for the all various options and restriction sets are:

DUPLI CATE SENSI Tl VE

SQL SECURI TY DEFI NER

OVER ALLOWED

ORDER SENSI Tl VE

W NDOW FRAME ALLOWED
CURRENT ROW ALLOWED

PRECEDI NG ALLOWED

UNBOUNDED PRECEDI NG ALLOWED
FOLLOW NG ALLOWED

UNBOUNDED FOLLOW NG ALLOWED

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because each user that
calls the procedure requires annotation. Also, when SQL SECURITY INVOKER is specified,
name resolution is performed on both the user name and the INVOKER. Qualify all object
names (tables, procedures, and so on) with their appropriate owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following the
RETURNS clause. The library name may include the file extension, which is typically . dl |
on Windows and . so on UNIX. In the absence of the extension, the software appends the
platform-specific default file extension for libraries.

User-Defined Functions 59

User-Defined Aggregate Functions

The EXTERNAL NAME clause is not supported for temporary functions. See SQL Anywhere
11.0.1 > SQL Anywhere Server - Programming > SQL Anywhere Data Access APIs > SQL
Anywhere External Function API.

The 1Q server can be started with a library load path that includes the location of the UDF
library. On Unix variants, this can be done by modifying the LD_LIBRARY _PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AlX.

On Unix platforms, the external name specification can contain a fully qualified name, in
which casethe LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

See also
» Defining an aggregate UDF on page 63
e Context storage of aggregate user-defined functions on page 90

UDAF example: my sum declaration

The “my_sum” example is similar to the built-in SUM, except it only operates on integers.
my_sum declaration

Since my_sum, like SUM, can be used in any context, it has a relatively brief declaration:

CREATE AGGREGATE FUNCTI ON nmy_sun(I N argl | NT)
RETURNS Bl G NT
ON EMPTY | NPUT RETURNS NULL
EXTERNAL NAME ' descri be_ny_integer_sum@ry_shared_li b

The various usage restrictions all default to ALLOWED to specify that this function can be
used anywhere in a SQL statement that any aggregate function is allowed.

Without any usage restrictions, my_sum is usable as a simple aggregate across an entire set of
rows, as shown here:

SELECT M N(t.x), COUNT (*), my_sum(t.y)
FROM t

Without usage restrictions, my_sum is also usable as a simple aggregate computed for each
group as specified by a GROUP BY clause:
SELECT t.x, COUNT(*), my_sun{t.y)

FROM t
GROUP BY t.x

Because of the lack of usage restrictions, my_sum is usable as an OLAP-style aggregate with
an OVER clause, as shown in this cumulative summation example:

SELECT t.x,
my_sum(t. x)

60

Sybase 1Q

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html
http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.help.sqlanywhere.11.0.1/dbprogramming_en11/pg-extfun-extlib.html

User-Defined Aggregate Functions

OVER (ORDER BY t.x ROANS BETWEEN UNBOUNDED PRECEDI NG AND
CURRENT ROW
AS cumul ative_x,
COUNT(*)
FROM t
GROUP BY t.x
CRDER BY t. X

UDAF example: my bit xor declaration

The “my_bit_xor” example is analogous to the SQL Anywhere (SA) built-in BIT_XOR,
except it operates only on unsigned integers.

my_bit_xor declaration

The resulting declaration is:

CREATE AGGREGATE FUNCTI ON ny_bit_xor (I N argl UNSI GNED I NT)
RETURNS UNSI GNED | NT
ON EMPTY | NPUT RETURNS NULL
EXTERNAL NAME ' descri be_ny_bit_xor @y_shared_lib'

Like the my_sum example, my_bit_xor has no associated usage restrictions, and is therefore
usable as a simple aggregate or as an OLAP-style aggregate with any kind of a window.

UDAF example: my bit or declaration

The “my_bit_or” example is similar to the SA built-in BIT_OR except it operates only on
unsigned integers, and it can be used only as a simple aggregate.

my_bit_or declaration

The resulting declaration looks like:

CREATE AGGREGATE FUNCTI ON ny_bit_or (1 N argl UNSI GNED | NT)
RETURNS UNSI GNED | NT
ON EMPTY | NPUT RETURNS NULL
OVER NOT ALLOWED
EXTERNAL NAME ' describe_ny bit_or@ny_shared_lib'

Unlike the my_bit_xor example, the OVER NOT ALLOWED phrase in the declaration
restricts the use of this function to a simple aggregate. Because of that usage restriction,
my_bit_or is only usable as a simple aggregate across an entire set of rows, or as a simple
aggregate computed for each group as specified by a GROUP BY clause shown in the
following example:

SELECT t.x, COUNT(*), ny_bit_or(t.y)

FROM t
GROUP BY t.x

UDAF example: my interpolate declaration

The “my_interpolate” example is an OLAP-style UDAF that attempts to fill in any missing
values in a sequence (where missing values are denoted by NULLS) by performing linear

User-Defined Functions 61

User-Defined Aggregate Functions

interpolation across any set of adjacent NULL values to the nearest non-NULL value in each
direction.

my_interpolate declaration

If the input at a given row is not NULL, the result for that row is the same as the input value.

Figure 1: my_interpolate results

ttran_time t.price my_interpolate(t.price)
4/12/08 1.40 29.50 29.50
4/12/08 145 20.60 29,60
4/12/08 1.50 NULL 29.70

4M12/08 1.55 29.80 29.80
4i12/08 200 29.65 - 29.65
411208 205 NULL 29.60
41208 210 NULL 29.55
4/12/08 215 29.50 29.50

To operate at asensible cost, my_interpolate must run using a fixed-width, row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values he or she expects to see. This function takes a set of double-precision floating point
values and produces a resulting set of doubles.

The resulting UDAF declaration looks like this:

CREATE AGGREGATE FUNCTION ny_interpolate (I N argl DOUBLE)
RETURNS DOUBLE
OVER REQUI RED
W NDOW FRAMVE REQUI RED
RANGE NOT ALLOWED
PRECEDI NG REQUI RED
UNBOUNDED PRECEDI NG NOT ALLOWED
FOLLOW NG REQUI RED
UNBOUNDED FOLLOW NG NOT ALLOWED
EXTERNAL NAME ' descri be_ny_interpol ate@ry_shared_lib'

OVER REQUIRED means that this function cannot be used as a simple aggregate (ON
EMPTY INPUT, if used, is irrelevant).

WINDOW FRAME details specify that you must use a fixed-width, row-based window that
extends both forward and backward from the current row when using this function. Because of
these usage restrictions, my_interpolate is usable as an OLAP-style aggregate with an OVER
clause similar to:

SELECT t. X,
ny_interpol ate(t. x)
OVER (ORDER BY t.x ROWS BETWEEN 5 PRECEDI NG AND 5 FOLLOW NG
AS x_with_gaps_filled,

62

Sybase 1Q

User-Defined Aggregate Functions

COUNT(*)

FROM t
GROUP BY t. x
CRDER BY t. x

Within an OVER clause for my_interpolate, the precise number of preceding and following
rows may vary, and optionally, you can use a PARTITION BY clause; otherwise, the rows
must be similar to the example above given the usage restrictions in the declaration.

Defining an aggregate UDF

The C/C++ code for defining an aggregate user-defined function includes eight mandatory
pieces.

extfnapiv3.h — the UDF interface definition header file.

_start_extfn — an initialization function invoked once per SQL usage. All initialization
functions take one argument: a pointer to the aggregate UDF context structure that is
unique to each usage of a UDAF. The context structure passed is the same one that is
passed to all the supplied functions for that usage.

_finish_extfn —a shutdown function invoked once per SQL usage. All shutdown functions
take one argument: a pointer to the UDAF context structure that is unique to each usage of a
UDAF.

_reset_extfn — a reset function called once at the start of each new group, new partition,
and if necessary, at the start of each window motion. All reset functions take one argument:
a pointer to the UDAF context structure that is unique to each usage of a UDAF.
_next_value_extfn — a function called for each new set of input arguments.
_next_value_extfn takes two arguments:

« A pointer to the UDAF context, and

e Anargs_handle.

As in scalar UDFs, the arg_handle is used with the supplied callback function pointers to
access the actual argument values.

_evaluate_extfn — an evaluation function similar to the scalar UDF evaluation function.
All evaluation functions take two arguments:

« A pointer to the UDAF context structure, and

e Anargs_handle.

a_v3_extfn_aggregate — an instance of the aggregate UDF descriptor structure that
contains the pointers to all of the supplied functions for this UDF.

Descriptor function — a descriptor function that returns a pointer to that aggregate UDF
descriptor structure.

In addition to the mandatory pieces, there are several optional pieces that enable more
optimized access for specific usage situations:

_drop_value_extfn —an optional function pointer that is called for each input set of
argument values that has fallen out of a moving window frame. This function should not

User-Defined Functions 63

User-Defined Aggregate Functions

set the result of the aggregation. Use the get_value callback function to access the input
argument values, and, if necessary, through repeated calls to the get_piece callback
function.

Set the function pointer to the null pointer if:

« This aggregate cannot be used with a window frame,

» The aggregate is not reversible in some way, or

e The user is not interested in optimal performance.

If _drop_value_extfn is not supplied and the user has specified a moving window, each
time the window frame moves, the reset function is called and each row within the window
is included by a call to the next_value function, and finally the evaluate function is called.
If _drop_value_extfn is supplied, then each time the window frame moves, this drop value
function is called for each row falling out of the window frame, then the next_value
function is called for each row that has just been added into the window frame, and finally
the evaluate function is called to produce the aggregate result.

e _evaluate_cumulative_extfn — an optional function pointer that may be called for each
new input set of argument values. If this function is supplied, and the usage is in a row-
based window frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then
this function is called instead of calling the next value function immediately followed by
calling the evaluate function.

_evalutate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to its set of input argument values is through the usual get_value callback
function. This function pointer should be set to the null pointer if:

« This aggregate will never be used is this manner, or

* The user is not worried about optimal performance.

e _next_subaggregate_extfn —an optional callback function pointer that works together
with an _evaluate_superaggregate_extfn to enable some usages of this aggregate to be
optimized by running in parallel.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style

aggregates with an OVER clause) can be partitioned by first producing a set of

intermediate aggregate results where each intermediate result is computed from a

disjointed subset of the input rows.

Examples of such partitionable aggregates include:

e SUM, where the final SUM can be computed by performing a SUM for each disjointed
subset of the input rows and then performing a SUM over the sub-SUMs; and

e COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTS
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the

computation of that aggregate parallel. For aggregate UDFs, this parallel optimization can

be applied only if both the _next subaggregate extfn function pointer and the

_evaluate_superaggregate_extfn pointer are supplied.

64 Sybase 1Q

User-Defined Aggregate Functions

The _reset_extfn function does not set the final result of the aggregation, and by definition,
has exactly one input argument value that is the same data type as the defined return value
of the aggregate UDF.

Access to the subaggregate input value is through the normal get_value callback function.
Direct communication between subaggregates and the superaggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share a context structure. Instead, individual sub-aggregates are treated exactly the
same as nonpartitioned aggregates. The independent super-aggregate sees a calling pattern
that looks like this:

_start_extfn

_reset_extfn

_next _subaggregate_extfn (repeated O to N tines)

_eval uat e_superaggregate_extfn
_finish_extfn

Or like this:

_start_extfn

_reset_extfn

_next _subaggregate_extfn (repeated O to N times)
_eval uat e_superaggregate_extfn

_reset_extfn

_next _subaggregate_extfn (repeated O to N tines)
_eval uat e_super aggregate_extfn

_reset_extfn

_next _subaggregate_extfn (repeated 0 to N tines)
_eval uat e_super aggr egat e_extfn

_finish_extfn

If neither _evaluate _superaggregate_extfn or _next subaggregate_extfn is supplied, then
the UDAF is restricted, and not allowed as a simple aggregate within a query block
containing GROUP BY CUBE or GROUP BY ROLLUP.

e _evaluate_superaggregate_extfn —the optional callback function pointer that works with
the _next_subaggregate_extfn to enable some usages as a simple aggregate to be
optimized through parallelization. _evaluate_superaggregate_extfn is called to return the
result of a partitioned aggregate. The result value is sent to the server using the normal
set_value callback function from the a_v3_extfn_aggregate_context structure.

See also
» Declaring a UDAF on page 57
» Context storage of aggregate user-defined functions on page 90

Aggregate UDF descriptor structure
The aggregate UDF descriptor structure comprises several pieces:

» typedef struct a_v3_extfn_aggregate — the metadata descriptor for an aggregate UDF
function supplied by the library.

e _start_extfn —required pointer to an initialization function for which the only argument is
apointertoa_v3_extfn_aggregate_context. Typically, used to allocate some structure and

User-Defined Functions 65

User-Defined Aggregate Functions

store its address in the _user_data field within the a_v3_extfn_aggregate_context.
_start_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (*_start_extfn)(a_v3_extfn_aggregate_context *);

_finish_extfn — required pointer to a shutdown function for which the only argument is a
pointer to a_v3_extfn_aggregate_context. Typically, used to deallocate some structure
with the address stored within the _user_data field in the a_v3_extfn_aggregate _context.
_finish_extfn is only ever called once per a_v3_extfn_aggregate_context.

void (*_finish_extfn)(a_v3_extfn_aggregate_context *);

_reset_extfn — required pointer to a start-of-new-group function, for which the only
argument is a pointer to a_v3_extfn_aggregate_context. Typically, used to reset some
values in the structure for which the address was stashed within the _user_data field in the
a_v3_extfn_aggregate_context. _reset_extfn is called repeatedly.

void (*_reset_extfn)(a_v3_extfn_aggregate_context *);
_next_value_extfn — required function pointer to be called for each new input set of
argument values. The function does not set the result of the aggregation. Access to input
argument values are through the get_value callback function and, if necessary, through
repeated calls to the get_piece callback function, which is required only if piece_len is less
than total_len.

voi d (*_next_val ue_extfn)(a_v3_extfn_aggregate_context *cntxt,

voi d *args_handl e);

_evaluate_extfn — required function pointer to be called to return the resulting aggregate
result value. _evaluate_extfn is sent to the server using the set_value callback function.
void (*_eval uate_extfn)(a_v3_extfn_aggregate_context *cntxt, void
*args_handl e) ;

_drop_value_extfn —Optional function pointer that is called for each input set of argument
values that has fallen out of a moving window frame. Do not use this function to set the
result of the aggregation. Access to input argument values are through the get_value
callback function and, if necessary, through repeated calls to the get_piece callback
function; however, access is required only if piece_len is less than total_len. Set
_drop_value_extfn to the null pointer if:

» The aggregate cannot be used with a window frame.

« The aggregate is not reversible in some way.

e The user is not interested in optimal performance.

If this function is not supplied, and the user has specified a moving window, then each time
the window frame moves, the reset function is called and each row now within the window
is included by a call to the next_value function. Finally, the evaluate function is called.
However, if this function is supplied, each time the window frame moves, this drop_value
function is called for each row falling out of the window frame, then the next_value
function is called for each row that has just been added into the window frame. Finally, the
evaluate function is called to produce the aggregate result.

voi d (*_drop_val ue_extfn)(a_v3_extfn_aggregate_cont ext *cnt xt,
voi d *args_handl e);

_evaluate_cumulative_extfn — optional function pointer to be called for each new input
set of argument values. If this function is supplied, and the usage is in a row-based window

66

Sybase 1Q

User-Defined Aggregate Functions

frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then this function is
called instead of next_value, immediately followed by calling evaluate.
_evaluate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to input argument values are through the get_value callback function and,
if necessary, through repeated calls to the get_piece callback function, which is only
required if piece_len is less than total _len.

void (*_evaluate_cunul ative_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handl e);

e _next_subaggregate_extfn — optional callback function pointer that, with the
_evaluate_superaggregate_extfn function (and in some usages also with the
_drop_subaggregate_extfn function), enables some usages of the aggregate to be
optimized through parallel and partial results aggregation.

Some aggregates, when used as simple aggregates (in other words, not OLAP-style
aggregates with an OVER clause) can be partitioned by first producing a set of
intermediate aggregate results where each of the intermediate results is computed from a
disjoint subset of the input rows. Examples of such partitionable aggregates include:
* SUM, where the final SUM can be computed by performing a SUM for each disjoint

subset of the input rows and then performing a SUM over the sub-SUMSs; and
e COUNT(¥*), where the final COUNT can be computed by performing a COUNT for

each disjoint subset of the input rows and then performing a SUM over the COUNTS

from each partition.
When an aggregate satisfies the above conditions, the server may choose to make the
computation of that aggregate parallel. For aggregate UDFs, this optimization can be
applied only if both the _next_subaggregate extfn callback and the
_evaluate_superaggregate_extfn callback are supplied. This usage pattern does not
require _drop_subaggregate_extfn.
Similarly, if an aggregate can be used with a RANGE-based OVER clause, an optimization
can be applied if _next_subaggregate_extfn, drop_subaggregate_extfn, and
_evaluate_superaggregate_extfn) functions are all supplied by the UDAF
implementation.
_next_subaggregate_extfn does not set the final result of the aggregation, and by
definition, has exactly one input argument value that is the same data type as the return
value of the aggregate UDF. Access to the sub-aggregate input value is through the
get_value callback function and, if necessary, through repeated calls to the get_piece
callback function, which is required only if piece_len is less than total_len.
Direct communication between sub-aggregates and the super-aggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share the context structure. Individual sub-aggregates are treated exactly the same as
nonpartitioned aggregates. The independent super-aggregate sees a calling pattern that
looks like this:

_start_extfn
_reset_extfn
_next _subaggregate_extfn (repeated O to N tinmes)

_eval uat e_superaggregate_extfn
_finish_extfn

User-Defined Functions 67

User-Defined Aggregate Functions

voi d (*_next _subaggregate_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handl e);

_drop_subaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn and _evaluate_superaggregate_extfn, enables some usages
involving RANGE-based OVER clauses to be optimized through a partial aggregation.
_drop_subaggregate_extfn is called whenever a set of rows sharing a common ordering
key value have collectively fallen out of a moving window. This optimization is applied
only if all three functions are provided by the UDF.

voi d (*_drop_subaggregate_extfn)(a_v3_extfn_aggregate_context

*cnt xt, voi d *args_handl e);

_evaluate_superaggregate_extfn — optional callback function pointer that, together with
_next_subaggregate_extfn (and in some cases also with _drop_subaggregate_extfn),
enables some usages to be optimized by running in parallel.
_evaluate_superaggregate_extfn is called, as described above, when it is time to return the
result of a partitioned aggregate. The result value is sent to the server using the set_value
callback function from the a_v3_extfn_aggregate_context structure:

voi d (*_eval uat e_super aggr egat e_ext f n)
(a_v3_extfn_aggregate_context *cntxt, void *args_handl e);

NULL fields — initialize these fields to NULL:

void * reservedl_nust _be_nul

void * reserved2 nmust be nul

void * reserved3 must_be_ nuII

void * reserved4 nust _be null;
*

voi d reserved5_nust _be_nul |

Status indicator bit field — a bit field containing indicators that allow the engine to
optimize the algorithm used to process the aggregate.

a_sqgl _uint32 indicators;

_calculation_context_size — the number of bytes for the server to allocate for each UDF
calculation context. The server may allocate multiple calculation contexts during query
processing. The currently active group context is available in
a_v3_extfn_aggregate_context_user_calculation_context.
short _cal cul ati on_cont ext _si ze;

_calculation_context_alignment — specifies the alignment requirement for the user's
calculation context. Valid values include 1, 2, 4, or 8.
short _cal cul ati on_cont ext _al i gnment ;

External memory requirments — the following fields allow the optimizer to consider the

cost of externally allocated memory. With these values, the optimizer can consider the

degree to which multiple simultaneous calculations can be made. These counters should

be estimates based on a typical row or group, and should not be maximum values. If no

memory is allocated by the UDF, set these fields to zero.

« external_bytes per_group — The amount of memory allocated to a group at the start of
each aggregate. Typically, any memory allocated during the reset() call.

« external_bytes per_row — The amount of memory allocated by the UDF for each row
of a group. Typically, the amount of memaory allocated during next_value().

68

Sybase 1Q

User-Defined Aggregate Functions

doubl e ext ernal _bytes_per _group;
doubl e ext ernal _bytes_per_row,
* Reserved fields for future use — initialize these fields:
a_sql _uint64 reserved6_nust _be_nul | ;
a_sql _uint64 reserved7_nust _be_nul |
a_sql _ui nt 64 reserved8 nust be null
a_sql _uint64 reserved9_nust _be_nul |
a_sql _uint64 reservedl10_nust _be_nul |
* Closing syntax — Complete the descriptor with this syntax:
[l--aeeeeo - For Server Internal Use Only ----------

void * _for_server_internal _use;
} a_extfn_aggregate;

Calculation context

The _user_calculation_context field allows the server to concurrently execute calculations on
multiple groups of data.

A UDAF must keep intermediate counters for calculations as it is processing rows. The simple
model for managing these counters is to allocate memory at the start API function, store a
pointer to it in the aggregate context's _user_data field, then release the memory at the
aggregate's finish API. An alternative method, based on the _user_calculation_context field,
allows the server to concurrently execute calculations on multiple groups of data.

The _user_calculation_context field is a server-allocated memory pointer, created by the
server for each concurrent processing group. The server ensures that the
_user_calculation_context always points to the correct calculation context for the group of
rows currently being processed. Between UDF API calls, depending on the data, the server
may allocate new _user_calculation_context values. The server may save and restore
calculation context areas to disk while processing a query.

The UDF stores all intermediate calculation values in this field. This illustrates a typical

usage:
struct my_average_cont ext
{

i nt sum

i nt count ;
) -
reset (a_v3_aggregat e_cont ext *context)
{

mycontext = (ny_average_context *) context-

> user _cal cul ati on_cont ext;
mycont ext - >count = O;
nycont ext - >sum = 0;

next val ue(a_v3_aggregate_context *context, void *args_handl e)

{
mycontext = (ny_average_context *) context-
> user _cal cul ati on_cont ext;

User-Defined Functions 69

User-Defined Aggregate Functions

nmycont ext - >count ++;

}

Inthismodel, the _user_datafield can still be used, but no values relating to intermediate result
calculations can be stored there. The _user_calculation_context is NULL at both the start and
finish entry points.

To use the _user_calculation_context to enable concurrent processing, the UDF must specify
the size and alignment requirements for its calculation context, and define a structure to hold
its values and set a_v3_extfn_aggregate and _calculation_context_size to the sizeof() of that
structure.

The UDF must also specify the data alignment requirements of _user_calculation_context
through _calculation_context_alignment. If user_calculation_context memory contains only
a character byte array, no particular alignment is necessary, and you can specify an alignment
of 1. Likewise, double floating point values might require an 8-byte alignment. Alignment
requirements vary by platform and data type. Specifying a larger alignment than necessary
always works; however, using the smallest alignment uses memory more efficiently.

UDAF context structure

The aggregate UDF context structure, a_v3_extfn_aggregate_context, has exactly the same
set of callback function pointers as the scalar UDF context structure.

In addition, it has a read/write _user_data pointer just like the scalar UDF context, and a set of
read-only data fields that describe the current usage and location. Each unique instance of the
UDF within a statement has one aggregate UDF context instance that is passed to each of the
functions specified within the aggregate UDF descriptor structure when they are called. The
aggregate context structure is defined as:

» typedef struct a_v3_extfn_aggregate_context — One created for each instance of an
external function referenced within a query. If used within a parallelized subtree within a
query, there is a separate context for parallel subtree.

e Callbacks available via the context — Common arguments to the callback routines
include:

« arg_handle — A handle to function instance and arguments provided by the server.
e arg_num - The argument number. Return values are 0..N.

e data— The pointer to argument data.

The context must call get_value before get_piece, but needs to call get_piece only if
piece_len is less than total_len.

short (SQL_CALLBACK *get _val ue)(
void * arg_handl e,
a_sqgl _uint32 arg_num
an_ext fn_val ue *val ue

DE

short (SQL_CALLBACK *get _pi ece) (
void * arg_handl e,
a_sql _uint32 arg_num

70

Sybase 1Q

User-Defined Aggregate Functions

an_extfn_val ue *val ue,
a_sql _uint32 of f set

e Determining whether an argument is a constant — The UDF can ask whether a given
argument is a constant. This can be useful, for example, to allow work to be done once at
the first call to the _next_value function rather than for every call to the _next_value

function.
short (SQL_CALLBACK *get _val ue_i s_constant) (
void * arg_handl e,

a_sqgl _uint32 arg_num
;:1_sql _uint32 * value_is_constant
e Returning anull value —To return a null value, set "data” to NULL inan_extfn_value. The

total_len field is ignored on calls to set_value, the data supplied becomes the value of the
argument if append is FALSE; otherwise, the data is appended to the current value of the
argument. It is expected that set_value is called with append=FALSE for an argument
before being called with append=TRUE for the same argument. The append field is
ignored for fixed-length data types (in other words, all numeric data types).

short (SQL_CALLBACK *set _val ue)(

void * arg_handl e,
an_extfn_val ue *val ue,
short append
)

e Determining whether the statement was interrupted — If a UDF entry point performs
work for an extended period of time (many seconds), then it should, if possible, call the
get_is_cancelled callback every second or two to see if the user has interrupted the current
statement. If the statement has been interrupted, a nonzero value is returned, and the UDF
entry point should then immediately perform. Eventually, the _finish_extfn function is
called to do any necessary cleanup, but no other UDF entry points are subsequently called.

a_sqgl _uint32 (SQL_CALLBACK *get _is_cancel | ed)
(a_v3_extfn_aggregate_context * cntxt);

* Sending error messages — If a UDF entry point encounters some error that should result
in an error message being sent back to the user and the current statement being shut down,
the set_error callback routine should be called. set_error causes the current statement to
roll back;theuserseesEr ror fromexternal UDF: <error_desc_string>,
and the SQLCODE is the negated form of <error_number>. After a call to set_error, the
UDF entry point immediately performs a return. Eventually, _finish_extfn is called to
perform any necessary cleanup, but no other UDF entry points are subsequently called.
voi d (SQL_CALLBACK *set _error)(

a_v3_extfn_aggregate_context * cntxt,
a_sql _uint 32 error_nunber,

/'l use error_nunber values >17000 & <100000
const char * error_desc_string

)
e Writing messages to the message log — Messages longer than 255 bytes may be
truncated.

User-Defined Functions 71

User-Defined Aggregate Functions

voi d (SQL_CALLBACK *I og_nessage) (
const char *nsg,
short nsg_| ength
)

Converting one data type to another — for input:

e an_extfn_value.data — input data pointer.

e an_extfn_value.total_len — length of input data.

* an_extfn_value.type — DT_ datatype of input.

For output:

e an_extfn_value.data — UDF-supplied output data pointer.

e an_extfn_value.piece_len — maximum length of output data.

e an_extfn_value.total_len — server set length of converted output.
e an_extfn_value.type — DT_ datatype of desired output.

short (SQL_CALLBACK *convert _val ue) (
an_extfn_val ue *input,
an_extfn_value *out put

)i

Fields reserved for future use — These are reserved for future use:
void * reservedl;

void * reserved?;
void * reserved3;
void * reserved4;
void * reser ved5;

Data available from the context — This data pointer can be filled in by any usage with any
context data the external routine requires. The UDF allocates and deallocates this memory.
A single instance of _user_data is active for each statement. Do not use this memory for
intermediate result values.

void * _user_data;

Currently active calculation context — UDFs should use this memory location to store

intermediate values that calculate the aggregate. This memory is allocated by the server

based on the size requested in the a_v3_extfn_aggregate. Intermediate calculations must
be stored in this memory, since the engine may perform simultaneous calculations over
more than one group. Before each UDF entry point, the server ensures that the correct
context data is active.

void * _user_cal cul ation_context;

Other available aggregate information — Available at all external function entry points,

including start_extfn. Zero indicates an unknown or not-applicable value. Estimated

average number of rows per partition or group.

e a_sgl_uinté4 _max_rows_in_frame; — Calculates the maximum number of rows
defined in the window frame. For range-based windows, this indicates unique values.
Zero indicates an unknown or not-applicable value.

e a_sqgl_uint64 _estimated_rows_per_partition; — Displays the estimated average
number of rows per partition or group. 0 indicates an unknown or not-applicable value.

72

Sybase 1Q

User-Defined Aggregate Functions

* a_sgl_uint32 _is_used_as_a_superaggregate; — ldentifies whether this instance is a
normal aggregate or a superaggregate. Returns a result of 0 if the instance is a normal
aggregate.

Determining window specifications — Window specifications if a window is present on

the query:

e a_sql_uint32 _is_window_used; — Determines if the statement is windowed.

e a_sqgl_uint32 _window_has_unbounded_preceding; — A return value of 0 indicates
the window does not have unbounded preceding.

* a_sql_uint32 _window_contains_current_row; — A return value of 0 indicates the
window does not contain the current row.

* a_sgl_uint32 _window_is_range_based; — If the return code is 1, the window is
range-based. If the return code is 0, the window is row-based.

Available at reset_extfn() calls — Returns the actual number of rows in current partition, or

0 for nonwindowed aggregate.

a_sql _uint64 _numrows_in_partition;

Available only at evaluate_extfn() calls for windowed aggregates — Currently evaluated

row number in partition (starting with 1). This is useful during the evaluation phase of

unbounded windows.

a_sqgl _uint64 _result_row fromstart_of partition;

Closing syntax — Complete the context with:

N For Server Internal Use Only ----------

void * _for_server_internal _use;
} a_v3_extfn_aggregat e_context;

UDAF example: my sum definition

The "my_sum" example operates only on integers.

my_sum definition

Since my_sum, like SUM, can be used in any context, all the optimized optional entry points
have been supplied. In this example, the normal _evaluate_extfn function can also be used as
the _evaluate_superaggregate_extfn function.

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

Si npl e aggregate UDF that adds up a set of

i nteger argunents, and whenever asked returns
the resulting big integer total. For int
argunments, the only difference between this

UDF and the SUM built-in aggregate is that this
UDF will return NULL if there are no input rows.

The start function creates a little structure for
the running total, and the finish function then
deal | ocates it.

User-Defined Functions 73

User-Defined Aggregate Functions

/1 Since there are no aggregate usage restrictions
/1 for this UDAF, the corresponding SQ declaration

[l will ook |ike:

I

11 CREATE AGGREGATE FUNCTI ON nmy_sun(| N argl | NT)
I/ RETURNS Bl G NT

I/ ON EMPTY | NPUT RETURNS NULL

I/ EXTERNAL NAME ' my_i nt eger _sum@ i budf ex'

typedef struct ny_total {
a_sql _int64 _total;
a_sqgl _uint64 _num.nonnulls_seen;

} ny_total;

extern "C'

voi d ny_integer_sumstart(a_v3_extfn_aggregate_context *cntxt)
{

}

extern "C'

voi d ny_integer_sumfinish(a_v3_extfn_aggregate_context *cntxt)
{

}

extern "C'

voi d ny_integer_sumreset(a_v3_extfn_aggregate_context *cntxt)

nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;
cptr->_total = 0;
cptr->_numnonnul | s_seen = 0;

}

extern "C'

voi d nmy_i nteger _sum next _val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{

an_extfn_value arg;
a_sql _int32 argl;

nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/[l Get the one argunent, and if non-NULL then add it to the total
/1
if (cntxt->get _value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int32 *)arg.data);
cptr->_total += argl,;
cptr->_num nonnul | s_seen++;
}
}

74 Sybase 1Q

User-Defined Aggregate Functions

extern "C'

voi d my_i nteger_sum drop_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{

an_extfn_value arg;
a_sql _int32 argl;
my_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/1l Get the one argunent, and if non-NULL then subtract it fromthe
t ot al
if (cntxt->get _value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int32 *)arg.data);

cptr->_total -= argl;
cptr->_numnonnul | s_seen--;
}
}
extern "C'

voi d ny_integer_sum eval uat e(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{
an_extfn_value outval;
nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;
/[l Set the output result value. |If the inputs
// were all NULL, then set the result as NULL.
/1
outval .type = DT_BI d NT;
out val . pi ece_|l en = si zeof (a_sql _i nt 64);
if (cptr->_numnonnulls_seen > 0) {
outval .data = &cptr->_total;
} else {
outval .data = 0;
cnt xt->set _val ue(arg_handl e, &outval, 0);
}
extern "C'

voi d ny_i nteger_sum cum eval uat e(
a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{
an_extfn_value outval;
an_extfn_value arg;
int argl;
nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_context;
/1l Get the one argunment, and if non-NULL then add it into the
total .

/1

if (cntxt->get _value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int32 *)arg.data);
cptr->_total += argl,;
cptr->_num nonnul | s_seen++;

User-Defined Functions 75

User-Defined Aggregate Functions

}

/1 Then set the output result value. |If the inputs
// were all NULL, then set the result as NULL

/Il

outval .type = DT_BI G NT;
out val . pi ece_|l en = si zeof (a_sql _i nt 64);
if (cptr->_numnonnulls_seen > 0) {
outval .data = &cptr->_total
} else {
outval .data = O;

cnt xt->set _val ue(arg_handl e, &outval, 0)

extern "C'

voi d ny_i nteger_sum next _subagg_val ue(
a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;
a_sqgl _int64 argl

nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/1l Get the one argunent, and if non-NULL then add it to the tota
/1
if (cntxt->get _value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int64 *)arg.data);
cptr->_total += argl
cptr->_numnonnul | s_seen++
}
}

extern "C'
voi d ny_integer_sum drop_subagg_val ue(
a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)
{
an_extfn_value arg;
a_sqgl _int64 argl

nmy_total *cptr = (my_total *)cntxt->_user_cal cul ati on_cont ext;

/1l Get the one argunent, and if non-NULL then subtract it fromthe
t ot al
I
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _int64 *)arg.data);
cptr->_total -= argl
cptr->_numnonnul | s_seen--;
}
}

76 Sybase 1Q

User-Defined Aggregate Functions

a_v3_extfn_aggregate my_i nteger_sum descriptor =

{
&nmy_integer_sumstart,
&y _integer_sum fi ni sh
&my_i nt eger _sum r eset,
&nmy_i nt eger _sum next _val ue,
&nmy_i nteger _sum eval uat e,
&nmy_i nteger _sum dr op_val ue,
&nmy_i nteger _sum cum eval uat e,
&nmy_i nt eger _sum next _subagg_val ue
&nmy_i nteger _sum dr op_subagg_val ue
&my_i nt eger _sum eval uat e,
NULL, // reservedl rnust_be_nul
NULL, // reserved2 must be nul
NULL, // reserved3_nust_be_nul
NULL, // reserved4_nust _be_nul
NULL, // reserved5_rnust_be_nul
0, // indicators
(short)sizeof(ny_total), // context size
8, // context alignnent
0.0, //external _bytes_ per_group
0.0, // external bytes per row
0, // reserved6_nust_be null
0, // reserved7_nust_be_nul |
0, // reserved8_nust_be_nul
0, // reserved9 nmust be nul
0, // reservedl0_nust be_nul
NULL // _for_server_internal _use
b
extern "C'

a_v3_extfn_aggregate *nmy_i nteger_sum()
return &my_i nteger_sum descri ptor;

}

UDAF example: my bit xor definition

The "my_bit_xor" example is similar to the SA built-in BIT_XOR, except my_bit_xor
operates only on unsigned integers.

my_bit_xor definition

Because the input and the output data types are identical, use the normal _next_value_extfn
and _evaluate_extfn functions to accumulate subaggregate values and produce the
superaggregate result.

#i ncl ude "extfnapiv3. h"

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

/1l Ceneric aggregate UDF that exclusive-ORs a set of

User-Defined Functions 77

User-Defined Aggregate Functions

/1 unsigned integer argunments, and whenever asked

I/ returns the resulting unsigned integer result.

I

/1l The start function creates a little structure for
/1 the running result, and the finish function then
/] deallocates it.

I

/1l Since there are no aggregate usage restrictions
/1 for this UDAF, the corresponding SQ. declaration

[l will look like:

I

11 CREATE AGGREGATE FUNCTI ON ny_bit_xor (I N argl UNSI GNED
| NT)

I RETURNS UNSI GNED | NT

I ON EMPTY | NPUT RETURNS NULL

/1 EXTERNAL NAME ' ny_bit_xor @i budf ex’

typedef struct ny_xor_result {
a_sql _uint64 _num nonnul | s_seen;
a_sqgl _uint32 _xor_result;

} my_xor_result;

#if defined __ cplusplus
extern "C' {
#endi f

static void ny_xor_start(a_v3_extfn_aggregate_context *cntxt)

{
}

static void ny_xor_finish(a_v3_extfn_aggregate_context *cntxt)

{
}

static void ny_xor_reset(a_v3_extfn_aggregate_context *cntxt)
{

nmy_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

cptr->_xor_result = 0;

cptr->_numnonnulls_seen =0

}

static void ny_xor_next_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)
{

an_extfn_value arg;
a_sqgl _uint32 argl;

nmy_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

// Get the one argunent, and add it to the tota

78 Sybase 1Q

User-Defined Aggregate Functions

if (cntxt->get _value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _uint32 *)arg. data);
cptr->_xor_result ~= argl;
cptr->_numnonnul | s_seen++
}
}

static void ny_xor_drop_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value arg;

a_sqgl _uint32 argl;

my_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

/1l Get the one argunent, and renove it fromthe tota
if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
argl = *((a_sql _uint32 *)arg.data);
cptr->_xor_result ~= argl;
cptr->_numnonnul | s_seen--;
}
}

static void ny_xor_eval uate(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value outval;
my_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext ;

outval . type = DT_UNSI NT;
out val . pi ece_l en = si zeof (a_sql _ui nt 32);
if (cptr->_numnonnulls_seen > 0) {
outval .data = &cptr->_xor_result;
} else {
outval .data = 0;

cnt xt->set _val ue(arg_handl e, &outval, 0)

}

static void ny_xor_cum eval uat e(a_v3_extfn_aggregat e_cont ext
*cnt xt
voi d *arg_handl e)

an_extfn_value outval;

an_extfn_value arg;

a_sql _uint32 argil;

my_xor_result *cptr = (my_xor_result *)cntxt-
> user _cal cul ati on_cont ext;

/1l Get the one argunent, and include it in the result,
/1 unless that input value is null.
I

User-Defined Functions 79

User-Defined Aggregate Functions

if (cntxt->get_value(arg_handle, 1, &arg) && arg.data)
argl = *((a_sql _uint32 *)arg. data);
cptr->_xor_result ~= argl;
cptr->_numnonnul | s_seen++

}

/1 Then set the output result val ue
outval . type = DT_UNSI NT;
outval . pi ece_|l en = sizeof (a_sql _ui nt 32);
if (cptr->_nummnonnulls_seen > 0) {
outval .data = &cptr-> xor_result;
} else {
outval . data = 0;
}

cnt xt->set _val ue(arg_handl e, &outval, 0)

static a_v3_extfn_aggregate my_xor_descriptor =
{

&my_xor _start,
_xor _finish
_Xor_reset,
_xor_next _val ue,
_xor _eval uat e
_xor _drop_val ue,
_xor_cum eval uat e
_xor_next _val ue,
_xor _drop_val ue,
_xor_eval uate
NULL, // reservedl nust_be_nul
NULL, // reserved2 mnust be nul
NULL, // reserved3_nust_be_nul
NULL, // reserved4_nust _be_nul
NULL, // reserved5_rnust_be_nul
, // indicators
(short)sizeof(ny_xor_result), // context size
/'] context alignnent
/] external _bytes_per_group
/'l external bytes per row
/'l reserved6_nust_be_ nul
/'] reserved7_mnust _be_nul
/'l reserved8_rnust_be_ nul
/'l reserved9 must be nul
, /'l reservedl0_nust _be nul
ULL // _for_server_internal _use

JEaH g

o

ee

ZO0O0O0O000O®

i
a_v3_extfn_aggregate *my_bit_xor ()
{

return &my_xor_descriptor;

}
#i f defined __cplusplus

L
#endi f

80

Sybase 1Q

User-Defined Aggregate Functions

UDAF example: my bit or definition

The "my_bit_or" example is similar to the SA built-in BIT_OR, except my_bit_or operates
only on unsigned integers, and can be used only as a simple aggregate.

my_bit_or definition

The "my_bit_or" definition is somewhat simpler than the "my_bit_xor" example.

#i ncl ude "extfnapiv3. h"
#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

Il A sinmple (non-OLAP) aggregate UDF that ORs a set
/1 of unsigned integer argunents, and whenever asked
/] returns the resulting unsigned integer result.

// The start function creates a little structure for
/1 the running result, and the finish function then
[/l deallocates it.

/1l The aggregate usage restrictions for this UDAF
[/ only allowits use as a sinple aggregate, so the

[l corresponding SQL declaration will |ook Iike

/1

/1 CREATE AGGREGATE FUNCTI ON ny_bit_or (I N argl UNSI GNED | NT)
I RETURNS UNSI GNED | NT

I ON EMPTY | NPUT RETURNS NULL

/1 OVER NOT ALLOWED

/1 EXTERNAL NAME 'ny_bit _or @i budf ex'

typedef struct ny_or_result {
a_sqgl _uint32 _or _result;
a_sql _uint32 _non_null _seen;
} ny_or_result;

#i f defined __cplusplus
extern "C' {
#endi f

static void ny_or_start(a_v3_extfn_aggregate_context *cntxt)

{
}

static void ny_or_finish(a_v3_extfn_aggregate_context *cntxt)

{
}

static void ny_or_reset(a_v3_extfn_aggregate_context *cntxt)

{

my_or_result *cptr = (my_or_result *)cntxt-

User-Defined Functions 81

User-Defined Aggregate Functions

> user _cal cul ati on_cont ext;
cptr->_or_result = 0;
cptr->_non_null_seen =0

}

static void ny_or_next_val ue(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

{

an_extfn_value arg;
a_sqgl _uint32 argl;

my_or_result *cptr = (my_or_result *)cntxt-
> user _cal cul ati on_cont ext;

// Get the one argunent, and add it to the tota
if (cntxt->get_value(arg_handle, 1, &rg) && arg.data)

{
argl = *((a_sql _uint32 *)arg.data);
cptr->_or_result |= argl
cptr->_non_null_seen = 1;

}

static void ny_or_eval uate(a_v3_extfn_aggregate_context *cntxt,
voi d *arg_handl e)

an_extfn_value outval;
my_or_result *cptr = (my_or_result *)cntxt-
> user _cal cul ati on_cont ext ;

outval . type = DT_UNSI NT;
out val . pi ece_l en = si zeof (a_sql _ui nt 32);
if (cptr->_non_null _seen)

outval .data = &cptr-> or_result;

}

el se

/1l Return null if no values seen
outval .data = 0O;

cnt xt->set _val ue(arg_handl e, &outval, 0)

static a_v3_extfn_aggregate my_or_descriptor =

{
&My _or_start,
&my_or _finish,
&my_or _reset,
&nmy_or _next _val ue
&nmy_or _eval uat e,
NULL, // drop_val _extfn

82 Sybase 1Q

User-Defined Aggregate Functions

NULL, // cume_eval

NULL, // next_subaggregate_extfn

NULL, // drop_subaggregate_extfn

NULL, // eval uate_superaggregate_extfn

NULL, // reservedl nust_be_nul

NULL, // reserved2_nust _be_nul

NULL, // reserved3_rnust_be_nul

NULL, // reserved4 mnust be nul

NULL, // reserved5_nust_be_nul

0, // indicators

(short)sizeof(ny_or_result), // context size
8, // context alignnent

0.0, //external bytes _per_group

0.0, // external bytes per row

| reserved6_nust_be_null

/| reserved7_must _be nul |

| reserved8_must_be_null
/
/

reserved9_nust _be_nul
reserved10_mnust _be_nul
/1l _for_server _internal use

ZO0OO0O0OO
l—\\\\\

extern "C'
a_v3_ extfn_aggregate *my_bhit_or()
{

}

return &my_or_descriptor;

#i f defined __cplusplus

L
#endi f

UDAF example: my interpolate definition

The "my_interpolate" example is an OLAP-style UDAF that attempts to fill in NULL values
within a sequence by performing linear interpolation across any set of adjacent NULL values
to the nearest non-NULL value in each direction.

my_interpolate definition

To operate at asensible cost, my_interpolate must run using a fixed-width, row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values expected. If the input at a given row is not NULL, the result for that row is the same as
the input value. This function takes a set of double-precision floating-point values and
produces a resulting set of doubles.

#i ncl ude "extfnapiv3. h"

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>

/1 MY_I NTERPOLATE
Il

User-Defined Functions 83

User-Defined Aggregate Functions

/1l OLAP-style aggregate UDF that accepts a doubl e precision
// floating point argunent. |If the current argument value is
// not NULL, then the result value is the sane as the

[/ argument value. On the other hand, if the current row s
/1 argunent value is NULL, then the result, where possible,
[/ will be the arithmetic interpolation across the nearest

/1 preceding and nearest follow ng values that are not NULL.
/1 In all cases the result is also a double precision val ue.

I/ The start function creates a structure for maintaining the
/1 argunent values within the wi ndow including their NULLness.
/1l The finish function then deall ocates this structure.

/1 Since there are sone strict aggregate usage restrictions
/1 for this aggregate (must be used with a row based w ndow
[/ franme that includes the current row), the correspondi ng

/1 SQ. declaration will |ook Iike:

I/

I CREATE AGGREGATE FUNCTI ON ny_interpol ate(I N argl DOUBLE)
I RETURNS DOUBLE

11 OVER REQUI RED

I/ W NDOW FRAMVE REQUI RED

I/ RANGE NOT ALLOWED

I PRECEDI NG REQUI RED

Il UNBOUNDED PRECEDI NG NOT ALLOWED
I/ FOLLOW NG REQUI RED

I/ UNBOUNDED FOLLOW NG NOT ALLOWED
I/ EXTERNAL NAME ' ny_interpol ate@ i budf ex'

typedef struct ny_wi ndow {

i nt _allocated el em

i nt _first_used,;

i nt _next _insert_| oc;

i nt * is_null;

double * dbl _val;

i nt _num rows_in_franeg;
} ny_wi ndow;

#i f defined __cplusplus
extern "C' {
#endi f

static void ny_interpol ate_reset (a_v3_extfn_aggregate_cont ext
*cnt xt)

assert(cntxt->_user_data);
my_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

cptr-> first_used = 0;

cptr->_next_insert_loc = O;
cptr->_numrows_in_frame = O;

for (int i=0; i<cptr->_allocated_elem i++) {

84

Sybase 1Q

User-Defined Aggregate Functions

cptr->_is null[i] = 1;
}
}

static void ny_interpol ate_start(a_v3_extfn_aggregate_context
*cnt xt)

nmy_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

/1 Make sure function was defined correctly

if (!cntxt->_is_w ndow used)

{
cnt xt->set _error(cntxt, 20001, "Function requires w ndow');
return;

i f (cntxt->_w ndow_has_unbounded_precedi ng ||
cnt xt - >_w ndow_has_unbounded_f ol | owi ng)

cntxt->set _error(cntxt, 20002, "W ndow cannot be unbounded");
return;

if (cntxt->_w ndow_is_range_based)

cntxt->set _error(cntxt, 20003, "Wndow nmust be row based");
return;

}
if (lteptr) {
I/

cptr = (my_wi ndow *) mal | oc(si zeof (ny_wi ndow)) ;

if (cptr) {
cptr->_is_null
cptr->_dbl _val
cptr-> numrows_in_frame =0
cptr->_all ocated_el em n
cptr->_is null = (int |

= 0;
= Ol
n ;
t)entxt->_max_rows_i n_frane;
oc(cptr->_all ocated_el em

* sizeof (int));
cptr->_dbl _val = (double *)malloc(cptr->_allocated_el em
* sizeof (doubl e));

:(|
*) mal

cntxt-> user_data = cptr;

}

}

if (teptr || leptr->_is_null || !cptr->_dbl _val) {
/1 Termi nate this query
cntxt->set _error(cntxt, 20000, "Unable to allocate nenory");
return;

}

ny_interpolate_reset(cntxt);

static void ny_interpol ate_finish(a_v3_extfn_aggregate_context
*cnt xt)

if (cntxt->_user_data) {

User-Defined Functions 85

User-Defined Aggregate Functions

nmy_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

if (cptr->_is_null) {
free(cptr->_is_null);
cptr->_is_null = 0;

}

if (cptr->_dbl _val) {
free(cptr->_dbl _val);
cptr->_dbl __val = 0;

}

free(cntxt->_user_data);

cntxt-> user_data = O;

}
}
static void ny_interpol ate_next_val ue(a_v3_extfn_aggregat e_cont ext
*cnt xt,

voi d *arg_handl e)

{

an_extfn_value arg;

doubl e argil;

ny_w ndow *cptr = (my_wi ndow *)cnt xt->_user_dat a;

// Get the one argunent, and stash its val ue
/1 within the rotating w ndow arrays
I
int curr_cell_num = cptr->_next_insert_loc %cptr-
> all ocated el em
if (cntxt->get _value(arg_handle, 1, &rg) && arg.data != NULL) {
argl = *((doubl e *)arg. data);

cptr->_dbl _val[curr_cell _nun] = argl;
cptr->_is_null[curr_cell_nunm = 0;
} else {
cptr->_is_null[curr_cell _nun] = 1;
}
/1l Then increnment the insertion |ocation and nunber of rows in
frane

cptr->_next_insert_loc = ((cptr->_next_insert_|loc + 1)
% cptr->_all ocated_el em;
cptr->_numrows_in_franme++;

}
static void ny_interpol ate_drop_val ue(a_v3_extfn_aggregat e_cont ext
*cnt xt,
void * /*arg_handl e*/)
{

nmy_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;

/1 Drop one value fromthe w ndow by incrementing past it and
/! decrement the nunmber of rows in the frane
cptr->_first_used = ((cptr-> first_used + 1) %cptr-

> allocated_el em;
cptr->_numrows_in_frame--;

}

86 Sybase 1Q

User-Defined Aggregate Functions

static void ny_interpol ate_eval uate(a_v3_extfn_aggregat e_cont ext
*cnt xt,

{

voi d *arg_handl e)

an_extfn_value outval;
nmy_wi ndow *cptr = (my_w ndow *)cnt xt->_user_dat a;
double result;

i nt result_is_null = 1;
doubl e precedi ng_val ue;
i nt preceding_value_is _null = 1;

doubl e precedi ng_di stance = 0;
doubl e follow ng_val ue;

i nt followi ng_value_is_null = 1;

doubl e follow ng _distance = 0;

int j;

/] Determine which cell is the current cell

int curr_cell_num=
((int)(cntxt->_result_row fromstart_of _partition-1))%ptr-
> all ocated_el em
int tnp_cell _num

int result_row offset_fromstart_of franme = cptr->_first_used <=
curr_cell _num ?
(curr_cell_num- cptr->_first_used)
(curr_cell _num+ cptr->_allocated_el em- cptr-
> first_used);

/1 Conpute the result val ue

if (cptr->_is_null[curr_cell_nunm == 0) {
Il
[/ |If the current rows input value is not NULL, then there is
/1 no need to interpolate, just use that input val ue.
I
result = cptr->_dbl _val[curr_cell _nunj;
result_is_null = 0;
Il

} else {
Il
[/ |If the current rows input value is NULL, then we do
/1 need to interpolate to find the correct result val ue.
/[l First, find the nearest follow ng non-NULL argument
/'l value after the current row.
/Il
int rows_following = cptr-> numrows_in_frame -

result row offset fromstart of frame - 1;
for (j=0; j<rows follow ng; j++) {
tnp_cell _num = ((curr_cell _num+ j + 1) %cptr-
> all ocated_el em;
if (cptr->_is_null[tnmp_cell_num == 0) {

User-Defined Functions 87

User-Defined Aggregate Functions

following value = cptr->_dbl _val[tnp_cell _nuni;

foll owi ng_value_is_null = 0;
foll owi ng_distance = j + 1;
br eak;

: }

/1 Second, find the nearest precedi ng non- NULL

/1l argument val ue before the current row

/11

int rows_before = result_row offset_fromstart_of frane;

for (j=0; j<rows_before; j++) {

tnp_cell _num= ((curr_cell_num+ cptr->_allocated_elem- j - 1)
% cptr->_allocated_elem;
if (cptr->_is_null[tnp_cell_nunl == 0)

precedi ng_val ue = cptr->_dbl _val[tnp_cell _nuni;
precedi ng_val ue_i s_nul | 0;
precedi ng_di stance = | + 1;

br eak;
} }
/1 Finally, see what we can cone up with for a result val ue
I
if (preceding_value_ is null && !follow ng _value_is null) {
/1
/1 No choice but to mirror the nearest followi ng non-NULL val ue
I/ Exanpl e:
I
I I nputs: NULL Result of ny_interpolate: 40.0
I NULL 40.0
I 40.0 40.0
I
result = follow ng_val ue;
result_is_null = 0;
I

} elseif (!preceding value_is_null && follow ng value_is_null) {
I

/ No choice but to mirror the nearest precedi ng non-NULL val ue

/
I/ Exanpl e:
Il

/1 Inputs: 10.0 Result of ny_interpolate: 10.0
Il NULL 10.0
Il

result = precedi ng_val ue;

result is null = 0;

/Il

} elseif (!preceding_value_is_null && !follow ng_value_is_null)

/1

/'l Here we get to do real interpolation based on the

/1l nearest preceding non-NULL val ue, the nearest follow ng
// non-NULL value, and the relative di stances to each.

/1l Exanpl es:

Il

I I nputs: 10.0 Result of my_interpolate: 10.0
/1 NULL 20.0
I NULL 30.0

88

Sybase 1Q

User-Defined Aggregate Functions

Il 40.0 40.0
11
I I nputs: 10.0 Result of ny_interpolate: 10.0
I NULL 25.0
/1 40.0 40.0
I/

result = (precedi ng_val ue
+ ((follow ng_value - precedi ng_val ue)
* (precedi ng_distance
! (precedi ng_di stance +
foll owi ng_di stance))));
result is null =

}

0;
}

/1l And | ast, pass the result val ue out
outval . type = DT_DOUBLE;
out val . pi ece_|l en = si zeof (doubl e);
if (result_is_null) {
outval .data = 0O;
} else {
outval .data = &result;

cnt xt->set _val ue(arg_handl e, &outval, 0);

}
static a_v3_extfn_aggregate my_interpol ate_descriptor =
{
&nmy_interpol ate_start,
&nmy_interpol ate_finish,
&nmy_interpol ate_reset,
&my_interpol ate_next_value, //(tineseries_expression)
&my_i nt er pol at e_eval uat e,
&nmy_i nt erpol at e_drop_val ue,
NULL, // cune_eval,
NULL, // next_subaggregate_extfn
NULL, // drop_subaggregate_extfn
NULL, // eval uate_superaggregate_extfn
NULL, // reservedl must_be nul |l
NULL, // reserved2_must_be_null
NULL, // reserved3_nust_be_nul |
NULL, // reserved4_must_be_null
NULL, // reserved5 must _be nul |
0, // indicators
0, // context size
0, // context alignnent
0.0, //external _bytes_per_group
(doubl e)sizeof(double), // external bytes per row
0, // reserved6_nust_be_null
0, // reserved7_nust_be_nul |
0, // reserved8 nust be null
0, // reserved9_nust_be_null
0, // reservedl0_nust_be_nul |
NULL // _for_server_internal _use
) -

User-Defined Functions 89

User-Defined Aggregate Functions

a_v3_extfn_aggregate *nmy_interpol ate()
{ return &my_interpol ate_descriptor; }

#i f defined __ cplusplus

I
#endi f

Context storage of aggregate user-defined functions

Context variables control whether the intermediate results of aggregate functions are to be
managed by the UDF itself (forcing the 1Q server to run the UDFs serially), or whether the
memory isto be managed by the 1Q server. The context area is used to transfer or communicate
data between multiple invocations of the UDF within the same query (particularly within
OLAP-style queries).

If the _calculation_context_size is set to 0, then the UDF is required to manage all interim
results in memory, (forcing the 1Q server to invoke the UDF sequentially over the data (instead
of being able to invoke many instances of the UDF in parallel during an OLAP query).

If the _calculation_context_size is set to a nonzero value, the IQ server manages a separate
context area for each invocation of the UDF, allowing multiple instances of the UDF to be
invoked in parallel. To make the most efficient use of memory, consider setting the
_calculation_context_alignment a value smaller than the default (depending on the size of the
context storage needed).

For details on context storage, refer to the description of _calculation_context_size and
_calculation_context_alignment in the section Aggregate UDF descriptor structure on page
65. These variables are near the end of the descriptor structure.

For a detailed discussion about the use of context storage, see Calculation contexton page
69.

Important: To store intermediate results in memory within an aggregate UDF, initialize the
memory with the _start_extfn function, and clean up and de-allocate any memory with the
_finish_extfn function.

See also
e Declaring a UDAF on page 57
o Defining an aggregate UDF on page 63

90 Sybase 1Q

UDF Callback Functions and Calling Patterns

UDF Callback Functions and Calling Patterns

Calling patterns are steps the functions perform as results are gathered.

UDF and UDAF callback functions

The set of callback functions supplied by the engine through the a_v3_extfn_scalar_context

structure and used within the user's UDF functions include:

» get_value — the function used within an evaluation method to retrieve the value of each
input argument. For narrow argument data types (smaller than 256 bytes), a call to
get_value is sufficient to retrieve the entire argument value. For wider argument data types,
if the piece_len field within the an_extfn_value structure passed to this callback comes
back with a value smaller than the value in the total_len field, use the get_piece callback to
retrieve the rest of the input value.

« get_piece — the function used to retrieve subsequent fragments of a long argument input
value.

e get_is_constant —a function that determines whether the specified input argument value
is a constant. This can be useful for optimizing a UDF, for example, where work can be
performed once during the first call to the _evaluate_extfn function, rather than for every
evaluation call.

* set_value — the function used within an evaluation function to tell the server the result
value of the UDF for this call. If the result data type is narrow, one call to set_value is
sufficient. However, if the result data value is wide, then multiple calls to set_value are
required to pass the entire value, and the append argument to the callback should be true for
each fragment except the last. To return a NULL result, the UDF should set the data field
within the result value's an_extfn_value structure to the null pointer.

* get_is_cancelled —a function to determine whether the statement has been cancelled. If a

UDF entry point is performing work for an extended period of time (many seconds), then it
should, if possible, call the get_is_cancelled callback every second or two to see if the user
has interrupted the current statement. The return value is 0 if the statement has not been
interrupted.
Sybase 1Q can handle extremely large data sets, and some queries can run for long periods
of time. Occasionally, a query takes an unusually long time to execute. The SQL client lets
the user cancel a query if it is taking too long to complete. Native functions track when a
user has canceled a query. UDFs must also be written in a manner that tracks whether a
query has been canceled by the user. In other words, UDFs should support the ability for
users to cancel long-running queries that invoke UDFs.

» set_error — A function that can be used to communicate an error back to the server, and
eventually to the user. Call this callback routine if a UDF entry point encounters an error
that should result in an error message being sent back to the user. When called, set_error
rolls back the current statement, and the user receives Er r or fr om ext er nal UDF:

User-Defined Functions 91

UDF Callback Functions and Calling Patterns

error_desc_string, and the SQLCODE is the negated form of the supplied
error_number. To avoid collisions with existing errors, UDFs should use error_number
values between 17000 and 99999. The maximum length of “error_desc_string” is 140
characters.

* log_message — The function used to send a message to the server's message log. The
string must be a printable text string no longer than 255 bytes.

« convert_value — The function allows data conversion between data types. The primary use
is the conversion between DT_DATE, DT_TIME, and DT_TIMESTAMP, and
DT_TIMESTAMP_STRUCT. An input and output an_extfn_value is passed to the
function.

See also
e Scalar UDF calling pattern on page 92
» Aggregate UDF calling patterns on page 92

Scalar UDF calling pattern

Expected calling pattern for supplied function pointers for a scalar UDF calling pattern.

_start_extfn(if supplied)
_evaluate_extfn (repeated 0 to numerous tines)
_finish_extfn(if supplied)

See also
e UDF and UDAF callback functions on page 91
» Aggregate UDF calling patterns on page 92

Aggregate UDF calling patterns

The calling patterns for the user-supplied aggregate UDF functions are more complex and
varied than the scalar calling patterns.

The examples that follow this table definition;
create tablet (a int, b int, c int)

insert intot values (1, 1, 1)
insert intot values (2, 1, 1)
insert intot values (3, 1, 1)
insert intot values (4, 2, 1)
insert intot values (5, 2, 1)
insert intot values (6, 2, 1)

The following abbreviation is used:

RR = a_v3 extfn_aggregate context. result_row_offset_from_start_of partition — This
value indicates the current row number inside the current partition for which a value is

92

Sybase 1Q

UDF Callback Functions and Calling Patterns

calculated. The value is set during windowed aggregates and is intended to be used during the
evaluation step of unbounded windows; it is available at all evaluate calls.

Sybase 1Q is a multi user application. Many users can simultaneously execute the same UDF.
Certain OLAP queries excute UDFs multiple times within the same query, sometimes in
parallel.

See also
» UDF and UDAF callback functions on page 91
e Scalar UDF calling pattern on page 92

Simple aggregate ungrouped
The simple aggregate ungrouped calling pattern totals the input values of all rows and
produces a result.

Query
select nmy_sun(a) fromt

Calling pattern

_start_extfn(cntxt)
_reset _extfn(cntxt)

_next_value_extfn(cntxt, args) -- input a=1
_next_val ue_extfn(cntxt, args) -- input a=2
_next _val ue_extfn(cntxt, args) -- input a=3
_next_val ue_extfn(cntxt, args) -- input a=4
_next_val ue_extfn(cntxt, args) -- input a=5
_next_val ue_extfn(cntxt, args) -- input a=6
_eval uate_extfn(cntxt, args) -- returns 21

_finish_extfn(cntxt)

Result
my_sunt(a)
21

Simple aggregate grouped
The simple aggregate grouped calling pattern totals the input values of all rows in the group
and produces a result. _reset_extfn identifies the beginning of a group.

Query
select b, my_sum(a) fromt group by b order by b

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_val ue_extfn(cntxt, args) -- input a=1
_next_val ue_extfn(cntxt, args) -- input a=2

User-Defined Functions 93

UDF Callback Functions and Calling Patterns

_next_val ue_extfn(cntxt, args) -- input a=3

_eval uate_extfn(cntxt, args) -- returns 6
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) -- input a=4

_next _val ue_extfn(cntxt, args) -- input a=5

_next_val ue_extfn(cntxt, args) -- input a=6

_evaluate_extfn(cntxt, args) -- returns 15

_finish_extfn(cntxt)

Result

b, nmy_sun(a)
1, 6

2, 15

OLAP-style aggregate calling pattern with unbounded window

Partitioning on “b” creates the same partitions as grouping on “b”. An unbounded window
causes the “a” value to be evaluated for each row of the partition. Because this is an unbounded
query, all values are fed to the UDF first, followed by an evaluation cycle. Context indicators
are set to 1 for _window_has_unbounded_preceding and
_window_has_unbounded_following

Query

select b, my_sum(a) over (partition by b rows between
unbounded precedi ng and

unbounded fol | owi ng)

fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1

_next _val ue_extfn(cntxt, args) i nput a=2

_next _val ue_extfn(cntxt, args) i nput a=3

_eval uate_extfn(cntxt, args) rr=1 returns 6
_eval uate_extfn(cntxt, args) rr=2 returns 6
_eval uate_extfn(cntxt, args) rr=3 returns 6
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4

_next _val ue_extfn(cntxt, args) i nput a=5

_next _val ue_extfn(cntxt, args) i nput a=6

_eval uate_extfn(cntxt, args) rr=1 returns 15
_eval uate_extfn(cntxt, args) rr=2 returns 15
_eval uate_extfn(cntxt, args) rr=3 returns 15

_finish_extfn(cntxt)

Result
b, ny_suma)
1, 6
1, 6
1, 6

94 Sybase 1Q

UDF Callback Functions and Calling Patterns

2, 15
2, 15
2, 15

OLAP-style unoptimized cumulative window aggregate

If _evaluate_cumulative_extfn is not supplied, this cumulative sum is evaluated through the
following calling pattern, which is less efficient than _evaluate_cumulative_extfn.

Query

sel ect b, ny_sum(a) over (partition by b

rows between unbounded precedi ng and current row)
fromt

order by b

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) -- input a=1
_eval uate_extfn(cntxt, args) -- returns 1
_next_val ue_extfn(cntxt, args) -- input a=2
_eval uate_extfn(cntxt, args) -- returns 3
_next_value_extfn(cntxt, args) -- input a=3
_eval uate_extfn(cntxt, args) -- returns 6
_reset _extfn(cntxt)

_next_val ue_extfn(cntxt, args) -- input a=4
_eval uate_extfn(cntxt, args) -- returns 4
_next_val ue_extfn(cntxt, args) -- input a=5
_eval uate_extfn(cntxt, args) -- returns 9
_next_val ue_extfn(cntxt, args) -- input a=6
_eval uate_extfn(cntxt, args) -- returns 15

_finish_extfn(cntxt)

Result

b, ny_suma)
1, 1

1, 3

1, 6

2, 4

2, 9

2, 15

OLAP-style optimized cumulative window aggregate
If _evaluate_cumulative_extfn is supplied, this cumulative sum is evaluated where the
next_value/evaluate sequence is combined into a single _evaluate_cumulative_extfn call for
each row within each partition.

Query

select b, ny_sun(a) over (partition by b rows between unbounded
precedi ng and current row)

User-Defined Functions 95

UDF Callback Functions and Calling Patterns

fromt

order by b

Calling pattern

_start_extnfn(cntxt)
_reset_extfn(cntxt)

_eval uate_cumnul ati ve_ext fn(cnt xt,
_eval uate_cumul ati ve_ext fn(cnt xt,
_eval uate_cumul ati ve_extfn(cntxt,

_reset_extfn(cntxt)

_eval uate_cumnul ati ve_ext fn(cnt xt,
_eval uate_cumul ati ve_ext fn(cnt xt,
_eval uate_cumul ati ve_extfn(cntxt,

_finish_extfn(cntxt)

Result

b, ny_suma)
1, 1

1, 3

1, 6

2, 4

2, 9

2, 15

ar gs)
ar gs)
ar gs)

ar gs)
ar gs)
ar gs)

nput
nput
nput

nput
nput
nput

OLAP-style unoptimized moving window aggregate

returns
returns
returns

returns
returns
returns

oo wrRE

P oD

If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
this significantly less efficient than using _drop_value_extfn:

Query

sel ect b,
current row)
fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next_val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)

i nput a=1
returns 1

i nput a=1
i nput a=2
returns 3

i nput a=2
i nput a=3
returns 5

i nput a=4
returns 4

my_sum(a) over (partition by b rows between 1 precedi ng and

96

Sybase 1Q

UDF Callback Functions and Calling Patterns

_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4
_next _val ue_extfn(cntxt, args) i nput a=5
_eval uate_extfn(cntxt, args) returns 9
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=5
_next _val ue_extfn(cntxt, args) i nput a=6
_eval uate_extfn(cntxt, args) returns 11

_finish_extfn(cntxt)

Result

b, ny_suma)
1, 1

1, 3

1, 5

2, 4

2, 9

2, 11

OLAP-style optimized moving window aggregate

If the _drop_value_extfn function was supplied, this moving window sum is evaluated using
this calling pattern, which is more efficient than using _drop_value_extfn

Query
select b, nmy_sum(a) over (partition by b rows between 1 precedi ng and

current row)
fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_eval uat e_aggregate_extfn(cntxt, args) -- returns 1
_eval uat e_aggregate_extfn(cntxt, args) -- returns 3
_drop_val ue_ext fn(cntxt) -- input a=1
_next _val ue_extfn(cntxt, args) -- input a=3

_eval uat e_aggregate_extfn(cntxt, args) -- returns 5
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) -- input a=4

_eval uat e_aggregate_extfn(cntxt, args) -- returns 4
_next _val ue_extfn(cntxt, args) -- input a=b

_eval uat e_aggregate_extfn(cntxt, args) -- returns 9
_drop_val ue_ext fn(cntxt) -- input a=4

_next _val ue_extfn(cntxt, args) -- input a=6

_eval uat e_aggregate_extfn(cntxt, args) -- returns 11

_finish_extfn(cntxt)

Result

b, nmy_suma)
, 1

1, 3

User-Defined Functions 97

UDF Callback Functions and Calling Patterns

OLAP-style unoptimized moving window following aggregate

NNN P
RO h~O

If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
the following calling pattern. This case is similar to the previous moving window example, but

the row being evaluated is not the last row given by next value function.

Query

select b, nmy_sum(a) over (partition by b rows between 1 precedi ng and

1 follow ng)
fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
_reset_extfn(cntxt)

next val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args)
_next _val ue_extfn(cntxt, args)
_eval uate_extfn(cntxt, args)
_finish_extfn(cntxt)

Result
b, my_sum(a)
1, 3
1, 6
1, 5
2 9

i nput a=1
i nput a=2
returns 3

i nput a=1
i nput a=2
i nput a=3
returns 6

i nput a=2
i nput a=3
returns 5

i nput a=4
i nput a=5
returns 9

i nput a=4
i nput a=5
i nput a=6
returns 15

i nput a=5
i nput a=6
returns 11

98

Sybase 1Q

UDF Callback Functions and Calling Patterns

2, 15
2, 11

OLAP-style optimized moving window following aggregate
If _drop_value_extfn function is supplied, this moving window sum is evaluated through the
following calling pattern. Again, this case is similar to the previous moving window example,
but the row being evaluated is not the last row given by next value function.

Query

select b, ny_sum(a) over (partition by b rows between 1 precedi ng and
1 follow ng)

fromt

Calling pattern

_start_extfn(cntxt)
_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=1

_next _val ue_extfn(cntxt, args) i nput a=2

_eval uate_extfn(cntxt, args) returns 3

_next _val ue_extfn(cntxt, args) i nput a=3

_eval uate_extfn(cntxt, args) returns 6

_dropval ue_ext fn(cntxt) i nput a=1
_eval uate_extfn(cntxt, args) returns 5

_reset _extfn(cntxt)

_next _val ue_extfn(cntxt, args) i nput a=4

_next _val ue_extfn(cntxt, args) i nput a=5

_eval uate_extfn(cntxt, args) returns 9

_next _val ue_extfn(cntxt, args) i nput a=6

_eval uate_extfn(cntxt, args) returns 15

_dropval ue_ext fn(cntxt) i nput a=4
_eval uate_extfn(cntxt, args) returns 11

_finish_extfn(cntxt)

Result
, ny_sun(a)
, 3
6
5
9

15
11

NNNRFRPRFRPRPRT

OLAP-style unoptimized moving window without current

Assume the UDF my_sum works like the built-in SUM. If _drop_value_extfn function is not
supplied, this moving window count is evaluated through the following calling pattern. This

User-Defined Functions 99

UDF Callback Functions and Calling Patterns

case is similar to the previous moving window examples, but the current row is not part of the

window frame.

Query

sel ect b, ny_sum(a) over (rows between 3 precedi ng and 1 preceding)

fromt

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)

_eval uate_extfn(cntxt, args) returns NULL
_reset _extfn(cntxt)
_next _val ue_extfn(cntxt, args) i nput a=1
_eval uate_extfn(cntxt, args) returns 1
_reset_extfn(cntxt)
_next _val ue_extfn(cntxt, args) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=2
_eval uate_extfn(cntxt, args) returns 3
_reset_extfn(cntxt)
_next _val ue_extfn(cntxt, args) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3
_eval uate_extfn(cntxt, args) returns 6
_reset _extfn(cntxt)
_next _val ue_extfn(cntxt, args) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=3
_next _val ue_extfn(cntxt, args) i nput a=4
_eval uate_extfn(cntxt, args) returns 9
_reset_extfn(cntxt)
_next _val ue_extfn(cntxt, args) i nput a=3
_next _val ue_extfn(cntxt, args) i nput a=4
_next _val ue_extfn(cntxt, args) i nput a=5
_evaluate_extfn(cntxt, args) returns 12
_finish_extfn(cntxt)
Result
b my_sun(a)

1 NULL

1 1

1 3

2 6

2 9

2 12

100 Sybase 1Q

UDF Callback Functions and Calling Patterns

OLAP-style optimized moving window without current
If _drop_value_extfn function is supplied, this moving window count is evaluated through the
following calling pattern. This case is similar to the previous moving window examples, but
the current row is not part of the window frame.

Query
select b, ny_sum(a) over (rows between 3 preceding and 1 precedi ng)
fromt

Calling pattern

_start_extfn(cntxt)
_reset _extfn(cntxt)

_eval uate_extfn(cntxt, args) returns NULL
_next _val ue_extfn(cntxt, args) i nput a=1
_eval uate_extfn(cntxt, args) returns 1
_next _val ue_extfn(cntxt, args) i nput a=2
_eval uate_extfn(cntxt, args) returns 3
_next _val ue_extfn(cntxt, args) i nput a=3
_eval uate_extfn(cntxt, args) returns 6
_dropval ue_ext fn(cnt xt) i nput a=1
_next _val ue_extfn(cntxt, args) i nput a=4
_eval uate_extfn(cntxt, args) returns 9
_dropval ue_ext fn(cnt xt) i nput a=2
_next _val ue_extfn(cntxt, args) i nput a=5
_eval uate_extfn(cntxt, args) returns 12

_finish_extfn(cntxt)

Result

External function prototypes
Define the API by a header file named ext f napi v3. h, in the subdirectory of your Sybase
1Q installation directory. This header file handles the platform-dependent features of external
function prototypes.

To notify the database server that the library is not written using the old API, provide a
function as follows:

ui nt 32 extfn_use_new_ api ()

User-Defined Functions 101

UDF Callback Functions and Calling Patterns

This function returns an unsigned 32-bit integer. If the return value is nonzero, the database
server assumes that you are using the new API.

If the DLL does not export this function, the database server assumes that the old APl is in use.
When using the new API, the returned value must be the API version number defined in
ext f napi . v3h.

Each library should implement and export this function as:

unsi gned int extfn_use_new_ api (voi d)

return EXTFEN_V3_API;
}

The presence of this function, and that it returns EXTFN_V3_API informs the 1Q engine that
the library contains UDFs written to the new API documented in this book.

Function prototypes
The name of the function must match that referenced in the CREATE PROCEDURE or
CREATE FUNCTION statement. Declare the function as:

void function-nane (an_extfn_api *api, void *argunent-handle)

The function must return void, and must take as arguments a structure used to pass the
arguments, and a handle to the arguments provided by the SQL procedure.

The an_extfn_api structure has this form:

typedef struct an_extfn_api {

short (SQL_CALLBACK *get val ue)(
void * arg_handl e,
a_sql _ui nt 32 arg_num
an_extfn_val ue *val ue

)

short (SQL_CALLBACK *get _pi ece)(
void * ar g_handl e,
a_sql _uint 32 arg_num
an_extfn_val ue *val ue,
a_sql _uint32 of f set

)

short (SQL_CALLBACK *set _val ue)(
void * arg_handl e,
a_sql _ui nt 32 arg_num
an_ext fn_val ue *val ue

short append
)

voi d (SQL_CALLBACK *set _cancel) (
void * arg_handl e,
void * cancel _handl e
)

} an_extfn_api;

The an_extfn_value structure has this form:

102 Sybase 1Q

UDF Callback Functions and Calling Patterns

typedef struct an_extfn_val ue {

void * dat a;
a_sql _uint 32 pi ece_l en;
uni on {
a_sql _uint32 total _|en;
a_sql _ui nt 32 remai n_| en;
} len;
a_sql _data_type type;
} an_extfn_val ue;
Notes
Calling get_value onan OUT parameter returns the data type of the argument, and returns data
as NULL.

The get_piece function for any given argument can be called only immediately after the
get_value function for the same argument,

To return NULL, set data to NULL in an_extfn_value.

The append field of set_value determines whether the supplied data replaces (false) or
appends to (true) the existing data. You must call set_value with append=FALSE before
calling it with append=TRUE for the same argument. The append field is ignored for fixed-
length data types.

The header file itself contains additional notes.

User-Defined Functions 103

UDF Callback Functions and Calling Patterns

104 Sybase 1Q

Index
A

aCC
HP-UX 20
Itanium 20
aggregate
calculation context 69
context structure 70
creating user-defined function 13
descriptor structure 65
aggregate functions
declaring 57
defining 63
my_bit_or example 61, 81
my_bit_xor example 61, 77
my_interpolate example 61, 83
my_sum example 60, 73
AlX
PowerPC 20
xIC 20
API
declaring version 101
external functions 101

B

BIGINT data type 24
BINARY (<n>) data type 24
BIT data type 27
BLOB data type 24, 27
building

shared libraries 19-22

C

CIC++
new operator 14
restrictions 14
calculation
aggregate context 69
call tracing
configuring 31
calling pattern
aggregate 92
aggregate with unbounded window 94

Index

optimized cumulative moving window
aggregate 97
optimized cumulative window aggregate 95
optimized moving window following
aggregate 99
optimized moving window without current
101
scalar syntax 92
simple aggregate grouped 93
simple aggregate ungrouped 93
unoptimized cumulative moving window
aggregate 96
unoptimized cumulative window aggregate 95
unoptimized moving window following
aggregate 98
unoptimized moving window without current
99
CHAR(<n>) data type 24
CLOB data type 24, 27
compile
switches 19-22
context
aggregate structure 70
scalar structure 41
CREATE AGGREGATE FUNCTION statement
syntax 57
CREATE FUNCTION statement
syntax 15, 33
creating
aggregate user-defined function 13
scalar user-defined function 12
user-defined functions 11, 12
cumulative window aggregate
OLAP-style optimized calling pattern 95
OLAP-style unoptimized calling pattern 95

D

data types

LONG BINARY 37, 46

supported 24

unsupported 27
DECIMAL (<precision>, <scale>) data type 27
declaration

aggregate 57

aggregate my_bit_or example 61

User-Defined Functions

105

Index

aggregate my_bit_xor example 61

aggregate my_interpolate example 61

aggregate my_sum example 60
scalar 33

scalar my_hyte_length example 37
scalar my_plus example 35

scalar my_plus_counter example 36

declaring
API version 101
definition
aggregate functions 63
aggregate my_bit_or example 81
aggregate my_bit_xor example 77

aggregate my_interpolate example 83

aggregate my_sum example 73
scalar functions 40

scalar my_hyte_length example 46
scalar my_md5 example 48

scalar my_plus example 43

scalar my_plus_counter example 44

scalar my_toupper example 54
description

aggregate structure 65

scalar structure 40
disable

user-defined functions 29
documentation

SQL Anywhere 4

Sybase IQ 3
DOUBLE data type 24
dropping

user-defined functions 16
dynamic library interface

configuring 16

E

enabling

user-defined functions 5, 29
error checking

configuring 31
evaluating statements 31
execute permissions

granting 17

revoking 17
external function

prototypes 101
external library

unloading 30
EXTERNAL NAME clause 33

external_udf_execution_mode option 31

=
FLOAT data type 24
functions
callback 91
external, prototypes 101
get_piece 103
get_value 103
GETUID 36
NUMBER 36
prototypes 102
user-defined 5
G
g++
Linux 21
x86 21
GETUID function 36
granting

execute permissions 17
GROUP BY clause 36

H

HAVING clause 36
HP-UX
aCC 6.17 20
Itanium 20

IGNORE NULL VALUES 35, 36
input argument
LONG BINARY 37, 46
INT data type 24
interface
dynamic library 16
1Q_UDF license 5
Itanium
aCC6.17 20
HP-UX 20

106

Sybase 1Q

L

library
dynamic interface 16
external 30
interface style 16
license
IQ_UDF5
link
switches 19-22
Linux
g++4.1.121
PowerPC 21
X86 21
xIC 8.0 21
LOB data type 24, 27
LONG BINARY
input argument 37, 46
LONG BINARY data type 27
LONG BINARY (<n>) data type 24
LONG VARCHAR data type 27
LONG VARCHAR(<n>) data type 24

M

moving window aggregate
OLAP-style optimized calling pattern 97
OLAP-style unoptimized calling pattern 96
moving window following aggregate
OLAP-style optimized calling pattern 99
OLAP-style unoptimized calling pattern 98
moving window without current
OLAP-style optimized calling pattern 101
OLAP-style unoptimized calling pattern 99
my_bit_or example
declaration 61
definition 81
my_bit_xor example
declaration 61
definition 77
my_byte_length example 37
declaration 37
definition 46
my_interpolate example
declaration 61
definition 83
my_md5 example
definition 48
my_plus example
declaration 35

definition 43
my_plus_counter example
declaration 36
definition 44
my_sum example
declaration 60
definition 73
my_toupper example
definition 54

N

new operator
C/IC++14
NULL 35, 36, 44, 103
NUMBER function 36
NUMERIC(<precision>, <scale>) data type 27

@)

OLAP-style calling pattern
aggregate with unbounded window 94
optimized cumulative moving window
aggregate 97
optimized cumulative window aggregate 95
optimized moving window following
aggregate 99
optimized moving window without current
101
unoptimized cumulative moving window
aggregate 96
unoptimized cumulative window aggregate 95
unoptimized moving window following
aggregate 98
unoptimized moving window without current
99
ON clause 36
optimized calling pattern
OLAP-style cumulative window aggregate 95
OLAP-style moving window aggregate 97
OLAP-style moving window following
aggregate 99
OLAP-style moving window without current
101
ORDER BY clause 13, 57
OVER clause 13, 57

Index

User-Defined Functions

107

Index

P
pattern
calling, aggregate 92
calling, scalar 92
permissions
granting 17
revoking 17

user-defined functions 17
PowerPC

AlIX 20

Linux 21

xIC 21

xIC 8.0 20
prototypes

external function 101

R

REAL data type 24
RESPECT NULL VALUES 35, 36
restrictions
CIC++ 14
revoking
execute permissions 17

S

scalar functions
callback functions 91
context structure 41
creating user-defined function 12
declaring 33
defining 40
descriptor structure 40
my_byte_length example 37, 46
my_md5 example 48
my_plus example 35, 43
my_plus_counter example 36, 44
my_toupper example 54
security
user-defined functions 29
server
disabling UDFs 29
enabling UDFs 29
SET clause 36
shared libraries
building 19-22
simple aggregate grouped
calling pattern 93

simple aggregate ungrouped
calling pattern 93
Solaris
SPARC 22
Sun Studio 12 22
X86 22
SPARC
Solaris 22
Sun Studio 12 22
structure
aggregate context 70
aggregate descriptor 65
scalar context 41
scalar descriptor 40
Studio 12
See Sun Studio 12
Sun Studio 12
Solaris 22
SPARC 22
x86 22
switches
compile 19-22
link 19-22
Sybase 1Q
description 1
syntax
aggregate context 70
aggregate declaration 57
aggregate definition 63
aggregate description 65
API version 101
calculation context 69
calling user-defined functions 15
CREATE FUNCTION statement 15
disabling user-defined functions 29
dropping user-defined functions 16
dynamic library interface 16
enabling user-defined functions 29
function prototypes 102
scalar context 41
scalar declaration 33
scalar definition 40
scalar description 40

T

TIME data type 24
TINYINT data type 24

108

Sybase 1Q

U

UDF
See user-defined functions
unbounded window
OLAP-style aggregate calling pattern 94
unloading
external library 30
unoptimized calling pattern
OLAP-style cumulative window aggregate 95
OLAP-style moving window aggregate 96
OLAP-style moving window following
aggregate 98
OLAP-style moving window without current
99
UNSIGNED data type 24
UNSIGNED INT data type 24
UPDATE statement 36
user-define functions 24
user-defined functions 29, 37
aggregate, creating 13
callback functions 91
calling 15
calling pattern, aggregate 92
calling pattern, scalar 92
creating 11, 12
disabling 29
dropping 16
enabling 5, 29
execution permissions 17
my_bit_or example 61, 81
my_bit_xor example 61, 77
my_byte_length example 46
my_interpolate example 61, 83
my_md5 example 48
my_plus example 35, 43
my_plus_counter example 36, 44
my_sum example 60, 73
my_toupper example 54

scalar, creating 12
security 29
using 5

\Y,

VARBINARY (<n>) data type 24
VARCHAR(<n>) data type 24
version

declaring for API 101
Visual Studio 2009

Windows 22

%86 22

w

WHERE clause 36
WINDOW FRAME clause 13
Windows
Visual Studio 2009 22
X86 22

x86
g++21
Linux 21
Solaris 22
Sun Studio 12 22
Visual Studio 2009 22
Windows 22

xIC
Linux 21
PowerPC 21

xIC 8.0
AIX 20
PowerPC 20

Index

User-Defined Functions

109

Index

110 Sybase 1Q

	User-Defined Functions
	Contents
	Audience
	Related Documents
	Understanding User-Defined Functions
	User-Defined Functions Compliance with Sybase IQ Databases
	Practices to Avoid
	Types of User-Defined Functions
	Naming Conventions for User-Defined Functions
	Design Basics of User-Defined Functions

	Creating and Executing User-Defined Functions
	Creating a User-Defined Function
	Creating a User-Defined Function Using SQL Anywhere Dialects
	Declaring a Scalar User-Defined Function in Sybase Central
	Declaring a User-Defined Aggregate Function in Sybase Central

	User-Defined Function Restrictions
	Calling User-Defined Functions
	Setting the Dynamic Library Interface
	Dropping User-Defined Functions
	Granting and Revoking Permissions
	Maintenance of User-Defined Functions
	Compiling and Linking Source Code to Build Dynamically Linkable Libraries
	AIX Switches
	HP-UX Switches
	Linux Switches
	Solaris Switches
	Windows Switches

	Using Microsoft Visual Studio Debugger for User-Defined Functions
	SQL Data Types

	Testing User-Defined Functions
	Enabling and disabling user-defined functions
	Initially executing a user-defined function
	Managing External Libraries

	Controlling error checking and call tracing
	Enabling full tracing in a debug environment
	Viewing Sybase IQ log files

	Scalar User-Defined Functions
	Declaring a Scalar UDF
	UDF Example: my_plus Declaration
	UDF Example: my_plus_counter Declaration
	UDF Example: my_byte_length Declaration
	UDF Example: my_md5 Declaration
	UDF Example: my_toupper Declaration

	Defining a Scalar UDF
	Scalar UDF Descriptor Structure
	Scalar UDF Context Structure
	UDF Example: my_plus Definition
	UDF Example: my_plus _counter Definition
	UDF Example: my_byte_length Definition
	UDF Example: my_md5 Definition
	UDF Example: my_toupper Definition

	User-Defined Aggregate Functions
	Declaring a UDAF
	UDAF example: my_sum declaration
	UDAF example: my_bit_xor declaration
	UDAF example: my_bit_or declaration
	UDAF example: my_interpolate declaration

	Defining an aggregate UDF
	Aggregate UDF descriptor structure
	Calculation context
	UDAF context structure
	UDAF example: my_sum definition
	UDAF example: my_bit_xor definition
	UDAF example: my_bit_or definition
	UDAF example: my_interpolate definition

	Context storage of aggregate user-defined functions

	UDF Callback Functions and Calling Patterns
	UDF and UDAF callback functions
	Scalar UDF calling pattern
	Aggregate UDF calling patterns
	Simple aggregate ungrouped
	Simple aggregate grouped
	OLAP-style aggregate calling pattern with unbounded window
	OLAP-style unoptimized cumulative window aggregate
	OLAP-style optimized cumulative window aggregate
	OLAP-style unoptimized moving window aggregate
	OLAP-style optimized moving window aggregate
	OLAP-style unoptimized moving window following aggregate
	OLAP-style optimized moving window following aggregate
	OLAP-style unoptimized moving window without current
	OLAP-style optimized moving window without current
	External function prototypes

	Index

