
Copyright 2009 by Sybase, Inc. All rights reserved. Sybase trademarks can be viewed at the Sybase trademarks page
at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States
of America. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Unicode
and the Unicode Logo are registered trademarks of Unicode, Inc. All other company and product names mentioned may be trademarks of the respec-
tive companies with which they are associated.

Advanced Security in Sybase® IQ
Document ID: DC01015-01-1510-01

Last revised: July 2009

This document describes the Sybase IQ Advanced Security Option.

Topic Page

Advanced security in Sybase IQ 2

FIPS support in Sybase IQ 2

Kerberos authentication support in Sybase IQ 3

Column encryption in Sybase IQ 3

 Data types for encrypted columns 5

 AES_ENCRYPT function [String] 6

 AES_DECRYPT function [String] 8

 LOAD TABLE ENCRYPTED clause 9

 Working with encrypted columns 11

 String comparisons on encrypted text 11

 Encryption and decryption examples 12

 Setting database options for column encryption 22

 Protecting ciphertext data from accidental truncation 23

 Preserving ciphertext integrity 23

 Preventing misuse of ciphertext 24

http://www.sybase.com/detail?id=1011207

Advanced security in Sybase IQ

2 Advanced Security in Sybase IQ

Advanced security in Sybase IQ
The Sybase IQ Advanced Security Option provides additional security
mechanisms that assure the highest levels of both data and user protection.
When data is a currency for your business, securing your valuable data asset
should be one of your top priorities.

The secure business intelligence features of the Sybase IQ Advanced Security
Option include column encryption, plus the network encryption support of
Federal Information Processing Standards (FIPS) approved encryption
technology, and Kerberos authentication for both database connections and
operating system and network logins.

The increased security capabilities provided by the Sybase IQ Advanced
Security Option ensure compliance with the FIPS standards and regulations.

The Advanced Security Option is a separately licensed Sybase IQ option.

FIPS support in Sybase IQ
Sybase IQ includes enhancements to Federal Information Processing
Standards (FIPS) approved encryption technology. FIPS is supported on all
platforms supported by Sybase IQ.

The main impact of FIPS support for Sybase IQ is that encryption can be
nondeterministic, which is now the default behavior. A nondeterministic
algorithm is one in which the same input yields different output values each
time. This means that when you use a key to encrypt a string, the encrypted
string is different each time. The algorithm, however, is still able to decrypt the
nondeterministic result using the key. This feature makes analyzing the
encryption algorithm more difficult, and encryption more secure.

Support of FIPS is part of the separately licensed Sybase IQ Advanced Security
Option.

Both RSA and FIPS security are included with Sybase IQ. RSA encryption
requires no separate libraries, but FIPS requires two optional libraries:
dbfips11.dll and sbgse2.dll. The library sbgse2.dll is provided by Certicom.
Both security models require certificates. The rsaserver certificate has been
renamed from rsaserver.crt to rsaserver.id.

Kerberos authentication support in Sybase IQ

Sybase IQ 3

FIPS also requires the following registry setting, which is set automatically by
the Sybase IQ installation utility:

[HKEY_LOCAL_MACHINE\SOFTWARE\Certicom\libsb]
"expectedtag"=hex:5b,0f,4f,a6,e2,4a,ef,3b,44,07,05,2e,
b0,49,02,71,1f,d9,91,b6

For more information about using FIPS and RSA encryption, see “Transport-
layer security” and “Keeping your data secure” in SQL Anywhere 11.0.1 > SQL
Anywhere Server – Database Administration > Security.

Kerberos authentication support in Sybase IQ
Sybase IQ supports Kerberos authentication, a login feature that allows you to
maintain a single user ID and password for both database connections and
operating system and network logins. You can use your Kerberos credentials to
connect to the database without specifying a user ID or password.

Kerberos authentication is part of the separately licensed Sybase IQ Advanced
Security Option.

For details about using Kerberos authentication, see “Kerberos authentication”
in SQL Anywhere 11.0.1 > SQL Anywhere Server – Database Administration
> Starting and Connecting to Your Database > SQL Anywhere database
connections.

Column encryption in Sybase IQ
Strong encryption of the Sybase IQ database file uses a 128-bit algorithm and
a security key. The data is unreadable and virtually undecipherable without the
key. The algorithm supported is described in FIPS-197, the Federal
Information Processing Standard for the Advanced Encryption Standard.

Sybase IQ supports user encrypted columns with the addition of the
AES_ENCRYPT and AES_DECRYPT functions and the LOAD TABLE
ENCRYPTED clause. These functions permit explicit encryption and
decryption of column data via calls from the application. Encryption and
decryption key management is the responsibility of the application.

Column encryption in Sybase IQ

4 Advanced Security in Sybase IQ

Users must be specifically licensed to use the encrypted column functionality
of the Sybase IQ Advanced Security Option described in this product
documentation.

Certain database options affect column encryption. Before using this feature,
see “Setting database options for column encryption” on page 22.

Definitions The following terms are used when describing encryption of stored data.

plaintext Data in its original, intelligible form. Plaintext is not limited to
string data, but is used to describe any data in its original representation.

ciphertext Data in an unintelligible form that preserves the information
content of the plaintext form.

encryption A reversible transformation of data from plaintext to ciphertext.
Also known as enciphering.

decryption The reverse transformation of ciphertext back to plaintext. Also
known as deciphering.

key A number used to encrypt or decrypt data. Symmetric-key encryption
systems use the same key for both encryption and decryption. Asymmetric-key
systems use one key for encryption and a different (but mathematically related)
key for decryption. The Sybase IQ interfaces accept character strings as keys.

Rijndael Pronounced “reign dahl.” A specific encryption algorithm that
supports a variety of key and block sizes. The algorithm was designed to use
simple whole-byte operations and thus is relatively easy to implement in
software.

AES The Advanced Encryption Standard, a FIPS-approved cryptographic
algorithm for the protection of sensitive (but unclassified) electronic data. AES
adopted the Rijndael algorithm with restrictions on the block sizes and key
lengths. AES is the algorithm supported by Sybase IQ.

Column encryption in Sybase IQ

Sybase IQ 5

Data types for encrypted columns
This section lists the supported and unsupported data types for encrypted
columns and discusses the preservation of the original data type of an
encrypted column.

Supported data types The first parameter of the AES_ENCRYPT function must be one of the
following supported data types:

The LOB data type is not currently supported for Sybase IQ column encryption.

Preserving data types Sybase IQ ensures that the original data type of the plaintext is preserved when
decrypting data, if the AES_DECRYPT function is given the data type as a
parameter, or is within a CAST function. Sybase IQ compares the target data
type of the CAST with the data type of the originally encrypted data. If the two
data types do not match, a -1001064 error is returned with details about the
original and target data types.

For example, given an encrypted VARCHAR(1) value and the following valid
decryption statement:

SELECT AES_DECRYPT (thecolumn, ‘theKey’,
VARCHAR(1)) FROM thetable

If you attempt to decrypt the data using:

SELECT AES_DECRYPT (thecolumn, ‘theKey’,
SMALLINT) FROM thetable

the error returned is:

Decryption error: Incorrect CAST type smallint(5,0)
for decrypt data of type varchar(1,0).

CHAR NUMERIC

VARCHAR FLOAT

TINYINT REAL

SMALLINT DOUBLE

INTEGER DECIMAL

BIGINT DATE

BIT TIME

BINARY DATETIME

VARBINARY TIMESTAMP

UNSIGNED INT SMALLDATETIME

UNSIGNED BIGINT

Column encryption in Sybase IQ

6 Advanced Security in Sybase IQ

This data type check is made only when supplied. Without the CAST or the data
type parameter, the query returns the ciphertext as binary data.

Note When using the AES_ENCRYPT function on literal constants, as in this
statement:

INSERT INTO t (cipherCol) VALUES (AES_ENCRYPT (1,
‘key’))

be aware that the data type of 1 is ambiguous. The data type of 1 can be a
TINYINT, SMALLINT, INTEGER, UNSIGNED INT, BIGINT, UNSIGNED BIGINT
or possibly other data types.

Sybase recommends explicit use of the CAST function to resolve any potential
ambiguity, as in:

INSERT INTO t (cipherCol)
VALUES (AES_ENCRYPT (CAST (1 AS UNSIGNED INTEGER),
‘key’))

Explicitly converting the data type using the CAST function when encrypting
data prevents problems using the CAST function when the data is decrypted.

There is no ambiguity if the data being encrypted is from a column or if the
encrypted data was inserted by LOAD TABLE.

AES_ENCRYPT function [String]
Function Encrypts the specified values using the supplied encryption key, and returns a

VARBINARY or LONG VARBINARY.

Syntax AES_ENCRYPT(string-expression, key)

Parameters string-expression The data to be encrypted. For a list of supported data
types, see “Data types for encrypted columns” on page 5. Binary values can
also be passed to AES_ENCRYPT. This parameter is case-sensitive, even in
case-insensitive databases.

key The encryption key used to encrypt the string-expression. To obtain the
original value, you must also use the same key to decrypt the value. This
parameter is case sensitive, even in case-insensitive databases.

Column encryption in Sybase IQ

Sybase IQ 7

As with most passwords, it is best to choose a key value that is difficult to
guess. Sybase recommends that you choose a value for your key that is at least
16 characters long, contains a mix of uppercase and lowercase letters, and
includes numbers and special characters. You need this key each time you want
to decrypt the data.

 Warning! Protect your key; store a copy of your key in a safe location. If you
lose your key, encrypted data becomes completely inaccessible and
unrecoverable.

Usage AES_ENCRYPT returns a VARBINARY value, which is at most 31 bytes longer
than the input string-expression. The value returned by this function is the
ciphertext, which is not human-readable. You can use the AES_DECRYPT
function to decrypt a string-expression that was encrypted with the
AES_ENCRYPT function. To successfully decrypt a string-expression, use the
same encryption key and algorithm used to encrypt the data. If you specify an
incorrect encryption key, an error is generated.

If you are storing encrypted values in a table, the column should be of data type
VARBINARY or VARCHAR, and greater than or equal to 32 bytes, so that
character set conversion is not performed on the data. (Character set
conversion would prevent decryption of the data.) If the length of the
VARBINARY or VARCHAR column is less than 32 bytes, then the
AES_DECRYPT function returns an error.

The result data type of an AES_ENCRYPT function may be a LONG
VARBINARY. If you use AES_ENCRYPT in a SELECT INTO statement, you
must have a Large Objects Management Option license, or use CAST and set
AES_ENCRYPT to the correct data type and size.

For additional details and usage information, see “REPLACE function
[String]”in Chapter 4, “SQL Functions” in Reference: Building Blocks,
Tables, and Procedures.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 SQL/foundation feature outside of core SQL

• Sybase Not supported by Adaptive Server Enterprise

See also “AES_DECRYPT function [String]” on page 8

“LOAD TABLE ENCRYPTED clause” on page 9

Example See “Encryption and decryption examples” on page 12 for an example of the
use of the AES_ENCRYPT function.

Column encryption in Sybase IQ

8 Advanced Security in Sybase IQ

AES_DECRYPT function [String]
Function Decrypts the string using the supplied key, and returns, by default, a

VARBINARY or LONG VARBINARY, or the original plaintext type.

Syntax AES_DECRYPT(string-expression, key [, data-type])

Parameters string-expression The string to be decrypted. Binary values can also be
passed to this function. This parameter is case sensitive, even in case-
insensitive databases.

key The encryption key required to decrypt the string-expression. To obtain
the original value that was encrypted, the key must be the same encryption key
that was used to encrypt the string-expression. This parameter is case-sensitive,
even in case-insensitive databases.

 Warning! Protect your key; store a copy of your key in a safe location. If you
lose your key, the encrypted data becomes completely inaccessible and
unrecoverable.

data-type This optional parameter specifies the data type of the decrypted
string-expression and must be the same data type as the original plaintext.

If you do not use a CAST statement while inserting data using the
AES_ENCRYPT function, you can view the same data using the
AES_DECRYPT function by passing VARCHAR as the data-type. If you do not
pass data-type to AES_DECRYPT, VARBINARY data type is returned.

Usage You can use the AES_DECRYPT function to decrypt a string-expression that
was encrypted with the AES_ENCRYPT function. This function returns a
VARBINARY or LONG VARBINARY value with the same number of bytes as the
input string, if no data type is specified. Otherwise, the specified data type is
returned.

To successfully decrypt a string-expression, you must use the same encryption
key that was used to encrypt the data. An incorrect encryption key returns an
error.

Standards and
compatibility

• SQL92 Vendor extension

• SQL99 Vendor extension

• Sybase Not supported by Adaptive Server Enterprise

See also • “AES_ENCRYPT function [String]” on page 6

• “Encryption and decryption examples” on page 12

• “LOAD TABLE ENCRYPTED clause” on page 9

Column encryption in Sybase IQ

Sybase IQ 9

Example The following example decrypts the password of a user from the user_info
table.

SELECT AES_DECRYPT(user_pwd, '8U3dkA', CHAR(100))
FROM user_info;

LOAD TABLE ENCRYPTED clause
The LOAD TABLE statement supports the column-spec keyword ENCRYPTED.
The column-specs must follow the column name in a LOAD TABLE statement
in this order:

• format-specs

• null-specs

• encrypted-specs

See “Example” on page 10.

For full syntax, see LOAD TABLE statement in Chapter 1, “SQL Statements”
of Reference: Statements and Options.

Syntax | ENCRYPTED(data-type ‘key-string’ [, ‘algorithm-string’])

Parameters data-type The data type that the input file field should be converted to as
input to the AES_ENCRYPT function. For supported data types, see “Data
types for encrypted columns” on page 5. data-type should be the same data
type as the data type of the output of the AES_DECRYPT function. See
“AES_DECRYPT function [String]” on page 8.

key-string The encryption key used to encrypt the data. This key must be a
string literal. To obtain the original value, you must use the same key to decrypt
the value. This parameter is case sensitive, even in case-insensitive databases.

As with most passwords, it is best to choose a key value that cannot be easily
guessed. Sybase recommends that you choose a value for your key that is at
least 16 characters long, contains a mix of uppercase and lowercase letters, and
includes numbers and special characters. You will need this key each time you
want to decrypt the data.

 Warning! Protect your key; store a copy of your key in a safe location. A lost
key results in the encrypted data becoming completely inaccessible, from
which there is no recovery.

Column encryption in Sybase IQ

10 Advanced Security in Sybase IQ

algorithm-string The algorithm used to encrypt the data. This parameter is
optional, but data must be encrypted and decrypted using the same algorithm.
Currently, AES is the default, as it is the only supported algorithm. AES is a
block encryption algorithm chosen as the new Advanced Encryption Standard
(AES) for block ciphers by the National Institute of Standards and Technology
(NIST).

Usage The ENCRYPTED column specification allows you to specify the encryption
key and, optionally, the algorithm to use to encrypt the data that is loaded into
the column. The target column for this load should be VARBINARY. Specifying
other data types returns an error.

See also • “AES_ENCRYPT function [String]” on page 6

• “AES_DECRYPT function [String]” on page 8

• “Encryption and decryption examples” on page 12

Example LOAD TABLE table_name
(
plaintext_column_name,
a_ciphertext_column_name
NULL('nil')
ENCRYPTED(varchar(6),'tHefiRstkEy') ,
another_encrypted_column
ENCRYPTED(bigint,'thEseconDkeY','AES')
)
FROM '/path/to/the/input/file'
FORMAT ascii
DELIMITED BY ';'
ROW DELIMITED BY '\0xa'
QUOTES OFF
ESCAPES OFF

where the format of the input file for the LOAD TABLE statement is:

a;b;c;
d;e;f;
g;h;i;

Column encryption in Sybase IQ

Sybase IQ 11

Working with encrypted columns
This section describes how to work with encrypted columns and provides some
examples.

String comparisons on encrypted text

If data is case insensitive, or uses a collation other than ISO_BINENG, you
must decrypt ciphertext columns to perform string comparisons.

When performing comparisons on strings, the distinction between equal and
identical strings is important for many collations and depends on the CASE
option of CREATE DATABASE. In a database that is set to CASE RESPECT and
uses the ISO_BINENG collation, the defaults for Sybase IQ, equality, and
identity questions are resolved the same way.

Identical strings are always equal, but equal strings may not be identical.
Strings are identical only if they are represented using the same byte values.
When data is case insensitive or uses a collation where multiple characters
must be treated as equal, the distinction between equality and identity is
significant. ISO1LATIN1 is such a collation.

For example, the strings “ABC” and “abc” in a case insensitive database are
not identical but are equal. In a case sensitive database, they are neither
identical nor equal.

The ciphertext created by the Sybase encryption functions preserves identity
but not equality. In other words, the ciphertext for “ABC” and “abc” will never
be equal.

To perform equality comparisons on ciphertext when your collation or CASE
setting does not allow this type of comparison, your application must modify
the values within that column into some canonical form, where there are no
equal values that are not also identical values. For example, if your database is
created with CASE IGNORE and the ISO_BINENG collation and your
application applies UCASE to all input values before placing them into the
column, then all equal values are also identical.

Column encryption in Sybase IQ

12 Advanced Security in Sybase IQ

Encryption and decryption examples
Example 1 The following example of the AES_ENCRYPT and AES_DECRYPT functions

is written in commented SQL.

-- This example of aes_encrypt and aes_decrypt function use is presented
in three parts:
--
-- Part I: Preliminary description of target tables and users as DDL
-- Part II: Example schema changes motivated by introduction of encryption
-- Part III: Use of views and stored procedures to protect encryption keys
--

-- Part I: Define target tables and users

-- Assume two classes of user, represented here by the instances
-- PrivUser and NonPrivUser, assigned to groups reflecting differing
-- privileges.

-- The initial state reflects the schema prior to the introduction
-- of encryption.

-- Set up the starting context: There are two tables with a common key.
-- Some columns contain sensitive data, the remaining columns do not.
-- The usual join column for these tables is sensitiveA.
-- There is a key and a unique index.

grant connect to PrivUser identified by 'verytrusted' ;
grant connect to NonPrivUser identified by 'lesstrusted' ;

grant connect to high_privileges_group ;
grant group to high_privileges_group ;
grant membership in group high_privileges_group to PrivUser ;

grant connect to low_privileges_group ;
grant group to low_privileges_group ;
grant membership in group low_privileges_group to NonPrivUser ;

create table DBA.first_table
(sensitiveA char(16) primary key
,sensitiveB numeric(10,0)
,publicC varchar(255)
,publicD date
) ;

Column encryption in Sybase IQ

Sybase IQ 13

-- There is an implicit unique HG (HighGroup) index enforcing the primary
key.

create table second_table
(sensitiveA char(16)
,publicP integer
,publicQ tinyint
,publicR varchar(64)
) ;

create hg index second_A_HG on second_table (sensitiveA) ;

-- TRUSTED users can see the sensitive columns.

grant select (sensitiveA, sensitiveB, publicC, publicD)
on DBA.first_table to PrivUser ;

grant select (sensitiveA, publicP, publicQ, publicR)
on DBA.second_table to PrivUser ;

-- Non-TRUSTED users in existing schema need to see sensitiveA to be
-- able to do joins, even though they should not see sensitiveB.

grant select (sensitiveA, publicC, publicD)
on DBA.first_table to NonPrivUser ;

grant select (sensitiveA, publicP, publicQ, publicR)
on DBA.second_table to NonPrivUser ;

-- Non-TRUSTED users can execute queries such as

select I.publicC, 3*II.publicQ+1
from DBA.first_table I, DBA.second_table II
where I.sensitiveA = II.sensitiveA and I.publicD IN ('2006-01-11') ;

-- and

select count(*)
from DBA.first_table I, DBA.second_table II
where I.sensitiveA = II.sensitiveA and SUBSTR(I.sensitiveA,4,3)
BETWEEN '345' AND '456' ;

-- But only TRUSTED users can execute the query

select I.sensitiveB, 3*II.publicQ+1
from DBA.first_table I, DBA.second_table II
where I.sensitiveA = II.sensitiveA and I.publicD IN ('2006-01-11') ;

Column encryption in Sybase IQ

14 Advanced Security in Sybase IQ

-- Part II: Change the schema in preparation for encryption
--
-- The DBA introduces encryption as follows:
--
-- For applicable tables, the DBA changes the schema, adjusts access
-- permissions, and updates existing data. The encryption
-- keys used are hidden in a subsequent step.

-- DataLength comparison for length of varbinary encryption result
-- (units are Bytes):
--
-- PlainText CipherText Corresponding Numeric Precisions
--
-- 0 16
-- 1 - 16 32 numeric(1,0) - numeric(20,0)
-- 17 - 32 48 numeric(21,0) - numeric(52,0)
-- 33 - 48 64 numeric(53,0) - numeric(84,0)
-- 49 - 64 80 numeric(85,0) - numeric(116,0)
-- 65 - 80 96 numeric(117,0) - numeric(128,0)
-- 81 - 96 112
-- 97 - 112 128
-- 113 - 128 144
-- 129 - 144 160
-- 145 - 160 176
-- 161 - 176 192
-- 177 - 192 208
-- 193 - 208 224
-- 209 - 224 240

-- The integer data types tinyint, small int, integer, and bigint
-- are varbinary(32) ciphertext.

-- The exact relationship is
-- DATALENGTH(ciphertext) =
-- (((DATALENGTH(plaintext)+ 15) / 16) + 1) * 16

-- For the first table, the DBA chooses to preserve both the plaintext and
-- ciphertext forms. This is not typical and should only be done if the
-- database files are also encrypted.

-- Take away NonPrivUser's access to column sensitiveA and transfer
-- access to the ciphertext version.

Column encryption in Sybase IQ

Sybase IQ 15

-- Put a unique index on the ciphertext column. The ciphertext
-- itself is indexed.

-- NonPrivUser can select the ciphertext and use it.

-- PrivUser can still select either form (without paying decrypt costs).

revoke select (sensitiveA) on DBA.first_table from NonPrivUser ;
alter table DBA.first_table add encryptedA varbinary(32) ;
grant select (encryptedA) on DBA.first_table to PrivUser ;
grant select (encryptedA) on DBA.first_table to NonPrivUser ;
create unique hg index first_A_unique on first_table (encryptedA) ;
update DBA.first_table

set encryptedA = aes_encrypt(sensitiveA, 'seCr3t')
where encryptedA is null ;

commit

-- Now change column sensitiveB.

alter table DBA.first_table add encryptedB varbinary(32) ;
grant select (encryptedB) on DBA.first_table to PrivUser ;
create unique hg index first_B_unique on first_table (encryptedB) ;
update DBA.first_table

set encryptedB = aes_encrypt(sensitiveB,
'givethiskeytonoone') where encryptedB is null ;

commit

-- For the second table, the DBA chooses to keep only the ciphertext.
-- This is more typical and encrypting the database files is not required.

revoke select (sensitiveA) on DBA.second_table from NonPrivUser ;
revoke select (sensitiveA) on DBA.second_table from PrivUser ;
alter table DBA.second_table add encryptedA varbinary(32) ;
grant select (encryptedA) on DBA.second_table to PrivUser ;
grant select (encryptedA) on DBA.second_table to NonPrivUser ;
create unique hg index second_A_unique on second_table (encryptedA) ;
update DBA.second_table

set encryptedA = aes_encrypt(sensitiveA, 'seCr3t')
where encryptedA is null ;

commit
alter table DBA.second_table drop sensitiveA ;

Column encryption in Sybase IQ

16 Advanced Security in Sybase IQ

-- The following types of queries are permitted at this point, before
-- changes are made for key protection:

-- Non-TRUSTED users can equi-join on ciphertext; they can also select
-- the binary, but have no way to interpret it.

select I.publicC, 3*II.publicQ+1
from DBA.first_table I, DBA.second_table II
where I.encryptedA = II.encryptedA and I.publicD IN ('2006-01-11') ;

-- Ciphertext-only access rules out general predicates and expressions.
-- The following query does not return meaningful results.
--
-- NOTE: These four predicates can be used on the varbinary containing
-- ciphertext:
-- = (equality)
-- <> (inequality)
-- IS NULL
-- IS NOT NULL

select count(*)
from DBA.first_table I, DBA.second_table II
where I.encryptedA = II.encryptedA and SUBSTR(I.encryptedA,4,3)

BETWEEN '345' AND '456' ;

-- The TRUSTED user still has access to the plaintext columns that
-- were retained. Therefore, this user does not need to call
-- aes_decrypt and does not need the key.

select count(*)
from DBA.first_table I, DBA.second_table II
where I.encryptedA = II.encryptedA and SUBSTR(I.sensitiveA,4,3)

BETWEEN '345' AND '456' ;

Column encryption in Sybase IQ

Sybase IQ 17

-- Part III: Protect the encryption keys

-- This section illustrates how to grant access to the plaintext, but
-- still protect the keys.

-- For the first table, the DBA elected to retain the plaintext columns.
-- Therefore, the following view has the same capabilities as the trusted
-- user above.
-- Assume group_member is being used for additional access control.

-- NOTE: In this example, NonPrivUser still has access to the ciphertext
-- encrypted in the base table.

create view DBA.a_first_view (sensitiveA, publicC, publicD)
as

select
 IF group_member('high_privileges_group',user_name()) = 1

 THEN sensitiveA
 ELSE NULL

 ENDIF,
 publicC,
 publicD
from first_table ;

grant select on DBA.a_first_view to PrivUser ;
grant select on DBA.a_first_view to NonPrivUser ;

-- For the second table, the DBA did not keep the plaintext.
-- Therefore, aes_decrypt calls must be used in the view.
-- IMPORTANT: Hide the view definition with ALTER VIEW, so that no one
-- can discover the key.

create view DBA.a_second_view (sensitiveA,publicP,publicQ,publicR)
as

select
 IF group_member('high_privileges_group',user_name()) = 1

 THEN aes_decrypt(encryptedA,'seCr3t', char(16))
 ELSE NULL

 ENDIF,
 publicP,
 publicQ,
 publicR
from second_table ;

Column encryption in Sybase IQ

18 Advanced Security in Sybase IQ

alter view DBA.a_second_view set hidden ;
grant select on DBA.a_second_view to PrivUser ;
grant select on DBA.a_second_view to NonPrivUser ;

-- Likewise, the key used for loading can be protected in a stored
procedure.

-- By hiding the procedure (just as the view is hidden), no-one can see
-- the keys.

create procedure load_first_proc(@inputFileName varchar(255),
@colDelim varchar(4) default '$',
@rowDelim varchar(4) default '\n')

begin
execute immediate with quotes

'load table DBA.second_table
(encryptedA encrypted(char(16),' ||
'''' || 'seCr3t' || '''' || '),publicP,publicQ,publicR) ' ||
' from ' || '''' || @inputFileName || '''' ||
' delimited by ' || '''' || @colDelim || '''' ||
' row delimited by ' || '''' || @rowDelim || '''' ||
' quotes off escapes off' ;

end
;

alter procedure DBA.load_first_proc set hidden ;

-- Call the load procedure using the following syntax:

call load_first_proc('/dev/null', '$', '\n') ;

-- Below is a comparison of several techniques for protecting the
-- encryption keys by using user-defined functions (UDFs), other views,
-- or both. The first and the last alternatives offer maximum performance.

-- The second_table is secured as defined earlier.

Column encryption in Sybase IQ

Sybase IQ 19

-- Alternative 1:
-- This baseline approach relies on restricting access to the entire view.

 create view
DBA.second_baseline_view(sensitiveA,publicP,publicQ,publicR)

as
select
 IF group_member('high_privileges_group',user_name()) = 1

 THEN aes_decrypt(encryptedA,'seCr3t', char(16))
 ELSE NULL

 ENDIF,
publicP,

 publicQ,
 publicR
from DBA.second_table ;

 alter view DBA.second_baseline_view set hidden ;
 grant select on DBA.second_baseline_view to NonPrivUser ;
 grant select on DBA.second_baseline_view to PrivUser ;

-- Alternative 2:
-- Place the encryption function invocation within a user-defined
-- function (UDF).
-- Hide the definition of the UDF. Restrict the UDF permissions.
-- Use the UDF in a view that handles the remainder of the security
-- and business logic.
-- Note: The view itself does not need to be hidden.

 create function DBA.second_decrypt_function(IN datum varbinary(32))
RETURNS char(16) DETERMINISTIC
BEGIN

RETURN aes_decrypt(datum,'seCr3t', char(16));
END ;

 grant execute on DBA.second_decrypt_function to PrivUser ;
 alter function DBA.second_decrypt_function set hidden ;

Column encryption in Sybase IQ

20 Advanced Security in Sybase IQ

 create view
DBA.second_decrypt_view(sensitiveA,publicP,publicQ,publicR)

as
select
 IF group_member('high_privileges_group',user_name()) = 1

 THEN second_decrypt_function(encryptedA)
 ELSE NULL

 ENDIF,
publicP,

 publicQ,
 publicR

from DBA.second_table ;

 grant select on DBA.second_decrypt_view to NonPrivUser ;
 grant select on DBA.second_decrypt_view to PrivUser ;

-- Alternative 3:
-- Sequester only the key selection in a user-defined function.
-- This function could be extended to support selection of any
-- number of keys.
-- This UDF is also hidden and has restricted execute privileges.
-- Note: Any view that uses this UDF therefore does not compromise
-- the key values.

 create function DBA.second_key_function()
 RETURNS varchar(32) DETERMINISTIC
 BEGIN

return 'seCr3t' ;
 END

 grant execute on DBA.second_key_function to PrivUser ;
 alter function DBA.second_key_function set hidden ;

Column encryption in Sybase IQ

Sybase IQ 21

 create view DBA.second_key_view(sensitiveA,publicP,publicQ,publicR)
as

select
 IF group_member('high_privileges_group',user_name()) = 1

THEN aes_decrypt(encryptedA,second_key_function(),
char(16))

 ELSE NULL
 ENDIF,

publicP,
 publicQ,
 publicR
from DBA.second_table ;

 grant select on DBA.second_key_view to NonPrivUser ;
 grant select on DBA.second_key_view to PrivUser ;

-- Alternative 4:
-- The recommended alternative is to separate the security logic
-- from the business logic by dividing the concerns into two views.
-- Only the security logic view needs to be hidden.
-- Note: The performance of this approach is similar to that of the first
-- alternative.

 create view
DBA.second_SecurityLogic_view(sensitiveA,publicP,publicQ,publicR)

as
select
 IF group_member('high_privileges_group',user_name()) = 1

 THEN aes_decrypt(encryptedA,'seCr3t', char(16))
 ELSE NULL

 ENDIF,
publicP,

 publicQ,
 publicR
from DBA.second_table ;

 alter view DBA.second_SecurityLogic_view set hidden ;

Column encryption in Sybase IQ

22 Advanced Security in Sybase IQ

 create view
DBA.second_BusinessLogic_view(sensitiveA,publicP,publicQ,publicR)

as
select
 sensitiveA,

publicP,
 publicQ,
 publicR
from DBA.second_SecurityLogic_view ;

 grant select on DBA.second_BusinessLogic_view to NonPrivUser ;
 grant select on DBA.second_BusinessLogic_view to PrivUser ;

-- End of encryption example

Example 2 The ciphertext produced by AES_ENCRYPT differs for two different data types
given the same input value and same key. A join of two ciphertext columns that
hold encrypted values of two different data types may therefore not return
identical results.

For example, assume the following:

CREATE TABLE tablea(c1 int, c2 smallint);
INSERT INTO tablea VALUES (100,100);

The value AES_ENCRYPT(c1, 'key') differs from
AES_ENCRYPT(c2,'key') and the value AES_ENCRYPT(c1,'key') differs
from AES_ENCRYPT(100,'key').

To resolve this issue, cast the input of AES_ENCRYPT to the same data type.
For example, the results of the following code fragments are the same:

AES_ENCRYPT(c1, 'key');
AES_ENCRYPT(CAST(c2 AS INT), 'key');
AES_ENCRYPT(CAST(100 AS INT), 'key');

Setting database options for column encryption
Certain Sybase IQ database option settings affect column encryption and
decryption. Check the options mentioned in this section before using
AES_ENCRYPT or AES_DECRYPT, because the default settings are not
optimal for most column encryption operations.

Column encryption in Sybase IQ

Sybase IQ 23

Protecting ciphertext data from accidental truncation

To prevent accidental truncation of the ciphertext output of the encrypt
function (or accidental truncation of any other character or binary string), set
this database option:

SET OPTION STRING_RTRUNCATION = 'ON'

When STRING_RTRUNCATION is ON (the default), the engine raises an error
whenever a string would be truncated during a load, insert, update, or SELECT
INTO operation. This is ANSI/ISO SQL92 behavior and is a recommended
practice.

When explicit truncation is required, use a string expression such as LEFT,
SUBSTRING, or CAST.

Setting STRING_RTRUNCATION OFF forces silent truncation of strings.

The AES_DECRYPT function also checks input ciphertext for valid data length,
and checks text output to verify both the resulting data length and the
correctness of the supplied key. (If the data type argument is supplied, the data
type is checked as well.)

Preserving ciphertext integrity

To preserve ciphertext integrity, set the following database option:

SET OPTION ASE_BINARY_DISPLAY = 'OFF'

When ASE_BINARY_DISPLAY is OFF (the default), the system leaves binary
data unmodified, and in its raw binary form.

When ASE_BINARY_DISPLAY is ON, the system converts binary data into its
hexadecimal string display representation. Temporarily set the option to ON
only if you need data to display to an end user or if you need to export the data
to another external system, where raw binary could become altered in transit.

Column encryption in Sybase IQ

24 Advanced Security in Sybase IQ

Preventing misuse of ciphertext

The CONVERSION_MODE database option restricts implicit conversion
between binary data types (BINARY, VARBINARY, and LONG BINARY) and
other nonbinary data types (BIT, TINYINT, SMALLINT, INT, UNSIGNED INT,
BIGINT, UNSIGNED BIGINT, CHAR, VARCHAR, and LONG VARCHAR) on
various operations. Use CONVERSION_MODE to prevent implicit data type
conversions of encrypted data that would result in semantically meaningless
operations:

SET TEMPORARY OPTION CONVERSION_MODE = 1

Setting CONVERSION_MODE to 1 restricts implicit conversion of binary data
types to any other nonbinary data type on INSERT and UPDATE commands,
and in queries. The restrict binary conversion mode also applies to LOAD
TABLE default values and CHECK constraint.

The CONVERSION_MODE option default value of 0 maintains the implicit
conversion behavior of binary data types in versions of Sybase IQ earlier than
12.7.

See “CONVERSION_MODE option” in Chapter 2, “Database Options” of
Reference: Statements and Options.

	Advanced Security in Sybase® IQ
	Advanced security in Sybase IQ
	FIPS support in Sybase IQ
	Kerberos authentication support in Sybase IQ
	Column encryption in Sybase IQ
	Definitions
	plaintext
	ciphertext
	encryption
	decryption
	key
	Rijndael
	AES
	Data types for encrypted columns
	Supported data types
	Preserving data types

	AES_ENCRYPT function [String]
	Function
	Syntax
	Parameters
	string-expression
	key
	Usage
	Standards and compatibility
	. SQL92
	. SQL99
	. Sybase
	See also
	Example

	AES_DECRYPT function [String]
	Function
	Syntax
	Parameters
	string-expression
	key
	data-type
	Usage
	Standards and compatibility
	. SQL92
	. SQL99
	. Sybase
	See also
	Example

	LOAD TABLE ENCRYPTED clause
	Syntax
	Parameters
	data-type
	key-string
	algorithm-string
	Usage
	See also
	Example

	Working with encrypted columns
	String comparisons on encrypted text
	Encryption and decryption examples
	Example 1
	Example 2

	Setting database options for column encryption
	Protecting ciphertext data from accidental truncation
	Preserving ciphertext integrity
	Preventing misuse of ciphertext

