
CCL Reference Guide

Sybase CEP Option R4

DOCUMENT ID: DC01031-01-0400-02
LAST REVISED: April 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. A ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of the respective companies
with which they are associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568

http://www.sybase.com/detail?id=1011207

Contents

Introduction ..1
Continuous Computation Language1
CCL Lexical Conventions ..1
Order of CCL Statement Evaluation2

Language Components ...3
Data Types ..3

Float ...4
XML data type ..4
Implicit Data Type Conversions5

Data Type Conversions ...5
CCL Data Type Conversions5
Conversion Between CCL and ODBC and

Oracle ..6
Conversion Between CCL and Q8
Conversion Between CCL and SOAP10

Literals ..10
Boolean Literals ...11
String Literals ...11
Numeric Literals ...12
Time Literals ..13

Null Values ..15
Null Values in Sybase CEP Functions15
Null Values and Comparison Conditions15

Comments ..15
CCL Object Names and Identifiers16

Column References in CCL Queries17
Operators ..17

Unary and Binary Operators17
Precedence of Operators18
Arithmetic CCL Operators19
Concatenation CCL Operator19

CCL Reference Guide iii

Comparison CCL Operators20
Logical CCL Operators ..20
Row CCL Operators ..21
Like CCL Operators ...21
IN operator ...22

Expressions ...25
General CCL Expressions ..25
Simple CCL Expressions ..25
Compound CCL Expressions26
Sybase CEP Function Expressions26
IF Expressions ..26
CASE expression ..27
CCL Subqueries in Expressions28
Null Values in Expressions ...28

Statements ...31
ATTACH ADAPTER statement31
CREATE FUNCTION statement32
CREATE PARAMETER statement34
CREATE SCHEMA statement35
CREATE STREAM statement36
CREATE VARIABLE statement42
CREATE WINDOW statement42
Public Windows ..46
Shared Windows ...48
DATABASE statement ...51
DELETE statement ...54
IMPORT statement ...54
INSERT VALUES statement ...55
QUERY statement ..56
REMOTE PROCEDURE statement58
SET VARIABLE statement ..60
UPDATE WINDOW statement61

Clauses ...65
CACHE clause ..65
EXECUTE REMOTE PROCEDURE clause67

Contents

 iv Sybase CEP Option

EXECUTE STATEMENT DATABASE clause69
FROM clause ..73
FROM clause: Comma-separated syntax73
FROM clause: Database and remote subquery syntax

..76
DATABASE subquery ...78
REMOTE subquery ..83
FROM clause: Join syntax ..87
CCL Subqueries in the FROM Clause90
XMLTABLE expressions ..92
GROUP BY clause ... 94
HAVING clause ...96
INSERT clause ...97
INSERT INTO clause ..97
INSERT WHEN clause ...99
KEEP clause ...102
MATCHING clause ..113
ON clause ...122
ON clause: Trigger syntax ...122
ON clause: Join syntax ...123
ON clause: Pattern matching syntax124
ORDER BY clause ..125
OTHERWISE INSERT clause127
OUTPUT clause ..128
SCHEMA clause ...134
SELECT clause ..135
SET clause ...138
SET clause: Set variable statement syntax138
SET clause: Window syntax139
UPDATE clause ..140
VALUES clause ..141
WHEN clause ...142
WHERE clause ...143

Sybase CEP SQL ...149
SELECT statement ...149

Contents

CCL Reference Guide v

Supported SQL-92 Expressions157
Functions ..159

Scalar Functions ...159
Aggregate Functions ...159
Mathematical Formulas for Aggregate Functions160
ABS() ..161
ACOS() ...162
ASCII() ..162
ASIN() ...163
ATAN() ...163
ATAN2() ...164
AVG() ..164
AVG() ..165
BITAND() ...166
BITCLEAR() ..166
BITFLAG() function ...167
BITMASK() ..167
BITNOT() ..168
BITOR() ..168
BITSET() ...169
BITSHIFTLEFT() ...169
BITSHIFTRIGHT() ..170
BITTEST() ...171
BITTOGGLE() ...171
BITXOR() ..172
CEIL() ...172
CHR() or CHAR() ..173
COALESCE() ..173
CORR() ...174
COS() ..175
COSD() ...176
COSH() ...176
COUNT() ...177
COVAR_POP() ..178
COVAR_SAMP() ..179

Contents

 vi Sybase CEP Option

DATECEILING() ..179
DATEFLOOR() ..180
DATEROUND() ...182
DAYOFMONTH() ...183
DAYOFWEEK() ...183
DAYOFYEAR() .. 184
DISTANCE() ..185
DISTANCESQUARED() .. 186
EXP() ..187
EXP_WEIGHTED_AVG() ...187
EXTRACT() ...190
FIRST() ...190
FIRST_VALUE() ..192
FLOOR() ...193
GET___COLUMNBYNAME()193
GETPREFERENCE___() ...195
GETTIMESTAMP() ...197
HOUR() ...198
INSTR() ...198
LAST() ..199
LAST_VALUE() ..201
LEFT() ...202
LENGTH() ...202
LN() ...203
LOG() ..203
LOG10() ..204
LOG2() ..204
LOWER() ..205
LTRIM() ...205
MAKETIMESTAMP() ...206
MAX() ..208
MAX() ..208
MEANDEVIATION() .. 209
MEDIAN() ...210
MICROSECOND() ..210

Contents

CCL Reference Guide vii

MID() ...211
MIN() ...212
MIN() ...213
MINUTE() ..213
MOD() ...214
MONTH() ..215
NEXTVAL() ...215
NOW() ...216
PI() ..216
POWER() ..217
PREV() ..217
RANDOM() ...218
REGEXP_FIRSTSEARCH()219
REGEXP_REPLACE() ..220
REGEXP_SEARCH() ...221
REGR_AVGX() ..221
REGR_AVGY() ..222
REGR_COUNT() ...223
REGR_INTERCEPT() ..224
REGR_R2() ...225
REGR_SLOPE() ..225
REGR_SXX() ...226
REGR_SXY() ...227
REGR_SYY() ...228
REPLACE() ...229
RIGHT() ..229
ROUND() ..230
RTRIM() ..231
SECOND() ..231
SIGN() ...232
SIN() ...232
SIND() ...233
SINH() ...233
SQRT() ...234
STDDEV() ...234

Contents

 viii Sybase CEP Option

STDDEVIATION() ...234
STDDEV_POP() ..235
STDDEV_SAMP() ..237
SUBSTR() ...238
SUM() ...239
TAN() ...240
TAND() ..240
TANH() ..240
THRESHOLD() ...241
TO_BLOB() ...242
TO_BOOLEAN() ...242
TO_FLOAT() ...243
TO_INTEGER() ..244
TO_INTERVAL() ...245
TO_LONG() ..245
TO_STRING() ...246
TO_TIMESTAMP() ..250
XMLPARSE() and TO_XML() functions251
TRIM() ...251
UPPER() ...252
USERNAME() ...252
VARIANCE() ...253
VAR_POP() ..253
VAR_SAMP() ...255
VWAP() ..256
WEIGHTED_AVG() ..259
XMLAGG() ..261
XMLATTRIBUTES() ..262
XMLCOMMENT() ...262
XMLCONCAT() ...263
XMLDELETE() ..264
XMLELEMENT() ...265
XMLEXISTS() ...266
XMLEXTRACT() ...267
XMLEXTRACTVALUE() ..268

Contents

CCL Reference Guide ix

XMLINSERT() ...269
XMLPATTERNMATCH() ..270
XMLPI() ...272
XMLSERIALIZE() ..273
XMLTRANSFORM() ..273
XMLUPDATE() ..274
XPATH() ..275
YEAR() ..276

Sybase CEP Function Language Function Language . . .277
ASSIGNMENT statement ...278
BREAK statement ...279
CASE statement ...280
CONTINUE statement ..281
Create Variables statement (within function)282
CFL Variable Scope ..283
IF statement ..283
RETURN statement ..285
WHILE statement ..285

Documentation Tags ...287
CCL Documentation Tags ...287
@author ..288
@category ..289
@column ..289
@description ...290
@module ..291
@name ...291

Quick References ..293
CCL Statements Syntax Summary293
CCL Clauses Syntax Summary295
Operators and Operand Data Types298
Timestamp Format Codes ..300

Sybase CEP Time Formatting Codes301
Strftime() Timestamp Conversion Codes303

Reserved Words ...305
Index ..309

Contents

 x Sybase CEP Option

Introduction

An introduction to CCL.

Continuous Computation Language
Continuous Computation Language (CCl) is used to manage and analyze streaming data.

CCL is based on the Structured Query Language (SQL) used with relational databases. While
CCL and SQL are not identical, familiarity with SQL will enable you to learn and use CCL.

CCL Lexical Conventions
CCL Statement enable users to use tabs, carriage returns, and spaces within the definition of
the statement.

CCL statements can include one or more tabs, carriage returns, spaces, or comments
anywhere a space occurs within the definition of the statement. For example, the following
two statements are evaluated the same way:

INSERT INTO AverageStockPrice
SELECT stocks.price, AVG(stocks.price)
FROM stocks
GROUP BY stocks.Symbol

INSERT INTO AverageStockPrice
SELECT stocks.price,
AVG(stocks.price)
FROM stocks
GROUP BY stocks.Symbol

Case is insignificant in CCL keywords, also called reserved words, and identifiers (stream
names, column names, parameter names, and so on). However, CCL text literals are case-
sensitive.

CCL names include CCL query identifiers, as well as project and module names, adapter
names, aliases and the names of windows. Names and identifiers must start with a letter.
Subsequent characters can be letters, digits, or underscores (_). The prefixes C8_ and XML
are reserved for Sybase® CEP Engine names.

None of the CCL reserved words can be used as an identifier. All reserved words are listed in
Reserved Words.

CCL programs support the following UTF-8 characters:

Introduction

CCL Reference Guide 1

#x9 tab

#xA carriage return

#xD line feed

#x20-#xD7FF

#xE000-#xFFFD

#x10000-#x10FFFF

Legal characters of Unicode and ISO/IEC 10646

If you need to use other UTF-8 characters, you can use the corresponding integer and convert it
to the desired character with the CHR function.

Order of CCL Statement Evaluation
Rules for which order the CCL Statements are evaluated.

CCL statements inside a project execute in order, according to the following rules:

• Statements with data dependencies on other statements execute after the statements on
which they are dependent. For example, if one statement publishes rows to a second
statement, the first statement executes before the second. This is also true in more complex
data dependency cases. For example, if a data stream is joined to an unnamed window
based on the same stream, the window is updated before the join executes.

• If statements do not include data dependencies, they execute in the order in which they
appear in the project's query modules; statements in a submodule execute after statements
in a parent module.

Introduction

 2 Sybase CEP Option

Language Components

This section outlines the different usable languages components.

Data Types
Different data types are assigned to columns in a CCL stream.

Each value that Sybase CEP Engine manipulates has a data type. When you define a data
stream in CCL, you must specify a data type for each of its columns. Note that Sybase CEP
Engine can implicitly convert some data types to the correct type for a column. You can also
use conversion functions to generate the correct data type.

The following table summarizes CCL data types (note that all data types can also be Null):

Data Type Description

BLOB

Binary Large Object. BLOB columns contain varying amounts of
data as a sequence of bytes. Maximum size is platform-dependent,
but no less than 65535 bytes. Sybase CEP Engine supports com-
parison between BLOBs, by comparing the same byte from each
BLOB value in sequence. If all bytes are identical, the two values
are considered to be equal. If the two BLOBs contain different
values, the smaller value is the one with a smaller value in the first
byte that differs.

BOOLEAN TRUE or FALSE.

FLOAT
A 64-bit floating point number with binary precision. The maxi-
mum number for this type corresponds to IEEE standards.

INTEGER A 32-bit integer.

INTERVAL
Represents an integer number of microseconds between two time-
stamps, using 64 bits of precision.

LONG A 64-bit integer.

STRING
Variable-length character string, with byte values encoded in
UTF-8. Maximum string length is platform-dependent, but no less
than 65535 bytes.

TIMESTAMP Date and time, with a precision of microseconds

XML
A sequence of XML element trees (a forest). Maximum size is
platform-dependent, but no less than 65535 bytes.

The following table lists the minimum and maximum values for numeric data types:

Language Components

CCL Reference Guide 3

Data Type Minimum/Maximum

FLOAT Approximately 16 significant digits.

INTEGER
-2147483648 to +2147483647 (-231 to 231-1). Overflow wraps
silently.

INTERVAL
-99999999 days 23:59:59.999999 to +99999999 days
23:59:59.999999.

LONG
-9223372036854775808 to +9223372036854775807 (-263 to
263-1). Overflow wraps silently.

TIMESTAMP

1970-01-01 00:00:00.000000 to 2099-12-31 23:59:59.999999.

Timestamp values between 0001-01-01 00:00:00.000000 and
1969-12-31 23: 59:59.999999 and between 2100-01-01
00:00:00.000000 and 9999-12-31 23: 59:59.999999 are also valid,
but may result in errors related to leap years and daylight savings
time. Timestamps prior to midnight January 1, 1970 are represen-
ted as negative numbers.

Float
Floats are used to represent floating-point numbers such as decimal points anywhere within
the number.

Float is a 64-bit data type used to represent floating-point numbers. Floating-point numbers
can either include a decimal point anywhere within the number or the decimal point entirely.
An exponent can optionally be used following the number to increase the number's range, for
example:

1.777 e-20

Binary floating-point numbers differ from Integer in the way the values are represented
internally during processing by Sybase CEP Engine. Binary floating-point numbers are stored
using binary precision (the digits 0 and 1). Such a storage scheme cannot represent all values
exactly. Converting a value from decimal to binary may result in an error, but the error is often
eliminated when the number is converted back to decimal precision.

XML data type
XML data type stores a sequence of one or more XML element trees.

An XML document has one root element tree, which is treated by Sybase CEP Engine as a
sequence of one XML element. However, the Sybase CEP XML data type can also store
multiple elements, which are not joined by a single root. This is sometimes called an XML
forest.

It can also store a value of NULL.

Language Components

 4 Sybase CEP Option

The Sybase CEP XML data type does not support comparison. Two XML values cannot be
compared for equality or inequality. Thus XML cannot be used in places that require
comparison. This precludes the use of the XML data type in a GROUP BY, ORDER BY, or
PER clause and in the SMALLEST and LARGEST functions.

The XML data type uses the Infoset data model. This means that the structure of the tree is
represented in the data model, but not the details of the string encoding. For example, <a></
a> and <a/> are identical in Infoset.

Implicit Data Type Conversions
Sybase CEP automatically converts data types to other data types, expressions to integers,
long, and data types to Strings.

Sybase CEP automatically converts certain data types to other data types when necessary.
Sybase CEP Engine automatically converts expressions that evaluate to Integer that are
destined for a Long or Float function argument, operator argument, or column. Sybase CEP
Engine also automatically converts expressions that evaluate to Long that are destined for a
Float function argument, operator argument, or column.

Also, if needed and if possible, Sybase CEP Engine automatically converts any other data type
to String and from String to any other data type. To implicitly convert to String, Sybase CEP
Engine uses TO_STRING(). For Timestamp, the format is YYYY-MM-DD HH24:MI:SS.FF
TZD. To implicitly convert from String, Sybase CEP Engine uses the appropriate TO_xxx()
function (such as TO_BLOB). For Timestamp, the format is the same. The value Null converts
to Null, no matter what the types are. If Sybase CEP Engine detects an ambiguity, then an error
is generated.

Data Type Conversions
Sybase CEP is able to perform datatype conversions.

CCL Data Type Conversions
Conversion of different data types conducted by Sybase CEP.

The following table shows all permitted CCL data type conversions (also known as type
casting). The source datatypes are listed in the leftmost column and the destination datatypes
are listed in the top row of the chart. “X” indicates that the conversion is supported; a blank
space indicates that the conversion is not supported.

Permitted
Conversions

Blob Boolean Float Integer Interval Long String Time-
stamp

XML

Blob X

Boolean X

Language Components

CCL Reference Guide 5

Float X X X X X

Integer X X X

Interval X X X

Long X X X X X

String X X X X X X X X

Timestamp X X X

XML X

The following table shows the implicit (automatic) conversions Sybase CEP Engine performs
when necessary. The source datatypes are listed in the leftmost column and the destination
datatypes are listed in the top row of the chart. “X” indicates that the conversion is supported; a
blank space indicates that the conversion is not supported. Note that the Sybase CEP compiler
generates a warning message whenever it performs implicit type casting to or from a String:

Implicit
Conversions

Blob Boolean Float Integer Interval Long String Time-
stamp

XML

Blob X

Boolean X

Float X

Integer X X X

Interval X

Long X X

String X X X X X X X X

Timestamp X

XML X

Conversion Between CCL and ODBC and Oracle
Convert CCL columns into ODBC/ SQL and Oracle.

The two tables on this page show how CCL column data types are converted into ODBC/SQL
and Oracle database types and vice versa. The table assumes a Native Oracle Driver (OCI
based).

Language Components

 6 Sybase CEP Option

Table 1. How CCL Types Convert to ODBC and Oracle Types

CCL Type
ODBC Data-
base Type

Oracle Database Type

BLOB Base64 String Base64 String

BOOLEAN Integer NUMBER (false=0, true=1)

FLOAT Double Precision NUMBER

INTEGER Integer NUMBER

INTERVAL BIGINT NUMBER

LONG BIGINT NUMBER

STRING
VARCHAR (im-
plementation de-
fined length)

VARCHAR/VARCHAR2 (maximum length 4096)

TIMESTAMP TIMESTAMP DATE

Note that, before using a BLOB column in a SQL SELECT statement within a CCL database
subquery, the BLOB must first be converted to a base64- encoded string. See the Sybase CEP
Integration Guide for more information on handling BLOB data.

Note that when the FLOAT value is expressed in scientific notation, ORACLE limits the
exponent range to values between -130 and 125. CCL FLOAT values do not have this
limitation, but must fall within this range when passing values to an Oracle database FLOAT
column to avoid errors.

Table 2. How ODBC and Oracle Types Convert to CCL Types

Oracle Database Type ODBC Type CCL Type

NUMBER (false=0, true=1) Integer BOOLEAN

NUMBER Double Precision FLOAT

NUMBER Integer INTEGER

NUMBER BIGINT INTERVAL

NUMBER BIGINT LONG

CHAR(N) CHAR(N) STRING

VARCHAR/VARCHAR2 VARCHAR STRING

DATE TIMESTAMP TIMESTAMP

Note that Sybase supports one-byte character sets; it does not support multi-byte character sets
such as Unicode.

Language Components

CCL Reference Guide 7

An error message will appear if the value that you are converting from will not fit into the data
type that you are converting to.

Conversion Between CCL and Q
Learn how to convert CCL to q datatypes, q types to CCL, and q values to CCL rows.

If you wish to convert a CCL datatype to a q datatype other than the type to which it
automatically converts, explicitly cast the CCL datatype as the desired q type, as described in
EXECUTE STATEMENT DATABASE.

Table 3. How CCL datatypes convert to q datatypes

CCL datatype Q datatype

BLOB list of byte

BOOLEAN boolean

FLOAT float

INTEGER int

INTERVAL long

LONG long

STRING list of char

TIMESTAMP datetime

XML list of char

Table 4. How q datatypes convert to CCL datatypes

Q datatype CCL datatype

boolean
BOOLEAN

INTEGER

Language Components

 8 Sybase CEP Option

Q datatype CCL datatype

byte

date

int

minute

month

time

second

short

INTEGER

LONG

Time types are set to their q integer representation.

long

INTEGER (On overflow, if value is greater than MAX_INT, the value is set
to NULL.)

LONG

real

float
FLOAT

char

list of char

symbol

STRING

datetime TIMESTAMP

Other types Conversion not supported

When a database subquery includes a statement using the SQL dialect of q (as opposed to
regular q syntax), data is read into CCL from kdb+ as it would be from any database: each row
returned by the SQL dialect of q is read into a row in Sybase CEP Engine with the same
number of columns. When a database subquery includes a statement using simple q (not its
SQL dialect), the results returned by the q statement are mapped as shown in the following
table.

Table 5. Q value mapping to CCL rows and columns

Q CCL

Single value (atom) One column, one row.

Simple list One column, multiple rows.

Dictionary Two columns, multiple rows.

Language Components

CCL Reference Guide 9

Q CCL

Flip
Multiple columns, multiple rows (the same as
from the SQL dialect of q).

Conversion Between CCL and SOAP
Converts a number of input columns from the CCL statement and produces a number of input
columns in SOAP.

The SOAP Remote Procedure Call (RPC) plugin expects any number of input columns from
the CCL statement and can produce any number of input columns. The column types are
mapped to SOAP RPC types as follows.

CCL Type XSI Type Description

BLOB xsd:base64Binary Base64-encoded binary.

BOOLEAN xsd:boolean
A boolean value, 1 or 0, true or
false.

FLOAT
xsd:double or xsd:float (in the
response only)

Signed floating point number.

INTEGER xsd:int 32-bit signed integer.

INTERVAL xsd:duration
Time durations in the format

PnYnMnDTnHnMnS.

LONG xsd:long 64-bit signed integer.

STRING xsd:string String of characters.

TIMESTAMP xsd:dateTime

Date/time in the format: [-]

CCYY - MM - DDThh
: mm : ss [Z |(

+ | -)hh:mm].

XML not applicable Not supported.

Literals
Literals are fixed data values.

The terms literal and constant value are synonymous and refer to a fixed data value. For
example, 'STOCK', 'SUDDEN ALERT', and '512' are all string literals; 1024 is a numeric
literal. String literals are enclosed in single or double quotation marks to distinguish them
from object names.

Language Components

 10 Sybase CEP Option

Neither BLOB nor XML data types have literals.

Boolean Literals
Boolean literals are True and False statements which are not sensitive to case.

Boolean literals are case insensitive. True, false, TRUE, FALSE, tRuE, fAlSe, true, False,
truE, and falsE are all valid.

String Literals
String literals appear as a part of expressions. Provide commands for String literals.

String literals are also sometimes called character literals or text literals. When a string literal
appears as part of AN expression in this documentation, it is indicated by the word TEXT. The
syntax for single-line string literals is:

"character_string"

or

'character_string'

The syntax for multi-line string literals is:

[[character_string]]

In all cases, character_string is a combination of alphabetic characters, numeric characters,
punctuation marks, spaces, and tabs.

• A single-line string literal must be enclosed in single (' ') or double (" ") quotes.
• Two adjacent quotes with no character string between represent an empty string.
• Newline characters (either CR or NL) can only be used with the multi-line string syntax.

Note that, to include a single quotation mark (or an apostrophe) in a text string that is already
surrounded by single quotes, you must enter the inside quotation mark twice. For example, to
put the apostrophe in the word that's, use two apostrophe/single-quote characters in a row:

'And that''s the truth.'

Similarly, to put a double quote inside a string delimited by double quotes, use a pair of double
quotes inside the string, for example:

"He said ""No!"""

Sybase CEP Engine treats the doubled characters as single characters in this situation.

Some examples of valid string literals are:

'abc123'
'abc 123'

Language Components

CCL Reference Guide 11

'It''s a good idea.'
"20030"
"abc123"
"abc 123"
"""What?"" he asked."

Internationalization impacts string literals. All the literals in the preceding list are 7-bit ASCII
literals. But this:

'���123'

is also a literal.

Numeric Literals
Numeric literals are used to specify integers and floating-point numbers.

Integer Literals
You must use the integer notation to specify an integer whenever an integer appears in
expressions, conditions, Sybase functions, and CCL statements described elsewhere.

The syntax of an integer literal is as follows:

[+|-]
integer

where integer refers to any whole number or zero.

Some valid integers are:

3
-45
+10023

Long Literals
LONG literals follow the same rules as INTEGER literals. To force a literal that can be either
INTEGER or LONG into a LONG data type, add the letter "L" to the end of the literal.

For example, the following are valid LONG literals:

2147483648L
-2147483649L
-9223372036854775808L
0L

To ensure that an expression is evaluated as LONG rather than as INTEGER, make sure that
the first constant is followed by an L, even if that specific value fits within the range of
INTEGER data types.

Language Components

 12 Sybase CEP Option

Float Literals
A float literal is a floating point number, usually used to represent numbers that include a
decimal point. Use the float literal syntax whenever an expression is described as type FLOAT
elsewhere in this documentation.

The syntax of a float literal is as follows:

[+|-]
floating_point_number
[E[+|-]
exponent
]

where floating_point_number is a number that includes a decimal point.

The optional letter e or E indicates that the number is specified in scientific notation. The digits
after the E specify the exponent. The exponent can range from approximately - 308 to +308.

Some valid float literals are:

1.234
-45.02
+10023.
3.
.024
-7.2e+22

Note that FLOAT values are accurate to approximately 16 or 17 significant digits.

Time Literals
Time literals are used to specify timestamps and intervals.

Timestamp Literals
The syntax of a Timestamp literal is as follows: TIMESTAMP 'YYYY-MM-DD
[HH:MI[:SS[.FF]]]'

Where:

• YYYY-MM-DD are numeric designations of the year, month, and day.
• HH:MI are numeric designations for hour and minute.
• :SS is a designation for seconds, used only if the hour and minute are specified.
• .FF is a designation for fractions of a second, using zero to six digits and only if seconds are

specified.

Note that one or more blank spaces must be used to separate the date from the time
specification.

Some valid timestamps are:

TIMESTAMP '2002-03-12 06:05:32.474003'

Language Components

CCL Reference Guide 13

TIMESTAMP '2005-02-01'
TIMESTAMP '2003-11-30 15:04'

In some contexts, such as when putting row timestamps into CSV files, timestamps can be
entered as a number of microseconds elapsed since midnight January 1, 1970. In this case, the
numbers are treated as though they are relative to UTC, rather than local time. For example, if
you use 1 as the timestamp, and your local time zone is Pacific Standard Time (eight hours
behind UTC), the result is the following timestamp:

1969-12-31 16:00:00.000001

Interval Literals
Use either of two formats for an Interval literal. The first form is similar to that of Timestamp
literals and is as follows:

INTERVAL '{[D [day[s]]][][HH:MI[:SS[.FF]]]}'

Where:

• D is the number of days. The space between the day specification and the hour and minute
specification is optional.

• HH:MI are the hour and minute.
• :SS is the seconds, used only when hours and minutes are specified.
• .FF is fractions of a second, using zero to six digits and only if seconds are specified.

Here is an example of this syntax form:

INTERVAL '999 days 23:59:59.999999'

The second syntax form of Interval literals is as follows:

{W week[s]][][D day[s]][][HH hour[s]][][MI minute[s]][][SS[.FF]
second[s]][][NNN millisecond[s][][NNN microsecond[s>

All components of the interval are optional, but you must include at least one (not counting
spaces). Here is an example:

2 days 3 hours 4 minutes 5.6 seconds

Both forms of Interval literals require that the values in each component be in the proper range.
For example, you will get an error if you enter 61 minutes; you must enter this value as 1 hour 1
minute.

Language Components

 14 Sybase CEP Option

Null Values
Null values are columns in a row which have no value.

If a column in a row has no value, then the column is said to be Null, or to contain Null. Use a
Null when the actual value is not known or when a value would not be meaningful.

Null Values in Sybase CEP Functions

Nearly all predefined scalar functions return Null when given a Null argument.

Most aggregate functions ignore Nulls. For example, consider a query that averages the five
values 500, NULL, NULL, NULL, and 1500. Such a query ignores the Nulls and calculates
the average to be (500+1500)/2 = 1000.

Null Values and Comparison Conditions

To test for Nulls, use IS NULL and IS NOT NULL. Do not use a comparison operator to test
whether a value is Null. Since Null represents an unknown value, the result is also unknown,
and therefore the result of the comparison is Null.

WHERE x != NULL -- WRONG!
WHERE X IS NOT NULL -- RIGHT

Comments
Comments explain CCL statements and other Sybase CEP Engine components.

CCL statements and other Sybase CEP Engine components can be associated with
explanatory comments. These comments do not affect the execution of a statement. Sybase
supports two distinct types of comments: regular comments and documentation tags.

Regular comments:

• Can be inserted before or after any CCL clause or statement.
• Appear in the form of text demarcated with special characters, using any of the three

methods shown in the following table:

Begin Comment with End Comment with Example

Method
1:

Two hyphens (--) New line
-- This is a comment
line.

Method
2:

Two slashes (//) New line
// This is a comment
line.

Language Components

CCL Reference Guide 15

Begin Comment with End Comment with Example

Method
3:

A slash and asterisk (/*) An asterisk and slash (*/)

/* This type of comment
can be contained on one
line, or can extend
across multiple lines. */

• Cannot be nested.

Documentation tags can be inserted into a CCL module and appear as text or labels within
Sybase CEP Studio. For more information about documentation tags, see CCL
Documentation Tags.

CCL Object Names and Identifiers
CCL objects must have a name, the name of the object is represented with an identifier.

CCL objects must be named, and some objects are made up of parts that you can or must name.
The latter includes columns in a data stream.

Every Sybase CEP object has a name. In a CCL statement, the name of an object is represented
with an identifier. The following list of rules applies to identifiers:

• Identifiers have no maximum character length.
• The prefix C8_ is reserved for internal Sybase CEP Engine names.
• The Sybase CEP CCL language contains other words that have special meaning. In

particular, do not use the names of Sybase CEP built-in functions for the names of objects.
• You must use only ASCII characters in identifiers.
• Identifiers must begin with an ASCII alphabetic character.
• Identifiers can contain only ASCII alphanumeric characters and the underscore (_). Thus,

characters in an identifier can contain letters, digits, and _.
• Within a given scope, no two objects can have the same identifier.
• Identifiers are not case sensitive.
• Sybase interprets the following identifiers as being the same, so they cannot be used for

different objects in the same scope:
futures
FUTURES

• Columns in the same data stream or named window cannot have the same identifier.
However, columns in different data streams or named windows can have the same
identifier.

• Names include not only CCL Query identifiers, but also things like project names, module
names, adapter names, stream names, column names, aliases, variables, and the names of
windows.

• Variables cannot be named with the same name as columns used by a query module.

Language Components

 16 Sybase CEP Option

• Identifiers cannot consist of CCL reserved words. See Reserved Words for the list of
reserved words.

Column References in CCL Queries
Column references refer to columns in one of the query's data sources, defined in the FROM
clause.

Column references within CCL clauses in the Query statement, Database statement, and
Remote Procedure statement must refer to columns in one of the query's data sources, defined
in the FROM clause. Column references in clauses of the Delete statement and Set Variable
statement must refer to the data stream or named window specified in the ON or DELETE
FROM clauses.

In cases where the column reference may refer to more than one entity, column references
must explicitly state the entity to which the column belongs, using the syntax

stream-or-window-name
.
column-name

or

alias
.
column-name

where stream-or-window-name is the name of the data stream or window identified elsewhere
in the statement, and alias is the alias assigned to a data stream, named window, database
subquery, remote subquery, or CCL subquery by the AS subclause of the FROM clause.

One of these syntax forms for column references is required when:

• A query includes multiple data sources, and the column name is contained in more than
one of these data sources.

• The same column in the same data source is referenced multiple times. In this case, every
instance of the column reference must include a unique data source alias.

• The data source to which the column reference is referring is not a data stream or window.

Operators
The Sybase CEP is capable of utilizing a variety of operator components.

Unary and Binary Operators
Unary operator operates on one operand, binary operator operates on two.

The two general classes of operators are unary and binary.

Language Components

CCL Reference Guide 17

A unary operator typically appears with its operand in this format:

operator operand

A binary operator appears with its operands in this format:

operand1 operator operand2

If an operator is given a NULL operand, the result is always NULL, with the following
exceptions:

AND
OR
XOR

See Null Values in Expressions for rules on using NULLs with the AND, XOR, and OR
operators.

Precedence of Operators
Precedence is the order in which Sybase CEP Engine evaluates different operators in the same
expression.

When evaluating an expression containing multiple operators, Sybase CEP Engine evaluates
operators with higher precedence before evaluating those with lower precedence. Sybase CEP
Engine evaluates operators with equal precedence from left to right within an expression.

The following table lists the order of precedence among CCL operators from high to low.
Operators listed on the same line have the same precedence.

Operator Operation

+, - (as unary operators) Unary plus, negation

^ Exponent

*, /, mod Multiplication, division, modulo

+, - (as binary operators), || Addition, subtraction, concatenation

=, !=, <>, <, >, <=, >= Comparison

LIKE, REGEXP_LIKE, IN, IS NULL, IS NOT
NULL

Like

NOT Logical negation

AND Conjunction

OR, XOR Disjunction

Note that the ^ operator is right associative. Thus a ^ b ^ c = a ^ (b ^ c), not (a ^ b) ^ c.

Language Components

 18 Sybase CEP Option

Precedence Example
In the following expression, multiplication has a higher precedence than addition, so Sybase
CEP Engine first multiplies 30 by 5 and then adds the result to 10, so that the computed
expression is 160:

10+30*5

Use parentheses in an expression to override operator precedence. Sybase CEP Engine
evaluates expressions inside parentheses before evaluating those outside. In the following
expression, the computed value is 200 because the sum of 10 and 30 is computed first.

(10+30)*5

Arithmetic CCL Operators
Arithmetic CCL operators are used to negate, add, subtract, multiply, or divide numeric
values.

You can use an arithmetic operator with one or two arguments to negate, add, subtract,
multiply, or divide numeric values. The arguments to the operator must resolve to numeric
data types or to any type that can be implicitly converted to a numeric type (see Implicit Data
Type Conversions for more information).

Unary arithmetic operators return the same data type as the argument. For binary arithmetic
operators, Sybase determines the argument with the highest numeric precedence, implicitly
converts the remaining arguments to that data type, and returns that type.

The following table lists the CCL arithmetic operators.

Operator Purpose

+, -
Positive, negative (unary)

Addition, subtraction (binary)

*, /, mod Multiplication, division, modulo (binary)

^ Exponent/power (binary)

Concatenation CCL Operator
Concatenation CCL operator manipulates character strings.

The following table describes the concatenation operator:

Operator Purpose

||, + Concatenates character strings.

The result of concatenating two character strings is another character string.

Concatenation where one or more operands is Null results in Null.

Language Components

CCL Reference Guide 19

Comparison CCL Operators
Comparison CCL operators conducts a comparison of TRUE, FALSE, or NULL.

Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL. Comparison operators use the following syntax:

expression1 comparison_operator expression2

where expression1 and expression2 are a pair of numeric, Boolean, String, or Timestamp
expressions and comparison_operator is one of the operators described in the following table:

Operator Purpose

=
Equality, which can also be used in a multi-equality expression, such as
A=B=C.

!=, <> Inequality.

>, < Greater-than and less-than .

>=, <= Greater-than-or-equal-to and less-than-or-equal-to.

When comparing numeric expressions, Sybase uses numeric precedence to determine
whether the condition compares INTEGER or FLOAT values.

Logical CCL Operators
A Logical CCL operator combines the results of two Boolean expressions or conditions to
produce a single result, or inverts the result of a single condition.

The following table describes logical operators:

Operator Purpose

NOT Returns true if the following condition is false. Returns false if it is true.

AND
Returns true if both component conditions are true. Returns false if
either is false.

OR
Returns true if either component condition is true. Returns false if both
are false.

XOR
Returns true if one component condition is true and the other is false.
Returns false if both components are true or both are false.

For details of how logical operators behave with NULL values, see Null Values in
Expressions.

Language Components

 20 Sybase CEP Option

Row CCL Operators
Row CCL Operators performs functions on rows.

The square brackets [] operator allows you to perform functions on rows other than the current
row in a stream or window. This operator uses the following syntax:

stream-or-window-name[index].column

where stream-or-window-name is the name of a data stream or named window and column
indicates a column in the stream or window. index is an expression that can include literals,
parameters, and/or operators, and that evaluates to an integer. This integer indicates the stream
or window row, in relation to the current row or to the window's sort order. (Note that, in this
case, the square brackets refer to actual CCL syntax, and do not indicate an optional CCL
component.) For example:

MyNamedWindow[1].MyColumn

When used with a data stream, or with a window that is not sorted by largest or smallest value,
[0] indicates the current row (as determined by timestamp and order of arrival), [1] indicates
the row immediately previous to the current row, and so on.

When [] is used with windows that have a LARGEST or SMALLEST clause, index refers to
the sorting order specified by the LARGEST or SMALLEST keywords and by their BY
column reference subclause. For example, if a window TopTrades is defined to keep the 10
largest values as sorted by its Price column, then TopTrades[0].Price accesses the highest
price retained by the window, TopTrades[1].Price refers to the second-highest price, and so
on.

When [] is used with an unnamed window that is partitioned with the GROUP BY clause, or
by any window partitioned by one or more PER clauses, index calculation is based on the
partition to which the row belongs, not on the entire window.

The [] operator can be used in the WHERE selection condition or the SELECT list.

When used on data streams, the [] operator is semantically identical to the PREV() function.
When used on windows, the [] operator is semantically identical to the LAST() function:

Like CCL Operators
LIKE operators are supported by WHERE clause expressions to match WHERE clause string
expressions to stings that closely resemble each other.

WHERE clause expressions support the use of the LIKE and REGEXP_LIKE operators to
match WHERE clause string expressions to strings that closely resemble each other but don't
exactly match.

Language Components

CCL Reference Guide 21

Operator Syntax Purpose

LIKE
compare_expresion LIKE
pattern_match_expression

Matches the pattern specified in pattern_match_ex-
pression to the contents of compare_expression and
returns a value of true or false. Both compare_expres-
sion and pattern_match_expression must evaluate to a
STRING type. The LIKE operator returns a value of
true if compare_expression matches pat-
tern_match_expression, or false if it does not.

compare_expression and pattern_match_expression
can contain wild cards, where the percent sign (%)
matches any length string, and the underscore (_)
matches any single character. If you want to use % or _
as a literal in your pattern, instead of as a wild card,
preface these characters with a backslash (_ or \%):
for example, x_y. You must also preface the backslash
character with a backslash (\\) if you want to use it as a
literal in your pattern. Using a backslash character as
the last character in the pattern, or before a character
other than an underscore, percent sign, or backslash,
generates an error.

RE-
GEXP_LIKE

compare_expression RE-
GEXP_LIKE POSIX_reg-
ular_expression

Matches the pattern specified in POSIX_regular_ex-
pression to the contents of compare_expression and
returns a value of true if they match or false if they do
not. Both compare_expression and POSIX_regu-
lar_expression must evaluate to a STRING type.

The following example matches any row with a value in the column StockName that contains
"Corp" in any position.

INSERT INTO OutStream
SELECT Trades.StockName
FROM Trades
WHERE Trades.StockName LIKE "%Corp%"

IN operator
The IN operator asks a set membership question.

The syntax for the IN operator is:

expression1 IN (expression [, ...])

It asks a set membership question on the expression list. If the value of expression1 is in the
expression lists values, then the result is true. If expression1 is NULL, then the expression is
TRUE if and only if there is a NULL in the expression list. If expression1 is not NULL, then a

Language Components

 22 Sybase CEP Option

NULL in the expression list does not force the result to be NULL. Rather, the NULL is
ignored.

Language Components

CCL Reference Guide 23

Language Components

 24 Sybase CEP Option

Expressions

The Sybase CEP is capable of utilizing a variety of expression components.

General CCL Expressions
An expression is a combination of one or more values, operators, and Sybase functions that
evaluate to a value. An expression generally assumes the data type of its components.

The following simple expression evaluates to 15 and is type INTEGER (the same type as its
components):

5*3

The following expression is an example of a more complex expression that uses both functions
and operators. The expression adds two to the price of a stock, rounds it to the nearest
hundredth, and then divides it by four:

ROUND(Stock.price+2.0, 2))/4.

You can use expressions in many places including:

• The select list of the SELECT clause.
• A condition of the WHERE clause or HAVING clause.
• The ON clause in a Delete statement.

Simple CCL Expressions
A simple CCL expression specifies a column, constant, or NULL.

• A column name can be specified by itself or with the name of the data stream of which it is a
part. To specify both the column and data stream, use this format:
data_stream_name.column_name.

• A constant can be a number or a text string.
• The literal NULL denotes a null value. However, it can only appear in SELECT and in the

results of IF/THEN/ELSE and CASE/THEN. It is never in an expression, but is just the
literal NULL as the expression.

Some valid simple expressions are:

stocks.volume
'this is a text string'
26

Expressions

CCL Reference Guide 25

Compound CCL Expressions
A compound CCL expression is a combination of simple or compound expressions.

Numerical compound expressions can be used with arithmetic functions and parentheses can
be used to change the order of precedence of the expression's components.

Some valid compound expressions are:

('T' || ',' || 'IBM')
LENGTH('NAME') * 10
SQRT(9.) + 1.

Sybase CEP Function Expressions
Sybase CEP functions that are predefined can be used as an expression.

Some valid predefined function expressions are:

LENGTH('TICK 4.03')
ROUND(1234.567*43.0, 2)

IF Expressions
IF expressions are conditions that can are used in an expression or are expressions.

You can use the IF-THEN-ELSE subexpression in an expression or as an expression by itself.
The IF-THEN-ELSE expression uses the following syntax:

IF
condition
THEN
expression
[ELSE
expression
]
END [IF]

Note that the ELSE expression is optional. If none of the conditions of an IF-THEN-ELSE
expression are met and no ELSE subexpression is specified, the output is NULL.

CCL also supports the following IF-THEN-ELSEIF-THEN syntax:

IF
condition
THEN

Expressions

 26 Sybase CEP Option

expression
ELSEIF
condition
THEN
expression
[ELSEIF...THEN...]
[...]
END [IF]

The effect of the IF-THEN-ELSEIF-THEN expression is similar to the CASE expression.
Here is an example:

SELECT (IF Price<1000 THEN 1
 ELSEIF Price >= 1000 AND Price <1500 THEN 1.5
 ELSE 2
 END)

Specify the ELSEIF condition as one word. Sybase CEP Engine interprets the condition
ELSEIF as an ELSE condition with a nested IF condition.

CASE expression
Used as an expression. If WHEN is true it will then perform the corresponding THEN
expression.

You can use CASE-WHEN-THEN as an expression or in an expression. With this form, the
WHEN-THEN clause can be repeated any number of times. Each WHEN expression is a
Boolean that must be true in order to perform the corresponding THEN expression. However,
the representation is order-dependent so that the first WHEN expression that evaluates to true
at runtime is the only one that performs its corresponding THEN expression. If none of the
WHEN expressions are true, the ELSE expression is performed, if present.

CASE { WHEN condition THEN expression } [...] [ELSE
expression] END [CASE]

The following is an example of a SELECT clause using a CASE expression:

SELECT
CASE
WHEN price>2000.00 THEN 4
WHEN price>1000.00 THEN 3
WHEN price>500.00 THEN 2
ELSE 1
END

Expressions

CCL Reference Guide 27

CCL Subqueries in Expressions
It is useful to use a value in an expression that gets computed by a separate continuous query.

It is often useful to use a value in an expression that gets computed by a separate continuous
query. For example, the moving average of a stock price often represents a significant
threshold for making decisions. A query that computes the average of the stock price in a
window would produce a continuous stream of values representing the current moving
average of stock price.

Subqueries can be included in the FROM clause and WHERE clause of the outer query and
use similar syntax to a Query statement, but without an INSERT clause. For details about the
syntax and usage of subclauses, see CCL Subqueries in the FROM Clause and CCL
Subqueries in the WHERE Clause.

Null Values in Expressions
Null values do not always provide a result that is null, in a logical expression the result might
be a non-Null.

In general, when any operand of an expression is Null, then the answer is Null. (Use the syntax
IS NULL and IS NOT NULL to test whether an expression is Null or not Null.)

However, when a Null is an operand in a logical expression, the result still might be non-Null.
The following table shows how logical operators AND, OR, XOR, and NOT behave with
TRUE, FALSE, and Null operands:

x y x AND y x OR y NOT x x XOR y

TRUE TRUE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE

TRUE NULL NULL TRUE FALSE NULL

FALSE TRUE FALSE TRUE TRUE TRUE

FALSE FALSE FALSE FALSE TRUE FALSE

FALSE NULL FALSE NULL TRUE NULL

NULL TRUE NULL TRUE NULL NULL

NULL FALSE FALSE NULL NULL NULL

NULL NULL NULL NULL NULL NULL

The reason for this is that in some cases a subset of the expression is sufficient to determine the
truth or falsehood of the expression. For example, when evaluating X AND Y, if the server sees

Expressions

 28 Sybase CEP Option

that X is false, then the server knows that X AND Y cannot be true, so the server simply knows
that it can returns FALSE regardless of the value of Y. Similarly, if the expression is X OR Y,
and X is true, then the server returns TRUE regardless of the value of Y.

Expressions

CCL Reference Guide 29

Expressions

 30 Sybase CEP Option

Statements

A description of various CCL statements.

ATTACH ADAPTER statement
Attaches an input or output adapter to an data stream.

Syntax
ATTACH { INPUT | OUTPUT } ADAPTER name TYPE type TO STREAM
stream [PROPERTIES { prop = value } [, ...]] ;

Table 6. Components

name A name for this instance of the adapter.

type

The adapter type, identifying the adapter. See
"Adapters Supplied by Sybase CEP" in the Syb-
ase CEP Integration Guide for more information
about valid adapter types.

stream The name of the stream.

prop

The name of a property for the specified adapter
type. See the section for the specific adapter type
in the Sybase CEP Integration Guide for more
information about the properties available for the
adapter.

value The value for the specified property.

Usage
The Attach Adapter statement attaches an input or output adapter to the specified data stream
in the current query module or submodule. Adapters can also be attached using the Sybase
CEP Studio interface (see the Sybase CEP Studio Guide for more information), which inserts
the Attach Adapter statement for you. Input adapters can only be attached to input streams, but
output adapters can be attached to all types of streams.

The optional property names must match the adapter property names from the adapter's .adl
file. Adapter property names are not case sensitive, and allow the arbitrary insertions of spaces
inside the name of the property.

For more information about adapter properties and Adapter Definition Language .adl files,
see the appropriate adapter section in the Sybase CEP Integration Guide .

Statements

CCL Reference Guide 31

Restrictions

• The type must be a defined adapter type. See "Adapters Supplied by Sybase CEP" in the
Sybase CEP Integration Guide for more information about adapter types.

• Adapter property names must match the properties from the adapter's .adl file.
• Input adapters can only be attached to input data streams.

See Also

• Create Stream Statement

Example

ATTACH INPUT ADAPTER AdapterReadReaders TYPE
ReadFromCsvFileAdapterType
 TO STREAM InStreamReaders
 PROPERTIES
 FILENAME = "examples/RfidAndSensorNetworks/ParentChildrenTracking/
 data/rfid-readers.csv",
 LOOPCOUNT = "1",
 USECURRENTTIMESTAMP = "Yes",
 TITLEROW = "TRUE";

CREATE FUNCTION statement
CREAT FUNTION enables users to create a user-defined function with the Sybase CEP
Function Language.

Syntax
CREATE FUNCTION fname ([pname type [, ...]]) RETURNS type {
statement [, ...] }END FUNCTION ;

Table 7. Components

fname The name of the function.

pname The name of a parameter.

type
A CCL data type, either for a specific parameter or
the return value of the function.

statement A CFL statement. See statement for syntax.

statement
{ create_variable_statement | assignment_statement | return_statement | break_statement |
continue_statement } | { if_statement | case_statement | while_statement }

Statements

 32 Sybase CEP Option

Table 8. Components

fname The name of the function.

pname The name of a parameter.

type
A CCL data type, either for a specific parameter or
the return value of the function.

statement A CFL statement. See statement for syntax.

Usage
The CCL Create Function statement creates a user-defined function (UDF). The function
definition is valid only inside the query module in which it is defined, or in any other query
module which imports it by using the CCL Import statement. In all other ways, CCL UDFs can
be used according to the same rules, and subject to the same restrictions, as predefined Sybase
CEP functions.

Restrictions

• CCL UDF definitions are valid only inside the current query module (.ccl file). UDF
definitions in other files must be imported with the Import statement.

See Also

• Import Statement
• Sybase CEP Function Language

Example
The following example shows an EARTHDISTANCE() function definition that calculates
the distance between two geographical points:

CREATE FUNCTION EARTHDISTANCE(
 Latitude1 FLOAT, Longitude1 FLOAT,
 Latitude2 FLOAT, Longitude2 FLOAT)
 RETURNS FLOAT;
 RETURN (180/pi()) * 60 * 1.1515 *
 ACOS(
 SIN(Latitude1*pi()/180) * SIN(Latitude2*pi()/180) +
 COS(Latitude1*pi()/180) * COS(Latitude2*pi()/180) *
 COS((Longitude1 - Longitude2)*pi()/180)
);
END FUNCTION;

Statements

CCL Reference Guide 33

CREATE PARAMETER statement
Creates a parameter within the module or submodule.

Syntax
CREATE PARAMETER data_type name [= value] ;

Table 9. Components

data_type The CCL data type of the parameter.

name The name of the parameter.

value A literal of the specified type.

Usage
The Create Parameter statement creates a parameter that can be used by other CCL statements
in the module. You can also create parameters using the Sybase CEP Studio interface. For
instructions, see the Sybase CEP Studio Guide .

An expression evaluating to a literal of the appropriate data type can be used to set the default
value for the new parameter. Parameters created with this statement can be used in all the same
ways as those created with Sybase CEP Studio, but do not display in Sybase CEP Studio.

When the parameter is used in CCL statements, it must be preceded by a $ character using the
following syntax: $parameter-name.

Restrictions

• Parameters created with the Create Parameter statement are not displayed in Sybase CEP
Studio.

• Variables of a data type that does not permit literal constants cannot be initialized with the
Create Parameter statement.

Example
Here is an example of a Create Parameter statement, followed by a Query statement that uses
the parameter.

CREATE PARAMETER INTEGER AcceptableThreshold = 10;
INSERT INTO StreamOut
SELECT *
FROM StreamIn
WHERE Quantity > $AcceptableThreshold;

Statements

 34 Sybase CEP Option

CREATE SCHEMA statement
Defines a named schema that can be referenced later and reused by one or more queries in the
module.

Syntax
CREATE SCHEMA name { (col_name type [, ...]) | INHERITS [FROM]
schema_name [, ...] [(col_name type [, ...])] } ;

Table 10. Components

name The name of the schema.

col_name A column name.

type The CCL data type of the column.

schema_name The name of another schema.

Usage
The named schema can inherit the column names and data types of one or more named
schemas, created with Create Schema statements elsewhere in the same module. If you
include an INHERITS clause in the schema definition, the new schema definition uses the
column names and data types of the specified schemas as its first (left-most) columns, in the
order listed, and adds any additional columns after the inherited columns.

Restrictions

• Named schemas are recognized by all CCL statements within a module, but not by
statements outside the module. However, external schema definitions can be imported
with the Import statement.

• The schema name must be unique within the query module.
• All column names within the schema, including any column names inherited by the

current schema from another named schema using the INHERITS clause, must be unique.

See Also

• SCHEMA

Example
The following example creates a schema named trade_schema with two columns named
Symbol and Price. The columns have data types of STRING and FLOAT, respectively.

CREATE SCHEMA trade_schema (Symbol STRING, Price FLOAT);

Statements

CCL Reference Guide 35

This example uses a different method to create the same schema for trade_schema as in the
previous example. The schema inherits the Symbol column definition from symbol_schema,
and then defines an additional Price column.

CREATE SCHEMA symbol_schema (Symbol STRING);
CREATE SCHEMA trade_schema INHERITS FROM symbol_schema (Price
FLOAT);

CREATE STREAM statement
Creates a data stream attached to the current query module or submodule.

Syntax
CREATE [INPUT | OUTPUT | LOCAL] STREAM name [schema_clause]
[PROPERTIES prop_def [, ...]] ;

Table 11. Components

name The name of the stream.

schema_clause

The definition of the schema for the stream. See
SCHEMA Clause for syntax and usage. Can be
omitted if the schema will be created automati-
cally, as described in INSERT Clause and SE-
LECT Clause.

prop_def A property definition. Not valid for local streams.

prop_def
{ GUARANTEED DELIVERY = {INHERIT | ENABLE | DISABLE} } |
{ GUARANTEED DELIVERY MAXIMUM QUEUE SIZE = size } |
{ GUARANTEED DELIVERY MAXIMUM AGE = age } | { MAXIMUM DELAY =
max_delay } | { OUT OF ORDER DELAY = delay } |
{ SYNCHRONIZATION = { INHERIT | IN ORDER | OUT OF ORDER | USE
SERVER TIMESTAMP } } | { FILTERCOLUMNS = " col_name [, ...]
" }

Components

size
The size of the guaranteed delivery queue, in
number of rows.

age
The maximum permitted age of rows in the guar-
anteed delivery queue, as an interval.

Statements

 36 Sybase CEP Option

max_delay
An interval specifying the maximum time Sybase
CEP Engine waits before sequencing incoming
rows.

delay
An interval specifying the maximum time rows
can be late before Sybase CEP Engine discards
them.

col_name The name of a column to use for filtering.

Usage
If you do not specify a type of stream, Create Stream creates a local stream by default.

For input and output streams, you can assign property values affecting behavior. You can list
such specifications in any order. The values for the properties can be specified with any CCL
element that is evaluated at compile time, such as functions, operators, and literals, but cannot
contain references to stream or window columns or to other elements whose value is
determined at run time.

GUARANTEED DELIVERY

This option controls the Guaranteed Delivery feature, which
guarantees that every row is received by its destination at least
once, as long as the application components are running. In
order to truly guarantee delivery, you must also enable persis-
tence on the module to ensure that rows are delivered even after
a software failure.

The INHERIT keyword causes the stream to inherit the Guar-
anteed Delivery settings of its query module or submodule.
This is the default setting of Guaranteed Delivery options for
input and output streams.

The ENABLE keyword enables Guaranteed Delivery for the
data stream, even if Guaranteed Delivery is turned off for the
query module or submodule as a whole.

The DISABLE keyword disables Guaranteed Delivery for the
data stream, even if the Guaranteed Delivery is turned on for
the query module or submodule as a whole.

GUARANTEED DELIVERY
MAXIMUM QUEUE SIZE

When Guaranteed Delivery is enabled for the stream this op-
tion specifies the maximum number of rows that should be held
in the Guaranteed Delivery queue. Rows that exceed the al-
lowed number are expired from the Guaranteed Delivery queue
and their delivery is not guaranteed. The default setting for this
option is 0, indicating that no limit is placed on the number of
rows the Guaranteed Delivery queue can hold.

Statements

CCL Reference Guide 37

GUARANTEED DELIVERY
MAXIMUM AGE

When Guaranteed Delivery is enabled for the stream this op-
tion specifies the maximum permitted age of rows in the Guar-
anteed Delivery queue. Rows that exceed the allowed age are
expired from the Guaranteed Delivery queue and their delivery
is not guaranteed. The default setting for this option is 0, in-
dicating that no limit is placed on the age of rows in the Guar-
anteed Delivery queue.

MAXIMUM DELAY

The interval specified by this option allows Sybase CEP Server
to correct synchronization problems among rows arriving in
different input streams in a query module or submodule. Syb-
ase retains incoming rows of all the input streams in the query
module or submodule for the interval specified by MAXI-
MUM DELAY before sorting the order in which they arrive in
their respective streams.

Since different streams may have MAXIMUM DELAY set to
different values, the largest setting of this field among the dif-
ferent streams attached to the query module or submodule is
used to determine the overall MAXIMUM DELAY interval.
The default MAXIMUM DELAY setting is one (1) second.
MAXIMUM DELAY should not be set to 0.

If the SYNCHRONIZATION property is set to INHERIT,
the stream uses the MAXIMUM DELAY setting of the query
module or submodule containing the stream, and any MAXI-
MUM DELAY setting specified directly in the stream prop-
erties is ignored.

Statements

 38 Sybase CEP Option

OUT OF ORDER DELAY

The interval specified by this option allows Sybase CEP Server
to correct synchronization problems in a given input stream.
Sybase CEP Server retains incoming rows for the input stream
for the specified interval before ordering them by their time-
stamp, and delivering them into the stream. This ensures that
any time synchronization problems between Sybase CEP
Server and outside data sources encountered in the specified
time period are resolved before the information is fed into the
stream.

If a row with an earlier timestamp arrives in the stream after the
interval specified by OUT OF ORDER DELAY, it is discar-
ded. The default OUT OF ORDER DELAY setting is 0, in-
dicating that rows are not held before being ordered by time-
stamp.

The OUT OF ORDER DELAY property works in conjunc-
tion with the SYNCHRONIZATION property, as explained
in the SYNCHRONIZATION option entry of this table.

If the SYNCHRONIZATION property is set to INHERIT,
the stream uses the OUT OF ORDER DELAY setting of the
query module containing the stream, and any OUT OF OR-
DER setting specified directly in the stream properties is ig-
nored.

Statements

CCL Reference Guide 39

SYNCHRONIZATION

The SYNCHRONIZATION property works with MAXI-
MUM DELAY and OUT OF ORDER DELAY to correct
synchronization problems in a given input stream.

Setting SYNCHRONIZATION to INHERIT causes the in-
put stream to inherit the MAXIMUM DELAY, OUT OF
ORDER DELAY and SYNCHRONIZATION settings of the
query module in which the stream is contained. INHERIT is
the default synchronization setting.

Setting SYNCHRONIZATION to IN ORDER causes Syb-
ase CEP Server to discard any rows arriving in the stream that
have an earlier timestamp than the row currently in the stream.
When this setting is used, the OUT OF ORDER DELAY
property must not be set. If IN ORDER is set and an OUT OF
ORDER DELAY value is specified, Sybase CEP Engine is-
sues a warning and ignores the OUT OF ORDER DELAY
setting.

Setting SYNCHRONIZATION to OUT OF ORDER causes
Sybase CEP Server to retain incoming rows for the input
stream for the interval specified by the OUT OF ORDER
DELAY property, before ordering them by their timestamp,
and delivering them into the stream. This ensures that any time
synchronization problems between Sybase CEP Server and
outside data sources encountered in the specified time period
are resolved before the information is fed into the stream.
When this setting is used, the OUT OF ORDER DELAY
property must be set to a value of 1 or higher. If OUT OF
ORDER is used in conjunction with an OUT OF ORDER
DELAY setting of 0, the stream behaves as though the IN
ORDER synchronization setting were selected.

Setting SYNCHRONIZATION to USE SERVER TIME-
STAMP causes rows arriving in the stream to be assigned a
timestamp by Sybase CEP Engine, based on the current time
reflected by Sybase CEP Server. This timestamp overrides and
replaces the timestamp set by the input adapter.

Statements

 40 Sybase CEP Option

FILTERCOLUMNS

The optional FILTERCOLUMNS property, used with output
streams, defines a filter based on one or more columns from the
stream's schema definition. The filter allows subscribers to the
stream to receive only rows that include specified values in the
filter column(s) without needing to filter the values using the
CCL query filtering clauses.

The actual values that the subscriber should receive are passed
as GET parameters in the stream URI, using either Sybase CEP
Studio, or Sybase CEP SDKs. For example if you define a
"FILTERCOLUMNS = 'Exchange, Symbol'" filter, you can
then set the stream URI to receive only rows where the value in
the Exchange column is NYSE and the value in the Symbol
column is IBM. The filtering is performed by Sybase CEP
Server before the stream's subscribers receive data from the
stream. See the Sybase CEP Studio Guide for information on
data filtering in Sybase CEP Studio, and the Sybase CEP In-
tegration Guide for information about filtering using Sybase
CEP SDKs.

Restrictions

• Stream property values cannot refer to stream or window columns, or to other CCL
components that are evaluated at run time; however, the col_name used by
FILTERCOLUMNS must refer to one of the stream's columns.

• You can only set Guaranteed Delivery properties for input and output streams.
• You can only set the GUARANTEED DELIVERY MAXIMUM QUEUE SIZE and

GUARANTEED DELIVERY MAXIMUM AGE properties if the GUARANTEED
DELIVERY option is set to ENABLE.

• You can only set the MAXIMUM DELAY and OUT OF ORDER DELAY options for
input streams.

• You can only set the FILTERCOLUMNS property for output streams.

See Also

• Create Schema Statement
• SCHEMA

Example

CREATE OUTPUT STREAM Alerts
 SCHEMA 'alerts.ccs'
 PROPERTIES
 GUARANTEED DELIVERY = ENABLE,
 GUARANTEED DELIVERY MAXIMUM AGE = 10 MINUTES
 FILTERCOLUMNS="User, Host";

Statements

CCL Reference Guide 41

CREATE VARIABLE statement
Defines a variable within the scope of the module and, optionally, initializes the variable to a
value.

Syntax
CREATE VARIABLE data_type name [= value] ;

Table 12. Components

data_type The CCL data type of the variable.

name The name of the variable.

value
A literal of the specified type. If omitted, the ini-
tial value is Null.

Usage
Another version of this statement is part of the Sybase CEP Function Language, for use is
creating user-defined functions. For more information, see Create Variable Statement.

Restrictions

• A variable name must be unique to the query module and has scope only within the
module.

• Variables of a data type that does not permit literal constants cannot be initialized with the
Create Variable statement.

See Also

• Set Variable Statement

Example

CREATE VARIABLE INTEGER message_count = 0;

CREATE WINDOW statement
Defines a named window that can be referenced later and used by one or more queries.

Syntax
CREATE [PUBLIC | MASTER] WINDOW win_name schema_clause
{keep_clause [, keep_clause] } | { MIRROR master_window }
[INSERT REMOVED [ROWS] INTO name] [properties_clause]

Statements

 42 Sybase CEP Option

Table 13. Components

win_name The name of the window.

schema_clause
A definition of the schema for the window. See
SCHEMA Clause for more information.

keep_clause
The policy defining how rows are kept in this
window. See KEEP Clause for more information.

master_window
The name of the master window this window
mirrors. See Shared Windows for more informa-
tion.

name
The name of the stream or window where re-
moved rows are published.

properties_clause
Definitions for index columns, filter columns, or
filter values. See properties_clause for more in-
formation.

properties_clause
PROPERTIES [INDEXCOLUMNS=" col_name [, ...] "]
[FILTERCOLUMNS=" col_name [, ...] " | [FILTER=" value
[, ...] "] [FILTEREXPR=" expression "]]

Table 14. Components

col_name
The name of a column to be indexed (for a public
window) or used as a filter (for a master window).

value A filter value for a mirror window.

expression A filter expression for a mirror window.

Usage
Use the Create Window statement to create a named window, a public window, or a shared
window (either master or mirror).

The Create Window statement:

• Optionally defines the window as a public, master, or mirror window. Note that a public
window can also be a master or mirror window, but a master window cannot also be a
mirror window.

• Includes either one or two KEEP clauses, which define the conditions under which the
window should retain rows (window policies are discussed in more detail in the
description of the KEEP clause), or defines the window as a mirror of a master window.
Note that a statement defining a mirror window cannot include a KEEP clause.

Statements

CCL Reference Guide 43

• Optionally includes a PROPERTIES clause defining index columns for a public window,
filter columns for a master window, or filter values or a filter expression for a mirror
window.

• Optionally includes an INSERT REMOVED clause that identifies a data stream or named
window in the same query module as the current window. Any rows removed from the
current window are published to the specified stream or window.

Restrictions

• Named windows are recognized by all CCL statements within a module, but not by
statements outside the module.

• The window name must be unique within the query module.
• Because named windows are not permanently attached to any stream, they must be

explicitly populated by other statements in order to contain information.
• A master window cannot also be a mirror window.
• A mirror window is read only; you cannot insert, update, or delete rows from it.
• A mirror window must be in a separate project from the master window it mirrors.
• The FIRST and LAST functions do not work with mirror windows.
• The schema defined for a mirror window must exactly match the schema of the master

window it is mirroring.
• If you set accelerated playback on the project containing the master window, you must set

accelerated playback to the same value on all projects containing windows mirroring that
master window.

• If you set persistence but not guaranteed delivery on the project containing the master
window, any windows mirroring that master may not be accurate after a restart of the
master project.

• The maximum delay setting for the module containing the mirror window must be at least
slightly larger than the maximum delay setting for the module containing the master
window, assuming you are using message timestamp.

See Also

• Create Schema Statement
• Public Windows
• Shared Windows
• KEEP
• SCHEMA

Examples

CREATE WINDOW AllGuestsWindow SCHEMA (Name STRING, NetWorth FLOAT)
KEEP ALL;

CREATE WINDOW RecentReadingsWindow0 SCHEMA

Statements

 44 Sybase CEP Option

 ReadingsSchema
KEEP 10 ROWS;

CREATE WINDOW RecentReadingsWindow1 SCHEMA
 'RfidReadingsSchema.ccs'
KEEP 10.5 MINUTES;

CREATE WINDOW RecentReadingsWindow3 SCHEMA
 'RfidReadingsSchema.ccs'
KEEP 10 MINUTES 30 SECONDS;

CREATE WINDOW RecentReadingsWindow4 SCHEMA
 'RfidReadingsSchema.ccs'
KEEP INTERVAL '00:10:30';

CREATE WINDOW TodayTrades
SCHEMA (Symbol STRING, Shares FLOAT,
 Duration INTERVAL) KEEP FOR Duration;

The following example creates a public window:

CREATE SCHEMA Myschema (Symbol STRING, Price FLOAT, Volume INTEGER,
VWAP FLOAT);
CREATE PUBLIC WINDOW MyPubWindow SCHEMA Myschema
KEEP 1 HOUR
PROPERTIES INDEXCOLUMNS = "Symbol, Price";

The following example illustrates a basic master and mirror window relationship. ProjectA (in
the Default workspace) defines and populates a master window named MyTradesWindow:

CREATE MASTER WINDOW MyTradesWindow
SCHEMA MySchema
KEEP 24 hours;

INSERT INTO MyTradesWindow
SELECT * FROM MyTradesStream;

ProjectB defines a mirror of MyTradesWindow and sends rows to OutStream based on rows in
the mirror window:

CREATE WINDOW MyWindow
SCHEMA MySchema
MIRROR "/Stream/Default/ProjectA/MyTradesWindow";

INSERT INTO OutStream
SELECT
 Symbol, Avg(Price), Min(Price), Max(Price)
FROM
 MyWindow
GROUP BY
 Symbol;

Statements

CCL Reference Guide 45

The following example shows the use of filter columns. The master window definition
specifies the filter columns Exchange and Symbol:

CREATE MASTER WINDOW MyTradesWindow
SCHEMA MySchema
KEEP 24 hours
PROPERTIES
 FilterColumns='Exchange,Symbol';

INSERT INTO MyTradesWindow
SELECT * FROM MyTradesStream;

The mirror window definition specifies filter values "NYSE" and "IBM." The mirror window
will only receive rows from the master that have the value "NYSE" in the Exchange column
and the value "IBM" in the Symbol column:

CREATE WINDOW MyIbmWindow
SCHEMA MySchema
MIRROR "/Stream/Default/ProjectA/MyTradesWindow"
PROPERTIES
 Filter='NYSE,IBM';

INSERT INTO OutIbmStream
SELECT
 Symbol, Avg(Price), Min(Price), Max(Price)
FROM
 MyIbmWindow;

Public Windows
Create Window statements is used to define a public named window, which enables you to
perform a snapshot query of a public window with SQL queries from several locations.

Usage
You can use the Create Window statement to define a public named window. You can:

• Use a public window in CCL statements in all the same ways you can use a regular named
window (see Create Window statement). A public window used in this way must be
located in the same project as the CCL queries that use it.

• Perform a snapshot query of a public window with SQL queries, from one of several
locations:
• From Sybase CEP Studio. See "Debug Menu" in the Sybase CEP Studio Guide for

more information. This method can only query public windows contained in the main
module or submodules of the project currently being worked on.

• From external applications using Sybase CEP SDKs or from the c8_client command-
line utility. For more information, see the Sybase CEP Integration Guide .

• From a database subquery inside a CCL FROM clause. This method of querying a
public window treats the public window as if it were a table in an external database. The

Statements

 46 Sybase CEP Option

public window being queried can be located in the same project as the database
subquery, or in a different project (however, the Database statement cannot be used to
publish data to a public window).
Before querying a public window with a database subquery, you must first create a
database service for the project in which the public window is located in the file c8-
services.xml. You can then use this service name in place of the database service name
within the database subquery. See the Sybase CEP Administration Guide for more
information about setting up services.

• Using the ReadFromDB and PollFromDB adapters, which are described in the Sybase
CEP Integration Guide . As with the database subquery, the adapters treat the public
window as a table in an external database, and you must therefore set up the window's
project as a database service in the file c8-services.xml before using the adapters to
connect to the public window.

Indexing
Index a public window in a similar manner to a relational database table. Define an index on a
public window on a single column or on multiple columns. Indexing a public window column
can significantly improve public window query performance when used with the following
SQL operations, either individually or in combination with one another:

• column-name = value
• column-name < value
• column-name > value
• column-name <= value
• column-name >= value
• column-name >= value
• ORDER BY expression ASC

Public window indexes do not apply to:

• OR operator expressions.
• LIKE operator expressions.

Note that, while having a custom index can significantly improve execution time for public
window queries, it may also negatively affect performance of your CCL project as a whole.
Pay attention to the performance of your project when adding a public window index.

Warning! Sybase CEP Engine supports indexes on BLOB and XML columns, but Sybase
does not recommend them since BLOB and XML value comparisons are resource-intensive
and will negatively affect performance of your CCL project.

Timestamp Columns in Public Window Queries
All public window queries generate an initial Timestamp column, containing the row
timestamp in addition to any columns specified in the query. You can refer to the results of this
column in queries of the public window, as in the following example:

INSERT INTO OutStream

Statements

CCL Reference Guide 47

SELECT Timestamp
FROM MyPublicWindow;

See Also

• Create Schema Statement
• Create Window Statement
• KEEP
• SCHEMA
• SQL

Example

CREATE SCHEMA Myschema (Symbol STRING, Price FLOAT, Volume INTEGER,
VWAP FLOAT);
CREATE PUBLIC WINDOW MyPubWindow SCHEMA Myschema
KEEP 1 HOUR
PROPERTIES INDEXCOLUMNS = "Symbol, Price";

Shared Windows
Shared windows allow you to perform a snapshot query with live updates, to duplicate
contents of one master window in other mirror windows in other projects, and to receive
updates to the mirror windows as the master window changes.

Master
A master window is define just the same as any other named window. The optional
PROPERTIES clause allows you to define filter columns that allow mirror windows to specify
that they will only receive rows from the master with specific values in the filter columns. Only
a single set of filter columns can be defined per master window.

Mirror
A mirror window is a read-only window that receives duplicate rows from the master window.
When you define a mirror window you specify the master window with a name in the
following form, where hostname identifies the computer running Sybase CEP Manager for the
project containing the master window, and port is the port number used by that Manager:
ccl://hostname:port/Stream/workspace/project_name/master_window_name

If the project containing the master window is running in the same Manager as the project
containing the mirror window, you can use a relative name that omits "ccl://hostname:port".

The MIRROR clause replaces the KEEP clause in a mirror window definition; the window
retention policy is defined for the master window. The optional PROPERTIES clause allows
you to specify values for the filter columns defined in the PROPERTIES clause of the master
window, which restricts the rows in the mirror to those with the specified filter values in the
filter columns. You specify filter values in CSV format and list them in the same order as the

Statements

 48 Sybase CEP Option

filter columns definition on the master window. Filter values can be omitted from a mirror
window even if the master defines filter columns, but if filter values are included, a value must
be specified for every filter column.

Use the FILTEREXPR property to specify an expression for filtering purposes, regardless of
whether or not the master window is defined with the FILTERCOLUMNS property. If
including this property, the mirror only receives rows for which the expression evaluates to
True. The expression is a standard CCL Boolean scalar expression, such as the following:

FILTEREXPR="Symbol=IBM AND Price>10"

Note that you cannot include any of the following in the filter expression:

• Aggregator functions, such as SUM() or COUNT().
• Stateful operators like PREV().
• FIRST / LAST / INDEX operators.
• CCL variable references.
• GETTIMESTAMP().
• GET__COLUMNBYNAME().
• XMLPATTERNMATCH().
• Functions used within XMLTABLE().

However, you can include user-defined scalar functions and the zero-argument variant of
GETTIMESTAMP().

Considerations
When a project that contains a mirror window starts up, the contents of its master window are
copied to the mirror. This has a negative performance impact on the project containing the
master window. How large an impact depends on the size of the window, the number of
projects containing mirror windows starting at the same time, and how much optimization
Sybase CEP Server can achieve (if both projects are running on the same server, Sybase CEP
Server copies pointers instead of actual row contents). To reduce the performance impact,
especially if your master and mirror projects are on separate servers, consider limiting the
rows to be copied by using filter columns and also limiting the number of mirror windows that
depend on the same master window.

Output from a mirror window does not begin until the entire initial copy has been received
from the master window. After the initial copy, the mirror window changes in concert with the
master window, receiving the same insertions, deletions, and updates within the constraints of
any defined filters.

If the project containing a master window starts or restarts while a project containing a mirror
of that master is running, the mirror replaces its contents with a fresh copy of the master
window once that project has restarted.

Statements

CCL Reference Guide 49

Examples
The following example illustrates a basic master and mirror window relationship. ProjectA (in
the Default workspace) defines and populates a master window named MyTradesWindow:

CREATE MASTER WINDOW MyTradesWindow
SCHEMA MySchema
KEEP 24 hours;

INSERT INTO MyTradesWindow
SELECT * FROM MyTradesStream;

ProjectB defines a mirror of MyTradesWindow and sends rows to OutStream based on rows in
the mirror window:

CREATE WINDOW MyWindow
SCHEMA MySchema
MIRROR "/Stream/Default/ProjectA/MyTradesWindow";

INSERT INTO OutStream
SELECT
 Symbol, Avg(Price), Min(Price), Max(Price)
FROM
 MyWindow
GROUP BY
 Symbol;

The following example shows the use of filter columns. The master window definition
specifies the filter columns Exchange and Symbol:

CREATE MASTER WINDOW MyTradesWindow
SCHEMA MySchema
KEEP 24 hours
PROPERTIES
 FilterColumns='Exchange,Symbol';

INSERT INTO MyTradesWindow
SELECT * FROM MyTradesStream;

The mirror window definition specifies filter values "NYSE" and "IBM." The mirror window
will only receive rows from the master that have the value "NYSE" in the Exchange column
and the value "IBM" in the Symbol column:

CREATE WINDOW MyIbmWindow
SCHEMA MySchema
MIRROR "/Stream/Default/ProjectA/MyTradesWindow"
PROPERTIES
 Filter='NYSE,IBM';

INSERT INTO OutIbmStream
SELECT
 Symbol, Avg(Price), Min(Price), Max(Price)

Statements

 50 Sybase CEP Option

FROM
 MyIbmWindow;

DATABASE statement
Writes data to an external relational database.

Syntax
exec_clause select_clause from_clause [matching_clause] [on_clause] [where_clause]
[group_by_clause] [having_clause] [order_by_clause] [limit_clause] [output_clause] ;

Table 15. Components

exec_clause

The destination for the published rows. See EX-
ECUTE STATEMENT DATABASE Clause for
more information. The statements in this clause
are executed on the external database whenever
this statement generates output.

select_clause

The select list specifying what to publish. See
SELECT Clause for more information. All non-
asterisk (*) items in this list must include an AS
subclause.

from_clause
The data sources. See FROM Clause for more
information.

matching_clause
A pattern-matching specification. See MATCH-
ING Clause for more information.

on_clause
A join condition. See ON Clause for more infor-
mation.

where_clause
A selection condition. See WHERE Clause for
more information.

group_by_clause
A partitioning specification. See GROUP BY
Clause for more information.

having_clause
A filter definition. See HAVING Clause for more
information.

order_by_clause
A sequencing definition. See ORDER BY Clause
for more information.

limit_clause
A limit on the number of rows to publish. See
LIMIT Clause for more information.

Statements

CCL Reference Guide 51

output_clause
A synchronization specification. See OUTPUT
Clause for more information.

Usage
The Database statement is a CCL statement that directly modifies data in an external relational
database. You must have previously configured the database, as described in the Sybase CEP
Installation Guide . Enter the Database statement directly into the CCL query module, and it
executes SQL statements against the external database without going through an output
adapter. In the case of kdb+ databases, the Database statement can also contain statements in
Kx System's language q.

This statement is used only to pass SQL or q statements to databases, not to retrieve data from
databases. Data retrieval from databases is handled by database subqueries (see Database
Subquery for more information).

The Database statement is syntactically similar to the Query statement. It contains a number of
clauses that create a query that subscribes to rows from a data stream, processes the incoming
rows, and perform actions against the external database based on the results.

In addition to using the Database statement, you can also write to databases using the Write to
DB output adapter, which passes SQL statements to an external database. For instructions on
using the adapter, see the Sybase CEP Integration Guide .

Clause Processing Order
The main clauses within a Database statement are processed in the following order, which
affects the query's output:

1. FROM clause (with MATCHING conditions, if any).
2. WHERE clause (with MATCHING conditions, if any).
3. SELECT clause (in conjunction with GROUP BY, if present).
4. HAVING clause.
5. OUTPUT clause.
6. ORDER BY clause.
7. LIMIT clause.
8. INSERT clause.

Restrictions

• Connection with the database listed in the EXECUTE STATEMENT DATABASE clause
must first be configured, as described in the Sybase CEP Installation Guide , before you
can use the Database statement.

• If the SELECT clause of the Database statement uses the "select all" expression (*) and the
FROM clause of the statement lists multiple data sources, the data sources cannot share
any column names.

Statements

 52 Sybase CEP Option

• If the SELECT clause contains a list of column names, it must assign an output alias to
each one, using the AS subclause.

See Also

• EXECUTE STATEMENT DATABASE
• FROM
• GROUP BY
• HAVING
• LIMIT
• MATCHING
• ON
• ORDER BY
• OUTPUT
• SELECT
• WHERE

Examples
The following simple example of a Database statement deletes rows from database table
Table1, based on their match to values in the Column1 column of StreamIn.

EXECUTE STATEMENT DATABASE "ExternalDatabase"
 [[DELETE FROM Table1 WHERE Table1.Column1=?Column1]]
SELECT StreamIn.Column1 AS Column1
FROM StreamIn;

The following example inserts column values from the ActiveStrategies window and
MyTrades streams, as well as a calculated timestamp into TradingDatabase.

CREATE WINDOW ActiveStrategies
SCHEMA (Symbol STRING, Strategy STRING)
KEEP LAST PER Symbol;

CREATE INPUT STREAM MyTrades
SCHEMA (Symbol STRING, Quantity INTEGER, Price FLOAT);

EXECUTE STATEMENT DATABASE "TradingDatabase"
 [[INSERT INTO Positions
 VALUES (?Symbol, ?Ts, ?Quantity, ?Price, ?Strategy)]]
SELECT *, GETTIMESTAMP(MyTrades) as Ts
FROM MyTrades, ActiveStrategies
WHERE MyTrades.Symbol = ActiveStrategies.Symbol;

Statements

CCL Reference Guide 53

DELETE statement
Explicitly deleted specified rows from a named window.

Syntax
on_clause [when_clause] DELETE FROM window_name
[where_clause] ;

Table 16. Components

on_clause
A row arriving on the stream or window specified
here triggers the deletion. See ON Clause: Trigger
Syntax for more information.

when_clause
A condition limiting when the rows are deleted.
See WHEN Clause for more information.

window_name
The name of the window from which rows are
deleted.

where_clause
A filter limiting which rows are deleted. See
WHERE Clause for more information.

See Also

• ON
• WHEN
• WHERE

Example
In this example the deletion is triggered from named window NW1, whenever a row arrives on
StreamA. Every time the trigger occurs, all rows where the value in the ID column of the
window is the same as the value in StreamA's ID column are deleted.

ON StreamA
DELETE FROM NW1
WHERE StreamA.ID = NW1.ID;

IMPORT statement
Imports schemas created with a 'Create Schema Statement' and functions created with a
'Created Function Statement' from an external file.

Syntax
IMPORT file ;

Statements

 54 Sybase CEP Option

Table 17. Component

file
The name, including the absolute or relative path,
of a file containing CCL statements .

Usage
The Import statement imports all schemas created with a Create Schema statement and
functions created with a Create Function statement from the specified file into the current
query module. Where the compiler searches for the file specified in this statement is controlled
by compiler options. See "Compiler Options" in the Sybase CEP Studio Guide and
"Importing" in the Sybase CEP Integration Guide for more information.

Restrictions
The Import statement does not import in-line schema definitions or other CCL content from
the external .ccl file.

See Also

• Create Function Statement
• Create Schema Statement

Example

IMPORT "../../mydir/MyModule1.ccl";

INSERT VALUES statement
Creates one or more rows at specified times, and inserts them into a stream or window.

Syntax
insert_clause values_clause output_clause ;

Table 18. Components

insert_clause
The destination of the specified values. See IN-
SERT Clause for more information.

values_clause
The values to insert. See VALUES Clause for
more information.

output_clause
When the values should be inserted. See OUT-
PUT Clause for more information.

Statements

CCL Reference Guide 55

Usage
The Insert Values statement produces rows of data at specified times and publishes them to its
destination data stream or window. This statement executes only at the times specified by the
OUTPUT clause.

Important: In order for an Insert Values statement to produce output when you set
synchronization to "Use message timestamp," a row must arrive on an input stream.

See Also

• INSERT
• VALUES
• OUTPUT

Example
This example inserts two rows of one column each into the Sites data stream when the project
first starts running:

INSERT INTO Sites
VALUES ('New York'), ('London')
OUTPUT AT STARTUP;

QUERY statement
Subscribes to one or more data sources, processes the incoming rows, and publishes the results
into a data stream or named window.

Syntax
insert_clause select_clause from_clause [matching_clause] [on_clause] [where_clause]
[group_by_clause] [having_clause] [order_by_clause] [limit_clause] [output_clause] ;

Table 19. Components

insert_clause
The destination for the published rows. See IN-
SERT Clause for more information.

select_clause
The select list specifying what to publish. See
SELECT Clause for more information.

from_clause
The data sources. See FROM Clause for more
information.

matching_clause
A pattern-matching specification. See MATCH-
ING Clause for more information.

Statements

 56 Sybase CEP Option

on_clause
A join condition. See ON Clause for more infor-
mation.

where_clause
A selection condition. See WHERE Clause for
more information.

group_by_clause
A partitioning specification. See GROUP BY
Clause for more information.

having_clause
A filter definition. See HAVING Clause for more
information.

order_by_clause
A sequencing definition. See ORDER BY Clause
for more information.

limit_clause
A limit on the number of rows to publish. See
LIMIT Clause for more information.

output_clause
A synchronization specification. See OUTPUT
Clause for more information.

Clause Processing Order
The main clauses within a Query statement are processed in the following order, which affects
the query's output:

1. FROM clause (with MATCHING conditions, if any).
2. WHERE clause (with MATCHING conditions, if any).
3. SELECT clause (in conjunction with GROUP BY, if present).
4. HAVING clause.
5. OUTPUT clause.
6. ORDER BY clause.
7. LIMIT clause.
8. INSERT clause.

See Also

• FROM
• GROUP BY
• HAVING
• INSERT
• LIMIT
• MATCHING
• ON
• ORDER BY
• LIMIT

Statements

CCL Reference Guide 57

• OUTPUT
• SELECT
• WHERE

Example

INSERT INTO HourlyStockVolume
SELECT Symbol, SUM(Volume)
FROM StockTrades KEEP EVERY 1 HOUR
GROUP BY Symbol,Buyer
OUTPUT EVERY 1 HOUR;

REMOTE PROCEDURE statement
Sends Remote Procedure calls (RPCs) to an external destination.

Syntax
exec_rem_proc_clause select_clause from_clause
[matching_clause] [on_clause] [where_clause]
[group_by_clause] [having_clause] [order_by_clause]
[limit_clause] [output_clause] ;

Table 20. Components

exec_rem_proc_clause

The remote procedure to execute when the other
clauses generate output. See EXECUTE RE-
MOTE PROCEDURE Clause for more informa-
tion.

select_clause

The select list specifying what to publish. See
SELECT Clause for more information. All non-
asterisk items in this list must include an AS sub-
clause.

from_clause
The data sources. See FROM Clause for more
information.

matching_clause
A pattern-matching specification. See MATCH-
ING Clause for more information.

on_clause
A join condition. See ON Clause for more infor-
mation.

where_clause
A selection condition. See WHERE Clause for
more information.

Statements

 58 Sybase CEP Option

group_by_clause
A partitioning specification. See GROUP BY
Clause for more information.

having_clause
A filter definition. See HAVING Clause for more
information.

order_by_clause
A sequencing definition. See ORDER BY Clause
for more information.

limit_clause
A limit on the number of rows to publish. See
LIMIT Clause for more information.

output_clause
A synchronization specification. See OUTPUT
Clause for more information.

Usage
The Remote Procedure statement executes a service defined in the file c8-services.xml. You
must have previously configured the service as described in "Enabling Remote Procedure
Calls" in the Sybase CEP Installation Guide . This statement is used only to execute
procedures on the remote service, not to retrieve data. Data retrieval from remote services is
handled by remote subqueries (see Remote Subquery for more information).

The Remote Procedure statement is syntactically similar to the Query statement. It contains a
number of clauses that create a query that subscribes to rows from a data stream and then filters
and processes the incoming rows. Whenever this process generates output rows, the specified
RPC service is invoked and output is sent to the external destination.

Clause Processing Order
The main clauses within a Remote Procedure statement are processed in the following order,
which affects the query's output.

1. FROM clause (with MATCHING conditions, if any).
2. WHERE clause (with MATCHING conditions, if any).
3. SELECT clause (in conjunction with GROUP BY, if present).
4. HAVING clause.
5. OUTPUT clause.
6. ORDER BY clause.
7. LIMIT clause.
8. INSERT clause.

Restrictions

• First configure the service name listed in the EXECUTE REMOTE PROCEDURE clause,
as described in "Enabling Remote Procedure Calls" in the Sybase CEP Installation Guide ,
before using this statement.

Statements

CCL Reference Guide 59

• If the SELECT clause of the Remote Procedure statement uses the "select all" expression
(*) and the FROM clause of the statement lists multiple data sources, the data sources
cannot share any column names.

• If the SELECT clause contains a list of column names, it must assign an alias to each
selected column.

See Also

• EXECUTE REMOTE PROCEDURE
• FROM
• GROUP BY
• HAVING
• LIMIT
• MATCHING
• ON
• ORDER BY
• OUTPUT
• SELECT
• WHERE

Example

EXECUTE REMOTE PROCEDURE "GetManagerApproval"
SELECT
 ManagerName AS Name,
 ManagerTitle AS Title,
 ManagerPhone AS Phone,
 EmployeeName AS EmployeeName,
 EmployeeTitle AS EmployeeTitle,
 TotalSum AS TotalSum
FROM OrdersWithManager
WHERE ManagerName IS NOT NULL AND
 (ManagerApprovalLimit IS NULL OR
 ManagerApprovalLimit < TotalSum);

SET VARIABLE statement
Changes the value of one or more variables.

Syntax
on_clause [when_clause] set_clause ;

Statements

 60 Sybase CEP Option

Table 21. Components

on_clause

A row arriving on the data source specified here
triggers the variable value change specified in the
set_clause. See ON Clause: Trigger Syntax for
more information.

when_clause
A condition that limits when the trigger occurs.
See WHEN Clause for more information.

set_clause
The variables and values to be set when the trigger
occurs. See SET Clause: Set Variable Statement
Syntax for more information.

Restrictions

• The Set statement can only be used with variables created with the Create Variable
statement.

• The expression used to set each variable's value must evaluate to the data type defined for
the variable.

See Also

• Create Variable Statement
• ON
• SET
• WHEN

Example
In this example, the messages in StreamA are counted:

ON StreamA
SET message_count = message_count+1;

UPDATE WINDOW statement
Updates existing rows in a named window or, optionally, inserts new rows into the window if
no matching rows are found to update.

Syntax
on_clause [when_clause] update_clause set_clause
[where_clause] [otherwise_insert_clause] ;

Statements

CCL Reference Guide 61

Table 22. Components

on_clause
A stream or window that acts as the trigger for the
update. See ON Clause: Trigger Syntax for more
information.

when_clause
A trigger condition. See WHEN Clause for more
information.

update_clause
The destination stream or window. See UPDATE
Clause for more information.

set_clause
The destination columns and associated values.
See SET Clause: Window Syntax for more infor-
mation.

where_clause
An update condition. See WHERE Clause for
more information.

otherwise_insert_clause
A new row to insert into the destination if the
condition in the where_clause isn't met. See OTH-
ERWISE INSERT Clause for more information.

Usage
The ON clause specifies a data stream or named window. Arrival of rows in this stream or
window, in combination with the WHEN clause condition (if any), triggers the update or insert
process. Sybase CEP Engine processes each row arriving on the stream or window
individually, performing an update for each row that meets the condition in the WHEN clause
or performing an insert, if specified. This row-at-a-time processing means that rows arriving
with the same timestamp can each potentially trigger an update to the same row. Thus the
updated window is used when the next row is processed, even if that row has the same
timestamp as the previous row.

All other affected CCL statements and clauses treat the window update as a row deletion
followed by a row insertion, and respond accordingly. For example, named windows that
include an INSERT REMOVED clause treat any updated rows (in their pre-update form) as
removed rows. In some cases, this results in two published rows, such as when calculating
aggregate values: one for the calculation after the updated row is removed and a second for the
calculation after the updated row is inserted.

Clause Processing Order
The clauses within an Update Window statement are processed in the following order, which
affects the statement's output:

• ON clause.
• WHEN clause.
• WHERE clause.

Statements

 62 Sybase CEP Option

• SET clause.
• OTHERWISE INSERT clause.
• UPDATE clause.

See Also

• ON
• OTHERWISE INSERT
• SET
• UPDATE
• WHEN
• WHERE

Example
The following example updates the prices of stocks to the most current price. If no stock with
the corresponding symbol is found, however, a new row recording the stock symbol and price
publishes to the LastTrade window:

ON Trades AS T
UPDATE LastTrade AS L
SET T.Price AS Price
WHERE T.Symbol = L.Symbol
OTHERWISE INSERT *;

Statements

CCL Reference Guide 63

Statements

 64 Sybase CEP Option

Clauses

The Sybase CEP is capable of utilizing a variety of clause components.

CACHE clause
Clears the cache when a row arrives in a stream, in either database subquery or remote
subquery.

Syntax
CACHE { { CLEAR [ALL] ON source } | { MAXIMUM AGE age} |
{ MAXIMUM { MEMORY USAGE | SIZE } limit } } [, ...]

Table 23. Components

source

The name of a stream or window defined in the
same query module as the subquery. A row ar-
riving on this stream or window causes the cache
to be cleared as specified.

age An Interval expression specifying age.

limit
An Integer expression specifying the maximum
memory or size.

Usage
CACHE is an optional clause of the database subquery or remote subquery. You can use this
clause to clear all or part of the cache whenever a row arrives in the specified stream and/or to
set retention preferences for the cache.

In the absence of a CACHE clause Sybase CEP Engine maintains and clears the cache based
on the settings of the "CacheMaximumAge," "CacheMaximumMemoryUsage," and
"CacheMaximumSize" configuration preferences, defined in the file c8-services.xml. The
CACHE clause overrides these preferences and offers an additional level of control over the
contents of the cache. This clause can include any of the following subclauses, in any order:

• The CLEAR ALL ON source subclause clears the entire cache whenever a row arrives in
the specified stream or window.

• The CLEAR ON source subclause clears matching records in the cache when a row arrives
in the specified stream or window. A cache record matches an incoming row if the column
names and values of the incoming row match the cache record's. The source must indicate
a stream or window with a schema identical to the one in the statement's SCHEMA clause.

Clauses

CCL Reference Guide 65

The CLEAR ALL ON and CLEAR ON subclauses clear the cache independently of when
queries are sent to the external database or remote service.

• The MAXIMUM AGE subclause determines whether caching takes place and specifies
the time interval during which data is cached, which can be no longer than 100 years. If age
is 0, then Sybase CEP Server does not cache data and all other caching information is
ignored. If age is -1, Sybase CEP Server does not limit the cache based on age and you must
set another caching preference (either in this clause or in the file c8-services.xml).

• The MAXIMUM MEMORY USAGE limit specifies a maximum number of bytes for the
cache.

• The MAXIMUM SIZE limit subclause limits the size of the cache to the specified number
of rows.

For more information about setting cache limits, see "Caching Data from an External
Database, RPC Server, or Public Window" in the Sybase CEP Installation Guide .

See Also

• Database Subquery
• Remote Subquery
• FROM Clause: Database and Remote Subquery Syntax
• SCHEMA Clause

Example
Here is an example of a CACHE clause used inside a database subquery. This clause sets the
cache to hold rows for 45 seconds, clears records that match the rows arriving in StreamXxx
and clears all records from the cache when a row arrives in StreamYyy.

INSERT INTO StreamEnriched
SELECT
 StreamOrig.*,
 Db.*
FROM
 StreamOrig,
 (DATABASE "OracleTestDB" SCHEMA "db-result.cps"
 [[
 SELECT * FROM T WHERE ?StreamOrig.i=T.id AND ?
StreamOrig.s='abc'
]]
 CACHE
 MAXIMUM AGE 45 SECONDS
 CLEAR ON StreamXxx
 CLEAR ALL ON StreamYyy
) AS Db;

Clauses

 66 Sybase CEP Option

EXECUTE REMOTE PROCEDURE clause
Specifies the name of a predefined service that should be invoked by the Remote Procedure
Statement and the values of the service parameters.

Syntax
EXECUTE REMOTE PROCEDURE " service"

Table 24. Component

service
The name of an RPC service defined in the file
c8-services.xml.

ON ERROR extension
Use the ON ERROR extension to handle remote procedure execution errors that may cause the
Sybase CEP Engine to stop project execution.

The syntax for the EXECUTE REMOTE PROCEDURE clause with the ON ERROR
extension is:
EXECUTE REMOTE PROCEDURE "service"
 ON ERROR [error_insert_clause] CONTINUE
 SELECT…

Additional syntax related to the error_insert_clause:
error_insert_clause: INSERT INTO error_stream_name error_select_list
error_stream_name: Name of an output stream or local stream.
error_select_list: SELECT {error_expression} [,...]
error_expression: A CCL expression.

The error_expression can only contain:

• References to columns in the stream specified in the stream_clause.
• Operators, constant literals, and scalar functions.
• CCL parameters in the project. These should be prefaced with $.
• The ERROR_MESSAGE() built in.

The ON ERROR extension is optional. The error_insert_clause for the ON ERROR extension
is also optional. If the ON ERROR extension is not provided and errors occur, the behavior of
this clause is determined by the setting of the IgnoreErrors property in the c8-services.xml
service configuration file. By default, this property is set to 'false', which means that if an error
occurs, the query is aborted.

When the ON ERROR extension is provided without the error_insert_clause, errors found in
the execution of this clause are ignored and CEP Engine continues to execute the project.
Subsequent tuples arriving in any of the input streams of the from_clause continue to trigger
execution of this clause. If these executions generate errors, they are also ignored by the CEP
Engine.

Clauses

CCL Reference Guide 67

When the ON ERROR extension is provided with the error_insert_clause, errors found in the
execution of this clause are ignored and CEP Engine continues to execute the project.
However a new tuple is also inserted into the errorstream (specified by error_stream_name).
This tuple contains the fields selected in the error_select_list clause. The timestamp of this
tuple is the same as the timestamp of the tuple in the from_clause that triggered the execution
of this clause. These tuples are inserted in the errorstream in the same order as that of the
original tuples in the from_clause that triggered the execution of this clause.

The ON ERROR extension cannot be used with both an EXECUTE STATEMENT
DATABASE/EXECUTE REMOTE PROCEDURE clause and a REMOTE SUBQUERY/
PROCEDURE clause in the same CCL statement. This causes errors. To avoid errors, the CCL
statements must be broken into separate statements using an intermediate local stream.

Set the MaxRetries parameter in the service definitions for Database to determine how many
times Sybase CEP Engine should retry statement execution after experiencing errors.

The parameter in the service file is written as follows:
<Param Name="MaxRetries">some_number</Param>

where some_number is an integer between 0 and 255.

If the MaxRetries parameter is set to a value greater than 0, say N, then every time there is an
error in an Execute Statement or Subquery statement that subscribes to this service definition,
the Sybase CEP Engine automatically retries the execution of that statement up to a maximum
of N number of times. If the execution of the statement fails for all the N number of times, an
error tuple is inserted into the errorstream.

The default value for MaxRetries is 0, that is, by default there is no retry.

• Remote Procedure Statement
• FROM Clause: Database and Remote Subquery Syntax

Example
This query invokes procedure Temperature and passes values from the TempIn stream to the
parameters City, ZipCode, and Time:

EXECUTE REMOTE PROCEDURE "Temperature"
SELECT 'CityName' AS City, 'ZipCode' AS ZipCode,
 GetTimestamp() AS Time
FROM TempIn
WHERE TempIn.ID = City;

The following example demonstrates how errors are logged when the ON ERROR extension
and insert_clause are provided with this clause.

EXECUTE STATEMENT DATABASE "StockTradeDB"
[[
 INSERT INTO TradeTable VALUE(?Symbol, ?Price, ?Volume, ?Ts)
]]
ON ERROR

Clauses

 68 Sybase CEP Option

INSERT INTO DBWriteErrorStream
SELECT Symbol, Ts, ERROR_MESSAGE()
CONTINUE
SELECT
Symbol as Symbol,
Price as Price,
Volume as Volume,
GETTIMESTAMP(InTrades) as Ts
FROM
InTrades KEEP EVERY 1 minute;

where the schema for DBWriteErrorStream is (Symbol String, Ts TimeStamp, ErrMsg
String).

EXECUTE STATEMENT DATABASE clause
Specifies the name of an external relational database connection and the SQL or q statements
that should be executed against the database.

Syntax
EXECUTE STATEMENT DATABASE "service" [[statements]]
 SELECT…

Table 25. Components

service

The name of a database service defined in the file
c8-services.xml. For more information about
configuring Sybase CEP Engine database serv-
ices, see the Sybase CEP Installation Guide .

statements
The statements to be executed by the database
software.

Usage
The EXECUTE STATEMENT DATABASE clause is the first clause of the Database
statement. It indicates the database that is impacted when the CCL query in the Database
statement generates output, and specifies the SQL or q statements that should be executed
against the database in that event.

Sybase CEP Engine sends the text you specify (as statements) to the external database for
execution after replacing references to CCL columns and parameters with the appropriate
values. Since Sybase CEP Engine does not interpret the statements beyond replacing the
column and parameter references, you may specify any statement supported by your database.
However, Sybase CEP Engine ignores any return values. To retrieve data from an external
database, use a database subquery.

Clauses

CCL Reference Guide 69

To include the value of a CCL column in your database statement, preface the column name
with a question mark (?stream_or_alias.column). To include the value of a CCL parameter,
preface the parameter name by a question mark and a dollar sign (?$parameter).

ON ERROR extension
Use the ON ERROR extension to handle database errors that may cause Sybase CEP Engine to
stop project execution.

The syntax for the EXECUTE STATEMENT DATABASE clause with the ON ERROR
extention is:
EXECUTE STATEMENT DATABASE "service" [[statements]]
 ON ERROR [error_insert_clause] CONTINUE
 SELECT…

Additional syntax related to the error_insert_clause:
error_insert_clause: INSERT INTO error_stream_name error_select_list
error_stream_name: Name of an output stream or local stream.
error_select_list: SELECT {error_expression} [,...]
error_expression: A CCL expression.

The error_expression can only contain:

• References to columns in the stream specified in the stream_clause.
• Operators, constant literals, and scalar functions.
• CCL parameters in the project. These should be prefaced with $.
• The ERROR_MESSAGE() built in.

The ON ERROR extension is optional. The error_insert_clause for the ON ERROR extension
is also optional. If the ON ERROR extension is not provided and errors occur, the behavior of
this clause is determined by the setting of the IgnoreErrors property in the c8-services.xml
service configuration file. By default, this property is set to 'false', which means that if an error
occurs, the query is aborted.

Only the INSERT INTO statement or the EXECUTE STATEMENT DATABASE clauses are
legal within the ON ERROR clause.

When the ON ERROR extension is provided without the error_insert_clause, errors found in
the execution of this clause are ignored and CEP Engine continues to execute the project.
Subsequent tuples arriving in any of the input streams of the from_clause continue to trigger
execution of this clause. If these executions generate errors, they are also ignored by the CEP
Engine.

When the ON ERROR extension is provided with the error_insert_clause, errors found in the
execution of this clause are ignored and CEP Engine continues to execute the project.
However a new tuple is also inserted into the errorstream (specified by error_stream_name).
This tuple contains the fields selected in the error_select_list clause. The timestamp of this
tuple is the same as the timestamp of the tuple in the from_clause that triggered the execution
of this clause. These tuples are inserted in the errorstream in the same order as that of the
original tuples in the from_clause that triggered the execution of this clause.

Clauses

 70 Sybase CEP Option

The ON ERROR extension cannot be used with both an EXECUTE STATEMENT
DATABASE/EXECUTE REMOTE PROCEDURE clause and a REMOTE SUBQUERY/
PROCEDURE clause in the same CCL statement. This causes errors. To avoid errors, the CCL
statements must be broken into separate statements using an intermediate local stream.

Set the MaxRetries parameter in the service definitions for Database to determine how many
times Sybase CEP Engine should retry statement execution after experiencing errors. The
parameter in the service file is written as follows:
<Param Name="MaxRetries">some_number</Param>

where some_number is an integer between 0 and 255.

If the MaxRetries parameter is set to a value greater than 0, say N, then every time there is an
error in an Execute Statement or Subquery statement that subscribes to this service definition,
the Sybase CEP Engine automatically retries the execution of that statement up to a maximum
of N number of times. If the execution of the statement fails for all the N number of times, an
error tuple is inserted into the errorstream. The default value for MaxRetries is 0, therefore
there is no retry.

Kdb+ and q
EXECUTE STATEMENT DATABASE clauses that modify kdb+ databases can contain
statements in q language.

Important: The q statement cannot contain newline characters. Everything between the
brackets ([[]]) must be entered on a single line.

When you pass values from the Database statement's data source to the q statements in the
EXECUTE STATEMENT DATABASE clause, you must enter the values as a space-separated
list that appears immediately after the parameterized q statement. Sybase CEP Engine passed
the values to the final q statement as a single general (multi-type) list. This list takes the place
of the right side of the q statement (the part of the statement after the operator). For example,
consider the following q statement:

5+(1;2;3)

To pass column values for the three parameters, you would write it like this:

5+ ?MyStream.IntColumn1 ?MyStream.IntColumn2 ?MyStream.IntColumn3

If you pass a list of parameters to the q (or Q-SQL) statement, the final statement must be
written in the brackets to accommodate the parameters. For example:

{[params] select Price, Volume from trades where StockSym = `
$params[0],
 Volume > `$params[1]} ?ParamStream.StockSym ?ParamStream.Volume

Sybase CEP Engine automatically converts CCL datatypes to a limited set of q datatypes. To
convert a CCL datatype to another kdb+ type, you must explicitly cast the CCL type as the

Clauses

CCL Reference Guide 71

desired kdb+ type in your q statement. For example, the following Database statement casts
the values from four columns to datetime, symbol, real, and short in q:

EXECUTE STATEMENT DATABASE "MyKDBService"
[[`trades insert (`datetime ; ` ; `real ; `short) $?Ts ?StockSym ?
Price ?Volume]]
SELECT GETTIMESTAMP (QueryIn) AS Ts,
 StockSym AS StockSym,
 Price AS Price,
 Volume AS Volume
FROM QueryIn;

Note: Specify all types for all of your parameters, even to cast a single value.

Examples
This query updates a table called MyTable in a database called MyDatabase. The Symbol and
Price columns (aliased as CurSymbol and CurPrice) are selected from a Sybase CEP stream
called StreamIn. The SQL query matches symbols in the Symbol column of MyTable with
those of the Symbol column in StreamIn, and records the corresponding price from the Price
column in StreamIn to a column called Price in MyTable.

EXECUTE STATEMENT DATABASE "MyDatabase"
 [[UPDATE MyTable
 SET MyTable.Price = ?CurPrice
 WHERE MyTable.Symbol=?CurSymbol]]
SELECT
 StreamIn.Symbol AS CurSymbol, StreamIn.Price AS CurPrice
FROM StreamIn;

This example inserts column values from the ActiveStrategies window and MyTrades
streams, as well as a calculated timestamp into TradingDatabase:

CREATE WINDOW ActiveStrategies
SCHEMA (Symbol STRING, Strategy STRING)
KEEP LAST PER Symbol;

CREATE INPUT STREAM MyTrades
SCHEMA (Symbol STRING, Quantity INTEGER, Price FLOAT);

EXECUTE STATEMENT DATABASE "TradingDatabase"
 [[INSERT INTO Positions
 VALUES (?Symbol, ?Ts, ?Quantity, ?Price, ?Strategy)]]
SELECT *, GETTIMESTAMP(MyTrades) as Ts
FROM MyTrades, ActiveStrategies
WHERE MyTrades.Symbol = ActiveStrategies.Symbol;

This example demonstrates how errors are logged when the ON ERROR extension and
insert_clause are provided with this clause:
Example:
EXECUTE STATEMENT DATABASE "StockTradeDB"
[[

Clauses

 72 Sybase CEP Option

 INSERT INTO TradeTable VALUE(?Symbol, ?Price, ?Volume, ?Ts)
]]
ON ERROR
INSERT INTO DBWriteErrorStream
SELECT Symbol, Ts, ERROR_MESSAGE()
CONTINUE
SELECT
Symbol as Symbol,
Price as Price,
Volume as Volume,
GETTIMESTAMP(InTrades) as Ts
FROM
InTrades KEEP EVERY 1 minute;

where the schema for DBWriteErrorStream is (Symbol String, Ts TimeStamp, ErrMsg
String).

FROM clause
Used for single-source queries, used for joins that use the JOIN syntax, and it is used for
database subqueries and to remote subqueries.

The FROM clause, part of a Query Statement, Database Statement, or Remote Procedure
Statement, has three syntax variations:

• The FROM Clause: Comma-Separated Syntax: Used for single-source queries, and
contains joins that use the comma-separated syntax and queries that use the MATCHING
clause to detect patterns.

• The FROM Clause: Join Syntax: Used for joins that use the JOIN syntax.
• The FROM Clause: Database and Remote Subquery Syntax: Used for database subqueries

and remote subqueries.

FROM clause: Comma-separated syntax
Specifies one or more data sources in a Query statment, Database statement, or Remote
Statement.

Syntax
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] | (nested_join
[on_clause]) |xmltable_exp |subquery } [, ...]

Table 26. Components

stream The name of a data stream.

Clauses

CCL Reference Guide 73

alias An alias for the stream or window.

keep_clause
The policy that specifies how rows are maintained
in the window. See KEEP Clause for more infor-
mation.

window_name The name of a window.

nested_join
A nested join. See FROM Clause: Join Syntax for
more information.

on_clause
The join condition for the nested join. See ON
Clause: Join Syntax for more information.

xmltable_exp
Produces an XML table. See XMLTABLE Ex-
pressions in the FROM Clause for more informa-
tion.

subquery
A subquery. See CCL Subqueries in the FROM
Clause for more information.

Usage
Use this variation of the FROM clause for:

• Single-source queries.
• Inner joins that use the comma-separated syntax. An inner join publishes all possible

combinations of rows from the intersection of two or more specified data sources,
according to the limitations of the selection condition (if present).

• Queries that use the MATCHING clause to detect patterns.

Any column or data source references in the statement's other clauses must be to one of the
data sources named in this clause.

A nested join data source can include an ON subclause that establishes the nested join's
selection condition. For more information about when the ON is required and when it is
optional, see FROM Clause: Join Syntax.

Windows in the From Clause
Query statement data sources can include named or unnamed windows:

• Create named windows with a separate Create Window statement. These windows exist
independently of the query and can simply be specified by name in the FROM clause, with
or without an optional alias.

• Create unnamed windows within the FROM clause itself with one or two KEEP clauses,
specifying one or two window policies. Window policies define how the window
maintains state (retains rows). An unnamed window derives its schema from the stream to
which it is linked.

Clauses

 74 Sybase CEP Option

Joins Specified with Comma-Separated Syntax
The comma-separated FROM clause can contain multiple data sources connected with an
inner join. The multiple sources are separated by commas. An optional WHERE clause
creates the selection condition for the join (the ON clause is not used to create a selection
condition for comma-separated joins). In the absence of a WHERE clause, the join selects all
values from all selected data source columns. This join syntax can include more than two data
sources.

Pattern-Matching Syntax
Use the comma-separated FROM clause in conjunction with the MATCHING clause to
specify the data sources that should be monitored for a specified pattern. When used in pattern
detection, all data sources specified in the FROM clause must be data streams and must
include all streams identified as events in the MATCHING clause. An optional ON clause
creates the matching join condition for the query.

Aliases
Data sources specified in the FROM clause can include an alias, which can be used to refer to
the data source anywhere in the query where the data source name would otherwise be used.

The use of an alias is required when the same column in the same data source is used more than
once by the query's SELECT clause, or when a data stream is listed more than once in the
MATCHING clause. In such cases, each use must also be listed as a separate data source in the
FROM clause, and a unique alias assigned to each instance.

Restrictions
The following restrictions apply when you use the comma-separated FROM syntax to create a
join:

• The list of data sources in the join can include only one data stream expression.
• No ON clause can be used to set a condition for the join, except in the case of nested joins

using the JOIN word syntax.

The following restrictions apply when using the comma-separated FROM syntax in
conjunction with the MATCHING clause:

• The list of data sources can include only data streams.
• If an ON clause is used, it must establish a relationship between all the data sources

included in the FROM clause.
• The list of data sources must include all data sources specified in the MATCHING clause,

and cannot include any other data sources.

See Also

• Database Statement
• Query Statement

Clauses

CCL Reference Guide 75

• Remote Procedure Statement
• KEEP
• MATCHING
• ON

Example
The FROM clause in the following example creates a two-window inner join.

INSERT INTO OutStream
SELECT S1.Symbol, S1.Average, S2.Average
FROM Stream1 AS S1 KEEP 10 ROWS, Stream2 AS S2 KEEP 5 MINUTES
WHERE S1.Symbol = S2.Symbol;

FROM clause: Database and remote subquery syntax
Retrieves data from a relational database, public window, or another remote source, directly
into a CCL query.

Syntax
FROM { { db_sub> | rem_sub>} { , | [LEFT OUTER] JOIN } stream
[[AS] alias] } | { stream [[AS] alias] { , | [RIGHT OUTER]
JOIN} { db_sub> | rem_sub>} }

Table 27. Components

db_sub
A database subquery. See Database Subquery for
more information.

rem_sub
A remote subquery. See Remote Subquery for
more information.

stream The name of a data stream.

alias An alias for the stream.

Usage
Use this specialized form of the FROM clause to send requests for information directly to an
external relational database, public window, or other external source. This data is retrieved
directly into the CCL query. Two types of specialized subqueries are used for this purpose in
the FROM clause.

Note: These subqueries are distinct from CCL subqueries, which are described in CCL
Subqueries in the FROM Clause.

A database subquery sends SQL statements to an external relational database or Sybase CEP
Engine project containing a public window and retrieves rows from tables in the database, or
public windows contained in the project. A remote subquery sends Remote Function Calls

Clauses

 76 Sybase CEP Option

(RFCs) using one of a variety of available protocols to another external non-CCL data source,
and retrieves the resulting data into a CCL query.

Before using either the database subquery or the remote subquery, configure Sybase CEP
Engine for communication with the external database, project containing the public window,
or other data source. For instructions on configuring Sybase CEP Engine for use with external
services, see the Sybase CEP Installation Guide .

Both the database subquery and the remote subquery perform only information retrieval;
neither of these clauses modifies the external data sources. The database and remote
subqueries each have a CCL statement counterpart, however, that is used to modify external
data sources. The Database statement writes to tables in an external relational database (but
not to a CCL public window). The Remote Procedure statement executes procedures on
external services.

The database subquery or remote subquery is always joined in the FROM clause to a single
data stream. The join between the database or remote subquery and the stream can be an inner
join or a right or left outer join, but not a full join.

JOIN or comma (,) Specifies an inner join

All possible combinations of
rows from the intersection of the
data stream and the database
subquery or remote subquery
(limited by the selection condi-
tion, if specified) are published.

LEFT OUTER JOIN
Specifies a left outer join (data
stream must be on left)

All possible combinations of
rows from the intersection of the
data stream and the database
subquery or remote subquery
(limited by the selection condi-
tion, if specified) are published.
All other rows from the data
stream are published as well.
Unmatched columns in the da-
tabase subquery or remote sub-
query publish a value of Null.

RIGHT OUTER JOIN
Specifies a right outer join (data
stream must be on right)

As for LEFT OUTER JOIN

The ON clause is not used with this type of join.

Queries that use the database subquery or remote subquery variety of the FROM clause
execute only when a row arrives in the data stream.

For more detailed information about the database subquery and remote subquery usage see
Database Subquery and Remote Subquery.

Clauses

CCL Reference Guide 77

DATABASE subquery
Retrieves data from relational database tables or from CCL public windows into a Query
statement, database statement, or remote procedure statement and can also specify cache
settings.

Syntax
(DATABASE "service" schema_clause [[statements]]
[cache_clause]) [AS] alias

Important: The double brackets shown here are part of the syntax itself, not an indication of
an optional component.

Table 28. Components

service

The name of the database or public window serv-
ice as configured in the file c8-services.xml. For
more information about configuring services, see
the Sybase CEP Installation Guide .

schema_clause
A schema definition for the retrieved data. See
SCHEMA Clause for more information.

statements
Statements to retrieve data from the specified
service.

cache_clause
Specifications for clearing the cache. See CACHE
Clause for more information.

alias An alias for the subquery.

Usage
You use a database subquery in a FROM Clause: Database and Remote Subquery Syntax. This
specialized subquery contains statements that are passed to an external relational database
server or to a CCL public window. The statements select data from the external database tables
or public windows contained in the project specified by the service entry, and allow you to
access the data in a CCL query. Before using a database subquery, perform the following
steps:

• Configure a connection between an external relational database and Sybase CEP Engine,
as explained in the Sybase CEP Installation Guide , or, in the case of public windows,
create the window, using the Create Window statement.

• Set up a service entry for the external database containing the tables, or the project
containing the public windows you want to query in the file c8-services.xml. For more

Clauses

 78 Sybase CEP Option

information about configuring Sybase CEP Engine database and public window services,
see the Sybase CEP Installation Guide .

The schema you specify must provide a column name and data type for every column you want
to retrieve from the database or public window. The column names in the schema do not have
to match the column names in the database or public window, but the data type for each
column must be a CCL data type that is compatible with the data type of the corresponding
column in the database or public window. In cases where data types used by the external
database server do not perfectly match the data types used by Sybase CEP Server, Sybase CEP
Server automatically converts the values. See Conversion Between CCL and ODBC and
Oracle and Conversion Between CCL and Q for more information.

Sybase CEP Engine sends the text you specify (as statements) to the external database or
project containing the public window for execution after replacing references to CCL columns
and parameters with the appropriate values. Sybase CEP Engine does not interpret the
statements beyond replacing the column and parameter references, but you cannot include
statements that modify the database or public window. For information about writing to or
deleting from an external database, see Database Statement. If you are querying a public
window, your statements must be made up of SQL statements. See SQL for more information.

To include the value of a column from the data stream in your statement, preface the column
name with a question mark (?col_name_or_alias). To include the value of a CCL parameter,
preface the parameter name by a question mark and a dollar sign (?$parameter).

Access the retrieved data using the alias and column names previously specified.

Within the FROM clause, always define the database subquery in a join with a single data
stream. This join can be either an inner or an outer join. Define inner joins with either a
comma-separated syntax, or with the use of the JOIN keyword. When you use the comma-
separated syntax, you define the join condition in a WHERE clause. When you use the JOIN
keyword syntax, however, you cannot use the CCL ON clause with non-database subquery
joins. Instead, define the join condition with an SQL WHERE clause inside the SQL
statements.

ON ERROR extension
Use the ON ERROR extension to handle database errors that may cause Sybase CEP Engine to
stop subquery execution.

The syntax for the DATABASE subquery clause with the ON ERROR extension is:
(DATABASE "service" schema_clause [[statements]]
[cache_clause] ON ERROR [error_insert_clause] CONTINUE) [AS] alias

Additional syntax related to the error_insert_clause:
error_insert_clause: INSERT INTO error_stream_name error_select_list
error_stream_name: Name of an output stream or local stream.
error_select_list: SELECT {error_expression} [,...]
error_expression: A CCL expression.

The error_expression can only contain:

Clauses

CCL Reference Guide 79

• References to columns in the stream specified in the stream_clause.
• Operators, constant literals, and scalar functions.
• CCL parameters in the project. These should be prefaced with $.
• The ERROR_MESSAGE() built in.

The ON ERROR extension is optional. The error_insert_clause for the ON ERROR extension
is also optional. If the ON ERROR extension is not provided and errors occur, the behavior of
this clause is determined by the setting of the IgnoreErrors property in the c8-services.xml
service configuration file. By default, this property is set to 'false', which means that if an error
occurs, the query is aborted.

When the ON ERROR extension is provided without the error_insert_clause and there is an
error executing the subquery, the error is ignored by the Sybase CEP Engine and the subquery
execution is considered as having returned no results. Subsequent tuples arriving in the joining
stream continue to trigger execution of the subquery. If these executions generate errors then
these errors are also ignored by the Sybase CEP Engine.

When the ON ERROR extension is provided with the error_insert_clause and there is an error
executing the subquery, a new tuple is inserted into the errorstream (specified by
error_stream_name). This tuple contains values of the fields selected in the error_select_list
clause. The timestamp of this tuple is the same as the timestamp of the tuple in the joining
stream that triggered the execution of this subquery. These tuples are inserted in the
errorstream in the same order as that of the original tuples in the joining stream that triggered
the execution of this subquery. When there is no error, no tuples are inserted in the errorstream.
The responses containing errors are not cached. If there is a subsequent tuple with the same
binding key, it triggers another execution of the database subquery.

The ON ERROR extension cannot be used with both an EXECUTE STATEMENT
DATABASE/EXECUTE REMOTE PROCEDURE clause and a REMOTE SUBQUERY/
PROCEDURE clause in the same CCL statement. This causes errors. To avoid errors, the CCL
statements must be broken into separate statements using an intermediate local stream.

Set the MaxRetries parameter in the service definitions for Database to determine how many
times Sybase CEP Engine should retry statement execution after experiencing errors.

The parameter in the service file is written as follows:
<Param Name="MaxRetries">some_number</Param>

where some_number is an integer between 0 and 255.

If the MaxRetries parameter is set to a value greater than 0, say N, then every time there is an
error in an Execute Statement or Subquery statement that subscribes to this service definition,
the CEP Engine automatically retries the execution of that statement up to a maximum of N
number of times. If the execution of the statement fails for all the N number of times, an error
tuple is inserted into the errorstream.

The default value for MaxRetries is 0, that is, by default there is no retry.

Clauses

 80 Sybase CEP Option

CCL References within SQL Statements
The statement within the database subquery can refer to column names in the data stream to
which the database subquery is joined, as well as to CCL module parameters. CCL data stream
column references within the SQL query use the following syntax to distinguish them from
internal database or public window columns:

?
data-stream-name
.
column-name

OR

?
data-stream-alias
.
column-name

CCL module parameters can be referenced within the SQL query using the following syntax:

?$
parameter-name

When the SQL statements inside your database subquery refer to a public window, the
references must use the following syntax:

Restrictions
Queries that include database subqueries are subject to the following restrictions:

• A query that includes a database subquery must have exactly one other data source.
• The non-database, non-public window data source must not be windowed.
• In the statement, all names of stream columns must be prefixed with the data stream name

or alias.
• A left outer join that joins a database subquery to a data stream must list the data stream on

the left; a right outer join that joins a database subquery to a data stream must list the data
stream on the right.

• No full outer joins are allowed with database subqueries.
• For a discussion restrictions specific to kdb+, see kdb+_and_q.
• The use of the ON clause is not allowed with database subqueries.
• If you are querying a public window contained in a submodule, and the public window

reference is the last component of your SQL query, you must separate the closing bracket
(]) of the window reference from the closing double bracket (]]) of the statements by one or
more spaces. A triple bracket (]]]) generates an error.

Clauses

CCL Reference Guide 81

• If you are querying an external database, the exact syntax allowed between the double
brackets is controlled by the target database. In particular, be aware that the target database
may not support comments.

• Sybase CEP does not support stored procedures in database subqueries that connect to an
external database using the Oracle native driver.

See Also

• Create Schema Statement
• Database Statement
• CACHE
• SCHEMA
• SQL

Examples
This example executes a database subquery on the MyDB database server. The file
valuation.ccs contains the schema to be used with the imported data. The data retrieved from
the database is then references as the Shares_outstanding column.

INSERT INTO Valuation
SELECT T.Symbol, T.Price, S.Shares_outstanding,
 T.Price * S.Shares_outstanding
FROM TradeStream T,
 (DATABASE "MyDB" SCHEMA 'valuation.ccs'
 [[SELECT * FROM Stocks WHERE ?T.Symbol=Stocks.Symbol]]) AS S

This example queries a public window named GroupsWindow in the Groups submodule of the
project's main module.

INSERT INTO WinOut
SELECT pw.GroupID, pw.GroupName, pw.SeverityAssessmentLevel,
 pw.PrincipleAffiliation
FROM MyStream,
 (DATABASE "SecurityThreatGroups"
 SCHEMA (GroupID STRING, GroupName STRING,
 SeverityAssessmentLevel STRING, PrincipleAffiliation
STRING)
 [[SELECT GroupID, GroupName, SeverityAssessmentLevel,
 PrincipleAffiliation
 FROM [Groups/GroupsWindow]]]) AS pw ;

The following example demonstrates how errors are logged when the ON ERROR extension
and insert_clause are provided with this clause.
INSERT INTO OutTradesWithVwap
SELECT InTrades.*, Vwap.*
FROM
 InTrades,
 (DATABASE "ExamplesDB"
 SCHEMA (Vwap FLOAT)
 [[

Clauses

 82 Sybase CEP Option

 SELECT Vwap
 FROM Vwap
 WHERE Symbol = ?InTrades.Symbol
 ORDER BY Ts DESC
 LIMIT 1
]]
 CACHE
 MAXIMUM AGE 1 minute,
 ON ERROR
 INSERT INTO errorstream
 SELECT InTrades.*, ERROR_MESSAGE()
 CONTINUE;
) as Vwap

REMOTE subquery
Sends Remote Function Calls (RFCs) to an external service, and retrieves the resulting data
into a Query statement, Database statement, or Remote Procedure statement.

Syntax
(REMOTE QUERY "service" schema_clause
([{value [AS] param} [, ...]]) [cache_clause]) [AS] alias

Table 29. Components

service

The name of the remote service as configured in
the file c8-services.xml. For more information
about configuring services, see the Sybase CEP
Installation Guide .

schema_clause
A schema definition. See SCHEMA Clause for
more information.

value
An expression specifying the value of a parameter
for the remote service.

param

The name of a parameter for the remote service as
configured in the file c8-services.xml. For more
information about configuring services, see the
Sybase CEP Installation Guide .

cache_clause
Specifications for clearing the cache. See CACHE
Clause for more information.

alias An alias for the subquery.

Usage
A remote subquery is used in the FROM Clause: Database and Remote Subquery Syntax
variation of the FROM clause. This specialized subquery invokes a Remote Function Call

Clauses

CCL Reference Guide 83

(RFC) that has been previously defined in the file c8-services.xml. The remote call is passed to
one of a variety of remote services and returns data that is used within the CCL query. Remote
calls can include a variety of protocols and interfaces, depending on your configuration and
requirements. Examples of supported remote subquery configuration include SOAP and RMI.

The service parameter specifies the name of the service defined in c8-services.xml. This
service definition contains all the information necessary to initialize, execute and shut down
the service. The remote subquery simply executes the service whenever a row arrives in the
stream to which the remote subquery is joined. Each time the service is executed it returns zero
or more rows. For more information about configuring services in c8-services.xml, see the
Sybase CEP Installation Guide .

The remote subquery is only used for function calls that retrieve data into Sybase CEP Engine.
Calls that write data to external services must use the Remote Procedure statement.

A SCHEMA clause provides a CCL schema definition for the retrieved data and allows it to be
used in CCL queries. CCL clauses within the CCL statement that refer to messages retrieved
via the remote subquery must do so using the column names defined by the SCHEMA clause.
Since the remote service cannot be preconfigured to send data using a specific data type, the
CCL schema must be configured to receive any input, although it is allowed to generate errors
when unexpected input is received.

The internal set of parentheses of a remote subquery contains a comma-separated sequence of
one or more value expressions and parameter references. The parameter references are the
parameters associated with the service, while the CCL values on the left specify the parameter
value passed to the service. values can contain literals, column names from the data stream that
is joined to the remote subquery, operators, scalar and other (but not aggregate) functions, and
parentheses. If the external service takes no values, the remote subquery includes an empty set
of parentheses.

An optional CACHE clause sets the criteria for caching rows and clearing the cache. See
CACHE Clause for more information.

The entire remote subquery must also be aliased with an AS clause. This alias is used by any
clauses in the CCL statement that refer to the remote subquery.

Within the FROM clause the remote subquery is always defined in a join with a single data
stream. This join can be either an inner or outer join. Inner joins can be defined using either a
comma-separated syntax, or with the use of the JOIN keyword. When the comma-separated
syntax is used, the join condition s defined in a WHERE clause. When the JOIN keyword
syntax is used, the use of the CCL ON clause with non-remote-subquery joins is not permitted.

Use the ON ERROR extension to handle errors that may cause Sybase CEP Engine to stop
subquery execution.

The syntax for the REMOTE subquery clause with the ON ERROR extension is:
(REMOTE QUERY "service" schema_clause
([{value [AS] param} [, ...]]) [cache_clause] ON ERROR

Clauses

 84 Sybase CEP Option

[error_insert_clause] CONTINUE)
[AS] alias

Additional syntax related to the error_insert_clause:
error_insert_clause: INSERT INTO error_stream_name error_select_list
error_stream_name: Name of an output stream or local stream.
error_select_list: SELECT {error_expression} [,...]
error_expression: A CCL expression.

The error_expression can only contain:

• References to columns in the stream specified in the stream_clause.
• Operators, constant literals, and scalar functions.
• CCL parameters in the project. These should be prefaced with $.
• The ERROR_MESSAGE() built in.

The ON ERROR extension is optional. The error_insert_clause for the ON ERROR extension
is also optional. If the ON ERROR extension is not provided and errors occur, the behavior of
this clause is determined by the setting of the IgnoreErrors property in the c8-services.xml
service configuration file. By default, this property is set to 'false', which means that if an error
occurs, the query is aborted.

When the ON ERROR extension is provided without the error_insert_clause and there is an
error executing the subquery, the error is ignored by the Sybase CEP Engine and the subquery
execution is considered as having returned no results. Subsequent tuples arriving in the joining
stream continue to trigger execution of the subquery. If these executions generate errors then
these errors are also ignored by the Sybase CEP Engine.

When the ON ERROR extension is provided with the error_insert_clause and there is an error
executing the subquery, a new tuple is inserted into the errorstream (specified by
error_stream_name). This tuple contains values of the fields selected in the error_select_list
clause. The timestamp of this tuple is the same as the timestamp of the tuple in the joining
stream that triggered the execution of this subquery. These tuples are inserted in the
errorstream in the same order as that of the original tuples in the joining stream that triggered
the execution of this subquery. When there is no error, no tuples are inserted in the errorstream.
The responses containing errors are not cached. If there is a subsequent tuple with the same
binding key, it triggers another execution of the subquery.

The ON ERROR extension cannot be used with both an EXECUTE STATEMENT
DATABASE/EXECUTE REMOTE PROCEDURE clause and a REMOTE SUBQUERY/
PROCEDURE clause in the same CCL statement. This causes errors. To avoid errors, the CCL
statements must be broken into separate statements using an intermediate local stream.

Set the MaxRetries parameter in the service definitions for RemoteService to determine how
many times Sybase CEP Engine should retry statement execution after experiencing errors.

The parameter in the service file is written as follows:
<Param Name="MaxRetries">some_number</Param>

where some_number is an integer between 0 and 255.

Clauses

CCL Reference Guide 85

If the MaxRetries parameter is set to a value greater than 0, say N, then every time there is an
error in an Execute Statement or Subquery statement that subscribes to this service definition,
the CEP Engine automatically retries the execution of that statement up to a maximum of N
number of times. If the execution of the statement fails for all the N number of times, an error
tuple is inserted into the errorstream.

The default value for MaxRetries is 0, that is, by default there is no retry.

Restrictions
Queries that include remote subqueries are subject to the following restrictions:

• A query that includes a remote subquery must have exactly one other data source.
• The non-remote-call data source must not be windowed.
• A left outer join that joins a remote subquery to a data stream must list the data stream on

the left; a right outer join that joins a remote subquery to a data stream must list the data
stream on the right.

• No full outer joins are allowed with remote subqueries.
• The use of the ON clause is not allowed with remote subqueries.
• CCL value expressions within the remote subquery cannot contain aggregate functions.

See Also

• Create Schema Statement
• Remote Procedure Statement
• CACHE
• SCHEMA

Example
This example executes a service called GetManager. Column values from the InOrders stream
are passed to the EmployeeID and EmployeeName parameters of the service. Once executed,
the joined results of the remote subquery and the data stream are passed to the
OrdersWithManager stream.

INSERT INTO OrdersWithManager
SELECT *
FROM InOrders LEFT OUTER JOIN
 (REMOTE QUERY "GetManager" SCHEMA GetManagerRes
 (InOrders.EmployeeID AS EmployeeID,
 InOrders.EmployeeName AS EmployeeName)
) AS Manager;

The following example demonstrates how errors are logged when the ON ERROR extension
and insert_clause are provided with this clause.
INSERT INTO OutTradesWithVwap
SELECT InTrades.*, Vwap.*
FROM
 InTrades,
 (REMOTE QUERY "ExamplesDB"

Clauses

 86 Sybase CEP Option

 SCHEMA (Vwap FLOAT)
 [[
 SELECT Vwap
 FROM Vwap
 WHERE Symbol = ?InTrades.Symbol
 ORDER BY Ts DESC
 LIMIT 1
]]
 CACHE
 MAXIMUM AGE 1 minute,
 ON ERROR
 INSERT INTO errorstream
 SELECT InTrades.*, ERROR_MESSAGE()
 CONTINUE;
) as Vwap

FROM clause: Join syntax
Specifies two data sources in a Query Statement, Database statement, or Remote Procedure
statement for inner and outer joins created in the JOIN keyword syntax.

Syntax
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join|
xmltable_exp |subquery } [RIGHT | LEFT | FULL] [OUTER] JOIN
{ stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join |
xmltable_exp |subquery }

Table 30. Components

stream The name of a data stream.

alias An alias for the stream or window.

keep_clause
The policy that specifies how rows are maintained
in the window. See KEEP Clause for more infor-
mation.

window_name The name of a window.

nested_join
A nested join. See nested_join for more informa-
tion.

xmltable_exp
Produces an XML table. See XMLTABLE Ex-
pressions in the FROM Clause for more informa-
tion.

Clauses

CCL Reference Guide 87

subquery
A subquery. See CCL Subqueries in the FROM
Clause for more information.

nested_join
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] |window_name [[AS] alias] |nested_join |
xmltable_exp |subquery} [RIGHT | LEFT | FULL] [OUTER] JOIN {
stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join |
xmltable_exp |subquery } [on_clause]

Table 31. Components

stream The name of a data stream.

alias An alias for the stream or window.

keep_clause
The policy that specifies how rows are maintained
in the window. See KEEP Clause for more infor-
mation.

window_name The name of a window.

nested_join Another nested join.

xmltable_exp
Produces an XML table. See XMLTABLE Ex-
pressions in the FROM Clause for more informa-
tion.

subquery
A subquery. See CCL Subqueries in the FROM
Clause for more information.

on_clause
The join condition. See ON Clause: Join Syntax
for more information.

Usage
This variation of the FROM clause is used for creating inner and outer joins that use the JOIN
keyword syntax. Any column or data source references in the query's other clauses must be to
one of the data sources named in this clause.

For outer joins, the use of an ON clause defining the join selection condition is required. The
ON clause is optional for inner joins using the FROM data source JOIN data source syntax.
Other clauses, including the WHERE clause, can be used for further data filtering.

This variation of FROM can be used to create inner, left outer, right outer, and full outer joins
as follows:

Clauses

 88 Sybase CEP Option

JOIN
All possible combinations of rows from the intersection of both
data sources (limited by the selection condition, if one is speci-
fied) are published.

RIGHT OUTER JOIN

All possible combinations of rows from the intersection of both
data sources (limited by the selection condition, if one is speci-
fied) are published. All the other rows from the right data source
are also published. Unmatched columns in the left data source
publish a value of NULL .

LEFT OUTER JOIN

All possible combinations of rows from the intersection of both
data sources (limited by the selection condition, if one is speci-
fied) are published. All the other rows from the left data source
are also published. Unmatched columns in the right data source
publish a value of NULL .

FULL OUTER JOIN

All possible combinations of rows from the intersection of both
data sources (limited by the selection condition, if one is speci-
fied) are published. All other rows from both data sources are
published as well. Unmatched columns in either data source
publish a value of NULL .

The data sources used with this syntax can include data stream expressions, named and
unnamed window expressions, and subqueries. Data stream and window expressions can also
be combined with XMLTABLE expressions. XMLTABLE expressions and CCL subqueries
are discussed in XMLTABLE Expressions in the FROM Clause and CCL Subqueries in the
FROM Clause. For more information about named and unnamed windows in the FROM
clause, see Windows in the From Clause.

Data sources in this variation of the FROM clause can be aliased. For more information on
aliasing, see Aliases.

The JOIN variation of the FROM clause is limited to two data sources. Additional data sources
can be accommodated by using a nested join as one of the data sources, or by using CCL
subqueries, described in CCL Subqueries in the FROM Clause. If a nested join is used, it must
be enclosed in parentheses, and can include its own ON subclause. The rules for the use of the
ON subclause with a nested join are the same as the rules that govern the use of the ON clause
in the join containing the nested join.

Restrictions

• The list of data sources cannot contain more than one data stream expression.
• A full outer join cannot join a window to a data stream.
• A left outer join that joins a window to a data stream must list the data stream on the left; a

right outer join that joins a window to a data stream must list the data stream on the right.

Clauses

CCL Reference Guide 89

See Also

• Database Statement
• Query Statement
• Remote Procedure Statement
• KEEP
• ON

Example
The FROM clause in the following example creates a two-window full outer join.

INSERT INTO OutStream
SELECT S1.Symbol, S1.Average, S2.Average
FROM Stream1 AS S1 KEEP 10 ROWS
 FULL OUTER JOIN Stream2 AS S2 KEEP 5 MINUTES
ON S1.Symbol = S2.Symbol
WHERE S1.Symbol = 'IBM';

CCL Subqueries in the FROM Clause
Creates a CCL subquery inside the FROM clause of a Query statement, Database statement, or
remote preocedure statement.

Syntax
(select_clause from_clause [matching_clause] [on_clause]
[where_clause] [group_by_clause] [having_clause]
[order_by_clause] [limit_clause] [output_clause]) [AS] alias
[keep_clause] [keep_clause]

Table 32. Components

select_clause
The select list specifying what to publish. See
SELECT Clause for more information.

from_clause
The data sources. See FROM Clause for more
information.

matching_clause
A pattern-matching specification. See MATCH-
ING Clause for more information.

on_clause
A join condition. See ON Clause for more infor-
mation.

where_clause
A selection condition. See WHERE Clause for
more information.

Clauses

 90 Sybase CEP Option

group_by_clause
A partitioning specification. See GROUP BY
Clause for more information.

having_clause
A filter definition. See HAVING Clause for more
information.

order_by_clause
A sequencing definition. See ORDER BY Clause
for more information.

limit_clause
A limit on the number of rows to publish. See
LIMIT Clause for more information.

output_clause
A synchronization specification. See OUTPUT
Clause for more information.

alias An alias for the subquery.

keep_clause
A window policy. See KEEP Clause for more in-
formation.

Usage
The list of data sources in the FROM Clause: Comma-Separated Syntax and FROM Clause:
Join Syntax variations of the FROM clause can include CCL subqueries. The main body of the
subquery is enclosed in parentheses and follows the same syntax as the Query Statement, but
without an INSERT clause and without the final semicolon (;). Subqueries in the FROM
clause produce aggregate output and can be nested one inside another (subqueries can contain
other subqueries).

The body of the subquery must be aliased with an AS clause. This clause serves two purposes:
it creates an implicit destination, into which the results of the subquery are published, and it is
used by clauses in the outer query to refer to the subquery output. An implicit schema for the
destination defined by the alias is created based on the column names of the data sources
specified within the subquery. By default, the destination created by the alias behaves as a data
stream and does not keep state. However, one or two KEEP clauses can be added to the alias to
create a window. In this case, the subquery destination behaves as a window and keeps state.

Restrictions

• A subquery cannot directly reference a data stream or window in the parent or outer query
and vice versa.

• A subquery produces an implicit schema based on the column names of the data sources
specified within the subquery. To prevent this implicit schema from having duplicate or
ambiguous names, the select list of the subquery's SELECT clause must observe one of the
following restrictions:
• The select list must be limited to column references (with or without data source names

and/or aliases) and all the column names must be unique.
OR

Clauses

CCL Reference Guide 91

• The expression of every select list item must be assigned a unique alias.

Example
The following example contains a subquery that creates a full outer join between two windows
based on StreamA and StreamB. The results of the subquery are then joined with a third
unnamed window, based on StreamC.

INSERT INTO OutStream
SELECT Sq.Subcol1, Sq.Subcol2, Sq.Subcol3, C.Column1, C.Column2
FROM
 (SELECT A.Column1 AS Subcol1, A.Column2 AS Subcol2,
 B.Column2 AS Subcol3
 FROM
 StreamA AS A KEEP 100 ROWS
 FULL OUTER JOIN
 StreamB AS B KEEP 100 ROWS
 ON A.Column1 = B.Column2) AS Sq KEEP 100 ROWS
 FULL OUTER JOIN StreamC AS C KEEP 100 ROWS
 ON Sq.Subcol3 = C.Column2;

XMLTABLE expressions
Produces an XML table output from one of the data sources in a Query statement, Database
statement, or Remote Procedure statement.

Syntax
{ name [AS] alias } | { stream [AS] alias keep_clause
[keep_clause] } xmltable_func

Components

name The name of a stream or window.

alias An alias for the stream or window.

stream The name of a stream.

keep_clause
A window policy. See KEEP Clause for more in-
formation.

xmltable_func An XMLTABLE function.

xmltable_func
XMLTABLE (column ROWS xpath COLUMNS { expression AS
out_column } [, ...])

Clauses

 92 Sybase CEP Option

Components

column
The name of an XML column from the specified
stream or window.

xpath
A constant string. Sybase CEP Engine applies this
string to column using XPATH.

expression
An expression that contains no aggregators and
evaluates to an unambiguous data type.

out_column An output column.

Usage
Data sources listed in the FROM Clause: Comma-Separated Syntax and FROM Clause: Join
Syntax variations of the FROM clause can include an XML table expression. This expression
consists of an aliased data stream or aliased window and an XMLTABLE() function. The
XMLTABLE() function receives rows from the data stream or window, and produces zero or
more rows from every row received from the data stream or window.

The schema of the output from XMLTABLE() usually differs from the schema of the inbound
rows. All other clauses in the query that reference the columns of the XMLTABLE()
expression data source must reference the new schema produced by XMLTABLE(), not the
schema of the associated data stream or window. Where an explicit reference to the data source
is required, this data source must be referenced by the alias specified with the stream or
window.

The XMLTABLE() function can reference the column names in the data stream or window to
which it is linked. All unqualified column names within the XMLTABLE() are assumed to be
to this data stream or window.

For every inbound row from the linked stream or window, the contents of the specified column
are passed to XMLTABLE(). The constant string specified in XPATH string is then applied via
XPATH once successively to each of the elements in the sequence passed to XMLTABLE().
The result of the XPATH operation on column is a sequence of elements, with each element
generating one row, here referred to as CurrentXML. Every CurrentXML is treated as an
XPATH context node, within the element tree provided by the associated data stream or
window: therefore, the path . points to the CurrentXML node.

The list of expressions and output column names under COLUMNS specifies how each
CurrentXML should be generated. Every CurrentXML is processed by the list of expressions
and outputs into the corresponding column names. The output schema is generated from this
list of expressions and column names, therefore, the data type of the column must be clearly
identifiable from the expression. The following should be kept in mind in creating
unambiguously typed output:

• Constants output as the default data type for the constant.

Clauses

CCL Reference Guide 93

• The XML data type is permissible in the output.
• The XMLEXTRACT() function implicitly returns an XML data type (or NULL).
• The XMLEXTRACTVALUE() function implicitly returns a STRING data type (or

NULL).
• If the desired column data type is other than XML or STRING, an explicit data conversion

function must be used.

Expression can contain column references from the linked data stream or window and can
contain the XMLEXISTS(), XMLEXTRACT(), and XMLEXTRACTVALUE() functions,
which operate on CurrentXML.

The variants of XMLEXISTS(), XMLEXTRACT(), and XMLEXTRACTVALUE() used
with XMLTABLE() take only one argument: XPATH string. The implicit first argument in
each of these functions is provided by CurrentXML and the functions operate exactly as their
two-argument counterparts. When XMLEXTRACT() or XMLEXTRACTVALUE() are used
with XMLTABLE() the functions copy only the context node contained in CurrentXML out of
the element tree provided by the associated data stream or window.

Example
In the following example, stream Inventory has an XML column called inv, which contains
invItem elements. These elements are first found with XPATH, using '//invItem' and a row is
constructed for each invItem. The first column, called SKU, has a data type of XML. The
second column, called Num, requires STRING to INTEGER conversion:

INSERT INTO ItemStream
SELECT L.SKU, L.Num
FROM Inventory AS L XMLTABLE(inv
 ROWS '//invItem'
 COLUMNS
 XMLEXTRACT('SKU') AS SKU,
 TO_INTEGER(XMLEXTRACTVALUE ('NUM')) AS Num);

GROUP BY clause
Affects the behaviour of aggergate functions and the OUTPUT clause in the Query statement,
database statement, or Remote procedure statement.

Syntax
GROUP BY { column | gettimestamp } [, ...]

Table 33. Components

columns
The name of a column in one of the data sources,
to partition by value in this column.

Clauses

 94 Sybase CEP Option

gettimestamp
A GETTIMESTAMP function, to partition by the
row timestamp.

Usage
The optional GROUP BY clause specifies a list of one or more column references. The list can
also contain a GETTIMESTAMP (Scalar Function) function. This clause has the following
effect on the behavior of aggregators, window contents, and the OUTPUT clause, where
combination refers to a unique combination of values in the list of columns and, optionally, the
timestamp referenced by the GROUP BY clause.

• If a GROUP BY clause is present, aggregate functions are executed separately for every
combination. In the absence of a GROUP BY clause, aggregation is performed once for
each aggregate function for every group of rows received by the clause that contains the
aggregate function.

• If a GROUP BY clause is present in a query that includes one or more unnamed window
policies (as defined by the KEEP subclause in the FROM clause) all the window policies
are implemented separately for every combination, effectively resulting in the creation of a
separate window for every combination. (The GROUP BY clause actually adds one or
more implicit PER subclauses to each KEEP clause.) This default behavior can be
overridden by adding one or more explicit PER clauses or an UNGROUPED clause to the
window policies in question. See the description of the KEEP clause for more information.
In the absence of a GROUP BY clause, a single policy is implemented for every KEEP
clause.

• The presence of a GROUP BY clause affects the behavior of the OUTPUT clause, causing
it to output separate rows for every combination. See OUTPUT for more details.

See Also

• Database Statement
• Query Statement
• Remote Procedure Statement
• HAVING
• KEEP
• OUTPUT
• GETTIMESTAMP (Scalar Function)

Examples
The following example calculates the average price separately for each symbol in the
NamedWindow.Symbol column.

INSERT INTO OutStream
SELECT Symbol AS Symbol, AVG(Price) AS Average
FROM NamedWindow
GROUP BY Symbol;

Clauses

CCL Reference Guide 95

This example calculates the average prices as in the previous example, but uses an unnamed
window that retains ten rows for each value in the Symbol column.

INSERT INTO OutStream
SELECT Symbol AS Symbol, AVG(Price) AS Average
FROM InStream KEEP 10 ROWS
GROUP BY Symbol;

HAVING clause
Specifies an optional post-aggregation selction condition in a Query statement, Database
statement, or remote procedure statement.

Syntax
HAVING boolean

Table 34. Component

boolean A Boolean expression.

Usage
The HAVING clause is syntactically nearly identical to the selection condition version of the
WHERE clause. Unlike WHERE, however, the HAVING clause filters rows after they have
been processed by the GROUP BY clause (if one is present) and can itself contain aggregate
functions. The selection condition in this clause can also include literals, column references
from the query's data sources listed in the FROM clause, operators, scalar and miscellaneous
functions, and parentheses. The HAVING clause cannot include subqueries or references to
streams that are specified as non-events in the MATCHING clause. Column references within
the selection condition must refer to columns in one of the query's data sources. The HAVING
clause is generally used in conjunction with the GROUP BY clause (however, a GROUP BY
clause can be used without a HAVING clause) or to create selection conditions that require the
use of aggregate functions. The HAVING clause can also be used in conjunction with the
WHERE clause, where the WHERE clause filters rows before aggregators are executed on
them, and the HAVING clause then filters the results.

Restrictions

• A HAVING clause cannot include subqueries.
• A HAVING clause cannot include references to non-events (data streams specified with !

event-name syntax in the MATCHING clause).

See Also

• Database Statement
• Query Statement

Clauses

 96 Sybase CEP Option

• Remote Procedure Statement
• GROUP BY
• WHERE

Example
In the following example, the HAVING clause filters out groups where the average value of
the Salary column is less than 3000:

INSERT INTO OutStream
SELECT I.Dept, AVG(I.Salary)
FROM InStream AS I KEEP ALL
GROUP BY I.Dept
HAVING AVG(I.Salary) >= 3000.00;

INSERT clause
Indentifies destinations for the results of a Query statement or Insert Values statement.

The following sections describe two variants of the INSERT clause. The Query statement and
Insert Values statement must begin with this clause. You can use either variant to begin a
Query statement. However, an Insert Values statement must use the INSERT INTO form of the
INSERT clause.

• INSERT INTO form: Identifies a single destination for the results of a Query statement or
Insert Values statement

• INSERT WHEN form: Identifies multiple destinations for the results of a single Query
statement, creating a branch. Rows are inserted into one of the specified destinations based
on one or more conditions applied against the query's SELECT list.

INSERT INTO clause
Indentifies a single destination for the results of Query statement or insert values statement.

Syntax
INSERT INTO name [(column [, ...])]

Table 35. Components

name
The name of a window or a local or output stream
in the current query module.

column
The name of a column in the specified stream or
window.

Clauses

CCL Reference Guide 97

Usage
This form of the INSERT clause is used as the first clause of a Query statement whenever a
query has a single destination. When branching into separate destinations, use the INSERT
WHEN form of the INSERT clause. INSERT INTO must also appear as the first clause in an
Insert Values statement. This clause indicates the destination for the statement. Rows are
published to the specified destination any time the statement executes and produces output.
The destination must be a named window or a local or output data stream.

INSERT INTO can also optionally specify one or more column names referring to the
schema of the destination stream or window. This list explicitly indicates the columns to
which data should be published, from left to right. The number and data types of the columns
specified in the INSERT INTO clause must correspond to the number of items and data types
of the select list in the statement's SELECT clause or column expressions in the VALUES
clause. The left-most item in the select list or column expression list is published to the left-
most column specified in the INSERT INTO clause; the next item is published to the next
column indicated in the INSERTINTO, and so on, in order of select list or values list items
and INSERTINTO columns.

Alternately, in the case of a Query statement you can explicitly match select list items with the
destination's column names by using the AS output column reference syntax in the SELECT
clause. See SELECT Clause for more information regarding this syntax.

When neither the INSERT INTO clause nor the SELECT clause (in the case of a Query
statement) explicitly lists columns of the destination, the schema of the destination stream or
window must entirely match the select list or column expression list in its number of columns
and data types. Select or value list item output is then published to destination columns from
left to right, as before, but based on the destination's entire schema, not the column
specifications in the INSERTINTO.

If the destination stream or window includes more columns than you specify in the INSERT
INTO, Sybase CEP Engine sets the unlisted columns to NULL when rows are published to the
destination. If no columns are explicitly stated in the INSERT INTO, Sybase CEP Engine
attempts to publish information to all columns of the destination.

Automatic Schema Creation
Under certain circumstances, you can use the INSERTINTO clause in a Query statement to
create a name and schema for a previously undefined data stream. The data stream can then be
used in subsequent CCL statements in the current module. Automatic schema creation can
only be performed on a data stream that does not receive data from outside the current project.

The first Query statement that invokes the data stream must state the stream's name in the
query's INSERT clause and list the stream's columns either in the INSERT clause, or in the
SELECT clause. When the INSERT INTO form is used for this purpose, the clause must use
the following syntax:

INSERT INTO stream (column [, ...])

Clauses

 98 Sybase CEP Option

Sybase CEP Engine then automatically creates the stream schema and data types for the
stream. The data types for the columns of the automatic schema are determined by the data
types of the data sources in the first Query statement that uses the stream as its destination.

Restrictions

• Input data streams cannot be designated as statement destinations. (An input stream is a
type of Sybase CEP Engine stream that receives data from outside the current query
module, either by way of bindings, or through a connection to an input adapter.)

• You cannot use duplicate column references in the INSERTINTO list of columns (you
can, however, use duplicate column references in the SELECT clause of a Query
statement).

• A Query statement that defines an automatic schema for a stream must appear in the query
module before any CCL statement that uses the stream, either as a data source or
destination.

See Also

• Insert Values Statement
• Query Statement

Example
The following example publishes the quantity and price of rows from InvoiceStream to
OutStream, if the InvoiceStream rows have value in the Pretax column greater than 50. Total
price is calculated by multiplying the Pretax column of InvoiceStream by 1.08 (simulating the
amount of tax on the item). The quantity is published to the Quantity column of OutStream,
and the calculated total price is published to OutStream's Price column.

INSERT INTO OutStream (Quantity, Price)
SELECT S.Quantity, S.Pretax * 1.08
FROM InvoiceStream AS S
WHERE S.Pretax > 50;

INSERT WHEN clause
Identifies a single destination for the results of a continuous query created by a Query
statement.

Syntax
INSERT { WHEN condition THEN name [(column [, ...])] }
[, ...] [ELSE name [(column [, ...])]]

Table 36. Components

condition A Boolean expression.

Clauses

CCL Reference Guide 99

name
The name of a window or a local or output stream
in the current query module.

column The name of a column in the window or stream.

Usage
This form of the INSERT clause is used as the first clause of a Query statement to create a
branch, in which rows from the query are inserted into one of several destinations, depending
on the specified conditions. (For queries where no branching is required, use the INSERT
INTO form of the INSERT clause instead.) Rows are published to one of the specified
destinations any time the query executes and produces output. All destinations must be named
windows, or local or output data streams.

INSERT WHEN contains one or more WHEN subclauses, each of which specifies a condition
tested against the query's select list for every incoming row. The specified conditions are
similar to CASE expressions, and are subject to similar restrictions.

The select list of every incoming row is tested against the condition of the first (left-most)
WHEN subclause. If the condition is not met, and other WHEN subclauses are present, the
row is tested against the conditions of the subsequent WHEN subclauses from left to right,
until a condition is found to be true. Once a condition is met, the row is inserted into the
destination specified by the corresponding WHEN subclause. The conditions of any
subsequent WHEN subclauses are not considered for the row in question. If the incoming row
meets none of the specified conditions, and an ELSE subclause is present, the row is published
to the destination specified by the ELSE subclause. If no ELSE subclause is specified, the row
is discarded. As with the INSERT INTO form, INSERT WHEN publishes results only if the
query as a whole generates output.

A destination is specified by every WHEN subclause and by the ELSE subclause (if one is
present) of the INSERT WHEN. The same destination can be associated with multiple WHEN
subclauses, and/or with the ELSE subclause.

Every destination specified by the INSERT WHEN can also optionally include one or more
column names referring to the schema of a destination stream or window. As in the case of
INSERT INTO, these specify the columns to which data should be published from left to right.
Alternately, as in the case of INSERT INTO, select list items can be explicitly matched with
the destination's column names by using the AS output column reference syntax in the
SELECT clause.

The usage and restrictions on the use of destination schemas and specified column names in
the WHEN and ELSE subclauses of the INSERT WHEN is the same as for INSERT INTO,
except for the following differences:
• Every item in the select list of the query's SELECT clause must have a corresponding

column in the schema of at least one (but not necessarily all) of the destinations specified
by the INSERT WHEN.

• The schema corresponding to a destination specified by a given WHEN or ELSE
subclause, must have columns corresponding to some, but not necessarily all, items in the

Clauses

 100 Sybase CEP Option

query's select list. Any select list items that do not correspond to a column in the
destination are discarded.

• If a given WHEN or ELSE subclause in an INSERT WHEN includes a list of column
names referring to its destination, the number of specified columns cannot exceed the
number of items in the query's select list, but can contain fewer columns than items in the
select list. Any select list items that do not correspond to a column in the destination are
discarded.

Automatic Schema Creation
As with INSERT INTO, the WHEN and ELSE subclauses of the INSERT WHEN can be used
to create names and schemas for previously undefined data streams. See the AUTOMATIC
SCHEMA CREATION USING INSERT INTO section under INSERT INTO for more
information about the usage and restrictions of automatic schema creation with the INSERT
clause.

The automatic schema feature can be used in either the WHEN subclauses or the ELSE
subclause of INSERT WHEN. When used in a WHEN subclause, the automatic schema
feature uses the following syntax:

WHEN condition THEN stream (column [, ...])

In the ELSE subclause, the following syntax is used:

ELSE stream (column [, ...])

Restrictions

• Input data streams cannot be designated as query destinations. An input stream is a type of
data stream that receives data from outside the current query module, either by way of
bindings, or through a connection to an input adapter.

• No duplicate column references are permitted inside a single WHEN or ELSE subclause
of the INSERT WHEN.

• The query that defines the automatic schema for a stream must appear in the query module
before any CCL statement that uses the stream, either as a data source or destination.

See Also

• Query Statement

Example
The following example separates the Dept stream into three destinations, based on the values
in the Loc column.

INSERT
 WHEN Loc IN ('New York', 'Boston') THEN
 Dep_east
 WHEN Loc IN ('Chicago') THEN
 Dep_mid
 ELSE

Clauses

CCL Reference Guide 101

 Dep_west
SELECT Deptno, Dname, Loc
FROM Dept;

KEEP clause
Specifies a window policy in a Create window statement or in the From clause of a Query
Statement, Database statement, or Remote Procedure statement.

Syntax
time_policy | count_policy

Table 37. Components

time_policy
Specify that the window maintain rows based on
time. See time_policy for more information.

count_policy
Specify that the window maintain rows based on
count. See count_policy for more information.

time_policy
KEEP { { [EVERY] interval [OFFSET BY interval] } | FOR
interval_col | UNTIL times_list } [PER column [...] |
UNGROUPED]

Table 38. Components

interval
An Interval literal specifying the maximum age of
rows in the window or the amount of time to shift
the starting point for the time calculation.

interval_col The name of a column of type Interval.

times_list
A list of times indicating when the window should
be emptied. See times_list for more information.

column The name of a column.

times_list
time_spec | (time_spec [, ...])

Table 39. Component

time_spec
A time specification. See time_spec for more in-
formation.

time_spec
' [SUN | MON | TUE | WED | THU | FRI | SAT] hour : minute [:
second [. fraction]] [timezone]'

Clauses

 102 Sybase CEP Option

Table 40. Components

hour
A value from 0 to 23 indicating the hour of the day.
Must be preceded by at least one space.

minute A value from 0 to 59 indicating the minute.

second A value from 0 to 59 indicating the second.

fraction
A value from 0 to 999999 indicating the fraction
of a second.

timezone

A string representing the time zone. If omitted,
assumes the local time zone. See "Sybase CEP
Time Zone Database" in the Sybase CEP Integra-
tion Guide for more information about valid time
zone strings. Must be preceded by at least one
space.

count_policy
KEEP { [EVERY] count BUCKETS { BY column } [...] } |
{ { [EVERY] count ROW[S] } | { LAST [ROW] } | { count
{ LARGEST | SMALLEST } [DISTINCT] ROW[S] { BY column } [...] }
| { ALL [ROW[S]] } [{ PER column } [...] | UNGROUPED] }

Table 41. Components

count The number of rows or buckets to maintain.

column The name of a column.

Usage
The KEEP clause defines a policy for a named or unnamed window. Named windows are
created with a Create Window statement, while unnamed windows are defined in the FROM
clause.

The window definition determines the manner in which the window keeps state. Rows are
retained and removed from the window based on the window definition. Note that, when a
window serves as a data source for a query in a query chain, the window's policy has no effect
on which rows are propagated down the chain, or on how quickly the rows are propagated.
Window policies keep information about the state of rows, but do not delay them, or prevent
them from traveling down the chain. Window policies also do not prevent removed or
discarded rows from propagating down the chain if the rows are not filtered out by other
clauses in the query.

Window policies include time-based policies and count-based policies:

• A time-based policy specifies the time duration for which a window retains rows.

Clauses

CCL Reference Guide 103

• A count-based policy specifies the maximum number of rows (or groups of rows called
buckets) that the window can retain.

In most cases, a window definition can include a single count-based policy, a single time-
based policy, or one of each. However, the count-based BUCKETS window policy cannot be
combined with a time-based policy.

Both count-based and time-based policies can be sliding or jumping:

• A sliding policy removes rows one at a time.
• A jumping policy clears the window of rows every time the maximum row count is reached

or the specified time interval passes.

The following table describes the different types of window policies:

Window Type Basic Syntax Behavior

Sliding Time-
Based

KEEP interval

or

KEEP FOR inter-
val_col

Each new row arriving in the window is retained for a
specific length of time and is then removed, regardless of
the number of other rows contained in the window, or of
the other rows' arrival time.

In the case of KEEP interval, every arriving row is re-
tained for the same interval, specified by constant-inter-
val-expression, for example 2 MINUTES.

In the case of KEEP FOR interval-col, every arriving row
is retained for the interval specified in its interval-col
column. Since the intervals specified in this column can
be different for different rows, rows can be retained for
different time intervals.

Clauses

 104 Sybase CEP Option

Window Type Basic Syntax Behavior

Jumping Time-
Based

KEEP EVERY inter-
val

or

KEEP UNTIL times-
list

In the case of KEEP EVERY interval, time is subdivided
into interval segments. During each interval, the window
accumulates whatever rows arrive. At the end of the in-
terval, all rows held in the window are removed and the
process starts over.

In the case of KEEP UNTIL times-list, a comma-separa-
ted list of one or more times is specified in the window
policy. The window accumulates whatever rows arrive
until the first applicable time in times-list, then removes
all rows and starts over. Components of times-list can
include STRING literals and STRING type parameters.
Times listed in times-list can include the day of the week.
If no day of the week is specified, rows are removed at the
indicated time daily. The listed times can also specify a
time zone. If no time zone is specified, rows are removed
according to local time.

Note: Time changes, such as the change between stand-
ard and daylight savings time, may cause undesired re-
sults in the behavior of KEEP UNTIL windows when the
time change occurs. To avoid this problem, Sybase rec-
ommends omitting times of the day or week that coincide
with the time change from your time list.

Sliding Count-
Based

KEEP count ROW

or

KEEP count ROWS

or

KEEP LAST ROW

A variation of sliding
count-based win-
dows can also be de-
fined to keep buckets
of rows, instead of in-
dividual rows See
WINDOW BUCK-
ETS for more infor-
mation.

The window accumulates arriving rows until it reaches
the maximum specified by count or the word LAST
(KEEP LAST ROW is the equivalent of KEEP 1 ROW).

Once the maximum is reached, every new row arriving in
the window displaces one of the other rows already held
in the window. When no additional syntax is used, the
displaced row is the oldest row held by the window. This
default behavior of the sliding count-based window using
the count (but not the KEEP LAST) syntax can be
changed with the use of the LARGEST or SMALLEST
keyword, as described later.

Clauses

CCL Reference Guide 105

Window Type Basic Syntax Behavior

Jumping Count-
Based

KEEP EVERY count
ROW

or

KEEP EVERY count
ROWS

A variation of jump-
ing count-based win-
dows can also be de-
fined to keep buckets
of rows instead of in-
dividual rows. See
WINDOW BUCK-
ETS for more infor-
mation.

The window accumulates arriving rows until it reaches
the maximum specified by integer-expression. When the
next row arrives, all older rows held in the window are
removed, and the window begins accumulating rows
again until it reaches the maximum.

Multi-Policy

One count-based pol-
icy and one time-
based policy, as de-
scribed above.

The window retains and removes rows according to both
policies.

Keep All

KEEP ALL

or

KEEP ALL ROWS

All rows arriving in the window are retained. No rows are
removed from the window.

Warning! Because a Keep All window retains all rows
that arrive in the stream, it is potentially very costly in
terms of resources, and may eventually use up all avail-
able memory on your system. Sybase recommends using
this type of window only when you are sure that doing so
will not exceed your allocated resources, or when you
have provided a means of explicitly deleting rows from
the window with a Delete statement.

Window Buckets
Count-based windows can retain a specified number of groups of rows (called buckets),
instead of the specified number of individual rows. These types of windows are defined using
the BUCKETS keyword, and include one or more BY subclauses, each of which includes a
column reference corresponding to the window's schema. Rows that contain the same values
in all of the columns identified by the BY subclauses are grouped into a single bucket. The
window policy determines how many buckets the window can hold.

Clauses

 106 Sybase CEP Option

Every arriving row is placed into a bucket, based on the values it contains in the columns
named in the BY subclauses. If a bucket for the row does not already exist, a new bucket is
created.

Syntax Behavior

KEEP count BUCKETS BY column [BY col-
umn] [...]

The window accumulates buckets up to the max-
imum specified by the count. Once the maximum
number of buckets is reached, every new bucket
created in the window displaces the oldest exist-
ing bucket.

KEEP EVERY count BUCKETS BY column
[BY column] [...]

The window creates buckets up to the maximum
specified by the count. Once the maximum num-
ber of buckets is reached and a subsequent new
bucket is created, all existing buckets held in the
window are removed, and the window begins ac-
cumulating buckets again until it reaches the
maximum.

A window policy that uses buckets cannot be used in the same window with a time-based
window policy.

Keeping Largest or Smallest Rows
By default, sliding count-based windows retain the newest rows, and remove the oldest. For
windows that do not use buckets, this behavior can be modified with the addition of the
LARGEST or SMALLEST keyword, with or without the DISTINCT keyword, which causes
the window to keep only rows with the largest or smallest available values, as described below.
At least one BY subclause is required with this syntax, and multiple BY subclauses can be
used.

Clauses

CCL Reference Guide 107

Syntax Behavior

... count LARGEST ROWS...

Initially the window accumulates rows until it reaches
the maximum specified by count. A new row arriving in
the window after the window is full is evaluated for the
value of col1, where col1 is the column specified in the
first BY subclause. If this value is larger than at least
one other row already in the window, the new row is
retained, and the row with the smallest col1 value is
removed. If the incoming row's col1 is smaller than col1
of all the current rows, the incoming row is expired.

If col1 is the same for both the new row and all the other
rows in the window, and a second BY subclause is
specified, the same comparison is performed on the
basis of the column specified in the second BY sub-
clause. If the values in the second column are also the
same for all rows in the window and the incoming row,
the same comparison is performed for the next BY
subclause, if one exists, and so on in order of BY sub-
clauses from left to right, until either a value differential
is found, or no more BY subclauses remain.

If, at any point, the value in the appropriate column of
the incoming row is determined to be smaller than the
corresponding value of all the rows in the window, the
incoming row is discarded. If no differences in value are
found at the end of this procedure, however, the oldest
row is removed.

Clauses

 108 Sybase CEP Option

Syntax Behavior

... count LARGEST DISTINCT ROWS...

A new row arriving in the window is checked against
the existing rows to determine if the new row is distinct
from all the others. Distinction is determined by com-
paring the values of all columns specified by all BY
subclauses in the window policy for all the current rows
in the window and the incoming row. If two rows con-
tain the same values in all these columns, the rows are
not distinct.

If the incoming row is not distinct from another row in
the window, the new row is retained, and the older row
is removed. Initially the window accumulates distinct
rows until it reaches the maximum specified by count. If
a new row is distinct, the value of its first BY subclause
column is compared to all the other rows in the window.
If any rows have a smaller value in this column than the
incoming row, the new row is retained, and the row with
the smallest value is removed. If the incoming row has a
smaller value than any of the existing rows, it is discar-
ded.

If the window policy has multiple BY subclauses and
the incoming row and all the current rows have the same
value in the column indicated by the first BY subclause,
the column specified by the second BY subclause is
evaluated for the row with the smallest value, and so on
through any other subsequent BY subclauses, until a
row with a different and smaller value is found.

Clauses

CCL Reference Guide 109

Syntax Behavior

... count SMALLEST ROWS...

Initially the window accumulates rows until it reaches
the maximum specified by count. A new row arriving in
the window after the window is full is evaluated for the
value of col1, where col1 is the column specified in the
first BY subclause. If this value is smaller than at least
one other row already in the window, the new row is
retained, and the row with the largest col1 value is re-
moved. If the incoming row's col1 is larger than the
value of col1 in all the current rows, the incoming row is
discarded.

If col1 is the same for both the new row and all the other
rows in the window, and a second BY subclause is
specified, the same comparison is performed on the
basis of the column specified in the second BY sub-
clause. If the values in the second column are also the
same for all rows in the window and the incoming row,
the same comparison is performed for the next BY
subclause, if one exists, and so on in order of BY sub-
clauses from left to right, until either a value differential
is found, or no more BY subclauses remain.

If, at any point, the value in the appropriate column of
the incoming row is determined to be larger than the
corresponding value of all the rows in the window, the
incoming row is discarded. If no differences in value are
found at the end of this procedure, however, the oldest
row is removed.

Clauses

 110 Sybase CEP Option

Syntax Behavior

... count SMALLEST DISTINCT ROWS...

A new row arriving in the window is checked against
the existing rows to determine if the new row is distinct
from all the others. Distinction is determined by com-
paring the values of all columns specified by all BY
subclauses in the window policy for all the current rows
in the window and the incoming row. If two rows con-
tain the same values in all these columns, the rows are
not distinct.

If the incoming row is not distinct from another row in
the window, the new row is retained, and the older row
is removed. Initially the window accumulates distinct
rows until it reaches the maximum specified by count. If
a new row is distinct, the value of its first BY subclause
column is compared to all the other rows in the window.
If any rows have a larger value in this column than the
incoming row, the new row is retained, and the row with
the smallest value is removed. If the incoming row has a
larger value than any of the existing rows, it is discar-
ded.

If the window policy has multiple BY subclauses and
the incoming row and all the current rows have the same
value in the column indicated by the first BY subclause,
the column specified by the second BY subclause is
evaluated for the row with the largest value, and so on
through any other subsequent BY subclauses, until a
row with a different and larger value is found.

Effect of PER, GROUP BY, and UNGROUPED
If a window policy includes one or more PER subclauses, a separate window is effectively
created for every unique combination of values found in the combination of column references
listed by the PER subclauses. For example, the following window policy keeps ten rows for
every unique combination of values found in Col1 and Col2:

KEEP 10 ROWS PER Col1 PER Col2

Additionally, when a GROUP BY clause is used in the same query as an unnamed window
definition, the GROUP BY clause creates implicit PER clauses on the window policy, based
on the column references contained in the GROUP BY. For example, the following two code
snippets create windows that behave the same:

GROUP BY Symbol, Broker, Price
FROM Stream1 KEEP 10 ROWS

Clauses

CCL Reference Guide 111

FROM Stream1 KEEP 10 ROWS PER Symbol PER Broker PER Price

When the query includes both a GROUP BY clause and an explicit PER clause, however, the
explicit PER clause supersedes the implicit PER created by the GROUP BY. For example, the
following query causes the window policy to retain ten rows per each unique value in the
Broker column, not per the values in the Symbol column:

INSERT INTO OutStream
SELECT MAX(Price)
FROM Stream1 KEEP 10 ROWS PER Broker
GROUP BY Symbol;

The effect of the GROUP BY clause on an unnamed window can also be overridden by the
addition of the UNGROUPED keyword, which causes the window policy to retain rows
according to the specified number or rows or interval, disregarding the columns specified in
the GROUP BY clause. For example, the following query keeps only one set of 50 rows,
regardless of the values in the Symbol column:

INSERT INTO OutStream
SELECT AVG(Price)
FROM Stream1 KEEP 50 ROWS UNGROUPED
GROUP BY Symbol;

In most cases, the use of the PER, GROUP BY, or UNGROUPED clauses has no effect on the
retention behavior of time-based window policies, and on the KEEP ALL window, since time-
based policies retain rows for a specified period of time or until a specified time, regardless of
their grouping, and KEEP ALL retains all rows regardless of grouping. However, the use of
PER, GROUP BY, or UNGROUPED does affect the output of the FIRST and LAST functions,
which retrieve the first or last row of the current group (instead of the contents of the window)
when a PER or GROUP BY clause is present.

See Also

• Database Statement
• Query Statement
• Remote Procedure Statement
• FROM
• GROUP BY

Examples
The following jumping count-based named window definition keeps every 15 rows:

CREATE WINDOW Window1
SCHEMA (Col1 INTEGER, Col2 STRING)
KEEP EVERY 15 ROWS;

The following time-based jumping window offsets the beginning of its interval calculation by
six minutes:

Clauses

 112 Sybase CEP Option

INSERT INTO OutStream
SELECT *
FROM Stream1 KEEP EVERY 60 MINUTES OFFSET BY 6 MINUTES;

This example keeps the three distinct rows with the largest value in the Price column for every
stock symbol listed in the StockSymbol column:

INSERT INTO OutStream
SELECT *
FROM Trades KEEP 3 LARGEST DISTINCT ROWS BY Trades.Price
 PER Trades.StockSymbol;

This window creates a separate bucket for every arriving row with a distinct stock symbol.
Rows with stock symbols for which buckets have already been created are placed into those
buckets. After the third bucket is created, any new bucket displaces the oldest bucket in the
window:

CREATE WINDOW NewestSymbols SCHEMA StockSchema
KEEP 3 BUCKETS BY StockSymbol;

This window expires rows at 5:00pm every weekday:

INSERT INTO OutStream
SELECT *
FROM Stream2
KEEP UNTIL ('MON 17:00:00', 'TUE 17:00:00', 'WED 17:00:00', 'THU
17:00:00', 'FRI 17:00:00');

MATCHING clause
Detects a pattern of events with specified temporal relationships.

Syntax
MATCHING [ONCE [(event [, ...])] [interval : pattern] [
on_clause]

Table 42. Components

event
The name or alias of a stream listed as one of the
query's data sources.

interval An Interval expression.

pattern A pattern. See pattern for complete syntax.

on_clause
An ON clause. See ON Clause: Pattern Matching
Syntax for more information.

Clauses

CCL Reference Guide 113

pattern
[!] { event | (pattern) | [interval : pattern] } [{&& | ||
| ,} [!] { event | (pattern) | [interval : pattern] }]
[...]

Table 43. Components

event
The name or alias of a stream listed as one of the
query's data sources.

pattern Another, nested pattern.

interval An Interval expression.

Interval Expression: A valid interval literal, or an expression that evaluates to an interval.

Event Name: The name or alias of a data stream that is also listed as one of the query's data
sources. If a stream is referenced more than once in a pattern definition, each reference must
use its own alias.

Usage
The optional MATCHING clause follows the FROM clause in a Query statement, Database
statement, or Remote Procedure statement. When used, the MATCHING clause must
immediately follow the FROM data source list, which must include all data sources specified
in the MATCHING clause, and cannot include any other data sources.

The MATCHING clause allows a query to monitor several data sources for a specified pattern
of rows that arrive, or don't arrive, in the query's data sources within a specified time interval. If
the specified pattern is detected, and other query selection conditions are met, the query
publishes output to its destination.

Sybase CEP pattern matching is inclusive; a pattern is considered matched, as long as the
specified events occur (or do not occur) as indicated, even if additional unspecified events also
occur during the designated interval.

When used without the ONCE subclause, the MATCHING clause produces one output row
for each unique combination of input events that matches the pattern (subject to other query
selection conditions). Data streams can also contain overlapping occurrences of patterns, in
which case all occurrences are published. This rule can be modified with the ONCE subclause.

If the MATCHING clause is used with a ONCE subclause, the query outputs no more than one
pattern match for every event specified by the ONCE subclause. In this case, the published
pattern match will be the first pattern match involving the specified event to be detected and to
fall within the WHERE clause selection condition, if such a condition is indicated. If the
ONCE subclause does not specify a list of events, the once-only rule applies to all events in the
pattern.

The MATCHING clause of a query that includes multiple data sources can contain an optional
ON subclause, which defines one or more multi-equalities that limit the join condition.

Clauses

 114 Sybase CEP Option

Queries containing a MATCHING clause can also include other selection criteria, such as a
WHERE clause, that further refine the matching conditions for the pattern. However, only the
WHERE clause can place selection conditions on non-events. See the WHERE clause
description for more information.

The outer level of a pattern definition consists of a bounded pattern definition. Bounded
pattern definitions are enclosed in square brackets ([]) and contain:

• An interval expression specifying the interval within which the pattern must be detected.
The interval expression can include any CCL elements that are evaluated at compile time,
such as functions, operators and literals, but cannot contain references to stream or
window columns or to other elements whose value is determined at run time.

• A pattern specification, indicating the events or groups of events that must occur, or not
occur, within the specified interval to meet the pattern matching criteria.
The pattern specification includes one or more of the following:
• Event specifications: An event is specified by indicating the name or alias of a data

stream to which the query subscribes. The event occurs every time a row arrives in the
specified data stream.

• Nested bounded patterns: Syntactically identical to the outer bounded pattern. Nested
bounded patterns define a smaller subinterval within the larger interval, and a series of
events or groups of events, that must occur or fail to occur, within the smaller interval to
produce a pattern match.

Where a pattern specification consists of more than one event, the events or groups of
events must be connected with the operators listed in the following table. A special !
operator signifies that the event or group of events must not occur to produce a pattern
match. Non-occurring events are sometimes called non-events.

All the components of a bounded pattern, including nested bounded patterns, must occur
within the interval specified for the bounded pattern to produce a pattern match.

Table 44. Event Operators

Operator Operator Name Description

! Not operator Specifies a negative condition for a pat-
tern component. (Pattern conditions are
met when the pattern component does
not occur).

&& Conjunction (And) operator Both pattern components linked by the
conjunction operator must occur for the
match condition to be met, but they need
not necessarily occur in the order listed.

Clauses

CCL Reference Guide 115

Operator Operator Name Description

|| Disjunction (Or) operator One or both pattern components linked
by the Disjunction operator must occur
to meet the conditions of the match.
Each output row produced by a Dis-
junction match shows the match for one
of the members of the Disjunction, and
NULL values for the other members.
This is true even when several members
of the disjunction produce events.

, Sequence operator Pattern components linked by the Se-
quence operator must both occur in the
order listed, to meet the conditions of
the match. The listed order refers to the
rows' timestamp, not necessarily the or-
der in which the rows appear in a stream
viewer.

A sequence pattern matches a given set
of events only if the events associated
with the sequence occur in the specified
order, and the intervals associated with
the events do not overlap. Pattern inter-
val rules are discussed below.

The default order of precedence in which pattern components are analyzed for a possible
pattern match follows the order of operators, as they are listed in the table. The tightest binding
between an operator and a pattern component is that of the Not operator. The bindings then get
progressively looser, for events linked with a conjunction, disjunction, and sequence
operators, respectively. This default order of precedence can be overridden by enclosing a
pattern component in parentheses.

Pattern Definition Validity Rules
A valid pattern definition and all of its components must be properly anchored. Anchoring
refers to whether or not the beginning and end of the time interval corresponding to the pattern
component can be determined. Anchoring can be fixed by the row timestamp of an event
within the pattern component, or can be deduced from the context of the component. Pattern
components are referred to as being left-anchored (a pattern component with a fixed interval
start time), right-anchored (a pattern component with a fixed interval end time), fully anchored
(a pattern component that is both left-anchored and right-anchored), or unanchored (a pattern
component that is neither left-anchored nor right-anchored). The following rules must be
satisfied for a pattern definition to be considered valid:

Clauses

 116 Sybase CEP Option

1. Every pattern component within any bounded pattern must be either left-anchored, right-
anchored, or both.

2. For any two consecutive pattern components within a sequence, the left component must
be right-anchored, and/or the right component must be left-anchored.

The following table specifies the anchoring status of all pattern components.

Pattern Component Type Anchoring Status

A single event A Fully anchored. The event can be anchored in time
by its row timestamp.

Non-event !A, where A is a single event or other
pattern component

Unanchored. Since the event definition specifies
an event or group of events that does not occur, no
specific start or end time can be associated with
it.

A conjunction A && B, where A and B are single
events or other pattern components

Left-anchored if, and only if, both A and B are
left-anchored. Right-anchored if, and only if, both
A and B are right-anchored.

A disjunction A || B, where A and B are single
events or other pattern components

Left-anchored if, and only if, both A and B are
left-anchored. Right-anchored if, and only if, both
A and B are right-anchored.

A sequence A, ..., B where A and B are single
events or other pattern components

Left-anchored if, and only if, A is left-anchored.
Right-anchored if, and only if, B is right-anch-
ored.

A bounded-pattern [interval-expression: A]
where A is a single event or other pattern compo-
nent

Always fully anchored. The pattern's start and end
times are determined by the specified interval-ex-
pression and A's timestamps.

Here are some examples illustrating pattern definition validity rules:

[10 SECONDS: A, B, !C]

This is a valid pattern definition. The sequence A, B, !C is left-anchored (because A is left-
anchored), so the first anchoring rule is satisfied. A is right-anchored and B is left-anchored, so
the second anchoring rule is satisfied for A and B. B is right-anchored, so the second anchoring
rule is satisfied for B and !C.

[1 SECOND: !A, B, !C]

This pattern definition is invalid. The sequence !A, B, !C fails the first anchoring rule, because
it is unanchored.

[3 SECONDS: A, !B, !C]

Clauses

CCL Reference Guide 117

This pattern definition is invalid. !B is not right-anchored and !C is not left-anchored, so the
pattern definition fails the second anchoring rule.

[5 MINUTES: A && (!B, C)]

This pattern definition is valid. The conjunction is right-anchored, since both A and (!B, C) are
right-anchored.

[20 SECONDS: [10 SECONDS: !A, B], !C]

This pattern definition is valid. The nested bounded pattern is fully anchored, so the sequence
[10 SECONDS: !A, B], !C is valid and left-anchored.

Pattern Interval Rules
A pattern component definition, together with the actual incoming events scanned for pattern
matches, determine a time interval, within which the A pattern component can be said to
occur. Specifically, the pattern component's interval is determined by subtracting the pattern
component's starting time from its ending time. Where the starting time and ending time are
the same, the interval is considered to be NULL.

The following rules specify how the starting time and ending time of each component are
determined:

A single event A

• The starting time and ending time are determined by the row timestamp of A.

Non-event !A, where A is a single event or other pattern component

• Although a non-event does not contain a start or end time, the context in which the non-
event appears (conjunction, disjunction, sequence) exactly specifies the interval to which
it applies, as determine by the other rules in this list.

A conjunction A && B, where A and B are single events or other pattern-components

• The starting time is the earlier of the starting times of A and B.
• The ending time is the later of the ending times of A and B.
• A left-unanchored operand of a conjunction takes its starting time from the starting time of

the conjunction.
• A right-unanchored operand of a conjunction takes its ending time from the ending time of

the conjunction.

A disjunction A || B, where A and B are single events or other pattern components

• The starting and ending times are those associated with A or B: whichever of the two
occurs.

• A left-unanchored operand of a disjunction takes its starting time from the starting time of
the disjunction.

Clauses

 118 Sybase CEP Option

• A right-unanchored operand of a disjunction takes its ending time from the ending time of
the disjunction.

A sequence A, ..., B where A and B are single events or other pattern components

• The starting time is the starting time of A.
• The ending time is the ending time of B.
• If the first pattern component of a sequence is left-unanchored, it takes its starting time

from the starting time of the sequence.
• If a pattern component is left-unanchored, and is not the first operand of a sequence, its

starting time is calculated by adding one microsecond to the ending time of the previous
operand in the sequence.

• If a pattern component is right-unanchored, and is not the last operand of a sequence, its
ending time is calculated by subtracting one microsecond from the starting time of the next
operand in the sequence.

• If the last pattern component of a sequence is right-unanchored, it takes its ending time
from the ending time of the sequence.

A bounded pattern [interval-expression: A] where A is a single event, or other pattern-
component

• If A is fully anchored, the starting and ending times are those of A.
• If A is left-unanchored, the ending time is the ending time of A, and the starting time is

determined by the ending time of A minus the result of the specified interval-expression.
• If A is right-unanchored, the starting time is the starting time of A, and the ending time is

determined by the starting time of A plus the result of the specified interval-expression.
• A left-unanchored operand of a bounded pattern takes its starting time from the starting

time of the bounded pattern.
• A right-unanchored operand of a bounded pattern takes its ending time from the ending

time of the bounded pattern.

Here are some illustrations of pattern interval rules.

[10 SECONDS: A, B, !C]

The interval for the whole pattern starts when a row arrives in stream A and ends ten seconds
later. The interval associated with B starts one microsecond after the arrival of the row in A
(that is, a row in stream B must arrive after the arrival of the row in A, and must not overlap A to
produce a pattern match). Likewise, the interval associated with C starts one microsecond
after the arrival of the row in B and extends until ten seconds have elapsed since A's arrival.

[5 MINUTES: A && (!B, C)]

The interval for the whole pattern ends when a row arrives in either stream A or C - whichever
arrives later - and starts five minutes before this time. The interval associated with B starts at
the same time as the interval for the whole pattern, and ends when the row arrives in C.

Clauses

CCL Reference Guide 119

[20 SECONDS: [10 SECONDS: !A, B], !C]

The interval for [10 SECONDS: !A, B] ends when a row arrives in B, and starts ten seconds
earlier. The interval for the whole pattern starts ten seconds before the row arrives in B and
ends 20 seconds later (that is, ten seconds after the row arrives in B.) The interval associated
with A starts ten seconds before the arrival of a row in B minus one microsecond. The interval
associated with C starts one microsecond after a row arrives in B and ends ten seconds after the
row arrives in B.

Capturing Matching Row Data
The XMLPATTERNMATCH() function can be used in the SELECT clause of the query that
contains the MATCHING clause to generate an XML tree that contains data from all the rows
(except non-events) that resulted in successful pattern matches. The XML tree can then be
published to the query's destination.

Restrictions
The following restrictions apply to the use of pattern matching:

• The MATCHING clause supports pattern matches only within data streams and
subqueries, not database subqueries or windows.

• A stream name or alias name can appear only once within a pattern definition. In the case
of multiple references to the same stream, each reference must use a different alias.

• Events that are directly or indirectly specified as non-events cannot be referred to in the
query's select list, since a non-existent row cannot be published.

• Events that are directly or indirectly specified as non-events can be referenced with certain
restrictions in the query's WHERE clause. See WHERE for details.

• The interval expression specifying the interval within which the pattern must be detected
can include any CCL elements that are evaluated at compile time, such as functions,
operators, and literals, but cannot contain references to stream or window columns or to
other elements whose value is determined at run time.

See Also

• Database Statement
• Query Statement
• Remote Procedure Statement
• ON
• XMLPATTERNMATCH()

Examples
The following example monitors for a row arriving in the HighTemperature stream, followed
by a row arriving in the HighSmoke stream, and no row in the SprinklersOn stream, all within
a 120-second interval, where the RoomNumber column in the HighTemperature and
HighSmoke streams contain the same value:

Clauses

 120 Sybase CEP Option

INSERT INTO OutStream
SELECT HighTemperature.RoomNumber
FROM HighTemperature, HighSmoke, SprinklersOn
 MATCHING [120 SECONDS: HighTemperature, HighSmoke, !SprinklersOn]
ON HighTemperature.RoomNumber = HighSmoke.RoomNumber
 = SprinklersOn.RoomNumber;

The pattern defined in the following example is similar to the previous one, but allows the rows
in HighTemperature and HighSmoke to occur in either order. The pattern interval in this
example is shorter (20 seconds) than in the previous one, and each stream has an associated
alias. A condition selection requires the Building column in all three streams to contain the
same value:

INSERT INTO BackupAlarmSystem
SELECT 'SprinklerFailure'
FROM HighSmoke AS HS, HighTemperature AS HT, SprinklersOn AS S
 MATCHING [20 SECONDS: HS && HT, !S]
ON HS.Building = HT.Building = S.Building;

Here is another example of a pattern definition:

INSERT INTO OutStream
SELECT A.x, B.x, C.x
FROM A, B, C, D, E, F, G, H, I
 MATCHING [20 SECONDS: A && B, C && D, E, !F, G || H, !I];

The following example contains a parentheses-enclosed subpattern that overrides the default
event operator order of precedence:

INSERT INTO OutStream
SELECT A.x, C.x, D.x
FROM A, C, D
 MATCHING [1 SECOND: (A || B) && C, D];

The following example contains a nested bounded pattern definition that monitors for events
with a five-second interval, nested within the larger ten-second interval of the outer pattern:

INSERT INTO OutStream
SELECT A.x, D.x
FROM A, D
 MATCHING [10 SECONDS: A, !B, [5 SECONDS: !C, D]];

The following example shows a pattern-matching specification that contains a ONCE
subclause, which limits the output of matches involving stream A, causing the query to output
only the first pattern match involving A, where the value of B.x is greater than 100.

INSERT INTO OutStream
SELECT A.x, B.x
FROM A, B
 MATCHING ONCE (A) [10 SECONDS: A, B]
WHERE B.x > 100;

Clauses

CCL Reference Guide 121

ON clause
Specifies join conditions for joins preformed using the JOIN keyword, creates a pattern join
condition, or used to identify the trigger which causes rows to be deleted, updated, or inserted
into a named window, or which causes variables to change state.

The following subsections describe three syntax variations of the ON clause. The first syntax
variation is used to specify join conditions for joins performed using the JOIN keyword. The
second syntax variation is used in pattern definition, with the MATCHING clause, to create a
pattern join condition. The third syntax variation is used with a Delete statement, Set Variable
statement, or Update Window statement, or to identify the trigger which causes rows to be
deleted, updated, or inserted into a named window, or which causes variables to change state.

• ON Clause: Join Syntax
• ON Clause: Pattern Matching Syntax
• ON Clause: Trigger Syntax

ON clause: Trigger syntax
Specifies the stream or named window in which the arrival of a row triggers the deletion of
rows from a named window or the resetting of a variable state.

Syntax
ON name [[AS] alias]

Table 45. Components

name The name of a data stream or window.

alias An alias for the data source.

Usage
This form of the ON clause appears as the first clause in a Delete statement, Set Variable
statement, or Update Window statement. The ON clause specifies the name of a data stream or
named window in which the arrival of a row is a trigger. When the clause is used in a Delete
statement, the trigger prompts the deletion of rows from a specified named window. In a Set
Variable statement, the trigger causes specified variables to be reset. In an Update Window
statement, the trigger prompts existing rows in a named window to be updated or new rows to
be inserted.

The optional WHEN clause can be used in conjunction with the ON clause to limit the
conditions for the trigger.

The data stream or window specified in this form of the ON clause can include an alias
specified with the syntax stream-or-window-name [AS] alias.

Clauses

 122 Sybase CEP Option

Use this alias to refer to the trigger data stream or window in the WHEN clause of a Delete
statement or Update Window statement, as well as in the SET, WHERE, and OTHERWISE
INSERT clauses of an Update Window statement.

See Also

• Delete Statement
• Set Variable Statement
• Update Window Statement
• OTHERWISE INSERT
• SET
• WHEN
• WHERE

Examples
The following example monitors for the arrival of a row in InStream. When the row arrives,
window rows in MyWindow1 that have the same symbol as the arriving InStream row are
deleted.

ON InStream
DELETE FROM MyWindow1
WHERE InStream.Symbol = MyWindow1.Symbol;

In the following example, the rows in StreamB are counted.

ON StreamB
SET message_count = message_count+1;

ON clause: Join syntax
Specifies a join condition for data sources joined with a JOIN keyword.

Syntax
ON inner_condition | source.column = source.column [AND ...]

Table 46. Components

inner_condition A Boolean expression.

source The name or alias of a data source.

column The name of a column.

Usage
This form of the ON clause is required with outer joins, but is optional with inner joins
specified with the JOIN keyword syntax. The ON clause defines a condition for the join.

Clauses

CCL Reference Guide 123

• When used with outer joins, the condition must consist of one or more simple equality
comparisons, each of which compare a column in one data source with a column in the
other data source. When multiple column comparisons are specified, they are separated by
the AND keyword.

• When used with inner joins, the condition can be any valid Boolean expression that
evaluates to true or false.

All column references in the ON clause must refer to data sources specified in the FROM
clause. This form of the ON clause is used in a Query statement, Database statement, or
Remote Procedure statement.

Restrictions

• Outer join conditions are limited to comparisons between two or more columns in the two
data sources of the join. The comparison cannot specify a literal value, or compare two
columns in the same data source.

• The ON clause cannot be used with joins specified using the FROM Clause: Database and
Remote Subquery Syntax or FROM Clause: Comma-Separated Syntax. Join conditions
for such joins are specified using the WHERE clause.

See Also

• Database Statement
• Query Statement
• Remote Procedure Statement
• FROM
• WHERE

Example
The following example publishes information about the symbol and price of a stock when an
inquiry for the stock arrives on the Inquiry stream:

INSERT INTO OutStream
SELECT Trades.Symbol, Trades.Price
FROM Inquiry JOIN Trades
ON Inquiry.Symbol = Trades.Symbol;

ON clause: Pattern matching syntax
Optional clause that specifies a pattern join condition. This form of ON syntax is used in
conjunction with a MATCHING clause in a Query statement, database statement, or remote
procedure statement.

Syntax
ON {source.column = source.column [= ...] } [AND ...]

Clauses

 124 Sybase CEP Option

Table 47. Components

source The name or alias of a data source.

column The name of a column.

Usage
A query that includes a MATCHING clause pattern definition can also include an optional ON
clause that defines a join condition for the pattern. The ON clause consists of one or more
multi-equalities. Each multi-equality must refer to one column from every data source listed in
the query's FROM clause. The multi-equality condition causes Sybase CEP Engine to search
for the specified pattern only among rows where the listed columns of the various data sources
contain equal values. All the data sources specified in the ON clause must also be listed as data
sources for the query.

A separate pattern search is performed for every unique value contained in the specified
columns. This form of the ON clause can be used in a Query statement, Database statement, or
Remote Procedure statement.

SEE ALSO

• Database Statement
• Query Statement
• Remote Procedure Statement
• MATCHING

Example
The following example monitors for three consecutive login failures, within three minutes of
one another, from the same terminal, and associated with the same user ID:

INSERT INTO OutStream
SELECT L3.TerminalID, L3.UserID
FROM LoginFailure AS L1, LoginFailure AS L2, LoginFailure AS L3
 MATCHING [3 MINUTES: L1, L2, L3]
ON L1.TerminalID = L2.TerminalID = L3.TerminalID
 AND L1.UserID = L2.UserID = L3.UserID;

ORDER BY clause
Orders multiple rows produced simultaneously by a join operation in a Query Statement,
Database statement, or Remote Procedure statement.

Syntax
ORDER BY { column [ASC[ENDING] | DESC[ENDING]] } [, ...]
[UNGROUPED | PER column [...]]

Clauses

CCL Reference Guide 125

Table 48. Component

column The name of an input column.

Usage
The optional ORDER BY clause orders multiple rows that are produced during one execution
of a query. This clause is typically used with joins involving two or more data sources, in
which a single row arriving in one of the query's data sources often results in multiple rows of
output from the query. In cases where multiple rows are produced, the rows are first ordered
according to the values of the first column reference specified in the clause. Rows with
duplicate values in this column are further ordered by the second and subsequent column
references, if any are specified. Each additional column reference further refines the ordering
process.

You can specify DESCENDING (or DESC) with each column reference. These control
whether ordering proceeds in ascending (the default) or descending order of values for each
specified column.

When specifying a grouping with PER, ordering is performed for each unique combination of
values in the specified columns. Specifying UNGROUPED instead of a PER clause to make
the default behavior explicit has no effect. Note that any GROUP BY clause in the statement
does not apply to the ORDER BY clause.

Restrictions

• The ORDER BY clause reorders rows only within sets of rows produced simultaneously
by a join operation. It does not reorder rows that have the same timestamp for other reasons
and it never reorders rows with different timestamps.

Example
The following example orders the output from the join by ascending values in the
Temp.Location column. If multiple rows have the same value in Location, they are further
ordered by the Wind.Windspeed column, in descending order:

INSERT INTO OutStream
SELECT Temp.Location, Temp.Temperature, Wind.WindSpeed,
 AVG(Temp.Temperature)
FROM Temp KEEP 1 DAY, Wind KEEP 1 DAY
WHERE Temp.Location = Wind.Location
GROUP BY Temp.Location
ORDER BY Temp.Location, Wind.Windspeed DESC;

Clauses

 126 Sybase CEP Option

OTHERWISE INSERT clause
Defines a list of values and column associations, which generates a new row and publishes it to
the destination named window specified in an Update Window statemen if a trigger occurs but
no current rows in the window match the statement's update condition.

Syntax
OTHERWISE INSERT value [AS column] [, ...]

Table 49. Components

value
An expression that evaluates to a value of the same
data type as the destination column.

column
The name of a column in the statement's destina-
tion, specified by the UPDATE clause, to which
value is published.

Usage
This optional clause of an Update Window statement takes effect only when a row arrives in
the triggering stream or window specified in the ON clause and meets the criteria of the
WHEN condition if one is set but no rows in the statement's destination window, defined in the
UPDATE clause, match the update condition set by the WHERE clause. In other words, when
a trigger occurs but the destination window doesn't contain any rows that can be updated.

The OTHERWISE INSERT clause contains an insert list of one or more items, separated by
commas. Each expression in the insert list can contain literals, column references from the
triggering stream or window specified in the Update Window statement's ON clause,
operators, scalar and miscellaneous functions, and parentheses, or can contain the "select all"
asterisk (*) character, which is equivalent to a list of all column values from the triggering
stream or window in the ON clause, listed in order from left to right.

Items in the insert list that are not an asterisk can include an AS subclause, indicating a column
in the destination window's schema to which the results of the expression are published. You
must use the AS subclause either for all of the non-asterisk items or for none of the items in the
insert list.

If the insert list includes AS subclauses, the output column reference associated with each
expression must uniquely match a column name in the destination's named window schema,
and the expression must evaluate to the column's data type. In the absence of an AS subclause,
items are published in order from left to right.

The insert list must contain a value for every column in the destination window's schema.

Clauses

CCL Reference Guide 127

RESTRICTIONS

• OTHERWISE INSERT clause expressions cannot include column values from the named
window specified in the UPDATE clause, since OTHERWISE INSERT executes only
when no corresponding value is found in this named window.

See Also

• Update Window Statement
• ON
• UPDATE
• WHEN
• WHERE

Examples

ON ShippedOrders AS S
WHEN Code = "Ship Notice"
UPDATE Orders AS O
SET TRUE AS Shipped, S.ShippedTime AS ShippedTime
WHERE S.OrderID = O.OrderID
OTHERWISE INSERT S.OrderID AS OrderID, TRUE AS Shipped, S.ShippedTime
AS ShippedTime;

OUTPUT clause
Sychronizes, limits, or delays output from a Query statement, database statement, or Remote
Procedure statement, or schedules the generation of rows from an Insert Values statement.

Syntax
OUTPUT { [ALL] EVERY { count ROW[S] | interval [OFFSET BY
interval] } } | { {AFTER | FIRST WITHIN} {count ROW[S] |
interval} } | { [ALL] AT times_list } [UNGROUPED | PER column
[...]]

Table 50. Components

count The number of rows to publish.

interval
An Interval literal specifying when to publish
rows or the amount of time to shift the starting
point for the time calculation.

times_list
A list of times indicating when the window should
be emptied. See times_list for more information.

Clauses

 128 Sybase CEP Option

column
The name of a column in the data source, for
grouping purposes.

times_list
time_spec | (time_spec [, ...])

Table 51. Component

time_spec
A time specification. See time_spec for more in-
formation.

time_spec
{ ' [SUN | MON | TUE | WED | THU | FRI | SAT] hour : minute
[: second [. fraction]] [timezone]' } |STARTUP

Table 52. Components

hour
A value from 0 to 23 indicating the hour of the day.
Must be preceded by at least one space.

minute A value from 0 to 59 indicating the minute.

second A value from 0 to 59 indicating the second.

fraction
A value from 0 to 999999 indicating the fraction
of a second.

timezone

A string representing the time zone. If omitted,
assumes the local time zone. See "Sybase CEP
Time Zone Database" in the Sybase CEP Integra-
tion Guide for more information about valid time
zone strings. Must be preceded by at least one
space.

Usage
The OUTPUT clause can be used as the last clause of a Query statement, Database statement,
or Remote Procedure statement, and is required in an Insert Values statement. OUTPUT is the
last clause to be executed, after the statement performs all other data filtering and processing,
and before it generates output. The OUTPUT clause comes in four variations, each of which
has a distinct syntax and usage: OUTPUT EVERY and OUTPUT ALL EVERY, OUTPUT
AFTER, OUTPUT FIRST WITHIN, and OUTPUT AT.

In a Query statement, Database statement, or Remote Procedure statement, all variations of
the OUTPUT clause control the statement's output based on the number of rows arriving in the
statement's data sources, or the rows' time of arrival. The OUTPUT clause processes these
rows regardless of window definitions, and is unaffected by the statement's KEEP clause
conditions, if any are present. An Insert Values statement uses only the OUTPUT AT variation

Clauses

CCL Reference Guide 129

of the OUTPUT clause, which determines when values are generated and inserted into the
specified stream or window.

OUTPUT EVERY and OUTPUT ALL EVERY
Limits the statement's output to specific time intervals, or number of rows received. The output
specification can be indicated as a number of rows or as a time interval.

• A time-based OUTPUT EVERY clause publishes one or no rows every interval
expression, where interval expression is the interval specified in the clause. If output from
the statement was generated within the last interval expression, the most recently
generated row is published. If no rows were generated within the last interval expression,
no rows are published.

• A time-based OUTPUT ALL EVERY clause publishes the row most recently generated
by the statement every interval expression, as specified in the clause. The row is published
whether or not it was generated during the most recent interval expression or during a
previous interval expression. If the statement generated no rows since it started running, no
rows are published.

By default, interval expression calculation for the OUTPUT EVERY and OUTPUT ALL
EVERY clause is calculated from midnight of January 1, 1970 GMT/UTC. This starting time
can be offset by the interval expression specified in the OFFSET BY subclause.

• A count-based OUTPUT EVERY clause publishes every Nth row of output from the
statement, where N is the number of rows specified as integer expression in the clause.

• A count-based OUTPUT ALL EVERY clause behaves identically to the count-based
OUTPUT EVERY clause. (Since the OUTPUT EVERY clause publishes the Nth row
whenever it is generated by the statement, and does not publish a row until the Nth row is
generated, the concept of publishing rows from a previous interval does not apply).

The OUTPUT EVERY clause can be combined with a GROUP BY clause. In the following
descriptions, combination refers to a unique combination of values in the list of columns and,
optionally, the timestamp referenced in the GROUP BY clause:

• A time-based OUTPUT EVERY clause, in conjunction with GROUP BY, publishes rows
every interval expression, as specified in the clause. OUTPUT EVERY publishes the most
recent row for every combination defined in the GROUP BY clause, for which rows were
generated in the most recent interval expression. No rows from previous interval
expressions are published.

• A time-based OUTPUT ALL EVERY clause, in conjunction with GROUP BY, publishes
rows every interval expression, as specified in the clause. OUTPUT ALL EVERY
publishes the most recent row for every combination defined by the GROUP BY clause
encountered from the time the statement started executing. If no row was generated by the
statement for a specific combination within the most recent interval expression, the most
recent row from a previous interval expression is published. If the statement generated no
rows since it started running, no rows are published.

Clauses

 130 Sybase CEP Option

• A count-based OUTPUT EVERY clause, in conjunction with GROUP BY, publishes
every Nth row of output from the statement for every combination defined by the GROUP
BY clause, where N is the number of rows specified as integer expression in the clause.

• A count-based OUTPUTALLEVERY clause, in conjunction with GROUP BY, behaves
identically to the count-based OUTPUTEVERY clause, in conjunction with GROUP
BY.

OUTPUT AFTER
Delays the publication of all rows generated by the statement, either by the specified interval,
or until such time as the specified number of subsequent rows have been generated. However,
no rows are filtered out with this clause; all rows that would otherwise have been published are
published eventually.

OUTPUT FIRST WITHIN
Publishes only the first row generated by the statement, within a specified time interval, or
within a specified number of rows, using the following rules:

1. The first row generated by the statement is published.
2. For count-based clauses, the N-1 subsequent rows generated by the statement are ignored,

where N is the number of rows specified as integer expression in the OUTPUT FIRST
WITHIN clause. For time-based clauses, all rows generated by the statement within the
next interval expression are ignored, as specified in the OUTPUT FIRST WITHIN clause.

3. The first row to be generated by the statement after the specified number of rows are
ignored, or the specified interval elapses, is published.

4. The interval or row count restarts and all subsequent rows are ignored until the count
expires.

When the OUTPUT FIRST WITHIN clause is combined with a GROUP BY clause, these
steps are performed separately for every combination defined in the GROUP BY.

OUTPUT AT
In a Query statement, Database statement, or Remote Procedure statement, an OUTPUT AT
clause limits statement output to one or more daily or weekly times, as specified by a times list.
The times list can include STRING literals and STRING type parameters. Times listed in the
times list can include the day of the week. If no day of the week is specified, output occurs at
the indicated time daily. The listed times can also specify a time zone. If no time zone is
specified, rows are removed according to local time. The STARTUP keyword cannot be used
in these statements. An OUTPUT AT clause is also required in an Insert Values statement,
where it specifies the times at which rows are generated and published to the destination
window or stream. The Insert Values statement OUTPUT AT can use the STARTUP keyword.

For more information, see OUTPUT AT BEHAVIOR IN THE QUERY STATEMENT,
DATABASE STATEMENT AND REMOTE PROCEDURE STATEMENT and OUTPUT AT
BEHAVIOR IN THE INSERT VALUES STATEMENT.

Clauses

CCL Reference Guide 131

Note: Time changes, such as the change between standard and daylight savings time, may
cause undesired results in the behavior of the OUTPUT AT and OUTPUT ALL AT clauses
when the time change occurs.

To avoid this problem, Sybase recommends omitting times of the day or week that coincide
with the time change from your time list.

OUTPUT AT in the QUERY Statement, DATABASE Statement and REMOTE
PROCEDURE Statement

• An OUTPUT AT clause publishes one or no rows at the specified times. If output from the
statement was generated since the last specified time, the most recently generated row is
published. If no rows were generated since the last output time, no rows are published.

• An OUTPUT ALL AT clause publishes the row most recently generated by the statement
at the specified times. The row is published whether or not it was generated since the last
output time. If the statement generated no rows since it started running, no rows are
published.

The OUTPUT AT clause can be combined with a GROUP BY clause. In the following
descriptions, combination refers to a unique combination of values in the list of columns and,
optionally, the timestamp referenced in the GROUP BY clause:

• An OUTPUT AT clause, in conjunction with GROUP BY, publishes rows at the specified
times. OUTPUT AT publishes the most recent row for every combination defined in the
GROUP BY clause, for which rows were generated since the last output time. No rows
generated before the last output time are published.

• An OUTPUT ALL AT clause, in conjunction with GROUP BY, publishes rows at the
specified times. OUTPUT ALL AT publishes the most recent row for every combination
defined by the GROUP BY clause encountered from the time the statement started
executing. If no row was generated by the statement for a specific combination since the
last output time, the most recent row from before the last output time is published. If the
statement generated no rows since it started running, no rows are published.

OUTPUT AT in the INSERT VALUES Statement
Both the OUTPUT AT and the OUTPUT ALL AT clauses produce the rows specified by the
VALUES clause and publish them to the statement's destination either at the specified times of
the week or day, or on project startup (which you specify with the STARTUP keyword). In a
query module where persistence is not turned on, STARTUP refers to any time when the
project containing the module starts. In a query module where persistence is turned on,
"startup" refers to the time when the project containing the module first starts or starts with a
clean slate.

PER Clause
If you specify explicit grouping with a PER subclause, your output specifications apply to
each unique combination of values in the indicated input columns. If you omit the PER
subclause, any GROUP BY clause in the statement applies to the output clause. If you specify

Clauses

 132 Sybase CEP Option

UNGROUPED, no grouping applies. Note that, while you can use grouping with OUTPUT
AFTER interval, the grouping has no effect and generates a warning message.

Restrictions

• The Insert Values statement uses only the OUTPUT AT variation of the OUTPUT clause.
OUTPUT EVERY, OUTPUT ALL EVERY, OUTPUT AFTER, and OUTPUT
FIRST WITHIN cannot be used with this statement.

• Only the Insert Values statement can use the STARTUP keyword in an OUTPUT AT
clause.

See Also

• Database Statement
• Insert Values Statement
• Query Statement
• Remote Procedure Statement
• GROUP BY
• VALUES

Examples
The following example publishes the most recent row for every value in the Symbol column
within a thirty-second period, where the value in the Price column exceeds fifty:

INSERT INTO OutStream
SELECT Symbol, Price
FROM Trades
WHERE Price > 50
GROUP BY Symbol
OUTPUT EVERY 30 SECONDS;

This query publishes the value of the Temp column of the TempIn stream for rows with "New
York" in the Location column. All output is delayed by ten seconds:

INSERT INTO InStream
SELECT Temp
FROM TempIn
WHERE TempIn.Location = 'New York'
OUTPUT AFTER 10 SECONDS;

This example publishes every third row from the SFTemp stream:

INSERT INTO OutStream
SELECT Temp, MAX(Temp)
FROM SFTemp KEEP 5 ROWS
OUTPUT FIRST WITHIN 3 ROWS;

This example publishes daily at 6:00 o'clock in the evening, any rows with a value greater than
100 in the Wind column that were generated in the last 24 hours:

Clauses

CCL Reference Guide 133

INSERT INTO OutStream
SELECT Wind, Time
FROM Weather
WHERE Wind > 100
OUTPUT AT '18:00:00';

SCHEMA clause
Provides a schema definition for a named window inside a Create Windowstatement, or for a
database subquery or remote subquery inside a Query statement, Database statement, or
Remote Procedure statement.

Syntax
SCHEMA name | 'file' | (column type [, ...])

Table 53. Components

name
The name of a schema created with a Create Win-
dow statement.

file The name of a schema file.

column The unique name of a column.

type The data type of the specified column.

Usage
Use the SCHEMA clause as part of a Create Window statement and in a database subquery or
remote subquery of the FROM clause to define a schema for the named window, database
subquery, or remote subquery. The SCHEMA clause can actually define the schema's column
names and data types (called an inline schema), or can refer to a named schema, created with a
Create Schema statement, or to an external .ccs schema file that contains the column name and
data type definitions. You can create an external schema file in Sybase CEP Studio (see the
Sybase CEP Studio Guide for more information). If your SCHEMA clause refers to an
external file, you must specify the file's absolute path, or its path relative to the module .ccl file
that contains the SCHEMA clause.

See Also

• Create Schema Statement
• Create Window Statement
• Database Subquery
• Remote Subquery
• FROM

Clauses

 134 Sybase CEP Option

Examples
Here is an example of a SCHEMA clause used in a Create Window statement:

CREATE WINDOW LastDayTrades
SCHEMA (Symbol STRING, Price FLoAT)
KEEP 1 DAY;

Here is an example of a SCHEMA clause used within a database subquery:

INSERT INTO OutStream
SELECT S.Location, S.Name, D.Age
FROM RfidStream AS S,
 (DATABASE "MyDB" SCHEMA 'mydb.ccs'
 [[SELECT * FROM People WHERE ?S.Name=People.Name]]) AS D;

SELECT clause
Specifies a select list for a query in a Query Statement or Database statement or passes values
to the parameters of an external service in a Remote procedure statement.

Syntax
SELECT { expression [AS column | alias | parameter] }
[, ...]

Table 54. Components

expression
An expression that evaluates to a value of the same
data type as the corresponding destination col-
umn.

column
The name of a column in the query destination, as
specified with the INSERT clause.

alias
An alias for a column as used in the EXECUTE
STATEMENT DATABASE clause.

parameter
The name of a parameter used by the remote
service.

Usage
The SELECT clause inside a Query statement, Database statement, or Remote Procedure
statement specifies a select list of one or more items. Rows from the data sources listed in the
FROM clause are passed to the SELECT clause after being filtered by the WHERE clause, if
one is specified. The results of the expressions in the list are processed by other clauses (if
any). If, after this processing, the CCL statement generates results, the results are handled
differently, depending on the type of CCL statement in which they are used:

Clauses

CCL Reference Guide 135

• In a Query statement, the results are published to the destinations specified in the query's
INSERT clause.

• In a Database statement, the SQL statements specified in the EXECUTE STATEMENT
DATABASE clause are executed against the external database. The SQL statements
usually use the processed select list results as their input.

• In a Remote Procedure statement, the results are passed to the specified parameters (as
specified in the AS clause of each expression) in the external service indicated by the
EXECUTE REMOTE PROCEDURE clause.

The following rules apply to the select list:

• The expression within each select list item can contain literals, column names from one of
the statement's data sources listed in the FROM clause, operators, scalar and
miscellaneous functions, and parentheses. Query statement and Database statement select
list expressions can also include aggregate functions, but Remote Procedure statement
select lists cannot.
Alternately, expression can be specified with a "select all" asterisk (*) character, which is
equivalent to a list of all column values from all data sources listed in the statement's
FROM clause, listed in order from left to right, or as data-source.*, which is equivalent to a
list of all column values from the specified data source (where data-source is the name or
alias of one of the data sources listed in the FROM clause). Note that expressions using the
asterisk involve certain limitations when used with the Database statement or Remote
Procedure statement, as discussed in the RESTRICTIONS section.

• The following rules apply to all expressions that do not include an asterisk:
• When used in a Query statement, each list item can specify an AS output column

reference subclause indicating the column within the destination, to which the select
list item should be published. (The results of the AS subclause here are the same as the
usage of explicit column specification in the INSERT clause.) The AS subclause must
be used either for all or for none of the non-asterisk items in the select list. In the
absence of an AS subclause, or a list of column names in the INSERT clause, items are
published from left to right.

• When used in a Database statement, each non-asterisk list item must specify an AS
output-alias subclause. When the SQL query in the EXECUTE STATEMENT
DATABASE clause refers to a column in the CCL SELECT clause, the SQL reference
must use the column's alias, in the form ?output-alias.

• When used in a Remote Procedure statement, each non-asterisk list item must specify
an AS parameter subclause. The result of each expression is then passed to the
specified parameter in the external service.

Automatic Schema Creation
Under certain circumstances the SELECT clause of a Query statement can be used to create a
schema for a previously undefined data stream. The data stream can then be used in
subsequent CCL statements in the current module. The automatic stream and schema creation
can only be performed on a data stream that does not receive data from outside the current
project.

Clauses

 136 Sybase CEP Option

The first Query statement that invokes the data stream must list the desired stream name in its
INSERT clause, and then list the desired columns for the stream either in the INSERT clause,
or in the SELECT clause. When the SELECT clause is used to define the stream's columns the
following syntax is used:

SELECT { expression AS column } [, ...]

The use of the "select all" asterisk (*) is an exception to this syntactical requirement. When the
first Query statement that included the data stream uses the "select all" asterisk (*), the column
names for the destination stream are automatically inferred from the query's data source.

The stream schema and data types are then automatically created by Sybase CEP Engine. The
data types for the columns of the automatic schema are determined by the data types of the data
sources in the first Query statement that uses the stream as its destination.

Restrictions

• If the SELECT clause of a Database Statement or Remote Procedure Statement uses the
"select all" expression (*) and the FROM clause of the statement lists multiple data
sources, the data sources cannot share any column names.

• When the select list of a Database statement or Remote Procedure statement contains a list
of expressions separated by commas, all non-asterisk expressions must include an AS
subclause. In a Query statement containing a comma-separated list of expressions, either
all or none of the non-asterisk expressions must contain an AS subclause.

• CCL expressions within the select list of a Remote Procedure statement cannot contain
aggregate functions.

See Also

• Query Statement
• Database Statement
• Remote Procedure Statement
• FROM Clause: Comma-Separated Syntax
• FROM Clause: Database and Remote Subquery Syntax
• FROM Clause: Join Syntax
• INSERT

Examples
Here is an example of the simplest SELECT clause, used by a Query statement that selects all
the columns from its data source:

INSERT INTO OutStream
SELECT *
FROM Trades
WHERE Trades.Price = 100;

The following example includes a more complex Query statement SELECT clause:

Clauses

CCL Reference Guide 137

INSERT INTO StepCompletionCounts
SELECT
 COUNT(C.ScenarioID) AS TheCount,
 C.ScenarioID AS ScenarioID,
 C.StepID AS StepID
FROM
 CompletedSteps AS C KEEP 10 SECONDS
GROUP BY
 C.ScenarioID, C.StepID
OUTPUT
 EVERY 10 SECONDS;

Here is an example of a SELECT clause in a Database statement:

EXECUTE STATEMENT DATABASE "MyDB"
 [[UPDATE Inventory
 SET Inventory.Quantity = ?Quantity
 WHERE Inventory.ItemID =?ID]]
SELECT
 StreamIn.ItemID AS ID, StreamIn.Quantity AS Quantity
FROM StreamIn;

Here is an example of a SELECT clause in a Remote Procedure statement:

EXECUTE REMOTE PROCEDURE "Search"
SELECT Name AS SearchString
FROM Clients;

SET clause
Sets variables and updates rows in a window.

CCL includes two variations of the SET clause, one used to set variables, the other to update
rows in a window. These variants are described in the following subsections:

• SET Clause: Variable Syntax
• SET Clause: Window Syntax

SET clause: Set variable statement syntax
Sets the values of one or more variables in a Set Variable statement.

Syntax
SET name = value [, ...]

Clauses

 138 Sybase CEP Option

Table 55. Components

name
The name of a variable, previously created with a
Create Variable statement.

value
An expression that evaluates to a value of the ap-
propriate data type.

Usage
The SET clause sets the values of listed variables to the output of the specified expression, if
the trigger, specified by the Set Variable statement's ON and WHEN clauses occurs.

See Also

• Set Variable statement
• ON
• WHEN

EXAMPLES

ON StreamX
WHEN StreamX.Price > 100
SET price_alert = TRUE;

SET clause: Window syntax
Indicates which columns of a named window should be updated by the Update Window
statement and specifies values for those columns.

Syntax
SET { value AS column [, ...] } | { column = value [, ...] }

Table 56. Components

value
An expression that evaluates to a value of the same
data type as the specified column.

column
The name of a destination column to which value
is published.

Usage
The SET clause is used in an Update Window statement, where it indicates which columns in
the destination named window (specified by the statement's UPDATE clause) should be
updated when the trigger condition is met, and specifies values for those columns. If the
statement includes a WHERE clause, the SET clause updates only the rows that meet the

Clauses

CCL Reference Guide 139

WHERE clause update condition. In the absence of a WHERE clause, the SET clause updates
all the rows in the destination window.

The SET clause contains a comma-separated update list, which is specified in either of two
syntax forms. In both forms, the update list is comprised of one or more items, each of which
includes an expression, and an update-column-reference (note that the order of expression and
update-column-reference is reversed in the two forms). Update list expressions can contain
literals, column references from the streams or windows specified in the Update Window
statement's ON and UPDATE clauses, operators, scalar and miscellaneous functions, and
parentheses.

The update-column-reference associated with each expression must uniquely match a column
name in the destination's named window schema, and the expression must evaluate to the
column's data type. However, the update list does not need to contain a match for every column
in the destination window's schema. Any columns not specified in the update list are left
unchanged in the destination window. All rows affected by the SET clause receive a new row
timestamp.

See Also

• Update Window Statement
• ON
• UPDATE
• WHERE

Examples

ON ReturnedOrders AS R
UPDATE Orders AS O
SET Shipped = FALSE, ShippedTime = NULL
WHERE R.OrderID = O.OrderID;

UPDATE clause
Specifies the named window in an Update Window statement on which the update or insert
should be performed.

Syntax
UPDATE window[[AS] alias]

Table 57. Components

window A named window.

alias An alias for the window.

Clauses

 140 Sybase CEP Option

Usage
The UPDATE clause specifies the named window to which the Update Window statement
publishes row updates or new rows. Optionally, you can also use this clause to set an alias for
the named window, which can be used in references to the window inside the SET and
WHERE clauses of the Update Window statement.

See Also

• Update Window Statement
• SET
• WHERE

Example

ON StreamA
UPDATE MyWindow AS W
SET W.Column1 = TRUE;

VALUES clause
Specifies a list of values in an Insert Values statement to be generated at the specified time and
inserted into the statement's destination.

Syntax
VALUES (column_expression [, ...]) [, ...]

Table 58. Component

column_expression

An expression that evaluates to the same data type
as the corresponding destination column. col-
umn_expression can contain constants, variables,
operators, parentheses, scalar functions, and the
COALESCE function.

Usage
VALUES is the second clause inside an Insert Values statement. This clause produces one or
more rows, which the statement passes to its destination in the INSERT clause, at the times
you specify in the OUTPUT clause. VALUES contains one or more row expressions, each of
which is enclosed in parentheses and each of which generates a row that is published to the
destination at the specified time. Lists of two or more row expressions are separated by
commas.

Every row expression consists of one or more column expressions, each of which generates a
value that corresponds to the appropriate column of the destination specified in the INSERT
clause. Lists of two or more column expressions are separated by commas. The results of

Clauses

CCL Reference Guide 141

column expressions within a row expression are matched positionally with the stream schema
or column name list in the INSERT clause (see INSERT Clause for more information).

Restrictions

• Expressions in a list of values cannot refer to data stream or window column names.
• Column expressions must produce values that match the data types of the corresponding

stream or window columns specified in the INSERT clause.

See Also

• Insert Values Statement.
• INSERT
• OUTPUT

Example
The following example produces two rows when the project first starts and at 18:00:00.1 every
day. The first row consists of two columns: one containing the zero and the other the current
timestamp, as generated by the NOW function. The second row consists of the value 1 in one
column and the current timestamp in the second column. Both rows are published to the Flag
and TimeMarker columns of .InitStream.

INSERT INTO InitStream (Flag, TimeMarker)
VALUES (0, Now()), (1, Now())
OUTPUT AT (STARTUP, '18:00:00.1');

WHEN clause
Defines a condition that narrows the cases in which the trigger occurs in a Delete statement,
Set Variable statement, or Update Window statement.

Syntax
WHEN trigger

Table 59. Component

trigger A Boolean expression.

Usage
The WHEN clause is syntactically almost identical to the selection condition version of the
WHERE clause. It is optionally used in a Delete statement, Set Variable statement, or Update
Window statement to create a trigger condition that evaluates rows arriving in the stream or
named window specified by the ON clause. When a WHEN clause is present, the trigger that
initiates the deletion, update, or insertion of rows from the named window, or the setting of a
variable occurs only when the incoming row in the triggering stream or named window meets

Clauses

 142 Sybase CEP Option

the trigger condition. In the absence of the WHEN clause, the deletion or variable setting is
triggered whenever a row arrives in the stream or window specified by the ON clause. The
trigger condition in this clause can include literals, column references from the data stream or
window specified by the ON clause, operators, scalar and miscellaneous functions, and
parentheses. The WHEN clause cannot include subqueries or aggregate functions.

Restrictions

• A WHEN clause cannot include subqueries.
• A WHEN clause cannot include aggregate functions.
• In a Delete statement, column references in the WHEN clause cannot refer to the columns

of the named window specified in the DELETE FROM clause.

See Also

• Delete Statement
• Set Variable Statement
• Update Window Statement
• ON
• WHERE

Examples
The WHEN clause in the following example initiates a trigger for deletion from a named
window only when the Price column in Win1 contains a value greater than 50.00:

ON Win1
WHEN Price > 50.00
DELETE FROM Win2
WHERE Win2.Price < 50.00;

The WHEN clause in this example initiates a trigger for the setting of the Delay_Length
variable only when the Delay column in StreamIn is smaller than 10:

ON StreamIn
WHEN Delay < 10
SET Delay_Length = 'Short';

WHERE clause
Specifies a selection condition for filtering input from data sources in a Query Statement,
Database statement, or Remote Procedure statement, provides join conditions in the FROM
Clause: Comma-separated syntax, update conditions in an Update Window statement, and
delete conditions in a Delete statement.

Syntax
WHERE condition

Clauses

CCL Reference Guide 143

Table 60. Component

condition
A Boolean expression representing a selection,
update, delete, or join condition, depending on the
context.

Usage
WHERE is a versatile clause, used for filtering rows in several CCL statements, with similar
syntax, but slightly different usage and context in each case.

AS SELECTION CONDITION

The first syntactical form of this clause is used optionally, in conjunction with single-source
FROM clauses, as well as the FROM Clause: Join Syntax and FROM Clause: Database and
Remote Subquery Syntax versions of the FROM clause. The Boolean expression specified in
this clause creates a selection that filters rows arriving in the query's data sources before
passing them on to the SELECT clause.

• The selection condition can include literals, column references from the query's data
sources listed in the FROM clause, operators, scalar and miscellaneous functions,
subqueries, parameters, and parentheses. Subqueries in the WHERE clause are discussed
later.

• In a Query statement, Database statement, or Remote Procedure statement, column
references within the selection condition must refer to columns in one of the query's data
sources. In a Delete statement, column references must refer either to columns in a named
window or stream referenced in the ON clause, and/or a named window in the DELETE
FROM clause.

• When used in conjunction with a MATCHING clause, the WHERE clause can place
selection conditions on streams in which events do not occur, (streams that are specified as
non-events using the !stream-name syntax in the MATCHING clause).
Note that, because non-events track the failure of a row to arrive in a stream, the WHERE
clause qualifier on a non-event specification expands rather than limits pattern sequences
that are considered to have met the matching criteria. For example, a pattern specification
of !A, B requires that no row at all arrive in stream A prior to the arrival of a row in stream B
within the appropriate interval, whereas the same pattern specification with a WHERE
clause of WHERE A >= 10 permits rows with values smaller than 10 to arrive in stream
A.

• WHERE clause filtering is performed before the GROUP BY clause and before
aggregation (if any), so cannot include aggregate functions or the filtering of results based
on the results of aggregates. Use the HAVING clause for post-aggregate filtering.

AS UPDATE CONDITION

When used in an Update Window statement, the expression in the WHERE clause specifies
the criteria for updating existing rows in the named window specified in the UPDATE clause,
with the values specified in the SET clause, when the update trigger occurs. If none of the rows

Clauses

 144 Sybase CEP Option

in the window match the update criteria, new rows are inserted into the window, as indicated
with the OTHERWISE INSERT clause, if one is present.

The WHERE clause is optional. In the absence of a WHERE clause, all rows in the window are
updated when the trigger occurs. If no trigger for an update occurs, no rows are updated or
inserted, whether or not a WHERE clause is specified.

• The update condition expression can include literals, column references, operators, scalar
and miscellaneous functions, parameters, and parentheses.

• Column references within the update condition must refer to one of the columns in the ON
clause, or to the named window in the UPDATE clause.

• In the absence of an OTHERWISE INSERT clause, the update condition can be any valid
Boolean expression. However, if you use an OTHERWISE INSERT clause in your Update
Window statement, the update condition must consist of one or more simple equality
comparisons, each of which compare a column in the ON clause stream or window to the
named window in the UPDATE clause. When multiple column comparisons are specified,
they are separated by the AND keyword.

AS DELETE CONDITION

When used in a Delete statement, the expression in the WHERE clause specifies the criteria
for deleting rows from the named window indicated in the statement, once the deletion trigger
occurs. This clause is optional. In the absence of a WHERE clause, all rows are deleted from
the window when the trigger occurs. If no trigger for deletion occurs, no rows are deleted from
the window, whether or not a WHERE clause is specified.

• The delete condition expression can include literals, column references, operators, scalar
and miscellaneous functions, subqueries, parameters, and parentheses.

• Column references within the delete condition must refer to one of the columns in the
window's schema.

AS JOIN CONDITIONS

When used in conjunction with the FROM Clause: Comma-Separated Syntax form of the
FROM clause, the WHERE clause creates one or more join condition for the comma-
separated join. The use of a WHERE clause is optional in a comma-separated join. In the
absence of a join condition, all rows from all data sources are selected. When a WHERE clause
is present, its syntax resembles the ON Clause: Join Syntax (which is not used with comma-
separated joins). The join condition can be any valid Boolean expression that specifies the
condition for the join. All column references in this form of the WHERE clause must refer to
data sources specified with the FROM clause.

CCL Subqueries
The selection condition or delete condition expression (but not the update condition or join
condition) of the WHERE clause can include scalar CCL subqueries using the following
syntax: (select_clause from_clause [matching_clause]
[on_clause] [where_clause] [group_by_clause] [having_clause]
[output_clause])

Clauses

CCL Reference Guide 145

Table 61. Components

select_clause
The select list specifying what to publish. See
SELECT Clause for more information.

from_clause
The data sources. See FROM Clause for more
information.

matching_clause
A pattern-matching specification. See MATCH-
ING Clause for more information.

on_clause
A join condition. See ON Clause for more infor-
mation.

where_clause
A selection condition. See WHERE Clause for
more information.

group_by_clause
A partitioning specification. See GROUP BY
Clause for more information.

having_clause
A filter definition. See HAVING Clause for more
information.

output_clause
A synchronization specification. See OUTPUT
Clause for more information.

The subquery is enclosed in parentheses and follows the same syntax as the Query statement,
but without an INSERT clause and without the final semicolon. Subqueries in the WHERE
clause are only permitted when they produce scalar output (one row per execution of the
query). Aggregate output is not permitted, though aggregate functions can be used in the
SELECT and HAVING clauses of the subquery to produce a single line of output from
multiple lines. A subquery in the WHERE clause cannot directly reference a data stream or
window in the parent or outer query and vice versa. WHERE clause subqueries can be nested.

Restrictions

• A WHERE clause cannot use aggregate functions.
• Subqueries in a WHERE clause expression must produce scalar output.
• Joins using the JOIN keyword do not use the WHERE clause to specify join conditions

(though they can use the clause in its selection condition form). See ON Clause: Join
Syntax for more information.

• The following restrictions apply to a WHERE clause that specifies a relationship between
two or more streams contained in a MATCHING clause pattern specification, when one of
the members of the relationship appears in the MATCHING clause as a non-event (using
the !stream-name syntax).
• All the members of the relationship in the WHERE clause must appear in the

MATCHING clause in a sequence (comma-separated) list.
• None of the members of the relationship in the WHERE clause can appear in the

MATCHING clause in a sub-pattern or nested bounded pattern relationship to the other

Clauses

 146 Sybase CEP Option

members. For example, a where clause of WHERE A = B is allowed with a
MATCHING clause pattern specification of MATCHING [5 MINUTES: A, !B, C], but
not with a pattern specification of MATCHING [5 MINUTES: A, (!B, C) && D].

See Also

• Query Statement
• Database Statement
• Delete Statement
• Remote Procedure Statement
• FROM Clause: Comma-Separated Syntax
• HAVING
• MATCHING
• ON
• OTHERWISE INSERT
• SET
• WHEN

Examples
The following example uses a subquery in the WHERE clause. The selection condition is used
to produce a continuous stream of Boolean values that indicate whether or not a stock price is
at least $1.00 above the moving average:

INSERT INTO OutStream
SELECT *
FROM Trades
WHERE Trades.Price > 1.00 +
 (SELECT AVG(Price)
 FROM Trades KEEP 100 ROWS);

The following WHERE clause defines a selection condition for a join:

INSERT INTO OutStream
SELECT Trades.Symbol, Trades.Price, Broker.Name
FROM Trades KEEP 1 DAY, Broker KEEP 1 DAY
WHERE Trades.Name = Broker.Name;

The following example updates the Status column of MyWindow for all rows that contain the
same symbol as the symbol arriving in the triggering InStream:

ON InStream
UPDATE MyWindow
SET MyWindow.Status = "SOLD"
WHERE InStream.Symbol = MyWindow.Symbol;

The following example specifies that whenever a row with the message "Clear Window"
arrives in the stream InStream, rows with the same value in the Symbol column as the arriving
row should be deleted from the NamedWin window:

Clauses

CCL Reference Guide 147

ON InStream
WHEN InStream.Message = 'Clear Window'
DELETE FROM NamedWin
WHERE InStream.Symbol = NamedWin.Symbol;

Clauses

 148 Sybase CEP Option

Sybase CEP SQL

The Sybase CEP implementation of Structured Query Language (SQL) makes available a
subset of SQL-92 commands for querying the contents of CCL public windows.

Though SQL clauses resemble their CCL counterparts, they are not interchangeable. The
following table summarizes the differences between CCL and CEP SQL.

CCL SQL

Used to develop all Sybase CEP applications. Used to query the current contents of public win-
dow, which is created using the Create Window
statement and populated in the same way as all
other CCL windows.

Used inside Sybase CEP Engine query modules. Used in the Query Public Window dialog box of
Sybase CEP Studio, in one of Sybase CEP's
SDKs, in the c8_client command-line utility, or in
a CCL database subquery.

Executes continuously when a project is running,
once for every time a row arrives in one of the
statement's data sources.

Executes on demand, once each time the query is
run.

This section describes the syntax of the SQL Select statement, and its various clauses. For
more detailed descriptions of SQL syntax, refer to SQL-92 documentation.

SELECT statement
Queries the contents of a public window.

Syntax
simple [{ {UNION [ALL] | INTERSECT | EXCEPT } simple } [...]]
[ORDER BY column [ASC[ENDING] | DESC[ENDING]] [, ...]]
[LIMIT {limit [OFFSET offset | {offset, limit}]

Components

simple
A simple select statement. See simple for more
information.

column The name of a column by which to sort the output.

Sybase CEP SQL

CCL Reference Guide 149

limit
The maximum number of rows to publish. If neg-
ative or omitted, place no limit on the number of
rows published.

offset
The number of rows of the result to skip before
publishing.

simple
select_clause from_clause [WHERE expression] [GROUP BY
expression [, ...]] [HAVING expression]

Components

select_clause
The select list. See select_clause for more infor-
mation.

from_clause
The data sources. See from_clause for more in-
formation.

expression
An expression specifying selection, grouping, or
filtering conditions. See Usage for more informa-
tion.

select_clause
SELECT [ALL | DISTINCT] { expression [[AS] alias] }
[, ...]

Components

expression A SQL-92 expression.

alias An alias for the output.

from_clause
FROM single | inner | outer

Components

single
A single data source expression. See single for
more information.

inner An inner join. See inner for more information.

outer An outer join. See outer for more information.

single
{ pub_window [AS alias] } | { (sub_select) [AS alias] }

Sybase CEP SQL

 150 Sybase CEP Option

Components

pub_window

The name of a public window. If the window is in
a submodule, you must identify the submodule by
specifying path/submodule/window, where path
includes the names of any additional parent sub-
modules, separated by slashes, and submodule is
the name of the module containing the window.

alias An alias for the data source.

sub_select A nested select statement (a subquery).

inner
single [, ...] |single [INNER] JOIN single [ON expression |
USING (ids)] |single NATURAL [INNER] JOIN single |single
NATURAL [INNER] JOIN single

Components

single
A single data source expression. See single for
more information.

expression
A SQL-92 expression specifying the join condi-
tion.

ids A list of column IDs specifying the join condition.

outer
single { RIGHT |LEFT |FULL} OUTER JOIN single [ON expression
| USING (ids)]

Components

single
A single data source expression. See single for
more information.

expression
A SQL-92 expression specifying the join condi-
tion.

ids A list of column IDs specifying the join condition.

Usage
The SQL Select statement queries the current contents of the public windows listed in its
FROM clause and generates a result of zero or more rows of data, each of which has a fixed
number of columns. In addition to any columns explicitly queried in the statement, the query
result includes an initial TIMESTAMP column, containing the row timestamp.

Sybase CEP SQL

CCL Reference Guide 151

The Select statement includes one or more simple-select components, each of which can
contain the following clauses.

• The SELECT clause contains a select list of one or more items, each of which is an
expression. When the expressions contain column names, the columns must be from one
of the public windows listed in the query's FROM clause. The number of columns in the
result of the Select statement is determined by the number of items contained in the select
list of the SELECT clause.

• The FROM clause lists one or more public windows or subqueries against which the query
is executed. Public windows are created with the CCL Create Window Statement, and are
populated in the same manner as other CCL windows. The SQL Select statement is
executed against the current output of the specified public windows or subqueries.

• The optional WHERE clause can be used to specify selection conditions and certain join
conditions.

• The optional GROUP BY clause causes one or more rows of the result to be combined into
a single row of output.

• The optional HAVING clause performs filtering after grouping has occurred.

A compound-select is formed from two or more simple-selects connected by one of the
operators described in the following table. All simple-selects in a compound-select must
specify the same number of result columns. The following operators can be used to create a
compound-select:

UNION

The results to the left and to the right of the UN-
ION operator are combined into a single table. All
results are distinct, as duplicate rows are elimi-
nated from the results. NULL values are not trea-
ted as being distinct from one another.

UNION ALL
The results to the left and to the right of the UN-
ION operator are combined into a single table.
Any duplicate rows are retained in the results.

INTERSECT
Only the intersection between the parts of the
compound-select to the left and to the right of the
INTERSECT operator are included in the results.

EXCEPT
The results to the left of the EXCEPT operator are
published, after removing from them the results to
the right of the EXCEPT operator.

When three or more simple-selects are connected into a compound-select, they group from
left to right.

The Select statement can also contain no more than one of each of the following clauses:

• The optional ORDER BY clause causes output rows to be sorted.

Sybase CEP SQL

 152 Sybase CEP Option

• The optional LIMIT places an upper limit on the number of rows that can be returned in the
result.

Select Clause
Every simple select of the Select statement must include one SELECT clause. This clause
specifies a select-list, which is used to generate query results. The number of columns in the
result is determined by the number of items in the query's select-lists. In compound selects, the
connect operator also partially determines the number of columns in the query result.

A select-list consists of one or more comma-separated items, each of which is an arbitrary
SQL-92 expression:

• A select-list expression can refer to column names of the public windows specified in the
Select statement's FROM clause, as determined by the window schemas.

• If the FROM clause refers to multiple public windows, any ambiguous column reference
in the select-list (usually a reference to a column name defined for more than one of the
windows) must be specified in the format public-window-name.column-name.

• The asterisk (*) character can be used to select all columns from all public windows listed
in the FROM clause. The asterisk can also be used in combination with a public window
name, within a select-list item to indicate that all columns from the specific public window
should be selected public-window-name.*.

• Rows from the public window listed in the FROM clause are passed to the SELECT clause
after being filtered by the query's WHERE clause, if one is specified.

• The results of the expressions in the list are processed by other clauses (if any) in the
query.

• Each select-list expression item can specify an AS output-alias subclause, indicating an
alias by which the column results should be published. The item's alias can also be listed
directly after the item, omitting the AS keyword.

The select-list can be prefaced by a DISTINCT keyword. If two or more rows contain the same
values in all queried columns, the DISTINCT keyword causes only one of the rows to be
included in the result. In the absence of the DISTINCT keyword, result rows are returned
regardless of whether or not they are distinct. This default behavior can be specified explicitly
by using the ALL keyword.

From Clause
The FROM clause specifies the data sources (public windows or subqueries) against which the
Select statement is executed. Rows from these sources are filtered by the WHERE clause, if
one is specified, and are then passed to the query's SELECT clause.

The FROM clause can refer to a single data source, or to multiple joined data sources. Each
data source must be one of the following:

• A public window (created with the CCL Create Window statement).
• A subquery-nested Select statement, enclosed in parentheses.

When your SQL FROM clause refers to a public window that is located in the project's main
module, refer to the window by the name you defined for it in the Create Window statement.

Sybase CEP SQL

CCL Reference Guide 153

When referring to a public window in one of the main module's submodules, use the following
syntax in your name reference:

[[parent/ [...]] submodule/window]

Data sources specified in the FROM clause can include an SQL alias, specified with the syntax
data-source AS alias. This alias can be used to refer to the data source anywhere in the query
where the data source name would otherwise be used. This clause can also be used without the
AS keyword.

When the FROM clause refers to joined data sources, the joins can be specified using either the
comma-separated format, or the JOIN keyword format. SQL supports standard SQL-92
syntax, which is summarized below.

An inner join publishes all possible combinations of rows from the intersection of two or more
specified data sources, according to the limitations of the selection condition (if one is
present). Joined data sources can refer only to public windows in the same module or in the
module's submodules. SQL provides four options for specifying an inner join:

Comma-separated join

Multiple data sources can be listed one after the
other, separated by commas. An optional
WHERE clause in the query creates the join con-
dition for this type of join (the ON and USING
subclauses of the FROM clause are not used to
create a selection condition for comma-separated
joins). In the absence of a WHERE clause, the join
selects all values from all selected data source
columns. This join syntax can include more than
two data sources.

JOIN or INNER JOIN

Two data sources can be joined with the JOIN
keyword, which can also be explicitly qualified as
an INNER JOIN. A join condition for this join can
be specified by an expression in the ON sub-
clause, or a column ID list in the USING sub-
clause. A WHERE clause selection condition for
rows can also be included in the query, but is not
used for the join condition specification.

NATURAL JOIN or NATURAL INNER JOIN

A join created with the keywords JOIN or INNER
JOIN can be further defined as being NATURAL.
A natural join is created on any and all columns
that have the same names and data types in both
data sources. Natural joins do not include a further
join condition, though the query can include a
WHERE clause selection condition for row fil-
tering.

Sybase CEP SQL

 154 Sybase CEP Option

CROSS JOIN or CROSS INNER JOIN

A join created with the keywords JOIN or INNER
JOIN can be further defined as being a CROSS
join. A cross join returns the Cartesian product
from its two data sources. No join condition is
used with a cross join, though the WHERE clause
selection condition for rows can be included in the
query. This join type can be thought of as func-
tioning identically to a comma-separated join
with no selection condition and limited to only
two data sources.

SQL also supports the following standard syntax for outer joins. An ON or USING subclause
is required with outer joins to establish the join condition.

RIGHT OUTER JOIN

All possible combinations of rows from the inter-
section of both data sources (limited by the se-
lection condition, if one is specified) are publish-
ed. All the other rows from the right data source
are also published. Unmatched columns in the left
data source publish a value of NULL.

LEFT OUTER JOIN

All possible combinations of rows from the inter-
section of both data sources (limited by the se-
lection condition, if one is specified) are publish-
ed. All the other rows from the left data source are
also published. Unmatched columns in the right
data source publish a value of NULL.

FULL OUTER JOIN

All possible combinations of rows from the inter-
section of both data sources (limited by the se-
lection condition, if one is specified) are publish-
ed. All other rows from both data sources are
published as well. Unmatched columns in either
data source publish a value of NULL.

Where Clause
The WHERE clause can be used to specify an expression, which is used for one of two
purposes:

• As a selection condition, the WHERE clause expression filters rows from the query's data
sources, before they are passed to the SELECT clause.

• As a join condition, the WHERE clause can be used with comma-separated inner joins to
establish a relationship between the columns in the query's data sources, thus limiting the
cross-product output of the join.

Expressions specified inside the WHERE clause cannot refer to aggregate functions.

Sybase CEP SQL

CCL Reference Guide 155

Group By Clause
The expressions specified in the GROUP BY clause cause one or more rows of the result to be
combined into a single row of output. GROUP BY is often used when the query result
contains aggregate functions. GROUP BY clause expressions do not have to appear in the
result, however.

Having Clause
The HAVING clause is similar to the WHERE clause, but is applied after grouping has
occurred. The HAVING expression can refer to aggregate functions and to values that are not
included in the result.

Order Clause
The ORDER BY clause sorts the query's output rows according to the specified list of
expressions. These expressions do not have to be part of the result when used with a simple-
select. When used with a compound-select, however, each sort expression must exactly match
one of the result columns. Each expression can optionally be followed by either or both of the
following:

• A COLLATE subclause, which specifies the name of a collating function used for ordering
text.

• The ASC or DESC keywords, which are used to specify the sort order.

Only one ORDER BY clause can appear inside a SELECT statement.

Limit Clause
The LIMIT clause places an upper limit on the number of rows returned by the query. A
negative LIMIT indicates no upper bound. Optionally, this clause can also indicate how many
rows should be skipped at the beginning of the result set. Three syntax forms are permitted for
the LIMIT clause:

LIMIT limit-number
The clause used without an offset specifier simply
indicates an integer limiting the number of rows
returned by the query.

LIMIT limit-number OFFSET offset-number
An additional OFFSET subclause specifies the
number of rows that should be skipped (offset) at
the beginning of the result set.

LIMIT offset-number, limit-number

An offset can also be specified with a comma.
Notice, that, when this syntax is used, the first
integer is the offset number, and the second inte-
ger is the limit number. This opposite order from
the OFFSET subclause form is an intentional fea-
ture of SQL-92, provided to maximize compati-
bility with legacy SQL database systems.

Sybase CEP SQL

 156 Sybase CEP Option

When used in conjunction with a compound select the LIMIT clause can be used only once,
but is applied to all the simple selects in the query.

Supported SQL-92 Expressions
Syntax that are used to refer SQL reference to expression.

SQL references to expression refer to the following syntax, unless indicated otherwise:

{ expression binary expression } |{ expression [NOT] LIKE
expression [ESCAPE expression] } |{ unary expression } |
(expression) |column |pub.column | literal |parameter
|{ function (expression | *) } |{ expression { ISNULL |
NOTNULL } } |{ expression [NOT] BETWEEN expression AND
expression } |{ expression [NOT] IN (values | select) } |
{ [EXISTS] (select) } |{ CASE [expression] { WHEN expression
THEN expression } [...] [ELSE expression] END } |{ CAST
(expression AS type) }

binary
|| | * | / | % | + | - | << | >> | & | | | < | <= | >= | = | ==
| != | <> | IN | AND | OR

unary
- | + | ! | ~ | NOT

Sybase CEP SQL

CCL Reference Guide 157

Sybase CEP SQL

 158 Sybase CEP Option

Functions

The Sybase CEP is capable of utilizing a variety of function components.

Scalar Functions
Scalar Functions take a list of scalar arugments and return a single scalar value.

Scalar functions can appear in the select list of the SELECT clause as well as in the WHERE
and HAVING clauses.

Most scalar functions return Null when called with a Null argument. Exceptions include
COALESCE() and many of the XML functions.

Aggregate Functions
Aggregate functions return a single result row based on input consisting of groups of rows.

Aggregate functions can be used in the select lists of a SELECT clause, typically in
conjunction with a GROUP BY clause, and in a HAVING clause.

Aggregate functions can be applied to columns or to expressions, but cannot be used in an
expression that contains another aggregate expression. For example, the expression
SUM(AVG(pi * r * r)) is invalid.

All aggregate functions except COUNT() ignore NULL values when performing their
aggregate calculations, but return a value of NULL when all input passed to the function
consists of NULLs.

Aggregate Functions and DISTINCT
When you use DISTINCT with aggregate functions, input with duplicate values is considered
only once when performing calculations. For example, the values 1, 1, 1, 2, 3 submitted to the
function SELECT MEDIAN(DISTINCT col1) are considered by the function as 1, 2, 3.

Functions

CCL Reference Guide 159

Mathematical Formulas for Aggregate Functions
Two tables provide the equivalent mathematical formulas for several of the aggregate
functions supported in Sybase CEP.

Figure 1: Simple aggregate functions

Functions

 160 Sybase CEP Option

Figure 2: Statistical aggregate functions

ABS()
Scalar. Returns the absolute value of an expression.

Syntax
ABS(expression)

Table 62. Data Types

Return expression

Integer Integer

Long Long

Float Float

Interval Interval

Example
The following example calculates the absolute value of a column from the stream named
Devices:

Functions

CCL Reference Guide 161

INSERT INTO OutStream
SELECT ABS(Devices.Value)
FROM Devices;

ACOS()
Scalar. Returns the arccosine of a value.

Syntax
ACOS(value)

Table 63. Parameter

value
A float between -1 and 1. A value outside this
range returns NULL.

Table 64. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT ACOS(InStream.FloatColumn)
FROM InStream;

ASCII()
Scalar. Returns the Unicode code point for a particular character.

Syntax
ASCII(character)

Table 65. Parameter

character
A character string. The function returns the code point for the first character of this
string. If empty or NULL, the function returns NULL.

Table 66. Data Types

Return character

Integer String

Functions

 162 Sybase CEP Option

Example
The following example determines the Unicode code point of the first character of a column in
the stream InStream. Because only the first character is converted, column contents of both D
and Dog are converted to 68.

INSERT INTO OutStream
SELECT ASCII(InStream.StringColumn1)
FROM InStream;

ASIN()
Scalar. Returns the arcsine of a value.

Syntax
ASIN(value)

Table 67. Parameter

value
A float between -1 and 1. A value outside this
range returns NULL.

Table 68. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT ASIN(InStream.FloatColumn)
FROM InStream;

ATAN()
Scalar. Returns the arctangent of a value.

Syntax
ATAN(value)

Functions

CCL Reference Guide 163

Table 69. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT ATAN(InStream.FloatColumn)
FROM InStream;

ATAN2()
Scalar. Returns the arctangent of the quotient of two values.

Syntax
ATAN2(dividend, divisor)

Table 70. Data Types

Return dividend divisor

Float Float Float

Example

INSERT INTO OutStream
SELECT ATAN2(InStream.FloatColumn, 2.1)
FROM InStream;

AVG()
Aggregate. Returns the average value of an expression, calculated over the rows in a window

Syntax
AVG([DISTINCT] expression)

Table 71. Parameter

expression

Functions

 164 Sybase CEP Option

Table 72. Data Types

Return expression

Float Integer

Long

Float

Interval Interval

Timestamp Timestamp

Example
The following example calculates the average of the Price column from the Trades stream over
the last 5 minutes:

INSERT INTO OutStream
SELECT AVG(Price)
FROM Trades KEEP 5 MINUTES;

AVG()
Scalar. Returns the average value of multiple expressions.

Syntax
AVG(expression, expression [, ...])

Table 73. Parameters

expression
You must pass at least two parameters, all of the same type. If any parameter is NULL,
the function returns NULL.

Table 74. Data Types

Return expression

Float Integer

Long

Float

Interval Interval

Timestamp Timestamp

Example
The following example calculates the average of three columns from the stream Orders:

Functions

CCL Reference Guide 165

INSERT INTO OutStream
SELECT AVG(Orders.line1price, Orders.line2price, Orders.line3Price)
FROM Orders;

BITAND()
Scalar. Returns the results of performing a bitwise AND operation on two expressions.

Syntax
BITAND(expression1, expression2)

Table 75. Data Types

Return expression1 expression2

Integer Integer Integer

Long Long Long

Example

INSERT INTO OutStream
SELECT BITAND(InStream.IntColumn, 1010)
FROM InStream;

BITCLEAR()
Scalar. Returns the value of an expression after setting a specific bit to zero.

Syntax
BITCLEAR(expression, bit)

Table 76. Parameters

expression The initial value.

bit Which bit to clear, starting from 0 as the least-significant bit.

Table 77. Data Types

Return expression bit

Integer Integer Integer

Long Long Integer

Functions

 166 Sybase CEP Option

Examples

INSERT INTO OutStream
SELECT BITCLEAR(InStream.IntColumn,2)
FROM InStream;

BITFLAG() function
Scalar. Returns a value with all bits set to zero, except for specified bits.

Syntax
BITFLAG(bit) BITFLAGLONG(bit)

Table 78. Parameter

bit Which bit to set, starting from 0 as the least-significant bit.

Table 79. Data Types

Return bit

Integer (BITFLAG) Integer

Long (BITFLAGLONG) Integer

Examples

INSERT INTO OutStream
SELECT BITMASK(0)
FROM InStream;

BITMASK()
Scalar. Returns a value with all bits set to zero except for a specified range of bits.

Syntax
BITMASK(first, last)BITMASKLONG(first, last)

Table 80. Parameters

first The first bit to set, starting from 0 as the least-significant bit.

last The last bit to set, starting from 0 as the least-significant bit.

Functions

CCL Reference Guide 167

Table 81. Data Types

Return first last

Integer (BITMASK) Integer Integer

Long (BITMASK-
LONG)

Integer Integer

Example

INSERT INTO OutStream
SELECT BITMASK(1, 6)
FROM InStream;

BITNOT()
Scalar. Returns the value of an expression with all bits inverted (zeroes set to one and vice-
versa).

Syntax
BITNOT(expression)

Table 82. Data Types

Return expression

Integer Integer

Long Long

Example

INSERT INTO OutStream
SELECT BITNOT(InStream.IntColumn) AS Negated
FROM InStream;

BITOR()
Scalar. Returns the results of performing a bitwise OR operation on two expressions.

Syntax
BITOR(expression1, expression2)

Functions

 168 Sybase CEP Option

Table 83. Data Types

Return expression1 expression2

Integer Integer Integer

Long Long Long

Example

INSERT INTO OutStream
SELECT BITOR(InStream1.IntColumn, InStream2.IntColumn)
FROM InStream1, InStream2;

BITSET()
Scalar. Returns the value of an expression after setting a specific bit to one.

Syntax
BITSET(expression,bit)

Table 84. Parameters

expression The initial value.

bit Which bit to set, starting from 0 as the least-significant bit.

Table 85. Data Types

Return expression bit

Integer Integer Integer

Long Long Integer

Example

INSERT INTO OutStream
SELECT BITSET(InStream.IntColumn,4)
FROM InStream;

BITSHIFTLEFT()
Scalar. Returns the value of an expression after shifting the bits left a specific number of
positions.

Syntax
BITSHIFTLEFT(expression, count)

Functions

CCL Reference Guide 169

Table 86. Parameters

expression The initial value.

count How many positions to shift. The same number of right-most bits are set to zero.

Table 87. Data Types

Return expression count

Integer Integer Integer

Long Long Integer

Examples

INSERT INTO OutStream
SELECT BITSHIFTLEFT(InStream.IntColumn, 3)
FROM InStream;

BITSHIFTRIGHT()
Scalar. Returns the value of an expression after shifting the bits right a specific number of
positions.

Syntax
BITSHIFTRIGHT(expression, count)

Table 88. Parameters

expression The initial value.

count How many positions to shift. The same number of left-most bits are set to zero.

Table 89. Data Types

Return expression count

Integer Integer Integer

Long Long Integer

Example

INSERT INTO OutStream
SELECT BITSHIFTLEFT(InStream.IntColumn, 5)
FROM InStream;

Functions

 170 Sybase CEP Option

BITTEST()
Scalar. Returns the value of a specific bit in a binary value.

Syntax
BITTEST(expression, bit)

Table 90. Parameters

expression The initial value.

bit Which bit to return. All other bits are set to zero.

Table 91. Data Types

Return expression bit

Integer Integer Integer

Long Long Integer

Example

INSERT INTO OutStream
SELECT BITTEST(InStream.IntColumn,1)
FROM InStream;

BITTOGGLE()
Scalar. Returns the value of an expression after inverting the value of a specific bit.

Syntax
BITTOGGLE(expression,bit)

Table 92. Parameters

expression The initial value.

bit Which bit to toggle.

Table 93. Data Types

Return expression bit

Integer Integer Integer

Functions

CCL Reference Guide 171

Return expression bit

Long Long Integer

Example

INSERT INTO OutStream
SELECT BITTOGGLE(InStream.IntColumn,0)
FROM InStream;

BITXOR()
Scalar. Returns the results of performing a bitwise exclusive or operation on two expressions.

Syntax
BITXOR(expression1, expression2)

Table 94. Data Types

Return expression1 expression2

Integer Integer Integer

Long Long Long

Example

INSERT INTO OutStream
SELECT BITXOR(InStream1.IntColumn, InStream2.IntColumn)
FROM InStream1, InStream2;

CEIL()
Scalar. Returns the smallest integer value greater than or equal to a specific value.

Syntax
CEIL(expression)

Table 95. Data Types

Return expression

Float Integer

Long

Functions

 172 Sybase CEP Option

Return expression

Float

Example
The following example returns the smallest integer greater than or equal to 3.45:

INSERT INTO OutStream
SELECT CEIL(3.45)
FROM Devices;

CHR() or CHAR()
Scalar. Returns the characters responding to one or more Unicode code points.

Syntax
CHR(expression [, ...]) CHAR(expression [, ...])

Table 96. Parameters

expression
A Unicode code point. An invalid code point, 0, or
NULL returns NULL.

Table 97. Data Types

Return expression

String Integer

Example
The following example inserts a tab into the second column of OutStream.

INSERT INTO OutStream
SELECT InStream.Column1, CHR(9)
FROM InStream;

COALESCE()
Other. Returns the first non-NULL expression from a list of expressions.

Syntax
COALESCE(expression [, ...])

Functions

CCL Reference Guide 173

Table 98. Parameters

expression
All parameters must be the same data type. If all
parameters are NULL, the function returns
NULL.

Table 99. Data Types

Return expression

Blob Blob

Boolean Boolean

Float Float

Integer Integer

Interval Interval

Long Long

String String

Timestamp Timestamp

XML XML

Example
The following example writes the result of the COALESCE function into the PrimAddress
column of the Address stream. If the row from the Employee stream contains a non-NULL
value in the Home column, that value is written into PrimAddress. If Home is NULL, but Work
is non-NULL, the Work value is written into PrimAddress. Otherwise the word 'None' is
written into PrimAddress.

INSERT INTO Address (PrimAddress)
SELECT COALESCE(Home, Work, 'None')
FROM Employee;

CORR()
Aggregate. Returns the correlation coefficient of a set of number pairs. The CORR function is
an alias of the CORRCOEF() function.

Syntax
CORR(dependent-expression, independent-expression)

Functions

 174 Sybase CEP Option

Table 100. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is applied
to the set of (dependent-expression, independent-expression) after eliminating the pairs for
which either dependent-expression or independent-expression is NULL. The following
computation is made:

COVAR_POP (x, y) / STDDEV_POP (x) * STDDEV_POP (y)

where x represents the dependent-expression and y represents the independent-expression.

SQL/2003 SQL foundation feature outside of core SQL.

The following example performs a correlation to discover whether age is associated with
income level.

With a GROUP BY clause:
SELECT CORR(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT CORR(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

COS()
Scalar. Returns the cosine of a value.

Syntax
COS(value)

Table 101. Data Types

Return value

Float Float

Functions

CCL Reference Guide 175

Example

INSERT INTO OutStream
SELECT COS(InStream.FloatColumn)
FROM InStream;

COSD()
Scalar. Returns the cosine of a value, expressed in degrees.

Syntax
COSD(value)

Table 102. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT COSD(InStream.FloatColumn)
FROM InStream;

COSH()
Scalar. Returns the hyperbolic cosine of a value.

Syntax
COSH(value)

Table 103. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT COSH(InStream.FloatColumn)
FROM InStream;

Functions

 176 Sybase CEP Option

COUNT()
Aggregate. Returns the number of rows containing a non-NULL value in a particular column.

Syntax
COUNT({ [DISTINCT] expression } | *)

Table 104. Parameter

expression Note that you cannot use DISTINCT with an XML column.

Table 105. Data Types

Return expression

Integer Integer

Long

Float

Interval

Timestamp

String

Boolean

Blob

XML

Usage
COUNT counts the number of rows returned by a query. COUNT(*) returns the number of
rows, regardless of the value of those rows and including duplicate values.
COUNT(expression) returns the number of non-NULL values for that expression returned by
the query. For example, COUNT(column_A) returns the number of non-NULL values in
column_A. If all input rows submitted to COUNT have a value of NULL, COUNT returns a
value of 0. COUNT never returns NULL.

Examples

INSERT INTO OutStream
SELECT COUNT(*)
FROM DeviceExceptions;

INSERT INTO OutStream

Functions

CCL Reference Guide 177

SELECT COUNT(commission_pct)
FROM SalesOrders;

INSERT INTO OutStream
SELECT COUNT(DISTINCT province_id)
FROM Contestants;

COVAR_POP()
Aggregate. Returns the population covariance of a set of number pairs.

Syntax
COVAR_POP(dependent-expression, independent-expression)

Table 106. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. Both dependent-expression and independent-expression are
numeric. The function is applied to the set of (dependent-expression, independent-
expression) pairs after eliminating all pairs for which either dependent-expression or
independent-expression is NULL. The following computation is then made:

(SUM(x * y) - SUM(y) * SUM(y) / n) / n

where x represents the dependent-expression and y represents the independent-expression.

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example measures the strength of association between employees' age and
salary.

With a GROUP BY clause:
SELECT COVAR_POP(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT COVAR_POP(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

Functions

 178 Sybase CEP Option

COVAR_SAMP()
Aggregate. Returns the sample covariance of a set of number pairs.

Syntax
COVAR_SAMP(dependent-expression, independent-expression)

Table 107. Parameters

dependent-expression The variable that is affected by
the independent variable.

independent-expression The variable that influences the
outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. Both dependent-expression and independent-expression are
numeric. The function is applied to the set of (dependent-expression, independent-
expression) pairs after eliminating all pairs for which either dependent-expression or
independent-expression is NULL.

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example measures the strength of association between employees' age and
salary.

With a GROUP BY clause:
SELECT COVAR_SAMP(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT COVAR_SAMP(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

DATECEILING()
Scalar. Computes a new timestamp based on the provided timesamp, multiple and date_part
arguments, with subordinate parts set to zero. The result is then rounded up to the minimum
date_part multiple that is greater than or equal to the input timestamp.

Syntax
DATECEILING(date_part, expression [, multiple])

Functions

CCL Reference Guide 179

Table 108. Parameters

date_part Keyword that identifies the granularity desired. The valid key-
words are identical to the date parts supported for the existing
function, datepart().

expression Date-time expression that contains the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation. If
supplied this should be a non-zero positive integer value. If none is
provided or it is NULL, this is assumed to be 1.

Usage
This function determines the next largest date_part value expressed in the timestamp, and
zeroes out all date_parts of finer granularity than date_part.

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the ceiling operation. For example, to
establish a date ceiling based on 10 minute intervals, use MINUTE or MI for the date_part, and
10 as the multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, have the value
of multiple be less than 60 if date_part mi is specified.

Standards and compatibility
Sybase extension.

Example
DATECEILING(MINUTE, "August 13, 2008 10:35.123AM")
returns "August 13, 2008 10:36.000AM"

DATEFLOOR()
Scalar. Computes a new timestamp based on the provided timestamp, multiple and date_part
arguments, with subordinate parts set to zero. The result is then rounded down to the
maximum date_part multiple that is less than or equal to the input timestamp.

Syntax
DATEFLOOR(date_part, expression [, multiple])

Functions

 180 Sybase CEP Option

Table 109. Parameters

date_part Keyword that identifies the granularity desired. The valid key-
words are identical to the date parts supported for the existing
function, datepart().

expression A date-time expression that contains the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a non-zero positive integer value. If none is
provided or it is NULL, this is assumed to be 1.

Valid date part keywords and their valid abbreviation keywords are:
Year yy
Quarter qq
Month mm
Week wk
day dd
hour hh
minute mi
second ss
millisecond ms

Usage
This function zeroes out all datetime values with a granularity finer than that specified by
date_part. Date_part is a keyword, and expression is any expression that evaluates or can be
implicitly converted to a datetime (or timestamp) datatype. Multiple is an integer that contains
the multiples of date_parts to be used in performing the floor operation. For example, to
establish a date floor based on 10 minute intervals, use MINUTE or MI for date_part, and 10 as
the multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, have the value
of multiple be less than 60 if date_part mi is specified.

Standards and compatibility
Sybase extension.

Example
DATEFLOOR(MINUTE, "August 13, 2008 10:35.123AM")
returns "August 13, 2008 10:35.000AM"

Functions

CCL Reference Guide 181

DATEROUND()
Scalar. Computes a new timestamp based on the provided timestamp, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded to the value of a
date_part multiple that is nearest to the input timestamp.

Syntax
DATEROUND(date_part, expression [, multiple])

Table 110. Parameters

date_part Keyword identifying the granularity desired, where the valid key-
words are identical to the date parts supported for the existing
function, datepart().

expression A date-time expression that contains the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation. If
supplied, this needs to be a non-zero positive integer value. If none
is provided or is NULL, this is assumed to be 1.

Usage
This function rounds the datetime value to the nearest date_part or multiple of date_part, and
zeroes out all date_parts of finer granularity than date_part or its multiple. For example, when
rounding to the nearest hour, the minutes portion is determined, and if >= 30, then the hour
portion is incremented by 1, and the minutes and other subordinate date parts are zeroes.

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the rounding operation. For example, to
round to the nearest 10-minute increment, use MINUTE or MI for date_part, and 10 as the
multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, the value of
multiple must be less than 60 if date_part mi is specified.

Standards and compatibility
Sybase extension.

Functions

 182 Sybase CEP Option

Example
DATEROUND(MINUTE, "August 13, 2008 10:35.500AM")
returns "August 13, 2008 10:36.000AM"

DAYOFMONTH()
Scalar. Returns an integer representing the day of the month as extracted from a timestamp
value.

Syntax
DAYOFMONTH(timestamp [, timezone])

Table 111. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 112. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT DAYOFMONTH(InStream.OrderTime)
FROM InStream;

DAYOFWEEK()
Scalar. Returns an integer representing the day of the week (1 is Sunday) as extracted from a
timestamp value.

Syntax
DAYOFWEEK(timestamp [, timezone])

Functions

CCL Reference Guide 183

Table 113. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 114. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT DAYOFWEEK(InStream.OrderTime)
FROM InStream;

DAYOFYEAR()
Scalar. Returns an integer representing the day of the year (one-based) as extracted from a
timestamp value.

Syntax
DAYOFYEAR(timestamp [, timezone])

Table 115. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 116. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Functions

 184 Sybase CEP Option

Example

INSERT INTO OutStream
SELECT DAYOFYEAR(InStream.OderTime)
FROM InStream;

DISTANCE()
Scalar. Returns a number representing the distance between two points in either two or three
dimensions.

Syntax
DISTANCE(point1x, point1y [, point1z], point2x, point2y [,
point2z])

Table 117. Parameters

point1x
An expression that evaluates to a value represent-
ing the position of the first point on the x axis.

point1y
An expression that evaluates to a value represent-
ing the position of the first point on the y axis.

point1z
An expression that evaluates to a value represent-
ing the position of the first point on the z axis.

point2x
An expression that evaluates to a value represent-
ing the position of the second point on the x axis.

point2y
An expression that evaluates to a value represent-
ing the position of the second point on the y axis.

point2z
An expression that evaluates to a value represent-
ing the position of the second point on the z axis.

Table 118. Data Types

Return point1x point1y point1z point2x point2y point2z

Integer Integer Integer Integer Integer Integer Integer

Long Long Long Long Long Long Long

Float Float Float Float Float Float Float

Example

INSERT INTO OutStream

Functions

CCL Reference Guide 185

SELECT DISTANCE(4.7, 5.75, 1.2, 2.1, 6.33, 9.6)
FROM InStream;

DISTANCESQUARED()
Scalar. Returns a number representing the square of the distance between two points in either
two or three dimensions.

Syntax
DISTANCESQUARED(point1x, point1y [, point1z], point2x,
point2y [, point2z])

Table 119. Parameters

point1x
An expression that evaluates to a value represent-
ing the position of the first point on the x axis.

point1y
An expression that evaluates to a value represent-
ing the position of the first point on the y axis.

point1z
An expression that evaluates to a value represent-
ing the position of the first point on the z axis.

point2x
An expression that evaluates to a value represent-
ing the position of the second point on the x axis.

point2y
An expression that evaluates to a value represent-
ing the position of the second point on the y axis.

point2z
An expression that evaluates to a value represent-
ing the position of the second point on the z axis.

Table 120. Data Types

Return point1x point1y point1z point2x point2y point2z

Integer Integer Integer Integer Integer Integer Integer

Long Long Long Long Long Long Long

Float Float Float Float Float Float Float

Example

INSERT INTO OutStream
SELECT DISTANCESQUARED(4.7, 5.75, 2.1, 6.33)
FROM InStream;

Functions

 186 Sybase CEP Option

EXP()
Scalar. Returns a number representing the value of e raised to a specific exponent.

Syntax
EXP(exponent)

Table 121. Data Types

Return exponent

Float Float

Example

INSERT INTO OutStream
SELECT EXP(InStream.FloatColumn)
FROM InStream;

EXP_WEIGHTED_AVG()
Aggregate. The EXP_WEIGHTED_AVG function calculates an exponential weighted
average.

Syntax
EXP_WEIGHTED_AVG(expression, period-expression)

Table 122. Parameters

expression a numeric expression for which a weighted value
is to be computed

period-expression a numeric expression specifying the period for
which the average is to be computed

An exponential moving average (EMA), sometimes also called an exponentially weighted
moving average (EWMA), applies weighting factors which decrease exponentially. The
weighting for each older data point decreases exponentially, giving much more importance to
recent observations while still not discarding older observations entirely. The graph at right
shows an example of the weight decrease.

Functions

CCL Reference Guide 187

The degree of weighing decrease is expressed as a constant smoothing factor α, a number
between 0 and 1. α may be expressed as a percentage, so a smoothing factor of 10% is equivalent
to α=0.1. Alternatively, α may be expressed in terms of N time periods, where. For example,

N=19 is equivalent to α=0.1.

The observation at a time period t is designated Yt, and the value of the EMA at any time
period t is designated St. S1 is undefined. S2 may be initialized in a number of different ways,
most commonly by setting S2 to Y1, though other techniques exist, such as setting S2 to an
average of the first 4 or 5 observations. The prominence of the S2 initialization's effect on the
resultant moving average depends on α; smaller α values make the choice of S2 relatively more
important than larger α values, since a higher α discounts older observations faster.

This type of moving average reacts faster to recent price changes than a simple moving
average. The 12- and 26-day EMAs are the most popular short-term averages, and they are
used to create indicators like the moving average convergence divergence (MACD) and the
percentage price oscillator (PPO). In general, the 50- and 200-day EMAs are used as signals of
long-term trends.

Sybase extension.

The following example demonstrates how to use the EXP_WEIGHTED_AVG function to
calculate exponential weighted averages using data from a CSV file:
-- create input stream schema
CREATE SCHEMA InSchema (
 id STRING,
 x FLOAT,
 y FLOAT
);

-- create output stream schema
CREATE SCHEMA OutSchema (
 id STRING,
 x FLOAT,
 y FLOAT,

Functions

 188 Sybase CEP Option

 exp_weighted_avg_result FLOAT,
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema
KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
exp_weighted_avg(x, y)
FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut
SELECT *
FROM ResultWindow;

Functions

CCL Reference Guide 189

EXTRACT()
Scalar. Returns a subset of the bytes from a BLOB value.

Syntax
EXTRACT(blob, start, count)

Table 123. Parameters

blob The BLOB from which to extract bytes.

start The starting byte (one-based) to extract from blob.

count The number of bytes to extract.

Table 124. Data Types

Return blob start count

BLOB BLOB Integer Integer

Example
The following example returns the BLOB without its first character:

INSERT INTO OutStream
SELECT Extract(A.BlobObject, 2, Length(A.BlobObject)-1)
FROM A;

FIRST()
Other. Returns the value of a column from a specific row in a window.

Syntax
FIRST(column [, offset]) GETTIMESTAMP(FIRST(name))

Table 125. Parameters

column The name of a column in a window.

offset
Which row to use, as offset from the first row in
the window based on the window's sort order. If
omitted or 0, uses the first row.

name The name of a stream or window.

Functions

 190 Sybase CEP Option

Table 126. Data Types

Return column offset

Integer Integer Integer

Long Long Integer

Float Float Integer

Interval Interval Integer

Timestamp Timestamp Integer

String String Integer

Boolean Boolean Integer

BLOB BLOB Integer

XML XML Integer

Return name

Timestamp String

Usage
An offset of 0 for a window that is not sorted by largest or smallest value indicates the oldest
row in the window (the first to arrive), while an offset of 1 indicates the next oldest row, and so
on.

The offset for a window defined with a LARGEST or SMALLEST clause is relative to the
sorting order as specified by the LARGEST or SMALLEST clause. For example, if you define
a window to keep the largest values as sorted by its Price column, then FIRST(Volume) returns
the value of the Volume column from the row in the window with the lowest value in its Price
column. FIRST(Volume, 1) returns the value of the Volume column from the row containing
the second-lowest value in the Price column, and so on.

The offset for an unnamed window partitioned by a GROUP BY clause, or a window
partitioned by one or more PER clauses, is based on the partition to which the incoming row
belongs, not on the entire window.

For example, this following scenario assumes you have a window grouped by its Symbol
column and your query includes FIRST(Volume). When a row arrives in the window,
FIRST(Volume) returns the value of the Volume column from the oldest row with a value in its
Symbol column that matches the value in the new row.

When used with a join, Sybase CEP Engine always evaluates FIRST() in the context of the row
or rows being processed. In other words, the FIRST function applies to the partition identified
by the row or rows being processed. If the row is Null-extended as the result of an outer join,
the partition is the Null partition.

Functions

CCL Reference Guide 191

A special case of the FIRST function is embedded in the GETTIMESTAMP function and
returns the timestamp of the first row in the specified window.

FIRST() can be used in a WHERE selection condition and in a SELECT clause select list.

Example
The following example returns the price of the third-oldest trade record in the window:

INSERT INTO OutStream
SELECT FIRST(Trades.Price, 2)
FROM Trades;

FIRST_VALUE()
Aggregate. Returns first value from an ordered set of values. FIRST_VALUE() is an alias for
the FIRST() function in the Sybase CEP compiler.

Syntax
FIRST_VALUE(expression [IGNORE NULLS])

Table 127. Parameters

expression The expression on which to determine the first
value in an ordered set.

FIRST_VALUE returns the first value in an ordered set of values. If the first value in the set is
null, then the function returns NULL unless you specify IGNORE NULLS. If you specify
IGNORE NULLS, then FIRST_VALUE returns the first non-null value in the set, or NULL if
all values are null. You cannot use FIRST_VALUE or any other analytic function for
expression. That is, you cannot nest analytic functions, but you can use other built-in function
expressions for expression.

Sybase extension.

The following example computes the tick-by-tick open, close, minimum, and maximum
values for trades for a one-minute interval:

INSERT INTO OutOpenCloseMinMax
SELECT
 FIRST(Price) as OpenPrice
FROM
 MyWindow
;

INSERT INTO OutOpenCloseMinMax2
SELECT

 LAST(Price) as OpenPrice,
 FIRST_VALUE(Price IGNORE NULLS) as OpenPrice2,

Functions

 192 Sybase CEP Option

 GETTIMESTAMP(LAST(MyWindow)) as t1

FROM
 MyWindow

FLOOR()
Scalar. Returns the largest integer value less than or equal to a specific value.

Syntax
FLOOR(expression)

Table 128. Data Types

Return expression

Float Integer

Long

Float

Example
The following example returns the largest integer less than or equal to 3.45:

INSERT INTO OutStream
SELECT FLOOR(3.45)
FROM Devices;

GET___COLUMNBYNAME()
Other. Returns the value of a column identified by an expression evaluated at runtime.

Syntax
GETBLOBCOLUMNBYNAME(name,column)
GETBOOLEANCOLUMNBYNAME(name,column)
GETFLOATCOLUMNBYNAME(name,column)
GETINTEGERCOLUMNBYNAME(name,column)
GETINTERVALCOLUMNBYNAME(name,column)
GETLONGCOLUMNBYNAME(name,column)
GETSTRINGCOLUMNBYNAME(name,column)
GETTIMESTAMPCOLUMNBYNAME(name column)
GETXMLCOLUMNBYNAME(name,column)

Functions

CCL Reference Guide 193

Table 129. Parameters

name
The name of a stream or window included as a
data source in the query's FROM clause.

column

An expression that evaluates at runtime to the
name of a column of the type specified in the name
of the function, in the stream or window specified
with name. If NULL or the specified column
doesn't exist, the function returns NULL and gen-
erates a warning message.

Table 130. Data Types

Return name column

As speci-
fied in the
function
name

String String

Examples
In the following example, the WinningPhotos stream includes several BLOB columns, each of
which contains photos from one of three artists in a given category. A Winner STRING
column specifies the column that contains the image that won the category prize in each row.
The OutStream stream captures only the winning photos by capturing only the contents of
whichever column contains the winning image.

INSERT INTO OutStream
SELECT GETBLOBCOLUMNBYNAME(WinningPhotos, Winner)
FROM WinningPhotos;

In the following example, each row of the TestAnswers stream includes several BOOLEAN
columns, which contain true or false answers. All answers except one in each row are false.
The Correct column specifies which column contains the true answer for the row. The correct
answers are published to the OutStream column based on the values contained in the Correct
column.

INSERT INTO OutStream
SELECT GETBOOLEANCOLUMNBYNAME(TestAnswers, Correct)
FROM TestAnswers;

In the following example, each row of the Prices stream includes an item listing along with a
range of prices. The Preferred column specifies which column contains the price preferred by
the buyer for the item in question. The preferred prices are published to OutStream:

INSERT INTO OutStream
SELECT GETFLOATCOLUMNBYNAME(Prices, Preferred)
FROM Prices;

Functions

 194 Sybase CEP Option

In the following example, each row of the ContactInformation stream includes a listing for
each contact's home, business, and mobile phone numbers. The PrimaryPhone column
specifies which of these three numbers is considered the main number for the contact, by
listing the column name in which the number appears:

INSERT INTO OutStream
SELECT GETINTEGERCOLUMNBYNAME(ContactInformation, PrimaryPhone)
FROM ContactInformation;

In the following example, each row of the stream UtilitySettings includes several INTERVAL
columns listing possible wait times associated with a utility. The preferred wait time is listed
as a reference to the appropriate column name in the PreferredWaitTime column. The value
associated with the specified column is published to OutStream:

INSERT INTO OutStream
SELECT GETINTERVALCOLUMNBYNAME(UtilitySettings, PreferredWaitTime)
FROM UtilitySettings;

In the following example, each row of InStream includes several LONG columns. Each row
also contains a Choice column listing the name of one of the LONG columns. The value
associated with the specified column is published to OutStream:

INSERT INTO OutStream
SELECT GETLONGCOLUMNBYNAME(InStream, Choice)
FROM InStream;

GETPREFERENCE___()
Other. Returns the value of a preference as set in the configuration file c8-server.conf.

Syntax
GETPREFERENCEBOOLEAN(section, preference [, default])
GETPREFERENCEINTEGER(section, preference [, default])
GETPREFERENCELONG(section, preference [, default])
GETPREFERENCESTRING(section, preference [, default])

Table 131. Parameters

section

The full path to the section containing the prefer-
ence. See "Configuring Sybase CEP Engine" in
the Sybase CEP Installation Guide for more in-
formation about the configuration file and the
preference settings in it.

name The name of the preference.

Functions

CCL Reference Guide 195

default

Return this value if the specified preference is not
found. If omitted and the preference is not found,
the function returns FALSE, 0, or the empty
string, depending on the return type.

Table 132. Data Types

Re-
turn

section preference default

As
speci-
fied in
the
func-
tion
name

String String As specified in the function
name.

Examples
In the following example, the GETPREFERENCEBOOLEAN function retrieves the value for
the "EnableSSL" preference from the "SSL" subsection of the "Sybase/C8/Security" section
of c8-server.conf. If no "EnableSSL" preference is specified, the function returns FALSE:

INSERT INTO OutStream
SELECT Hostname, GETPREFERENCEBOOLEAN("C8/Security/SSL",
"EnableSSL")
FROM InStream;

In the following example, the GETPREFERENCEINTEGER function retrieves the value for
the "LoadLimit" preference from the "Container" subsection of the "Sybase/C8/Server"
section of the file c8-server.conf. If no "LoadLimit" preference is specified, the function
returns 0. Since 0 is also the default setting for this preference, no additional default value is
specified:

INSERT INTO OutStream
SELECT Hostname, GETPREFERENCEINTEGER("C8/Server/Container",
"LoadLimit")
FROM InStream;

In the following example, the GETPREFERENCELONG function retrieves the value for the
"SmallBlocksThreshold" preference of the "Sybase/C8/Memory" section of c8-server.conf. If
no "SmallBlocksThreshold" preference is specified, the default value of 256 is returned:

INSERT INTO OutStream
SELECT Hostname, GETPREFERENCELONG("C8/Memory",
"SmallBlocksThreshold", 256)
FROM InStream;

Functions

 196 Sybase CEP Option

In the following example, the GETPREFERENCESTRING function retrieves the value for
the "NodeURI" preference, which resides in the "ManagerCluster" subsection of the
"HighAvailability" subsection of the "Manager" subsection "Sybase/C8/Server" section of
c8-server.conf. If no "NodeURI" preference is specified, the function returns the message
"NOT SPECIFIED":

INSERT INTO OutStream
SELECT Hostname, GETPREFERENCEINTEGER("C8/Server/Manager/
HighAvailability/ManagerCluster",
 "NodeURI", "NOT SPECIFIED")
FROM InStream;

GETTIMESTAMP()
Scalar. Returns the timestamp of a row.

Syntax
GETTIMESTAMP(name) GETTIMESTAMP(FIRST(name))
GETTIMESTAMP(LAST(name)) GETTIMESTAMP(PREV(name))
GETTIMESTAMP()

Table 133. Parameters

name The name of a stream or window.

Table 134. Data Types

Return name

Timestamp String

Usage
Using this function with an embedded FIRST or LAST function returns the timestamp of the
first or last row of a window, respectively, based on the window's sort order. Using it with an
embedded PREV function returns the timestamp of the immediately previous row of a stream
or window.

You can only use this function without an argument as part of a filter expression when
subscribing to a stream or window. See "Out-of-process Adapter" in the Sybase CEP
Integration Guide for more information.

Example

INSERT INTO OutStream
SELECT COUNT(*)
FROM InputWindow
WHERE GETTIMESTAMP(InputWindow) >= (NOW() - 5 SECONDS);

Functions

CCL Reference Guide 197

HOUR()
Scalar. Returns an integer representing the hour of the day (0 to 23) as extracted from a
timestamp value

Syntax
HOUR(timestamp [, timezone])

Table 135. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 136. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT HOUR(InStream.OrderTime)
FROM InStream;

INSTR()
Scalar. Returns the starting position (one-based) of a string within another string.

Syntax
INSTR(string, substring [, start [, occurrence]])

Table 137. Parameters

string A string literal or the name of a String column.

substring
The string to locate, either a literal or the name of a String column. If the string is not
found, the function returns 0.

Functions

 198 Sybase CEP Option

start
The character position within string to start searching. If negative, the search starts at
the end of string and proceeds backwards. If greater than the size of string, the function
returns 0. If omitted, the search starts with the first character.

occurrence
Which occurrence of substring to locate. If omitted, the search looks for the first
occurrence.

Table 138. Data Types

Return string substring start occurrence

Integer String String Integer Integer

Example
The following example uses the INSTR function to get the position of the value of the Prefix
column in the value of the Title column:

INSERT INTO OutStream
SELECT INSTR(Devices.Title, Devices.Prefix)
FROM Devices;

LAST()
Other. Returns the value of a column from a specific row in a window.

Syntax
LAST(column [, offset]) GETTIMESTAMP(LAST(name))

Table 139. Parameters

column The name of a column in a window.

offset
Which row to use, as offset from the last row in the
window based on the window's sort order. If
omitted or 0, uses the last row.

name The name of a stream or window.

Table 140. Data Types

Return column offset

Integer Integer Integer

Long Long Integer

Float Float Integer

Functions

CCL Reference Guide 199

Return column offset

Interval Interval Integer

Timestamp Timestamp Integer

String String Integer

Boolean Boolean Integer

BLOB BLOB Integer

XML XML Integer

Return name

Timestamp String

Usage
An offset of 0 for a window that is not sorted by largest or smallest value indicates the most
recent row in the window (the last to arrive), an offset of 1 indicates the next newest row, and so
on.

The offset for a window defined with a LARGEST or SMALLEST clause is relative to the
sorting order as specified by the LARGEST or SMALLEST clause. For example, if you define
a window to keep the largest values as sorted by its Price column, then LAST(Volume) returns
the value of the Volume column from the row in the window with the highest value in its Price
column. LAST(Volume, 1) returns the value of the Volume column from the row containing
the second-highest value in the Price column, and so on.

The offset for an unnamed window partitioned by a GROUP BY clause, or a window
partitioned by one or more PER clauses, is based on the partition to which the incoming row
belongs, not on the entire window. For example, say you have a window grouped by its
Symbol column and your query includes LAST(Volume). When a row arrives in the window,
LAST(Volume) returns the value of the Volume column from the newest row with a value in its
Symbol column that matches the value in the new row.

When used with a join, Sybase CEP Engine always evaluates LAST in the context of the row
or rows being processed. The LAST function applies to the partition identified by the row or
rows being processed. If the row is Null-extended as the result of an outer join, the partition is
the Null partition.

A special case of the LAST function is embedded in the GETTIMESTAMP function and
returns the timestamp of the last row in the specified window.

You can use LAST() in a WHERE selection condition and a SELECT clause select list.

The LAST function is semantically identical to the [] row operator, when [] is used with
windows, and is similar, but not identical, to the PREV function. For more information about

Functions

 200 Sybase CEP Option

the [] row operator, see Row CCL Operators. For more information about the PREV function,
see PREV().

Example
The following example returns value of the Price column from the last row in the window:

INSERT INTO OutStream
SELECT LAST(Trades.Price, 0)
FROM Trades;

LAST_VALUE()
Aggregate. Returns the last value from an ordered set of values. LAST_VALUE() is an alias
for the LAST() function in the Sybase CEP compiler.

Syntax
LAST_VALUE(expression)

Table 141. Parameters

expression The expression on which to determine the last
value in an ordered set.

LAST_VALUE returns the last value in an ordered set of values. If the last value in the set is
null, then the function returns NULL unless you specify IGNORE NULLS. If you specify
IGNORE NULLS, then LAST_VALUE returns the last non-null value in the set, or NULL if
all values are null.

You cannot use LAST_VALUE or any other analytic function as an expression. That is, you
cannot nest analytic functions, but you can use other built-in function expressions for
expression.

Sybase extension.

The following example computes the tick-by-tick open, close, minimum, and maximum
values for trades for a one-minute interval:

INSERT INTO OutOpenCloseMinMax2
SELECT

 LAST_VALUE(Price) as OpenPrice,
 FIRST_VALUE(Price IGNORE NULLS) as OpenPrice2,
 GETTIMESTAMP(LAST_VALUE(MyWindow)) as t1

FROM
 MyWindow

Functions

CCL Reference Guide 201

LEFT()
Scalar. Returns a specified number of characters from the beginning of a given string.

Syntax
LEFT(string, count)

Table 142. Parameters

string The string.

count The number of characters to return.

Table 143. Data Types

Return string count

String String Integer

Example
The following example uses the LEFT function to select the first ten characters of the value in
the column StockName:

INSERT INTO OutStream
SELECT LEFT(Trades.StockName,10)
FROM Trades;

LENGTH()
Scalar. Returns the length of a given string or BLOB, in characters or bytes, respectively.

Syntax
LENGTH(value)

Table 144. Data Types

Return value

Integer String

BLOB

Example
The following example returns the length of the string found in Trades.StockName:

INSERT INTO OutStream

Functions

 202 Sybase CEP Option

SELECT LENGTH(Trades.StockName)
FROM Trades;

LN()
Scalar. Returns the natural logarithm of a given value.

Syntax
LN(expression)

Table 145. Parameter

expression
An expression that evaluates to a value greater
than or equal to 0.

Table 146. Data Types

Return expression

Float Float

Example

INSERT INTO OutStream
SELECT LN(InStream.FloatColumn)
FROM InStream;

LOG()
Scalar. Returns the logarithm of a given value to a specified base.

Syntax
LOG(base, value)

Table 147. Parameters

base
An expression that evaluates to a value greater
than 1.

value
An expression that evaluates to a value greater
than or equal to 0.

Functions

CCL Reference Guide 203

Table 148. Data Types

Return base value

Float Float Float

Example

INSERT INTO OutStream
SELECT LOG(InStream.FBase, InStream.FValue)
FROM InStream;

LOG10()
Scalar. Returns the logarithm of a given value to the base 10.

Syntax
LOG10(value)

Table 149. Parameter

value
An expression that evaluates to a value greater
than or equal to 0.

Table 150. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT LOG10(InStream.FloatColumn)
FROM InStream;

LOG2()
Scalar. Returns the logarithm of a given value to the base 2.

Syntax
LOG2(value)

Functions

 204 Sybase CEP Option

Table 151. Parameter

value
An expression that evaluates to a value greater
than or equal to 0.

Table 152. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT LOG2(InStream.FloatColumn)
FROM InStream;

LOWER()
Scalar. Returns a given string with all characters converted to lower case.

Syntax
LOWER(string)

Table 153. Data Types

Return string

String String

Example
The following example uses the LOWER function to convert a stock name to all lowercase
characters.

INSERT INTO OutStream
SELECT LOWER(Trades.StockName)
FROM Trades;

LTRIM()
Scalar. Returns a given string with all leading spaces removed.

Syntax
LTRIM(string)

Functions

CCL Reference Guide 205

Table 154. Data Types

Return string

String String

Example
The following example uses the LTRIM function to remove leading spaces:

INSERT INTO OutStream
SELECT LTRIM(Trades.Symbol)
FROM Trades;

MAKETIMESTAMP()
Scalar. Constructs a timestamp.

Syntax
MAKETIMESTAMP(year, month, day, hour, minute, second,
microsecond [, timezone])

Table 155. Parameters

year

An expression that evaluates to a value from 0001
to 9999. Values outside of the range 1970 to 2099
may result in inaccuracies due to leap years and
daylight savings time.

month

An expression that evaluates to a value specifying
the month. 0-12 indicate January to December,
with both 0 and 1 representing January. Values
larger than 12 roll over into subsequent years,
while negative values subtract months from Jan-
uary of the specified year.

day

An expression that evaluates to a value specifying
the day of the month. 0 and 1 both represent the
first day of the year. Values larger than the valid
number of days for the specified month roll over
into subsequent months, while negative values
subtract days from the first day of the specified
month.

Functions

 206 Sybase CEP Option

hour

An expression that evaluates to a value specifying
the hour of the day. Values larger than 23 roll over
into subsequent days, while negative values sub-
tract hours from midnight of the specified day.

minute

An expression that evaluates to a value specifying
the minute. Values larger than 59 roll over into
subsequent hours, while negative values subtract
minutes from the specified hour.

second

An expression that evaluates to a value specifying
the second. Values larger than 59 roll over into
subsequent minutes, while negative values sub-
tract seconds from the specified minute.

microsecond

An expression that evaluates to a value specifying
the microsecond. Values larger than 999999 roll
over into subsequent seconds, while negative val-
ues subtract microseconds from the specified sec-
ond.

timezone

A string representing the time zone. If omitted,
assumes the local time zone. See "Sybase CEP
Time Zone Database" in the Sybase CEP Integra-
tion Guide for more information about valid time
zone strings.

Table 156. Data Types

Re-
turn

year month day hour mi-
nute

second micro-
sec-
ond

time-
zone

Time-
stamp

Integer Integer Integer Integer Integer Integer Integer String

Usage
If any argument is Null, the function returns Null.

Example

INSERT INTO OutStream
SELECT MAKETIMESTAMP(2007,5,15,14,30,0,0)
FROM InStream;

Functions

CCL Reference Guide 207

MAX()
Aggregate. Returns the maximum value of a given expression over multiple rows.

Syntax
MAX(expression)

Table 157. Data Types

Return expression

Integer Integer

Long Long

Float Float

Interval Interval

Timestamp Timestamp

String String

BLOB BLOB

Usage
DISTINCT is permitted, but has no effect because the maximum of the distinct values is the
same as the maximum of all values.

Example
The following example calculates the maximum value of the Price column over the last five
minutes:

INSERT INTO OutStream
SELECT MAX(Trades.Price)
FROM Trades KEEP 5 MINUTES;

MAX()
Scalar. Returns the maximum value from a list of expressions.

Syntax
MAX(expression, expression [, ...])

Functions

 208 Sybase CEP Option

Table 158. Data Types

Return expression

Integer Integer

Long Long

Float Float

Interval Interval

Timestamp Timestamp

String String

BLOB BLOB

Usage
If any parameter is NULL, the function returns NULL.

Example
The following example calculates the maximum value of three columns in the stream Orders:

INSERT INTO OutStream
SELECT MAX(Orders.line1price, Orders.line2price, Orders.line3Price)
FROM Orders;

MEANDEVIATION()
Aggregate. Returns the mean absolute deviation (the mean of the absolute value of the
deviations from the mean of all values) of a given expression over multiple rows.

Syntax
MEANDEVIATION([DISTINCT] expression)

Table 159. Data Types

Return expression

Float Integer

Long

Float

Interval Interval

Timestamp

Functions

CCL Reference Guide 209

Example
The following example returns the mean absolute deviation of values in the temperature
column:

INSERT INTO OutStream
SELECT MEANDEVIATION(Devices.temperature)
FROM Devices KEEP 24 HOURS;

MEDIAN()
Aggregate. Returns the median value of a given expression over multiple rows.

Syntax
MEDIAN([DISTINCT] expression)

Table 160. Data Types

Return expression

Float Integer

Long

Float

Interval Interval

Timestamp

Example
The following example calculates the median value of the Price column over the last five
minutes:

INSERT INTO OutStream
SELECT MEDIAN(Trades.Price)
FROM Trades KEEP 5 MINUTES;

MICROSECOND()
Scalar. Returns an integer representing the microsecond as extracted from a timestamp value.

Syntax
MICROSECOND(timestamp [, timezone])

Functions

 210 Sybase CEP Option

Table 161. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 162. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT MICROSECOND(InStream.OrderTime)
FROM InStream;

MID()
Scalar. Returns a range of characters from a given string.

Syntax
MID(string, start, end)

Table 163. Parameters

string The string.

start
The position of the first character to return (one-
based).

end The position of the last character to return.

Table 164. Data Types

Re-
turn

string start end

String String Integer Integer

Functions

CCL Reference Guide 211

Example
The following example uses the MID function to select the fifth through seventh characters of
the column named LastName:

INSERT INTO OutStream
SELECT MID(Employees.LastName, 5, 7)
FROM Employees;

If the employee's last name were "Johnson", this would return "son".

MIN()
Aggregate. Returns the minimum value of a given expression over multiple rows.

Syntax
MIN(expression)

Table 165. Data Types

Return expression

Integer Integer

Long Long

Float Float

Interval Interval

Timestamp Timestamp

String String

BLOB BLOB

Usage
DISTINCT is valid, but has no effect, because the minimum of the distinct values is the same
as the minimum of all values.

Example
The following example calculates the minimum value of the Price column over the last five
minutes:

INSERT INTO OutStream
SELECT MIN(Trades.Price)
FROM Trades KEEP 5 MINUTES;

Functions

 212 Sybase CEP Option

MIN()
Scalar. Returns the minimum value from a list of expressions.

Syntax
MIN(expression, expression [, ...])

Table 166. Data Types

Return expression

Integer Integer

Long Long

Float Float

Interval Interval

Timestamp Timestamp

String String

BLOB BLOB

Usage
If any parameter is NULL, the function returns NULL.

Example
The following example calculates the minimum value of three columns in the Orders stream:

INSERT INTO OutStream
SELECT MIN(Orders.line1price, Orders.line2price, Orders.line3Price)
FROM Orders;

MINUTE()
Scalar. Returns an integer representing the minute as extracted from a timestamp value.

Syntax
MINUTE(timestamp [, timezone])

Table 167. Parameters

timestamp An expression that evaluates to a timestamp value.

Functions

CCL Reference Guide 213

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 168. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT MINUTE(InStream.OrderTime)
FROM InStream;

MOD()
Scalar. Returns the remainder of dividing one expression by another.

Syntax
MOD(dividend, divisor)

Table 169. Data Types

Return dividend divisor

Integer Integer Integer

Long Long Long

Float Float Float

Interval Interval Interval

Example
The following example calculates the modulo of two columns:

INSERT INTO OutStream
SELECT MOD(Orders.value, Orders.price)
FROM Orders;

Functions

 214 Sybase CEP Option

MONTH()
Scalar. Returns an integer representing the month as extracted from a timestamp value.

Syntax
MONTH(timestamp [, timezone])

Table 170. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 171. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT MONTH(InStream.OrderTime)
FROM InStream;

NEXTVAL()
Scalar. The first call to this function returns 1, and then each subsequent call returns a value
larger than that returned by the previous call.

Syntax
NEXTVAL()

Table 172. Data Types

Return

Long

Functions

CCL Reference Guide 215

Usage
The return value from subsequent calls to NEXTVAL() always increases, but not necessarily
by one; the increase may be larger. Sybase CEP Engine maintains state for NEXTVAL() by
project instance, using a separate sequence for each instance. If persistence is enabled for your
project, calling NEXTVAL() after a restart returns a value larger than the last call to
NEXTVAL() before the restart. Each call to NEXTVAL() returns a new value, even if it is
called more than once in a single statement.

Example

INSERT INTO OutStream
SELECT Price, Nextval()
FROM InStream;

NOW()
Scalar. Returns a timestamp corresponding to the current time. Note that this function is lower
resolution than Highresolutionnow(), but users considerable fewer resources. Use this version
when performance is a higher priority than resolution.

Syntax
NOW()

Table 173. Data Types

Return

Timestamp

Example
The following example returns the current time minus the row timestamp:

INSERT INTO OutStream
SELECT NOW() - GETTIMESTAMP(Devices)
FROM Devices;

PI()
Scalar. Returns an approximation of the constant pi.

Syntax
PI()

Functions

 216 Sybase CEP Option

Table 174. Data Types

Return

Float

Example

INSERT INTO OutStream (Area)
SELECT PI() * Radius ^ 2
FROM InStream;

POWER()
Scalar. Returns the value of a given base raised to a specified exponent.

Syntax
POWER(base, exponent)

Table 175. Data Types

Return base exponent

Float Integer Float

Long

Float

Example
The following example returns the value of the velocity column to the fourth power:

INSERT INTO OutStream
SELECT POWER(Devices.velocity,4.0)
FROM Devices;

PREV()
Other. Returns the value of a given column from a prior row.

Syntax
PREV(column [, offset]) GETTIMESTAMP(PREV(name))

Table 176. Parameters

column The name of a column of any type.

Functions

CCL Reference Guide 217

offset
Which row to use, with 0 as the current row, 1 as the immediately previous row, and so
on. If omitted, defaults to1.

name The name of a stream or window.

Table 177. Data Types

Return column offset

The same type as
the specified col-
umn.

String Integer

Return name

Timestamp String

Usage
When you use PREV() on a data source grouped with GROUP BY or PER, offset refers to a
previous row within the same group as the newly arrived row.

PREV embedded in GETTIMESTAMP returns the timestamp of the previous row in the
specified stream or window.

You can use PREV() in a WHERE selection condition or a SELECT clause select list.

When you use PREV() on data streams, it is semantically identical to the [] row operator.

Example
The following example returns the value of the Price column from the row two previous to the
current row:

INSERT INTO OutStream
SELECT PREV(Trades.Price, 2)
FROM Trades;

RANDOM()
Scalar. Returns a random value greater than or equal to 0 and less than 1.

Syntax
RANDOM()

Functions

 218 Sybase CEP Option

Table 178. Data Types

Return

Float

Example
The following example uses the RANDOM function to generate a new stock price up to 10%
higher than its original value:

INSERT INTO OutStream
SELECT (1 + RANDOM() /10.0) * Trades.StockPrice
FROM Trades;

REGEXP_FIRSTSEARCH()
Scalar. Returns the first occurrence of a POSIX regular expression pattern found in a given
string.

Syntax
REGEXP_FIRSTSEARCH(string, regex)

Table 179. Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the Perl syntax.

Table 180. Data Types

Return string regex

String String String

Usage
If string does not contain a match for the pattern, or if the specified pattern is not a valid regular
expression, the function returns NULL.

One or more subexpressions can be included in the pattern, each enclosed in parentheses. If
string contains a match for the pattern, the function only returns the parts of the pattern
specified by the first subexpression.

Examples
The following example uses the REGEXP_FIRSTSEARCH function to return the occurrence
of the letters "Corp" at the end of the string in the column StockName, if present, or Null:

INSERT INTO OutStream

Functions

CCL Reference Guide 219

SELECT REGEXP_FIRSTSEARCH(Trades.StockName, "Corp$")
FROM Trades;

The following example extracts the components of a phone number. Only the components
matching the subexpressions are returned. In the case of the third REGEXP_FIRSTSEARCH,
only components matching the first subexpression are returned; the second subexpression is
ignored.

INSERT INTO OutStream
SELECT
 REGEXP_FIRSTSEARCH("(650) 210-3821", "\D*(\d{3})"),
 REGEXP_FIRSTSEARCH("(650) 210-3821", "\D*\d{3}\D*(\d{3})"),
 REGEXP_FIRSTSEARCH("(650) 210-3821","\D*\d{3}\D*\d{3}\D*(\d\d\d
\d)")
FROM Entries;

REGEXP_REPLACE()
Scalar. Returns a given string with the first occurrence of a match for a POSIX regular
expression pattern replaced with a second, specified string.

Syntax
REGEXP_REPLACE(string, regex, replacement)

Table 181. Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the Perl syntax.

replacement A string to replace the part of string that matches regex.

Table 182. Data Types

Return string regex replacement

String String String String

Usage
If string does not contain a match for regex, the function returns string with no replacements. If
regex is not a valid regular expression, the function returns NULL.

Example

INSERT INTO OutStream
SELECT
 REGEXP_REPLACE(InStream.src, InStream.regexp,
InStream.replace_str),
 InStream.src,

Functions

 220 Sybase CEP Option

 InStream.regexp,
 InStream.replace_str
FROM InStream;

REGEXP_SEARCH()
Scalar. Determines whether or not a string contains a match for a POSIX regular expression
pattern.

Syntax
REGEXP_SEARCH(string, regex)

Table 183. Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the Perl syntax.

Table 184. Data Types

Return string regex

Boolean String String

Example
The following example uses the REGEXP_SEARCH function to determine if the value in the
StockName column has the string "Corp" at the end:

INSERT INTO OutStream
SELECT REGEXP_SEARCH(Trades.StockName, "Corp$")
FROM Trades;

REGR_AVGX()
Aggregate. Computes the average of the independent variable of the regression line.

Syntax
REGR_AVGX(dependent-expression , independent-expression)

Table 185. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an

Functions

CCL Reference Guide 221

empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where y represents the independent-expression:
AVG(y)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example calculates the average of the dependent variable, employee age.

With a GROUP BY clause:
SELECT REGR_AVGX()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_AVGX()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

REGR_AVGY()
Aggregate. Computes the average of the dependent variable of the regression line.

Syntax
REGR_AVGY(dependent-expression , independent-expression)

Table 186. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where x represents the dependent-expression:
AVG(x)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example calculates the average of the independent variable, employee salary.

With a GROUP BY clause:

Functions

 222 Sybase CEP Option

SELECT REGR_AVGY()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_AVGY()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

REGR_COUNT()
Aggregate. Returns an integer that represents the number of non-NULL number pairs used to
fit the regression line.

Syntax
REGR_COUNT(dependent-expression , independent-expression)

Table 187. Parameters

dependent-expression The variable that is affected by the independent var-
iable.

independent-expression The variable that influences the outcome.

This function returns a LONG as the result.

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example returns the number of non-NULL pairs that were used to fit the
regression line.

With a GROUP BY clause:
SELECT REGR_COUNT()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_COUNT()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

Functions

CCL Reference Guide 223

REGR_INTERCEPT()
Aggregate. Computes the y-intercept of the linear regression line that best fits the dependent
and independent variables.

Syntax
REGR_INTERCEPT(dependent-expression , independent-
expression)

Table 188. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where x represents the dependent-expression and y represents the
independent-expression:

 AVG(x) - REGR_SLOPE(x, y) * AVG(y)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example returns the y-intercept of the linear regression line.

With a GROUP BY clause:
SELECT REGR_INTERCEPT()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_INTERCEPT()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

Functions

 224 Sybase CEP Option

REGR_R2()
Aggregate. Computes the coefficient of determination (also referred to as R-squared or the
goodness of fit statistic) for the regression line.

Syntax
REGR_R2(dependent-expression , independent-expression)

Table 189. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL.

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example returns the coefficient of determination for the regression line.

With a GROUP BY clause:
SELECT REGR_R2()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_R2()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

REGR_SLOPE()
Aggregate. Computes the slope of the linear regression line fitted to non-NULL pairs.

Syntax
REGR_SLOPE(dependent-expression , independent-expression)

Functions

CCL Reference Guide 225

Table 190. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where x represents the dependent-expression and y represents the
independent-expression:
COVAR_POP(x, y) / VAR_POP(y)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

With a GROUP BY clause:
SELECT REGR_SLOPE()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_SLOPE()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

REGR_SXX()
Aggregate. Returns the sum of squares of the independent expressions used in a linear
regression model. Use the REGR_SXX function to evaluate the statistical validity of a
regression model.

Syntax
REGR_SXX(dependent-expression , independent-expression)

Table 191. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression

Functions

 226 Sybase CEP Option

and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where x represents the dependent-expression and y represents the
independent-expression:
REGR_COUNT(x, y) * VAR_POP(x)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

With a GROUP BY clause:
SELECT REGR_SXX()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_SXX()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

REGR_SXY()
Aggregate. Returns the sum of products of the dependent and independent variables. The
REGR_SXY function can be used to evaluate the statistical validity of a regression model.

Syntax
REGR_SXY(dependent-expression , independent-expression)

Table 192. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where x represents the dependent-expression and y represents the
independent-expression:
REGR_COUNT(x, y) * COVAR_POP(x, y)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example returns the sum of products of the dependent and independent
variables.

Functions

CCL Reference Guide 227

With a GROUP BY clause:
SELECT REGR_SXY()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_SXY()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

REGR_SYY()
Aggregate. Returns values that can evaluate the statistical validity of a regression model.

Syntax
REGR_SYY(dependent-expression , independent-expression)

Table 193. Parameters

dependent-expression The variable that is affected by the independent
variable.

independent-expression The variable that influences the outcome.

This function converts its arguments to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. If the function is applied to an
empty set, then it returns NULL. The function is applied to the set of (dependent-expression
and independent-expression) pairs after eliminating all pairs for which either dependent-
expression or independent-expression is NULL. The function is computed simultaneously
during a single pass through the data. After eliminating NULL values, the following
computation is then made, where x represents the dependent-expression and y represents the
independent-expression:
REGR_COUNT(x, y) * VAR_POP(y)

SQL/2003 SQL foundation feature (T621) outside of core SQL.

With a GROUP BY clause:
SELECT REGR_SYY()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
group by depart_ID

With a window:
SELECT REGR_SYY()(Salary, (2008 - YEAR(BirthDate)))
FROM Employees
KEEP 10 ROWS

Functions

 228 Sybase CEP Option

REPLACE()
Scalar. Returns a given string with every instance of a specified substring replaced with
another specified string.

Syntax
REPLACE(string, find, replacement)

Table 194. Parameters

string A string.

find The string to locate.

replacement The string to substitute for every occurrence of find.

Table 195. Data Types

Return string find replacement

String String String String

Example
The following example uses the REPLACE function to substitute the result of multiplying the
values of two columns, converted to a string, for a square bracketed x in the filledOrder
column:

INSERT INTO OutStream
SELECT REPLACE(Transaction.filledOrder, '[x]',
 TO_STRING(InStock.price*InStock.quantity))
FROM Orders, InStock;

RIGHT()
Scalar. Returns a specified number of characters from the end of a given string.

Syntax
RIGHT(string, count)

Table 196. Data Types

Return string count

String String Integer

Functions

CCL Reference Guide 229

Example
The following example uses the RIGHT function to extract the last 25 characters of the value
in the Comments column:

INSERT INTO OutStream
SELECT RIGHT(Transactions.Comments,25)
FROM Transactions;

ROUND()
Scalar. Returns a given value rounded to a specified number of decimal places.

Syntax
ROUND(value, precision)

Table 197. Parameters

value The value to round.

precision
The number of places to the right or, if negative,
the left of the decimal.

Table 198. Data Types

Return value precision

Float Float Integer

Examples
The following example returns the value of the velocity column rounded to the nearest
thousandth:

INSERT INTO OutStream
SELECT ROUND(Devices.velocity, 3)
FROM Devices;

The following example returns the value rounded to the nearest hundred, which in this case
would be 800.0 (note the negative value for the precision):

INSERT INTO OutStream
SELECT ROUND(799.9, -2)
FROM Devices;

Functions

 230 Sybase CEP Option

RTRIM()
Scalar. Returns a specified string after stripping trailing spaces.

Syntax
RTRIM(string)

Table 199. Data Types

Return string

String String

Example
The following example uses the RTRIM function to remove trailing spaces from the value in
the column: Symbol:

INSERT INTO OutStream
SELECT RTRIM(Trades.Symbol)
FROM Trades;

SECOND()
Scalar. Returns an integer representing the second as extracted from a timestamp value.

Syntax
SECOND(timestamp [, timezone])

Table 200. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 201. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Functions

CCL Reference Guide 231

Example

INSERT INTO OutStream
SELECT SECOND(InStream.OrderTime)
FROM InStream;

SIGN()
Scalar. Determines whether a given value is positive or negative.

Syntax
SIGN(value)

Table 202. Data Types

Return value

Integer Integer

Long

Float

Interval

Usage
SIGN() returns 1 if value is positive, -1 if it is negative, and 0 otherwise.

Example
The following example uses the SIGN function to compute an additional commission
discount of $50 if there are more than 10,000 shares of a stock traded, $0 discount if there are
exactly 10,000 shares traded, and adds $50 to commission if less than 10,000 shares are
traded:

INSERT INTO OutStream
SELECT SIGN(10000-Trades.Quantity)*50 + Trades.Commission,
 Trades.StockName
FROM Trades;

SIN()
Scalar. Returns the sine, in radians, of a given value.

Syntax
SIN(value)

Functions

 232 Sybase CEP Option

Table 203. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT SIN(InStream.FloatColumn)
FROM InStream;

SIND()
Scalar. Returns the sine, in degrees, of a given value.

Syntax
SIND(value)

Table 204. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT SIND(InStream.FloatColumn)
FROM InStream;

SINH()
Scalar. Returns the hyperbolic sine of a given value.

Syntax
SINH(value)

Table 205. Data Types

Return value

Float Float

Example

INSERT INTO OutStream

Functions

CCL Reference Guide 233

SELECT SINH(InStream.FloatColumn)
FROM InStream;

SQRT()
Scalar. Returns the square root of a given value.

Syntax
SQRT(value)

Table 206. Data Types

Return value

Float Float

Example
The following example returns the square root of the value in the velocity column:

INSERT INTO OutStream
SELECT SQRT(Devices.velocity)
FROM Devices;

STDDEV()
Aggregate. Computes the standard deviation of a sample consisting of a numeric-expression,
as a DOUBLE. Alias for STDDEV_SAMP().

STDDEVIATION()
Aggregate. Returns the standard deviation of a given expression over multiple rows.

Syntax
STDDEVIATION([DISTINCT] expression)

Table 207. Data Types

Return expression

Float Integer

Long

Float

Functions

 234 Sybase CEP Option

Return expression

Interval Interval

Timestamp

Example
The following example returns the standard deviation of the values of the temperature column
for the last 24 hours:

INSERT INTO OutStream
SELECT STDDEVIATION(Devices.temperature)
FROM Devices KEEP 24 HOURS;

STDDEV_POP()
Aggregate. Computes the standard deviation of a population consisting of a numeric-
expression, as a DOUBLE.

Syntax
STDDEV_POP(numeric-expression)

Table 208. Parameters

numeric-expression The expression whose population-based standard
deviation is calculated over a set of rows. The ex-
pression is commonly a column name.

This function converts its argument to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. The population-based standard
deviation (s) is computed according to the following formula:

s = [(1/N) * SUM(xi - MEAN(x))2]1/2

This standard deviation does not include rows where numeric-expression is NULL. It returns
NULL for a group containing no rows.

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example demonstrates how to use the STDDEV_POP function to calculate the
standard deviation of a population using data from a CSV file:
-- create input stream schema
CREATE SCHEMA InSchema (
 id STRING,
 x FLOAT,
 y FLOAT

Functions

CCL Reference Guide 235

);

-- create output stream schema
CREATE SCHEMA OutSchema (
 id STRING,
 x FLOAT,
 y FLOAT,
 stddev_pop_result FLOAT,
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema
KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
stddev_pop(x)
FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut
SELECT *
FROM ResultWindow;

Functions

 236 Sybase CEP Option

STDDEV_SAMP()
Aggregate. Computes the standard deviation of a sample consisting of a numeric-expression,
as a DOUBLE.

Syntax
STDDEV_SAMP(numeric-expression)

Table 209. Parameters

numeric-expression The expression whose sample-based standard devi-
ation is calculated over a set of rows. The expression
is commonly a column name.

This function converts its argument to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. The standard deviation (s) is
computed according to the following formula, which assumes a normal distribution:
s = [(1/(N - 1)) * SUM(xi - mean(x))2]1/2

This standard deviation does not include rows where numeric-expression is NULL. It returns
NULL for a group containing either 0 or 1 rows.

SQL/2003 SQL foundation feature (T621) outside of core SQL.

The following example demonstrates how to use the STDDEV_SAMP function to calculate
the standard deviation of a sample using data from a CSV file:
-- create input stream schema
CREATE SCHEMA InSchema (
 id STRING,
 x FLOAT,
 y FLOAT
);

-- create output stream schema
CREATE SCHEMA OutSchema (
 id STRING,
 x FLOAT,
 y FLOAT,
 stddev_samp_result FLOAT,
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema

Functions

CCL Reference Guide 237

KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
stddev_samp(x)
FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut
SELECT *
FROM ResultWindow;

SUBSTR()
Scalar. Returns a specified number of characters from a specific position within a given string.

Syntax
SUBSTR(string, start [, count])

Table 210. Parameters

string The string.

start The first character to return (one-based).

Functions

 238 Sybase CEP Option

count
The number of characters to return. If omitted, returns all characters from start to the
end of the string.

Table 211. Data Types

Return string start count

String String Integer Integer

Example
The following example uses the SUBSTR function to select the fifth and sixth characters of
the value in the LastName column:

INSERT INTO OutStream
SELECT SUBSTR(Employees.LastName, 5, 2)
FROM Employees;

If the value were "Johnson", the returned value would be "so".

SUM()
Aggregate. Returns the sum of the values of a given expression over multiple rows.

Syntax
SUM([DISTINCT] expression)

Table 212. Data Types

Return expression

Integer Integer

Long Long

Float Float

Interval Interval

Example
The following example calculates the sum of the values in the Volume column over the last 5
minutes:

INSERT INTO OutStream
SELECT SUM(Volume) AS VolumeSum
FROM Trades KEEP 5 MINUTES;

Functions

CCL Reference Guide 239

TAN()
Scalar. Returns the tangent, in radians, of a given value.

Syntax
TAN(value)

Table 213. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT TAN(InStream.FloatColumn)
FROM InStream;

TAND()
Scalar. Returns the tangent, in degrees, of a given value.

Syntax
TAND(value)

Table 214. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT TAND(InStream.FloatColumn)
FROM InStream;

TANH()
Scalar. Returns the hyperbolic tangent of a given value.

Syntax
TANH(value)

Functions

 240 Sybase CEP Option

Table 215. Data Types

Return value

Float Float

Example

INSERT INTO OutStream
SELECT TANH(InStream.FloatColumn)
FROM InStream;

THRESHOLD()
Scalar. Determines whether or not the value in a given column crosses a specified threshold.

Syntax
THRESHOLD(UP | DOWN | ANY, column, value)

Table 216. Parameters

column The name of a stream or window column containing a numeric or time value.

value The threshold value. Must be the same data type as the column specified with column.

Table 217. Data Types

Return column value

Boolean String Integer

Long

Float

Interval

Timestamp

Usage
This function returns True if the value in the specified column of the current row is greater than
value after having been less than or equal to value in the previous row (for UP), or less than
value after previously being greater than or equal to value (for DOWN), or either (for ANY).
Note that this function returns True for the first row in a stream or window if the value of the
specified column is greater than value (for UP), less than value (for DOWN), or not equal to
value (for ANY).

If using this function for a window partitioned with GROUP BY or PER, the threshold
comparison applies to each partition individually, not the window as a whole.

Functions

CCL Reference Guide 241

Example
The following example query publishes a row to its destination stream when the value of the
Trades.Price column exceeds 100:

INSERT INTO OutStream
SELECT Symbol, Price, Volume
FROM Trades
WHERE THRESHOLD(UP, Trades.Price, 100);

TO_BLOB()
Scalar. Converts a given string to a BLOB value.

Syntax
TO_BLOB(value)

Table 218. Data Types

Return value

BLOB String

Blob

Example
The following example returns a BLOB based on the input string:

INSERT INTO OutStream
SELECT TO_BLOB('0123456789abcdef') -- BLOB of 8 bytes
FROM ImageData;

TO_BOOLEAN()
Scalar. Converts a given string to a Boolean value

Syntax
TO_BOOLEAN(value)

Table 219. Parameter

value
The value to convert. The strings "True" and "Yes", regardless of case, or the numeral
"1" returns True. NULL returns NULL. Any other string returns False.

Functions

 242 Sybase CEP Option

Table 220. Data Types

Return value

Boolean String

Boolean

Examples
The following examples return a Boolean based on the input string:

INSERT INTO OutStream
SELECT TO_BOOLEAN('FALSE') --returns FALSE
FROM InStream;

INSERT INTO OutStream
SELECT TO_BOOLEAN('TRUE') --returns TRUE
FROM InStream;

INSERT INTO OutStream
SELECT TO_BOOLEAN(LEFT(LTRIM(' false status'), 5));
 --returns FALSE
FROM InStream;

TO_FLOAT()
Scalar. Converts a given value to a floating point value.

Syntax
TO_FLOAT(value)

Table 221. Parameter

value

The value to convert. A String converts based on the format for a Float literal. An
Interval returns a value representing a number of microseconds. A Timestamp returns a
value representing the number of microseconds from the epoch (midnight, January 1,
1970 UTC). Timestamps prior to the epoch convert to a negative value.

Table 222. Data Types

Return value

Float Integer

Long

Float

Functions

CCL Reference Guide 243

Return value

Interval

Timestamp

String

Example
The following example takes the integer value of NumContracts, converts it to a Float and then
multiplies it by the floating point number 100:

INSERT INTO OutStream
SELECT 100.0 * TO_FLOAT(Trades.NumContracts)
FROM Trades;

TO_INTEGER()
Scalar. Converts a given value to an Integer value.

Syntax
TO_INTEGER(value)

Table 223. Parameter

value
The value to convert. Numeric values return the integer portion of the value. Values
outside the valid range for an integer, or non-numeric characters in a string value, return
NULL.

Table 224. Data Types

Return value

Integer Integer

Long

Float

String

Example
The following example uses the integer portion of the result of dividing the value in the Price
column by 9:

INSERT INTO OutStream
SELECT TO_INTEGER(Trades.Price/9.0)>=5
FROM Trades;

Functions

 244 Sybase CEP Option

TO_INTERVAL()
Scalar. Converts a given value to an Interval.

Syntax
TO_INTERVAL(value)

Table 225. Parameter

value
A value representing a number of microseconds. Strings must follow the format for an
Interval literal. See Time Literals for more information.

Table 226. Data Types

Return value

Interval Long

Float

Interval

String

Examples
The following example computes an Interval value from the value in a column representing
microseconds:

INSERT INTO OutStream
SELECT TO_INTERVAL(Devices.MicrosecsSinceReset)
FROM Devices;

The following example computes an Interval value from a String literal:

INSERT INTO OutStream
SELECT TO_INTERVAL('1 02:03:04.567890')
FROM InStream;

TO_LONG()
Scalar. Converts a given value to a Long.

Syntax
TO_LONG(value)

Functions

CCL Reference Guide 245

Table 227. Parameter

value

The value to convert. Numeric values return the integer portion of the value. Values
outside the valid range for a Long, or non-numeric characters in a string value, return
Null. An Interval returns a number of microseconds. A Timestamp returns a value
representing the number of microseconds from the epoch (midnight, January 1, 1970
UTC). Timestamps prior to the epoch convert to a negative value.

Table 228. Data Types

Return value

Long Integer

Long

Float

Interval

Timestamp

String

Examples
The following example employs the Long integer portion of a Float value in a calculation:

INSERT INTO OutStream
SELECT TO_LONG(Trades.Price/9.)>=5
FROM Trades;

The following example returns a number of microseconds:

INSERT INTO OutStream
SELECT TO_LONG(Trades.TradeTime)-TO_LONG(Trades.ExchangeTime)
FROM Trades;

TO_STRING()
Scalar. Converts a given value to a String.

Syntax
TO_STRING(value [, format] [, timezone])

Table 229. Parameters

value The value to convert.

Functions

 246 Sybase CEP Option

format
A format string. Only valid if value is an Integer,
Long, Float, or Timestamp.

timezone
A time zone. Only valid if value is a Timestamp. If
omitted, assumes the local time zone.

Table 230. Data Types

Return value format timezone

String Integer String N/A

Long

Float

Timestamp String

Interval N/A N/A

String

BLOB

Boolean

XML

Usage
This function coverts values as follows:

• For an Integer or Long value, you can include an optional format string that specifies the
format for the string output. The format string follows the ISO standard for fprintf. The
default for Integer expressions is "%ld", while the default for Long expressions is "%lld".
Note: Sybase CEP Engine follows whatever variations or restrictions are placed on printf
for the operating system on which your Sybase CEP Server is being run, so those variations
apply to this format string as well. Also note that an incorrect format string may cause
Sybase CEP Server to exit.

• For a Timestamp value, you can include a format string to control the output format of the
string. The default format is YYYY-MM-DD HH24:MI:SS.FF. See Timestamp Format
Codes for more information. There is also an optional time zone string option. See "Sybase
CEP Time Zone Database" in the Sybase CEP Integration Guide for more information
about valid time zone strings.

• This function coverts a BLOB value to a String containing hexadecimal characters.
• See XMLSERIALIZE for information about converting an XML value to a String.
• For a Float value, you can include an optional format string that specifies the format for the

output of the floating point number. The format string can include the following
characters:

Functions

CCL Reference Guide 247

Character Description

. or D

Returns a decimal point in the specified position.
Only one decimal point can be specified, or the
output will contain number signs instead of the
value.

9

Replaced in the output by a single digit of the
value. The value is returned with as many char-
acters as there are 9s in the format string. If the
value is positive, a leading space is included to the
left of the value. If the value is negative, a leading
minus sign is included to the left of the value.
Excess 9s to the left of the decimal point are re-
placed with spaces, while excess 9s to the right of
the decimal point are replaced with zeroes. Insuf-
ficient 9s to the left of the decimal point returns
number signs instead of the value, while insuffi-
cient 9s to the right of the decimal point result in
rounding. Use FM to strip leading spaces.

0

To the left of the decimal point, replaced in the
output by a single digit of the value or a zero, if the
value does not have a digit in the position of the
zero. To the right of the decimal point, treated as a
9. If the value is positive, a leading space is in-
cluded to the left of the value. If the value is neg-
ative, a leading minus sign is included to the left of
the value. Use FM to strip leading spaces.

EEEE

Returns the value in scientific notation. The out-
put for this format always includes a single digit
before the decimal. Combine with a decimal point
and 9s to specify precision. 9s to the left of the
decimal point are ignored. Must be placed at the
end of the format string.

S

Returns a leading or trailing minus sign (-) or plus
sign (+), depending on whether the value is pos-
itive or negative. Can only be placed at the be-
ginning or end of the format string. Eliminates the
usual single leading space, but not leading spaces
as the result of excess 9s, zeroes, or commas.

$
Returns a leading dollar sign in front of the value.
Can be placed anywhere in the format string.

Functions

 248 Sybase CEP Option

Character Description

,

Returns a comma in the specified position. If there
are no digits to the left of the comma, the comma
is replaced with a space. You can specify multiple
commas, but cannot specify a comma as the first
character in the format, or to the right of the dec-
imal point.

FM Strips leading spaces from the output.

The following table shows several examples of format strings and the resulting output. Note
that a space in the output is represented by a small circle (·):

Example Output

TO_STRING(1234,'9999') "·1234"

TO_STRING(1234.567,'9999') "·1235"

TO_STRING(1234.567,'999') "####"

TO_STRING(1234.567,'9999D999') "·1234.567"

TO_STRING(1234.567,'9999D9') "·1234.6"

TO_STRING(1234.567,'9999.9999') "·1234.5670"

TO_STRING(1234.567,'999999.9999') "···1234.5670"

TO_STRING(1234.567,'009999.999') "·001234.567"

TO_STRING(1234.567,'00000.999') "·01234.567"

TO_STRING(1234.567,'9,999.999') "·1,234.567"

TO_STRING(1234.567,'9,9,999.999') "···1,234.567"

TO_STRING(1234.567,'FM9,9,999.999') "1,234.567"

TO_STRING(1234.567,'$9,999.999') "·$1,234.567"

TO_STRING(1234.567,'9,999.$999') "·$1,234.567"

TO_STRING(1234.567,'EEEE') "1E+03"

TO_STRING(1234.567,'.999EEEE') "1.235E+03"

TO_STRING(1234.567,'999.999EEEE') "1.235E+03"

TO_STRING(1234.567,'.99999999EEEE') "1.23456700E+03"

TO_STRING(1234.567,'S9,999.99') "+1,234.57"

TO_STRING(1234.567,'9,999.99S') "1,234.57+"

Functions

CCL Reference Guide 249

Example Output

TO_STRING(1234.567,'9,9,999.99S') "··1,234.57+"

TO_STRING(1234.567,'FM9,9,999.99S') "1,234.57+"

Examples
The following example converts a numeric value to a string:

INSERT INTO OutStream
SELECT TO_STRING(Trades.Price)
FROM Trades;

The following example converts a TIMESTAMP to a STRING with a format specifying
precision:

INSERT INTO OutStream
SELECT TO_STRING(Trades.TradeTime, 'YYYY-MM-DD HH:MI')
FROM Trades;

TO_TIMESTAMP()
Scalar. Converts a given value to a Timestamp.

Syntax
TO_TIMESTAMP(value) TO_TIMESTAMP(value, format)

Table 231. Parameters

value
The value to convert. Numeric values represent
the number of microseconds from the epoch
(midnight, January 1, 1970 UTC).

format
A format string. Only valid if value is a String. See
Timestamp Format Codes for more information.

Table 232. Data Types

Return value format

Timestamp Long N/A

Float

Timestamp

String String

Functions

 250 Sybase CEP Option

Example
The following example reads a string in the specified format and converts it to a Timestamp:

INSERT INTO OutStream
SELECT TO_TIMESTAMP(Log.Time, 'DY MON DD HH24:MI:SS YYYY')
 AS Time
FROM Log;

XMLPARSE() and TO_XML() functions
Scalar. Converts (casts) a string expression to XML.

Syntax
XMLPARSE(value) TO_XML(value)

Table 233. Parameters

value The value to convert.

Table 234. Data Types

Return value

XML String

XML

See Also

• XMLSERIALIZE

Example
The following example shows an extraction, serialization (to string), and reparsing:

INSERT INTO OutStream
SELECT XMLPARSE(XMLSERIALIZE(XMLEXTRACT(OrderVal2,'//item')))
FROM Orders;

TRIM()
Scalar. Returns a given string after removing leading and trailing spaces.

Syntax
TRIM(string)

Functions

CCL Reference Guide 251

Table 235. Data Types

Return string

String String

Example
The following example uses the TRIM function to remove leading and trailing spaces from the
value in the Symbol column:

INSERT INTO OutStream
SELECT TRIM(Trades.Symbol)
FROM Trades;

UPPER()
Scalar. Returns a given string with all characters converted to upper case.

Syntax
UPPER(string)

Table 236. Data Types

Return string

String String

Example
The following example uses the UPPER function to convert the value of StockName to all
upper-case characters:

INSERT INTO OutStream
SELECT UPPER(Trades.StockName)
FROM Trades;

USERNAME()
Scalar. Returns the user name of the owner of the current query module file. Only valid if the
Sybase CEP Server is configured for user authentication.

Syntax
USERNAME()

Functions

 252 Sybase CEP Option

Table 237. Data Types

Return

String

Example

INSERT INTO OutStream
SELECT USERNAME(), InStream.Password
FROM InStream;

VARIANCE()
Aggregate. Computes the statistical variance of a sample consisting of a numerical-
expression, as a DOUBLE. The VARIANCE() function is an alias for VAR_SAMP(); the alias
is a vendor extension and not specified by ANSI SQL.

VAR_POP()
Aggregate. Computes the statistical variance of a population consisting of a numeric-
expression, as a DOUBLE.

Syntax
VAR_POP(numeric-expression)

Table 238. Parameters

numeric-expression The expression whose population-based variance is
calculated over a set of rows. The expression is
commonly a column name.

This function converts its argument to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. The population-based variance
(s2) of numeric-expression (x) is computed according to the following formula:
s2 = (1/N) * SUM(xi - mean(x))2

This variance does not include rows where numeric-expression is NULL. It returns NULL for
a group containing no rows.

SQL/2003 SQL foundation feature (T611) outside of core SQL.

The following example demonstrates how to use the VAR_POP function to calculate the
statistical variance of a populationusing data from a CSV file:
-- create input stream schema
CREATE SCHEMA InSchema (

Functions

CCL Reference Guide 253

 id STRING,
 x FLOAT,
 y FLOAT
);

-- create output stream schema
CREATE SCHEMA OutSchema (
 id STRING,
 x FLOAT,
 y FLOAT,
 var_pop_result FLOAT,
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema
KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
var_pop(x)
FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut

Functions

 254 Sybase CEP Option

SELECT *
FROM ResultWindow;

VAR_SAMP()
Aggregate. Computes the statistical variance of a sample consisting of a numeric-expression,
as a DOUBLE.

Syntax
VAR_SAMP(numeric-expression)

Table 239. Parameters

numeric-expression The expression whose sample-based variance is
calculated over a set of rows. The expression is
commonly a column name.

Usage
This function converts its argument to DOUBLE, performs the computation in double-
precision floating point, and returns a DOUBLE as the result. The variance (s2) of numeric-
expression (x) is computed according to the following formula, which assumes a normal
distribution:
s2 = (1/(N - 1)) * SUM(xi - mean(x))2

This variance does not include rows where numeric-expression is NULL. It returns NULL for
a group containing either 0 or 1 rows.

SQL/2003 SQL foundation feature outside of core SQL. The VARIANCE syntax is a vendor
extension.

The following example demonstrates how to use the VAR_SAMP functionto calculate the
statistical variance of a sample of data from a CSV file:
-- create input stream schema
CREATE SCHEMA InSchema (
 id STRING,
 x FLOAT,
 y FLOAT
);

-- create output stream schema
CREATE SCHEMA OutSchema (
 id STRING,
 x FLOAT,
 y FLOAT,
 var_samp_result FLOAT,
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

Functions

CCL Reference Guide 255

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema
KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
var_samp(x)
FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut
SELECT *
FROM ResultWindow;

VWAP()
Aggregate. The VWAP function computes a volume-weighted average price for an
instrument.

Syntax
VWAP (price_expression, volume_expression)

Functions

 256 Sybase CEP Option

Table 240. Parameters

price_expression a numeric expression containing a price to be in-
corporated into a volume-weighted average.

volume_expression a numeric expression containing a volume to be
used in calculating a volume-weighted average.

VWAP is a trading acronym for Volume-Weighted Average Price, the ratio of the value traded
to total volume traded over a particular time horizon (usually one day). It is a measure of the
average price a stock traded at over the trading horizon.

VWAP can be measured between any two points in time but is displayed as the one
corresponding to elapsed time during the trading day by the information provider.

VWAP is often used in algorithmic trading. The VWAP is calculated using the following
formula:

where:

PVWAP = Volume Weighted Average Price

Pj = price of trade j

Qj = quantity of trade

j = each individual trade that takes place over the defined period of time, excluding cross trades
and basket cross trades.

Sybase extension.

The following example demonstrates how the VWAP function is used to calculate volume
weighted averages for data in a CSV file,

where:

id = company trade symbol

x = stock price

y = volume traded
-- create input stream schema
CREATE SCHEMA InSchema (
 id STRING,
 x FLOAT,
 y FLOAT
);

-- create output stream schema
CREATE SCHEMA OutSchema (

Functions

CCL Reference Guide 257

 id STRING,
 x FLOAT,
 y FLOAT,
 vwap_result FLOAT
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema
KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
vwap(y,1)
FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut
SELECT *
FROM ResultWindow;

Sample result:

Timestamp id x y vwap_result

Functions

 258 Sybase CEP Option

...

1.25922E+15 IBM 75.15 9800 9800

1.25922E+15 SWY 21.7 400 5100

1.25922E+15 MW 37.08 200 3466.666667

...

WEIGHTED_AVG()
Aggregate. Calculates an arithmetically (or linearly) weighted average.

Syntax
WEIGHTED_AVG(expression)

Table 241. Parameters

expression A numeric expression for which a weighted value
is to be computed.

An arithmetic weighted average is any average that has multiplying factors to give different
weights to different data points. But in technical analysis a weighted moving average (WMA)
has the specific meaning of weights which decrease arithmetically. In an n-day WMA the
latest day has weight n, the second latest n − 1, etc, down to zero:

The graph at the right shows how the weights decrease, from highest weight for the most
recent data points, down to zero. It can be compared to the weights in the exponential moving
average which follows. It's important to remember that for more exaggerated weighting on the
ongoing values, you may use an EMA. You could also average two or more WMA together.

Sybase extension.

Functions

CCL Reference Guide 259

The following example demonstrates how to use the WEIGHTED_AVG functionto calculate
the weighted average of data in a CSV file:
-- create input stream schema
CREATE SCHEMA InSchema (
 id STRING,
 x FLOAT,
 y FLOAT
);

-- create output stream schema
CREATE SCHEMA OutSchema (
 id STRING,
 x FLOAT,
 y FLOAT,
 weighted_avg_result FLOAT,
);

-- create input stream
CREATE INPUT STREAM StreamIn
SCHEMA InSchema;

-- create master window
CREATE MASTER WINDOW ResultWindow
SCHEMA OutSchema
KEEP 5 ROWS
;

-- create output stream
CREATE OUTPUT STREAM StreamOut
SCHEMA OutSchema;

-- input stream read data from csv file by ReadFromCsvFileAdapterType
adapter
ATTACH INPUT ADAPTER ReadFromCSVFile TYPE ReadFromCsvFileAdapterType
TO STREAM StreamIn
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\data.csv",
 TITLEROW = "false",
 TIMESTAMPCOLUMN = "false",
 RATE = "1",
 USECURRENTTIMESTAMP = "true"
;

-- output stream write data to csv file by WriteToCsvFileAdapterType
adapter
ATTACH OUTPUT ADAPTER WriteToCSVFile TYPE WriteToCsvFileAdapterType
TO STREAM StreamOut
PROPERTIES
 FILENAME = "$ProjectFolder\..\data\result.csv"
;

-- insert the calculated result to window
INSERT INTO ResultWindow
SELECT id,x,y,
weighted_avg(x)

Functions

 260 Sybase CEP Option

FROM StreamIn
KEEP 5 ROWS;

INSERT INTO StreamOut
SELECT *
FROM ResultWindow;

XMLAGG()
Aggregate. Returns a single XML result aggregated over a group of rows.

Syntax
XMLAGG(expression)

Table 242. Parameter

expression An expression that evaluates to an XML value.

Table 243. Data Types

Return expression

XML XML

Usage
All results are concatenated (ignoring Nulls). Note that windows are not required with
XMLAGG.

See Also

• XMLELEMENT

Example
The following example shows the construction of an element called "orders", where the
children of orders are "orderid" elements, one of each from each resulting row of the join:

INSERT INTO OutStream
SELECT XMLELEMENT("orders",
 XMLAGG(XMLELEMENT("orderid", orders.orderid)))
FROM Orders KEEP 1 HOUR, Shipments;

Functions

CCL Reference Guide 261

XMLATTRIBUTES()
Scalar. Appends one or more attributes to an XML element being constructed with
XMLELEMENT().

Syntax
XMLATTRIBUTES(value AS name [, ...])

Table 244. Parameters

value
The value of the attribute. If Null, the function
generates no attribute.

name
The unique name of the attribute. The name must
obey XML naming conventions and be in-scope
for XML name spaces.

Table 245. Data Types

Return value name

XML String String

See Also

• XMLELEMENT

Example
The following example shows an attribute being inserted during the construction of an XML
element:

INSERT INTO OutStream
SELECT XMLELEMENT("order",
 XMLATTRIBUTES(orders.customerName AS "custname"),
 XMLELEMENT("orderid", orders.orderid))
FROM Orders;

XMLCOMMENT()
Scalar. Appends a comment to an xml element being constructed with XMLELEMENT().

Description
Scalar. Appends a comment to an XML element being constructed with XMLELEMENT().

Functions

 262 Sybase CEP Option

Syntax
XMLCOMMENT(comment)

Table 246. Parameter

comment The comment.

Table 247. Data Types

Return comment

XML String

See Also

• XMLELEMENT

Example
The following example shows a comment node being inserted during the construction of an
XML element:

INSERT INTO OutStream
SELECT XMLELEMENT("billing",
 XMLCOMMENT('put your comment here'),
 'some value',
 XMLELEMENT("done"))
FROM Billing;
...

XMLCONCAT()
Scalar. Concatenates XML expressions.

Syntax
XMLCONCAT(expression, expression [, ...])

Table 248. Parameter

expression

An expression that evaluates to an XML value.
Ignored if Null. If a sequence of XML trees, Syb-
ase CEP Engine concatenates each element tree in
order.

Functions

CCL Reference Guide 263

Table 249. Data Types

Return expression

XML XML

Example
The following example shows concatenation of two XML elements:

INSERT INTO OutStream
SELECT XMLCONCAT(XMLELEMENT("name", orders.customerName),
 XMLELEMENT("city", orders.customerCity))
FROM Orders;

XMLDELETE()
Scalar. Deletes element trees from an XML value.

Syntax
XMLDELETE(value, xpath)

Table 250. Parameters

value The XML to modify.

xpath
An XPATH string specifying what to delete from
value.

Table 251. Data Types

Return value xpath

XML XML String

Usage
Sybase CEP Engine uses XPATH to locate the element trees specified by xpath in value.
Sybase CEP Engine logs a warning for any non-element nodes it finds in value, but otherwise
ignores them. It deletes each element tree it finds matching xpath, in document order. If both a
tree and an ancestor of the tree match, Sybase CEP Engine only deletes the ancestor.

See Also

• XMLUPDATE
• XMLINSERT

Functions

 264 Sybase CEP Option

Example
The following example shows removing the shipping METHOD nodes from the value in the
orderVal column:

INSERT INTO OutStream
SELECT XMLDELETE (O.orderVal, '//METHOD')
FROM O;

XMLELEMENT()
Scalar. Constructs an XML element tree.

Syntax
XMLELEMENT([NAME] "name" [, namespace] [, xmlattribute] { [,
{ xmlpi | xmlcomment | content }] [, ...] })

Table 252. Parameters

name
The name of the element. Must conform to XML
name conventions including XML name spaces.

namespace
Defines a name space for this element. See name-
space for more information.

xmlattribute
Defines an XML attribute. See XMLATTRI-
BUTES() for more information.

xmlpi
An XML processing instruction. See XMLPI()
for more information.

xmlcomment
A comment. See XMLCOMMENT() for more
information.

content Content for the element.

Table 253. Data Types

Return name content

XML String String

XML

namespace
XMLNAMESPACES({ uri AS prefix | DEFAULT uri | NO DEFAULT }
[, ...])

Functions

CCL Reference Guide 265

Table 254. Parameters

uri The URI of an XML name space.

prefix
A literal specifying the prefix for the name space.
Each prefix must be unique for each call to this
function.

Table 255. Data Types

Return uri prefix

String String String

See Also

• XMLAGG
• XMLPI
• XMLATTRIBUTES
• XMLCOMMENT

Example
The following example shows the construction of an XML element tree:

SELECT
 XMLELEMENT("order",
 XMLELEMENT("orderid", orders.orderid),
 XMLELEMENT("billing",
 XMLELEMENT("name", orders.customername),
 XMLELEMENT("city", orders.customerCity),
 XMLELEMENT("state", orders.customerState)
)
)
FROM Orders;

XMLEXISTS()
Scalar. Determines whether or not the results of an XPATH expression exists in an XML
element.

Syntax
XMLEXISTS(xpath [, PASSING value])

Table 256. Parameters

xpath The XPATH expression.

Functions

 266 Sybase CEP Option

value
The XML value. Can be omitted when used with
XMLTABLE.

Table 257. Data Types

Return xpath value

Boolean String XML

Usage
Sybase CEP evaluates xpath and returns True if it locates the results in value, False if it does
not, and Null if evaluating xpath results in Null or an error.

See Also

• XMLEXTRACT

Example
The following example shows testing for PA as the state:

INSERT INTO OutStream
SELECT orderid, customername
FROM Order2
WHERE XMLEXISTS ('//state[.=''PA'']', PASSING orderval2);

XMLEXTRACT()
Scalar. Extracts the portion of an XML value that matches a given XPATH expression.

Syntax
XMLEXTRACT([value ,] xpath])

Table 258. Parameters

value
The XML value. Can be omitted when used with
XMLTABLE.

xpath The XPATH expression.

Table 259. Data Types

Return value xpath

XML XML String

Usage
Sybase CEP Engine evaluates the XPATH expression xpath against the specified value (or the
implicit value in XMLTABLE) and returns the matching portion, if found. If xpath is a

Functions

CCL Reference Guide 267

sequence, Sybase CEP Engine evaluates the sequence in order and concatenates the results. If
value is Null, XMLEXTRACT returns Null. If a partial XPATH result is not an element tree or
a sequence of element trees, XPATH generates a warning and ignores the partial result.

See Also

• XMLEXTRACTVALUE
• XMLTABLE Expressions in the FROM Clause

Example
The following example shows an extraction of all "orderid" element nodes:

INSERT INTO OutStream
SELECT XMLEXTRACT(OrderVal2,'//orderid')
FROM Orders;

XMLEXTRACTVALUE()
Scalar. Extracts the value of an XML element tree that matches a given XPATH expression.

Syntax
XMLEXTRACTVALUE([value ,] xpath])

Table 260. Parameters

value
The XML value. Can be omitted when used with
XMLTABLE.

xpath The XPATH expression.

Table 261. Data Types

Return value xpath

String XML String

Usage
If value is Null, XMLEXTRACTVALUE returns Null. If the XPATH comparison returns
more than one possible value, Sybase CEP Engine returns the first value and issues a warning
that other values were found.

See Also

• XMLEXTRACT
• XMLTABLE Expressions in the FROM Clause

Functions

 268 Sybase CEP Option

Example
The following example shows an extraction of all "items" element nodes:

INSERT INTO OutStream
SELECT XMLEXTRACTVALUE(OrderVal1,'//items')
FROM Orders;

XMLINSERT()
Scalar. Inserts one XML value into another XML value.

Syntax
XMLINSERT(value , insert, { FIRST|LAST|AFTER|BEFORE }
xpath])

Table 262. Parameters

value The original XML value.

insert The XML value to insert.

xpath
An XPATH expression. insert is inserted into val-
ue based on the location of a match for this ex-
pression.

Table 263. Data Types

Return value insert xpath

XML XML XML String

Usage
Sybase CEP Engine locates the element nodes in value that match xpath. If Sybase CEP
Engine locates any non-element nodes, it logs a warning and ignores the nodes. For each
matched element tree, Sybase CEP Engine inserts the specified XML value as follows:

• FIRST: Adds insert as the first child of the matched tree.
• LAST: Adds insert as the last child of the matched tree.
• AFTER: Adds insert after the matched tree (at the same level as the selected tree).
• BEFORE: Adds insert before the matched tree (at the same level as the selected tree).

See Also

• XMLDELETE
• XMLUPDATE

Functions

CCL Reference Guide 269

Example
The following example shows adding a tracking number to an order after the METHOD
nodes:

INSERT INTO OutStream
SELECT XMLINSERT (O.orderVal,
 XMLPARSE ('<TRACKINGNO>T060023456</TRACKINGNO>'),
 AFTER '//METHOD')
FROM O;

XMLPATTERNMATCH()
Aggregate. Generates an XML tree contianing all matches detected by a pattern-matching
query.

Syntax
XMLPATTERNMATCH([root])

Table 264. Parameters

root
The root element name for the generated tree. If
omitted, the root is PatternMatch.

Table 265. Data Types

Return root

XML String

Usage
The XMLPATTERNMATCH function performs causality tracking by generating an XML
tree that contains all matches (except non-events) detected by a pattern-matching query. This
function is allowed only in the SELECT clause of a query that contains a MATCHING clause.
XMLPATTERNMATCH() generates an XML tree for every group of events that produces the
match specified in the MATCHING clause, except events specified by the !stream-name
syntax.

The root element contains an element for each of the data streams involved in the pattern
match. Where the streams in question are aliased, the corresponding element has the name of
the stream's alias. Each element has the same name as the corresponding stream (or its alias, if
one exists).

Every element associated with a data stream contains a sub-element for each column defined
in the stream schema and having the same name. Each of the column sub-elements contains its
respective row value. Regardless of whether or not a timestamp column is defined in the

Functions

 270 Sybase CEP Option

schema, a sub-element called "C8_Timestamp" containing the row timestamp value is
automatically created in the element associated with the stream.

Important: While stream and column names are case-insensitive in CCL, XML element
names are case-sensitive. In creating the element tree, XMLPATTERNMATCH() uses the
same capitalization as is specified in the root-element-name argument, stream aliases or (in
the absence of an alias) stream definitions, and schema column definitions.

Example
The following example shows two stream schema definitions, followed by a query that uses
the XMLPATTERNMATCH function:

CREATE STREAM Trades SCHEMA (Symbol STRING,
 Quantity FLOAT, Price FLOAT);
CREATE STREAM Quotes SCHEMA (Symbol STRING,
 Bid FLOAT, Ask FLOAT);
INSERT INTO TradeMismatch
SELECT XMLPATTERNMATCH()
FROM Quotes as Q, Trades as T
MATCHING [10 seconds: Q, T]
ON Q.Symbol = T.Symbol
WHERE T.Price < Q.Bid OR T.Price > Q.Ask

The following sample XML tree was generated by XMLPATTERNMATCH when a pattern
match is detected by the query:

<PatternMatch>
 <Q>
 <C8_Timestamp>
 2207-11-26 16:23:27.203157
 </C8_Timestamp>
 <Symbol>
 IBM
 </Symbol>
 <Bid>
 102
 </Bid>
 <Ask>
 104
 </Ask>
 </Q>
 <T>
 <C8_Timestamp>
 2207-11-26 16:25:53.307201
 </C8_Timestamp>
 <Symbol>
 IBM
 </Symbol>
 <Quantity>
 100
 </Quantity>
 <Price>

Functions

CCL Reference Guide 271

 98
 </Price>
 </T>
<PatternMatch>

XMLPI()
Scalar. Adds a processing instruction node to an XML element being constructed with
XMLELEMENT().

Syntax
XMLPI(target [, value])

Table 266. Parameters

target The processing instruction.

value The value.

Table 267. Data Types

Return target value

none String String

Usage
Adds a processing instruction node to an XML element. The target must follow the rules of the
XMLELEMENT name, and therefore must be quoted. This function can only be used as an
argument to XMLELEMENT.

See Also

• XMLELEMENT

Example
The following example shows a simple XML processing instruction:

INSERT INTO OutStream
SELECT XMLELEMENT("billing",
 XMLPI("sort", 'ascending'),
 'some value',
 XMLELEMENT("done"))
FROM Orders;

Functions

 272 Sybase CEP Option

XMLSERIALIZE()
Scalar. Converts an XML value to a String. Note that this function is the same as
TO_STRING() with an XML parameter.

Syntax
XMLSERIALIZE(value)

Table 268. Parameters

value The value to convert.

Table 269. Data Types

Return value

String XML

String

See Also

• XMLPARSE

Example
The following example shows an extraction and serialization (to string):

INSERT INTO OutStream
SELECT XMLSERIALIZE(XMLEXTRACT(OrderVal2,'//item'))
FROM Orders;

XMLTRANSFORM()
Scalar. Applies and XSL transformation (XSLT) to an XML value.

Syntax
XMLTRANSFORM(value, transform)

Table 270. Parameters

value The value to modify.

transform The XSLT string to apply.

Functions

CCL Reference Guide 273

Table 271. Data Types

Return value transform

XML XML XML

Usage
Any transform returning a value of Null is eliminated from the result. If value is Null, or if the
sequence produced is of zero length, then the function returns Null.

See Also

• XMLPARSE
• XMLSERIALIZE

Example
The following example shows a transform. Note: The string inside of XMLPARSE is intended
to be one long string:

INSERT INTO OutStream
SELECT XMLTRANSFORM(OrderVal1
 XMLPARSE('<xsl:stylesheet version = ''1.0''
 xmlns:xsl=''http://www.w3.org/1999/XSL/Transform''>
 <xsl:template match="/">
 <custname><xsl:value-of select="//name"/></custname>
 <providerID><xsl:value-of select=
 "//orderid"/></providerID>
 </xsl:template>
 </xsl:stylesheet>'))
FROM Trades;

XMLUPDATE()
Scalar. Replaces sections of an XML value matching a given XPATH string with another XML
value.

Syntax
XMLUPDATE(value, update, xpath)

Table 272. Parameters

value The value to modify.

update The replacement.

xpath
The XPATH string. Element trees in value match-
ing this string are replaced with update.

Functions

 274 Sybase CEP Option

Table 273. Data Types

Return value update xpath

XML XML XML String

Usage
Sybase CEP Engine locates the element nodes in value that match xpath. If Sybase CEP
Engine locates any non-element nodes, it logs a warning and ignores the nodes. Sybase CEP
Engine replaces each matched element tree with update. Sybase CEP Engine performs the
replacement in document order, so if both a tree and an ancestor of the tree match, Sybase CEP
Engine only replaces the ancestor.

See Also

• XMLDELETE
• XMLINSERT

Example
The following example shows changing the shipping METHOD nodes to "air":

INSERT INTO OutStream
SELECT XMLUPDATE (O.orderVal,
 XMLPARSE ('<METHOD>air</METHOD>'),
 '//METHOD')
FROM O;

XPATH()
Scalar. Returns the value in the string representation of an XML element matching an XPATH
expression.

Syntax
XPATH(value, xpath)

Table 274. Parameters

value The value to search.

xpath
The XPATH string. The value of the element in
value matching this string is extracted.

Table 275. Data Types

Return value xpath

String String String

Functions

CCL Reference Guide 275

Example
The following example uses the XPATH function to return the first item element in the
transaction element contained in the STRING column identified by Orders.lineitems:

INSERT INTO OutStream
SELECT XPATH(Orders.lineitems, "//transaction/item[1]")
FROM Orders;

YEAR()
Scalar. Returns an integer representing the year as extracted from a timestamp value.

Syntax
YEAR(timestamp [, timezone])

Table 276. Parameters

timestamp An expression that evaluates to a timestamp value.

timezone
A string representing the time zone. If omitted, Sybase CEP Engine assumes the local
time zone. See "Sybase CEP Time Zone Database" in the Sybase CEP Integration
Guide for more information about valid time zone strings.

Table 277. Data Types

Return timestamp timezone

Integer Timestamp String

Usage
If either parameter is NULL, the function returns NULL.

Example

INSERT INTO OutStream
SELECT YEAR(InStream.OrderTime)
FROM InStream;

Functions

 276 Sybase CEP Option

Sybase CEP Function Language Function
Language

Sybase CEP Function Language creates CCL user-defined functions which are used
interchangeable with predefined functions.

Use the Sybase CEP Function Language (CFL) to create CCL user-defined functions (UDFs),
which can be used interchangeably with predefined functions. Use the Create Function
statement to create a CCL UDF. The CCL Function Language consists of simple statements
and block statements.

Simple Statements
Simple statements include:

• Create Variable statement: Declares a variable name and data type and optionally assigns a
value to the variable.

• Assignment statement: Assigns a value to a variable created with the Create Variable
statement.

• Return statement: Indicates the end of function execution.
• Break statement: Exits a WHILE loop (used only inside a While statement).
• Continue statement: Interrupts the execution of a WHILE loop and forces a re-evaluation

of the WHILE condition (used only inside a While statement).

The following rules apply to all simple CFL statements:

• Simple statements always appear inside the Create Function statement, either directly or as
part of an enclosing block statement.

• Except where otherwise specified, expressions used in the simple statements can include
any of the following:
• CCL operators.
• Function parameters declared in the Create Function statement.
• Variables defined with a CFL Create Variable statement, whose scope makes them

visible to the referring statement.
• Predefined Sybase CEP scalar functions (aggregate and miscellaneous predefined

functions cannot be used in CCL UDF definitions).
• Other CCL UDFs.

Block Statements
Block statements include:

• If statement: Provides alternative execution based on one or more conditional expressions.

Sybase CEP Function Language Function Language

CCL Reference Guide 277

• Case statement: Provides alternative execution based on one or more conditional
expressions.

• While statement: Provides repetitive execution (a loop) based on a simple conditional
expression.

• The following rules apply to all block CFL statements:
• Block statements always appear inside the Create Function statement, either directly or

nested in other block statements.
• The conditions specified within block statements are Boolean expressions. These Boolean

expressions are subject to the same restrictions as expressions within simple CFL
statements.

ASSIGNMENT statement
Changes the value of a variable.

Syntax
variable = value;

Table 278. Components

variable
The name of a variable defined with a Create
Variable statement. The variable must be within
the scope of the current code block.

value

An expression that evaluates to a value of the type
specified for the variable when it was created, or a
type that is implicitly converted to the correct data
type (see Implicit Data Type Conversions for
more information).

Restrictions

• If the Assignment statement attempts to change the value of a variable that is not within its
scope, a compilation error occurs.

• If expression evaluates to a data type that is different from the variable, a compilation error
occurs.

See Also

• Create Variable Statement

Examples
The following example creates a variable called ii, which is visible to the entire function.
Assignment statements then assign values to the variable throughout the function.

CREATE FUNCTION MyFunction(InputPar FLOAT) RETURNS FLOAT

Sybase CEP Function Language Function Language

 278 Sybase CEP Option

 CREATE VARIABLE FLOAT res = SIN(InputPar) + COS(InputPar);
 CREATE VARIABLE INTEGER ii;
 IF InputPar > 0 THEN
 ii = ROUND(InputPar, 0);
 WHILE(ii > 0) DO
 res = res + ii * sin(ii / 2);
 ii = ii - 1;
 END;
 ELSE
 ii = ROUND(-InputPar, 0);
 WHILE(ii > 0) DO
 res = res + ii * cos(ii / 2);
 ii = ii - 1 ;
 END;
 END;
 RETURN res;
END FUNCTION;

BREAK statement
Forces an immediate exit from a WHILE loop. Only valid inside the DO clause of a WHILE
statement.

Syntax
BREAK;

Example

CREATE FUNCTION BreakContinueDemo(
 Value Integer, SkipMultiples Integer, StopValue Integer)
RETURNS INTEGER
BEGIN
 CREATE VARIABLE INTEGER Result = 0;
 WHILE 0 < Value DO
 IF VALUE = StopValue THEN
 BREAK;
 END IF;
 IF SkipMultiples != 0
 and VALUE mod SkipMultiples = 0 THEN
 Value = Value - 1;
 CONTINUE;
 END IF;
 Result = Result + Value;
 Value = Value - 1;
 END WHILE;
 RETURN Result;
END FUNCTION;

Sybase CEP Function Language Function Language

CCL Reference Guide 279

CASE statement
Executes the frist statement block whose condition is true.

Syntax
CASE { WHEN condition THEN [cfl_statement] [...] } [...]
[ELSE [cfl_statement] [...]] END [CASE] ;

Table 279. Components

condition

A Boolean expression, consisting of CCL opera-
tors, variables defined within the UDF definition,
and/or parameters defined in the Create Function
Statement.

cfl_statement
A CFL statement. See Create Function Statement
for more information.

Usage
The CFL Case statement is similar to the CCL CASE expression, but uses Sybase CEP
Function Language components in its conditions and THEN and ELSE clauses, and is limited
in scope according to the same rules as other block CFL statements.

The Case statement specifies one or more WHEN clauses, each of which contains a Boolean
condition and a THEN subclause with a block of CFL statements. The WHEN clauses are
evaluated in sequence.

The first clause that evaluates to true executes the block of statements associated with its
THEN subclause. All subsequent WHEN clauses are then ignored.

If none of the WHEN clause conditions are true, the statements associated with the ELSE
clause (if one is specified) are executed.

If no ELSE clause exists and none of the WHEN clause conditions are true, no statements are
executed.

See Also

• If Statement

Examples
The following example defines three cases, which result in a return of -1, 0, or 1, depending on
the value of the passed-in parameter.

CREATE FUNCTION Compare(Value INTEGER)
RETURNS INTEGER
 CASE

Sybase CEP Function Language Function Language

 280 Sybase CEP Option

 WHEN Value < 0 THEN RETURN -1
 WHEN Value =0 THEN RETUNRN 0;
 ELSE RETURN 1;
 END CASE;
END FUNCTION;

CONTINUE statement
Interrupts the execution of a WHILE loop and forces a reevaluation of the WHILE condition.
Only valid inside the DO clause of a While Statement.

Syntax
CONTINUE;

Usage
The Continue statement interrupts the execution of a WHILE loop and re-evaluates the
WHILE condition. If the condition is still true, the next execution of the loop begins. If the
condition is false, then the While statement is exited and the next statement in the function
outside of the loop is executed.

Example

CREATE FUNCTION BreakContinueDemo(
 Value Integer, SkipMultiples Integer, StopValue Integer)
RETURNS INTEGER
BEGIN
 CREATE VARIABLE INTEGER Result = 0;
 WHILE 0 < Value DO
 IF VALUE = StopValue THEN
 BREAK;
 END IF;
 IF SkipMultiples != 0
 and VALUE mod SkipMultiples = 0 THEN
 Value = Value - 1;
 CONTINUE;
 END IF;
 Result = Result + Value;
 Value = Value - 1;
 END WHILE;
 RETURN Result;
END FUNCTION;

Sybase CEP Function Language Function Language

CCL Reference Guide 281

Create Variables statement (within function)
Defines a variable within the function and initializes its variable.

Syntax
CREATE VARIABLE data_type name [= value] ;

Table 280. Components

data_type The CCL data type of the variable.

name The name of the variable.

value A literal of the specified type.

Usage
This statement creates a variable which can be used by subsequent CFL statements inside the
block. As with other CFL statements, the scope of this form of the Create Variable statement is
the block. A different, though syntactically identical, usage of the Create Variable statement is
within a query module. For more information, see Create Variable Statement. The variable is
created by defining its data type and name. Optionally, the variable can also be initialized with
a constant or expression of the same type as variable. (Literals of type STRING must be
enclosed in quotation marks.) If a variable is not initialized in the Create Variable statement,
the variable's value is initialized to NULL. The variable value can be set later using the
Assignment Statement.

Restrictions

• The variable must be created before being used in other CFL statements in the block.
• A variable name must be unique within the Create Function statement.

See Also

• Assignment Statement

Examples
The following example creates several variables. The variable called res is visible to the whole
function, but the two occurrences of variable ii are visible only in the respective blocks of the If
statement.

CREATE FUNCTION MyFunction(InputPar FLOAT) RETURNS FLOAT;
 CREATE VARIABLE FLOAT res = SIN(InputPar) + COS(InputPar);
 IF InputPar > 0 THEN
 CREATE VARIABLE INTEGER ii = TO_INTEGER(ROUND(InputPar, 0));
 WHILE(ii > 0) DO
 res = res + ii * sin(ii / 2);

Sybase CEP Function Language Function Language

 282 Sybase CEP Option

 ii = ii - 1;
 END;
 ELSE
 CREATE VARIABLE INTEGER ii = TO_INTEGER(ROUND(-InputPar, 0));
 WHILE(ii > 0) DO
 res = res + ii * cos(ii / 2);
 ii = ii - 1 ;
 END;
 END;
 RETURN res;
END FUNCTION;

CFL Variable Scope
CFL variable Scope describes the part of the UDF where the variable can be used.

The scope of a CFL variable describes the part of the UDF where the variable can be used. All
variables have scope only within the block in which they are defined, and only after they are
defined in the block (forward references are not supported). A block is a set of statements
contained within:

• A CCL UDF defined in a Create Function statement.
• Either the THEN or ELSE clauses of an If statement.
• Any one of the WHEN clauses or the ELSE clause of a Case statement.
• A While statement.

The conditions that appear in the If statement, Case statement, and While statement are in the
scope of the surrounding block or function.

The scope of all parameters to any function and all variables that are defined outside of any
nested block in the Create Function statement itself is the entire UDF. The scope of all
variables that are defined inside any block except the Create Function statement itself is that
block and any blocks nested inside that block.

Any variable that is created inside the Create Function statement or any nested block can be
used only after it has been created (forward references are not permitted).

IF statement
Executes the first statement block whose condition is true.

Syntax
IF (condition) THEN { cfl_statement } [, ...] [ELSEIF
(condition) THEN { cfl_statement } [, ...]] [ELSE
{ cfl_statement } [, ...]] END [IF] ;

Sybase CEP Function Language Function Language

CCL Reference Guide 283

Table 281. Components

condition

A Boolean expression, consisting of CCL opera-
tors, variables defined within the UDF, and/or
parameters defined in the Create Function state-
ment.

cfl_statement
Any valid CFL statement. See CCL Function
Language Overview and Create Function State-
ment for more information.

Usage
The CFL If statement is similar to the CCL IF expression, but uses CFL components in its
conditions and THEN, ELSEIF, and ELSE clauses, and is limited in scope according to the
same rules as other CFL block statements.

The IF clause of the statement specifies a Boolean condition. If this condition is true, the block
of statements after the first THEN clause are executed.

If the condition is false, the conditions of the ELSEIF clauses (if any are specified) are
evaluated in sequence. The first of these conditions that evaluates to true causes the block of
statements following the associated THEN clause to be executed.

If no ELSEIF clauses are used, or none of the Boolean conditions are true, the block of
statements associated with the ELSE clause are executed, if one is specified.

If no ELSE clause exists and none of the Boolean conditions are true, no statements are
executed.

See Also

• Case Statement

Examples
The following example uses Return statements inside an If statement, resulting in a function
that returns a value of -1, 0, or 1.

CREATE FUNCTION Compare(VALUE integer)
RETURNS INTEGER
 IF (value < 0) THEN
 RETURN -1;
 ELSEIF (value = 0) THEN
 RETURN 0;
 ELSE
 RETURN 1;
 END IF;
END FUNCTION;

Sybase CEP Function Language Function Language

 284 Sybase CEP Option

RETURN statement
Returns control from a function with the specified return value.

Syntax
RETURN value ;

Table 282. Components

value
An expression that evaluates to a value of the same
data type as specified in the RETURNS clause of
the Create Function statement.

Usage
The Return statement causes the current invocation of the function to finish and returns the
value of the expression to the caller. The expression must be of the same data type as specified
in the RETURNS clause for the function.

WHILE statement
Executes a block of statements while a specified condition remains true.

Syntax
WHILE condition DO [cfl_statement] [...] END [WHILE] ;

Table 283. Components

condition

A Boolean expression containing CCL operators,
variables defined within the CCL function defi-
nition, and/or parameters defined in the Create
Function Statement.

cfl_statement
A CFL statement. See CCL Function Language
Overview and Create Function Statement for
more information.

Usage
The CFL While statement creates a loop which executes the CFL statements contained in the
DO clause, as long as the specified condition remains true.

The condition is evaluated before the loop is executed for the first time, and then every time the
loop is about to be repeated. Since the condition is evaluated before the first execution, it is
possible that the statement block will not be executed at all (if the condition is false on the
initial evaluation).

Sybase CEP Function Language Function Language

CCL Reference Guide 285

Danger! You can create a While statement that never exits (an"endless loop). Always avoid
this situation by making sure that the loop contains sufficient logic so that the condition will
ultimately evaluate as false.

CFL includes two simple statements that can only be used inside the DO clause of a While
statement: the Break statement, which forces an immediate exit from the loop, and the
Continue statement, which interrupts the execution of the loop and forces an immediate re-
evaluation of the WHILE condition.

See Also

• Break Statement
• Continue Statement

Examples
Here is an illustration of a While statement:

CREATE FUNCTION Pow(Value FLOAT, Power INTEGER)
RETURNS FLOAT
 CREATE VARIABLE FLOAT Result =1;
 IF (Power < 0) THEN
 Power = -Power;
 Value = 1/Value
 END IF;
 WHILE 0 < Power DO
 Result = Result * Value
 Power = Power -1;
 END WHILE;
 RETURN Result;
END FUNCTION;

Sybase CEP Function Language Function Language

 286 Sybase CEP Option

Documentation Tags

Sybase CEP uses a variety of documentation tags to label CCL components.

CCL Documentation Tags
Labels, identifies, and provides comments regarding various CCL components.

CCL modules can include documentation tags that label, identify, and provide comments
regarding various CCL components. A few of these tags are interpreted by Sybase CEP
Studio, which displays the text provided by the tags in combination with the associated
components. You can use CCL documentation to help organize and structure your comments.

The following characteristics apply to all documentation tags, except where noted otherwise.

• Documentation tags are entered within query module .ccl files, and are set off by special
characters similar to comments.

• Documentation tags appear in tag blocks. A tag block is a continuous group of lines
marked with documentation tag characters.

• Any of the following methods can be used to designate tag blocks:

Beginning of Tag Block End of Tag Block

Method 1:
Three hyphens (---) on a new
line.

New line, which is not imme-
diately followed by another
documentation tag line.

Method 2:
Three slashes (///) on a new
line.

New line, which is not imme-
diately followed by another
documentation tag line.

Method 3:
Two hyphens and an exclama-
tion point (--!) on a new line.

New line, which is not imme-
diately followed by another
documentation tag line.

Method 4:
Two slashes and an exclama-
tion point (//!) on a new line.

New line, which is not imme-
diately followed by another
documentation tag line.

Method 5: A slash and two asterisks (/**). An asterisk and slash (*/).

Note that leading spaces are ignored for methods 1 through 4. When the tag lines are
processed:
• Their markings are stripped, along with any white spaces surrounding them.

Documentation Tags

CCL Reference Guide 287

• Any multiple blank lines within the tag block are stripped to one blank line and
multiple blank spaces are stripped to one space. If the resulting tag block contains one
or more blank lines, the fragments of text separated by the blank lines are interpreted as
separate paragraphs. It is possible to use this feature to create multi-paragraph
documentation tags. For example, the first paragraph could be used as a summary and a
second paragraph to provide a more detailed description. However, note that second
and subsequent paragraphs are not displayed in the Sybase CEP Studio Explorer View.

• If Method 5 is used to designate documentation tag lines, any additional asterisks,
appearing in a sequence with the asterisks that mark the beginning or end of the tag
block are stripped.

• If Method 5 is used to designate documentation tag lines, any leading asterisks at the
beginning of the second or subsequent lines of the tag block are also stripped.

• The tag marker in methods 1-4, or the opening tag marker in method 5, is followed by one
or more valid documentation tags. Tags are made up of the following components:
• All tags begin with an initial "at" sign (@) (the "at" sign must appear as the first

character after the tag marker, not counting white space, to be interpreted as the
beginning of a tag; all other "at" signs within the tag markers are treated as literal text),
followed immediately by a valid tag name with no intervening space.

• Some tags require that the tag name be followed by an identifier, consisting of one or
more non-space characters, which identify the module or CCL statement component
being tagged.

• Most (but not all) tag types accept one or more lines of tag text.
• Documentation tags can be applied to modules or to some, or all types of CCL statements,

depending on the tag type.
• Tags that apply to statements must appear before the statements to which they apply

with no other intervening statements.
• No tags can appear after the last statement in the module.
• Tags that apply to the module must appear inside the same tag block.

• No statement can have more than one associated tag with the same tag type and identifier.

@author
Lists the authors associated with a module. Any @author tags must be in the same tag block as
the @module tag.

Description
Lists the authors associated with a module. Any @author tags must be in the same tag block as
the @module tag.

Syntax
@author string

Documentation Tags

 288 Sybase CEP Option

Example
The following example lists the authors of the MyModule module:

---@module J. Doe's Module
---@author J. Doe and Development Team

@category
The @category documentation tag classifies the current module as belonging to a named
category. Categories can be used to group related modules together. A module can have no
more than one @category tag, which must appear in the same tag block as the @module tag.

SYNTAX

@category category-name

category-name: The name of a category.

Example
The following example assigns a category to the MyModule module:

///@module My RFID Module
///@category RFID Tracking

@column
Associated with Create schema, stream, and window statements to label the columns defined
by the statement.

SYNTAX

@column column-name text

column-name: The name of a column in the associated schema, stream, or window.

text: Text to display in association with the specified column.

DESCRIPTION
One or more @column documentation tags can be associated with any of the following
statements to label the columns defined by the statement:

• Create Schema Statement.
• Create Stream Statement.
• Create Window Statement.

Documentation Tags

CCL Reference Guide 289

In all cases the documentation tags must precede the statement whose columns are being
labeled and should only contain references to columns defined within the statements. If a
Create Stream Statement or Create Window Statement does not have any associated @column
tags, but the schema used by the stream or window is tagged, the @column documentation
tags associated with the schema are inherited by the window or stream.

Example
The following example labels the Symbol and Price columns of the TradeSchema schema:

--!@column Symbol Stock Symbol
--!@column Price Current Price
CREATE SCHEMA TradeSchema (Symbol STRING, Price FLOAT);

@description
Associates a description with a module, or with any statement within the module.

SYNTAX

@description text

text: Text that will be displayed in association with the specified module or statement.

DESCRIPTION
The @description documentation tag associates a description with a module, or with any
statement within the module. Only one @description tag can be associated with a module or a
statement. If the description is associated with a module, the @description tag must appear in
the same tag block as the @module tag. Avoid long description text strings as they may be
truncated.

Examples
The following example provides a description of the MyModule module:

//!@module MyModule
//!@description This is a further module description

This example provides a description of the query that follows it:

//!@description pre-connect message confirmation
INSERT INTO MsgOut
SELECT
 "OK",
 "Pre-Connect"
FROM
 MsgIn
WHERE
 MessageType = "OK?" AND Data="Pre-Connect";

Documentation Tags

 290 Sybase CEP Option

@module
Specifies the name that should be displayed in association with the module.

SYNTAX

@module module-name

module-name: A name for the current module.

DESCRIPTION
The @module documentation tag specifies the name that should be displayed in association
with the module. A module can have no more than one @module tag. Any other tags
associated with the module (but not the with CCL statements in the module) must appear in the
same tag block as the @module tag.

Example
The following example associates the name Module1 with the current module:

/**@module Another Module*/

@name
Specifies the name that should be displayed in association with the CCL statement that
follows.

SYNTAX

@name statement-name

statement-name: A name for the following statement.

DESCRIPTION
The @name documentation tag specifies the name that should be displayed in association
with the CCL statement that follows. A CCL statement can have no more than one associated
@name tag.

Example
The following example associates the name FirstQuery with the query that follows:

---@name FirstQuery
INSERT INTO TempOut

Documentation Tags

CCL Reference Guide 291

SELECT *
FROM TempIn;

Documentation Tags

 292 Sybase CEP Option

Quick References

A collection of reference guides for proper CCL usage.

CCL Statements Syntax Summary
Summerizes CCL statements syntax.

Attach Adapter
ATTACH { INPUT | OUTPUT } ADAPTER name TYPE type TO STREAM
stream [PROPERTIES { prop = value } [, ...]] ;

Create Function
CREATE FUNCTION fname ([pname type [, ...]]) RETURNS type {
statement [, ...] } END FUNCTION ;

statement
{ create_variable_statement | assignment_statement |
return_statement | break_statement | continue_statement } | {
if_statement | case_statement | while_statement }

Create Parameter
CREATE PARAMETER data_type name [= value] ;

Create Schema
CREATE SCHEMA name { (col_name type [, ...]) | INHERITS
[FROM] schema_name [, ...] [(col_name type [, ...])] } ;

Create Stream
CREATE [INPUT | OUTPUT | LOCAL] STREAM name [schema_clause]
[PROPERTIES prop_def [, ...]] ;

prop_def
{ GUARANTEED DELIVERY = {INHERIT | ENABLE | DISABLE} } |
{ GUARANTEED DELIVERY MAXIMUM QUEUE SIZE = size } |
{ GUARANTEED DELIVERY MAXIMUM AGE = age } | { MAXIMUM DELAY =
max_delay } | { OUT OF ORDER DELAY = delay } |
{ SYNCHRONIZATION = { INHERIT | IN ORDER | OUT OF ORDER | USE
SERVER TIMESTAMP } } | { FILTERCOLUMNS = " col_name [, ...]
" }

Quick References

CCL Reference Guide 293

Create Variable
CREATE VARIABLE data_type name [= value] ;

Create Window
CREATE [PUBLIC | MASTER] WINDOW win_name schema_clause
{ keep_clause [, keep_clause] } | { MIRROR master_window }
[INSERT REMOVED [ROWS] INTO name] [properties_clause]

properties_clause
PROPERTIES [INDEXCOLUMNS=" col_name [, ...] "]
[FILTERCOLUMNS=" col_name [, ...] " | [FILTER=" value
[, ...] "] [FILTEREXPR=" expression "]]

Database
exec_clause select_clause from_clause [matching_clause]
[on_clause] [where_clause] [group_by_clause] [having_clause]
[order_by_clause] [limit_clause] [output_clause] ;

Delete
on_clause [when_clause] DELETE FROM window_name
[where_clause] ;

Import
IMPORT file ;

Insert Values
insert_clause values_clause output_clause ;

Query
insert_clause select_clause from_clause [matching_clause]
[on_clause] [where_clause] [group_by_clause] [having_clause]
[order_by_clause] [limit_clause] [output_clause] ;

Remote Procedure
exec_rem_proc_clause select_clause from_clause
[matching_clause] [on_clause] [where_clause]
[group_by_clause] [having_clause] [order_by_clause]
[limit_clause] [output_clause] ;

Set Variable
on_clause [when_clause] set_clause ;

Quick References

 294 Sybase CEP Option

Update Window
on_clause [when_clause] update_clause set_clause
[where_clause] [otherwise_insert_clause] ;

CCL Clauses Syntax Summary
Summerizes the CCL Clauses Syntax.

Cache
CACHE { { CLEAR [ALL] ON source } | { MAXIMUM AGE age} |
{ MAXIMUM { MEMORY USAGE | SIZE } limit } } [, ...]

Execute Remote Procedure
EXECUTE REMOTE PROCEDURE "service"

Execute Statement Database
EXECUTE STATEMENT DATABASE "service" [[statements]]

From: Comma-Separated Syntax
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] | (nested_join
[on_clause]) | xmltable_exp | subquery } [, ...]

xmltable_exp
{ name [AS] alias } | { stream [AS] alias keep_clause
[keep_clause] } xmltable_func

xmltable_func
XMLTABLE (column ROWS xpath COLUMNS { expression AS
out_column } [, ...])

From: Database and Remote Subquery Syntax
FROM { { db_sub | rem_sub} { , | [LEFT OUTER] JOIN } stream
[[AS] alias] } | { stream [[AS] alias] { , | [RIGHT OUTER]
JOIN} { db_sub | rem_sub} }

db_sub
(DATABASE "service" schema_clause [[statements]]
[cache_clause]) [AS] alias

Quick References

CCL Reference Guide 295

rem_sub
(REMOTE QUERY "service" schema_clause ([{value [AS] param}
[, ...]]) [cache_clause]) [AS] alias

From: Join Syntax
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join |
xmltable_exp | subquery } [RIGHT | LEFT | FULL] [OUTER] JOIN
{ stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join |
xmltable_exp |subquery }

nested_join
FROM { stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join |
xmltable_exp | subquery } [RIGHT | LEFT | FULL] [OUTER] JOIN
{ stream [[AS] alias] | stream [[AS] alias] keep_clause
[keep_clause] | window_name [[AS] alias] |nested_join |
xmltable_exp |subquery } [on_clause]

subquery
(select_clause from_clause [matching_clause] [on_clause]
[where_clause] [group_by_clause] [having_clause]
[order_by_clause] [output_clause]) [AS] alias [keep_clause]
[keep_clause]

Group By
GROUP BY { column | gettimestamp } [, ...]

Having
HAVING boolean

Insert Into
INSERT INTO name [(column [, ...])]

Insert When
INSERT { WHEN condition THEN name [(column [, ...])] }
[, ...] [ELSE name [(column [, ...])]]

Keep
time_policy | count_policy

Quick References

 296 Sybase CEP Option

time_policy
KEEP { { [EVERY] interval [OFFSET times_list BY interval] } |
FOR interval_col | UNTIL times_list } [PER column [, ...] |
UNGROUPED]

times_list
time_spec | (time_spec [, ...])

time_spec
' [SUN | MON | TUE | WED | THU | FRI | SAT] hour : minute [:
second [. fraction]] [timezone]'

count_policy
KEEP { [EVERY] count BUCKETS { BY column } [...] } |
{ { [EVERY] count ROW[S] } | { LAST [ROW] } | { count
{ LARGEST | SMALLEST } [DISTINCT] ROW[S] { BY column } [...] }
| { ALL [ROW[S]] } [{ PER column } [...] | UNGROUPED] }

Limit
LIMIT count [ROW[S]] [OFFSET skip [ROW[S]]] [PER column
[...]]

Matching
MATCHING [ONCE [(event [, ...])] [interval : pattern] [
on_clause]

pattern
[!] { event | (pattern) | [interval : pattern] } [{&& | ||
| ,} [!] { event | (pattern) | [interval : pattern] }]
[...]

On: Trigger Syntax
ON name [[AS] alias]

On: Join Syntax
ON inner_condition | source.column = source.column [AND ...]

On: Pattern Matching Syntax
ON {source.column = source.column [= ...] } [AND ...]

Order By
ORDER BY column [ASC[ENDING] | DESC[ENDING]] [, ...]

Quick References

CCL Reference Guide 297

Otherwise Insert
OTHERWISE INSERT value [AS column] [, ...]

Output
OUTPUT { [ALL] EVERY { count ROW[S] | interval [OFFSET BY
interval] } } | { {AFTER | FIRST WITHIN} {count ROW[S] |
interval} } | { [ALL] AT times_list } [UNGROUPED | PER column
[...]]

Schema
SCHEMA name | 'file' | (column type [, ...])

Select
SELECT { expression [AS column | alias | parameter] }
[, ...]

Set: Set Variable Statement Syntax
SET name = value [, ...]

Set: Window Syntax
SET { value AS column [, ...] } | { column = value
[, ...] }

Update
UPDATE window[[AS] alias]

Values
VALUES (column_expression [, ...]) [, ...]

When
WHEN trigger

Where
WHERE condition

Operators and Operand Data Types
List of operators and operand data types.

Operator Result Operands

+, - (as unary operators) Integer Integer

Quick References

 298 Sybase CEP Option

Operator Result Operands

+, - (as unary operators) Long Long

+, - (as unary operators) Float Float

+, - (as unary operators) Interval Interval

+,-,*, /, mod Integer Integer, Integer

+,-,*, /, mod Long Long, Long

+,-,*, /, ^, mod Float Float, Float

+ BLOB BLOB

^ Float Integer, Float

^ Float Long, Float

+,-,mod Interval Interval, Interval

/ Float Interval, Interval

+ Timestamp Interval, Timestamp

*,/ Interval Interval, Integer

*,/ Interval Interval, Long

*,/ Interval Interval, Float

- Interval Timestamp, Timestamp

+,- Timestamp Timestamp, Interval

=, !=, <>, <, >, <=, >= Boolean Boolean, Boolean

=, !=, <>, <, >, <=, >= Boolean Integer, Integer

=, !=, <>, <, >, <=, >= Boolean Long, Long

=, !=, <>, <, >, <=, >= Boolean Float, Float

=, !=, <>, <, >, <=, >= Boolean Interval, Interval

=, !=, <>, <, >, <=, >= Boolean String, String

=, !=, <>, <, >, <=, >= Boolean Timestamp, Timestamp

=, !=, <>, <, >, <=, >= Boolean BLOB

NOT Boolean Boolean

AND, OR, XOR Boolean Boolean, Boolean

IN Boolean Boolean, Boolean

Quick References

CCL Reference Guide 299

Operator Result Operands

IN Boolean Float, Float

IN Boolean Integer, Integer

IN Boolean Long, Long

IN Boolean Interval, Interval

IN Boolean String, String

IN Boolean Timestamp, Timestamp

||, + String String, String

[]. (previous operator) Boolean Integer, Boolean

[]. (previous operator) Float Integer, Float

[]. (previous operator) Integer Integer, Integer

[]. (previous operator) Long Integer, Long

[]. (previous operator) String Integer, String

[]. (previous operator) Interval Integer, Interval

[]. (previous operator) Timestamp Integer, Timestamp

[]. (previous operator) BLOB Integer, BLOB

[]. (previous operator) XML Integer, XML

LIKE Boolean String, String

REGEXP_LIKE Boolean String, String

Note that you cannot divide a TIMESTAMP by an INTERVAL, and you cannot use an
expression of the form TIMESTAMP mod INTERVAL.

Timestamp Format Codes
A list of valid components that can be used to specify the format of Sybase CEP Timestamp
values.

This section lists valid components that can be used to specify the format of Sybase CEP
Timestamp values:

• Specify timestamp formats with either the Sybase CEP time formatting codes or a subset
of timestamp conversion codes provided by the C++ strftime() function.

Quick References

 300 Sybase CEP Option

• A valid timestamp specification can contain no more than one occurrence of a code
specifying a particular time unit (for example, a code specifying the year).

• All designations of year, month, day, hour, minute, or second can also read a fewer number
of digits than is specified by the code. For example, DD reads both two-digit and one-digit
day entries.

Sybase CEP Time Formatting Codes

Column Code Description Input Output

MM Month (01-12; JAN = 01). Y Y

YYYY Four-digit year. Y Y

YYY Last three digits of year. Y Y

YY Last two digits of year. Y Y

Y Last digit of year. Y Y

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1). N Y

MON
Abbreviated name of month (JAN, FEB, and
so on).

Y Y

MONTH
Name of month, padded with blanks to nine
characters (JANUARY, FEBRUARY, and so
on).

Y Y

RM Roman numeral month (I-XII; JAN = I). Y Y

WW
Week of year (1-53) where week 1 starts on
the first day of the year and continues to the
seventh day of the year.

N Y

W
Week of month (1-5) where week 1 starts on
the first day of the month and continues to the
seventh.

N Y

D Day of week (1-7; SUNDAY=1). N Y

DD Day of month (1-31). Y Y

DDD Day of year (1-366). N Y

DAY
Name of day (SUNDAY, MONDAY, and so
on).

Y Y

DY
Abbreviated name of day (SUN, MON, and
so on).

Y Y

HH Hour of day (1-12). Y Y

HH12 Hour of day (1-12). Y Y

HH24 Hour of day (0-23). Y Y

Quick References

CCL Reference Guide 301

Column Code Description Input Output

AM Meridian indicator (AM/PM). Y Y

PM Meridian indicator (AM/PM). Y Y

MI Minute (0-59). Y Y

SS Second (0-59). Y Y

SSSSS Seconds past midnight (0-86399). Y Y

SE

Seconds since epoch (January 1, 1970 UTC).
This format can only be used by itself, with
the FF format, and/or with the time zone co-
des TZD, TZR, TZH and TZM.

Y Y

MIC
Microseconds since epoch (January 1, 1970
UTC).

Y Y

FF

Fractions of seconds (0-999999). When used
in output, FF produces six digits for micro-
seconds. FFFF produces twelve digits, re-
peating the six digits for microseconds twice.
(In most circumstances, this is not the de-
sired effect.) When used in input, FF collects
all digits until a non-digit is detected, and
then uses only the first six, discarding the
rest.

Y Y

FF[1-9]
Fractions of seconds. For output only, pro-
duces the specified number of digits, round-
ing or padding with trailing zeroes as needed.

N Y

MS

Milliseconds since epoch (January 1, 1970
UTC). When used for input, this format code
can only be combined with FF (microsec-
onds) and the timezone codes TZD, TZR,
TZH, TZM. All other format code combina-
tions generate errors. Furthermore, when MS
is used with FF, the MS code must precede
the FF code: for example, MS.FF.

Y Y

FM
Fill mode toggle: suppress zeros and blanks
or not (default: not).

Y Y

FX
Exact mode toggle: match case and punctu-
ations exactly (default: not).

Y Y

RR
Lets you store 20th century dates in the 21st
century using only two digits.

Y N

Quick References

 302 Sybase CEP Option

Column Code Description Input Output

RRRR
Round year. Accepts either four-digit or two-
digit input. If two-digit, provides the same
return as RR.

Y N

TZD
Abbreviated time zone designator such as
PST.

Y Y

TZH
Time zone hour displacement. For example,
-5 indicates a time zone five hours earlier
than GMT.

N Y

TZM

Time zone hour and minute displacement.
For example, -5:30 indicates a time zone that
is five hours and 30 minutes earlier than
GMT.

N Y

TZR
Time zone region name. For example, US/
Pacific for PST.

N Y

Strftime() Timestamp Conversion Codes

Instead of using Sybase CEP time formatting codes, output timestamp formats can be
specified using a subset of the C++ strftime() function codes. The following rules apply:

• Sybase CEP Engine treats any timestamp format specification that includes a percent sign
(%) as a strftime() code.

• Strings that include a strftime() code string cannot also include Sybase CEP time
formatting codes.

• Some strftime() codes are valid only on Microsoft Windows or only on UNIX-like
operating systems. Different implementations of strftime() also include minor differences
in code interpretation. Sybase CEP Engine attempts to processes whatever formatting
codes you supply without trying to determine if they are valid for the platform on which
Sybase CEP Engine is running. To avoid errors, make sure that the codes you provide meet
the requirements for your platform and that Sybase CEP Server and Sybase CEP Studio are
running on the same platform and are using compatible strftime() implementations.

• Sybase CEP does not support strftime() locale handling features: all time zones for formats
specified with strftime() are assumed to be the local time zone.

• strftime() codes can be used to specify timestamp output only; they cannot be used to
specify timestamp input.

Sybase CEP supports the following strftime() codes:

Strftime() Code Description

%a Abbreviated weekday name: for example: "Mon".

%A Full weekday name: for example "Monday".

Quick References

CCL Reference Guide 303

Strftime() Code Description

%b Abbreviated month name: for example: "Feb".

%B Full month name: for example "February".

%c

Full date and time string: the output format for this
code differs, depending on whether Microsoft
Windows or a UNIX-like operating system is be-
ing used.

Microsoft Windows output example:

08/26/08 20:00:00

UNIX-like operating system output example:

Tue Aug 26 20:00:00 2008

%d
Day of the month, represented as a two-digit dec-
imal integer with a value between 01 and 31.

%H
Hour, represented as a two-digit decimal integer
with a value between 00 and 23.

%I
Hour, represented as a two-digit decimal integer
with a value between 01 and 12.

%j
Day of the year, represented as a three-digit dec-
imal integer with a value between 001 and 366.

%m
Month, represented as a two-digit decimal integer
with a value between 01 and 12.

%M
Minute, represented as a two-digit decimal inte-
ger with a value between 00 and 59.

%p Locale's equivalent of AM or PM.

%S
Second, represented as a two-digit decimal inte-
ger with a value between 00 and 61.

%U

Number of the week in the year, represented as a
two-digit decimal integer with a value between 00
and 53, with Sunday considered the first day of the
week.

%w
Weekday number, represented as a one-digit dec-
imal integer with a value between 0 and 6, with
Sunday represented as 0.

Quick References

 304 Sybase CEP Option

Strftime() Code Description

%W

Number of the week in the year, represented as a
two-digit decimal integer with a value between 00
and 53, with Monday considered the first day of
the week.

%x

Full date string (no time): The output format for
this code differs, depending on whether you are
using Microsoft Windows or a UNIX-like oper-
ating system.

Microsoft Windows output example:

08/26/08

UNIX-like operating system output example:

Tue Aug 26 2008

%X Full time string (no date).

%y
Year, without the century, represented as a two-
digit decimal number with a value between 00 and
99.

%Y
Year, with the century, represented as a four-digit
decimal number.

%% Replaced by %.

Reserved Words
Words which are used to mark the structure of query.

Reserved words (also known as keywords) are used to mark the structure of a query. As such,
reserved words cannot be used as identifiers for any CCL objects. Identifiers that start with
either XML or C8_ are also reserved.

Quick References

CCL Reference Guide 305

ADAPTER

AFTER

ALL

AND

ANY

AS

ASC

ASCENDING

AT

ATTACH

BEFORE

BEGIN

BREAK

BY

CASE

COLUMNS

CONTINUE

CREATE

DATABASE

DAY

DAYS

DEFAULT

DELETE

DESC

DESCENDING

DISTINCT

DO

DOWN

ELSE

ELSEIF

MICROSECOND

MICROSECONDS

MILLISECOND

MILLISECONDS

MINUTE

MINUTES

MIRROR

MOD

MODULE

NO

NOT

NULL

OFFSET

ON

OR

ORDER

OTHERWISE

OUTER

OUTPUT

PARAMETER

PARAMETERS

PASSING

PER

PROCEDURE

PROPERTIES

QUERY

REGEXP_LIKE

REMOTE

RETURN

RETURNS

Quick References

 306 Sybase CEP Option

END

EVERY

EXECUTE

FALSE

FOR

FROM

FULL

FUNCTION

GETBLOBCOLUMNBYNAME

GETBOOLEANCOLUMNBYNAME

GETFLOATCOLUMNBYNAME

GETINTEGERCOLUMNBYNAME

GETINTERVALCOLUMNBYNAME

GETLONGCOLUMNBYNAME

GETSTRINGCOLUMNBYNAME

GETTIMESTAMP

GETTIMESTAMPCOLUMNBYNAME

GETXMLCOLUMNBYNAME

GROUP

HAVING

HOUR

HOURS

IF

IMPORT

IN

INHERITS

INPUT

INSERT

INTO

IS

RIGHT

ROW

ROWS

SCHEMA

SECOND

SECONDS

SELECT

SET

SMALLEST

STARTING

STARTUP

STATEMENT

STREAM

STREAMS

THEN

TO

TRUE

UNGROUPED

UNTIL

UP

UPDATE

VARIABLE

WEEK

WEEKS

WHEN

WHERE

WHILE

WINDOW

WITHIN

XMLATTRIBUTES

Quick References

CCL Reference Guide 307

JOIN

KEEP

LARGEST

LAST

LEFT

LIKE

LIMIT

LOAD

LOCAL

MATCHING

XMLCOMMENT

XMLELEMENT

XMLEXISTS

XMLINSERT

XMLNAMESPACES

XMLPATTERNMATCH

XMLPI

XMLTABLE

XOR

Quick References

 308 Sybase CEP Option

Index
@author

@author 288
@category 289

@category 289
@column

@column 289
@description 290

@description 290
@module 291

@module 291
@name 291

@name 291

A
ABS

ABS() 161
ACOS

ACOS() 162
ACOS()

ACOS() 162
Adapter

Attach Adapter Statement 31
AFTER

OUTPUT Clause 128
Aggregate

Aggregate Functions 159
Aggregate Functions

Aggregate Functions 159
AND

Logical CCL Operators 20
ANY

THRESHOLD() 241
Arithmetic

Arithmetic CCL Operators 19
Arithmetic CCL Operators 19
Arithmetic Operators

Arithmetic CCL Operators 19
ASCENDING

ORDER BY Clause 125
ASCII

ASCII() 162
ASCII()

ASCII() 162
ASIN

ASIN() 163

ASIN()
ASIN() 163

Assignment
Assignment Statement 278

Assignment CFL Statement
Assignment Statement 278

Assignment Statement 278
Assignment Statement 278

AT
OUTPUT Clause 128

ATAN
ATAN() 163

ATAN()
ATAN() 163

ATAN2
ATAN2() 164

ATAN2()
ATAN2() 164

Attach Adapter
Attach Adapter Statement 31

Attach Adapter Statement
Attach Adapter Statement 31

AVG
AVG() - Scalar 165

AVG - Aggregate
AVG() - Aggregate 164

AVG() - Aggregate
AVG() - Aggregate 164

AVG() - Scalar
AVG() - Scalar 165

B

Between CCL and ODBC
Conversion Between CCL and ODBC and

Oracle 6
Between CCL and Oracle

Conversion Between CCL and ODBC and
Oracle 6

Binary
Unary and Binary Operators 17

Binary Operators
Unary and Binary Operators 17

BITAND
BITAND() 166

Index

CCL Reference Guide 309

BITAND()
BITAND() 166

BITCLEAR
BITCLEAR() 166

BITCLEAR()
BITCLEAR() 166

BITFLAG
BITFLAG() 167

BITFLAG()
BITFLAG() 167

BITFLAGLONG
BITFLAG() 167

BITFLAGLONG()
BITFLAG() 167

BITMASK
BITMASK() 167

BITMASK()
BITMASK() 167

BITMASKLONG
BITMASK() 167

BITMASKLONG()
BITMASK() 167

BITNOT
BITNOT() 168

BITNOT()
BITNOT() 168

BITOR
BITOR() 168

BITOR()
BITOR() 168

BITSET
BITSET() 169

BITSET()
BITSET() 169

BITSHIFTLEFT
BITSHIFTLEFT() 169

BITSHIFTLEFT()
BITSHIFTLEFT() 169

BITSHIFTRIGHT
BITSHIFTRIGHT() 170

BITSHIFTRIGHT()
BITSHIFTRIGHT() 170

BITTEST
BITTEST() 171

BITTEST()
BITTEST() 171

BITTOGGLE()
BITTOGGLE() 171

BITTOGLE

BITTOGGLE() 171
BITXOR

BITXOR() 172
BITXOR()

BITXOR() 172
BLOB

Data Types 3
Boolean

Boolean Literals 11
BOOLEAN

Data Types 3
Boolean Literals

Boolean Literals 11
Break

Break Statement 279
Break CFL Statement

Break Statement 279
Break Statement 279

Break Statement 279

C

CACHE
CACHE Clause 65

CACHE Clause
CACHE Clause 65

Case
Case Statement 280

CASE
CASE Expressions 27

Case CFL Statement
Case Statement 280

CASE Expressions
CASE Expressions 27

Case Statement 280
Case Statement 280

Casting, Data Type
CCL Data Type Conversions 5

Causality
MATCHING Clause 113

CCL
Conversion Between CCL and SOAP 10

CCL Function Language Overview 277
CCL Lexical Conventions 1
CCL Statements Syntax Summary 293
CCL Subqueries in Expressions 28
CCL Subqueries in the FROM Clause 90
CCL, Creating

Create Variable Statement 42

Index

 310 Sybase CEP Option

CCL, Setting
Set Variable Statement 60

CEIL
CEIL() 172

CEIL()
CEIL() 172

CFL Statements
Create Variable Statement 282

CHAR
CHR()/CHAR() 173

CHAR()
CHR()/CHAR() 173

CHR
CHR()/CHAR() 173

CHR()
CHR()/CHAR() 173

Clause Processing
Query Statement 56

Clauses
CCL Clauses Syntax Summary 295

COALESCE
COALESCE() 173

COALESCE()
COALESCE() 173

Column References
Column References in CCL Queries 17

Comma-Separated Syntax
FROM Clause: Comma-Separated Syntax 73

Comments
Comments 15

Comparison
Comparison CCL Operators 20

Comparison CCL Operators 20
Comparison Operators

Comparison CCL Operators 20
Compound

Compound CCL Expressions 26
Compound Expressions

Compound CCL Expressions 26
Concatenation CCL Operator 19
Concatenation Operator

Concatenation CCL Operator 19
Concatentation

Concatenation CCL Operator 19
Continue

Continue Statement 281
Continue CFL Statement

Continue Statement 281
Continue Statement 281

Continue Statement 281
Continuous Computation Language

CCL Lexical Conventions 1
Conversion Between CCL and

Conversion Between CCL and SOAP 10
Conversion Between CCL and ODBC and Oracle

6
Conversion Between ODBC and

Conversion Between CCL and ODBC and
Oracle 6

Conversion Between Oracle and
Conversion Between CCL and ODBC and

Oracle 6
Conversion between SOAP and

Conversion Between CCL and SOAP 10
Conversion, Implicit

Implicit Data Type Conversions 5
Conversions, Data Type

CCL Data Type Conversions 5
CORR 174
COS

COS() 175
COS()

COS() 175
COSD

COSD() 176
COSD()

COSD() 176
COSH

COSH() 176
COSH()

COSH() 176
COUNT

COUNT() 177
Count-Based

KEEP Clause 102
Count-Based Window

KEEP Clause 102
COUNT()

COUNT() 177
Create

Create Function Statement 32
Create Function

Create Function Statement 32
Create Parameter

Create Parameter Statement 34
Create Parameter Statement

Create Parameter Statement 34
Create Schema

Index

CCL Reference Guide 311

Create Schema Statement 35
Create Schema Statement 35

Create Schema Statement 35
Create Stream

Create Stream Statement 36
Create Stream Statement 36

CCL Statements Syntax Summary 293
Create Variable

Create Variable Statement 42, 282
Create Variable CFL Statement

Create Variable Statement 282
Create Variable Statement 282

Create Variable Statement 42, 282
Create Window

Create Window Statement 42
Create Window Statement 42

Create Window Statement 42
Create Window, public

Public Windows 46
Create Window, Shared

Shared Windows 48
Creating

Create Function Statement 32
Create Stream Statement 36
Create Window Statement 42

D
Data Type

Data Types 3
XML Data Type 4

Data Type Conversions
CCL Data Type Conversions 5

Data Types 3
Operators and Operand Data Types 298

Data Types, and Operands
Operators and Operand Data Types 298

Data Types, and Operators
Operators and Operand Data Types 298

Database
Database Statement 51

Database Statement 51
Database Statement 51

Database Subquery
Database Subquery 78
FROM Clause: Database and Remote

Subquery Syntax 76
DATECEILING() 179
DATEFLOOR() 180
DATEROUND() 182

DAYOFMONTH
DAYOFMONTH() 183

DAYOFMONTH() 183
DAYOFMONTH() 183

DAYOFWEEK
DAYOFWEEK() 183

DAYOFWEEK() 183
DAYOFWEEK() 183

DAYOFYEAR
DAYOFYEAR() 184

DAYOFYEAR() 184
DAYOFYEAR() 184

Defining
SCHEMA Clause 134

Delete
Delete Statement 54

Delete Statement
Delete Statement 54

DESCENDING
ORDER BY Clause 125

DISTANCE
DISTANCE() 185

DISTANCE()
DISTANCE() 185

DISTANCESQUARED
DISTANCESQUARED() 186

DISTANCESQUARED()
DISTANCESQUARED() 186

DISTINCT
Aggregate Functions 159

Documentation Tags
CCL Documentation Tags 287

DOWN
THRESHOLD() 241

E

ELSE
IF Expressions 26

ELSEIF
IF Expressions 26

Evaluation Order
Order of CCL Statement Evaluation 2

Evaluation Order, Statement
Order of CCL Statement Evaluation 2

Event Pattern Matching
MATCHING Clause 113

EVERY
OUTPUT Clause 128

Index

 312 Sybase CEP Option

EXECUTE REMOTE PROCEDURE
EXECUTE REMOTE PROCEDURE Clause

67
EXECUTE REMOTE PROCEDURE Clause 67

EXECUTE REMOTE PROCEDURE Clause
67

EXP
EXP() 187

EXP()
EXP() 187

Expressions
CCL Subqueries in Expressions 28

External, Writing to
Database Subquery 78

EXTRACT
EXTRACT() 190

EXTRACT()
EXTRACT() 190

F
FILTER

Create Window Statement 42
FILTERCOLUMNS

Create Stream Statement 36
FIRST

FIRST() 190
FIRST WITHIN

OUTPUT Clause 128
FIRST()

FIRST() 190
FLOAT

Data Types 3
FLOAT Data Type 4

FLOAT Data Type 4
FLOOR

FLOOR() 193
FLOOR()

FLOOR() 193
Format Codes

Timestamp Format Codes 300
Format Codes, Timestamp

Timestamp Format Codes 300
FROM

FROM Clause 73
FROM Clause

FROM Clause 73
FROM Clause: Comma-Separated Syntax 73
FROM Clause: Database and Remote Subquery

Syntax 76

FROM Clause: Join Syntax 87
FROM: Comma-Separated Syntax

FROM Clause: Comma-Separated Syntax 73
FROM: Join Syntax

FROM Clause: Join Syntax 87
FULL OUTER JOIN

FROM Clause: Join Syntax 87
functions

DATECEILING() 179
DATEFLOOR() 180
DATEROUND() 182

Functions
MICROSECOND() 210

G

General CCL Expressions 25
GETBLOBCOLUMNBYNAME

GET___COLUMNBYNAME() 193
GETBLOBCOLUMNBYNAME()

GET___COLUMNBYNAME() 193
GETBOOLEANCOLUMNBYNAME

GET___COLUMNBYNAME() 193
GETBOOLEANCOLUMNBYNAME()

GET___COLUMNBYNAME() 193
GETFLOATCOLUMNBYNAME

GET___COLUMNBYNAME() 193
GETFLOATCOLUMNBYNAME()

GET___COLUMNBYNAME() 193
GETINTEGERCOLUMNBYNAME

GET___COLUMNBYNAME() 193
GETINTEGERCOLUMNBYNAME()

GET___COLUMNBYNAME() 193
GETINTERVALCOLUMNBYNAME

GET___COLUMNBYNAME() 193
GETINTERVALCOLUMNBYNAME()

GET___COLUMNBYNAME() 193
GETLONGCOLUMNBYNAME

GET___COLUMNBYNAME() 193
GETLONGCOLUMNBYNAME()

GET___COLUMNBYNAME() 193
GETPREFERENCEBOOLEAN

GETPREFERENCE___() 195
GETPREFERENCEBOOLEAN()

GETPREFERENCE___() 195
GETPREFERENCEINTEGER

GETPREFERENCE___() 195
GETPREFERENCEINTEGER()

GETPREFERENCE___() 195

Index

CCL Reference Guide 313

GETPREFERENCELONG
GETPREFERENCE___() 195

GETPREFERENCELONG()
GETPREFERENCE___() 195

GETPREFERENCESTRING
GETPREFERENCE___() 195

GETPREFERENCESTRING()
GETPREFERENCE___() 195

GETSTRINGCOLUMNBYNAME
GET___COLUMNBYNAME() 193

GETSTRINGCOLUMNBYNAME()
GET___COLUMNBYNAME() 193

GETTIMESTAMP
GETTIMESTAMP() 197

GETTIMESTAMP() 197
GETTIMESTAMP() 197

GETTIMESTAMPCOLUMNBYNAME
GET___COLUMNBYNAME() 193

GETTIMESTAMPCOLUMNBYNAME()
GET___COLUMNBYNAME() 193

GETXMLCOLUMNBYNAME
GET___COLUMNBYNAME() 193

GETXMLCOLUMNBYNAME()
GET___COLUMNBYNAME() 193

GROUP BY
GROUP BY Clause 94

GROUP BY Clause 94
Guaranteed Delivery

Create Stream Statement 36

H
HAVING

HAVING Clause 96
HAVING Clause 96
HOUR

HOUR() 198
HOUR() 198

HOUR() 198

I
Identifiers

CCL Object Names and Identifiers 16
If

If Statement 283
IF

IF Expressions 26
If CFL Statement

If Statement 283

If Statement 283
If Statement 283

Implicit
Implicit Data Type Conversions 5
KEEP Clause 102

Implicit Data Type Conversions 5
Import

Import Statement 54
Import Statement

Import Statement 54
IN

IN Operator 22
In Expressions

CCL Subqueries in Expressions 28
Null Values in Expressions 28

IN Operator 22
IN Operator 22

INDEXCOLUMNS
Create Window Statement 42

INSERT
INSERT Clause 97

INSERT INTO
INSERT INTO 97

Insert Values
Insert Values Statement 55

Insert Values Statement
Insert Values Statement 55

INSERT WHEN
INSERT WHEN 99

INSTR
INSTR() 198

INSTR()
INSTR() 198

INTEGER
Data Types 3

Interval
Time Literals 13

INTERVAL
Time Literals 13

Interval Literals
Time Literals 13

IS NOT NULL
Null Values 15

IS NULL
Null Values 15

J

Join Syntax

Index

 314 Sybase CEP Option

FROM Clause: Join Syntax 87
ON Clause: Join Syntax 123

Jumping
KEEP Clause 102

K

KEEP
KEEP Clause 102

KEEP Clause 102
Keywords

Reserved Words 305

L

Language
CCL Function Language Overview 277

LAST
LAST() 199

LAST()
LAST() 199

LEFT
LEFT() 202

LEFT OUTER JOIN
FROM Clause: Join Syntax 87

LEFT()
LEFT() 202

LENGTH
LENGTH() - String 202

LENGTH()
LENGTH() - String 202

Lexical Conventions
CCL Lexical Conventions 1

Like
Like CCL Operators 21

Like CCL Operators 21
Like Operators

Like CCL Operators 21
Literals

Literals 10
Time Literals 13

LN
LN() 203

LN()
LN() 203

LOG
LOG() 203

LOG()

LOG() 203
LOG10

LOG10() 204
LOG10()

LOG10() 204
LOG2

LOG2() 204
LOG2()

LOG2() 204
Logical

Logical CCL Operators 20
Logical CCL Operators 20
Logical Operators

Logical CCL Operators 20
LONG

Data Types 3
LOWER() 205

LOWER() 205
LTRIM

LTRIM() 205
LTRIM()

LTRIM() 205

M

MAKETIMESTAMP
MAKETIMESTAMP() 206

MAKETIMESTAMP() 206
MAKETIMESTAMP() 206

MASTER Window
Shared Windows 48

MATCHING
MATCHING Clause 113

MATCHING Clause 113
MAX

MAX() - Aggregate 208
MAX - Scalar

MAX() - Scalar 208
MAX() - Aggregate

MAX() - Aggregate 208
MAX() - Scalar

MAX() - Scalar 208
MAXIMUM DELAY

Create Stream Statement 36
MEANDEVIATION

MEANDEVIATION() 209
MEANDEVIATION()

MEANDEVIATION() 209
MEDIAN

Index

CCL Reference Guide 315

MEDIAN() 210
MEDIAN()

MEDIAN() 210
MICROSECOND

MICROSECOND() 210
MICROSECOND()

MICROSECOND() 210
MID

MID() 211
MID()

MID() 211
MIN - Aggregate

MIN() - Aggregate 212
MIN - Scalar

MIN() - Scalar 213
MIN() - Aggregate

MIN() - Aggregate 212
MIN() - Scalar

MIN() - Scalar 213
MINUTE

MINUTE() 213
MINUTE() 213

MINUTE() 213
MIRROR Window

Shared Windows 48
MOD

MOD() 214
MOD()

MOD() 214
MONTH

MONTH() 215
MONTH() 215

MONTH() 215

N

Names, Object
CCL Object Names and Identifiers 16

NEXTVAL
NEXTVAL() 215

NEXTVAL()
NEXTVAL() 215

NOT Operator
Logical CCL Operators 20

NOW
NOW() 216

NOW()
NOW() 216

Null Values

Null Values 15
Null Values in

Null Values in Expressions 28
Null Values in Expressions 28
Numeric

Numeric Literals 12

O

Object Names
CCL Object Names and Identifiers 16

ODBC
Conversion Between CCL and ODBC and

Oracle 6
OFFSET BY

OUTPUT Clause 128
ON

ON Clause 122
ON Clause 122
ON: Join Syntax

ON Clause: Join Syntax 123
ON: Pattern Matching Syntax

ON Clause: Pattern Matching Syntax 124
ON: Trigger Syntax

ON Clause: Trigger Syntax 122
Operands

Operators and Operand Data Types 298
Operators

Logical CCL Operators 20
Precedence of Operators 18

Operators and Operand Data Types 298
Operators and Operands

Operators and Operand Data Types 298
Oracle

Conversion Between CCL and ODBC and
Oracle 6

Order
Query Statement 56

ORDER BY
ORDER BY Clause 125

OTHERWISE INSERT
OTHERWISE INSERT Clause 127

OUT OF ORDER
Create Stream Statement 36

OUTPUT
OUTPUT Clause 128

OUTPUT AT
Insert Values Statement 55

OUTPUT AT STARTUP

Index

 316 Sybase CEP Option

Insert Values Statement 55

P

Pattern Matching
MATCHING Clause 113

Pattern Matching Syntax
ON Clause: Pattern Matching Syntax 124

PI
PI() 216

PI()
PI() 216

Policy
KEEP Clause 102

POSIX
REGEXP_FIRSTSEARCH() 219

POWER
POWER() 217

POWER()
POWER() 217

Precedence
Precedence of Operators 18

Precedence of Operators 18
PREV

PREV() 217
PREV()

PREV() 217
Processing Order

Query Statement 56
Public

Public Windows 46
Public Windows 46

Public Windows 46
Public, Creating

Public Windows 46

Q

Query
Query Statement 56

Query Statement
Query Statement 56

R

RANDOM
RANDOM() 218

RANDOM()

RANDOM() 218
REGEXP_FIRSTSEARCH

REGEXP_FIRSTSEARCH() 219
REGEXP_FIRSTSEARCH()

REGEXP_FIRSTSEARCH() 219
REGEXP_REPLACE

REGEXP_REPLACE() 220
REGEXP_REPLACE() 220

REGEXP_REPLACE() 220
REGEXP_SEARCH

REGEXP_SEARCH() 221
REGEXP_SEARCH() 221

REGEXP_SEARCH() 221
Remote Procedure

Remote Procedure Statement 58
Remote Procedure Statement 58

CCL Statements Syntax Summary 293
Remote Subquery

FROM Clause: Database and Remote
Subquery Syntax 76

Remote Subquery 83
REPLACE

REPLACE() 229
REPLACE()

REPLACE() 229
Reserved Words

Reserved Words 305
Retention Policy, Window

KEEP Clause 102
Return

Return Statement 285
Return CFL Statement

Return Statement 285
Return Statement 285

Return Statement 285
RIGHT

RIGHT() 229
RIGHT OUTER JOIN

FROM Clause: Join Syntax 87
RIGHT()

RIGHT() 229
ROUND() 230

ROUND() 230
Row

Row CCL Operators 21
Row CCL Operators 21
Row Operators

Row CCL Operators 21
RPCs

Index

CCL Reference Guide 317

Remote Procedure Statement 58
RTRIM

RTRIM() 231
RTRIM()

RTRIM() 231

S
Scalar

Scalar Functions 159
Scalar Functions

Scalar Functions 159
SCHEMA

SCHEMA Clause 134
SCHEMA Clause 134

SCHEMA Clause 134
Scope, CFL

CFL Variable Scope 283
SECOND

SECOND() 231
SECOND() 231

SECOND() 231
Select

Select Statement 149
SELECT

SELECT Clause 135
Select CFL Statement

Select Statement 149
SELECT Clause 135
Select Statement 149

Select Statement 149
SET

SET Clause 138
SET Clause: Set Variable Statement Syntax

138
SET Clause 138
SET Clause: Window Syntax 139
Set Variable

Set Variable Statement 60
Set Variable Statement 60

Set Variable Statement 60
Set Variable Statement Syntax

SET Clause: Set Variable Statement Syntax
138

SET, Variable Statement Syntax
SET Clause: Set Variable Statement Syntax

138
SET, Window Syntax

SET Clause: Window Syntax 139
Shared

Shared Windows 48

Shared Windows 48
Shared Windows 48

SIGN
SIGN() 232

SIGN()
SIGN() 232

Simple
Simple CCL Expressions 25

SIN
SIN() 232

SIN()
SIN() 232

SIND
SIND() 233

SIND()
SIND() 233

SINH
SINH() 233

SINH()
SINH() 233

Sliding
KEEP Clause 102

SOAP
Conversion Between CCL and SOAP 10

SQL-92
Supported SQL-92 Expressions 157

SQRT
SQRT() 234

SQRT()
SQRT() 234

Statements
CCL Statements Syntax Summary 293

STDDEVIATION
STDDEVIATION() 234

STDDEVIATION()
STDDEVIATION() 234

String
String Literals 11

STRING
Data Types 3

String Literals
String Literals 11

Subqueries
CCL Subqueries in the FROM Clause 90

Subqueries in
CCL Subqueries in Expressions 28
CCL Subqueries in the FROM Clause 90

SUBSTR
SUBSTR() 238

Index

 318 Sybase CEP Option

SUBSTR()
SUBSTR() 238

SUM
SUM() 239

SUM()
SUM() 239

Supported Expressions
Supported SQL-92 Expressions 157

Sybase CEP Function Expressions 26
Sybase CEP Function Language

Sybase CEP Function Language 277
SYNCHRONIZATION

Create Stream Statement 36
Syntax Summary

CCL Clauses Syntax Summary 295
CCL Statements Syntax Summary 293

T

Tags, Documentation
@author 288

TAN
TAN() 240

TAN()
TAN() 240

TAND
TAND() 240

TAND()
TAND() 240

TANH
TANH() 240

TANH()
TANH() 240

The CCL Semantic Model 1
THRESHOLD

THRESHOLD() 241
THRESHOLD()

THRESHOLD() 241
Time

Time Literals 13
Time Literals

Time Literals 13
Time-Based

KEEP Clause 102
Time-Based Window

KEEP Clause 102
Timestamp

Time Literals 13
TO_BLOB

TO_BLOB() 242
TO_BLOB()

TO_BLOB() 242
TO_BOOLEAN

TO_BOOLEAN() 242
TO_BOOLEAN()

TO_BOOLEAN() 242
TO_FLOAT

TO_FLOAT() 243
TO_FLOAT()

TO_FLOAT() 243
TO_INTEGER

TO_INTEGER() 244
TO_INTEGER()

TO_INTEGER() 244
TO_INTERVAL

TO_INTERVAL() 245
TO_INTERVAL() 245

TO_INTERVAL() 245
TO_LONG()

TO_LONG() 245
TO_STRING

TO_STRING() 246
TO_STRING()

TO_STRING() 246
TO_TIMESTAMP

TO_TIMESTAMP() 250
TO_TIMESTAMP() 250

TO_TIMESTAMP() 250
TO_XML

XMLPARSE()/TO_XML() 251
TO_XML()

XMLPARSE()/TO_XML() 251
Trigger Syntax

ON Clause: Trigger Syntax 122
TRIM

TRIM() 251
TRIM()

TRIM() 251
Type Casting

CCL Data Type Conversions 5

U

Unary and Binary Operators 17
UNGROUPED

GROUP BY Clause 94
Unnamed

KEEP Clause 102

Index

CCL Reference Guide 319

UP
THRESHOLD() 241

UPDATE
UPDATE Clause 140

UPDATE Clause
UPDATE Clause 140

Update Window
Update Window Statement 61

Update Window Statement
Update Window Statement 61

UPPER
UPPER() 252

UPPER()
UPPER() 252

USE SERVER TIMESTAMP
Create Stream Statement 36

User-Defined Functions
CCL Function Language Overview 277

USERNAME
USERNAME() 252

USERNAME()
USERNAME() 252

V
VALUES

VALUES Clause 141
Variable Scope

CFL Variable Scope 283
Variables

Create Variable Statement 42

W
WHEN

WHEN Clause 142
WHERE

WHERE Clause 143
WHERE Clause 143
While

While Statement 285
While CFL Statement

While Statement 285
While Statement 285

While Statement 285
Window Syntax

SET Clause: Window Syntax 139

X
XML

XML Data Type 4

XMLAGG
XMLAGG() 261

XMLAGG()
XMLAGG() 261

XMLATTRIBUTES
XMLATTRIBUTES() 262

XMLATTRIBUTES()
XMLATTRIBUTES() 262

XMLCOMMENT
XMLCOMMENT() 262

XMLCOMMENT()
XMLCOMMENT() 262

XMLCONCAT
XMLCONCAT() 263

XMLCONCAT()
XMLCONCAT() 263

XMLDELETE
XMLDELETE() 264

XMLDELETE()
XMLDELETE() 264

XMLELEMENT
XMLELEMENT() 265

XMLELEMENT()
XMLELEMENT() 265

XMLEXISTS
XMLEXISTS() 266

XMLEXISTS() 266
XMLEXISTS() 266

XMLEXTRACT
XMLEXTRACT() 267

XMLEXTRACT() 267
XMLEXTRACT() 267

XMLEXTRACTVALUE
XMLEXTRACTVALUE() 268

XMLEXTRACTVALUE()
XMLEXTRACTVALUE() 268

XMLINSERT
XMLINSERT() 269

XMLINSERT()
XMLINSERT() 269

XMLPARSE
XMLPARSE()/TO_XML() 251

XMLPARSE()
XMLPARSE()/TO_XML() 251

XMLPATTERNMATCH
XMLPATTERNMATCH() 270

XMLPATTERNMATCH()
XMLPATTERNMATCH() 270

XMLPI

Index

 320 Sybase CEP Option

XMLPI() 272
XMLPI()

XMLPI() 272
XMLSERIALIZE

XMLSERIALIZE() 273
XMLSERIALIZE()

XMLSERIALIZE() 273
XMLTABLE Expressions in

XMLTABLE Expressions in the FROM Clause
92

XMLTABLE Expressions in the FROM Clause 92
XMLTABLE()

XMLTABLE Expressions in the FROM Clause
92

XMLTRANSFORM
XMLTRANSFORM() 273

XMLTRANSFORM()
XMLTRANSFORM() 273

XMLUPDATE

XMLUPDATE() 274
XMLUPDATE() 274

XMLUPDATE() 274
XOR Operator

Logical CCL Operators 20
XPATH

XMLEXTRACTVALUE() 268
XPATH() 275

XPATH() 275
XSLT

XMLTRANSFORM() 273

Y

YEAR
YEAR() 276

YEAR() 276
YEAR() 276

Index

CCL Reference Guide 321

Index

 322 Sybase CEP Option

	CCL Reference Guide
	Contents
	Introduction
	Continuous Computation Language
	CCL Lexical Conventions
	Order of CCL Statement Evaluation

	Language Components
	Data Types
	Float
	XML data type
	Implicit Data Type Conversions

	Data Type Conversions
	CCL Data Type Conversions
	Conversion Between CCL and ODBC and Oracle
	Conversion Between CCL and Q
	Conversion Between CCL and SOAP

	Literals
	Boolean Literals
	String Literals
	Numeric Literals
	Time Literals

	Null Values
	Null Values in Sybase CEP Functions
	Null Values and Comparison Conditions

	Comments
	CCL Object Names and Identifiers
	Column References in CCL Queries

	Operators
	Unary and Binary Operators
	Precedence of Operators
	Arithmetic CCL Operators
	Concatenation CCL Operator
	Comparison CCL Operators
	Logical CCL Operators
	Row CCL Operators
	Like CCL Operators
	IN operator

	Expressions
	General CCL Expressions
	Simple CCL Expressions
	Compound CCL Expressions
	Sybase CEP Function Expressions
	IF Expressions
	CASE expression
	CCL Subqueries in Expressions
	Null Values in Expressions

	Statements
	ATTACH ADAPTER statement
	CREATE FUNCTION statement
	CREATE PARAMETER statement
	CREATE SCHEMA statement
	CREATE STREAM statement
	CREATE VARIABLE statement
	CREATE WINDOW statement
	Public Windows
	Shared Windows
	DATABASE statement
	DELETE statement
	IMPORT statement
	INSERT VALUES statement
	QUERY statement
	REMOTE PROCEDURE statement
	SET VARIABLE statement
	UPDATE WINDOW statement

	Clauses
	CACHE clause
	EXECUTE REMOTE PROCEDURE clause
	EXECUTE STATEMENT DATABASE clause
	FROM clause
	FROM clause: Comma-separated syntax
	FROM clause: Database and remote subquery syntax
	DATABASE subquery
	REMOTE subquery
	FROM clause: Join syntax
	CCL Subqueries in the FROM Clause
	XMLTABLE expressions
	GROUP BY clause
	HAVING clause
	INSERT clause
	INSERT INTO clause
	INSERT WHEN clause
	KEEP clause
	MATCHING clause
	ON clause
	ON clause: Trigger syntax
	ON clause: Join syntax
	ON clause: Pattern matching syntax
	ORDER BY clause
	OTHERWISE INSERT clause
	OUTPUT clause
	SCHEMA clause
	SELECT clause
	SET clause
	SET clause: Set variable statement syntax
	SET clause: Window syntax
	UPDATE clause
	VALUES clause
	WHEN clause
	WHERE clause

	Sybase CEP SQL
	SELECT statement
	Supported SQL-92 Expressions

	Functions
	Scalar Functions
	Aggregate Functions
	Mathematical Formulas for Aggregate Functions
	ABS()
	ACOS()
	ASCII()
	ASIN()
	ATAN()
	ATAN2()
	AVG()
	AVG()
	BITAND()
	BITCLEAR()
	BITFLAG() function
	BITMASK()
	BITNOT()
	BITOR()
	BITSET()
	BITSHIFTLEFT()
	BITSHIFTRIGHT()
	BITTEST()
	BITTOGGLE()
	BITXOR()
	CEIL()
	CHR() or CHAR()
	COALESCE()
	CORR()
	COS()
	COSD()
	COSH()
	COUNT()
	COVAR_POP()
	COVAR_SAMP()
	DATECEILING()
	DATEFLOOR()
	DATEROUND()
	DAYOFMONTH()
	DAYOFWEEK()
	DAYOFYEAR()
	DISTANCE()
	DISTANCESQUARED()
	EXP()
	EXP_WEIGHTED_AVG()
	EXTRACT()
	FIRST()
	FIRST_VALUE()
	FLOOR()
	GET___COLUMNBYNAME()
	GETPREFERENCE___()
	GETTIMESTAMP()
	HOUR()
	INSTR()
	LAST()
	LAST_VALUE()
	LEFT()
	LENGTH()
	LN()
	LOG()
	LOG10()
	LOG2()
	LOWER()
	LTRIM()
	MAKETIMESTAMP()
	MAX()
	MAX()
	MEANDEVIATION()
	MEDIAN()
	MICROSECOND()
	MID()
	MIN()
	MIN()
	MINUTE()
	MOD()
	MONTH()
	NEXTVAL()
	NOW()
	PI()
	POWER()
	PREV()
	RANDOM()
	REGEXP_FIRSTSEARCH()
	REGEXP_REPLACE()
	REGEXP_SEARCH()
	REGR_AVGX()
	REGR_AVGY()
	REGR_COUNT()
	REGR_INTERCEPT()
	REGR_R2()
	REGR_SLOPE()
	REGR_SXX()
	REGR_SXY()
	REGR_SYY()
	REPLACE()
	RIGHT()
	ROUND()
	RTRIM()
	SECOND()
	SIGN()
	SIN()
	SIND()
	SINH()
	SQRT()
	STDDEV()
	STDDEVIATION()
	STDDEV_POP()
	STDDEV_SAMP()
	SUBSTR()
	SUM()
	TAN()
	TAND()
	TANH()
	THRESHOLD()
	TO_BLOB()
	TO_BOOLEAN()
	TO_FLOAT()
	TO_INTEGER()
	TO_INTERVAL()
	TO_LONG()
	TO_STRING()
	TO_TIMESTAMP()
	XMLPARSE() and TO_XML() functions
	TRIM()
	UPPER()
	USERNAME()
	VARIANCE()
	VAR_POP()
	VAR_SAMP()
	VWAP()
	WEIGHTED_AVG()
	XMLAGG()
	XMLATTRIBUTES()
	XMLCOMMENT()
	XMLCONCAT()
	XMLDELETE()
	XMLELEMENT()
	XMLEXISTS()
	XMLEXTRACT()
	XMLEXTRACTVALUE()
	XMLINSERT()
	XMLPATTERNMATCH()
	XMLPI()
	XMLSERIALIZE()
	XMLTRANSFORM()
	XMLUPDATE()
	XPATH()
	YEAR()

	Sybase CEP Function Language Function Language
	ASSIGNMENT statement
	BREAK statement
	CASE statement
	CONTINUE statement
	Create Variables statement (within function)
	CFL Variable Scope
	IF statement
	RETURN statement
	WHILE statement

	Documentation Tags
	CCL Documentation Tags
	@author
	@category
	@column
	@description
	@module
	@name

	Quick References
	CCL Statements Syntax Summary
	CCL Clauses Syntax Summary
	Operators and Operand Data Types
	Timestamp Format Codes
	Sybase CEP Time Formatting Codes
	Strftime() Timestamp Conversion Codes

	Reserved Words

	Index

