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IMSL C Stat Library 

The IMSL C Stat Library is a library of C functions useful in scientific programming.  Each function is 

designed and documented to be used in research activities as well as by technical specialists.   

Organization of the Documentation 

This manual contains a concise description of each function.  All information pertaining to a particular 

function is in one place within a chapter.  

Each chapter begins with an introduction followed by a table of contents listing the functions included 

in the chapter. Documentation of the functions consists of the following information: 

 Section Name: Usually, the common root for the type float and type double versions of the 

function. 

 Purpose: A statement of the purpose of the function. 

 Synopsis: The form for referencing the subprogram with required arguments listed. 

Required Arguments: A description of the required arguments in the order of their occurrence. 

Input: Argument must be initialized; it is not changed by the function. 
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Input/Output: Argument must be initialized; the function returns output through this argument. 

The argument cannot be a constant or an expression. 

Output: No initialization is necessary. The argument cannot be a constant or an expression; the 

function returns output through this argument. 

 Return Value: The value returned by the function. 

 Synopsis with Optional Arguments: The form for referencing the function with both required and 

optional arguments listed. 

 Optional Arguments: A description of the optional arguments in the order of their occurrence. 

 Description: A description of the algorithm and references to detailed information. In many cases, 

other IMSL functions with similar or complementary functions are noted. 

 Errors: Listing of any errors that may occur with a particular function. A discussion on error types is 

given in the “User Errors” section of the Reference Material. The errors are listed by their type as 

follows: 

Informational Errors: List of informational errors that may occur with the function. 

Alert Errors: List of alert errors that may occur with the function. 

Warning Errors: List of warning errors that may occur with the function. 

Fatal Errors: List of fatal errors that may occur with the function. 

References: References are listed alphabetically by author. 

Finding the Right Function 

The C Stat Library documentation is organized into chapters; each chapter contains functions with 

similar computational or analytical capabilities. To locate the right function for a given problem, use the 

table of contents located in each chapter introduction.  

Naming Conventions 
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Most functions are available in both a type float and a type double version, with names of the two 

versions sharing a common root. Some functions are also available in type int. The following list is of 

each type and the corresponding prefix of the function name in which multiple type versions exist: 

Type Prefix 

float  imsls_f_ 

double  imsls_d_ 

int  imsls_i_ 

The section names for the functions contain only the common root to make finding the functions easier. 

Where appropriate, the same variable name is used consistently throughout the C Stat Library. For 

example, anova_table denotes the array containing the analysis of variance statistics and y denotes a 

vector of responses for a dependent variable. 

When writing programs accessing the C Stat Library, choose C names that do not conflict with IMSL 

external names. The careful user can avoid any conflicts with IMSL names if, in choosing names, the 

following rule is observed: 

 Do not choose a name beginning with “imsls_” in any combination of uppercase or lowercase 

characters. 

Error Handling, Underflow, and Overflow 

The functions in the C Stat Library attempt to detect and report errors and invalid input. This error-

handling capability provides automatic protection for the user without requiring the user to make any 

specific provisions for the treatment of error conditions. Errors are classified according to severity and 

are assigned a code number. By default, errors of moderate or higher severity result in messages being 

automatically printed by the function. Moreover, errors of highest severity cause program execution to 

stop. The severity level, as well as the general nature of the error, is designated by an “error type” with 

symbolic names IMSLS_FATAL, IMSLS_WARNING, etc. See the section “User Errors” in the Reference 

Material for further details. 

In general, the C Stat Library codes are written so that computations are not affected by underflow, 

provided the system (hardware or software) replaces an underflow with the value 0. Normally, system 

error messages indicating underflow can be ignored. 
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IMSL codes also are written to avoid overflow. A program that produces system error messages 

indicating overflow should be examined for programming errors such as incorrect input data, mismatch 

of argument types, or improper dimensions. 

In many cases, the documentation for a function points out common pitfalls that can lead to failure of 

the algorithm. 
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Time Series and Forecasting 

Routines 

  

ARIMA Models 

Computes least-squares or method of moments estimates  

of parameters .............................................................. arma 11 

Computes maximum likelihood estimates of  

parameters ......................................................... max_arma 18 

Automatic selection and fitting of a univariate  

autoregressive time series model. .................... auto_uni_ar 22 

Detects and determines outliers and simultaneously estimates  

the model parameters in a time series 

 ..................................................... ts_outlier_identification 26 

Performs differencing on a time series ................ difference 31 

 

Model Construction and Evaluation Utilities 

Performs a Box-Cox transformation ..... box_cox_transform 34 

Sample autocorrelation function ................. autocorrelation 38 

Sample partial autocorrelation function partial_autocorrelation 

 .............................................................................................  42 

Lack-of-fit test based on the  

corrleation function ............................................. lack_of_fit 45 

Estimates missing values in a  

time series .............................................. estimate_missing 47  
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Usage Notes 

The functions in this chapter assume the time series does not contain any missing observations. If 

missing values are present, they should be set to NaN, and the routine will return an appropriate error 

message. To enable fitting of the model, the missing values must be replaced by appropriate estimates.  

Time Domain Methodology 

Once the data are transformed to stationarity, a tentative model in the time domain is often proposed 

and parameter estimation, diagnostic checking and forecasting are performed. 

ARIMA Model (Autoregressive Integrated Moving Average)  

A small, yet comprehensive, class of stationary time-series models consists of the nonseasonal ARMA 

processes defined by 

(B) (Wt  ) = (B)At, t  Z 

where Z = {..., 2, 1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift operator defined by 

BkWt = Wt-k,  is the mean of Wt, and the following equations are true: 

(B) = 1  1B  2B2  ...  pBp, p  0 

(B) = 1  1B  2B2  ...  qBq, q  0 

The model is of order (p, q) and is referred to as an ARMA (p, q) model. 

An equivalent version of the ARMA (p, q) model is given by 

 

(B) Wt = 0 + (B)At, t  Z 
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where 0 is an overall constant defined by the following: 

0

1

1
p

i

i

  


 
   

 
  

See Box and Jenkins (1976, pp. 9293) for a discussion of the meaning and usefulness of the overall 

constant. 

If the “raw” data, ,Zt}, are homogeneous and nonstationary, then differencing using 

imsls_f_difference induces stationarity, and the model is called ARIMA (AutoRegressive Integrated 

Moving Average). Parameter estimation is performed on the stationary time series Wt, = dZt , where 

d = (1  B)d is the backward difference operator with period 1 and order d, d > 0. 

Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS in a call 

to function imsls_f_arma for preliminary parameter estimates. These estimates can be 

used as initial values into the least-squares procedure by including argument 

IMSLS_LEAST_SQUARES in a call to function imsls_f_arma. Other initial estimates provided 

by the user can be used. The least-squares procedure can be used to compute conditional 

or unconditional least-squares estimates of the parameters, depending on the choice of 

the backcasting length. The functions for preliminary parameter estimation, least-squares 

parameter estimation, and forecasting follow the approach of Box and Jenkins (1976, 

Programs 24, pp. 498509). 

arma 

Computes least-square estimates of parameters for an ARMA model. 

Synopsis 

float *imsls_f_arma (int n_observations, float z[], int p, int q, ..., 0) 

The type double function is imsls_d_arma. 
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Required Arguments 

int n_observations   (Input) 

Number of observations. 

float z[]   (Input) 

Array of length n_observations containing the observations. 

int p   (Input) 

Number of autoregressive parameters. 

int q   (Input) 

Number of moving average parameters. 

Return Value 

Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA parameters. If 

IMSLS_NO_CONSTANT is specified, the 0-th element of this array is 0.0. 

Description 

Function imsls_f_arma computes estimates of parameters for a nonseasonal ARMA model given a 

sample of observations, {Wt}, for t = 1, 2, ..., n, where n = n_observations. There are two methods, 

method of moments and least squares, from which to choose. The default is method of moments. 

Two methods of parameter estimation, method of moments and least squares, are provided. The user 

can choose the method of moments algorithm with the optional argument IMSLS_METHOD_OF_MOMENTS. 

The least-squares algorithm is used if the user specifies IMSLS_LEAST_SQUARES. If the user wishes to use 

the least-squares algorithm, the preliminary estimates are the method of moments estimates by 

default. Otherwise, the user can input initial estimates by specifying optional argument 

IMSLS_INITIAL_ESTIMATES. The following table lists the appropriate optional arguments for both the 

method of moments and least-squares algorithm: 
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Method of Moments 

only 

Least Squares only Both Method of 

Moments and Least 

Squares 

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR 

 IMSLS_CONSTANT  

(or IMSLS_NO_CONSTANT) 

IMSLS_MAX_ITERATIONS 

 IMSLS_AR_LAGS IMSLS_MEAN_ESTIMATE 

 IMSLS_MA_LAGS IMSLS_AUTOCOV(_USER) 

 IMSLS_BACKCASTING IMSLS_RETURN_USER 

 IMSLS_CONVERGENCE_TOLERANCE IMSLS_ARMA_INFO 

 IMSLS_INITIAL_ESTIMATES  

 IMSLS_RESIDUAL (_USER)  

 IMSLS_PARAM_EST_COV (_USER)  

 IMSLS_SS_RESIDUAL  

Method of Moments Estimation 

Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form 

(B)Zt = 0 + (B)At 

for t  {0, 1, 2, ...} 

Let ̂  = z_mean be the estimate of the mean  of the time series{Zt}, where  

̂  equals the following: 

1

for   known

ˆ 1
for   unknown

n

t

t

Z
n

 









 




 

The autocovariance function is estimated by 
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for k = 0, 1, ..., K, where K = p + q. Note that ̂ (0) is an estimate of the sample variance. 

Given the sample autocovariances, the function computes the method of moments estimates of the 

autoregressive parameters using the extended Yule-Walker equations as follows: 

ˆ ˆ ˆ    

where 

 
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The overall constant 0 is estimated by the following: 

0

1

ˆ for 0

ˆ
ˆˆ 1 for 0

p

i

i

p

p




 






  
    
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

 

The moving average parameters are estimated based on a system of nonlinear equations given K = p 

+ q + 1 autocovariances, (k) for k = 1, ..., K, and p autoregressive parameters i for i = 1, ..., p. 

Let Zt = (B)Zt. The autocovariances of the derived moving average process Zt = (B)At are estimated 

by the following relation: 

 

 

   0

0 0

ˆ for 0

ˆ
ˆ ˆ ˆˆ for 1, 1

p p
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k p

k
k i j p
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 
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  
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The iterative procedure for determining the moving average parameters is based on the relation 

 
 

 

2 2 2

1

2

1 1

1 ... for 0

... for 1

q A

k k q k q A

k
k

k 

     
  

       

 

where (k) denotes the autocovariance function of the original Zt process. 

Let  = (0, 1, ..., q)T and f =  (f0, f1, ..., fq)T, where 

0

for 0

θ / for 1, ...,

A

j

j

j

j q

 
 

  





 

and 

 
0

ˆ for 0,1, ...,
q j

j i i j

i

f j j q






      

Then, the value of  at the (i + 1)-th iteration is determined by the following: 

 
1

1i i i iT f 


    

The estimation procedure begins with the initial value 

 0 ˆ( 0 , 0, , 0)T     

and terminates at iteration i when either ||f i|| is less than relative_error or  

i equals max_iterations. The moving average parameter estimates are obtained from the final 

estimate of  by setting 

0
ˆ /  for 1, ,j j j q       

The random shock variance is estimated by the following: 
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See Box and Jenkins (1976, pp. 498500) for a description of a function that performs similar 

computations. 

Least-squares Estimation 

Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form, 

(B) (Zt  ) = (B)At for t  {0, 1, 2, …- 

where B is the backward shift operator,  is the mean of Zt, and 

       

       

1 2

1 2

1 2

1 2

1 ... for 0

θ 1 θ θ ... θ for 0

l pl l

p

l l l q

q

B B B B p

B B B B q

 

  

         

     
 

with p autoregressive and q moving average parameters. Without loss of generality, the following is 

assumed: 

1  lf (1)  lf (2)  …  lf (p) 

1  lq (1)  lq (2)  …  lq (q) 

so that the nonseasonal ARMA model is of order (p, q), where p = lq (p) and q = lq (q). Note that the 

usual hierarchical model assumes the following: 

lf (i) = i, 1  i  p  

lq (j) = j, 1  j  q  

Consider the sum-of-squares function 
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where 

   , , ,t tA E A Z       

and T is the backward origin. The random shocks {At} are assumed to be independent and identically 

distributed 

 20, AN   

random variables. Hence, the log-likelihood function is given by 

     
 
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l f n
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
    

where f (, , ) is a function of , , and . 

For T = 0, the log-likelihood function is conditional on the past values of both Zt and At required to 

initialize the model. The method of selecting these initial values usually introduces transient bias into 

the model (Box and Jenkins 1976, pp. 210211). For T = , this dependency vanishes, and estimation 

problem concerns maximization of the unconditional log-likelihood function. Box and Jenkins (1976, p. 

213) argue that 

   2, , / 2 AS    
 

dominates 

 2, , , Al      
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The parameter estimates that minimize the sum-of-squares function are called least-squares estimates. 

For large n, the unconditional least-squares estimates are approximately equal to the maximum 

likelihood-estimates. 

In practice, a finite value of T will enable sufficient approximation of the unconditional sum-of-squares 

function. The values of [AT] needed to compute the unconditional sum of squares are computed 

iteratively with initial values of Zt obtained by back forecasting. The residuals (including backcasts), 

estimate of random shock variance, and covariance matrix of the final parameter estimates also are 

computed. ARIMA parameters can be computed by using imsls_f_difference  with imsls_f_arma. 

Warning Errors 

IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the parameters has failed to 

converge. Increase “maxbc” and/or “tolerance” and/or 

“convergence_tolerance.” The estimates of the parameters at the 

last iteration may be used as new starting values. 

Fatal Errors 

IMSLS_TOO_MANY_CALLS The number of calls to the function has exceeded "itmax"*(“n”+1) 

= %(i1).  The user may try a new initial guess. 

IMSLS_INCREASE_ERRREL The bound for the relative error,  

“errrel” = %(r1), is too small.  No further improvement in the 

approximate solution is possible.  The user should increase 

"errrel". 

     

IMSLS_NEW_INITIAL_GUESS The iteration has not made good progress. The user 

may try a new initial guess.  

max_arma 

Exact maximum likelihood estimation of the parameters in a univariate ARMA (autoregressive, moving 

average) time series model.  

Synopsis 

float  *imsls f max_arma (int n_obs, float w[], int p, int q,…,0) 
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The type double function is imsls_d_max_arma. 

Required Arguments 

int  n_obs  (Input) 

Number of observations in the time series. 

float w[] (Input) 

Array of length n_obs containing the time series. 

int  p (Input) 

Non-negative number of autoregressive parameters. 

int  q  (Input) 

Non-negative number of moving average parameters. 

Return Value 

Pointer to an array of length 1+p+q with the estimated constant, AR and MA parameters. If no value can 

be computed, NULL is returned. 

Synopsis with Optional Arguments 

float   *imsls_f_max_arma (int n_obs, float w[], int p, int q, 

IMSLS_INITIAL_ESTIMATES, float init_ar[] float init_ma[], 

IMSLS_PRINT_LEVEL, int iprint, 

IMSLS_MAX_ITERATIONS, int maxit, 

IMSLS_LOG_LIKELIHOOD, float *log_likeli, 

IMSLS_VAR_NOISE, float *avar, 

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info, 

IMSLS_MEAN_ESTIMATE, float *w_mean, 

IMSLS_RETURN_USER, float *constant, float ar[], float ma[], 

0) 

Optional Arguments 

IMSLS_INITIAL_ESTIMATES, float init ar[], float init ma[] (Input)  

If specified, init ar is an array of length p containing preliminary estimates of the 

autoregressive parameters, and init ma is an array of length q containing preliminary 
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estimates of the moving average parameters; otherwise, they are computed internally. If p=0 

or q=0, then the corresponding arguments are ignored. 

IMSLS_PRINT LEVEL, int iprint (Input) 

Printing option: 

0 — No printing. 

1 — Prints final results only. 

2  — Prints intermediate and final results. 

Default: iprint = 0 

IMSLS_MAX_ITERATIONS, int maxit (Input) 

Maximum number of estimation iterations. 

Default: maxit = 300 

IMSLS_VAR_NOISE, float *avar (Output) 

Estimate of innovation variance.  

IMSLS_LOG_LIKELIHOOD, float *log_likeli (Output) 

Value of  -2*(ln(likelihood)) for the fitted model. 

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output) 

Address of a pointer to an internally allocated structure of type Imsls_f_arma that contains 

information necessary in the call to imsls_f_arma_forecast. 

IMSLS_MEAN_ESTIMATE, float *w_mean (Input/Output) 

Estimate of the mean of the time series w. On return, w_mean contains an update of the mean.  

Default: Time series w is centered about its sample mean.  

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output) 

If specified, constant is the constant parameter estimate, ar is an array of length p 

containing the final autoregressive parameter estimates, and ma is an array of length q 

containing the final moving average parameter estimates. 

Description 



     

     

 

Time Series and Forecasting max_arma  21 

     

     

 

The function imsls_f_max_arma is derived from the maximum likelihood estimation algorithm 

described by Akaike, Kitagawa, Arahata and Tada (1979), and the XSARMA routine published in the 

TIMSAC-78 Library. 

Using the notation developed in the Time Domain Methodology at the beginning of this chapter, the 

stationary time series 
t

W with mean   can be represented by the nonseasonal autoregressive moving 

average (ARMA) model by the following relationship: 

( )( ) ( )t tB W B a     

where 

{ , 2, 1,0,1,2, },t ZZ      

B is the backward shift operator defined by k

t t kB W W  , 

2

1 2( ) 1 , 0,p

pB B B B p           

and  

2

1 2( ) 1 , 0.q

qB B B B q          

Function imsls_f_max_arma estimates the AR coefficients 1 2, , , p   and the MA coefficients 

1 2, , , q   using maximum likelihood estimation.  

Function imsls_f_max_arma checks the initial estimates for both the autoregressive and moving 

average coefficients to ensure that they represent a stationary and invertible series respectively.   

If  

1 2, , , p     
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are the initial estimates for a stationary series then all (complex) roots of the following polynomial will 

fall outside the unit circle: 

2

1 21 .p

pz z z       

If  

1 2, , , q    

are initial estimates for an invertible series then all (complex) roots of the polynomial 

2

1 21 q

qz z z       

will fall outside the unit circle. 

Initial values for the AR and MA coefficients can be supplied by vectors init_ar and init_ma. 

Otherwise, estimates are computed internally by the method of moments. imsls_f_max_arma 

computes the roots of the associated polynomials.  If the AR estimates represent a non-stationary series, 

imsls_f_max_arma issues a warning message and replaces init_ar with initial values that are stationary. 

If the MA estimates represent a non-invertible series, imsls_f_max_arma issues a terminal error, and 

new initial values have to be sought. 

imsls_f_max_arma also validates the final estimates of the AR coefficients to ensure that they too 

represent a stationary series.  This is done to guard against the possibility that the internal log-likelihood 

optimizer converged to a non-stationary solution.  If non-stationary estimates are encountered, 

imsls_f_max_arma issues a fatal error message.    

For model selection, the ARMA model with the minimum value for AIC might be preferred, 

 +2 p+qAIC  log_likeli  

Function imsls_f_max_arma can also handle white noise processes, i.e. ARMA(0,0) Processes. 

auto_uni_ar 
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Automatic selection and fitting of a univariate autoregressive time series model. The lag for the model 

is automatically selected using Akaike’s information criterion (AIC). Estimates of the autoregressive 

parameters for the model with minimum AIC are calculated using method of moments, method of least 

squares, or maximum likelihood. 

Synopsis 

float  *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, 

int *p,…,0) 

The type double function is imsls_d_auto_uni_ar. 

Required Arguments 

int  n_obs  (Input) 

Number of observations in the time series. 

float z[]  (Input) 

Array of length n_obs containing the stationary time series. 

int  maxlag  (Input) 

Maximum number of autoregressive parameters requested. It is required that  

1 maxlag  n_obs/2. 

int  *p  (Output) 

Number of autoregressive parameters in the model with minimum AIC. 

Return Value 

Vector of length 1+ maxlag containing the estimates for the constant and the autoregressive 

parameters in the model with minimum AIC. The estimates are located in the first  1+ p locations of this 

array. 

Synopsis with Optional Arguments 

float   *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, int *p, 

IMSLS_PRINT_LEVEL, int iprint, 

IMSLS_MAX_ITERATIONS, int maxit, 

IMSLS_METHOD, int method, 
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IMSLS_VAR_NOISE, float *avar, 

IMSLS_AIC, float *aic, 

IMSLS_MEAN_ESTIMATE, float *z_mean, 

IMSLS_RETURN_USER, float *constant, float ar[], 

0) 

Optional Arguments 

IMSLS_PRINT_LEVEL, int iprint (Input) 

Printing option: 

0 — No printing. 

1 — Prints final results only. 

2 — Prints intermediate and final results. 

Default: iprint = 0 

IMSLS_MAX_ITERATIONS, int maxit (Input) 

Maximum number of estimation iterations. 

Default: maxit = 300 

IMSLS_METHOD, int method (Input) 

Estimation method option: 

0 — Method of moments 

1 — Method of least squares realized through Householder transformations 

2 — Maximum likelihood 

Default: method = 1 

IMSLS_VAR_NOISE, float *avar (Output) 

Estimate of innovation variance.  

IMSLS_AIC, float *aic  (Output) 

Minimum AIC. 

IMSLS_MEAN_ESTIMATE, float *z_mean (Input/Output) 

Estimate of the mean of the time series z. On return, z_mean contains an update of the mean.  

Default: Time series z is centered about its sample mean. 
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IMSLS_RETURN_USER, float *constant, float ar[] (Output) 

If specified, constant is the constant parameter estimate, ar is an array of length maxlag 

containing the final autoregressive parameter estimates in its first p locations. 

Description 

Function auto_uni_ar automatically selects the order of the AR model that best fits the data and then 

computes the AR coefficients. The algorithm used in auto_uni_ar is derived from the work of Akaike, 

H., et. al (1979) and Kitagawa and Akaike (1978). This code was adapted from the UNIMAR procedure 

published as part of the TIMSAC-78 Library. 

The best fit AR model is determined by successively fitting AR models with 0, 1, 2, ..., maxlag 

autoregressive coefficients.  For each model, Akaike’s Information Criterion (AIC) is calculated based on 

the formula 

 2 ln( ) 2 1AIC likelihood   p  

Function auto_uni_ar uses the approximation to this formula developed by Ozaki and Oda (1979), 

          2ˆln 2 1 ln 2 1 ,AIC        n_obs maxlag p n_obs maxlag  

where 2
̂  is an estimate of the residual variance of the series, commonly known in time series analysis 

as the innovation variance. By dropping the constant 

    ln 2 1 , n_obs maxlag  

the calculation is simplified to 

     2ˆln 2 1AIC    n_obs maxlag p  

The best fit model is the model with minimum AIC.  If the number of parameters in this model is equal 

to the highest order autoregressive model fitted, i.e., p=maxlag, then a model with smaller AIC might 

exist for larger values of maxlag.  In this case, increasing maxlag to explore AR models with additional 

autoregressive parameters might be warranted. 
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If method = 0, estimates of the autoregressive coefficients for the model with minimum AIC are 

calculated using method of moments.  If method =1, the coefficients are determined by the method of 

least squares applied in the form described by Kitagawa and Akaike (1978). Otherwise, if method =2, the 

coefficients are estimated using maximum likelihood. 

ts_outlier_identification 

Detects and determines outliers and simultaneously estimates the model parameters in a time series 

whose underlying outlier free series follows a general seasonal or nonseasonal ARMA model. 

Synopsis 

float  *imsls_f_ts_outlier_identification (int n_obs, int model[],  

float w[],…,0) 

The type double function is imsls_d_ts_outlier_identification. 

Required Arguments 

int n_obs (Input) 

Number of observations in the time series. 

int model[] (Input) 

Vector of length 4 containing the numbers p, q, s, d of the ARIMA ( ,0, ) (0, ,0)sp q d  model the 

outlier free series is following. 

float w[] (Input) 

An array of length n_obs containing the time series. 

Return Value 

Pointer to an array of length n_obs containing the outlier free time series.  

If an error occurred, NULL is returned. 

Synopsis with Optional Arguments 

float  *imsls_f_ts_outlier_identification (int n_obs, 

int model[], float w[],  
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IMSLS_RETURN_USER, float x[], 

IMSLS_DELTA, float delta, 

IMSLS_CRITICAL, float critical, 

IMSLS_EPSILON, float epsilon, 

IMSLS_RELATIVE_ERROR, float relative_error, 

IMSLS_RESIDUAL, float **residual, 

IMSLS_RESIDUAL_USER, float residual[], 

IMSLS_RESIDUAL_SIGMA, float *res_sigma, 

IMSLS_NUM_OUTLIERS, int *num_outliers, 

IMSLS_OUTLIER_STATISTICS, int **outlier_stat, 

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[], 

IMSLS_TAU_STATISTICS, float **tau_stat, 

IMSLS_TAU_STATISTICS_USER, float tau_stat[], 

IMSLS_OMEGA_WEIGHTS, float **omega, 

IMSLS_OMEGA_WEIGHTS_USER, float omega[], 

IMSLS_ARMA_PARAM, float **parameters, 

IMSLS_ARMA_PARAM_USER, float parameters[], 

IMSLS_AIC, float *aic, 

0) 

Optional Arguments 

IMSLS_RETURN_USER, float x[]  (Output) 

A user supplied array of length n_obs containing the outlier free series. 

IMSLS_DELTA, float delta (Input) 

The dampening effect parameter used in the detection of a Temporary Change Outlier (TC), 

0<delta < 1.  

Default: delta = 0.7 

IMSLS_CRITICAL, float critical  (Input) 

Critical value used as a threshold for outlier detection, critical > 0. 

Default: critical = 3.0 

IMSLS_EPSILON, float epsilon  (Input) 

Positive tolerance value controlling the accuracy of parameter estimates during outlier 

detection. 

Default: epsilon = 0.001 
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IMSLS_RELATIVE_ERROR, float relative_error (Input) 

Stopping criterion for the nonlinear equation solver used in function imsls_f_arma. 

Default:  relative_error = 10
10

 . 

IMSLS_RESIDUAL, float **residual  (Output) 

Address of a pointer to an internally allocated array of length n_obs containing the residuals 

for the outlier free series. 

IMSLS_RESIDUAL_USER, float residual[]  (Output) 

Storage for array residual is provided by the user. See IMSLS_RESIDUAL.  

IMSLS_RESIDUAL_SIGMA, float *res_sigma  (Output) 

Residual standard error of the outlier free series. 

IMSLS_NUM_OUTLIERS, int *num_outliers  (Output) 

The number of outliers detected. 

IMSLS_OUTLIER_STATISTICS, int **outlier_stat  (Output) 

Address of a pointer to an internally allocated array of length num_outliers  2 containing  

outlier statistics.  The first column contains the time at which the outlier was observed 

(t=1,2,...,n_obs) and the second column contains an identifier indicating the type of outlier 

observed.   

Outlier types fall into one of five categories:  

0 Innovational Outliers (IO) 

1 Additive outliers (AO) 

2 Level Shift Outliers (LS) 

3 Temporary Change Outliers (TC) 

4 Unable to Identify (UI). 

Use IMSLS_NUM_OUTLIERS to obtain IMSLS_NUM_OUTLIERS, the number of detected outliers. 

If num_outliers = 0, NULL is returned.  
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IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[]  (Output) 

A user allocated array of length n_obs  2 containing outlier statistics in the first 

num_outliers locations.  See IMSLS_OUTLIER_STATISTICS. 

If num_outliers = 0, outlier_stat stays unchanged. 

IMSLS_TAU_STATISTICS, float **tau_stat  (Output) 

Address of a pointer to an internally allocated array of length num_outliers containing the t 

value for each detected outlier.  

If num_outliers = 0, NULL is returned. 

IMSLS_TAU_STATISTICS_USER, float tau_stat[] (Output) 

A user allocated array of length n_obs containing the t value for each detected outlier in its 

first num_outliers locations. 

If num_outliers = 0, tau_stat stays unchanged.  

IMSLS_OMEGA_WEIGHTS, float **omega (Output) 

Address of a pointer to an internally allocated array of length num_outliers containing the 

computed  weights for the detected outliers. 

If num_outliers = 0, NULL is returned.  

IMSLS_OMEGA_WEIGHTS_USER   float omega[] (Output) 

A user allocated array of length n_obs containing the computed  weights for the detected 

outliers in its first num_outliers locations.  

If num_outliers = 0, omega stays unchanged. 

IMSLS_ARMA_PARAM,   float **parameters (Output) 

Address of a pointer to an internally allocated array of length 1+p+q containing the estimated 

constant, AR and MA parameters. 

IMSLS_ARMA_PARAM_USER   float parameters[] (Output) 

A user allocated array of length 1+p+q containing the estimated constant, AR and MA 

parameters.  

IMSLS_AIC, float   *aic (Output) 

Akaike’s information criterion (AIC). 

Description 



     

     

 

Time Series and Forecasting ts_outlier_identification  30 

     

     

 

Consider a univariate time series { }tY that can be described by the following multiplicative seasonal 

ARIMA model of order ( ,0, ) (0, ,0)sp q d : 

( )

( )
, 1, , .t td

s

B
Y a

B
t n





 


   

Here, (1 )d s d
s B   , 1( ) 1 ,

q
qB B B       1( ) 1

p
pB B B      . B  is the lag operator, 

k
t t kB Y Y  , { }ta  is a white noise process, and   denotes the mean of the series { }tY . 

In general, { }tY  is not directly observable due to the influence of outliers. Chen and Liu (1993) 

distinguish between four types of outliers: innovational outliers (IO), additive outliers (AO), temporary 

changes (TC)  and level shifts (LS). If an outlier occurs as the last observation of the series, then Chen 

and Liu’s algorithm is unable to determine the outlier’s classification. In 

imsls_f_ts_outlier_identification, such an outlier is called a UI (unable to identify) and is treated 

as an innovational outlier. 

In order to take the effects of multiple outliers occurring at time points 
1 2, , , mt t t  into account, Chen 

and Liu consider the following model: 

1

( )
( ) ( )

( )
.

m

t j j t j tj d
s

B
Y L B I t a

B


 






  


  

Here, { }tY   is the observed outlier contaminated series, and j  and ( )
j

L B  denote the magnitude and 

dynamic pattern of outlier j , respectively.  ( )t jI t  is an indicator function that determines the temporal 

course of the outlier effect, ( ) 1
jt jI t  , ( ) 0t jI t   otherwise. Note that ( )jL B  operates on 

t
I  via 

, 0,1,
k

t t kB I I k   .  

The last formula shows that the outlier free series { }tY  can be obtained from the original series { }tY   by 

removing all occurring outlier effects: 
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1
( ) ( )

m

j j t jjt tY Y L B I t



  . 

The different types of outliers are charaterized by different values for ( )
j

L B : 

1.  
( )

( )
( )

j d
s

B
L B

B







 for an innovational outlier, 

2.  ( ) 1jL B   for an additive outlier, 

3.  1
( ) (1 )jL B B


   for a level shift outlier and 

4.  1
( ) (1 ) , 0 1,jL B B 


     for a temporary change outlier. 

Function imsls_f_ts_outlier_identification is an implementation of Chen and Liu’s algorithm. It 

determines the coefficients in ( ), ( )B B   and the outlier effects in the model for the observed series 

jointly in three stages. The magnitude of the outlier effects is determined by least squares estimates. 

Outlier detection itself is realized by examination of the maximum value of the standardized statistics of 

the outlier effects. For a detailed description, see Chen and Liu’s original paper (1993). 

Intermediate and final estimates for the coefficients in ( )B  and ( )B  are computed by functions 

imsls_f_arma and imsls_f_max_arma.  If the roots of ( )B or ( )B  lie on or within the unit circle, 

then the algorithm stops with an appropriate error message. In this case, different values for p and q 

should be tried. 

difference 

Differences a seasonal or nonseasonal time series. 

Synopsis 

float *imsls_f_difference (int n_observations, float z[], int n_differences, int periods[], ..., 

0) 
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The type double function is imsls_d_difference. 

Required Arguments 

int n_observations   (Input) 

Number of observations. 

float z[]   (Input) 

Array of length n_observations containing the time series. 

int n_differences   (Input) 

Number of differences to perform. Argument n_differences must be greater than or equal 

to 1. 

int periods[]   (Input) 

Array of length n_differences containing the periods at which z is to be differenced. 

Return Value 

Pointer to an array of length n_observations containing the differenced series. 

Synopsis with Optional Arguments 

float *imsls_f_difference (int n_observations, float z[], int n_differences, int periods[], 

IMSLS_ORDERS, int orders[], 

IMSLS_LOST, intv*n_lost, 

IMSLS_EXCLUDE_FIRST, or 

IMSLS_SET_FIRST_TO_NAN,  

IMSLS_RETURN_USER, float w[],  

0) 

Optional Arguments 

IMSLS_ORDERS, int orders[]   (Input) 

Array of length n_differences containing the order of each difference given in periods. The 

elements of orders must be greater than or equal to 0. 

IMSLS_LOST, int *n_lost   (Output) 

Number of observations lost because of differencing the time series z. 
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IMSLS_EXCLUDE_FIRST, or 

IMSLS_SET_FIRST_TO_NAN 

If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded from w due to differencing. 

The differenced series w is of length n_observations  n_lost. If IMSLS_SET_FIRST_TO_NAN 

is specified, the first n_lost observations are set to NaN (Not a Number). This is the default if 

neither IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is specified. 

IMSLS_RETURN_USER, float w[]   (Output) 

If specified, w contains the differenced series. If IMSLS_EXCLUDE_FIRST also is specified, w is of 

length n_observations. If IMSLS_SET_FIRST_TO_NAN is specified or neither 

IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is specified, w is of length 

n_observations  n_lost. 

Description 

Function imsls_f_difference performs m = n_differences successive backward differences of period 

si = periods [i  1] and order di = orders [i  1] for i = 1, ..., m on the n = n_observations observations 

{Zt} for t = 1, 2, ..., n. 

Consider the backward shift operator B given by 

k

t t kB Z Z   

for all k. Then, the backward difference operator with period s is defined by the following: 

   (1 )s

s t t t t sZ B Z Z Z        for   0s  . 

Note that s

tB Z and s

tZ  are defined only for t = (s + 1), ..., n. Repeated differencing with period s is 

simply 

 
 

 
0

!
1 1

! !

d
d jd s sj

s t t t

j

d
Z B Z B Z

j d j

    


  

where d  0 is the order of differencing. Note that 
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d

s tZ  

is defined only for t = (sd + 1), ..., n. 

The general difference formula used in the function imsls_f_difference is given by 

1 2

1 2

NaN for 1, ...,

for 1, ...,m

m

L

t dd d

s s s t L

t n
W

Z t n n


 

     
 

where nL represents the number of observations “lost” because of differencing and NaN represents the 

missing value code. Note that 

L j j

j

n s d  

A homogeneous, stationary time series can be arrived at by appropriately differencing a homogeneous, 

nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary application of an appropriate 

transformation followed by differencing of a series can enable model identification and parameter 

estimation in the class of homogeneous stationary autoregressive moving average models. 

 

Fatal Errors 

IMSLS_PERIODS_LT_ZERO “period*#+” = #. All elements of “period” must be greater than 0. 

IMSLS_ORDER_NEGATIVE  “order*#+” = #. All elements of “order” must be nonnegative. 

IMSLS_Z_CONTAINS_NAN “z*#+” = NaN; “z” can not contain missing values. There may be 

other elements of “z” that are equal to NaN. 

box_cox_transform 

Performs a forward or an inverse Box-Cox (power) transformation. 

Synopsis 

float *imsls_f_box_cox_transform (int n_observations, float z[], float power, ..., 0) 
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The type double function is imsls_d_box_cox_transform. 

Required Arguments 

int n_observations   (Input) 

Number of observations in z. 

float z[]   (Input) 

Array of length n_observations containing the observations. 

float power   (Input) 

Exponent parameter in the Box-Cox (power) transformation. 

Return Value 

Pointer to an internally allocated array of length n_observations containing the transformed data. To 

release this space, use imsls_free. If no value can be computed, then NULL is returned. 

Synopsis with Optional Arguments 

float *imsls_f_box_cox_transform (int n_observations, float z[], float power, 

IMSLS_SHIFT, float shift, 

IMSLS_INVERSE_TRANSFORM,  

IMSLS_RETURN_USER, float x[], 

0) 

Optional Arguments 

IMSLS_SHIFT, float shift   (Input) 

Shift parameter in the Box-Cox (power) transformation. Parameter shift must satisfy the 

relation min (z(i)) + shift > 0. 

Default: shift = 0.0. 

IMSLS_INVERSE_TRANSFORM 

If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is performed. 

IMSLS_RETURN_USER, float x[]   (Output) 

User-allocated array of length n_observations containing the transformed data. 
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Description 

Function imsls_f_box_cox_transform performs a forward or an inverse Box-Cox (power) transfor-

mation of n = n_observations observations {Zt} for t = 1, 2, ..., n. 

The forward transformation is useful in the analysis of linear models or models with nonnormal errors 

or nonconstant variance (Draper and Smith 1981, p. 222). In the time series setting, application of the 

appropriate transformation and subsequent differencing of a series can enable model identification and 

parameter estimation in the class of homogeneous stationary autoregressive-moving average models. 

The inverse transformation can later be applied to certain results of the analysis, such as forecasts and 

prediction limits of forecasts, in order to express the results in the scale of the original data. A brief note 

concerning the choice of transformations in the time series models is given in Box and Jenkins (1976, p. 

328). 

The class of power transformations discussed by Box and Cox (1964) is defined by 
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where Zt +  > 0 for all t. Since 
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the family of power transformations is continuous. 

Let  = power and  = shift; then, the computational formula used by imsls_f_box_cox_transform is 

given by 
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where Zt +  > 0 for all t. The computational and Box-Cox formulas differ only in the scale and origin of 

the transformed data. Consequently, the general analysis of the data is unaffected (Draper and Smith 

1981, p. 225). 

The inverse transformation is computed by 

 

1/
0

0

t

t

t

Z

exp
X

Z


 

 

 

 


 


 

where {Zt} now represents the result computed by imsls_f_box_cox_transform for a forward trans-

formation of the original data using parameters  and . 

Fatal Errors 

IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z” is “z*#+” = #. “shift” plus 

“z*#+” = #. “shift” + “z*i+” must be greater than 0 for i = 1, ..., 

“n_observations”. “n_observations” = #. 

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to NaN (Not a number). No 

missing values are allowed. The smallest index of an element of 

“z” that is equal to NaN is #. 

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” = #. The minimum 

element of “z” is “z*#+” = #. (“z*#+”+ “shift”) ^ “power” will 

underflow. 

IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #. “shift” = #. The maximum 

element of “z” is “z*#+” = #. (“z*#+” + “shift”) ^ “power” will 

overflow. 

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The minimum element of “z” 

is “z*#+” = #. exp(“z*#+”) will underflow. 

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The maximum element of 

“z*#+” = #. exp(“z*#+”) will overflow. 

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #. The element of “z” with the 

smallest absolute value is “z*#+” = #. “z*#+” ^ (1/ “power”) will 

underflow. 
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IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #. The element of “z” with the 

largest absolute value is “z*#+” = #. “z*#+” ^ (1/ “power”) will 

overflow. 

autocorrelation 

Computes the sample autocorrelation function of a stationary time series. 

Synopsis 

float *imsls_f_autocorrelation (int n_observations, float x[],  

int lagmax, ...0) 

The type double function is imsls_d_autocorrelation. 

Required Arguments 

int n_observations  (Input) 

Number of observations in the time series x.  n_observations must be greater than or equal 

to 2. 

float x[]  (Input)  

Array of length n_observations containing the time series. 

int lagmax  (Input)  

Maximum lag of autocovariance, autocorrelations, and standard errors of autocorrelations to 

be computed.  lagmax must be greater than or equal to 1 and less than n_observations. 

Return Value 

Pointer to an array of length lagmax + 1 containing the autocorrelations of the time series x.  The 0-th 

element of this array is 1.  The k-th element of this array contains the autocorrelation of lag k where k = 

1, ..., lagmax. 

Synopsis with Optional Arguments 

float *imsls_f_autocorrelation (int n_observations, float x[],  

int lagmax,  

IMSLS_PRINT_LEVEL, int iprint, 
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IMSLS_X_MEAN_IN, float x_mean_in, 

IMSLS_X_MEAN_OUT, float *x_mean_out, 

IMSLS_ACV, float **autocovariances, 

IMSLS_ACV_USER, float autocovariances[], 

IMSLS_SEAC, float **standard_errors, int se_option,  

IMSLS_SEAC_USER, float standard_errors[], int se_option, 

IMSLS_RETURN_USER,  float autocorrelations[], 

0) 

Optional Arguments 

IMSLS_PRINT_LEVEL, int iprint  (Input) 

Printing option.   

Default = 0. 

 

 

Iprint Action 

0 No printing is performed. 

1 Prints the mean and variance. 

2 Prints the mean, variance, and autocovariances. 

3 Prints the mean, variance, autocovariances, 

autocorrelations, and standard errors of 

autocorrelations. 

IMSLS_X_MEAN_IN, float x_mean_in  (Input) 

User input the estimate of the time series x. 

IMSLS_X_MEAN_OUT, float *x_mean_out  (Output) 

If specified, x_mean_out is the estimate of the mean of the time  

series x. 

IMSLS_ACV, float **autocovariances  (Output) 

Address of a pointer to an array of length lagmax + 1 containing the variance and 

autocovariances of the time series x.  The 0-th element of this array is the variance of the 

time series x.  The kth element contains the autocovariance of lag k where k = 1, ..., lagmax. 
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IMSLS_ACV_USER, float autocovariances[]  (Output) 

If specified, autocovariances is an array of length lagmax + 1 containing the variance and 

autocovariances of the time series x.   

See IMSLS_ACV. 

IMSLS_SEAC, float **standard_errors, int se_option  (Output) 

Address of a pointer to an array of length lagmax containing the standard errors of the 

autocorrelations of the time series x.  

Method of computation for standard errors of the autocorrelations is chosen by se_option. 

se_option Action 

1 Compute the standard errors of autocorrelations using 

Barlett’s formula. 

2 Compute the standard errors of autocorrelations using 

Moran’s formula. 

  

IMSLS_SEAC_USER, float standard_errors[], int se_option  (Output) 

If specified, autocovariances is an array of length lagmax containing the standard errors of 

the autocorrelations of the time series x.  

See IMSLS_SEAC. 

IMSLS_RETURN_USER,  float autocorrelations[]  (Output) 

If specified, autocorrelations is an array of length lagmax + 1 containing the autocorrelations 

of the time series x. The oth element of this array is 1.  The kth element of this array contains 

the autocorrelation of lag k where k = 1, ..., lagmax. 

Description 

Function imsls_f_autocorrelation estimates the autocorrelation function of a stationary time series 

given a sample of  n  =  n_observations observations {Xt} for t = 1, 2, …, n. 

Let  

̂  x_mean  
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be the estimate of the mean  of the time series {Xt} where 

1

, known

ˆ 1
unknown

n

t

t

X
n

 









 




 

The autocovariance function (k) is estimated by 

1

1
ˆ ˆ ˆ( ) ( )( ), 0,1, ,

n k

t t k

t

k X X k K
n

  






      

where K = lagmax. Note that  

 ˆ 0  

is an estimate of the sample variance. The autocorrelation function (k) is estimated by 

ˆ ( )
ˆ ( ) , 0,1, ,

ˆ (0)

k
k k K





    

Note that  

 ˆ 0 1   

by definition. 

The standard errors of the sample autocorrelations may be optionally computed according to argument 

se_option for the optional argument IMSLS_SEAC. One method (Bartlett 1946) is based on a general 

asymptotic expression for the variance of the sample autocorrelation coefficient of a stationary time 

series with independent, identically distributed normal errors. The theoretical formula is 

  2 2 21
ˆvar (k) ( ) ( ) ( ) 4 ( ) ( ) ( ) 2 ( ) ( )

i

i i k i k i k i k i k
n

        
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

          
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where  

ˆ ( )k  

assumes  is unknown. For computational purposes, the autocorrelations r(k) are replaced by their 

estimates  

ˆ ( )k  

for |k|  K, and the limits of summation are bounded because of the assumption that  

r(k) = 0 for all k such that |k| > K. 

A second method (Moran 1947) utilizes an exact formula for the variance of the sample autocorrelation 

coefficient of a random process with independent, identically distributed normal errors. The theoretical 

formula is 

  
 

ˆvar
2

n k
k

n n






 

where  is assumed to be equal to zero. Note that this formula does not depend on the autocorrelation 

function. 

 

partial_autocorrelation 

Computes the sample partial autocorrelation function of a stationary time series. 

Synopsis 

float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …, 0) 

The type double function is imsls_d_partial_autocorrelation. 

Required Arguments 
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int lagmax   (Input) 

Maximum lag of partial autocorrelations to be computed.  

float cf[]   (Input) 

Array of length lagmax + 1 containing the autocorrelations of the time series x. 

Return Value 

Pointer to an array of length lagmax containing the partial autocorrelations of the time series x. 

Synopsis with Optional Arguments 

float *imsls_f_partial_autocorrelation (int lagmax, float cf[], 

IMSLS_RETURN_USER, float partial_autocorrelations[], 

0) 

Optional Arguments 

IMSLS_RETURN_USER, float partial_autocorrelations[]   (Output) 

If specified, the partial autocorrelations are stored in an array of length lagmax provided by 

the user.  

Description 

Function imsls_f_partial_autocorrelation estimates the partial autocorrelations of a stationary 

time series given the K = lagmax sample autocorrelations  

 ˆ k  

for k = 0, 1, …, K. Consider the AR(k) process defined by 

1 1 2 2 ...t k t k t kk t k tX X X X A         

where kj denotes the j-th coefficient in the process. The set of estimates  

 ˆ
kk
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for k = 1, …, K is the sample partial autocorrelation function. The autoregressive parameters 

 ˆ
kj

 

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k) models where  

k = 1, …, K. Based on the sample Yule-Walker equations 

1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( 1) ( 2) ... ( ), 1,2,...,

k k kk
j j j j k j k              

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The equations are given by  
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and  
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This procedure is sensitive to rounding error and should not be used if the parameters are near the 

nonstationarity boundary. A possible alternative would be to estimate {kk} for successive AR(k) models 

using least or maximum likelihood. Based on the hypothesis that the true process is AR(p), Box and 

Jenkins (1976, page 65) note  

1ˆvar{ } 1kk k p
n

     

See Box and Jenkins (1976, pages 82–84) for more information concerning the partial autocorrelation 

function. 
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lack_of_fit 

Performs lack-of-fit test for a univariate time series or transfer function given the appropriate 

correlation function. 

Synopsis 

float *imsls_lack_of_fit (int n_observations, float cf[],  

int lagmax, int npfree,..., 0) 

Required Arguments 

int n_observations   (Input) 

Number of observations of the stationary time series.   

float cf[]  (Input) 

Array of length lagmax+1 containing the correlation function. 

int lagmax  (Input) 

Maximum lag of the correlation function. 

int npfree  (Input) 

Number of free parameters in the formulation of the time series model. npfree must be 

greater than or equal to zero and less than lagmax.   Woodfield (1990) recommends npfree = 

p + q. 

Return Value 

Pointer to an array of length 2 with the test statistic, Q, and its p-value, p.  Under the null hypothesis, Q 

has an approximate chi-squared distribution with lagmax-lagmin+1-npfree degrees of freedom. 

Synopsis with Optional Arguments 

#include <imsls.h> 

float *imsls_f_lack_of_fit (int n_observations, float cf[], int lagmax, 

int npfree, 

IMSLS_LAGMIN, int lagmin,  

IMSLS_RETURN_USER, float stat[], 

0) 
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Optional Arguments 

IMSLS_LAGMIN, int lagmin  (Input) 

Minimum lag of the correlation function.  lagmin corresponds to the lower bound of 

summation in the lack of fit test statistic.  Default value is 1. 

IMSLS_RETURN_USER, float stat[]  (Output) 

User defined array for storage of lack-of-fit statistics. 

Description 

Routine imsls_f_lack_of_fit may be used to diagnose lack of fit in both ARMA and transfer function 

models. Typical arguments for these situations are:  

 

 

Model LAGMIN LAGMAX NPFREE 

ARMA (p, q)  1 NOBS  p + q  

Transfer function  0 NOBS  r + s 

 

Function  imsls_f_lack_of_fit performs a portmanteau lack of fit test for a time series or transfer 

function containing n observations given the appropriate sample correlation function 

ˆ ( )k  

for k = L, L + 1, , K where L = lagmin and K = lagmax.  

The basic form of the test statistic Q is 

1 ˆ( 2) ( ) ( )
K

k L

Q n n n k k



                                    

with L = 1 if  
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 ˆ k  

is an autocorrelation function. Given that the model is adequate, Q has a chi-squared distribution with K 

 L + 1  m degrees of freedom where m =  npfree is the number of parameters estimated in the 

model. If the mean of the time series is estimated, Woodfield (1990) recommends not including this in 

the count of the parameters estimated in the model. Thus, for an ARMA(p, q) model set npfree= p + q 

regardless of whether the mean is estimated or not. The original derivation for time series models is 

due to Box and Pierce (1970) with the above modified version discussed by Ljung and Box (1978). The 

extension of the test to transfer function models is discussed by Box and Jenkins (1976, pages 394–395). 

estimate_missing 

Estimates missing values in a time series. 

Synopsis 

float  *imsls_f_estimate_missing(int n_obs, int tpoints[],  

float z[],…,0) 

The type double function is imsls_d_estimate_missing. 

Required Arguments 

int  n_obs  (Input) 

Number of non-missing observations in the time series. The time series must not contain gaps 

with more than 3 missing values. 

int  tpoints[] (Input) 

Vector of length n_obs containing the time points 
1 _
, ,

n obs
t t  at which the time series values 

were observed. The time points must be in strictly increasing order. Time points for missing 

values must lie in the open interval 
1 _

( ),
n obs

t t . 

float z[] (Input) 

Vector of length n obs containing the time series values. The values must be ordered in 

accordance with the values in vector tpoints. It is assumed that the time series after 

estimation of missing values contains values at equidistant time points where the distance 
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between two consecutive time points is one. If the non-missing time series values are 

observed at time points 
1 _
, ,

n obs
t t , then missing values between 

i
t  and 

1i
t


, 1, , 1i  n_obs , 

exist if 
1

1
i i

t t

  . The size of the gap between 

i
t  and  

1i
t


 is then 
1

1
i i

t t

  . The total length of 

the time series with non-missing and estimated missing values is 
_ 1

1
n obs

t t  , or 

tpoints[n_obs-1]-tpoints[0]+1. 

Return Value 

Pointer to an array of length  (tpoints[n_obs-1]-tpoints[0]+1) containing the time series together 

with estimates for the missing values.  If an error occurred, NULL is returned. 

Synopsis with Optional Arguments 

float   *imsls_f_estimate_missing (int n_obs, int tpoints[], float z[], 

IMSLS_METHOD, int method, 

IMSLS_MAX_LAG, int maxlag, 

IMSLS_NTIMES, int *ntimes, 

IMSLS_MEAN_ESTIMATE, float mean_estimate, 

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance, 

IMSLS_RELATIVE_ERROR, float relative_error, 

IMSLS_MAX_ITERATIONS, int max_iterations, 

IMSLS_TIMES_ARRAY, int **times, 

IMSLS_TIMES_ARRAY_USER,  int times[], 

IMSLS_MISSING_INDEX, int **missing_index, 

IMSLS_MISSING_INDEX_USER, int missing_index[], 

IMSLS_RETURN_USER, float u_z[], 

0) 

Optional Arguments 

IMSLS_METHOD, int method (Input) 

The method used for estimating the missing values: 

 0 — Use median. 

1 — Use cubic spline interpolation. 

2 — Use one-step-ahead forecasts from an AR(1) model. 

3  — Use one-step-ahead forecasts from an AR(p) model. 
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Default: method = 3 

If  method = 2 is chosen, then all values of gaps beginning at time points 
1 1t   or 

1 2t   are 

estimated by method 0. If method = 3 is chosen and the first gap starts at 
1 1t  , then the values 

of this gap are also estimated by method 0. If the length of the series before a gap, denoted 

len, is greater than 1 and less than 2  maxlag, then maxlag is reduced to len/2 for the 

computation of the missing values within this gap. 

IMSLS_MAX_LAG, int maxlag (Input) 

Maximum lag number when method = 3 was chosen. 

Default: maxlag =  10 

IMSLS_NTIMES, int *ntimes (Output) 

Number of elements in the time series with estimated missing values. Note that ntimes = 

tpoints[n_obs-1]-tpoints[0]+1. 

IMSLS_MEAN_ESTIMATE, float mean_estimate (Input) 

Estimate of the mean of the time series.  

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance (Input) 

Tolerance level used to determine convergence of the nonlinear least squares algorithm used 

in method 2.  Argument convergence_tolerance represents the minimum relative decrease 

in the sum of squares between two iterations required to determine convergence. Hence, 

convergence_tolerance must be greater than or equal to 0.  

Default: 10 2/3
max{10 ,eps }

  for single precision and 20 2/3
max{10 ,eps }

  for double precision, 

where eps =imsls_f_machine(4) for single precision and  

eps =imsls_d_machine(4) for double precision. 

IMSLS_RELATIVE_ERROR, float relative_error (Input) 

Stopping criterion for use in the nonlinear equation solver used by method 2.  

Default: relative_error = 100  imsls_f_machine(4) for single precision, 

relative_error = 100  imsls_d_machine(4) for double precision.. 

IMSLS_MAX_ITERATIONS, int max_iterations (Input) 

Maximum number of iterations allowed in the nonlinear equations solver used by method 2. 

Default: max_iterations = 200. 
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IMSLS_TIMES_ARRAY,  int **times (Output) 

Address of a pointer to an internally allocated array of length  

ntimes = tpoints[n_obs-1]-tpoints[0]+1 containing the time points of the time series with 

estimates for the missing values. 

IMSLS_TIMES_ARRAY_USER,  int times[] (Output) 

Storage for array times is provided by the user. See IMSLS_TIMES_ARRAY. 

IMSLS_MISSING_INDEX,  int **missing_index (Output) 

Address of a pointer to an internally allocated array of length (ntimes-n_obs) containing the 

indices for the missing values in array times. If  ntimes-n_obs = 0, then no missing value could 

be found and NULL is returned. 

IMSLS_MISSING_INDEX_USER,  int missing_index[] (Output) 

Storage for array missing_index is provided by the user. See IMSLS_MISSING_INDEX. 

IMSLS_RETURN_USER,  float u_z[] (Output) 

If specified, u_z is a vector of length tpoints[n_obs-1]-tpoints[0]+1 containing the time 

series values together with estimates for missing values. 

Description 

Traditional time series analysis as described by Box, Jenkins and Reinsel (1994) requires the 

observations made at equidistant time points 1 1 1, 1, 2, , nt t t t   . When observations are missing, the 

problem occurs to determine suitable estimates. Function imsls_f_estimate_missing offers 4 

estimation methods:  

Method 0 estimates the missing observations  in a gap by the median of  the last four time series values 

before and the first four values after the gap. If not enough values are available before or after the gap 

then the number  is reduced accordingly.  This method is very fast and simple, but its use is limited to 

stationary ergodic series without outliers and level shifts.  

Method 1 uses a cubic spline interpolation method to estimate missing values. Here the interpolation is 

again done over the last four time series values before and the first four values after the gap. The 

missing values are estimated by the resulting interpolant. This method gives smooth transitions across  

missing values. 

Method 2 assumes that the time series before the gap can be well described by an AR(1) process. If the 
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last observation prior to the gap is made at time point 
m

t  then it uses the time series values at 

1 1
, , ,1

m
t t t    to compute the one-step-ahead forecast at origin 

m
t . This value is taken as an estimate for 

the missing value at time point 
1m

t


. If the value at 
1m

t


 is also missing then the values at time points 

1 1 1
, , ,1

m
t t t


   are used to recompute the AR(1) model, estimate the value at  

2m
t


 and so on. The 

coefficient 
1
  in the AR(1) model is computed internally by the method of least squares from routine 

imsls_f_arma. 

Finally, method 3 uses an AR(p) model to estimate missing values by a one-step-ahead forecast . First, 

function imsls_f_auto_uni_ar, applied to the time series prior to the missing values, is used to 

determine the optimum p from the set {0, 1, , max_lag} of possible values and to compute the 

parameters 
1
, ,

p
    of the resulting AR(p) model. The parameters are estimated by the least squares 

method based on Householder transformations as described in Kitagawa and Akaike (1978).  Denoting 

the mean of the series 
1 1 1, , ,

mt t ty y y   by  the one-step-ahead forecast at origin 
m

t  , ˆ (1)
mt

y ,  can be 

computed by the formula 

11 1
 .ˆ (1) (1 )

m m

p p

t j j t jj j
y y  

  
      

This value is used as an estimate for the missing value. The procedure starting with 

imsls_f_auto_uni_ar is then repeated for every further missing value in the gap. All four estimation 

methods treat gaps of missing values in increasing time order. 
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Reference Material 

User Errors 

IMSL functions attempt to detect user errors and handle them in a way that provides as much infor-

mation to the user as possible. To do this, various levels of severity of errors are recognized, and the 

extent of the error in the context of the purpose of the function also is considered; a trivial error in one 

situation can be serious in another. IMSL attempts to report as many errors as can reasonably be 

detected. Multiple errors present a difficult problem in error detection because input is interpreted in 

an uncertain context after the first error is detected. 

What Determines Error Severity 

In some cases, the user’s input may be mathematically correct, but because of limitations of the 

computer arithmetic and of the algorithm used, it is not possible to compute an answer accurately. In 

this case, the assessed degree of accuracy determines the severity of the error. In cases where the 

function computes several output quantities, some are not computable but most are, an error condition 

exists. The severity of the error depends on an assessment of the overall impact of the error. 

Kinds of Errors and Default Actions 

Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level has an associated PRINT 

attribute and a STOP attribute. These attributes have default settings (YES or NO), but they may also be 

set by the user. The purpose of having multiple error types is to provide independent control of actions 

to be taken for errors of different levels of severity. Upon return from an IMSL function, exactly one 

error state exists. (A code 0 “error” is no error.) Even if more than one informational error occurs, only 

one message is printed (if the PRINT attribute is YES). Multiple errors for which no corrective action 

within the calling program is reasonable or necessary result in the printing of multiple messages (if the 

PRINT attribute for their severity level is YES). Errors of any of the severity levels except 

IMSLS_TERMINAL may be informational errors. The include file, imsls.h, defines each of IMSLS_NOTE, 

IMSLS_ALERT, IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL, IMSLS_WARNING_IMMEDIATE, and 

IMSLS_FATAL_IMMEDIATE as enumerated data type Imsls_error. 
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IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or simply to provide information 

about the computations.  

Default attributes: PRINT=NO, STOP=NO 

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to underflow.  

Default attributes: PRINT=NO, STOP=NO 

IMSLS_WARNING. A warning indicates the existence of a condition that may require corrective action by 

the user or calling function. A warning error may be issued because the results are accurate to only a 

few decimal places; because some of the output may be erroneous, but most of the output is correct; 

or because some assumptions underlying the analysis technique are violated. Usually no corrective 

action is necessary, and the condition can be ignored. 

Default attributes: PRINT=YES, STOP=NO 

IMSLS_FATAL. A fatal error indicates the existence of a condition that may be serious. In most cases, the 

user or calling function must take corrective action to recover.  

Default attributes: PRINT=YES, STOP=YES 

IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an incorrect specification, such as 

specifying a negative number as the number of equations. These errors can also be caused by various 

programming errors impossible to diagnose correctly in C. The resulting error message may be 

perplexing to the user. In such cases, the user is advised to compare carefully the actual arguments 

passed to the function with the dummy argument descriptions given in the documentation. Special 

attention should be given to checking argument order and data types. 

A terminal error is not an informational error, because corrective action within the program is generally 

not reasonable. In normal use, execution is terminated immediately when a terminal error occurs. 

Messages relating to more than one terminal error are printed if they occur.  

Default attributes: PRINT=YES, STOP=YES 

IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a warning error, except it is 

printed immediately.  

Default attributes: PRINT=YES, STOP=NO 
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IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, except it is printed 

immediately.  

Default attributes: PRINT=YES, STOP=YES 

The user can set PRINT and STOP attributes by calling function  

imsls_error_options. 
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Product Support 

Contacting Visual Numerics Support 

Users within support warranty may contact Visual Numerics regarding the use of the  

IMSL C Numerical Library.  Visual Numerics can consult on the following topics: 

∙ Clarity of documentation 

∙ Possible Visual Numerics-related programming problems 

∙ Choice of IMSL Libraries functions or procedures for a particular problem 

Not included in these topics are mathematical/statistical consulting and debugging of your program. 

Refer to the following for Visual Numerics Product Support contact information: 

 http://www.vni.com/tech/imsl/phone.php 

The following describes the procedure for consultation with Visual Numerics: 

1. Include your Visual Numerics license number 

2. Include the product name and version number: IMSL C Numerical Library  

Version 7.0 

3. Include compiler and operating system version numbers 

4. Include the name of the routine for which assistance is needed and a description of the problem 

http://www.vni.com/tech/imsl/phone.php
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