
User-Defined Functions Guide

Sybase IQ 15.1

DOCUMENT ID: DC01034-01-1510-02
LAST REVISED: May 2009
Copyright © 2009 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207

Contents

About these topics ..1
Subject ..1
Audience ..1
Related documents ..1
Other sources of information3
Sybase certifications on the Web4

Finding the latest information on product
certifications4

Finding the latest information on component
certifications4

Creating a personalized view of the Sybase Web
site (including support pages)4

Finding the latest information on EBFs and software
maintenance ...4

Syntax conventions ..5
Typographic conventions6
Accessibility features6
The demo database ..7
If you need help ..7

Installing and configuring user-defined functions9
Sybase IQ overview ..9
Setting the dynamic library interface10
Enabling and disabling user-defined functions10

Creating and executing user-defined functions11
Creating user-defined functions11

Creating a user-defined function using SQL
Anywhere dialects11

Declaring a scalar user-defined function in
Sybase Central11

Declaring a user-defined aggregate function in
Sybase Central12

User-Defined Functions Guide iii

User-defined function restrictions13
Calling user-defined functions13
Dropping user-defined functions14
Granting and revoking permissions14
Compile and link switches for building dynamically

linkable libraries15
AIX switches ..16
HP-UX switches16
Linux switches16
Solaris switches17
Windows switches18

SQL data types ..18
Scalar User-Defined Functions21

Declaring a Scalar UDF21
UDF example: my_plus declaration22
UDF example: my_plus_counter declaration

...24
Defining a scalar UDF25

Scalar UDF descriptor structure25
Scalar UDF context structure26
UDF example: my_plus definition28
UDF example: my_plus _counter definition

...29
User-defined aggregate functions33

Declaring a UDAF ...33
UDAF example: my_sum declaration36
UDAF example: my_bit_xor declaration37
UDAF example: my_bit_or declaration37
UDAF example: my_interpolate declaration

...37
Defining an aggregate UDF39

Aggregate UDF descriptor structure42
Calculation context45
UDAF context structure46
UDAF example: my_sum definition50

Contents

 iv Sybase IQ

UDAF example: my_bit_xor definition54
UDAF example: my_bit_or definition57
UDAF example: my_interpolate definition60

UDF callback functions and calling patterns67
UDF and UDAF callback functions67
Scalar UDF calling pattern68
Aggregate UDF calling patterns68

Simple aggregate ungrouped68
Simple aggregate grouped69
OLAP-style aggregate calling pattern with

unbounded window69
OLAP-style unoptimized cumulative window

aggregate ..70
OLAP-style optimized cumulative window

aggregate ..71
OLAP-style unoptimized moving window

aggregate ..72
OLAP-style optimized moving window

aggregate ..73
OLAP-style unoptimized moving window

following aggregate74
OLAP-style optimized moving window following

aggregate ..75
OLAP-style unoptimized moving window

without current75
OLAP-style optimized moving window without

current ...77
UDF specific functions and statements79

External function prototypes79
Finance specific functions81
Managing external libraries81
Controlling error checking and call tracing82

Index ..83

Contents

User-Defined Functions Guide v

Contents

 vi Sybase IQ

About these topics

Learn about the related documents, documentation conventions, and certifications available
for Sybase IQ.

Subject
Sybase® IQ is a high-performance decision-support database server designed specifically for
data warehouses and data marts. This book, User-Defined Functions Guide, presents concepts
about and procedures for programming scalar and aggregate user-defined functions with
Sybase IQ.

Audience
This guide is for application developers who access data in Sybase IQ databases. Familiarity
with relational database systems and introductory user-level experience with Sybase IQ is
assumed. Use this guide with other manuals in the documentation set.

Related documents
Additional information is available in Sybase IQ and SQL Anywhere documents.

Sybase IQ documents

The Sybase IQ 15.1 documentation set includes:

• Release Bulletin provides information about last-minute changes to the product and
documentation.

• Installation and Configuration Guide provides platform-specific instructions on installing,
migrating to a new version, and configuring Sybase IQ for a particular platform.

• Advanced Security in Sybase IQ covers the use of user encrypted columns within the
Sybase IQ data repository. You need a separate license to install this product option.

• Error Messages lists Sybase IQ error messages referenced by Sybase error code,
SQLCode, and SQLState, and SQL preprocessor errors and warnings.

• IMSL Numerical Library User’s Guide: Volume 2 of 2 C Stat Librarycontains a concise
description of the IMSL C Stat Library time series C functions. This book is only available
to RAP – The Trading Edition™ Enterprise users.

• Introduction to Sybase IQ includes hands-on exercises for those unfamiliar with Sybase IQ
or with the Sybase Central™ database management tool.

About these topics

User-Defined Functions Guide 1

• Large Objects Management in Sybase IQ explains storage and retrieval of Binary Large
Objects (BLOBs) and Character Large Objects (CLOBs) within the Sybase IQ data
repository. You need a separate license to install this product option.

• New Features in Sybase IQ 15.0 documents new features and behavior changes for version
15.0.

• New Features Summary Sybase IQ 15.1 summarizes new features and behavior changes
for the current version.

• Performance and Tuning Guide describes query optimization, design, and tuning issues
for very large databases.

• Quick Start lists steps to build and query the demo database provided with Sybase IQ for
validating the Sybase IQ software installation. Includes information on converting the
demo database to multiplex.

• Reference Manual – Includes two reference guides to Sybase IQ:

• Reference: Building Blocks, Tables, and Procedures describes SQL, stored
procedures, data types, and system tables that Sybase IQ supports.

• Reference: Statements and Options describes the SQL statements and options that
Sybase IQ supports.

• System Administration Guide – Includes two volumes:

• System Administration Guide: Volume 1 describes startup, connections, database
creation, population and indexing, versioning, collations, system backup and recovery,
troubleshooting, and database repair.

• System Administration Guide: Volume 2 describes writing and running procedures
and batches, programming with OLAP, accessing remote data, setting up IQ as an
Open Server, scheduling and event handling, programming with XML, and debugging.

• Using Sybase IQ Multiplex tells how to use multiplex capability, designed to manage large
query loads across multiple nodes.

• Utility Guide provides Sybase IQ utility program reference material, such as available
syntax, parameters, and options.

To access the Infocenter Web site, go to SyBooks Online Help.

SQL Anywhere documents

Note: Because Sybase IQ shares many components with SQL Anywhere®, a component of
SQL Anywhere Studio®, Sybase IQ supports many of the same features as SQL Anywhere.
The IQ documentation set refers you to SQL Anywhere Studio documentation where
appropriate.

Documentation for SQL Anywhere includes:

• SQL Anywhere Server – Database Administration describes how to run, manage, and
configure SQL Anywhere databases. It describes database connections, the database

About these topics

 2 Sybase IQ

http://infocenter.sybase.com/help/index.jsp

server, database files, backup procedures, security, high availability, and replication with
Replication Server, as well as administration utilities and options.

• SQL Anywhere Server – Programming describes how to build and deploy database
applications using the C, C++, Java, PHP, Perl, Python, and .NET programming languages
such as Visual Basic and Visual C#. This book also describes a variety of programming
interfaces such as ADO.NET and ODBC.

• SQL Anywhere Server – SQL Reference provides reference information for system
procedures, and the catalog (system tables and views). It also provides an explanation of
the SQL Anywhere implementation of the SQL language (search conditions, syntax, data
types, and functions).

You can also refer to the SQL Anywhere documentation in the SQL Anywhere Studio 11.0
collection at Product Manuals and in DocCommentXchange.

Documentation for Sybase Software Asset Management (SySAM) includes:

• Sybase Software Asset Management (SySAM) 2 introduces asset management concepts
and provides instructions for establishing and administering SySAM 2 licenses.

• SySAM 2 Quick Start Guide tells you how to get your SySAM-enabled Sybase product up
and running.

• FLEXnet Licensing End User Guide explains FLEXnet Licensing for administrators and
end users and describes how to use the tools that are part of the standard FLEXnet
Licensing distribution kit from Sybase.

Other sources of information
Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase Product Manuals Web
site to learn more about your product.

• The Getting Started CD contains release bulletins and installation guides in PDF format,
and may also contain other documents or updated information not included on the
SyBooks CD. It is included with your software. To read or print documents on the Getting
Started CD, you need Adobe Acrobat Reader, which you can download at no charge from
the Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your software. The
Eclipse-based SyBooks browser allows you to access the manuals in an easy-to-use,
HTML-based format.
Some documentation may be provided in PDF format, which you can access through the
PDF directory on the SyBooks CD. To read or print the PDF files, you need Adobe Acrobat
Reader.
Refer to the SyBooks Installation Guide on the Getting Started CD, or the README.txt
file on the SyBooks CD for instructions on installing and starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks CD that you can
access using a standard Web browser. In addition to product manuals, you will find links to

About these topics

User-Defined Functions Guide 3

http://www.sybase.com/support/manuals/
http://dcx.sybase.com/dcx_home.php

EBFs/Maintenance, Technical Documents, Case Management, Solved Cases,
newsgroups, and the Sybase Developer Network.
To access the Sybase Product Manuals Web site, go to Product Manuals.

Sybase certifications on the Web
Find updates to Sybase IQ product and documentation on the Sybase Web site.

Finding the latest information on product certifications
Download the latest product updates from the Sybase Web site.

1. Point your Web browser to Technical Documents.

2. Either select the product family and product under Search by Base Product; or select the
platform and product under Search by Platform.

3. Select Search to display the availability and certification report for the selection.

Finding the latest information on component certifications
Download the latest component updates from the Sybase Web site.

1. Point your Web browser to Availability and Certification Reports.

2. Either select the product family and product under Search by Base Product; or select the
platform and product under Search by Platform.

3. Select Search to display the availability and certification report for the selection.

Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile to create a personalized view of Sybase Web pages.

1. Point your Web browser to Technical Documents.

2. Click MySybase and create a MySybase profile.

Finding the latest information on EBFs and software
maintenance

Use your MySybase account to find the latest information on EBFs and software maintenance.

1. Point your Web browser to the Sybase Support Page.

2. Select EBFs/Maintenance. If prompted, enter your MySybase user name and password.

3. Select a product.

About these topics

 4 Sybase IQ

http://sybooks.sybase.com
http://www.sybase.com/support/techdocs/
http://certification.sybase.com/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

4. Specify a time frame and click Go. A list of EBF/Maintenance releases is displayed.

Padlock icons indicate that you do not have download authorization for certain EBF/
Maintenance releases because you are not registered as a Technical Support Contact. If
you have not registered, but have valid information provided by your Sybase
representative or through your support contract, click Edit Roles to add the “Technical
Support Contact” role to your MySybase profile.

5. Click the Info icon to display the EBF/Maintenance report, or click the product description
to download the software.

Syntax conventions
Learn about syntax conventions used in this document.

• Keywords SQL keywords are shown in UPPERCASE. However, SQL keywords are case-
insensitive, so you can enter keywords in any case; SELECT, Select, and select are
equivalent.

• Placeholders Items that must be replaced with appropriate identifiers or expressions are
shown in italics.

• Continuation Lines beginning with an ellipsis (...) are a continuation of the statements
from the previous line.

• Repeating items Lists of repeating items are shown with an element of the list followed by
an ellipsis (...). One or more list elements are allowed. If multiple elements are specified,
they must be separated by commas.

• Optional portions Optional portions of a statement are enclosed by square brackets. For
example:
RELEASE SAVEPOINT [savepoint-name]

The square brackets indicate that the savepoint-name is optional. Do not type the brackets.
• Options When none or only one of a list of items must be chosen, the items are separated by

vertical bars and the list enclosed in square brackets. For example:
[ASC | DESC]

The square brackets indicate that you can choose ASC, DESC, or neither. Do not type the
brackets.

• Alternatives When precisely one of the options must be chosen, the alternatives are
enclosed in curly braces. For example:
QUOTES { ON | OFF }

The curly braces indicate that you must include either ON or OFF. Do not type the
brackets.

About these topics

User-Defined Functions Guide 5

Typographic conventions
Learn about the typographic conventions used in this documentation.

Table 1. Typographic conventions

Item Description

Code SQL and program code appears in a monospaced (fixed-width) font.

User entry Text entered by the user is shown in a monospaced (fixed-width) font.

emphasis Emphasized words are shown in italic.

file names File names are shown in italic.

database objects Names of database objects, such as tables and procedures, are shown in
bold, sans serif type in print, and in italic online.

Accessibility features
This document is available in an HTML version that is specialized for accessibility. You can
navigate the HTML with an adaptive technology such as a screen reader, or view it with a
screen enlarger.

Sybase IQ 15.1 and the HTML documentation have been tested for compliance with U.S.
government Section 508 Accessibility requirements. Documents that comply with Section
508 generally also meet non-U.S. accessibility guidelines, such as the World Wide Web
Consortium (W3C) guidelines for Web sites.For information about accessibility support in the
Sybase IQ plug-in for Sybase Central, see the plug-in online help, which you can navigate
using a screen reader.

Note: You might need to configure your accessibility tool for optimal use. Some screen
readers pronounce text based on its case; for example, they pronounce ALL UPPERCASE
TEXT as initials, and MixedCase Text as words. You might find it helpful to configure your
tool to announce syntax conventions. Consult the documentation for your tool and see
Introduction to Sybase IQ for information on using screen readers.

For information about how Sybase supports accessibility, see Sybase Accessibility. The
Sybase Accessibility site includes links to information on Section 508 and W3C standards.

For a Section 508 compliance statement for Sybase IQ, go to Sybase Accessibility.

About these topics

 6 Sybase IQ

http://www.sybase.com/accessibility
http://www.sybase.com/products/accessibility

The demo database
Sybase IQ includes scripts to create a demo database.

Sybase IQ includes scripts to create a demo database (iqdemo.db). Many of the queries and
code samples in this document use the demo database as a data source.

The demo database contains internal information about a small company (employees,
departments, and financial data), as well as product (products), and sales information (sales
orders, customers, and contacts).

See the Sybase IQ installation guide for your platform or talk to your system administrator for
more information about the demo database.

If you need help
Each Sybase installation that has purchased a support contract has one or more designated
people who are authorized to contact Sybase Technical Support. If you cannot resolve a
problem using the manuals or online help, please have the designated person contact Sybase
Technical Support or the Sybase subsidiary in your area.

About these topics

User-Defined Functions Guide 7

About these topics

 8 Sybase IQ

Installing and configuring user-defined
functions

Learn how to install and create user-defined functions.

Note: User-defined functions are a licensable option, and require the IQ_UDF license.
Installing the license enables the user-defined functions.

Sybase IQ overview
Learn how to create and configure external C/C++ user-defined functions (UDFs).

Sybase IQ supports high-performance in-process external C/C++ user-defined functions. This
style of UDF supports functions written in C or C++ code that adhere to the interfaces
described in this guide. These UDF definitions can be compiled and linked into a dynamically
linkable library. The dynamically linkable library can be loaded into a running IQ server, and
the defined UDFs can be used directly within queries or other SQL statements.

The use of these external C/C++ UDFs interfaces requires the IQ_UDF license.

These external C/C++ UDFs differ from the Interactive SQL UDFs available in earlier
versions of Sybase IQ. Interactive SQL UDFs are unchanged and do not require a special
license. For instructions on creating UDFs using Interactive SQL see Chapter 1, “Using
Procedures and Batches,” in System Administration Guide: Volume 2.

To build and use a UDF from a dynamically linkable library:

1. Declare the UDF to the server by using the CREATE FUNCTION or CREATE
AGGREGATE FUNCTION statements. These statements can either be directly written
and executed as a command, or the appropriate CREATE statement can be built using the
Sybase Central New Function wizard on page 11.
The external C/C++ form of the CREATE FUNCTION statement requires DBA or
RESOURCE authority, so standard users do not have the authority to declare any UDFs of
this type.

2. Define the UDF as a set of C or C++ functions. See Defining a scalar UDF on page 25 or
Defining an aggregate UDF on page 39.

3. Write the UDF library identification function. on page 10
4. Compile the UDF functions and the library identification functions. on page 15
5. Link the compiled file into a dynamically linkable library.

Once these steps have been completed, any reference to that UDF in a SQL statement first, if
necessary, links the dynamically linkable library. The calling patterns on page 67 are then
called.

Installing and configuring user-defined functions

User-Defined Functions Guide 9

Because these high-performance external C/C++ user-defined functions involve the loading
of non-server library code into the process space of the server, there are potential risks to data
integrity, data security, and server robustness from poorly or maliciously written functions. To
manage these risks each IQ server can explicitly enable or disable this functionality on page
10.

Setting the dynamic library interface
Specify the interface style to be used in the dynamically linkable library.

Each dynamically loaded library must contain exactly one copy of this definition:

extern "C" a_sql_uint32 extfn_use_new_api(void)
{
return EXTFN_V3_API;
}

This definition informs the server of which interface style is being used, and therefore how to
access the UDFs defined in this dynamically linkable library. For high-performance IQ UDFs,
only version 3 interface style (EXTFN_V3_API) is supported.

Enabling and disabling user-defined functions
Sybase IQ 15.1 includes a security feature, external_procedure_v3, which enables or disables
the ability of a server to make use of the high performance in-process UDFs.

Administrators can enable version 3 UDFs for any server by specifying
-sf -external_procedure_v3

in the server startup command or in the configuration file.

Administrators can disable version 3 UDFs for any server by specifying
-sf external_procedure_v3

in the server startup command or in the configuration file.

Additional information on the -sf flag is available in the SQL Anywhere Server - Database
Administration guide. The values listed in the SQL Anywhere document are not applicable to
Sybase IQ 15.1, and should not be used.

Installing and configuring user-defined functions

 10 Sybase IQ

Creating and executing user-defined functions

User-defined functions (UDFs) are a class of procedures that return a single value to the
calling environment. This section introduces creating, using, and dropping user-defined
functions.

There are four steps required to create and use a UDF:

1. Declare the user-defined function using the CREATE AGGREGATE FUNCTION
statement or the CREATE FUNCTION statement.

2. Implement the function entry point(s) in C/C++.
3. Compile the implementation and link it as a shared library on page 15.
4. Use the function within a SQL statement anywhere that you would use a built-in SQL

function.

Creating user-defined functions
Use the CREATE FUNCTION or CREATE AGGREGATE FUNCTION statements to
create user-defined functions. You must have Resource authority to execute this statement.

Creating a user-defined function using SQL Anywhere dialects
Watcom-SQL and Transact-SQL are SQL dialects supported by SQL Anywhere, and can be
used when creating user-defined functions.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.

2. From Sybase Central's View menu, select Folders.

3. In the left pane, right-click Procedures & Functions and select New > Function.

4. In the Welcome dialog, type a name for the function and select the user who will own the
function.

5. Select the SQL dialect or language for the function. Click Next.

6. Select the type of value to be returned in the function, and specify the size, units, and scale
for the value.

7. Type a name for the return value and click Next.

8. Add a comment describing the purpose of the new function. Click Finish.

9. In the right pane, click the SQL tab to complete the procedure code.

Declaring a scalar user-defined function in Sybase Central
Sybase IQ supports simple scalar UDFs that can be used anywhere the SQRT function can be
used. These scalar UDFs can be deterministic, which means that for a given set of argument
values the function always returns the same result value. Sybase IQ also supports

Creating and executing user-defined functions

User-Defined Functions Guide 11

nondeterministic scalar functions, which means that the same arguments can return different
results.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.

2. In the left pane, right-click Procedures & Functions and select New > Function.

3. In the Welcome dialog, type a name for the function and select which user will be the
owner of the function.

4. To create a user-defined function, select External C/C++. Click Next.

5. In the External Function Attributes dialog, select Scalar.

6. Type the name of the dynamically linkable library file, omitting the .so or .dll extension.

7. Type a name for the descriptor function. Click Next.

8. Select the type of value to be returned in the function, and specify the size, units, and scale
for the value. Click Next.

9. Select whether or not the function is deterministic.

10. Specify if the function respects or ignores NULL values.

11. Select whether the privileges used for running the function are from the defining user
(definer) or the calling user (invoker).

12. Add a comment describing the purpose of the new function. Click Finish.

13. In the right pane, click the SQL tab to complete the procedure code.

Declaring a user-defined aggregate function in Sybase Central
Sybase IQ supports user-defined aggregate functions (UDAFs). The SUM function is an
example of a built-in aggregate function. A simple aggregate function takes a set of argument
values and produces a single result value from that set of inputs. User-defined aggregate
functions can be written that can be used anywhere the SUM aggregate can be used.

1. In Sybase Central, connect to the database as a user with DBA or Resource authority.

2. In the left pane, right-click Procedures & Functions and select New > Function.

3. In the Welcome dialog, type a name for the function and select which user will be the
owner of the function.

4. To create a user-defined function, select External C/C++. Click Next.

5. Select Aggregate.

6. Type the name of the dynamically linkable library file, omitting the .so or .dll extension.

7. Type a name for the descriptor function. Click Next.

8. Select the type of value to be returned in the function, and specify the size, untis, and scale
for the value. Click Next.

9. Select whether the privileges used for running the function are from the defining user
(definer) or the calling user (invoker).

10. Specify if the function is allowed to be used in an OVER clause, is required to be used in an
OVER clause, or is not allowed to be used in an OVER clause. Click Next.

Creating and executing user-defined functions

 12 Sybase IQ

If the function is not allowed to be used in an OVER clause, proceed with step 14.

11. Specify if the function requires the user of an ORDER BY clause when it is used to define
a window. Click Next.

12. Specify if the function is allowed to be used in a WINDOW FRAME clause, is required to
be used in an WINDOW FRAME clause, or is not allowed to be used in a WINDOW
FRAME clause. Click Next.

If the function is not allowed to be used in a WINDOW FRAME clause, proceed with step
14.

13. Identify the constraints on the WINDOW FRAME clause. Click Next.

14. Specify if duplicate input values need to be filtered out by the database server prior to
calling the function.

15. Identify if the return value of the function is NULL or a fixed value when it is called with
no data. Click Next.

16. Add a comment describing the purpose of the new function. Click Finish.

17. In the right pane, click the SQL tab to complete the procedure code.

The new function appears in Procedures & Functions.

User-defined function restrictions
External C/C++ user-defined functions must have the following restrictions.

• All UDFs should be written in a manner that allows the functions to be called
simultaneously by different users while receiving different context functions.

• If a UDF accesses a global or shared data structure, the UDF definition is responsible for
implementing the appropriate locking around its accesses to that data including the
releasing of that locking under all normal code paths and all error handling situations.

• UDFs implemented in C++ may provide overloaded "new" operators for their classes, but
they should never overload the global "new" operator. On some platforms the effect of
doing so is not limited to the code defined within that specific library.

• All aggregate UDFs and all deterministic scalar UDFs should be written such that the
receipt of the same input values will always produce the same output values. Any scalar
function for which this is not true must be declared as NONDETERMINISTIC to avoid the
potential for incorrect answers.

Calling user-defined functions
You can use a user-defined function, subject to permissions, in any place you use a built-in
nonaggregate function.

This Interactive SQL statement returns a full name from two columns containing a first and
last name:

Creating and executing user-defined functions

User-Defined Functions Guide 13

SELECT fullname (GivenName, LastName)
FROM Employees;

fullname (Employees.GivenName,Employees.SurName)

Fran Whitney

Matthew Cobb

Philip Chin

...

The following statement returns a full name from a supplied first and last name:

SELECT fullname ('Jane', 'Smith');

fullname ('Jane','Smith')

Jane Smith

Any user who has been granted Execute permissions for the function can use the fullname
function.

Dropping user-defined functions
Once you create a user-defined function, it remains in the database until it is explicitly
removed. Only the owner of the function or a user with DBA authority can drop a function
from the database.

For example, to remove the function fullname from the database, enter:

DROP FUNCTION fullname

Granting and revoking permissions
A user-defined function is owned by the user who created it, and that user can execute it
without permission. The owner of a user-defined function can grant permissions to other users
with the GRANT EXECUTE command.

For example, the creator of the function fullname can allow another_user to use fullname by
issuing:

GRANT EXECUTE ON fullname TO another_user

Or to revoke permissions by issuing:

REVOKE EXECUTE ON fullname FROM another_user

Creating and executing user-defined functions

 14 Sybase IQ

For more information on managing user permissions on functions, see “Granting permissions
on procedures” in Chapter 8, “Managing User IDs and Permissions,” System Administration
Guide: Volume 1.

Compile and link switches for building dynamically linkable
libraries

Use the following compile and link switches when building dynamically linkable libraries for
any user-defined function.

The following steps are required to build a UDF dynamically linkable library:

1. A UDF dynamically linkable library must include an implementation of the function
"extfn_use_new_api()". The source code for this function is listed under Setting the
dynamic library interface on page 10. This function informs the server of the API style that
all functions in the library adhere to. The sample source file "my_main.cxx" contains this
function and can be used without modification.

2. A UDF dynamically linkable library must also contain object code for at least one UDF
function. A UDF dynamically linkable library may optionally contain multiple UDFs.

3. Link together the object code for each UDF as well as the extfn_use_new_api() to form a
single library.

For instance, steps for building the example dynamically linkable library "libudfex" would
consist of:

• Compiling each source file to produce an object file.
my_main.cxx
 my_bit_or.cxx
 my_bit_xor.cxx
 my_interpolate.cxx
 my_plus.cxx
 my_plus_counter.cxx
 my_sum.cxx

• Linking together each object produced into a single library.

The next section lists platform specific recommendations for compiling source files and
linking objects to form a UDF dynamically linkable library. Other versions of compilers may
work, these specific examples are provided as a guide

After the dynamically linkable library has been compiled and linked, complete one of the
following tasks:

• Update the CREATE FUNCTION ... EXTERNAL NAME to include an explicit path
name for the UDF library. (Recommended)

• Place the UDF library file into the directory where all the IQ libraries are stored.
• Start up the IQ server with a library load path that includes the location of the UDF library.

Creating and executing user-defined functions

User-Defined Functions Guide 15

On Unix variants, this can be done by modifying the LD_LIBRARY_PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AIX.
On Unix platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully
qualified name cannot be used and the library search path is defined by the PATH
environment variable.

AIX switches
Use the following compile and link switches when building shared libraries on AIX.

xlC 8.0 on a PowerPC

compile switches
-q64 -qarch=ppc64 -qtbtable=full -qsrcmsg -qalign=natural -
qnoansialias
-qmaxmem=-1 -qenum=int -qhalt=e -qflag=w -qthreaded -
qxflags=NLOOPING
-qtmplinst=none -qthreaded

link switches
-brtl -G -lg -lpthreads_compat -lpthreads -lm_r -ldl -bnolibpath -
v

HP-UX switches
Use the following compile and link switches when building shared libraries on HP-UX.

aCC 6.17 on Itanium

compile switches
+noeh -ext +W740,749,829 +W1031 +DD64 +DSblended +FPD -Aa +ub
-U_HP_INSTANTIATE_T_IN_LIB -Wc,-ansi_for_scope,on -mt -z

link switches
 -b -Wl,+s

Linux switches
Use the following compile and link switches when building shared libraries on Linux.

g++ 4.1.1 on x86

compile switches
-fPIC -fsigned-char -fno-exceptions -pthread -fno-omit-frame-
pointer
-Wno-deprecated -Wno-ctor-dtor-privacy

link switches

Creating and executing user-defined functions

 16 Sybase IQ

-ldl -lnsl -lm -lpthread -shared -Wl,-Bsymbolic -Wl,-shared

Note: gcc can be used on Linux as well. While linking with gcc, link in the C++ run-time
library by adding -lstdc++ to the link switches.

xlC 8.0 on a PowerPC

compile switches
 -q64 -qarch=ppc64 -qcheck=nullptr -qinfo=gen -qtbtable=full -
qsrcmsg
-qnoansialias -qminimaltoc -qmaxmem=-1 -qenum=int -qhalt=e -qflag=w
-qthreaded
-qxflags=NLOOPING -qtmplinst=none

link switches
-qmkshrobj -ldl -lg -qthreaded -lnsl -lm

Solaris switches
Use the following compile and link switches when building shared libraries on Solaris.

Sun Studio 12 on SPARC

compile switches
-mt -noex +w -KPIC -i -instances=explicit -V -xtarget=ultra3cu -m64
-xlibmopt
-xlibmil -features=no%conststrings
-erroff=truncwarn,nokeyworddefine,diffenumtype

link switches
-z defs -G -ldl -lnsl -lsocket -ladm -lposix4 -lCrun -lCstd -lc -lm
-lefi
-liostream -lkstat

Sun Studio 12 on x86

compile switches
+w2 -m64 -features=no%conststrings
-erroff=truncwarn,nokeyworddefine,diffenumtype,doubunder -errtags -
mt -noex
-KPIC -instances=explicit -xlibmopt -xlibmil

link switches
-z defs -G -ldl -lnsl -lsocket -ladm -lposix4 -lCrun -lCstd -lc -lm
-lefi
-liostream -lkstat

Creating and executing user-defined functions

User-Defined Functions Guide 17

Windows switches
Use the following compile and link switches when building shared libraries on Windows.

Visual Studio 2008 on x86

compile and link switches

This example is for a DLL containing the my_plus function. You must include an EXPORT
switch for the descriptor function for each UDF contained in the DLL.
cl /Zi /LD /I includefilepath my_main.cxx my_plus.cxx /link /
map
/INCREMENTAL:NO -EXPORT:extfn_use_new_api -EXPORT:my_plus /
out:iqudf.dll

SQL data types
UDF declarations support only certain SQL data types.

You can use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

• UNSIGNED BIGINT – An unsigned 64-bit integer, requiring 8 bytes of storage. The data
type identifier to be used within UDF code is DT_UNSBIGINT, and the C/C++ data type
typedef to be used for such values within a UDF is “a_sql_uint64”. Several C/C++
typedefs are included with Sybase IQ to make it easier for application developers to write
portable UDF implementations.

• BIGINT – A signed 64-bit integer, requiring 8 bytes of storage. The data type identifier is
DT_BIGINT, and the C/C++ data type typedef to be used for such values is “a_sql_int64.”

• UNSIGNED INT – An unsigned 32-bit integer, requiring 4 bytes of storage. The data type
identifier is DT_UNSINT, and the C/C++ data type typedef to be used for such values is
“a_sql_uint32.”

• INT – A signed 32-bit integer, requiring 4 bytes of storage. The data type identifier is
DT_INT, and the C/C++ data type typedef to be used for such values is “a_sql_int32.”

• SMALLINT – A signed 16-bit integer, requiring 2 bytes of storage. The data type
identifier is DT_SMALLINT, and the C/C++ data type to be used for such values is
“short.”

• TINYINT – An unsigned 8-bit integer, requiring 1 byte of storage. The data type identifier
is DT_TINYINT, and the C/C++ data type to be used for such values is “unsigned char.”

• DOUBLE – A signed 64-bit double-precision floating point number, requiring 8 bytes of
storage. The data type identifier is DT_DOUBLE, and the C/C++ data type to be used for
such values is “double.”

• REAL – A signed 32-bit floating point number, requiring 4 bytes of storage. The data type
identifier is DT_FLOAT, and the C/C++ data type to be used for such values is “float.”

Creating and executing user-defined functions

 18 Sybase IQ

• FLOAT – In SQL, depending on the associated precision, a FLOAT is either a signed 32-
bit floating point number requiring 4 bytes of storage, or a signed 64-bit double-precision
floating point number requiring 8 bytes of storage. You can use the SQL data type FLOAT
only in a UDF declaration if the optional precision for FLOAT data types is not supplied.
Without a precision, FLOAT is a synonym for REAL, for which the data type identifier is
DT_FLOAT, and the C/C++ data type to be used for such values is “float.”

• CHAR(<n>) – A fixed-length blank-padded character string, in the database default
character set. The maximum possible length, “<n>”, is 32767. The data is not null-byte
terminated. The data type identifier is DT_FIXCHAR, and the C/C++ data type to be used
for such values is “char *.”

• VARCHAR(<n>) – A varying-length character string, in the database default character
set. The maximum possible length, “<n>.” is 32767. The data is not null-byte terminated.
For UDF input arguments, the actual length, when the value is not NULL, must be
retrieved from the total_length field within the an_extfn_value structure. Similarly, for a
UDF result of this type, the actual length must be set in the total_length field. The data type
identifier is DT_VARCHAR, and the C/C++ data type to be used for such values is “char
*.”

• BINARY(<n>) – A fixed-length null-byte padded binary, value whose maximum possible
binary length, “<n>”, is 32767. The data is not null-byte terminated. The data type
identifier is DT_FIXBINARY, and the C/C++ data type usually used for such values is
“unsigned char *.”

• VARBINARY(<n>) – A varying-length binary value, for which the maximum possible
length, “<n>”, is 32767. The data is not null-byte terminated. For UDF input arguments,
the actual length, when the value is not NULL, must be retrieved from the total_length
field within the an_extfn_value structure. Similarly, for a UDF result of this type, you must
set the actual length in the total_length field. The data is not null-byte terminated. The data
type identifier is DT_VARBINARY, and the C/C++ data type usually used for such values
is “unsigned char *.”

• DATE – A calendar date value, which is passed to or from a UDF as an unsigned integer. .
The value given to the UDF is guaranteed to be usable in comparison/sorting operations. A
larger value indicates a later date. If the actual date components are required, the UDF must
invoke the convert_value api in order to convert to the type DT_TIMESTAMP_STRUCT.
This datetype represent date and time with the following structure:
typedef struct sqldatetime {
 unsigned short year; /* e.g. 1992 */
 unsigned char month; /* 0-11 */
 unsigned char day_of_week; /* 0-6 0=Sunday, 1=Monday, ...
*/
 unsigned short day_of_year; /* 0-365 */
 unsigned char day; /* 1-31 */
 unsigned char hour; /* 0-23 */
 unsigned char minute; /* 0-59 */
 unsigned char second; /* 0-59 */
 a_sql_uint32 microsecond; /* 0-999999 */
} SQLDATETIME;

Creating and executing user-defined functions

User-Defined Functions Guide 19

• TIME – A value that precisely describes a moment within a given day. The value is passed
to the UDF as an UNSIGNED BIGINT. The value given to the UDF is guaranteed to be
usable in comparison/sorting operations. A larger value indicates a later time. If the actual
time components are required, the UDF must invoke the convert_value api in order to
convert to the type DT_TIMESTAMP_STRUCT.

• DATETIME, SMALLDATETIME, or TIMESTAMP – A calendar date and time value,
which is passed to or from a UDF as an UNSIGNED BIGINT. The value given to the UDF
is guaranteed to be usable in comparison/sorting operations. A larger value indicates a
later datetime. If the actual time components are required, the UDF must invoke the
convert_value api in order to convert to the type DT_TIMESTAMP_STRUCT.

Unsupported data types

You cannot use the following SQL data types in a UDF declaration, either as data types for
arguments to a UDF, or as return-value data types:

• BIT – Should typically be handled in the UDF declaration as a TINYINT data type, and
then the implicit data type conversion from BIT automatically handles the value
translation.

• DECIMAL(<precision>, <scale>) or NUMERIC(<precision>, <scale>) – Depending
on the usage, this is typically handled as a DOUBLE data type, but various conventions
may be imposed to enable the use of INT or BIGINT data types.

• LONG VARCHAR – Not currently supported.
• LONG BINARY – Not currently supported.
• TEXT – Not currently supported.

Creating and executing user-defined functions

 20 Sybase IQ

Scalar User-Defined Functions

Sybase IQ supports simple scalar user-defined functions (UDFs) that can be used anywhere
the SQRT function can be used.

These scalar UDFs can be deterministic, which means that for a given set of argument values
the function always returns the same result value, or they can be nondeterministic scalar
functions, which means that the same arguments can return different results.

Note:

The scalar UDF examples referenced in this chapter are installed with the IQ server, and can be
found as .cxx files in $IQDIR15/samples/udf. You can also find them in the
$IQDIR15/lib64/libudfexdynamically linkable library.

Declaring a Scalar UDF
Only a DBA, or someone with DBA authority can declare an in-process external UDF. There
is also a new server startup option that allows an administrator to enable or disable this style of
user-defined functions.

Note: You can also create the user-defined function declaration in Sybase Central on page
11.

By default, all user-defined functions are accessed using the access permissions of the owner
of the UDF.

The supported IQ syntax for creating an IQ scalar UDF is:

scalar-udf-declaration:
CREATE FUNCTION [owner.]function-name
 ([parameter , ...])
RETURNS data-type
 [routine-characteristics ...]
EXTERNAL NAME library-and-entry-point-name-string

parameter:
 param-name data-type [DEFAULT value]

routine-characteristics:
 [NOT] DETERMINISTIC
 | { IGNORE | RESPECT } NULL VALUES
 | SQL SECURITY { INVOKER | DEFINER }

The defaults for the characteristics in the above syntax are:

DETERMINISTIC
RESPECT NULL VALUES
SQL SECURITY DEFINER

Scalar User-Defined Functions

User-Defined Functions Guide 21

To minimize potential security concerns, Sybase recommendeds that you use a fully qualified
path name to a secure directory for the library name portion of the EXTERNAL NAME
clause.

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because each user
that calls the procedure requires annotation. Also, when SQL SECURITY INVOKER is
specified, name resolution is performed on both the user name and the INVOKER. Qualify all
object names (tables, procedures, and so on) with their appropriate owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following
the RETURNS clause. The library name may include the file extension, which is
typically .dll on Windows and .so on UNIX. In the absence of the extension, the software
appends the platform-specific default file extension for libraries.

The EXTERNAL NAME clause is not supported for temporary functions. See “Calling
external libraries from procedures” in SQL Anywhere Server – Programming.

The IQ server can be started with a library load path that includes the location of the UDF
library. On Unix variants, this can be done by modifying the LD_LIBRARY_PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AIX.

On Unix platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

UDF example: my_plus declaration
The “my_plus” example is a simple scalar function that returns the result of adding its two
integer argument values.

my_plus declaration

When my_plus resides within the dynamically linkable library my_shared_lib, the
declaration for this example looks like this:

CREATE FUNCTION my_plus (IN arg1 INT, IN arg2 INT)
 RETURNS INT
 DETERMINISTIC
 IGNORE NULL VALUES
 EXTERNAL NAME 'describe_my_plus@my_shared_lib'

Scalar User-Defined Functions

 22 Sybase IQ

This declaration says that my_plus is a simple scalar UDF residing in my_shared_lib with a
descriptor routine named describe_my_plus. Since the behavior of a UDF may require more
than one actual C/C++ entry point for its implementation, this set of entry points is not directly
part of the CREATE FUNCTION syntax. Instead, the CREATE FUNCTION statement
EXTERNAL NAME clause identifies a descriptor function for this UDF. A descriptor
function, when invoked, returns a descriptor structure that is defined in detail in the next
section. That descriptor structure contains the required and optional function pointers that
embody the implementation of this UDF.

This declaration says that my_plus accepts two INT arguments and returns an INT result
value. If the function is invoked with an argument that is not an INT, and if the argument can be
implicitly converted into an INT, the conversion happens before the function is called. If this
function is invoked with an argument that cannot be implicitly converted into an INT, a
conversion error is generated.

Further, the declaration states that this function is deterministic. A deterministic function
always returns the identical result value when supplied the same input values. This means the
result cannot depend on any external information beyond the supplied argument values, or on
any side effects from previous invocations. By default, functions are assumed to be
deterministic, so the results are the same if this characteristic is omitted from the CREATE
statement.

The last piece of the above declaration is the IGNORE NULL VALUES characteristic. Nearly
all built-in scalar functions return a NULL result value if any of the input arguments are
NULL. The IGNORE NULL VALUES states that the my_plus function follows that
convention, and therefore this UDF routine is not actually invoked when either of its input
values are NULL. Since RESPECT NULL VALUES is the default for functions, this
characteristic must be specified in the declaration for this UDF to get the performance
benefits. All functions that may return a non-NULL result given a NULL input value must use
the default RESPECT NULL VALUES characteristic.

In the following example query, my_plus appears in the SELECT list along with the
equivalent arithmetic expression:

SELECT my_plus(t.x, t.y) AS x_plus_y_one, (t.x + t.y)AS x_plus_y_two
FROM t
WHERE t.z = 2

In the following example, my_plus is used in several different places and different ways within
the same query:

SELECT my_plus(t.x, t.y), count(*)
FROM t
WHERE t.z = 2
AND my_plus(t.x, 5) > 10
AND my_plus(t.y, 5) > 10
GROUP BY my_plus(t.x, t.y)

Scalar User-Defined Functions

User-Defined Functions Guide 23

UDF example: my_plus_counter declaration
The “my_plus_counter” example is a simple nondeterministic scalar UDF that takes a single
integer argument, and returns the result of adding that argument value to an internal integer
usage counter. If the input argument value is NULL, the result is the current value of the usage
counter.

my_plus_counter declaration

Assuming that my_plus_counter also resides within the dynamically linkable library
my_shared_lib, the declaration for this example is:

CREATE FUNCTION my_plus_counter (IN arg1 INT DEFAULT 0)
 RETURNS INT
 NOT DETERMINISTIC
 RESPECT NULL VALUES
 EXTERNAL NAME 'describe_my_plus_counter@my_shared_lib'

The RESPECT NULL VALUES characteristic means that this function is called even if the
input argument value is NULL. This is necessary because the semantics of my_plus_counter
includes:

• Internally keeping a usage count that increments even if the argument is NULL.
• A non-null value result when passed a NULL argument.

Because RESPECT NULL VALUES is the default, the resutls are the same if this clause is
omitted from the declaration.

IQ restricts the usage of all nondeterministic functions. They are allowed only within the
SELECT list of the top-level query block or in the SET clause of an UPDATE statement. They
cannot be used within subqueries, or within a WHERE, ON, GROUP BY, or HAVING clause.
This restriction applies to nondeterministic UDFs as well as to the nondeterministic built-in
functions like GETUID and NUMBER.

The last detail in the above declaration is the DEFAULT qualifier on the input parameter. The
qualifier tells the server that this function can be called with no arguments, and that when this
happens the server automatically supplies a zero for the missing argument. If a DEFAULT
value is specified, it must be implicitly convertible into the data type of that argument.

In the following example, the first SELECT list item adds the running counter to the value of
t.x for each row. The second and third SELECT list items each return the same value for each
row as the NUMBER function.

SELECT my_plus_counter(t.x),
 my_plus_counter(0),
 my_plus_counter(),
 NUMBER()
FROM t

Scalar User-Defined Functions

 24 Sybase IQ

Defining a scalar UDF
The C/C++ code for defining a scalar user-defined function includes four mandatory pieces:

• extfnapiv3.h – Inclusion of the UDF interface definition header file.
• _evaluate_extfn – An evaluation function. All evaluation functions take two arguments:

• An instance of the scalar UDF context structure that is unique to each usage of a UDF
that contains a set of callback function pointers, and a pointer where a UDF can store
UDF-specific data.

• A pointer to a data structure that allows access to the argument values and to the result
value through the supplied callbacks.

• a_v3_extfn_scalar – An instance of the scalar UDF descriptor structure that contains a
pointer to the evaluation function.

• Descriptor function – Returns a pointer to the scalar UDF descriptor structure.

There are two optional pieces:

• _start_extfn – An initialization function generally invoked once per SQL usage. If
supplied, you must also place a pointer to this function into the scalar UDF descriptor
structure. All initialization functions are defined to take one argument, a pointer to the
scalar UDF context structure that is unique to each usage of a UDF. The context structure
passed is the same one that is passed to the evaluation routine.

• _finish_extfn – A shutdown function generally invoked once per SQL usage. If supplied, a
pointer to this function must also be placed into the scalar UDF descriptor structure. All
shutdown functions are defined to take one argument, a pointer to the scalar UDF context
structure that is unique to each usage of a UDF. The context structure passed is the same
one that is passed to the evaluation routine.

Scalar UDF descriptor structure
The scalar UDF descriptor structure, a_v3_extfn_scalar, is defined as:

typedef struct a_v3_extfn_scalar { //
 // Metadata descriptor for a scalar UDF
 // supplied by the UDF library to the server
 // An optional pointer to an initialize function
 void (*_start_extfn)(a_v3_extfn_scalar_context * cntxt);
 //
 // An optional pointer to a shutdown function
 void (*_finish_extfn)(a_v3_extfn_scalar_context * cntxt);
 //
 // A required pointer to a function that will be
 // called for each invocation of the UDF on a
 // new set of argument values
 void (*_evaluate_extfn)(a_v3_extfn_scalar_context * cntxt, void
*args_handle);
 // RESERVED FIELDS MUST BE INITIALIZED TO NULL

Scalar User-Defined Functions

User-Defined Functions Guide 25

 void *reserved1_must_be_null;
 void *reserved2_must_be_null;
 void *reserved3_must_be_null;
 void *reserved4_must_be_null;
 void *reserved5_must_be_null;
 …

} a_v3_extfn_scalar;

There should always be a single instance of a_v3_extfn_scalar for each defined scalar UDF.
If the optional initialization function is not supplied, the corresponding value in the descriptor
structure should be the null pointer. Similarly, if the shutdown function is not supplied, then
the corresponding value in the descriptor structure should be the null pointer.

The initialization function is called at least once before any calls to the evaluation routine, and
the shutdown function is called at least once after the last evaluation call. The initialization and
shutdown functions are normally called only once per usage.

Scalar UDF context structure
The scalar UDF context structure, a_v3_extfn_scalar_context that is passed to each of the
functions specified within the scalar UDF descriptor structure, is defined as:

typedef struct a_v3_extfn_scalar_context {
//-------- Callbacks available via the context --------
//
 short (SQL_CALLBACK *get_value)(
 void *arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value
);
 short (SQL_CALLBACK *get_piece)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value,
 a_sql_uint32 offset
);
 short (SQL_CALLBACK *get_value_is_constant)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 a_sql_uint32 * value_is_constant
);
 short (SQL_CALLBACK *set_value)(
 void * arg_handle,
 an_extfn_value *value,
 short append
);
 a_sql_uint32 (SQL_CALLBACK *get_is_cancelled)(
 a_v3_extfn_scalar_context * cntxt
);
 short (SQL_CALLBACK *set_error)(
 a_v3_extfn_scalar_context * cntxt,
 a_sql_uint32 error_number,
 const char * error_desc_string

Scalar User-Defined Functions

 26 Sybase IQ

);
 void (SQL_CALLBACK *log_message)(
 const char *msg,
 short msg_length
);
 short (SQL_CALLBACK *convert_value)(
 an_extfn_value *input,
 an_extfn_value *output
 //---------- Data available from the context ----------
 void * _user_data; // read-write field
 //---------- For Server Internal Use Only -------------
 void * _for_server_internal_use;
} a_v3_extfn_scalar_context;

The _user_data field within the scalar UDF context structure can be populated with data the
UDF requires. Usually, it is filled in with a heap allocated structure by the _start_extfn
function, and deallocated by the _finish_extfn function.

When you are allocating memory, make sure UDF libraries do not overload the C++ new
operator. On some platforms, overloading the new operator has a global effect that may
adversely affect the proper operation of the server.

The rest of the scalar UDF context structure is filled with the set of callback functions,
supplied by the engine, for use within each of the user's UDF functions. Most of these callback
functions return a success status through a short result value; a true return indicates success.
Well-written UDF implementations should never cause a failure status, but during
development (and possibly in all debug builds of a given UDF library), Sybase recommends
that you check that the return status values from the callbacks. Failures can come from coding
errors within the UDF implementation, such as asking for more arguments than the UDF is
defined to take.

The common set of arguments used by most of the callbacks includes:

• arg_handle – A pointer received by all forms of the evaluation methods, through which
the values for input arguments passed to the UDF are available, and through which the
UDF result value can be set.

• arg_num – An integer indicating which input argument is being accessed. Input
arguments are numbered left to right in ascending order starting at one.

• cntxt – A pointer to the context structure that the server passes to all UDF entry points.
• value – A pointer to an instance of the an_extfn_value structure that is used to either get an

input argument value from the server or to set the result value of the function. The
an_extfn_value structure has this form:
typedef struct an_extfn_value {
void * data;
a_SQL_uint32 piece_len;
union {
 a_SQL_uint32 total_len;
 a_SQL_uint32 remain_len;
} len;

Scalar User-Defined Functions

User-Defined Functions Guide 27

a_SQL_data_type type;
} an_extfn_value;

UDF example: my_plus definition
The following is the definition for the my_plus example.

my_plus definition

Because this UDF needs no initialization or shutdown function, those values within the
descriptor structure are set to 0. The descriptor function name matches the EXTERNAL
NAME used in the declaration. The evaluate method does not check the data type for
arguments, because they are declared as INT.

#include "extfnapiv3.h"
#include <stdlib.h>

// A simple deterministic scalar UDF that just adds
// two integer arguments and then returns the result.
//
// Corresponding SQL declaration:
//
// CREATE FUNCTION my_plus(IN arg1 INT, IN arg2 INT)
// RETURNS INT
// DETERMINISTIC
// IGNORE NULL VALUES
// EXTERNAL NAME
'my_plus@libudfex'
//
#if defined __cplusplus
extern "C" {
#endif

static void my_plus_evaluate(a_v3_extfn_scalar_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 an_extfn_value outval;
 a_sql_int32 arg1, arg2, result;

 // Get first argument
 (void) cntxt->get_value(arg_handle, 1, &arg);
 if (arg.data == NULL)
 {
 return;
 }
 arg1 = *((a_sql_int32 *)arg.data);

 // Get second argument
 (void) cntxt->get_value(arg_handle, 2, &arg);
 if (arg.data == NULL)
 {
 return;
 }

Scalar User-Defined Functions

 28 Sybase IQ

 arg2 = *((a_sql_int32 *)arg.data);

 // Set the result value
 outval.type = DT_INT;
 outval.piece_len = sizeof(a_sql_int32);
 result = arg1 + arg2;
 outval.data = &result;
 cntxt->set_value(arg_handle, &outval, 0);
}

static a_v3_extfn_scalar my_plus_descriptor = {
 0,
 0,
 &my_plus_evaluate,
 0, // Reserved - initialize to NULL
 0, // Reserved - initialize to NULL
 0, // Reserved - initialize to NULL
 0, // Reserved - initialize to NULL
 0, // Reserved - initialize to NULL
 NULL // _for_server_internal_use
};

a_v3_extfn_scalar *my_plus()
{
 return &my_plus_descriptor;
}

#if defined __cplusplus
}
#endif

UDF example: my_plus _counter definition
This example checks the argument value pointer data to see if the input argument value is
NULL. It also has an initialization function and a shutdown function, each of which can
tolerate multiple calls.

my_plus _counter definition
#include "extfnapiv3.h"
#include <stdlib.h>

// A simple non-deterministic scalar UDF that adds
// an internal integer usage counter to its integer
// argument and then returns the resulting integer.
//
// Here, the start function creates a little structure for
// the counter, and then the finish function deallocates it.
//
// Corresponding SQL declaration:
//
// CREATE FUNCTION plus_counter(IN arg1 INT)
// RETURNS INT
// NOT DETERMINISTIC

Scalar User-Defined Functions

User-Defined Functions Guide 29

// RESPECT NULL VALUES
// EXTERNAL NAME 'my_plus_counter@libudfex'

typedef struct my_counter {
 a_sql_int32 _counter;
} my_counter;

#if defined __cplusplus
extern "C" {
#endif

static void my_plus_counter_start(a_v3_extfn_scalar_context *cntxt)
{
 my_counter *cptr = (my_counter *)cntxt->_user_data;
 // If we have not already allocated the
 // counter structure, then do so now
 if (!cptr) {
 cptr = (my_counter *)malloc(sizeof(my_counter));
 cntxt->_user_data = cptr;
 }
 cptr->_counter = 0;
}

static void my_plus_counter_finish(a_v3_extfn_scalar_context *cntxt)
{
 // If we still have an allocated the
 // counter structure, then free it now
 if (cntxt->_user_data) {
 free(cntxt->_user_data);
 cntxt->_user_data = 0;
 }
}

static void my_plus_counter_evaluate(a_v3_extfn_scalar_context
*cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 an_extfn_value outval;
 a_sql_int32 arg1, result;

 // Increment the usage counter
 my_counter *cptr = (my_counter *)cntxt->_user_data;
 cptr->_counter += 1;

 // Get the one argument
 (void) cntxt->get_value(arg_handle, 1, &arg);
 if (!arg.data) {
 // argument value was NULL;
 arg1 = 0;
 } else {
 arg1 = *((a_sql_int32 *)arg.data);
 }

Scalar User-Defined Functions

 30 Sybase IQ

 outval.type = DT_INT;
 outval.piece_len = sizeof(a_sql_int32);
 result = arg1 + cptr->_counter;
 outval.data = &result;
 cntxt->set_value(arg_handle, &outval, 0);
}

static a_v3_extfn_scalar my_plus_counter_descriptor =
 { &my_plus_counter_start,
 &my_plus_counter_finish,
 &my_plus_counter_evaluate,
 NULL, // Reserved - initialize to NULL
 NULL, // Reserved - initialize to NULL
 NULL, // Reserved - initialize to NULL
 NULL, // Reserved - initialize to NULL
 NULL, // Reserved - initialize to NULL
 NULL, // _for_server_internal_use
};

a_v3_extfn_scalar *my_plus_counter()
{
 return &my_plus_counter_descriptor;
}

#if defined __cplusplus
}
#endif

Scalar User-Defined Functions

User-Defined Functions Guide 31

Scalar User-Defined Functions

 32 Sybase IQ

User-defined aggregate functions

Sybase IQ supports user-defined aggregate functions (UDAFs). The SUM function is an
example of a built-in aggregate function. A simple aggregate function produces a single result
value from a set of argument values. You can write UDAFs that can be used anywhere the
SUM aggregate can be used.

Note:

The aggregate UDF examples referenced in this chapter are installed with the IQ server, and
can be found as .cxx files in $IQDIR15/samples/udf. You can also find them in the
$IQDIR15/lib64/libudfexdynamically linkable library.

Declaring a UDAF
Aggregate UDFs are more powerful and more complex to create than scalar UDFs.

Note: You can also create the user-defined function declaration in Sybase Central on page
11.

When implementing a UDAF, you must decide:

• Whether it will operate only across an entire data set or partition as an Online Analytical
Processing (OLAP) -style aggregate, like RANK.

• Whether it will operate as either a simple aggregate or an OLAP-style aggregate, like
SUM.

• Whether it will operate only as a simple aggregate over an entire group.

The declaration and the definition of a UDAF reflects these usage decisions.

The syntax for creating IQ user-defined aggregate functions is:

aggregate-udf-declaration:
 CREATE AGGREGATE FUNCTION [owner.]function-name
 ([parameter , ...])
 RETURNS data-type
 [aggregate-routine-characteristics ...]
 EXTERNAL NAME library-and-entry-point-name-string

parameter:
 param-name data-type [DEFAULT value]

aggregate-routine-characteristics:
 DUPLICATE { SENSITIVE | INSENSITIVE }
 -- is the server allowed to eliminate DISTINCT
 | SQL SECURITY {INVOKER | DEFINER}
 | OVER restrict
 | ORDER order-restrict
 -- Must the window-spec contain an ORDER BY?

User-defined aggregate functions

User-Defined Functions Guide 33

 | WINDOW FRAME
 { { ALLOWED | REQUIRED }
 [window-frame-constraints ...]
 | NOT ALLOWED }
 | ON EMPTY INPUT RETURNS { NULL | VALUE }
 -- Call or skip function on NULL inputs

window-frame-constraints:
 VALUES { [NOT] ALLOWED }
 | CURRENT ROW { REQUIRED | ALLOWED }
 | [UNBOUNDED] { PRECEDING | FOLLOWING } restrict

restrict: { [NOT] ALLOWED } | REQUIRED

order-restrict:
{ NOT ALLOWED | SENSITIVE | INSENSITIVE | REQUIRED

The handling of the return data type, arguments, data types, and default values are all identical
to that in the scalar UDF definition.

If a UDAF can be used as a simple aggregate, then it can potentially be used with the
DISTINCT qualifier. The DUPLICATE clause in the UDAF declaration determines:

• Whether duplicate values can be considered for elimination before the UDAF is called
because the results are sensitive to duplicates (such as for the built-in
“COUNT(DISTINCT T.A)”) or,

• Whether the results are insensitive to the presence of duplicates (such as for
“MAX(DISTINCT T.A)”).

The DUPLICATE INSENSITIVE option allows the optimizer to consider removing the
duplicates without affecting the result, giving the optimizer the choice on how to execute the
query. The UDAF must be written to expect duplicates. If duplicate elimination is required, the
server performs it before starting the set of _next_value_extfn calls.

Most of the remaining clauses that are not part of the scalar UDF syntax allow you to specify
the usages for this function. By default, a UDAF is assumed to be usable as both a simple
aggregate and as an OLAP-style aggregate with any kind of window frame.

For a UDAF to be used only as a simple aggregate function, declare it using:

OVER NOT ALLOWED

Any attempt to then use this aggregate as an OLAP-style aggregate generates an error.

For UDAFs that allow or require an OVER clause, the UDF definer can specify restrictions on
the presence of the ORDER BY clause within the OVER clause by specifying “ORDER”
followed by the restriction type. Window-ordering restriction types:

• REQUIRED – ORDER BY must be specified and cannot be eliminated.
• SENSITIVE – ORDER BY may or may not be specified, but cannot be eliminated when

specified.

User-defined aggregate functions

 34 Sybase IQ

• INSENSITIVE – ORDER BY may or may not be specified, but the server can do ordering
elimination for efficiency.

• NOT ALLOWED – ORDER BY cannot be specified.

Declare a UDAF that makes sense only as an OLAP-style aggregate over an entire set or
partition that has been ordered, like the built-in RANK, with:

OVER REQUIRED
ORDER REQUIRED
WINDOW FRAME NOT ALLOWED

Declare a UDAF that makes sense only as an OLAP-style aggregate using the default window
frame of UNBOUNDED PRECEDING to CURRENT ROW, with:

OVER REQUIRED
ORDER REQUIRED
WINDOW FRAME ALLOWED
 RANGE NOT ALLOWED
 UNBOUNDED PRECEDING REQUIRED
 CURRENT ROW REQUIRED
 FOLLOWING NOT ALLOWED

The defaults for the all various options and restriction sets are:

DUPLICATE SENSITIVE
SQL SECURITY DEFINER
OVER ALLOWED
ORDER SENSITIVE
WINDOW FRAME ALLOWED
CURRENT ROW ALLOWED
PRECEDING ALLOWED
UNBOUNDED PRECEDING ALLOWED
FOLLOWING ALLOWED
UNBOUNDED FOLLOWING ALLOWED

SQL Security

Defines whether the function is executed as the INVOKER, (the user who is calling the
function), or as the DEFINER (the user who owns the function). The default is DEFINER.

When SQL SECURITY INVOKER is specified, more memory is used because each user
that calls the procedure requires annotation. Also, when SQL SECURITY INVOKER is
specified, name resolution is performed on both the user name and the INVOKER. Qualify all
object names (tables, procedures, and so on) with their appropriate owner.

External Name

A function using the EXTERNAL NAME clause is a wrapper around a call to a function in an
external library. A function using EXTERNAL NAME can have no other clauses following
the RETURNS clause. The library name may include the file extension, which is
typically .dll on Windows and .so on UNIX. In the absence of the extension, the software
appends the platform-specific default file extension for libraries.

User-defined aggregate functions

User-Defined Functions Guide 35

The EXTERNAL NAME clause is not supported for temporary functions. See “Calling
external libraries from procedures” in SQL Anywhere Server – Programming.

The IQ server can be started with a library load path that includes the location of the UDF
library. On Unix variants, this can be done by modifying the LD_LIBRARY_PATH within the
start_iq startup script. While LD_LIBRARY_PATH is universal to all UNIX variants,
SHLIB_PATH is preferred on HP, and LIB_PATH is preferred on AIX.

On Unix platforms, the external name specification can contain a fully qualified name, in
which case the LD_LIBRARY_PATH is not used. On the Windows platform, a fully qualified
name cannot be used and the library search path is defined by the PATH environment variable.

Note: Scalar user-defined functions and user-defined aggregate functions are not supported in
updatable cursors.

UDAF example: my_sum declaration
The “my_sum” example is similar to the built-in SUM, except it only operates on integers.

my_sum declaration

Since my_sum, like SUM, can be used in any context, it has a relatively brief declaration:

CREATE AGGREGATE FUNCTION my_sum(IN arg1 INT)
 RETURNS BIGINT
 ON EMPTY INPUT RETURNS NULL
 EXTERNAL NAME 'describe_my_integer_sum@my_shared_lib'

The various usage restrictions all default to ALLOWED to specify that this function can be
used anywhere in a SQL statement that any aggregate function is allowed.

Without any usage restrictions, my_sum is usable as a simple aggregate across an entire set of
rows, as shown here:

SELECT MIN(t.x), COUNT (*), my_sum(t.y)
FROM t

Without usage restrictions, my_sum is also usable as a simple aggregate computed for each
group as specified by a GROUP BY clause.

SELECT t.x, COUNT(*), my_sum(t.y)
FROM t
GROUP BY t.x

Because of the lack of usage restrictions, my_sum is usable as an OLAP-style aggregate with
an OVER clause, as shown in this cumulative summation example:

SELECT t.x,
 my_sum(t.x)
 OVER (ORDER BY t.x ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)
 AS cumulative_x,
 COUNT(*)
FROM t

User-defined aggregate functions

 36 Sybase IQ

GROUP BY t.x
ORDER BY t.x

UDAF example: my_bit_xor declaration
The “my_bit_xor” example is analogous to the SQL Anywhere (SA) built-in BIT_XOR,
except it operates only on unsigned integers.

my_bit_xor declaration

The resulting declaration is:

CREATE AGGREGATE FUNCTION my_bit_xor(IN arg1 UNSIGNED INT)
 RETURNS UNSIGNED INT
 ON EMPTY INPUT RETURNS NULL
 EXTERNAL NAME 'describe_my_bit_xor@my_shared_lib'

Like the my_sum example, my_bit_xor has no associated usage restrictions, and is therefore
usable as a simple aggregate or as an OLAP-style aggregate with any kind of a window.

UDAF example: my_bit_or declaration
The “my_bit_or” example is similar to the SA built-in BIT_OR except it operates only on
unsigned integers, and it can be used only as a simple aggregate.

my_bit_or declaration

The resulting declaration looks like:

CREATE AGGREGATE FUNCTION my_bit_or(IN arg1 UNSIGNED INT)
 RETURNS UNSIGNED INT
 ON EMPTY INPUT RETURNS NULL
 OVER NOT ALLOWED
 EXTERNAL NAME 'describe_my_bit_or@ my_shared_lib'

Unlike the my_bit_xor example, the OVER NOT ALLOWED phrase in the declaration
restricts the use of this function to only as a simple aggregate. Because of that usage
restriction, my_bit_or is only usable as a simple aggregate across an entire set of rows, or as a
simple aggregate computed for each group as specified by a GROUP BY clause shown in the
following example:

SELECT t.x, COUNT(*), my_bit_or(t.y)
FROM t
GROUP BY t.x

UDAF example: my_interpolate declaration
The “my_interpolate” example is an OLAP-style UDAF that attempts to fill in any missing
values in a sequence (where missing values are denoted by NULLs) by performing linear

User-defined aggregate functions

User-Defined Functions Guide 37

interpolation across any set of adjacent NULL values to the nearest non-NULL value in each
direction.

my_interpolate declaration

If the input at a given row is not NULL, the result for that row is the same as the input value.

This table illustrates the effect of my_interpolate on a small set of input rows:

Figure 1: my_interpolate results

To operate at a sensible cost, my_interpolate must run using a fixed-width row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values he or she expects to see. This function takes a set of double-precision floating point
values and produces a resulting set of doubles.

The resulting UDAF declaration looks like this:

CREATE AGGREGATE FUNCTION my_interpolate (IN arg1 DOUBLE)
RETURNS DOUBLE
 OVER REQUIRED
 WINDOW FRAME REQUIRED
 RANGE NOT ALLOWED
 PRECEDING REQUIRED
 UNBOUNDED PRECEDING NOT ALLOWED
 FOLLOWING REQUIRED
 UNBOUNDED FOLLOWING NOT ALLOWED
 EXTERNAL NAME 'describe_my_interpolate@my_shared_lib'

OVER REQUIRED means that this function cannot be used as a simple aggregate (ON
EMPTY INPUT, if used, is irrelevant).

User-defined aggregate functions

 38 Sybase IQ

WINDOW FRAME details specify that you must use a fixed width row-based window that
extends both forward and backward from the current row when using this function. Because of
these usage restrictions, my_interpolate is only usable as an OLAP-style aggregate with an
OVER clause similar to:

SELECT t.x,
 my_interpolate(t.x)
 OVER (ORDER BY t.x ROWS BETWEEN 5 PRECEDING AND 5 FOLLOWING)
 AS x_with_gaps_filled,
 COUNT(*)
FROM t
GROUP BY t.x
ORDER BY t.x

Within an OVER clause for my_interpolate, the precise number of preceding and following
rows may vary, and optionally you can use a PARTITION BY; otherwise the rows must be
similar to the example above given the usage restrictions in the declaration.

Defining an aggregate UDF
The C/C++ code for defining an aggregate user-defined function includes eight mandatory
pieces.

The eight mandatory pieces are:

• extfnapiv3.h – The UDF interface definition header file.
• _start_extfn – An initialization function invoked once per SQL usage. All initialization

functions take one argument: a pointer to the aggregate UDF context structure that is
unique to each usage of a UDAF. The context structure passed is the same one that is
passed to all the supplied functions for that usage.

• _finish_extfn – A shutdown function invoked once per SQL usage. All shutdown
functions take one argument: a pointer to the UDAF context structure that is unique to each
usage of a UDAF.

• _reset_extfn – A reset function called once at the start of each new group, new partition,
and if necessary at the start of each window motion. All reset functions take one argument:
a pointer to the UDAF context structure that is unique to each usage of a UDAF.

• _next_value_extfn – A function called for each new set of input arguments.
_next_value_extfn two arguments:

• A pointer to the UDAF context, and
• An args_handle.

As in scalar UDFs, the arg_handle is used with the supplied callback function pointers to
access the actual argument values.

• _evaluate_extfn – An evaluation function similar to the scalar UDF evaluation function.
All evaluation functions take two arguments:

User-defined aggregate functions

User-Defined Functions Guide 39

• A pointer to the UDAF context structure, and
• An args_handle.

• a_v3_extfn_aggregate – An instance of the aggregate UDF descriptor structure that
contains the pointers to all of the supplied functions for this UDF.

• Descriptor function – A descriptor function that returns a pointer to that aggregate UDF
descriptor structure.

In addition to the mandatory pieces, there are several optional pieces that enable more
optimized access for specific usage situations:

• _drop_value_extfn – An optional function pointer that is called for each input set of
argument values that has fallen out of a moving window frame. This function should not
set the result of the aggregation. Use the get_value callback function to access the input
argument values, and, if necessary, through repeated calls to the get_piece callback
function.
Set the function pointer to the null pointer if:

• This aggregate cannot be used with a window frame,
• The aggregate is not reversible in some way, or
• The user is not interested in optimal performance.

If this function is not supplied and the user has specified a moving window, each time the
window frame moves, the reset function is called and each row within the window is
included by a call to the next_value function, and finally the evaluate function is called.
If this function is supplied, then each time the window frame moves this drop value
function is called for each row falling out of the window frame, then the next_value
function is called for each row that has just been added into the window frame and finally
the evaluate function is called to produce the aggregate result.

• _evaluate_cumulative_extfn – An optional function pointer that may be called for each
new input set of argument values. If this function is supplied, and the usage is in a row-
based window frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then
this function is called instead of calling the next value function immediately followed by
calling the evaluate function.
This function must set the result of the aggregation through the set_value callback. Access
to its set of input argument values is through the usual get_value callback function. This
function pointer should be set to the null pointer if:

• This aggregate will never be used is this manner, or
• The user is not worried about optimal performance.

• _next_subaggregate_extfn – An optional callback function pointer that works together
with an _evaluate_superaggregate_extfn to enable some usages of this aggregate to be
optimized by running in parallel.
Some aggregates, when used as simple aggregates (in other words not OLAP-style
aggregates with an OVER clause) can be partitioned by first producing a set of
intermediate aggregate results where each intermediate result is computed from a
disjointed subset of the input rows.

User-defined aggregate functions

 40 Sybase IQ

Examples of such partitionable aggregates include:

• SUM, where the final SUM can be computed by performing a SUM for each disjoint
subset of the input rows and then performing a SUM over the sub-SUMs; and

• COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTs
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the
computation of that aggregate parallel. For aggregate UDFs, this parallel optimization can
be applied only if both the _next_subaggregate_extfn function pointer and the
_evaluate_superaggregate_extfn pointer are supplied.
The _reset_extfn function does not set the final result of the aggregation, and by definition,
has exactly one input argument value that is the same data type as the defined return value
of the aggregate UDF.
Access to the subaggregate input value is through the normal get_value callback function.
Direct communication between sub-aggregates and the superaggregate is impossible; the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share a context structure. Instead, individual sub-aggregates are treated exactly the
same as nonpartitioned aggregates. The independent super-aggregate sees a calling pattern
that looks like this:
_start_extfn
_reset_extfn
_next_subaggregate_extfn (repeated 0 to N times)
_evaluate_superaggregate_extfn
_finish_extfn

Or like this:
_start_extfn
_reset_extfn
_next_subaggregate_extfn (repeated 0 to N times)
_evaluate_superaggregate_extfn
_reset_extfn
_next_subaggregate_extfn (repeated 0 to N times)
_evaluate_superaggregate_extfn
_reset_extfn
_next_subaggregate_extfn (repeated 0 to N times)
_evaluate_superaggregate_extfn
_finish_extfn

If neither _evaluate_superaggregate_extfn or _next_subaggregate_extfn is supplied, then
the UDAF is restricted, and not allowed as a simple aggregate within a query block
containing GROUP BY CUBE or GROUP BY ROLLUP.

• _evaluate_superaggregate_extfn – The optional callback function pointer that works
with the _next_subaggregate_extfn to enable some usages as a simple aggregate to be
optimized through parallelization. _evaluate_superaggregate_extfn is called to return the
result of a partitioned aggregate. The result value is sent to the server using the normal
set_value callback function from the a_v3_extfn_aggregate_context structure.

User-defined aggregate functions

User-Defined Functions Guide 41

Aggregate UDF descriptor structure
The aggregate UDF descriptor structure has the following pieces:

• typedef struct a_v3_extfn_aggregate – The metadata descriptor for an aggregate UDF
function supplied by the library.

• _start_extfn – Required pointer to an initialization function for which the only argument
is a pointer to a_v3_extfn_aggregate_context. Typically, this is used to allocate some
structure and store its address in the _user_data field within the
a_v3_extfn_aggregate_context. _start_extfn is only ever called once per
a_v3_extfn_aggregate_context.
void (*_start_extfn)(a_v3_extfn_aggregate_context *);

• _finish_extfn – Required pointer to a shutdown function for which the only argument is a
pointer to a_v3_extfn_aggregate_context. Typically, this is used to deallocate some
structure whose address was stored within the _user_data field in the
a_v3_extfn_aggregate_context. _finish_extfn is only ever called once per
a_v3_extfn_aggregate_context.
void (*_finish_extfn)(a_v3_extfn_aggregate_context *);

• _reset_extfn – Required pointer to a start-of-new-group function, for which the only
argument is a pointer to a_v3_extfn_aggregate_context. Typically, this is used to reset
some values in the structure whose address was stashed within the _user_data field in the
a_v3_extfn_aggregate_context. _reset_extfn is called repeatedly.
void (*_reset_extfn)(a_v3_extfn_aggregate_context *);

• _next_value_extfn – Required function pointer to be called for each new input set of
argument values. The function does not set the result of the aggregation. Access to input
argument values are through the get_value callback function and, if necessary, through
repeated calls to the get_piece callback function, which is required only if piece_len is less
than total_len.
void (*_next_value_extfn)(a_v3_extfn_aggregate_context *cntxt,
void *args_handle);

• _evaluate_extfn – Required function pointer to be called to return the resulting aggregate
result value. _evaluate_extfn is sent to the server using the set_value callback function.
void (*_evaluate_extfn)(a_v3_extfn_aggregate_context *cntxt, void
*args_handle);

• _drop_value_extfn – Optional function pointer that is called for each input set of
argument values that has fallen out of a moving window frame. Do not use this function to
set the result of the aggregation. Access to input argument values are through the get_value
callback function and, if necessary. through repeated calls to the get_piece callback
function; however access is required only if piece_len is less than total_len. Set
_drop_value_extfn to the null pointer if:

• The aggregate cannot be used with a window frame.
• The aggregate is not reversible in some way.

User-defined aggregate functions

 42 Sybase IQ

• The user is not interested in optimal performance.

If this function is not supplied, and the user has specified a moving window, then each time
the window frame moves, the reset function is called and each row now within the window
is included by a call to the next_value function. Finally, the evaluate function is called.
However, if this function is supplied, each time the window frame moves, this drop_value
function is called for each row falling out of the window frame, then the next_value
function is called for each row that has just been added into the window frame. Finally, the
evaluate function is called to produce the aggregate result.
void (*_drop_value_extfn)(a_v3_extfn_aggregate_context *cntxt,
void *args_handle);

• _evaluate_cumulative_extfn – Optional function pointer to be called for each new input
set of argument values. If this function is supplied, and the usage is in a row-based window
frame that spans UNBOUNDED PRECEDING to CURRENT ROW, then this function is
called instead of next_value immediately followed by calling evaluate.
_evaluate_cumulative_extfn must set the result of the aggregation through the set_value
callback. Access to input argument values are through the get_value callback function and,
if necessary, through repeated calls to the get_piece callback function, which is only
required if piece_len is less than total_len.
void (*_evaluate_cumulative_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handle);

• _next_subaggregate_extfn – Optional callback function pointer that, with the
_evaluate_superaggregate_extfn function (and in some usages also with the
_drop_subaggregate_extfn function), enables some usages of the aggregate to be
optimized through parallel and partial results aggregation.
Some aggregates, when used as simple aggregates (in other words, not OLAP-style
aggregates with an OVER clause) can be partitioned by first producing a set of
intermediate aggregate results where each of the intermediate results is computed from a
disjoint subset of the input rows. Examples of such partitionable aggregates include:

• SUM, where the final SUM can be computed by performing a SUM for each disjoint
subset of the input rows and then performing a SUM over the sub-SUMs; and

• COUNT(*), where the final COUNT can be computed by performing a COUNT for
each disjoint subset of the input rows and then performing a SUM over the COUNTs
from each partition.

When an aggregate satisfies the above conditions, the server may choose to make the
computation of that aggregate parallel. For aggregate UDFs, this optimization can be
applied only if both the _next_subaggregate_extfn callback and the
_evaluate_superaggregate_extfn callback are supplied. This usage pattern does not
require _drop_subaggregate_extfn.
Similarly, if an aggregate can be used with a RANGE-based OVER clause, an optimization
can be applied if _next_subaggregate_extfn, _drop_subaggregate_extfn, and
_evaluate_superaggregate_extfn) functions are all supplied by the UDAF
implementation.
_next_subaggregate_extfn does not set the final result of the aggregation, and by
definition, has exactly one input argument value that is the same data type as the return

User-defined aggregate functions

User-Defined Functions Guide 43

value of the aggregate UDF. Access to the sub-aggregate input value is through the
get_value callback function and, if necessary, through repeated calls to the get_piece
callback function, which is required only if piece_len is less than total_len.
Direct communication between sub-aggregates and the super-aggregate is impossible, the
server handles all such communication. The sub-aggregates and the super-aggregate do
not share the context structure. Individual sub-aggregates are treated exactly the same as
nonpartitioned aggregates. Then the independent super-aggregate sees a calling pattern
that looks like this:
 _start_extfn
 _reset_extfn
 _next_subaggregate_extfn (repeated 0 to N times)
 _evaluate_superaggregate_extfn
 _finish_extfn

void (*_next_subaggregate_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handle);

• _drop_subaggregate_extfn – Optional callback function pointer that, together with
_next_subaggregate_extfn and _evaluate_superaggregate_extfn, enables some usages
involving RANGE-based OVER clauses to be optimized through a partial aggregation.
_drop_subaggregate_extfn is called whenever a set of rows sharing a common ordering
key value have collectively fallen out of a moving window. This optimization is applied
only if all three functions are provided by the UDF.
void (*_drop_subaggregate_extfn)(a_v3_extfn_aggregate_context
*cntxt, void *args_handle);

• _evaluate_superaggregate_extfn – Optional callback function pointer that, together
with _next_subaggregate_extfn (and in some cases also with _drop_subaggregate_extfn),
enables some usages to be optimized by running in parallel.
_evaluate_superaggregate_extfn is called, as described above, when it is time to return the
result of a partitioned aggregate. The result value is sent to the server using the set_value
callback function from the a_v3_extfn_aggregate_context structure:
void (*_evaluate_superaggregate_extfn)
(a_v3_extfn_aggregate_context *cntxt, void *args_handle);

• NULL fields – Initialize these fields to NULL:
void * reserved1_must_be_null;
void * reserved2_must_be_null;
void * reserved3_must_be_null;
void * reserved4_must_be_null;
void * reserved5_must_be_null;

• Status indicator bit field – A bit field containing indicators that allow the engine to
optimize the algorithm used to process the aggregate.
a_sql_uint32 indicators;

• _calculation_context_size – The number of bytes for the server to allocate for each UDF
calculation context. The server may allocate multiple calculation contexts during query
processing. The currently active group context is available in
a_v3_extfn_aggregate_context_user_calculation_context.

User-defined aggregate functions

 44 Sybase IQ

short _calculation_context_size;

• _calculation_context_alignment – Specifies the alignment requirement for the user's
calculation context. Valid values include 1, 2, 4, or 8.
short _calculation_context_alignment;

• External memory requirments – The following fields allow the optimizer to consider the
cost of externally allocated memory. With these values, the optimizer can consider the
degree to which multiple simultaneous calculations can be made. These counters should
be estimates based on a typical row or group, and should not be maximum values. If no
memory is allocated by the UDF, set these fields to zero.

• external_bytes_per_group – The amount of memory allocated to a group at the start of
each aggregate. Typically, this would be any memory allocated during the reset() call.

• external_bytes_per_row – The amount of memory allocated by the UDF for each row
of a group. Typically, the amount of memory allocated during next_value().
double external_bytes_per_group;
double external_bytes_per_row;

• Reserved fields for future use – Initialize these fields:
a_sql_uint64 reserved6_must_be_null;
a_sql_uint64 reserved7_must_be_null;
a_sql_uint64 reserved8_must_be_null;
a_sql_uint64 reserved9_must_be_null;
a_sql_uint64 reserved10_must_be_null;

• Closing syntax – Complete the descriptor with this syntax:
//---------- For Server Internal Use Only ----------
void * _for_server_internal_use;
} a_extfn_aggregate;

Calculation context
The _user_calculation_context field allows the server to concurrently execute calculations on
multiple groups of data.

A UDAF must keep intermediate counters for calculations as it is processing rows. The simple
model for managing these counters is to allocate memory at the start API function, store a
pointer to it in the aggregate context's _user_data field, then release the memory at the
aggregate's finish API. An alternative method, based on the _user_calculation_context field,
allows the server to concurrently execute calculations on multiple groups of data.

The _user_calculation_context field is a server-allocated memory pointer, created by the
server for each concurrent processing group. The server ensures that that the
_user_calculation_context always points to the correct calculation context for the group of
rows currently being processed. Between UDF API calls, depending on the data, the server
may allocate new _user_calculation_context values. The server may save and restore
calculation context areas to disk while processing a query.

The UDF stores all intermediate calculation values in this field. This illustrates a typical
usage:

User-defined aggregate functions

User-Defined Functions Guide 45

struct my_average_context
{
 int sum;
 int count;
};

reset(a_v3_aggregate_context *context)
{
 mycontext = (my_average_context *) context-
>_user_calculation_context;
 mycontext->count = 0;
 mycontext->sum = 0;
}

 next_value(a_v3_aggregate_context *context, void *args_handle)
{
 mycontext = (my_average_context *) context-
>_user_calculation_context;
 mycontext->count++;
 ..
}

In this model, the _user_data field can still be used, but no values relating to intermediate result
calculations can be stored there. The _user_calculation_context is NULL at both the start and
finish entry points.

To use the _user_calculation_context, to enable concurrent processing, the UDF must specify
the size and alignment requirements for its calculation context, and define a structure to hold
its values and set a_v3_extfn_aggregate._calculation_context_size to the sizeof() of that
structure.

The UDF must also specify the data alignment requirements of _user_calculation_context
through _calculation_context_alignment. If user_calculation_context memory contains only
a character byte array, no particular alignment is necessary, and you can specify an alignment
of 1. Likewise, double floating point values might require an 8-byte alignment. Alignment
requirements vary by platform and data type. Specifying a larger alignment than necessary
always works; however, using the smallest alignment is more memory-efficient.

UDAF context structure
The aggregate UDF context structure, a_v3_extfn_aggregate_context, has exactly the same
set of callback function pointers as the scalar UDF context structure.

In addition, it has a read/write _user_data pointer just like the scalar UDF context. It also has a
set of read-only data fields that describe the current usage and location. Each unique instance
of the UDF within a statement has one aggregate UDF context instance that is passed to each
of the functions specified within the aggregate UDF descriptor structure when they are called.
The aggregate context structure is defined as:

User-defined aggregate functions

 46 Sybase IQ

• typedef struct a_v3_extfn_aggregate_context – One created for each instance of an
external function referenced within a query. If used within a parallelized subtree within a
query, there is a separate context for parallel subtree.

• Callbacks available via the context – Common arguments to the callback routines
include:

• arg_handle – A handle to function instance and arguments provided by the server.
• arg_num – The argument number. Return values are 0..N.
• data – The pointer to argument data.

The context must call get_value before get_piece, but needs to call get_piece only if
piece_len is less than total_len.
short (SQL_CALLBACK *get_value)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value
);
short (SQL_CALLBACK *get_piece)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value,
 a_sql_uint32 offset
);

• Determining whether an argument is a constant – The UDF can ask whether a given
argument is a constant. This can be useful, for example where this allows work to be done
once at the first call to the _next_value function rather than for every call to the _next_value
function.
short (SQL_CALLBACK *get_value_is_constant)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 a_sql_uint32 * value_is_constant
);

• Returning a null value – To return a null value, set "data" to NULL in an_extfn_value.
The total_len field is ignored on calls to set_value, the data supplied becomes the value of
the argument if append is FALSE; otherwise, the data is appended to the current value of
the argument. It is expected that set_value is called with append=FALSE for an argument
before being called with append=TRUE for the same argument. The append field is
ignored for fixed-length data types (in other words, all numeric data types).
short (SQL_CALLBACK *set_value)(
 void * arg_handle,
 an_extfn_value *value,
 short append
);

• Determining whether the statement was interrupted – If a UDF entry point performs
work for an extended period of time (many seconds), then it should, if possible, call the
get_is_cancelled callback every second or two to see if the user has interrupted the current
statement. If the statement has been interrupted, a nonzero value is returned, and the UDF

User-defined aggregate functions

User-Defined Functions Guide 47

entry point should then immediately do a return. Eventually, the _finish_extfn function is
called to do any necessary cleanup, but no other UDF entry points are subsequently called.
 a_sql_uint32 (SQL_CALLBACK *get_is_cancelled)
(a_v3_extfn_aggregate_context * cntxt);

• Sending error messages – If a UDF entry point encounters some error that should result in
an error message being sent back to the user and the current statement being shut down, the
set_error callback routine should be called. set_error causes the current statement to roll
back; the user sees "Error from external UDF: <error_desc_string>," and the SQLCODE
is the negated form of <error_number>. After a call to set_error, the UDF entry point
immediately performs a return. Eventually, _finish_extfn is called to perform any
necessary cleanup, but no other UDF entry points are subsequently called.
void (SQL_CALLBACK *set_error)(
 a_v3_extfn_aggregate_context * cntxt,
 a_sql_uint32 error_number,
 // use error_number values >17000 & <100000
 const char * error_desc_string
);

• Writing messages to the message log – Messages longer than 255 bytes may be
truncated.
void (SQL_CALLBACK *log_message)(
 const char *msg,
 short msg_length
);

• Converting one data type to another – For input:

• an_extfn_value.data – Input data pointer.
• an_extfn_value.total_len – Length of input data.
• an_extfn_value.type – DT_ datatype of input.

For output:

• an_extfn_value.data – UDF-supplied output data pointer.
• an_extfn_value.piece_len – Maximum length of output data.
• an_extfn_value.total_len – Server set length of converted output.
• an_extfn_value.type – DT_ datatype of desired output.

short (SQL_CALLBACK *convert_value)(
 an_extfn_value *input,
 an_extfn_value *output
);

• Fields reserved for future use – These are reserved for future use:
void * reserved1;
void * reserved2;
void * reserved3;
void * reserved4;
void * reserved5;

• Data available from the context – This data pointer can be filled in by any usage with any
context data the external routine requires. The UDF allocates and deallocates this memory.

User-defined aggregate functions

 48 Sybase IQ

A single instance of _user_data is active for each statement. Do not use this memory for
intermediate result values.
void * _user_data;

• Currently active calculation context – UDFs should use this memory location to store
intermediate values that calculate the aggregate. This memory is allocated by the server
based on the size requested in the a_v3_extfn_aggregate. Intermediate calculations must
be stored in this memory, since the engine may perform simultaneous calculations over
more than one group. Before each UDF entry point, the server ensures that the correct
context data is active.
void * _user_calculation_context;

• Other available aggregate information – Available at all external function entry points,
including start_extfn. Zero indicates an unknown or not-applicable value. Estimated
average number of rows per partition or group

• a_sql_uint64 _max_rows_in_frame; – Calculates the maximum number of rows
defined in the window frame. For range-based windows, this indicates unique values.
Zero indicates an unknown or not-applicable value.

• a_sql_uint64 _estimated_rows_per_partition; – Displays the estimated average
number of rows per partition or group. Zero indicates an unknown or not-applicable
value.

• a_sql_uint32 _is_used_as_a_superaggregate; – Identifies whether this instance is a
normal aggregate or a superaggregate. Returns a result of zero if the instance is a
normal aggregate.

• Determining window specifications – Window specifications if a window is present on
the query:

• a_sql_uint32 _is_window_used; – Determines if the statement is windowed.
• a_sql_uint32 _window_has_unbounded_preceding; – A return value of zero

indicates the window does not have unbounded preceding.
• a_sql_uint32 _window_contains_current_row; – A return value of zero indicates

the window does not contain the current row.
• a_sql_uint32 _window_is_range_based; – If the return code is one, the window is

range-based. If the return code is zero, the window is row-based.
• Available at reset_extfn() calls – Returns the actual number of rows in current partition,

or zero for nonwindowed aggregate.
a_sql_uint64 _num_rows_in_partition;

• Available only at evaluate_extfn() calls for windowed aggregates – Currently evaluated
row number in partition (starting with 1). This is useful during the evaluation phase of
unbounded windows.
a_sql_uint64 _result_row_from_start_of_partition;

• Closing syntax – Complete the context with:

User-defined aggregate functions

User-Defined Functions Guide 49

//---------- For Server Internal Use Only ----------
 void * _for_server_internal_use;
} a_v3_extfn_aggregate_context;

UDAF example: my_sum definition
The "my_sum" example operates only on integers.

my_sum definition

Since my_sum, like SUM, can be used in any context, all the optimized optional entry points
have been supplied. In this example, the normal _evaluate_extfn function can also be used as
the _evaluate_superaggregate_extfn function.
#include "extfnapiv3.h"
#include <stdlib.h>
#include <assert.h>

// Simple aggregate UDF that adds up a set of
// integer arguments, and whenever asked returns
// the resulting big integer total. For int
// arguments, the only difference between this
// UDF and the SUM built-in aggregate is that this
// UDF will return NULL if there are no input rows.
//
// The start function creates a little structure for
// the running total, and the finish function then
// deallocates it.
//
// Since there are no aggregate usage restrictions
// for this UDAF, the corresponding SQL declaration
// will look like:
//
// CREATE AGGREGATE FUNCTION my_sum(IN arg1 INT)
// RETURNS BIGINT
// ON EMPTY INPUT RETURNS NULL
// EXTERNAL NAME 'my_integer_sum@libudfex'

typedef struct my_total {
 a_sql_int64 _total;
 a_sql_uint64 _num_nonnulls_seen;
} my_total;

extern "C"
void my_integer_sum_start(a_v3_extfn_aggregate_context *cntxt)
{
}

extern "C"
void my_integer_sum_finish(a_v3_extfn_aggregate_context *cntxt)
{
}

User-defined aggregate functions

 50 Sybase IQ

extern "C"
void my_integer_sum_reset(a_v3_extfn_aggregate_context *cntxt)
{
 my_total *cptr = (my_total *)cntxt->_user_calculation_context;
 cptr->_total = 0;
 cptr->_num_nonnulls_seen = 0;
}

extern "C"
void my_integer_sum_next_value(a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_int32 arg1;

 my_total *cptr = (my_total *)cntxt->_user_calculation_context;

 // Get the one argument, and if non-NULL then add it to the total
 //
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_int32 *)arg.data);
 cptr->_total += arg1;
 cptr->_num_nonnulls_seen++;
 }
}

extern "C"
void my_integer_sum_drop_value(a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_int32 arg1;
 my_total *cptr = (my_total *)cntxt->_user_calculation_context;

 // Get the one argument, and if non-NULL then subtract it from the
total
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_int32 *)arg.data);
 cptr->_total -= arg1;
 cptr->_num_nonnulls_seen--;
 }
}

extern "C"
void my_integer_sum_evaluate(a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value outval;
 my_total *cptr = (my_total *)cntxt->_user_calculation_context;

 // Set the output result value. If the inputs

User-defined aggregate functions

User-Defined Functions Guide 51

 // were all NULL, then set the result as NULL.
 //
 outval.type = DT_BIGINT;
 outval.piece_len = sizeof(a_sql_int64);
 if (cptr->_num_nonnulls_seen > 0) {
 outval.data = &cptr->_total;
 } else {
 outval.data = 0;
 }
 cntxt->set_value(arg_handle, &outval, 0);
}

extern "C"
void my_integer_sum_cum_evaluate(
 a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value outval;
 an_extfn_value arg;
 int arg1;
 my_total *cptr = (my_total *)cntxt->_user_calculation_context;

 // Get the one argument, and if non-NULL then add it into the
total.
 //
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_int32 *)arg.data);
 cptr->_total += arg1;
 cptr->_num_nonnulls_seen++;
 }

 // Then set the output result value. If the inputs
 // were all NULL, then set the result as NULL.
 //
 outval.type = DT_BIGINT;
 outval.piece_len = sizeof(a_sql_int64);
 if (cptr->_num_nonnulls_seen > 0) {
 outval.data = &cptr->_total;
 } else {
 outval.data = 0;
 }
 cntxt->set_value(arg_handle, &outval, 0);
}

extern "C"
void my_integer_sum_next_subagg_value(
 a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_int64 arg1;

 my_total *cptr = (my_total *)cntxt->_user_calculation_context;

User-defined aggregate functions

 52 Sybase IQ

 // Get the one argument, and if non-NULL then add it to the total
 //
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_int64 *)arg.data);
 cptr->_total += arg1;
 cptr->_num_nonnulls_seen++;
 }
}

extern "C"
void my_integer_sum_drop_subagg_value(
 a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_int64 arg1;

 my_total *cptr = (my_total *)cntxt->_user_calculation_context;

 // Get the one argument, and if non-NULL then subtract it from the
total
 //
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_int64 *)arg.data);
 cptr->_total -= arg1;
 cptr->_num_nonnulls_seen--;
 }
}

a_v3_extfn_aggregate my_integer_sum_descriptor =
{
 &my_integer_sum_start,
 &my_integer_sum_finish,
 &my_integer_sum_reset,
 &my_integer_sum_next_value,
 &my_integer_sum_evaluate,
 &my_integer_sum_drop_value,
 &my_integer_sum_cum_evaluate,
 &my_integer_sum_next_subagg_value,
 &my_integer_sum_drop_subagg_value,
 &my_integer_sum_evaluate,
 NULL, // reserved1_must_be_null
 NULL, // reserved2_must_be_null
 NULL, // reserved3_must_be_null
 NULL, // reserved4_must_be_null
 NULL, // reserved5_must_be_null
 0, // indicators
 (short)sizeof(my_total), // context size
 8, // context alignment
 0.0, //external_bytes_per_group
 0.0, // external bytes per row
 0, // reserved6_must_be_null
 0, // reserved7_must_be_null

User-defined aggregate functions

User-Defined Functions Guide 53

 0, // reserved8_must_be_null
 0, // reserved9_must_be_null
 0, // reserved10_must_be_null
 NULL // _for_server_internal_use
};

extern "C"
a_v3_extfn_aggregate *my_integer_sum()
{
 return &my_integer_sum_descriptor;
}

UDAF example: my_bit_xor definition
The "my_bit_xor" example is similar to the SA built-in BIT_XOR, except my_bit_xor
operates only on unsigned integers.

my_bit_xor definition

Because the input and the output data types are identical, use the normal _next_value_extfn
and _evaluate_extfn functions to accumulate sub-aggregate values and produce the super-
aggregate result.

#include "extfnapiv3.h"
#include <stdlib.h>
#include <assert.h>

// Generic aggregate UDF that exclusive-ORs a set of
// unsigned integer arguments, and whenever asked
// returns the resulting unsigned integer result.
//
// The start function creates a little structure for
// the running result, and the finish function then
// deallocates it.
//
// Since there are no aggregate usage restrictions
// for this UDAF, the corresponding SQL declaration
// will look like:
//
// CREATE AGGREGATE FUNCTION my_bit_xor(IN arg1 UNSIGNED
INT)
// RETURNS UNSIGNED INT
// ON EMPTY INPUT RETURNS NULL
// EXTERNAL NAME 'my_bit_xor@libudfex'

typedef struct my_xor_result {
 a_sql_uint64 _num_nonnulls_seen;
 a_sql_uint32 _xor_result;
} my_xor_result;

#if defined __cplusplus
extern "C" {
#endif

User-defined aggregate functions

 54 Sybase IQ

static void my_xor_start(a_v3_extfn_aggregate_context *cntxt)
{
}

static void my_xor_finish(a_v3_extfn_aggregate_context *cntxt)
{
}

static void my_xor_reset(a_v3_extfn_aggregate_context *cntxt)
{
 my_xor_result *cptr = (my_xor_result *)cntxt-
>_user_calculation_context;
 cptr->_xor_result = 0;
 cptr->_num_nonnulls_seen = 0;
}

static void my_xor_next_value(a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_uint32 arg1;

 my_xor_result *cptr = (my_xor_result *)cntxt-
>_user_calculation_context;

 // Get the one argument, and add it to the total
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_uint32 *)arg.data);
 cptr->_xor_result ^= arg1;
 cptr->_num_nonnulls_seen++;
 }
}

static void my_xor_drop_value(a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_uint32 arg1;
 my_xor_result *cptr = (my_xor_result *)cntxt-
>_user_calculation_context;

 // Get the one argument, and remove it from the total
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_uint32 *)arg.data);
 cptr->_xor_result ^= arg1;
 cptr->_num_nonnulls_seen--;
 }
}

static void my_xor_evaluate(a_v3_extfn_aggregate_context *cntxt,

User-defined aggregate functions

User-Defined Functions Guide 55

 void *arg_handle)
{
 an_extfn_value outval;
 my_xor_result *cptr = (my_xor_result *)cntxt-
>_user_calculation_context;

 outval.type = DT_UNSINT;
 outval.piece_len = sizeof(a_sql_uint32);
 if (cptr->_num_nonnulls_seen > 0) {
 outval.data = &cptr->_xor_result;
 } else {
 outval.data = 0;
 }
 cntxt->set_value(arg_handle, &outval, 0);
}

static void my_xor_cum_evaluate(a_v3_extfn_aggregate_context
*cntxt,
 void *arg_handle)
{
 an_extfn_value outval;
 an_extfn_value arg;
 a_sql_uint32 arg1;
 my_xor_result *cptr = (my_xor_result *)cntxt-
>_user_calculation_context;

 // Get the one argument, and include it in the result,
 // unless that input value is null.
 //
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data) {
 arg1 = *((a_sql_uint32 *)arg.data);
 cptr->_xor_result ^= arg1;
 cptr->_num_nonnulls_seen++;
 }

 // Then set the output result value
 outval.type = DT_UNSINT;
 outval.piece_len = sizeof(a_sql_uint32);
 if (cptr->_num_nonnulls_seen > 0) {
 outval.data = &cptr->_xor_result;
 } else {
 outval.data = 0;
 }
 cntxt->set_value(arg_handle, &outval, 0);
}

static a_v3_extfn_aggregate my_xor_descriptor =
 {
 &my_xor_start,
 &my_xor_finish,
 &my_xor_reset,
 &my_xor_next_value,
 &my_xor_evaluate,
 &my_xor_drop_value,

User-defined aggregate functions

 56 Sybase IQ

 &my_xor_cum_evaluate,
 &my_xor_next_value,
 &my_xor_drop_value,
 &my_xor_evaluate,
 NULL, // reserved1_must_be_null
 NULL, // reserved2_must_be_null
 NULL, // reserved3_must_be_null
 NULL, // reserved4_must_be_null
 NULL, // reserved5_must_be_null
 0, // indicators
 (short)sizeof(my_xor_result), // context size
 8, // context alignment
 0.0, // external_bytes_per_group
 0.0, // external bytes per row
 0, // reserved6_must_be_null
 0, // reserved7_must_be_null
 0, // reserved8_must_be_null
 0, // reserved9_must_be_null
 0, // reserved10_must_be_null
 NULL // _for_server_internal_use
 };

a_v3_extfn_aggregate *my_bit_xor()
{
 return &my_xor_descriptor;
}

#if defined __cplusplus
}
#endif

UDAF example: my_bit_or definition
The "my_bit_or" example is similar to the SA built-in BIT_OR, except my_bit_or operates
only on unsigned integers, and can be used only as a simple aggregate.

my_bit_or definition

The "my_bit_or" definition is somewhat simpler than the "my_bit_xor" example.
#include "extfnapiv3.h"
#include <stdlib.h>
#include <assert.h>

// A simple (non-OLAP) aggregate UDF that ORs a set
// of unsigned integer arguments, and whenever asked
// returns the resulting unsigned integer result.
//
// The start function creates a little structure for
// the running result, and the finish function then
// deallocates it.
//
// The aggregate usage restrictions for this UDAF
// only allow its use as a simple aggregate, so the
// corresponding SQL declaration will look like:

User-defined aggregate functions

User-Defined Functions Guide 57

//
// CREATE AGGREGATE FUNCTION my_bit_or(IN arg1 UNSIGNED INT)
// RETURNS UNSIGNED INT
// ON EMPTY INPUT RETURNS NULL
// OVER NOT ALLOWED
// EXTERNAL NAME 'my_bit_or@libudfex'

typedef struct my_or_result {
 a_sql_uint32 _or_result;
 a_sql_uint32 _non_null_seen;
} my_or_result;

#if defined __cplusplus
extern "C" {
#endif

static void my_or_start(a_v3_extfn_aggregate_context *cntxt)
{
}

static void my_or_finish(a_v3_extfn_aggregate_context *cntxt)
{
}

static void my_or_reset(a_v3_extfn_aggregate_context *cntxt)
{
 my_or_result *cptr = (my_or_result *)cntxt-
>_user_calculation_context;
 cptr->_or_result = 0;
 cptr->_non_null_seen = 0;
}

static void my_or_next_value(a_v3_extfn_aggregate_context *cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 a_sql_uint32 arg1;

 my_or_result *cptr = (my_or_result *)cntxt-
>_user_calculation_context;

 // Get the one argument, and add it to the total
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data)
 {
 arg1 = *((a_sql_uint32 *)arg.data);
 cptr->_or_result |= arg1;
 cptr->_non_null_seen = 1;
 }
}

static void my_or_evaluate(a_v3_extfn_aggregate_context *cntxt,

User-defined aggregate functions

 58 Sybase IQ

 void *arg_handle)
{
 an_extfn_value outval;
 my_or_result *cptr = (my_or_result *)cntxt-
>_user_calculation_context;

 outval.type = DT_UNSINT;
 outval.piece_len = sizeof(a_sql_uint32);
 if (cptr->_non_null_seen)
 {
 outval.data = &cptr->_or_result;
 }
 else
 {
 // Return null if no values seen
 outval.data = 0;
 }
 cntxt->set_value(arg_handle, &outval, 0);
}

static a_v3_extfn_aggregate my_or_descriptor =
{
 &my_or_start,
 &my_or_finish,
 &my_or_reset,
 &my_or_next_value,
 &my_or_evaluate,
 NULL, // drop_val_extfn
 NULL, // cume_eval,
 NULL, // next_subaggregate_extfn
 NULL, // drop_subaggregate_extfn
 NULL, // evaluate_superaggregate_extfn
 NULL, // reserved1_must_be_null
 NULL, // reserved2_must_be_null
 NULL, // reserved3_must_be_null
 NULL, // reserved4_must_be_null
 NULL, // reserved5_must_be_null
 0, // indicators
 (short)sizeof(my_or_result), // context size
 8, // context alignment
 0.0, //external_bytes_per_group
 0.0, // external bytes per row
 0, // reserved6_must_be_null
 0, // reserved7_must_be_null
 0, // reserved8_must_be_null
 0, // reserved9_must_be_null
 0, // reserved10_must_be_null
 NULL // _for_server_internal_use
};

extern "C"
a_v3_extfn_aggregate *my_bit_or()
{

User-defined aggregate functions

User-Defined Functions Guide 59

 return &my_or_descriptor;
}

#if defined __cplusplus
}
#endif

UDAF example: my_interpolate definition
The "my_interpolate" example is an OLAP-style UDAF that attempts to fill in NULL values
within a sequence by performing linear interpolation across any set of adjacent NULL values
to the nearest non-NULL value in each direction.

my_interpolate definition

To operate at a sensible cost my_interpolate must run using a fixed-width row-based window,
but the user can set the width of the window based on the maximum number of adjacent NULL
values expected. If the input at a given row is not NULL, the result for that row is the same as
the input value. This function takes a set of double precision floating point values and
produces a resulting set of doubles.

#include "extfnapiv3.h"
#include <stdlib.h>
#include <assert.h>

// MY_INTERPOLATE
//
// OLAP-style aggregate UDF that accepts a double precision
// floating point argument. If the current argument value is
// not NULL, then the result value is the same as the
// argument value. On the other hand, if the current row's
// argument value is NULL, then the result, where possible,
// will be the arithmetic interpolation across the nearest
// preceding and nearest following values that are not NULL.
// In all cases the result is also a double precision value.
//
// The start function creates a structure for maintaining the
// argument values within the window including their NULLness.
// The finish function then deallocates this structure.
//
// Since there are some strict aggregate usage restrictions
// for this aggregate (must be used with a row-based window
// frame that includes the current row), the corresponding
// SQL declaration will look like:
//
// CREATE AGGREGATE FUNCTION my_interpolate(IN arg1 DOUBLE)
// RETURNS DOUBLE
// OVER REQUIRED
// WINDOW FRAME REQUIRED
// RANGE NOT ALLOWED
// PRECEDING REQUIRED
// UNBOUNDED PRECEDING NOT ALLOWED
// FOLLOWING REQUIRED

User-defined aggregate functions

 60 Sybase IQ

// UNBOUNDED FOLLOWING NOT ALLOWED
// EXTERNAL NAME 'my_interpolate@libudfex'

typedef struct my_window {
 int _allocated_elem;
 int _first_used;
 int _next_insert_loc;
 int *_is_null;
 double *_dbl_val;
 int _num_rows_in_frame;
} my_window;

#if defined __cplusplus
extern "C" {
#endif

static void my_interpolate_reset(a_v3_extfn_aggregate_context
*cntxt)
{
 assert(cntxt->_user_data);
 my_window *cptr = (my_window *)cntxt->_user_data;

 cptr->_first_used = 0;
 cptr->_next_insert_loc = 0;
 cptr->_num_rows_in_frame = 0;
 for (int i=0; i<cptr->_allocated_elem; i++) {
 cptr->_is_null[i] = 1;
 }
}

static void my_interpolate_start(a_v3_extfn_aggregate_context
*cntxt)
{
 my_window *cptr = (my_window *)cntxt->_user_data;

 // Make sure function was defined correctly
 if (!cntxt->_is_window_used)
 {
 cntxt->set_error(cntxt, 20001, "Function requires window");
 return;
 }
 if (cntxt->_window_has_unbounded_preceding ||
 cntxt->_window_has_unbounded_following)
 {
 cntxt->set_error(cntxt, 20002, "Window cannot be unbounded");
 return;
 }
 if (cntxt->_window_is_range_based)
 {
 cntxt->set_error(cntxt, 20003, "Window must be row based");
 return;

User-defined aggregate functions

User-Defined Functions Guide 61

 }

 if (!cptr) {
 //
 cptr = (my_window *)malloc(sizeof(my_window));
 if (cptr) {
 cptr->_is_null = 0;
 cptr->_dbl_val = 0;
 cptr->_num_rows_in_frame = 0;
 cptr->_allocated_elem = (int)cntxt->_max_rows_in_frame;
 cptr->_is_null = (int *)malloc(cptr->_allocated_elem
 * sizeof(int));
 cptr->_dbl_val = (double *)malloc(cptr->_allocated_elem
 * sizeof(double));
 cntxt->_user_data = cptr;
 }
 }
 if (!cptr || !cptr->_is_null || !cptr->_dbl_val) {
 // Terminate this query
 cntxt->set_error(cntxt, 20000, "Unable to allocate memory");
 return;
 }
 my_interpolate_reset(cntxt);
}

static void my_interpolate_finish(a_v3_extfn_aggregate_context
*cntxt)
{
 if (cntxt->_user_data) {
 my_window *cptr = (my_window *)cntxt->_user_data;
 if (cptr->_is_null) {
 free(cptr->_is_null);
 cptr->_is_null = 0;
 }
 if (cptr->_dbl_val) {
 free(cptr->_dbl_val);
 cptr->_dbl_val = 0;
 }
 free(cntxt->_user_data);
 cntxt->_user_data = 0;
 }
}

static void my_interpolate_next_value(a_v3_extfn_aggregate_context
*cntxt,
 void *arg_handle)
{
 an_extfn_value arg;
 double arg1;
 my_window *cptr = (my_window *)cntxt->_user_data;

 // Get the one argument, and stash its value
 // within the rotating window arrays
 //

User-defined aggregate functions

 62 Sybase IQ

 int curr_cell_num = cptr->_next_insert_loc % cptr-
>_allocated_elem;
 if (cntxt->get_value(arg_handle, 1, &arg) && arg.data != NULL) {
 arg1 = *((double *)arg.data);
 cptr->_dbl_val[curr_cell_num] = arg1;
 cptr->_is_null[curr_cell_num] = 0;
 } else {
 cptr->_is_null[curr_cell_num] = 1;
 }

 // Then increment the insertion location and number of rows in
frame
 cptr->_next_insert_loc = ((cptr->_next_insert_loc + 1)
 % cptr->_allocated_elem);
 cptr->_num_rows_in_frame++;
}

static void my_interpolate_drop_value(a_v3_extfn_aggregate_context
*cntxt,
 void * /*arg_handle*/)
{
 my_window *cptr = (my_window *)cntxt->_user_data;

 // Drop one value from the window by incrementing past it and
 // decrement the number of rows in the frame
 cptr->_first_used = ((cptr->_first_used + 1) % cptr-
>_allocated_elem);
 cptr->_num_rows_in_frame--;
}

static void my_interpolate_evaluate(a_v3_extfn_aggregate_context
*cntxt,
 void *arg_handle)
{

 an_extfn_value outval;
 my_window *cptr = (my_window *)cntxt->_user_data;
 double result;
 int result_is_null = 1;
 double preceeding_value;
 int preceeding_value_is_null = 1;
 double preceeding_distance = 0;
 double following_value;
 int following_value_is_null = 1;
 double following_distance = 0;
 int j;

 // Determine which cell is the current cell
 int curr_cell_num =
 ((int)(cntxt->_result_row_from_start_of_partition-1))%cptr-
>_allocated_elem;
 int tmp_cell_num;

 int result_row_offset_from_start_of_frame = cptr->_first_used <=

User-defined aggregate functions

User-Defined Functions Guide 63

curr_cell_num ?
 (curr_cell_num - cptr->_first_used) :
 (curr_cell_num + cptr->_allocated_elem - cptr-
>_first_used);

 // Compute the result value
 if (cptr->_is_null[curr_cell_num] == 0) {
 //
 // If the current rows input value is not NULL, then there is
 // no need to interpolate, just use that input value.
 //
 result = cptr->_dbl_val[curr_cell_num];
 result_is_null = 0;
 //
 } else {
 //
 // If the current rows input value is NULL, then we do
 // need to interpolate to find the correct result value.
 // First, find the nearest following non-NULL argument
 // value after the current row.
 //
 int rows_following = cptr->_num_rows_in_frame -
 result_row_offset_from_start_of_frame - 1;
 for (j=0; j<rows_following; j++) {
 tmp_cell_num = ((curr_cell_num + j + 1) % cptr-
>_allocated_elem);
 if (cptr->_is_null[tmp_cell_num] == 0) {
 following_value = cptr->_dbl_val[tmp_cell_num];
 following_value_is_null = 0;
 following_distance = j + 1;
 break;
 }
 }
 // Second, find the nearest preceeding non-NULL
 // argument value before the current row.
 //
 int rows_before = result_row_offset_from_start_of_frame;
 for (j=0; j<rows_before; j++) {
 tmp_cell_num = ((curr_cell_num + cptr->_allocated_elem - j - 1)
 % cptr->_allocated_elem);
 if (cptr->_is_null[tmp_cell_num] == 0) {
 preceeding_value = cptr->_dbl_val[tmp_cell_num];
 preceeding_value_is_null = 0;
 preceeding_distance = j + 1;
 break;
 }
 }
 // Finally, see what we can come up with for a result value
 //
 if (preceeding_value_is_null && !following_value_is_null) {
 //
 // No choice but to mirror the nearest following non-NULL value
 // Example:

User-defined aggregate functions

 64 Sybase IQ

 //
 // Inputs: NULL Result of my_interpolate: 40.0
 // NULL 40.0
 // 40.0 40.0
 //
 result = following_value;
 result_is_null = 0;
 //
 } else if (!preceeding_value_is_null && following_value_is_null)
{
 //
 // No choice but to mirror the nearest preceeding non-NULL
value
 // Example:
 //
 // Inputs: 10.0 Result of my_interpolate: 10.0
 // NULL 10.0
 //
 result = preceeding_value;
 result_is_null = 0;
 //
 } else if (!preceeding_value_is_null && !following_value_is_null)
{
 //
 // Here we get to do real interpolation based on the
 // nearest preceeding non-NULL value, the nearest following
 // non-NULL value, and the relative distances to each.
 // Examples:
 //
 // Inputs: 10.0 Result of my_interpolate: 10.0
 // NULL 20.0
 // NULL 30.0
 // 40.0 40.0
 //
 // Inputs: 10.0 Result of my_interpolate: 10.0
 // NULL 25.0
 // 40.0 40.0
 //
 result = (preceeding_value
 + ((following_value - preceeding_value)
 * (preceeding_distance
 / (preceeding_distance +
following_distance))));
 result_is_null = 0;
 }
 }

 // And last, pass the result value out
 outval.type = DT_DOUBLE;
 outval.piece_len = sizeof(double);
 if (result_is_null) {
 outval.data = 0;
 } else {
 outval.data = &result;
 }
 cntxt->set_value(arg_handle, &outval, 0);

User-defined aggregate functions

User-Defined Functions Guide 65

}

static a_v3_extfn_aggregate my_interpolate_descriptor =
 {
 &my_interpolate_start,
 &my_interpolate_finish,
 &my_interpolate_reset,
 &my_interpolate_next_value, //(timeseries_expression)
 &my_interpolate_evaluate,
 &my_interpolate_drop_value,
 NULL, // cume_eval,
 NULL, // next_subaggregate_extfn
 NULL, // drop_subaggregate_extfn
 NULL, // evaluate_superaggregate_extfn
 NULL, // reserved1_must_be_null
 NULL, // reserved2_must_be_null
 NULL, // reserved3_must_be_null
 NULL, // reserved4_must_be_null
 NULL, // reserved5_must_be_null
 0, // indicators
 0, // context size
 0, // context alignment
 0.0, //external_bytes_per_group
 (double)sizeof(double), // external bytes per row
 0, // reserved6_must_be_null
 0, // reserved7_must_be_null
 0, // reserved8_must_be_null
 0, // reserved9_must_be_null
 0, // reserved10_must_be_null
 NULL // _for_server_internal_use
 };

a_v3_extfn_aggregate *my_interpolate()
 { return &my_interpolate_descriptor; }

#if defined __cplusplus
 }
#endif

User-defined aggregate functions

 66 Sybase IQ

UDF callback functions and calling patterns

Calling patterns are steps the functions perform as results are gathered.

UDF and UDAF callback functions
The set of callback functions supplied by the engine through the a_v3_extfn_scalar_context
structure and used within the user's UDF functions include:

• get_value – The function used within an evaluation method to retrieve the value of each
input argument. For narrow argument data types (< 256 bytes), a call to get_value is
sufficient to retrieve the entire argument value. For wider argument data types, if the
piece_len field within the an_extfn_value structure passed to this callback comes back
with a value less than the value in the total_len field, then the get_piece callback, below,
must be used to retrieve the rest of the input value.

• get_piece – The function used to retrieve subsequent fragments of a long argument input
value.

• get_is_constant – A function that can be used to determine whether the specified input
argument value is a constant. This can be useful for optimizing a UDF, for example, where
work can be performed once during the first call to the _evaluate_extfn function, rather
than for every evaluation call.

• set_value – The function used within an evaluation function to tell the server the result
value of the UDF for this call. If the result data type is narrow, then one call to set_value is
sufficient. However, if the result data value is wide, then multiple calls to set_value are
required to pass the entire value, and the append argument to the callback should be true for
each fragment except the last. To return a NULL result, the UDF should set the data field
within the result value's an_extfn_value structure to the null pointer.

• get_is_cancelled – A function that can be used to determine whether the statement has
been cancelled. If a UDF entry point is performing work for an extended period of time
(many seconds), then it should, if possible, call the get_is_cancelled callback every second
or two to see if the user has interrupted the current statement. The return value is 0 if the
statement has not been interrupted.

• set_error – A function that can be used to communicate an error back to the server, and
eventually to the user. Call this callback routine if a UDF entry point encounters an error
that should result in an error message being sent back to the user. When called, set_error
causes the current statement to be rolled back and the user receives an error where the
message text is “Error from external UDF: error_desc_string” and the SQLCODE is the
negated form of the supplied error_number. To avoid collisions with existing errors, UDFs
should use error_number values between 17000 and 99999. The maximum length of
“error_desc_string” is limited to 140 characters according to existing IQ internals.

UDF callback functions and calling patterns

User-Defined Functions Guide 67

• log_message – The function used to send a message to the server's message log. The string
must be a printable text string no longer than 255 bytes.

• convert_value – The function allows data conversion between data types. The primary use
is the conversion between DT_DATE, DT_TIME, and DT_TIMESTAMP, and
DT_TIMESTAMP_STRUCT. An input and output an_extfn_value is passed to the
function.

Scalar UDF calling pattern
In general, the expected calling pattern for these supplied function pointers for a scalar UDF
look like this:

_start_extfn(if supplied)
_evaluate_extfn (repeated 0 to numerous times)
_finish_extfn(if supplied)

Aggregate UDF calling patterns
The calling patterns for the user-supplied aggregate UDF functions are more complex and
varied than the scalar calling patterns. This section shows example calling sequences that IQ
UDAFs encounter for different SQL statements. These examples use this table definition:

create table t (a int, b int, c int)
insert into t values (1, 1, 1)
insert into t values (2, 1, 1)
insert into t values (3, 1, 1)
insert into t values (4, 2, 1)
insert into t values (5, 2, 1)
insert into t values (6, 2, 1)

The following abbreviation is used:

RR = a_v3_extfn_aggregate_context. _result_row_offset_from_start_of_partition –
This value indicates the current row number inside the current partition for which a value is
calculated. The value is set during windowed aggregates and is intended to be used during the
evaluation step of unbounded windows; it is available at all evaluate calls.

Simple aggregate ungrouped
The simple aggregate ungrouped calling pattern totals the input values of all rows and
produces a result.

Query

select my_sum(a) from t

UDF callback functions and calling patterns

 68 Sybase IQ

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=1
_next_value_extfn(cntxt, args) -- input a=2
_next_value_extfn(cntxt, args) -- input a=3
_next_value_extfn(cntxt, args) -- input a=4
_next_value_extfn(cntxt, args) -- input a=5
_next_value_extfn(cntxt, args) -- input a=6
_evaluate_extfn(cntxt, args) -- returns 21
_finish_extfn(cntxt)

Result

my_sum(a)
21

Simple aggregate grouped
The simple aggregate grouped calling pattern totals the input values of all rows in the group
and produces a result. _reset_extfn identifies the beginning of a group.

Query

select b, my_sum(a) from t group by b order by b

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=1
_next_value_extfn(cntxt, args) -- input a=2
_next_value_extfn(cntxt, args) -- input a=3
_evaluate_extfn(cntxt, args) -- returns 6
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=4
_next_value_extfn(cntxt, args) -- input a=5
_next_value_extfn(cntxt, args) -- input a=6
_evaluate_extfn(cntxt, args) -- returns 15
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 6
2, 15

OLAP-style aggregate calling pattern with unbounded window
Partitioning on “b” creates the same partitions as grouping on “b”. An unbounded window
causes the “a” value to be evaluated for each row of the partition. Because this is an unbounded
query, all values are fed to the UDF first, followed by an evaluation cycle. The

UDF callback functions and calling patterns

User-Defined Functions Guide 69

_window_has_unbounded_preceding and _window_has_unbounded_following context
indicators are set to 1.

Query

select b, my_sum(a) over (partition by b rows between
unbounded preceding and
unbounded following)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) rr=1 returns 6
_evaluate_extfn(cntxt, args) rr=2 returns 6
_evaluate_extfn(cntxt, args) rr=3 returns 6
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=4
_next_value_extfn(cntxt, args) input a=5
_next_value_extfn(cntxt, args) input a=6
_evaluate_extfn(cntxt, args) rr=1 returns 15
_evaluate_extfn(cntxt, args) rr=2 returns 15
_evaluate_extfn(cntxt, args) rr=3 returns 15
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 6
1, 6
1, 6
2, 15
2, 15
2, 15

OLAP-style unoptimized cumulative window aggregate
If _evaluate_cumulative_extfn is not supplied, this cumulative sum is evaluated through the
following calling pattern, which is less efficient than _evaluate_cumulative_extfn.

Query

select b, my_sum(a) over (partition by b
rows between unbounded preceding and current row)
from t
order by b

UDF callback functions and calling patterns

 70 Sybase IQ

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=1
_evaluate_extfn(cntxt, args) -- returns 1
_next_value_extfn(cntxt, args) -- input a=2
_evaluate_extfn(cntxt, args) -- returns 3
_next_value_extfn(cntxt, args) -- input a=3
_evaluate_extfn(cntxt, args) -- returns 6
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=4
_evaluate_extfn(cntxt, args) -- returns 4
_next_value_extfn(cntxt, args) -- input a=5
_evaluate_extfn(cntxt, args) -- returns 9
_next_value_extfn(cntxt, args) -- input a=6
_evaluate_extfn(cntxt, args) -- returns 15
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 1
1, 3
1, 6
2, 4
2, 9
2, 15

OLAP-style optimized cumulative window aggregate
If _evaluate_cumulative_extfn is supplied, this cumulative sum is evaluated where the
next_value/evaluate sequence is combined into a single _evaluate_cumulative_extfn call for
each row within each partition.

Query

select b, my_sum(a) over (partition by b rows between unbounded
preceding and current row)
from t
order by b

Calling pattern

_start_extnfn(cntxt)
_reset_extfn(cntxt)
_evaluate_cumulative_extfn(cntxt, args) -- input a=1 returns 1
_evaluate_cumulative_extfn(cntxt, args) -- input a=2 returns 3
_evaluate_cumulative_extfn(cntxt, args) -- input a=3 returns 6
_reset_extfn(cntxt)
_evaluate_cumulative_extfn(cntxt, args) -- input a=4 returns 4
_evaluate_cumulative_extfn(cntxt, args) -- input a=5 returns 9
_evaluate_cumulative_extfn(cntxt, args) -- input a=6 returns 15
_finish_extfn(cntxt)

UDF callback functions and calling patterns

User-Defined Functions Guide 71

Result

b, my_sum(a)
1, 1
1, 3
1, 6
2, 4
2, 9
2, 15

OLAP-style unoptimized moving window aggregate
If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
this significantly less efficient than using _drop_value_extfn:

Query

select b, my_sum(a) over (partition by b rows between 1 preceding and
current row)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_evaluate_extfn(cntxt, args) returns 1
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_evaluate_extfn(cntxt, args) returns 3
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=2
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) returns 5
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=4
_evaluate_extfn(cntxt, args) returns 4
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=4
_next_value_extfn(cntxt, args) input a=5
_evaluate_extfn(cntxt, args) returns 9
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=5
_next_value_extfn(cntxt, args) input a=6
_evaluate_extfn(cntxt, args) returns 11
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 1
1, 3
1, 5

UDF callback functions and calling patterns

 72 Sybase IQ

2, 4
2, 9
2, 11

OLAP-style optimized moving window aggregate
If the _drop_value_extfn function was supplied, this moving window sum is evaluated using
this calling pattern, which is more efficient than using _drop_value_extfn:

Query

select b, my_sum(a) over (partition by b rows between 1 preceding and
current row)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=1
_evaluate_extfn(cntxt, args) -- returns 1
_next_value_extfn(cntxt, args) -- input a=2
_evaluate_extfn(cntxt, args) -- returns 3
_drop_value_extfn(cntxt) -- input a=1
_next_value_extfn(cntxt, args) -- input a=3
_evaluate_extfn(cntxt, args) -- returns 5
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) -- input a=4
_evaluate_extfn(cntxt, args) -- returns 4
_next_value_extfn(cntxt, args) -- input a=5
_evaluate_extfn(cntxt, args) -- returns 9
_drop_value_extfn(cntxt) -- input a=4
_next_value_extfn(cntxt, args) -- input a=6
_evaluate_extfn(cntxt, args) -- returns 11
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 1
1, 3
1, 5
2, 4
2, 9
2, 11

UDF callback functions and calling patterns

User-Defined Functions Guide 73

OLAP-style unoptimized moving window following aggregate
If _drop_value_extfn function is not supplied, this moving window sum is evaluated through
the following calling pattern. This case is similar to the previous moving window example, but
the row being evaluated is not the last row given by next value function.

Query

select b, my_sum(a) over (partition by b rows between 1 preceding and
1 following)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_evaluate_extfn(cntxt, args) returns 3
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) returns 6
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=2
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) returns 5
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=4
_next_value_extfn(cntxt, args) input a=5
_evaluate_extfn(cntxt, args) returns 9
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=4
_next_value_extfn(cntxt, args) input a=5
_next_value_extfn(cntxt, args) input a=6
_evaluate_extfn(cntxt, args) returns 15
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=5
_next_value_extfn(cntxt, args) input a=6
_evaluate_extfn(cntxt, args) returns 11
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 3
1, 6
1, 5
2, 9
2, 15
2, 11

UDF callback functions and calling patterns

 74 Sybase IQ

OLAP-style optimized moving window following aggregate
If _drop_value_extfn function is supplied, this moving window sum is evaluated through the
following calling pattern. Again, this case is similar to the previous moving window example,
but the row being evaluated is not the last row given by next value function.

Query

select b, my_sum(a) over (partition by b rows between 1 preceding and
1 following)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_evaluate_extfn(cntxt, args) returns 3
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) returns 6
_dropvalue_extfn(cntxt) input a=1
_evaluate_extfn(cntxt, args) returns 5
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=4
_next_value_extfn(cntxt, args) input a=5
_evaluate_extfn(cntxt, args) returns 9
_next_value_extfn(cntxt, args) input a=6
_evaluate_extfn(cntxt, args) returns 15
_dropvalue_extfn(cntxt) input a=4
_evaluate_extfn(cntxt, args) returns 11
_finish_extfn(cntxt)

Result

b, my_sum(a)
1, 3
1, 6
1, 5
2, 9
2, 15
2, 11

OLAP-style unoptimized moving window without current
Assume the UDF my_sum works like the built-in SUM. If _drop_value_extfn function is not
supplied, this moving window count is evaluated through the following calling pattern. This

UDF callback functions and calling patterns

User-Defined Functions Guide 75

case is similar to the previous moving window examples, but the current row is not part of the
window frame.

Query

select b, my_sum(a) over (rows between 3 preceding and 1 preceding)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_evaluate_extfn(cntxt, args) returns NULL
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_evaluate_extfn(cntxt, args) returns 1
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_evaluate_extfn(cntxt, args) returns 3
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=1
_next_value_extfn(cntxt, args) input a=2
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) returns 6
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=2
_next_value_extfn(cntxt, args) input a=3
_next_value_extfn(cntxt, args) input a=4
_evaluate_extfn(cntxt, args) returns 9
_reset_extfn(cntxt)
_next_value_extfn(cntxt, args) input a=3
_next_value_extfn(cntxt, args) input a=4
_next_value_extfn(cntxt, args) input a=5
_evaluate_extfn(cntxt, args) returns 12
_finish_extfn(cntxt)

Result

 b my_sum(a)
 ----------- -------------
 1 NULL
 1 1
 1 3
 2 6
 2 9
 2 12

UDF callback functions and calling patterns

 76 Sybase IQ

OLAP-style optimized moving window without current
If _drop_value_extfn function is supplied, this moving window count is evaluated through the
following calling pattern. This case is similar to the previous moving window examples, but
the current row is not part of the window frame.

Query

select b, my_sum(a) over (rows between 3 preceding and 1 preceding)
from t

Calling pattern

_start_extfn(cntxt)
_reset_extfn(cntxt)
_evaluate_extfn(cntxt, args) returns NULL
_next_value_extfn(cntxt, args) input a=1
_evaluate_extfn(cntxt, args) returns 1
_next_value_extfn(cntxt, args) input a=2
_evaluate_extfn(cntxt, args) returns 3
_next_value_extfn(cntxt, args) input a=3
_evaluate_extfn(cntxt, args) returns 6
_dropvalue_extfn(cntxt) input a=1
_next_value_extfn(cntxt, args) input a=4
_evaluate_extfn(cntxt, args) returns 9
_dropvalue_extfn(cntxt) input a=2
_next_value_extfn(cntxt, args) input a=5
_evaluate_extfn(cntxt, args) returns 12
_finish_extfn(cntxt)

Result

 b my_sum(a)
 ---------- -------------
 1 NULL
 1 1
 1 3
 2 6
 2 9
 2 12

UDF callback functions and calling patterns

User-Defined Functions Guide 77

UDF callback functions and calling patterns

 78 Sybase IQ

UDF specific functions and statements

User-defined functions use specific statements and functions. Learn to create function
prototypes, and the syntax and usage of the statements.

External function prototypes
Define the API by a header file named extfnapiv3.h, in the subdirectory of your Sybase IQ
installation directory. This header file handles the platform-dependent features of external
function prototypes.

To notify the database server that the library is not written using the old API, provide a
function as follows:

uint32 extfn_use_new_api()

This function returns an unsigned 32-bit integer. If the return value is nonzero, the database
server assumes that you are using the new API.

If the DLL does not export this function, the database server assumes that the old API is in use.
When using the new API, the returned value must be the API version number defined in
extfnapi.v3h.

Each library should implement and export this function as follows:

unsigned int extfn_use_new_api(void)
 {
 return EXTFN_V3_API;
 }

The presence of this function, and that it returns EXTFN_V3_API informs the IQ engine that
the library contains UDFs written to the version 3 API documented in this book.

Function prototypes

The name of the function must match that referenced in the CREATE PROCEDURE or
CREATE FUNCTION statement. Declare the function as:

void function-name (an_extfn_api *api, void *argument-handle)

The function must return void, and must take as arguments a structure used to pass the
arguments, and a handle to the arguments provided by the SQL procedure.

The an_extfn_api structure has this form:

typedef struct an_extfn_api {
short (SQL_CALLBACK *get_value)(
 void * arg_handle,
 a_sql_uint32 arg_num,

UDF specific functions and statements

User-Defined Functions Guide 79

 an_extfn_value *value
);
 short (SQL_CALLBACK *get_piece)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value,
 a_sql_uint32 offset
);
 short (SQL_CALLBACK *set_value)(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value
 short append
);
void (SQL_CALLBACK *set_cancel)(
 void * arg_handle,
 void * cancel_handle
);
} an_extfn_api;

The an_extfn_value structure has this form:

typedef struct an_extfn_value {
void * data;
 a_sql_uint32 piece_len;
 union {
 a_sql_uint32 total_len;
 a_sql_uint32 remain_len;
} len;
 a_sql_data_type type;
} an_extfn_value;

Notes

Calling get_value on an OUT parameter returns the data type of the argument, and returns data
as NULL.

The get_piece function for any given argument can be called only immediately after the
get_value function for the same argument,

To return NULL, set data to NULL in an_extfn_value.

The append field of set_value determines whether the supplied data replaces (false) or
appends to (true) the existing data. You must call set_value with append=FALSE before
calling it with append=TRUE for the same argument. The append field is ignored for fixed-
length data types.

The header file itself contains some additional notes.

UDF specific functions and statements

 80 Sybase IQ

Finance specific functions
If you have RAP – The Trading Edition™: Enterprise, you can use these user-defined
aggregate functions for financial analysis:

• ts_arma_ar
• ts_arma_const
• ts_arma_ma
• ts_autocorrelation
• ts_auto_uni_ar
• ts_box_cox_xform
• ts_difference
• ts_estimate_missing
• ts_lack_of_fit
• ts_lack_of_fit_p
• ts_max_arma_ar
• ts_max_arma_const
• ts_max_arma_ma
• ts_max_arma_likelihood
• ts_outlier_identification
• ts_partial_autocorrelation
• ts_vwap

For detailed information on these functions, see Reference: Building Blocks, Tables, and
Procedures.

See User-defined aggregate functions on page 33 for information on syntax, parameters, and
usage of the user-defined aggregate functions.

Managing external libraries
External libraries are loaded by the server the first time a UDF that requires it is invoked. A
loaded library remains loaded by the server for the life of the server once it has been loaded
after first being needed. It is not loaded when a CREATE FUNCTION call is made, nor is it
automatically unloaded when a DROP FUNCTION call is made.

If the library version must be updated, the dbo.sa_external_library_unload procedure
forces the library to be unloaded without restarting the server. The call to unload the external
library will only be successful if the library in question is not currently in use. The procedure
takes one optional parameter, a long varchar, that specifies the name of the library to be
unloaded. If no parameter is specified, all external libraries not in use are unloaded. The syntax
for unloading an external function library.

UDF specific functions and statements

User-Defined Functions Guide 81

Note: You must unload existing libraries from a running Sybase IQ server before replacing the
dynamically linkable library. Failure to unload the library can result in a server crash. Before
replacing a dynamically linkable library, either shutdown the Sybase IQ server or use the
sa_external_library_unload function to unload the library.

call sa_external_library_unload('library.dll')

If a registered function uses a complete path, for example '/abc/def/library.dll', unregister the
function or the library will not be unloaded.

call sa_external_library_unload('/abc/def/library.dll')

Controlling error checking and call tracing
The external_UDF_execution_mode option controls the amount of error checking and call
tracing that is performed when statements involving external V3 user-defined functions are
evaluated.

You can use external_UDF_execution_mode during development of a UDF to aid in
debugging while you are developing UDFs.

Allowed values

0, 1, 2

Default value

0

Scope

Can be set as public, temporary, or user

Description

When set to 0, the default, external UDFs are evaluated in a manner that will optimize the
performance of statements using UDFs.

When set to 1, external UDFs are evaluated to validate the information passed back and forth
to each UDF function.

When set to 2, external UDFs are evaluated to not only validate the information passed back
and forth to the UDF, but also to log, in the iqmsg file, every call to the functions provided by
the UDFs and every callback from those functions back into the server.

UDF specific functions and statements

 82 Sybase IQ

Index
A
aCC

HP-UX 16
Itanium 16

aggregate
calculation context 45
context structure 46
creating user-defined function 12
descriptor structure 42

aggregate functions
declaring 33
defining 39
financial 81
my_bit_or example 37, 57
my_bit_xor example 37, 54
my_interopolate example 37, 60
my_sum example 36, 50

AIX
PowerPC 16
xIC 16

API
declaring version 79
external functions 79

audience
Sybase IQ 1

B
BIGINT data type 18
BINARY () data type 18
BIT data type 20
building

shared libraries 15–18

C
C/C++

restrictions 13
calculation

aggregate context 45
call tracing

configuring 82
calling pattern

aggregate 68
aggregate with unbounded window 69
optimized cumulative moving window

aggregate 73
optimized cumulative window aggregate 71
optimized moving window following

aggregate 75
optimized moving window without current 77
scalar syntax 68
simple aggregate grouped 69
simple aggregate ungrouped 68
unoptimized cumulative moving window

aggregate 72
unoptimized cumulative window aggregate 70
unoptimized moving window following

aggregate 74
unoptimized moving window without current

75
CHAR() data type 18
compile

switches 15–18
context

aggregate structure 46
scalar structure 26

conventions
documentation 5, 6
syntax 5
typographic 6

CREATE AGGREGATE FUNCTION statement
syntax 11, 33

CREATE FUNCTION statement
syntax 11, 13, 21

creating
aggregate user-defined function 12
scalar user-defined function 11
user-defined functions 11

cumulative window aggregate
OLAP-style optimized calling pattern 71
OLAP-style unoptimized calling pattern 70

D
data types

supported 18
unsupported 20

Index

User-Defined Functions Guide 83

databases
sample 7

DECIMAL(,) data type 20
declaration

aggregate 33
aggregate my_bit_or example 37
aggregate my_bit_xor example 37
aggregate my_interopolate example 37
aggregate my_sum example 36
scalar 21
scalar my_plus example 22
scalar my_plus_counter example 24

declaring
API version 79

definition
aggregate functions 39
aggregate my_bit_or example 57
aggregate my_bit_xor example 54
aggregate my_interopolate example 60
aggregate my_sum example 50
scalar functions 25
scalar my_plus example 28
scalar my_plus_counter example 29

description
aggregate structure 42
scalar structure 25

disable
user-defined functions 10

documentation
accessibility features 6
CD 3
conventions 5, 6
online 3
SQL Anywhere 2
Sybase IQ 1

DOUBLE data type 18
dropping

user-defined functions 14
dynamic library interface

configuring 10

E
enabling

user-defined functions 9, 10
error checking

configuring 82
evaluating statements 82
execute permissions

granting 14
revoking 14

external function
prototypes 79

external library
unloading 81

EXTERNAL NAME clause 21
external_udf_execution_mode option 82

F
Federal Rehabilitation Act

section 508 6
financial functions 81
FLOAT data type 18
functions

callback 67
external, prototypes 79
financial 81
get_piece 80
get_value 80
GETUID 24
NUMBER 24
prototypes 79
user-defined 9

G
g++

Linux 16
x86 16

Getting Started CD 3
GETUID function 24
granting

execute permissions 14
GROUP BY clause 24

H
HAVING clause 24
HP-UX

aCC 6.17 16
Itanium 16

I
IGNORE NULL VALUES 22, 24
INT data type 18

Index

 84 Sybase IQ

interface
dynamic library 10

IQ_UDF license 9
Itanium

aCC 6.17 16
HP-UX 16

L
library

dynamic interface 10
external 81
interface style 10

license
IQ_UDF 9

link
switches 15–18

Linux
g++ 4.1.1 16
PowerPC 16
X86 16
xIC 8.0 16

LONG BINARY data type 20
LONG VARCHAR data type 20

M
moving window aggregate

OLAP-style optimized calling pattern 73
OLAP-style unoptimized calling pattern 72

moving window following aggregate
OLAP-style optimized calling pattern 75
OLAP-style unoptimized calling pattern 74

moving window without current
OLAP-style optimized calling pattern 77
OLAP-style unoptimized calling pattern 75

my_bit_or example
declaration 37
definition 57

my_bit_xor example
declaration 37
definition 54

my_interopolate example
declaration 37
definition 60

my_plus example
declaration 22
definition 28

my_plus_counter example
declaration 24
definition 29

my_sum example
declaration 36
definition 50

N
NULL 22, 24, 29, 80
NUMBER function 24
NUMERIC(,) data type 20

O
OLAP-style calling pattern

aggregate with unbounded window 69
optimized cumulative moving window

aggregate 73
optimized cumulative window aggregate 71
optimized moving window following

aggregate 75
optimized moving window without current 77
unoptimized cumulative moving window

aggregate 72
unoptimized cumulative window aggregate 70
unoptimized moving window following

aggregate 74
unoptimized moving window without current

75
ON clause 24
optimized calling pattern

OLAP-style cumulative window aggregate 71
OLAP-style moving window aggregate 73
OLAP-style moving window following

aggregate 75
OLAP-style moving window without current

77
ORDER BY clause 12, 33
OVER clause 12, 33

P
pattern

calling, aggregate 68
calling, scalar 68

permissions
granting 14
revoking 14
user-defined functions 14

PowerPC

Index

User-Defined Functions Guide 85

AIX 16
Linux 16
xIC 16
xIC 8.0 16

prototypes
external function 79

R
REAL data type 18
RESPECT NULL VALUES 22, 24
restrictions

C/C++ 13
revoking

execute permissions 14

S
sample database 7
scalar functions

callback functions 67
context structure 26
creating user-defined function 11
declaring 21
defining 25
descriptor structure 25
my_plus example 22, 28
my_plus_counter example 24, 29

section 508
compliance 6

security
user-defined functions 10

server
disabling UDFs 10
enabling UDFs 10

SET clause 24
shared libraries

building 15–18
simple aggregate grouped

calling pattern 69
simple aggregate ungrouped

calling pattern 68
Solaris

SPARC 17
Sun Studio 12 17
X86 17

SPARC
Solaris 17

Sun Studio 12 17
standards

section 508 compliance 6
structure

aggregate context 46
aggregate descriptor 42
scalar context 26
scalar descriptor 25

Studio 12
See Sun Studio 12

Sun Studio 12
Solaris 17
SPARC 17
x86 17

switches
compile 15–18
link 15–18

Sybase IQ
audience 1
description 1

Sybooks 3
syntax

aggregate context 46
aggregate declaration 33
aggregate definition 39
aggregate description 42
API version 79
calculation context 45
calling user-defined functions 13
CREATE AGGREGATE FUNCTION

statement 11
CREATE FUNCTION statement 11, 13
disabling user-defined functions 10
documentation conventions 5
dropping user-defined functions 14
dynamic library interface 10
enabling user-defined functions 10
function prototypes 79
scalar context 26
scalar declaration 21
scalar definition 25
scalar description 25

T
TIME data type 18
TINYINT data type 18

Index

 86 Sybase IQ

U
UDF

See user-defined functions
unbounded window

OLAP-style aggregate calling pattern 69
unloading

external library 81
unoptimized calling pattern

OLAP-style cumulative window aggregate 70
OLAP-style moving window aggregate 72
OLAP-style moving window following

aggregate 74
OLAP-style moving window without current

75
UNSIGNED data type 18
UNSIGNED INT data type 18
UPDATE statement 24
user-defined functions

aggregate, creating 12
callback functions 67
calling 13
calling pattern, aggregate 68
calling pattern, scalar 68
creating 11
disabling 10
dropping 14
enabling 9, 10
execution permissions 14
my_bit_or example 37, 57
my_bit_xor example 37, 54
my_interopolate example 37, 60
my_plus example 22, 28
my_plus_counter example 24, 29
my_sum example 36, 50
scalar, creating 11
security 10

using 9

V
VARBINARY() data type 18
VARCHAR() data type 18
version

declaring for API 79
Visual Studio 2009

Windows 18
x86 18

W
WHERE clause 24
WINDOW FRAME clause 12
Windows

Visual Studio 2009 18
X86 18

X
x86

g++ 16
Linux 16
Solaris 17
Sun Studio 12 17
Visual Studio 2009 18
Windows 18

xIC
Linux 16
PowerPC 16

xIC 8.0
AIX 16
PowerPC 16

Index

User-Defined Functions Guide 87

Index

 88 Sybase IQ

	User-Defined Functions Guide
	Contents
	About these topics
	Subject
	Audience
	Related documents
	Other sources of information
	Sybase certifications on the Web
	Finding the latest information on product certifications
	Finding the latest information on component certifications
	Creating a personalized view of the Sybase Web site (including support pages)

	Finding the latest information on EBFs and software maintenance
	Syntax conventions
	Typographic conventions
	Accessibility features
	The demo database
	If you need help

	Installing and configuring user-defined functions
	Sybase IQ overview
	Setting the dynamic library interface
	Enabling and disabling user-defined functions

	Creating and executing user-defined functions
	Creating user-defined functions
	Creating a user-defined function using SQL Anywhere dialects
	Declaring a scalar user-defined function in Sybase Central
	Declaring a user-defined aggregate function in Sybase Central

	User-defined function restrictions
	Calling user-defined functions
	Dropping user-defined functions
	Granting and revoking permissions
	Compile and link switches for building dynamically linkable libraries
	AIX switches
	HP-UX switches
	Linux switches
	Solaris switches
	Windows switches

	SQL data types

	Scalar User-Defined Functions
	Declaring a Scalar UDF
	UDF example: my_plus declaration
	UDF example: my_plus_counter declaration

	Defining a scalar UDF
	Scalar UDF descriptor structure
	Scalar UDF context structure
	UDF example: my_plus definition
	UDF example: my_plus _counter definition

	User-defined aggregate functions
	Declaring a UDAF
	UDAF example: my_sum declaration
	UDAF example: my_bit_xor declaration
	UDAF example: my_bit_or declaration
	UDAF example: my_interpolate declaration

	Defining an aggregate UDF
	Aggregate UDF descriptor structure
	Calculation context
	UDAF context structure
	UDAF example: my_sum definition
	UDAF example: my_bit_xor definition
	UDAF example: my_bit_or definition
	UDAF example: my_interpolate definition

	UDF callback functions and calling patterns
	UDF and UDAF callback functions
	Scalar UDF calling pattern
	Aggregate UDF calling patterns
	Simple aggregate ungrouped
	Simple aggregate grouped
	OLAP-style aggregate calling pattern with unbounded window
	OLAP-style unoptimized cumulative window aggregate
	OLAP-style optimized cumulative window aggregate
	OLAP-style unoptimized moving window aggregate
	OLAP-style optimized moving window aggregate
	OLAP-style unoptimized moving window following aggregate
	OLAP-style optimized moving window following aggregate
	OLAP-style unoptimized moving window without current
	OLAP-style optimized moving window without current

	UDF specific functions and statements
	External function prototypes
	Finance specific functions
	Managing external libraries
	Controlling error checking and call tracing

	Index

