
Migration Technology Guide

Adaptive Server® Enterprise
15.5

DOCUMENT ID: DC00967-01-1550-01

LAST REVISED: October 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Migration Technology Guide iii

About This Book .. v

CHAPTER 1 Migration Strategy... 1
Preupgrade considerations .. 1

Understanding optimization goals ... 2
Resource recommendations for Adaptive Server 15.0.............. 4
Incorporating statistics in Adaptive Server 15.0 5
Recommended testing before upgrade 5

Migrating to Adaptive Server 15.0 features...................................... 7
Upgrading, and using new features immediately 9
Upgrading, and using new features later................................... 9
Upgrading, but not using new features.................................... 10

Troubleshooting ... 10
Query processing tips.. 10
Information to capture before contacting Technical Support ... 13

CHAPTER 2 QPTune .. 17
Setting up your system... 18
Using QPTune to fix missing statistics ... 19

Starting QPTune to fix missing statistics 21
Collecting statistics.. 21
Fixing statistics .. 23
Using undo_fix_stats ... 24

Using QPTune to tune queries or applications............................... 24
Starting QPTune to tune queries or applications..................... 27
Collecting metrics .. 28
Comparing metrics .. 29
Applying the best results ... 30

Configuration file .. 32
Examples ... 34
Upgrade issues .. 43
Localization .. 44
QPTune GUI .. 44

Contents

iv Adaptive Server Enterprise

Environment and system requirements................................... 45
Starting the QPTune GUI .. 46
Fixing missing statistics... 46
Tuning Task... 47

QPTune reference information... 50

CHAPTER 3 Running the Query Processor in Compatibility Mode 55
Enabling compatibility mode .. 55
Feature support in compatibility mode ... 56
Additional trace flag for diagnostics ... 58
New stored procedure sp_compatmode .. 58
Changes to @@qpmode global variable 59
Diagnostic tool.. 60

Index ... 61

Migration Technology Guide v

About This Book

Audience This book is intended for System Administrators who are migrating to a
different version of Adaptive Server®Enterprise.

How to use this book Chapter 1, “Migration Strategy,” outlines strategies for users who want to
upgrade and use new features immediately, and for users who would like
to upgrade now and use the new features later.

Chapter 2, “QPTune,” gives a comprehensive summary of the QPTune
tool.

Chapter 3, “Running the Query Processor in Compatibility Mode,”
discusses “the compatibility mode” feature for users who want to upgrade
to a new version, but retain performance characteristics of a previous
version.

Related documents The Adaptive Server Enterprise documentation set consists of:

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be available. To
check for critical product or document information that was added
after the release of the product CD, use the Sybase® Product Manuals
Web site.

• The installation guide for your platform – describes installation,
upgrading, and some configuration procedures for all Adaptive
Server and related Sybase products.

• New Feature Summary – describes the new features in Adaptive
Server, the system changes added to support those features, and
changes that may affect your existing applications.

• Active Messaging Users Guide – describes how to use the Active
Messaging feature to capture transactions (data changes) in an
Adaptive Server Enterprise database, and deliver them as events to
external applications in real time.

• Component Integration Services Users Guide – explains how to use
Component Integration Services to connect remote Sybase and non-
Sybase databases.

vi Adaptive Server Enterprise

• The Configuration Guide for your platform – provides instructions for
performing specific configuration tasks.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Historical Server Users Guide – describes how to use Historical Server to
obtain performance information from Adaptive Server.

• Java in Adaptive Server Enterprise – describes how to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

• Job Scheduler Users Guide – provides instructions on how to install and
configure, and create and schedule jobs on a local or remote Adaptive
Server using the command line or a graphical user interface (GUI).

• Migration Technology Guide – describes strategies and tools for migrating
to a different version of Adaptive Server.

• Monitor Client Library Programmers Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

• Monitor Server Users Guide – describes how to use Monitor Server to
obtain performance statistics from Adaptive Server.

• Monitoring Tables Diagram – illustrates monitor tables and their entity
relationships in a poster format. Full-size available only in print version; a
compact version is available in PDF format.

• Performance and Tuning Series – is a series of books that explain how to
tune Adaptive Server for maximum performance:

• Basics – contains the basics for understanding and investigating
performance questions in Adaptive Server.

• Improving Performance with Statistical Analysis – describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

• Locking and Concurrency Control – describes how to use locking
schemes to improve performance, and how to select indexes to
minimize concurrency.

• Monitoring Adaptive Server with sp_sysmon – discusses how to use
sp_sysmon to monitor performance.

 About This Book

Migration Technology Guide vii

• Monitoring Tables – describes how to query Adaptive Server
monitoring tables for statistical and diagnostic information.

• Physical Database Tuning – describes how to manage physical data
placement, space allocated for data, and the temporary databases.

• Query Processing and Abstract Plans – explains how the optimizer
processes queries, and how to use abstract plans to change some of the
optimizer plans.

• Quick Reference Guide – provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

• Reference Manual – is a series of books that contains detailed
Transact-SQL® information:

• Building Blocks – discusses datatypes, functions, global variables,
expressions, identifiers and wildcards, and reserved words.

• Commands – documents commands.

• Procedures – describes system procedures, catalog stored procedures,
system extended stored procedures, and dbcc stored procedures.

• Tables – discusses system tables, monitor tables, and dbcc tables.

• System Administration Guide –

• Volume 1 – provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and instructions for
diagnosing system problems. The second part of Volume 1 is an in-
depth discussion about security administration.

• Volume 2 – includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of Volume 2 describes how to back up and restore system
and user databases.

• System Tables Diagram – illustrates system tables and their entity
relationships in a poster format. Full-size available only in print version; a
compact version is available in PDF format.

viii Adaptive Server Enterprise

• Transact-SQL Users Guide – documents Transact-SQL, the Sybase-
enhanced version of the relational database language. This guide serves as
a textbook for beginning users of the database management system, and
also contains detailed descriptions of the pubs2 and pubs3 sample
databases.

• Troubleshooting Series –

• Troubleshooting: Error Messages Advanced Resolutions – contains
troubleshooting procedures for problems you may encounter. The
problems discussed here are the ones the Sybase Technical Support
staff hear about most often.

• Troubleshooting and Error Messages Guide – contains detailed
instructions on how to resolve the most frequently occurring Adaptive
Server error messages.

• Encrypted Columns Users Guide – describes how to configure and use
encrypted columns with Adaptive Server.

• In-Memory Database Users Guide – describes how to configure and use
in-memory databases.

• Using Adaptive Server Distributed Transaction Management Features –
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

• Using Backup Server with IBM® Tivoli® Storage Manager – describes
how to set up and use the IBM Tivoli Storage Manager to create Adaptive
Server backups.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase Failover to configure an Adaptive Server as
a companion server in a high availability system.

• Unified Agent and Agent Management Console – describes the Unified
Agent, which provides runtime services to manage, monitor, and control
distributed Sybase resources.

• Utility Guide – documents the Adaptive Server utility programs, such as
isql and bcp, which are executed at the operating system level.

• Web Services Users Guide – explains how to configure, use, and
troubleshoot Web services for Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

 About This Book

Migration Technology Guide ix

• XML Services in Adaptive Server Enterprise – describes the Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that are available in XML services.

Other sources of
information

Use the Sybase Getting Started CD, the SyBooks™ CD, and the Sybase
Product Manuals Web site to learn more about your product:

• The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It is included with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using a link provided on the CD.

• The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTML-based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, there are links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click Certification Report.

3 In the Certification Report filter select a product, platform, and time frame
and then click Go.

http://www.sybase.com/support/manuals/
http://www.sybase.com/support/techdocs/

x Adaptive Server Enterprise

4 Click a Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following sections describe conventions used in this manual.

http://certification.sybase.com/
http://www.sybase.com/support/techdocs/
http://www.sybase.com/support

 About This Book

Migration Technology Guide xi

SQL is a free-form language. There are no rules about the number of words you
can put on a line or where you must break a line. However, for readability, all
examples and most syntax statements in this manual are formatted so that each
clause of a statement begins on a new line. Clauses that have more than one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 shows the conventions for syntax statements that appear in this manual:

Table 1: Font and syntax conventions for this manual

Element Example

Command names, procedure names, utility names,
and other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font. master database

Book names, file names, variables, and path names are
in italics.

System Administration Guide

sql.ini file

column_name

$SYBASE/ASE directory

Variables—or words that stand for values that you fill
in—when they are part of a query or statement, are in
italics in Courier font.

select column_name

from table_name

where search_conditions

Type parentheses as part of the command. compute row_aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbol.
Indicates “is defined as”.

::=

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed options is optional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

cash, check, credit

The pipe or vertical bar (|) means you may select only
one of the options shown.

cash | check | credit

An ellipsis (...) means that you can repeat the last unit
as many times as you like.

buy thing = price [cash | check | credit]

[, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, give its name, its price, and (optionally) a method of
payment.

xii Adaptive Server Enterprise

• Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]

For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiers are in lowercase. Italic font shows user-supplied words.

• Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

• Examples of output from the computer appear as follows:

pub_id pub_name city state
------- --------------------- ----------- -----
0736 New Age Books Boston MA
0877 Binnet & Hardley Washington DC
1389 Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples are in lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server sensitivity to the case of database objects, such as table names,
depends on the sort order installed on Adaptive Server. You can change case
sensitivity for single-byte character sets by reconfiguring the Adaptive Server
sort order. For more information, see the System Administration Guide.

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

 About This Book

Migration Technology Guide xiii

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

http://www.sybase.com/accessibility

xiv Adaptive Server Enterprise

Migration Technology Guide 1

C H A P T E R 1 Migration Strategy

Sybase Adaptive Server Enterprise includes a sophisticated query
optimizer that analyzes statistics from queried tables, using advanced
algorithms to provide better performance. Adaptive Server 15.0.3 ESD #1
and later include tools that support more effective use of Adaptive Server
15.0’s advanced query optimizer.

This book discusses optimization goals and recommendations for
upgrading from Adaptive Server 12.5 to Adaptive Server 15, analyzing
performance differences between the two versions, and tuning Adaptive
Server 15.0 installations.

This book also documents a tool called QPTune, which enables users to
identify and apply the best query plan, optimization goals, and other
configuration settings.

Preupgrade considerations
This section covers optimization goals and criteria, and the steps you must
complete before you upgrade to Adaptive Server 15.0. It includes a
summary of preupgrade tests that help you evaluate performance after
upgrading your production server.

Topic Page
Preupgrade considerations 1

Migrating to Adaptive Server 15.0 features 7

Troubleshooting 10

Preupgrade considerations

2 Adaptive Server Enterprise

Understanding optimization goals
A central concept of Adaptive Server 15.0's query processing engine is the
“optimization goal”, which provides an indication of the nature of the query
being optimized. The Adaptive Server query optimizer determines how best to
optimize a query based on optimization goals.

For example, a typical OLTP (online transaction processing) query and a
typical DSS (decision-support system) query result in very different query
plans due to the different data access patterns used by these queries. OLTP
queries generally affect only one or a few rows and join only a few well-
indexed tables. However, DSS queries typically affect many rows, return a few
rows, and may join many tables.

Because of their different access patterns, OLTP queries often run most
efficiently using a classic “nested-loop join”, whereas DSS queries are more
likely to run faster with a “hash join”. If you indicate that a query is for OLTP
or DSS purposes, the optimizer uses that information to generate a query plan
that may save time, memory, and CPU usage.

Adaptive Server 15.0 provides three optimization goals, ordered from
“narrow” to “wide,” which correspond to the number of options and strategies
that they allow the optimizer to consider:

• allrows_oltp – is best for OLTP queries. allrows_oltp offers the narrowest
selection of join methods: the query optimizer considers only nested-loop
joins.

• allrows_mix – is the default after upgrading to Adaptive Server 15.0.
allrows_mix allows the optimizer to consider merge joins as well as parallel
plans (if the Adaptive Server is configured for parallelism).

• allrows_dss – is best for DSS queries. allrows_dss offers the widest
selection of join methods. The optimizer considers hash joins, as well as
nested-loop joins, merge joins, and parallel plans.

If you use allrows_mix and allrows_dss, additional low-level processing
algorithms are enabled for SQL operations; these algorithms are disabled if you
use allrows_oltp.

When you widen the optimization goal, the query optimizer might use
significantly more resources (time and procedure cache) to generate a query
plan. If the optimizer generates the same query plan, with only nested-loop
joins, under allrows_dss and allrows_oltp, you may expect the optimization
under allrows_dss to take more time and procedure cache than under
allrows_oltp.

CHAPTER 1 Migration Strategy

Migration Technology Guide 3

The choice of optimization goal can have a significant impact on query
performance. If you know that a certain application has different workload
characteristics than the rest of your system, you may want to set an appropriate
session-level optimization goal for that application. Either use the QPTune
utility, or manually experiment with different optimization goals, and select
one that provides the best overall performance for your particular set of
applications and queries. See Chapter 2, “QPTune” for more details.

You can define the optimization goal at the server-, session- or individual-
query level:

• Server-wide default:

sp_configure 'optimization goal', 0, 'allrows_dss'

• Session-level setting (overrides server-wide setting):

set plan optgoal allrows_dss

• Query-level setting (overrides server-wide and session-level settings):

select * from T1, T2 where T1.a = T2.b
plan '(use optgoal allrows_dss)'

Note You can also use a login trigger to set the session-level optimization goal.

Optimization criteria

An optimization goal is a collection of “on/off” settings for a series of
properties known as “optimization criteria.” Optimization criteria allow or
disallow the optimizer to consider a particular algorithm for access methods,
joins, grouping, sorting, and so on.

For example, to enable hash joins, use the optimization criterion:

set hash_join on

Or, to disable the “store_index” algorithm (reformatting), use the optimization
criterion:

set store_index off

Preupgrade considerations

4 Adaptive Server Enterprise

The optimizer may decide to ignore a given criteria or goal for semantic
reasons. For example, if a user disables all join operators, the new optimizer
enables “nested loop” automatically.

Note Sybase recommends that you use optimization goals, instead of explicit
settings for optimization criteria, unless advised to do otherwise by Sybase
Technical Support.

Parallel query processing in Adaptive Server 15.0

Since version 11.5, Adaptive Server has supported parallelism within queries,
whereby a single query is processed by multiple worker processes. You can use
parallelism to improve response times for DSS-type queries, where a large
number of rows are accessed, but only a small result set is returned.

Since the query processing features in Adaptive Server 15.0 offer potential
performance benefits for DSS-type queries, Sybase recommends that, when
you upgrade to Adaptive Server 15.0, you do not initially use parallel
processing.

Serial processing is more resource-efficient than parallel processing although
parallel processing allows you to deliver better overall performance with the
same hardware. Also, Adaptive Server 15.0 in serial mode runs queries faster
than earlier versions of Adaptive Server with parallelism.

However, parallelism may deliver better response times than serial processing
for queries that use semantic table partitioning in Adaptive Server 15.0, or for
DDL commands such as create index.

Resource recommendations for Adaptive Server 15.0
Adaptive Server 15.0 requires more procedure cache than version 12.5. This
increased memory requirement applies to optimization as well as to query
execution. Sybase recommends that you increase your procedure cache 2 – 6
times the size of your procedure cache in Adaptive Server 12.5.

You may also need to increase the space on tempdb for query processing on
Adaptive Server 15.0.

CHAPTER 1 Migration Strategy

Migration Technology Guide 5

Incorporating statistics in Adaptive Server 15.0
Adaptive Server uses a cost-based query optimizer to choose the best plan for
a particular query. The optimizer estimates the cost of different plans based on
statistics about the tables, indexes, partitions, and columns referenced in a
query. Cost is computed in terms of I/O and CPU time. The optimizer then
chooses the query plan method that has the lowest cost. Inaccurate statistics
lead to incorrect cost estimates, and may result in a suboptimal choice of plans
and reduced performance.

Some statistics, such as the number of pages or rows in a table (stored in
systabstats), are updated automatically during query processing. Other
statistics are updated only when update statistics runs, or when indexes are
created. Examples of this are the histograms on column and density
information, stored in sysstatistics.

Adaptive Server 15.0 is more susceptible to incorrect statistical data than
earlier Adaptive Server versions, because multiple algorithms are used for
sorting, grouping, unions, joins, and other operations. In addition, Adaptive
Server 15.0 uses statistics in more ways than in Adaptive Server 12.x. For
example, Adaptive Server 15.0 uses statistics to determine the join order in
multitable queries.

Sybase recommends that you maintain up-to-date histograms for all columns
referenced in where clauses, both when the where clauses are used as join
predicates and as search arguments. Use the statistics advisor in QPTune to
identify critical and missing statistics.

Recommended testing before upgrade
Before upgrading your production systems to Adaptive Server 15.0, gather
details about the performance characteristics of your applications in the
production environment of the current, pre-15 version of Adaptive Server.
Gathering such data provides a statistical basis for performance analysis.

To compare Adaptive Server 12.x and 15.0 performance, run:

• Tests for as many application functions as possible, especially the most
critical ones. For each function, measure the response time or throughput.
If possible, perform these measurements for each query executed by the
application.

• Performance measurements in your current Adaptive Server 12.x
production system.

Preupgrade considerations

6 Adaptive Server Enterprise

• The same function and performance measurement tests in a fully
configured “test” system running Adaptive Server 15.0, with a copy of the
full Adaptive Server 12.x production database, and a realistic workload.
Run the same queries as in Adaptive Server 12.x, and with the same level
of concurrent user activity. Capturing the “performance footprint” of your
current Adaptive Server 12.x production environment provides a good
baseline for any comparisons with Adaptive Server 15.0. The
measurements you capture should include the number of logical I/O
operations, elapsed time, compilation time, CPU utilization, showplan
output, and so on. To enable a sensible comparison of performance in
Adaptive Server 12.x and Adaptive Server 15.0, gather performance data
at two levels, from:

• Individual queries in isolation, and with a full workload run by
multiple users

• Adaptive Server as a whole, from a server-wide resource usage
perspective

Several critical aspects affect performance numbers between Adaptive Server
12.x and 15. To avoid misleading performance numbers:

• “Warm up” the cache in the same manner for both Adaptive Server 12.x
and Adaptive Server 15.0 testing.

• Use identical cache/buffer pool configurations.

• Increase the procedure cache in Adaptive Server 15.0 to about 2 – 6 times
the amount used in Adaptive Server 12.x.

• Use similar data device layout and placement, especially for log devices
and for tempdb.

• Set up test systems where you can easily restore the original database after
each test run, especially when data is modified during testing.

Note You may need to increase the size of the data cache in Adaptive Server
15.0

CHAPTER 1 Migration Strategy

Migration Technology Guide 7

Migrating to Adaptive Server 15.0 features
You may want to use Adaptive Server 15.0 features immediately after upgrade,
or you may prefer to use new features later. The following flowchart depicts
the different strategies available for Adaptive Server migration:

Migrating to Adaptive Server 15.0 features

8 Adaptive Server Enterprise

Figure 1-1: Flowchart of Adaptive Server migration strategy

Load and upgrade
a 12.5 database

features now?

Use allrows_oltp
and compatibility
mode

Run “missing -
statistics” advisor
through QPTune

Create missing
statistics by
using QPTune

Run QPTune
using ASE 15.0
optimization goals

Run application

Performance
acceptable?

Use ASE 15.0
features soon?

Run QPTune for
badly performing

queries

Set up queries
to run “basic
optimization”

Performance
acceptable?

Manually tune
or force plans

Configure the best
15.0 optimization

rest of the queries
to run in various
optimization goals

yes

yes

no

no

yes

no

yes

no

Use ASE 15.0

Run application

Done

Done

Done

dump
goal and tune the

CHAPTER 1 Migration Strategy

Migration Technology Guide 9

Upgrading, and using new features immediately
To upgrade to Adaptive Server 15.0 and use the new features immediately,
Sybase recommends that you skip setting the compatibility mode, and tune the
application using QPTune:

1 Upgrade your Adaptive Server 12.5 and database to Adaptive Server
15.0.3 ESD #1 or later, which supports migration using QPTune.

2 Use QPTune to turn on the statistics advisor.

3 Run the application queries. QPTune advises you on what statistics are
critical, and creates them. Typically, most queries are tuned at this point.

4 Run QPTune with Adaptive Server 15.0 optimization goals.

5 Run the queries with different optimization goals and select the best
performing optimization goal.

6 Run the application queries again.

7 Check if there are any queries left to be tuned.

8 Run QPTune for queries that need further tuning.

9 Manually tune the remaining queries. Use traditional techniques of
analyzing query plans and either rewriting them to obtain the desired
performance, or using techniques such as abstract query plans.

Upgrading, and using new features later
If you are going to upgrade to Adaptive Server 15.0, and incrementally begin
using Adaptive Server 15.0 features, upgrade your Adaptive Server 12.5 and
database to Adaptive Server 15.0.3 ESD #1 or later, which supports migration
using QPTune. Use allrows_oltp as the optimization goal and enable
compatibility mode for the upgrade.

When you are ready to use Adaptive Server 15.0 features:

1 Use QPTune to turn on the statistics advisor.

2 Run the application queries. QPTune advises you on what statistics are
critical, and creates them. Typically, most queries are tuned at this point.

3 Run QPTune using Adaptive Server 15.0 optimization goals.

4 Run the queries with different optimization goals and select the best
performing optimization goal.

Troubleshooting

10 Adaptive Server Enterprise

5 Run the application queries again.

6 Check if there are any queries left to be tuned.

7 Run QPTune for queries that need further tuning.

8 Manually tune the remaining queries using abstract query plans.

Note You can incrementally migrate stored procedures using the same
methodology.

Upgrading, but not using new features
If you are upgrading from Adaptive Server 12.5, but are not going to use
Adaptive Server 15.0 features, use allrows_oltp as an optimization goal and
enable compatibility mode.

For more information on compatibility mode, see Chapter 3, “Running the
Query Processor in Compatibility Mode.”

Troubleshooting
This section discusses query processing performance, and strategies for
addressing optimization problems.

Query processing tips
Adaptive Server 15.0 offers a greatly improved query processing environment.
However, if query plans or query performance are not what you expect, here
are some ways to isolate the problem:

• When using different optimization goals, make sure no cached plans are
used: changing the session-level or server-wide optimization goal does not
recompile cached plans. For stored procedures, either execute them with
recompile, or run sp_recompile on one of the tables being accessed. For
batches, make sure the statement cache is disabled by running set
statement_cache off first.

CHAPTER 1 Migration Strategy

Migration Technology Guide 11

• To ensure that a stored procedure is always optimized with a particular
optimization goal, regardless of server-wide or session-level settings, use
set plan optgoal allrows_xxx as the first statement in the stored procedure.
This works only on Adaptive Server 15.0.2 ESD #2 or later.

• If your SQL code from Adaptive Server 12.x contains explicitly forced
join orders (with set forceplan), reexamine the join orders before
upgrading to Adaptive Server 15.0. Such constructs may prevent you from
benefiting fully from the capabilities of Adaptive Server 15.0.

With Adaptive Server 15.0.1 ESD #2 or later, you can enable two trace
flags:

• Trace flag15307 nullifies the effect of any set forceplan statements
during query plan compilation.

• Trace flag 15308 nullifies any explicit forcing of indexes, prefetch,
parallelism, or buffer replacement strategies

You can set both these trace flags (15307 and 15308) during server start-
up, or dynamically enable them using dbcc traceon. The effects of both are
server-wide and neither affects any query plan properties defined by
abstract query plans.

• If your system consumes too much space in tempdb, use the Monitoring
and Diagnostic Access tables to see if any particular session consumes a
lot of space in a worktable. Enable the monitoring tables and run the
following query:

select SPID, DBName, ObjectName, PartitionSize
from master..monProcessObject
where DBID = tempdb_id(SPID)
order by SPID

Look for sessions that have a large value for PartitionSize. Worktables have
an ObjectName of “temp worktable.” Find the corresponding SQL
statement for the sessions by issuing queries to monProcessSQLText or
monProcessStatement in the master database.

To stop sessions from filling up tempdb, and thus affecting other sessions
also requiring tempdb space, create a resource limit of type
“tempdb_space.” You may also create multiple temporary databases and
assign them to specific users. To check the tempdb space used by a single
session, use:

select pssinfo(spid|0,'tempdb_pages')

Troubleshooting

12 Adaptive Server Enterprise

• Enable the statement cache and literal autoparameterization settings while
running large numbers of identical or similar client-generated SQL queries
in Adaptive Serer 15.0.1 or later. This does not include stored procedures,
or execute-immediate query forms, and the queries may differ only in their
search parameters. Overall performance is improved by significantly
reducing the time and resources spent on query optimization.

When the statement cache is enabled, a query’s plan is cached so you need
not compile an identical query, and thereby save time and resources. The
statement cache is enabled server-wide with the configuration parameter
statement cache size. At the session level, disable the statement cache with
set statement_cache off.

Literal autoparameterization is enabled server-wide with the configuration
parameter enable literal autoparam, and at the session level with set
literal_autoparam on. enable literal autoparam applies only when the
statement cache is enabled. With literal autoparameterization enabled,
caching is extended to almost-identical queries that differ only in a
constant value. For example, these two queries are not considered
identical:

select CustName from Customers where CustID = 123
select CustName from Customers where CustID = 456

However, they are likely to generate the same query plan. Enabling literal
autoparameterization has the effect that the statement cache factors out the
constant value in the where clause and caches a plan for all queries that
look like this:

select CustName from Customers where CustID=
<integer-constant>

Obsolete optimization
commands in
Adaptive Server 15.0

Various optimization-related settings from 12.x are no longer relevant in
Adaptive Server 15.0. Although the following commands still exist in
Adaptive Server 15.0, they are relevant only in compatibility mode, and do not
have any effect on the Adaptive Server 15.0 optimization process:

• set sort_merge – this has been replaced by set merge_join, optimization
goals and the configuration parameter enable merge join.

• set jtc – join transitive closure is always enabled in Adaptive Server 15.0.

• set table count – this setting is no longer relevant in Adaptive Server 15.0.

• enable sort-merge join and JTC – this configuration parameter has been
replaced by optimization goals and by the configuration parameter enable
merge join.

CHAPTER 1 Migration Strategy

Migration Technology Guide 13

• Start-up trace flags 334 and 384 – these flags enabled merge joins and JTC
and are no longer relevant.

Sybase recommends that you remove any references to these features from
your applications.

Information to capture before contacting Technical Support
Before contacting Tech Support, gather as many diagnostics statistics as
possible, especially when you can reproduce the problem.

701 errors

When a regular query (excluding update index statistics) generates a 701 error,
it indicates that Adaptive Server has exhausted the procedure cache space. If
you are running with the default procedure cache size, increase procedure
cache and try again. The general guideline for version 15.0 and later is to use a
procedure cache that is 2 – 6 times the size of your 12.5.x procedure cache. In
some cases, especially while using the optimization goal allrows_dss, your
procedure cache may need to be even larger.

If increasing the procedure cache does not resolve the 701 error and you cannot
isolate the problem, set up a configurable shared memory dump that includes
the procedure cache pages:

sp_configure 'dump on conditions', 1
go

sp_shmdumpconfig 'add', 'error', 701, 1,
'my_dump_directory',null,include_proc
go

sp_shmdumpconfig adds the error 701 condition to initiate a memory dump.The
fourth parameter (1 in the examples above) indicates the number of memory
dumps to capture. Adaptive Server does not capture additional memory dumps
on this condition until Adaptive Server is restarted or until you manually reset
the counter.

The parameter my_dump_directory is the name of a directory to hold the
memory dump. The file system on which the directory resides should have
enough free space to hold the memory dump file, which can be large. Verify
the dump conditions currently defined by running sp_shmdumpconfig without
any parameters. This also shows an estimated size of the memory dump to be
captured.

Troubleshooting

14 Adaptive Server Enterprise

The parameter include_proc enables procedure cache information to be
included in the configurable shared memory dump.

A file name that includes the date and time of the memory dump is
automatically generated. Once the memory dump has been captured, reset the
system using:

sp_shmdumpconfig 'drop', 'error', 701
go

By default, Adaptive Server sends the 701 error message to the client. You may
also have this message reported in the error log by running:

sp_altermessage 701,'with_log',true

To stop all configurable shared memory dumps, set dump on conditions to 0.
Once the memory dump has been captured, open a case with Technical Support
and upload the memory dump to the FTP site. Include the output from the SQL
statements below which use the monitoring tables within Adaptive Server:

select * from master..monProcedureCacheMemoryUsage
select * from master..monProcedureCacheModuleUsage
go

The monitoring tables are automatically set up during execution of the
installmaster script in Adaptive Server 15.0.2 or later. The installation process
for earlier versions of Adaptive Server execute the installmontables script. See
Adaptive Server 15.0 documentation for more details on configuring the
monitoring tables.

Performance problems with a limited number of queries

If a limited number of queries are not performing well due to suboptimal query
plans or suboptimal resource consumption, install the latest Adaptive Server
15.0.x version on your development server. If the problem still exists, submit a
reproduction of the problem or diagnostics to Technical Support. To gather
diagnostics:

1 Create a script file sql.txt containing these commands:

select @@version
go
select @@optgoal
go
sp_cacheconfig
go
sp_configure 'nondefault' (only if you're running
Adaptive Server 15.0.2 or later)

CHAPTER 1 Migration Strategy

Migration Technology Guide 15

go
dbcc traceon(3604)
set showplan on
set statistics time, io, plancost on
set option show long
go
<your query text>
go

Note set option show long may produce a lot of output for complex
queries.

2 Use isql to execute sql.txt and capture the output in a file:

isql –Usa –P yourpassword -S YOUR_SERVER_NAME
–i sql.txt –o sql.out

Use the -w option of isql to format the output.

3 Send this information to Technical Support:

• The sql.txt and sql.out files. If available, include the “fast”
(sql.fast.txt) and “slow” (sql.slow.txt) query plans, and corresponding
output files sql.fast.out, sql.slow.out.

• DDL for the base tables and indexes, which you can generate using
the ddlgen utility.

• Simulate statistics output for the base tables using optdiag:

optdiag statistics simulate <table-name>
-Usa -P yourpassword -S YOUR_SERVER_NAME
-o <output-file>

• A copy of the Adaptive Server configuration file. For Adaptive
Server15.0.2, include the output of sp_configure 'nondefault’.

• If the query uses views or stored procedures, then include their SQL
source code obtained using defncopy or ddlgen.

• The output of sp_monitorconfig ‘all' and sp_helpsort.

Troubleshooting

16 Adaptive Server Enterprise

System-wide performance issues

If the performance of Adaptive Server at the server level is not acceptable, and
you are running 15.0.2 ESD #3 or later, you may shut down the Adaptive
Server and restart it with trace flag 757 set in the RUN_server file. This is also
effective when you experience unusually high levels of CPU usage without a
clear cause, while running a multiengine Adaptive Server.

 If the procedure cache is filled with idle cached plans, and the CPU usage is
not high, run the following dbcc commands instead. However, using these
commands is likely to have a lesser effect than restarting the server.

dbcc traceon(757)
go
dbcc proc_cache(free_unused)
go

Note Do not use trace flag 757 in Adaptive Server versions earlier than 15.0.2
ESD #3.

Uploading diagnostics to Technical Support

After you have created diagnostic files, open a case with Technical Support. To
upload diagnostics to the Sybase FTP site, contact Technical Support for
current instructions.

Migration Technology Guide 17

C H A P T E R 2 QPTune

QPTune is an Adaptive Server utility that is written in Java/XML. It
enables users to identify the best query plan, optimization goals, or other
configuration settings, and apply them at the server or query level. This
results in optimal performance of subsequent query executions. Once you
have identified the best settings for application queries, you can export
and apply them to production servers.

QPTune allows users to:

• Fix missing statistics in an application

• Tune an application to find the best optimizer settings for any number
of queries

• Selectively apply customized or standard settings to specific queries
using user-defined rules

Use QPTune to analyze and compare any number of configuration settings
or Adaptive Server installations to generate a performance impact analysis
report, or to perform plan fixes without degrading Adaptive Server’s
performance. Adaptive Server gathers metrics with simple select
statements and stores it in stored procedure or statement caches. Adaptive
Server fixes query plans using DDL statements that have little impact on
the overall performance of the system. In addition, QPTune allows
different threshold levels for monitoring, thereby reducing the metrics that
need to be collected.

Topic Page
Setting up your system 18

Using QPTune to fix missing statistics 19

Using QPTune to tune queries or applications 24

Configuration file 32

Examples 34

Upgrade issues 43

Localization 44

QPTune GUI 44

QPTune reference information 50

Setting up your system

18 Adaptive Server Enterprise

Setting up your system
Before starting QPTune, set these environment variables:

• SYBASE_JRE6 and JAVA_HOME – to the Java runtime installation.

• SYBASE – to the latest Sybase installation on your machine.

• SYBASE_ASE – to the Adaptive Server component(directory) of the
installation on your machine.

The QPTune executable is named QPTune on UNIX and QPTune.bat on
Windows and is found in:

$SYBASE/$SYBASE_ASE/qptune, on UNIX
%SYBASE%\%SYBASE_ASE%\qptune, on Windows

For complete syntax and reference information on QPTune, see “QPTune
reference information” on page 50.

To verify your environment and installation, and for information on basic
syntax, run QPTune with the -h option:

QPTune –h

Sample output in a Windows environment:

QPTune <Version 3.0> Windows/Unix Built: Fri Jan 21 14:00:15 PDT 2009
Syntax:
QPTune [-U <username>] [-P <password>] [-S <hostname:port/database>]
[-A <action
[start|collect(_full)|compare|fix|(start|collect|fix|undo_fix)_stats]>]
[-M <mode>] [-T <appTime>] [-i <inputFile>] [-o <outputFile>]
[-f <fileList(,)>] [-c <configFile>] [-l <limit>] [-e <evalField>]
[-d <diff%(,diff_abs)>] [-m <missingCount>] [-n <login>] [-J <charset>]
[-N (noexec)] [-g (applyOptgoal)][-v (verbose)] [-s (sort)] [-h (help)]
Example:
QPTune -U sa -P -S WUXP:5000/scenario -A collect -M allrows_mix -T 0
-o metrics.xml -c config.xml -e elap_avg -d 5,5 -l 5 -i metrics.xml
-f a1.xml,a2.xml,a3.xml -v -s

Note Only users with sa_role and sso_role can run QPTune actions, except for
compare, which may be run by any user.

CHAPTER 2 QPTune

Migration Technology Guide 19

Using QPTune to fix missing statistics
Use QPTune to fix or update the missing statistics after you have upgraded a
server. The main steps for using QPTune to fix missing statistics are:

• Start QPTune using the start_stats action.

• Run the application, queries, or stored procedure.

• Collect any missing statistics information into a specified XML file. See
“Collecting statistics” on page 21.

• Use the fix_stats action to update statistics as specified in the above XML
file. See “Fixing statistics” on page 23.

• (Optional) Undo the fix of missing statistics using the undo_fix_stats
action. See “Using undo_fix_stats” on page 24.

The tuning cycle to fix missing statistics is shown here:

Using QPTune to fix missing statistics

20 Adaptive Server Enterprise

Figure 2-1: Tuning cycle to fix missing statistics

COLLECT_STATS

FIX_STATS

UNDO_FIX_STATS (Optional)

START_STATS

Configuration file

• Configure Adaptive Server
• Prepare to capture missing statistics

• Specify wait time before collection
• Missed statistics collected in client XML files

• Set threshold for count of missing statistics
• Update statistics as specified in XML file

• Delete statistics specified in XML that exceed threshold

• Adaptive Server configuration options
• <start_stats_config>

XML output file
•Missing statistics

Run the application/queries/stored procedure

• If “noexec” is specified, send delete statistics
statements to a script file

• If “noexec” is specified, send update
statistics statements to a script file

CHAPTER 2 QPTune

Migration Technology Guide 21

Starting QPTune to fix missing statistics
Start the utility with the start_stats action. For example:

QPTune -A start_stats -S my_host:4816/my_database
-v

Executing : QPTune -U sa -P [unshown]
-S jdbc:sybase:Tds:my_host:4816/my_database
-A start_stats -M allrows_dss -T 0 -i null
-o metrics.xml -f null -c config.xml -l 5
-e elap_avg -d 5,5 -m 5 -n null -v
You are now connected to database: my_database
[INFO] Config: sp_configure 'capture missing
statistics', 1
[INFO] Config: sp_configure 'system table', 1
[INFO] Config: delete sysstatistics where formatid =110

You may also use the -c option to specify a configuration file. This extracts
server-level configuration settings from the <start_stats> section of your
configuration file. See “Configuration file” on page 32.

Collecting statistics
After preparing the system by running QPTune with the start_stats action, you
may begin collecting the missing statistics with the collect_stats action. You
can have QPTune either perform this action immediately, or after waiting for
some period of time. This feature enables you to automate the start_stats and
collect_stats steps.

collect_stats retrieves missing statistics information from the sysstatistics table
for statistics that exceed a specified threshold for count of missing statistics.
QPTune consolidates the missing statistics and determines a minimum set of
statistics that must be updated.

The -m option indicates the threshold for count of missing statistics. When the
statistics for a query have been missed as many times as the threshold value or
more, they are collected and exported to an XML file. The default threshold
count is 5.

The -o option indicates the output XML file that holds missing statistics. Use
the output XML from collect_stats as input to the fix_stats and undo_fix_stats
actions.

For example:

QPTune -A collect_stats -m 1 -o missingstats.xml -v

Using QPTune to fix missing statistics

22 Adaptive Server Enterprise

-S my_host:4816/my_database

Executing : QPTune -U sa -P [unshown] -S
jdbc:sybase:Tds:my_host:4816/my_database -A
collect_stats -M allrows_dss -T 0 -i null -o
missingstats.xml -f null -c config.xml -l 5 -e elap_avg
-d 5,5 -m 1 -n null -v
You are now connected to database: my_database
Now collecting missing statistics information from
sysstatistics on "Fri Sep 26 10:08:06 PDT 2008".
<?xml version="1.0" encoding="UTF-8"?>
<server url="jdbc:sybase:Tds:my_host:4816/my_database"
file="missingstats.xml"
type="missing stats" datetime="Fri Sep 26 10:08:06 PDT
2008" >
<missingStat id="1">
<id>1068527809</id>
<stats>Y(y4,y2)</stats>
<count>2</count>
</missingStat>
<missingStat id="2">
<id>1068527809</id>
<stats>Y(y3)</stats>
<count>1</count>
</missingStat>
<missingStat id="3">
<id>1068527809</id>
<stats>Y(y2,y1)</stats>
<count>1</count>
</missingStat>
<missingStat id="4">
<id>1068527809</id>
<stats>Y(y1)</stats>
<count>1</count>
</missingStat>
</server>
The missing statistics information is written into XML
file: missingstats.xml
[INFO] End config: sp_configure 'enable metrics
capture', 0
[INFO] End config: sp_configure 'abstract plan dump', 0
[INFO] End config: sp_configure 'system table', 0
[INFO] End config: sp_configure 'capture missing
statistics', 0
Program has restored the data source for metrics
collection.
----- QPTune finished executing. ------

CHAPTER 2 QPTune

Migration Technology Guide 23

Fixing statistics
After collecting missing statistics information into an XML file, you can
update the statistics that are equal to, or exceed, the threshold for count of
missing statistics specified by the -m option. Use the fix_stats action to update
statistics.

The -i option specifies the input XML file that contains all missing statistics.

You can generate a SQL script for updating statistics without executing the
actual updates by using the -N option to indicate “noexec”, and the -o option to
indicate the output script file. The output file is created with all the generated
update statistics statements but the statements are not executed. Generated
scripts have a SQL file format. Using the -N option gives you the option of
running the SQL script at a later time to optimize your resources.

For example:

QPTune -A fix_stats -m 1 -i missingstats.xml
-v -S my_host:4816/my_database

Executing : QPTune -U sa -P [unshown] -S
jdbc:sybase:Tds:my_host:4816/my_database -A fix_stats -
M allrows_dss -T 0 -i missingstats.xml -o metrics.xml -
f null -c config.xml -l 5 -e elap_avg -d 5,5 -m 1 -n
null -v
You are now connected to database: my_database
Fix statistics on "Fri Sep 26 10:14:59 PDT 2008"
--

Details of statements(s) fixed:

Fixed statistics:[Update] Y(y4,y2)
[INFO] Fix Statement = update statistics Y(y4,y2)
Fixed statistics:[Update] Y(y3)
[INFO] Fix Statement = update statistics Y(y3)
Fixed statistics:[Update] Y(y2,y1)
[INFO] Fix Statement = update statistics Y(y2,y1)
Fixed statistics:[Update] Y(y1)
[INFO] Fix Statement = update statistics Y(y1)
----- QPTune finished executing. ------

For example:

QPTune -U sa -P -S my_host:5000/my_database
-A fix_stats -m 5 -i missingstats.xml
-N -o missingstats.sql

Using QPTune to tune queries or applications

24 Adaptive Server Enterprise

Using undo_fix_stats
To revert fixed missing statistics, use the undo_fix_stats action. undo_fix_stats
deletes the statistics that are specified in an XML file whose missing counts are
equal to, or exceed, the number specified by the -m option.

For example:

QPTune -A undo_fix_stats -m 1 -i missingstats.xml
-v -S my_host:4816/my_database

Executing : QPTune -U sa -P [unshown] -S
jdbc:sybase:Tds:my_host:4816/my_database -A
undo_fix_stats -M allrows_dss -T 0 -i missingstats.xml
-o metrics.xml -f null -c config.xml -l 5 -e elap_avg -
d 5,5 -m 1 -n null -v
You are now connected to database: my_database
Fix statistics on "Fri Sep 26 10:20:23 PDT 2008"
--

Details of statements(s) fixed:

Fixed statistics:[Delete] Y(y4,y2)
[INFO] Fix Statement = delete statistics Y(y4,y2)
Fixed statistics:[Delete] Y(y3)
[INFO] Fix Statement = delete statistics Y(y3)
Fixed statistics:[Delete] Y(y2,y1)
[INFO] Fix Statement = delete statistics Y(y2,y1)
Fixed statistics:[Delete] Y(y1)
[INFO] Fix Statement = delete statistics Y(y1)
----- QPTune finished executing. ------

Using QPTune to tune queries or applications
The main tasks for using QPTune for application or query tuning are:

• Start QPTune using either:

• “Simple start” on page 27 if you are applying standard optimization
goal settings.

• “Custom start” on page 27 if you are applying special/custom rules to
specified queries.

• Run the application, queries, or stored procedure you are tuning.

CHAPTER 2 QPTune

Migration Technology Guide 25

• Collect the metrics into specified XML files. See “Collecting metrics” on
page 28.

• Compare the sets of metrics you have collected for different optimization
goals. This step uses the XML file from the above step as input, and
generates a performance comparison report. See “Comparing metrics” on
page 29.

• Apply the best results from the comparison to each of the specified queries
on the target server. See “Applying the best results” on page 30.

QPTune’s tuning cycle for applications or queries is shown here:

Using QPTune to tune queries or applications

26 Adaptive Server Enterprise

Figure 2-2: QPTune cycle for application or query tuning

START
• Set up Adaptive Server

configuration
• Apply rules to specified

queries

XML file (Optional)
• Specifies queries for

which rules are applied

Configuration File
• Adaptive Server

configuration options
• Rules (Optional)

Run the application, queries or stored procedure

COLLECT/COLLECT_FULL
• Specify time interval before collection starts
• Metrics information captured in client XML file

COMPARE
• Compare two or more sets of collected results
• Generate comparison report

FIX
• Apply the best results from the comparison

Output XML file
• Query and metrics

Output XML file
• Result of comparison

CHAPTER 2 QPTune

Migration Technology Guide 27

Starting QPTune to tune queries or applications
The start action of QPTune prepares the server with correct server-level
configuration settings. If a configuration file is used, the settings are extracted
from the <start> section of the configuration file. The <end> section of the
configuration file specifies the settings that enable the system to revert to its
original state at the end of QPTune collect action. See “Configuration file” on
page 32 for more information on the configuration file.

Simple start

If you are applying standard optimization goal settings, start QPTune using:

QPTune -S host:port/database -A start
[-M {allrows_oltp, allrows_dss, allrows_mix}]

Use the -M option to invoke one of the pre-programmed modes that correspond
to the three optimization goals in Adaptive Server:

• allrows_mix

• allrows_oltp

• allrows_dss (default)

Custom start

If you are applying custom rules to specified queries, use:

QPTune -S host:port/database -A start -M custom_1
-i input.xml -l 3 [-v]

Use the -M option to indicate a custom mode. A custom mode is a group of
special rules that are specified in the configuration file under the <mode>
section. Rules are Adaptive Server 15.0 optimization criteria that are
applicable at the query level using abstract query plans.

The example above uses a custom mode called custom_1 which may be a
combination of rules such as:

• use optgoal allrows_mix

• use merge_join off

• use opttimeoutlimit 15

Using QPTune to tune queries or applications

28 Adaptive Server Enterprise

Use the -i option to indicate an input XML file which has been generated by
QPTune while applying a standard goal setting during the collect phase. A
number of collected metrics files may be compared to generate a file with the
best goal settings. The input file contains SQL text for the queries.

Use the -l option along with the -i option to indicate the number of queries that
should be applied with these special rules. The queries are counted from the
start of the file. The default value of the -l option is 0, which implies that all
queries in the input file are applied.

Collecting metrics
After starting the system, run your applications and collect metrics into an
XML file. Use the -o option to specify the output metrics file. The -v option
provides a verbose output. The -M option indicates custom or standard modes.

You can collect metrics either:

• Immediately, using the -T 0 option, or

• After t minutes, using the -T t option.

For example, the command below writes XML into a file named a2.xml. The
custom mode is depicted within the <bestmode> tags.

QPTune -S host:port/database -A collect -T 0
-o a2.xml -v

Program has configured the data source for metrics collection.
Now collecting information from sysquerymetrics on "Tue Feb 19 22:16:04 PST
2008".
<?xml version="1.0" encoding="UTF-8"?>
 <server url="jdbc:sybase:Tds:SHANGHI:5000" type="ASE" mode="custom_1"
datetime="Tue Feb 19 22:16:04 PST 2008">
<query id="1">
<qtext> select count(T.title_id) from authors A, titleauthor T
where A.au_id = T.au_id </qtext>
<elap_avg>300</elap_avg>
<bestmode> custom_1
</bestmode>
</query>
</server>

Note You can use the output XML file from the collect operation as input to
compare, fix, or start operations.

CHAPTER 2 QPTune

Migration Technology Guide 29

Comparing metrics
Once metrics are collected, you can compare different XML files to get the best
query optimization goal or criteria for each of the queries. For example:

QPTune -A compare -f a1.xml,a2.xml[,a3.xml..] -d 51,10
-o best.xml -S my_host:5000/my_database

The -f option specifies a list of two or more collected metrics sample files
separated by commas. Use quotes to encapsulate the file name if it contains any
spaces.

The -d option indicates a threshold percentage and absolute value. A
performance improvement beyond the threshold percentage and absolute value
is considered “outstanding” during the fix operation. The optimization
goal/criteria for those outstanding queries is applied to the server as a plan fix.

The default for the threshold percentage and absolute value pair is “5,5”. If
only percentage is specified, the absolute value defaults to 0. Percentage values
are between 0 and 100; an absolute value can be any number greater than 0.

The -o option specifies the result of the comparison in a file. The file holds the
best setting for all the queries being analyzed.

The -s option enables sorting the files from largest to smallest. The file with the
largest set of queries is used as the basis for comparison.

The following example shows the result of a compare operation:

Compare all the files: | a1.xml, a2.xml|
Report generated on "Tue Aug 19 21:13:04 PST 2008"
--
File #1: [name= a1.xml : mode=allrows_mix]
File #2: [name= a2.xml : mode=custom_1]
Query count in File #1 : [mode=allrows_mix] 6
Query count in File #2 : [mode=custom_1] 7
==
Query count improved in File #2: [mode=allrows_mix] 3

Total performance improved [from 422 to 129]: 69 %

Following queries run better in File #2:
[mode=allrows_mix]
--
Group 1: improved by no more than 25% [0 queries]
Group 2: improved by 25% to 50% [1 queries]
Query: select count(T.title_id) from authors A, titleauthors T where A.au_id =
T.au_id
Average elapsed time (ms): File #1=100 File #2=50 Improvement=50.0%

Using QPTune to tune queries or applications

30 Adaptive Server Enterprise

Outstanding=No
Group 3: improved by 50% to 75% [0 queries]
Group 4: improved by 75% to 100% [2 queries]
Query: select count(*) from titlles T, titleauthors TA where T.title_id =
TA.title_id
Average elapsed time (ms): File #1=34 File #2=7 Improvement=79.0%
Outstanding=Yes
Query: select au_lname, au_fname from authors where state in ("CA", "AZ")
Average elapsed time (ms): File #1=9 File #2=0 Improvement=100.0%
Outstanding=No

The above example shows a comparison between two XML metrics files:
a1.xml has six queries, and a2.xml has seven queries. Comparisons can only be
made between the queries that are common to both files. There are three
queries that ran faster in a2.xml. The improvements are categorized into four
groups:

• Group 1 – between 0 and 25%

• Group 2 – between 25% and 50%

• Group 3 – between 50%and 75%

• Group 4 – between 75% and 100%

There is one query between 25 and 50% and two queries between 75% and
100%. The queries in Group 2 are marked as “Outstanding=No” which means
that based on the threshold of 51%, this query will not be fixed.

While comparing more than two files, QPTune updates the first file with the
best from both files, then compares the new file with the third file, and so on.

Applying the best results
After getting the results for all queries being analyzed, use the fix action to
apply the best settings to the queries in the database system.

For example:

QPTune -S host:port/database -A fix -i best.xml
-v -g

The -i option specifies the queries and their best plans resulting from the
comparison.

CHAPTER 2 QPTune

Migration Technology Guide 31

The -g option, when used with the fix action, applies the default goal. The
default goal is the best optgoal setting that most queries used as the best plan
using QPTune’s fix action. This option only generates plans for queries that do
not currently use the server’s default optimization goal.

The example fix action above produces this output:

Query Plan(s) fixed on "Wed Sep 17 17:44:09 PDT 2008"
--
Fixed 2 queries using mode "custom_1" with following optimizer settings": '(use
optgoal allrows_mix) (use merge_join off) (use opttimeoutlimit 15)'

Fixed 4 query using mode "allrows_mix"

Apply “sp_configure optimization_goal, 0, allrows_mix” as the default optgoal
Details of statement(s) fixed:

Query: 'select count(T.title_id) from authors A, titleauthor T where A.au_id =
T.au_id '
Fixed using: 'custom_1'
[INFO] Fix Statement = create plan 'select count(T.title_id) from authors A,
titleauthor T where A.au_id = T.au_id' '(use optgoal allrows_mix) (use
merge_join off) (use opttimeoutlimit 15)'
Query: 'select * from titleauthors where au_id > 20 and title_id < 100'
Fixed using: 'custom_1'
[INFO] Fix Statement = create plan 'select * from titleauthors where au_id >
20 and title_id < 100' '(use optgoal allrows_mix) (use merge_join off) (use
opttimeoutlimit 15)'

QPTune then creates an optimized query plan which is saved in the
sysqueryplans system table in the current database. When a query with
matching SQL is encountered, this optimized plan is used. Incoming SQL and
the SQL of the persistent plan are said to match when a checksum type of hash
on the two SQL statements matches. If literal parameterization is enabled
explicitly, the two statements may differ only in the static values of search
arguments such as:

where CustomerID = “12345”

In this case, the value “12345” is replaced by a placeholder variable, so the
hash value is the same, regardless of the search value.

If the application changes the SQL in any manner, such as adding a new
predicate, there is no longer a match to a persistent plan and the optimizer
creates a query plan according to the current configuration and available
statistics.

Configuration file

32 Adaptive Server Enterprise

Configuration file
You can define custom modes in a configuration file. The QPTune installation
includes a standard configuration file that contain some custom modes. The
custom mode “_basic_” is reserved for “basic optimization”.

The configuration file for QPTune must include <start>, <start_stats>, <fix>
and <end> sections. The <mode> section is optional.

The <start> section indicates the configuration settings for Adaptive Server
before metrics are collected. For example:

 <start>
<!-- Recommended server settings -->
<start_config>sp_configure 'enable metrics capture', 1</start_config>
<start_config>sp_configure 'abstract plan dump', 1</start_config>

<!-- Clean up sysqueryplans & sysquerymetrics tables -->

<start_config>sp_configure 'system table', 1</start_config>
<start_config>sp_metrics 'flush'</start_config>
<start_config>delete sysqueryplans where gid=1 or gid=2</start_config>

<!-- Optional settings that users can change or remove -->

<!-- <start_config>sp_configure 'enable literal autoparam', 1</start_config> ->
<!-- <start_config>sp_configure 'metrics elap max', 0</start_config> -->

<!-- Hint: sp_add_resource_limit can be added to limit resource usage -->
<!-- Specify a query plan group name to save all existing plans from ap_stdin -->
<!-- Existing plans from ap_stdout will be saved to the corresponding group name
added with '_out'. -->

<save_plans_pre_start>pre_start_qpgroup</save_plans_pre_start>
</start>

The <end> section corresponds to the <start> section and includes the
configurations setting to be applied after metrics are collected. For example:

<end>
<end_config>sp_configure 'enable metrics capture', 0</end_config>
<end_config>sp_configure 'abstract plan dump', 0</end_config>
<end_config>sp_configure 'system table', 0</end_config>
<end_config>sp_configure 'capture missing statistics', 0</end_config>

<!-- <end_config>sp_configure 'enable literal autoparam', 0</end_config> -->
<!-- <end_config>sp_configure 'metrics elap max', 0</end_config> -->
</end>

CHAPTER 2 QPTune

Migration Technology Guide 33

The <start_stats> section includes statistics settings. For example:

<start_stats>
<!-- Recommended server settings -->
<start_stats_config>sp_configure 'capture missing
statistics',1</start_stats_config>
<!-- Reset counter of missing statistics -->
<start_stats_config>
sp_configure 'system table',1
</start_stats_config>
<start_stats_config>
delete sysstatistics where formatid=110
</start_stats_config>
</start_stats>

The <fix_stats>section includes:

<!-- The following set of configurations apply at "-A
fix" -->
<fix>
<!-- Recommended server settings -->
<fix_config>sp_configure 'abstract plan load',1</fix_config>
<!-- Clean up sysqueryplans & sysquerymetrics tables -->
<fix_config>sp_configure 'system table', 1</fix_config>
<fix_config>sp_metrics 'flush'</fix_config>
<fix_config>delete sysqueryplans where gid=1 orgid=2</fix_config>
<!-- Optional settings that users can change or remove -->
<fix_config>sp_configure 'enable metrics capture',1</fix_config>
<!-- <fix_config>sp_configure 'enable literal autoparam',1</fix_config> -->
<!-- <fix_config>sp_configure 'metrics elap max',0</fix_config>-->
<!-- Specify a query plan group name to save all existing plans from ap_stdin -->
<!-- Existing plans from ap_stdout will be saved to the corresponding group name
added with '_out'. -->
<save_plans_pre_fix>pre_fix_qpgroup</save_plans_pre_fix>
</fix>

The optional <mode> section allows users to specify custom optimization
settings to one or more queries specified through another input file. The -M
option of the start and collect actions specifies the mode setting. When the -M
option specifies anything other than a standard optimization goal setting,
QPTune treats the mode as customized, and retrieves the optimization goal and
rules settings, for the indicated name, from the <mode> section of the
configuration file. QPTune then applies the custom settings to the list of
specified queries.

Examples

34 Adaptive Server Enterprise

Examples
❖ Fixing missing statistics using QPTune

1 Run QPTune with start_stats to prepare the server to collect missing
statistics:

QPTune -A start_stats -v
-S my_host:4816/my_database

Sample output:

Executing : QPTune -U sa -P [unshown]
-S jdbc:sybase:Tds:my_host:4816/my_database
-A start_stats -M allrows_dss -T 0 -i null -o metrics.xml
-f null -c config.xml -l 5 -e elap_avg -d 5,5
-m 5 -n null –v
You are now connected to database: my_database
[INFO] Config: sp_configure 'capture missing statistics', 1
[INFO] Config: sp_configure 'system table', 1
[INFO] Config: delete sysstatistics where formatid =110

2 Run the client application, stored procedure, or query.

3 Run QPTune with collect_stats action to collect statistics that exceed the
threshold for count of missing statistics. You may let the utility wait for
some period of time (specified by the -T option) before collecting the
missing statistics information.

QPTune -A collect_stats -m 1 -o missingstats.xml
-v -S my_host:4816/my_database

Sample output:

Executing : QPTune -U sa -P [unshown]
-S jdbc:sybase:Tds:my_host:4816/my_database
-A collect_stats -M allrows_dss -T 0 -i null -o missingstats.xml -f null
-c config.xml -l 5 -e elap_avg -d 5,5 -m 1 -n null -v
You are now connected to database: my_database
Now collecting missing statistics information from sysstatistics on "Fri
Sep 26 10:08:06 PDT 2008".
QPTune Utility
<?xml version="1.0" encoding="UTF-8"?><server
url="jdbc:sybase:Tds:my_host:4816/my_database"
file="missingstats.xml"
type="missing stats" datetime="Fri Sep 26 10:08:06 PDT 2008" >

<missingStat id="1">
<id>1068527809</id>
<stats>Y(y4,y2)</stats>

CHAPTER 2 QPTune

Migration Technology Guide 35

<count>2</count>
</missingStat>
<missingStat id="2">

<id>1068527809</id>
<stats>Y(y3)</stats>
<count>1</count>

</missingStat>
<missingStat id="3">

<id>1068527809</id>
<stats>Y(y2,y1)</stats>
<count>1</count>

</missingStat>
<missingStat id="4">

<id>1068527809</id>
<stats>Y(y1)</stats>
<count>1</count>

</missingStat>
</server>
The missing statistics information is written into XML file:
missingstats.xml
[INFO] End config: sp_configure 'enable metrics capture', 0
[INFO] End config: sp_configure 'abstract plan dump', 0
[INFO] End config: sp_configure 'system table', 0
[INFO] End config: sp_configure 'capture missing statistics', 0
Program has restored the data source for metrics collection
----- QPTune finished executing. ------

4 Update statistics that have exceeded or equalled the threshold for count of
missing statistics, specified by the -m option. To fix missing statistics that
are specified in the input file missingstats.xml, use:

QPTune -U sa -P -A fix_stats -m 1 -i missingstats.xml
-v -S my_host:4816/my_database

Sample output:

Executing : QPTune -U sa -P
-S jdbc:sybase:Tds:my_host:4816/my_database -A fix_stats
-M allrows_dss -T 0 -i missingstats.1 xml -o metrics.xml -f null
-c config.xml -l 5 -e elap_avg -d 5,5 -m 1 -n null -v
You are now connected to database: my_database
Fix statistics on "Fri Sep 26 10:14:59 PDT 2008"

Details of statements(s) fixed:

Fixed statistics:[Update] Y(y4,y2)
[INFO] Fix Statement = update statistics Y(y4,y2)
Fixed statistics:[Update] Y(y3)

Examples

36 Adaptive Server Enterprise

[INFO] Fix Statement = update statistics Y(y3)
Fixed statistics:[Update] Y(y2,y1)
[INFO] Fix Statement = update statistics Y(y2,y1)
Fixed statistics:[Update] Y(y1)
[INFO] Fix Statement = update statistics Y(y1)
----- QPTune finished executing. ------

Note If the fix_stats action is used with the -N option, QPTune does not
execute the statements to fix missing statistics, but instead sends them to
an output file specified by -o output_file.

5 (Optional) The undo_fix_stats command deletes the statistics specified in
the -i XML file. The statistics deleted are those that have missing counts
exceeding or equal to a number specified by -m. To undo the fix of missing
statistics in the input file missingstats.xml use:

QPTune -U sa -P -A undo_fix_stats -m 1
-i missingstats.xml -v
-S my_host:4816/my_database

Sample output:

Executing : QPTune -U sa -P [unshown]
-S jdbc:sybase:Tds:my_host:4816/my_database
-A undo_fix_stats -M allrows_dss -T 0
-i missingstats.xml -o metrics.xml -f null
-c config.xml -l 5 -e elap_avg -d 5,5 -m 1
-n null -v
You are now connected to database: my_database
Fix statistics on "Fri Sep 26 10:20:23 PDT 2008"

Details of statements(s) fixed:

Fixed statistics:[Delete] Y(y4,y2)
[INFO] Fix Statement = delete statistics Y(y4,y2)
Fixed statistics:[Delete] Y(y3)
[INFO] Fix Statement = delete statistics Y(y3)
QPTune Utility
Fixed statistics:[1 Delete] Y(y2,y1)
[INFO] Fix Statement = delete statistics Y(y2,y1)
Fixed statistics:[Delete] Y(y1)
[INFO] Fix Statement = delete statistics Y(y1)
----- QPTune finished executing. ------

CHAPTER 2 QPTune

Migration Technology Guide 37

❖ Optimizing an application using QPTune

1 Run QPTune with start, specifying one of: allrows_oltp, allrows_mix, or
allrows_dss:

QPTune -U sa -P -S my_host:11030/my_database
-A start -M allrows_mix -v

In this example, Adaptive Server runs on a machine called “my_host” with
a port number 11030 and a database called my_database.

Sample output:

Executing : QPTune -Usa -P [unshown] –S
jdbc:sybase:Tds:my_host:11030/my_database
-A start -M allrows_mix -T 0 -i null -o metrics.xml -f null -c config.xml
-l 5
-e elap_avg -d 5,5 -n null -v
You are now connected to database: my_database
[INFO] Config: sp_configure 'enable metrics capture', 1
[INFO] Config: sp_configure 'abstract plan dump', 1
[INFO] Config: sp_configure 'system table', 1
[INFO] Config: sp_metrics 'flush'
[INFO] Config: delete sysqueryplans
Apply "sp_configure optimization_goal, 0, allrows_mix" to the data
source.
Program has configured the data source for metrics collection.

2 Run the client application, stored procedure, or query. The client
application may be a GUI-based or Web-based program, a set of stored
procedures, or a batch of SQL queries in a script. For example:

isql -Usa -P < sp_telco.sql > sp_telco_allrows_mix.out

3 Run QPTune with collect to collect metrics on each of the queries in the
application. The metrics are collected in a file called
sp_telco_allrows_mix.xml.

QPTune -U sa -P -S my_host:11030/my_database -A collect
-M allrows_mix -o sp_telco_allrows_mix.xml -v

Repeat steps 1 – 3 for each of other optimization goals or custom modes.
For example, to use allrows_dss, run:

QPTune -U sa -P -S my_host:11030/my_database -A start
-M allrows_dss

isql -Usa -P < sp_telco.sql > sp_telco_allrows_dss.out
QPTune -U sa -P -S my_host:11030/my_database -A collect

-M allrows_dss -o sp_telco_allrows_dss.xml

Examples

38 Adaptive Server Enterprise

Sample output for mode allrows_mix:

Executing : QPTune -U sa -P [not shown]
-S jdbc:sybase:Tds:my_host:11030/my_database –A collect
-M allrows_mix -T 0 -i null -o sp_telco_allrows_mix.xml -f null
-c config.xml-l 5 -e elap_avg -d 5,5 -n null -v

You are now connected to database: my_database
Now collecting information from sysquery tables on "Tue Aug 26 22:00:49
PDT 2008".
Metrics are flushed.
<?xml version="1.0" encoding="UTF-8"?>
<server url="jdbc:sybase:Tds:my_host:11030/my_database"
file="sp_telco_allrows_mix.xml" mode="allrows_mix"
datetime="Tue Aug 26 22:00:49 PDT 2008" >
<query id="1">
<qtext>SELECT service_key , year , fiscal_period , count(*)
FROM telco_facts T , month M , status S
WHERE T.month_key=M.month_key AND S.status_key = T.status_key
AND call_waiting_status="Dropped"
GROUP BY year , fiscal_period , service_key
ORDER BY year , fiscal_period , service_key </qtext>
<hashkey>323626785</hashkey>
<id>1568005586</id>
<elap_avg>27408</elap_avg>
<bestmode>allrows_mix</bestmode>
</query>
<query id="2">
<qtext>SELECT customer_last_name , customer_first_name FROM
residential_customer R , telco_facts T , service S , month M
WHERE M.month_text = 'February ' AND M.year = 1998
AND S.isdn_flag = 'Y' AND M.month_key = T.month_key
AND S.service_key = T.service_key
AND R.customer_key = T.customer_key -- end comment i
</qtext>
<hashkey>727793461</hashkey>

<id>1552005529</id>
<elap_avg>3355</elap_avg>
<bestmode>allrows_mix</bestmode>
</query>
.
<query id="10">
<qtext>SELECT month_key , service_key , count(*)
FROM telco_facts WHERE month_key = 1
GROUP BY month_key , service_key
</qtext>

CHAPTER 2 QPTune

Migration Technology Guide 39

<hashkey>1561133104</hashkey>
<id>1680005985</id>
<elap_avg>58</elap_avg>
<bestmode>allrows_mix</bestmode>
</query>
</server>
The metrics information is written into
XML file: sp_telco_allrows_mix.xml
[INFO] End config: sp_configure 'enable metrics capture', 0
[INFO] End config: sp_configure 'abstract plan dump', 0
[INFO] End config: sp_configure 'system table', 0
Program has restored the data source for metrics collection.
----- QPTune finished executing. ------

4 Compare metrics collected from all the runs, with the best metrics for each
query, in a file called best.xml. You can define a new mode, called
“new_mode” for this metric.

QPTune -U sa -P -S my_host:11030/my_database -v -A compare -M new_mode
-f sp_telco_allrows_dss.xml,
sp_telco_allrows_mix.xml,sp_telco_allrows_oltp -o best.xml

Sample output:

Executing: QPTune -U sa -P [unshown]

-S jdbc:sybase:Tds:my_host:11030/my_database
-A compare -M new_mode -T 0 -I null -o best.xml
–f sp_telco_allrows_mix.xml, sp_telco_allrows_dss.xml,
sp_telco_allrows_oltp.xml
-c config.xml -l 5 -e elap_avg -d 5,5 -n null –v

Compare all the files:
sp_telco_allrows_mix.xml,sp_telco_allrows_dss.xml,sp_telco_allrows_oltp
.xml
Report generated on "Wed Aug 27 16:29:01 PDT 2008"
--
Sorted List By File Size (Desc.) =
sp_telco_allrows_mix.xml, sp_telco_allrows_dss.xml,
sp_telco_allrows_oltp.xml
File #1 : [name=sp_telco_allrows_mix.xml : mode=allrows_mix]
File #2 : [name=sp_telco_allrows_dss.xml : mode=allrows_dss]
Query count in File #1 [mode=allrows_mix]: 14
Query count in File #2 [mode=allrows_dss]: 12
===
Query count improved in File #2[mode=allrows_dss]: 7
Total performance improved [from 37234 to 7781]: 79 %
Following queries run better in File #2 [mode=allrows_dss]:

Examples

40 Adaptive Server Enterprise

Group 1: improved by no more than 25% [2 queries]
Query: SELECT state, count(*) FROM telco_facts T, service S,
residential_customer C, month M
WHERE T.service_key = S.service_key
AND T.customer_key = C.customer_key AND T.month_key = M.month_key
AND call_waiting_flag = 'Y' AND caller_id_flag = 'Y'
AND voice_mail_flag = 'N' AND state in ('NY', 'NJ', 'PA')
AND fiscal_period = 'Q1'
GROUP BY state
Average elapsed time(ms): File #1=837 File #2=803 Improvement=4.0%
Outstanding=No
Query: SELECT fiscal_period, T.service_key, sum(local_call_minutes),
sum(local_call_count) , count(*)
FROM telco_facts T ,residential_customer C, service S , month M
WHERE T.customer_key = C.customer_key
AND T.service_key = S.service_key AND T.month_key = M.month_key
AND fiscal_period = 'Q4' AND T.service_key in (02, 03)
AND state = 'CA'
GROUP BY fiscal_period , T.service_key
Average elapsed time(ms): File #1=832 File #2=635 Improvement=23.0%
Outstanding=Yes

Group 2: improved by 25% to 50% [2 queries]Group 3: improved by 50% to
75% [0 queries]
.
Group 4: improved by 75% to 100% [3 queries]
Query: SELECT service_key , year , fiscal_period , count(*)
FROM telco_facts T , month M , status S
WHERE T.month_key=M.month_key AND S.status_key = T.status_key
AND call_waiting_status="Dropped" GROUP BY year, fiscal_period,
service_key
ORDER BY year , fiscal_period , service_key -- end comment--
Average elapsed time(ms): File #1=27408 File #2=2126 Improvement=92.0%
Outstanding=Yes
.
File #3 : [name=sp_telco_allrows_oltp.xml : mode=allrows_oltp]
Query count in File #3[mode=allrows_oltp]: 13
===
Query count improved in File #3[mode=allrows_oltp]: 4
Total performance improved [from 7781 to 6523]: 16 %
Following queries run better in File #3:

Group 1: improved by no more than 25% [2 queries]
Query: SELECT fiscal_period , count(*) , sum(local_call_minutes)
FROM residential_customer R , telco_facts T , status S , month M
WHERE S.call_waiting_status=@status AND state =

CHAPTER 2 QPTune

Migration Technology Guide 41

.

5 Fix the query plans in your application by using the best plan from the
comparison:

QPTune -U sa -P -S my_host:11030/my_database -g
-A fix -i best.xml

Sample output:

Executing : QPTune -U sa -P [unshown]
-S jdbc:sybase:Tds:my_host:11030/my_database
-A fix -M allrows_dss -T 0 -i best.xml
-o metrics.xml -f null -c config.xml -l 5
-e elap_avg -d 5,5 -n null -v
You are now connected to database: my_database
[INFO] Config: sp_configure 'abstract plan load', 1
[INFO] Config: sp_configure 'system table', 1
[INFO] Config: sp_metrics 'flush'
[INFO] Config: delete sysqueryplans
[INFO] Config: sp_configure 'enable metrics capture', 1
You are now connected to database: my_database
Query plan(s) fixed on "Wed Aug 27 17:05:46 PDT 2008"

Fixed 3 queries using mode "allrows_oltp"
Fixed 3 queries using mode "allrows_dss"
Fixed 8 queries using mode "allrows_mix"
Apply "sp_configure optimization_goal, 0, allrows_mix" as the
default optgoal.
Details of statements(s) fixed:

Query: SELECT service_key , year , fiscal_period , count(*) -- comment 1
it''s a comment. whatever "statments"
/* comment 3 */ FROM telco_facts T , month M , status S
WHERE T.month_key=M.month_key AND S.status_key = T.status_key
AND call_waiting_status="Dropped" GROUP BY year, fiscal_period,
service_key
ORDER BY year , fiscal_period , service_key -- end comment
-- *** Query #9 ***
.

Examples

42 Adaptive Server Enterprise

❖ Using QPTune custom modes

1 You may run select queries using your own custom modes defined in a
configuration file. QPTune includes some custom modes like “_basic_,”
which represents basic optimization of Adaptive Server 12.5. For
example, the default configuration file config.xml contains custom mode
“custom1” which allows an optimization goal of allrows_oltp, together
with the rule merge_join_off:

<!-- "default" custom mode -->
<mode name="default">
<optgoal>use optgoal allrows_mix</optgoal>
<rule>use merge_join off</rule>
<rule>use opttimeoutlimit 15</rule>
</mode>
<!-- "_basic_" mode is a reserved system mode. -->
<mode name="_basic_">
</mode>
<mode name="custom1">
<optgoal>use optgoal allrows_oltp</optgoal>
<rule>use merge_join off</rule>
</mode>

2 This example shows how to use the “_basic_” custom mode:

QPTune –A start –M _basic_ –Usa –P –S my_host:11030/my_database
–i best.xml -l 0 -v

isql -Usa -P < sp_telco_2.sql > sp_telco_basic.out
QPTune -A collect -M _basic_ -Usa -P -S my_host:11030/my_database

-o sp_telco_basic.xml –v
QPTune -A compare -M best -Usa -P -Smy_host:11030/my_database -v

-f sp_telco_basic.xml,best.xml -o best_basic.xml –d 1,0

Sample output:

Report generated on "Fri Aug 29 13:29:17 EDT 2008"
--
{INFO]Sorted List By File Size (Desc.)=sp_telco_basic.xml,best.xml
File #1 : [name=sp_telco_basic.xml : mode=_basic_]
File #2 : [name=best.xml : mode=best]
Query count in File #1: 14
Query count in File #2: 14
===
Query count improved in File #2: 7
Total performance improved [from 2441 to 1529]: 37 %
Following queries run better in File #2:

Group 1: improved by no more than 25% [4 queries]
Query: SELECT customer_last_name , customer_first_name

CHAPTER 2 QPTune

Migration Technology Guide 43

FROM residential_customer R , telco_facts T , service S , month M
WHERE M.month_text = 'February ' AND M.year = 1998
AND S.isdn_flag = 'Y' AND M.month_key = T.month_key
AND S.service_key = T.service_key AND R.customer_key = T.customer_key
Average elapsed time(ms): File #1=393 File #2=306 Improvement=22.0%
Outstanding=Yes
.

Upgrade issues
QPTune helps you get the best performance when upgrading to Adaptive
Server 15.0 . If there are queries that do not perform as well as pre 15.0 versions
of the server, QPTune allows Adaptive Server Enterprise to generate version
12.5.4-like query plans. If these plans run faster than the corresponding version
15.0 query plans, QPTune retains and uses these plans for all subsequent query
execution.

❖ Using QPTune while migrating to Adaptive Server 15.0

1 Depending on the application, get metrics information for any or all of the
three Adaptive Server 15.0's pre-programmed modes (“mix,” “dss,”
“oltp”):

QPTune -A start -M allrows_oltp
-S my_host:5000/my_database

<Run your query, application, or stored procedure>

QPTune -A collect -M allrows_oltp -T 0 -o oltp.xml
-S my_host:5000/my_database

QPTune -A start -M allrows_mix
-S my_host:5000/my_database

<Run your query, application, or stored procedure>

QPTune -A collect -M allrows_mix -T 0 -o mix.xml
-S my_host:5000/my_database

QPTune -A start -M allrows_dss
-S my_host:5000/my_database

<Run your query, application, or stored procedure>

QPTune -A collect -M allrows_dss -T 0 -o dss.xml
-S my_host:5000/my_database

Localization

44 Adaptive Server Enterprise

2 Get metrics information with optimization similar to version 12.5.4 in
Adaptive Server 15.0:

QPTune -A start -M _basic_ -i oltp.xml -l 10
-S my_host:5000/my_database

<Run your query, application, or stored procedure>

QPTune -A collect -M _basic_ -T 0 -o basic.xml
-S my_host:5000/my_database

3 Compare the metrics information:

QPTune -A compare -d 10 -o best.xml
-f basic.xml,oltp.xml,mix.xml,dss.xml
-S my_host:5000/my_database

4 Fix query plans with the best out of the comparison:

QPTune -A fix -i best.xml
-S my_host:5000/my_database

5 (Optional) Verify the performance improvement after the plan fixup, re-
run the application, and collect the metrics information:

QPTune -A collect -T 0 -o new_best.xml
-S my_host:5000/my_database

Performing a compare of new_best.xml with any of the other XML output
files should establish that new_best.xml gives the best results.

Localization
The QPTune command line utility has been localized so its messages can
display in these 9 languages other than English: Chinese, French, German,
Japanese, Korean, Polish, Portuguese, Spanish, and Thai. The language
properties files are packaged in the qptune.jar file. QPTune sets the display
according to the language set on the system’s default locale.

QPTune GUI
The QPTune GUI is a set of Java libraries that are used by the Adaptive Server
plug-in.

CHAPTER 2 QPTune

Migration Technology Guide 45

Environment and system requirements
To access QPTune functionality, you must be using Adaptive Server version
15.0.3 ESD #1 or later.

The QPTune executable and libraries are installed in:

(Unix)

$SYBASE/$SYBASE_ASE

$SYBASE/$SYBASE_ASE/lib

(Windows)

%SYBASE%\%SYBASE_ASE%

%SYBASE%\%SYBASE_ASE%\lib

To run the QPTune GUI, these files must be present in your installation:

• (UNIX)

• $SYBASE/$SYBASE_ASE/qptune/config.xml

• $SYBASE/$SYBASE_ASE/lib/qptune.jar

• $SYBASE/$SYBASE_ASE/qptune/lib/xercesImp.jar

• $SYBASE/$SYBASE_ASE/qptune/lib/xml-apis.jar

• $SYBASE/jConnect-6_0/classes/jconn3.jar

• $SYBASE_JRE6/bin/java

• (Windows)

• %SYBASE%\%SYBASE_ASE%\qptune\config.xml

• %SYBASE%\%SYBASE_ASE%\lib\qptune.jar

• %SYBASE%\%SYBASE_ASE%\qptune\lib\xercesImp.jar

• %SYBASE%\%SYBASE_ASE%\qptune\lib\xml-apis.jar

• %SYBASE%\jConnect-6_0\classes\jconn3.jar

• %SYBASE_JRE6%\bin\java

Set the following environment variables:

• SYBASE_JRE6 – to the Java runtime installation.

• SYBASE – to the latest Sybase installation on your machine.

QPTune GUI

46 Adaptive Server Enterprise

• SYBASE_ASE – to the Adaptive Server component(directory) of the
installation on your machine.

Starting the QPTune GUI
The QPTune GUI uses the ASE plug-in in Sybase Central™. You must have
installed Sybase Central in order to access the QPTune GUI. For more
information on the ASE plug-in in Sybase Central, see the System
Administration Guide, Volume 1.

Start Sybase Central, and configure your servers using the ASE plug-in. For
any server that you can access with the plug-in, the QPTune GUI allows you to:

• Fix missing statistics in Adaptive Server:

After a server upgrade, and before tuning the server, use QPTune to update
missing statistics on the server.

• Tune tasks in Adaptive Server:

Use this feature to define a tuning task that QPTune can execute and
analyze in a report. You can further apply the fixes to the server.

Fixing missing statistics
Use the QPTune GUI to fix or update the missing statistics after you have
upgraded a server. To access QPTune’s “Fix missing statistics” feature, right-
click a server name and select one of the two available menu options for fixing
missing statistics:

• Fix Missing Statistics: When you select this option, QPTune brings up the
Fix Missing Statistics Wizard. QPTune collects the information about
missing statistics into an XML file, and then uses the file to fix the missing
statistics. Specify the name of the XML file and the target database, and
click Next for the Options page.

On the Options page, specify a threshold for the count of missing statistics.
The default threshold count is 5. See “Collecting statistics” on page 21 for
more information on threshold for count of missing statistics.

Additionally, you may opt to only send the update statistics statements to
a script file. To do this, type in the filename where you would like to save
the statements, and click Finish to save the tuning task without execution.

CHAPTER 2 QPTune

Migration Technology Guide 47

If you click Execute, QPTune goes through the steps to fix the missing
statistics. QPTune then displays a Summary page of commands that the
wizard issues to it.

• Undo Missing Statistics Fix: When you select this option, QPTune brings
up the Undo Missing Statistics Fix Wizard. Using statistics statements
from a specified XML file, QPTune can undo previous fixes to the server.
Specify the name of the XML file and the target database, and click Next
for the Options page.

On the Options page, specify a threshold for count of missing statistics.
The default threshold count is 5. See “Collecting statistics” on page 21 for
more information on threshold for count of missing statistics.

When you click Finish, QPTune goes through the steps to undo the
previous fixes for missing statistics. QPTune then displays a summary
page of commands that the wizard issues to it.

To use the Fix Missing Statistics or Undo Missing Statistics Fix wizards, you
must have sa_role and sso_role. For more information on QPTune’s cycle for
fixing missing statistics, see “Using QPTune to fix missing statistics” on page
19.

Note You must run the application at least once before QPTune can collect or
fix missing statistics.

Tuning Task
QPTune includes a panel called Tuning Tasks that displays existing tuning
tasks on every qualifying server. A Wizard guides you through QPTune’s
tuning cycle. The definition of a tuning task is stored on the client machine
where ASEP runs, and may only be accessed on that machine.

QPTune includes several stages in the tuning cycle for applications or queries.
For more information on QPTune’s cycle for application or query tuning, see
“Using QPTune to tune queries or applications” on page 24.

To create a new tuning task for a server:

• Connect to the server on which you wish to tune your query.

QPTune GUI

48 Adaptive Server Enterprise

• Click on your server name. You see the Tuning tasks tab.

Note If you do not see the Tuning Task tab, please check that your
environment variables are set correctly and that your installation contains
all the required files and directories.

• Click on the Tuning Tasks tab, and then right-click in the window to bring
up the “New”-> “TuningTask” menu item.

• Select the “New”-> “TuningTask” menu item. The QPTune Wizard opens.

Alternately, you can bring up the Wizard using the “Tuning Task” creation
button that is provided on the toolbar.

Note You must have sa_role and sso_role to use the menu item and the creation
toolbar button.

The QPTune wizard includes these screens corresponding to the different
stages in tuning the Adaptive Server:

• Setup:

• Name and Configuration

Specify the task name and the configuration file associated with the
task. When these are both specified, the Next and Finish buttons ar
enabled. If the configuration file already exists, the wizard indicates
this by displaying a note under the file name.

You may select the Verbose Mode option to generate more detailed
output.

• Server Configuration

You can view or edit server configuration commands issued during
the different stages of running QPTune. Changes to the commands are
written to the configuration file right before execution on the
Comparison page.

• Mode Selection

You may select different modes to run QPTune. All three pre-
programmed modes are selected by default:

• Decision Support System (DSS)

• Online Transaction Processing (OLTP)

CHAPTER 2 QPTune

Migration Technology Guide 49

• Mixed Workload (MIX)

To define a customized mode, click the Add button. To change the
order of the modes, use the Up and Down buttons. Two or more
modes must be selected for the tuning tasks in order to ensure at least
two collected results for later comparison.

A customized mode is a collection of tuning parameters grouped
under an optimization goal for a set of queries. The OK button is
enabled only if a name, at least one rule, and the result file are
specified.

To add or edit a rule, use the pop-up text input box. To delete a rule,
use the Remove button.

• Collect:

• Application

You can specify an executable or a script file to include before the
collection phase begins.

• Collection

You can specify collection settings on this page. By default QPTune
only collects optimization goal settings with no collection delay, and
evaluates the average elapsed time for collection.

• Compare:

• Comparison

Specify comparison threshold setting (percentage and absolute
values) and the output filename on this page.

Click Finish to save the task definition and the configuration file.

If you click Execute, QPTune executes all the specified modes,
collects the metrics, and compares and saves the results into the
output file. You may use the Preview button to list the commands that
are about to be issued.

• Results

This page displays the output of the tuning process. Comparison
results depict the performance improvement if the best plans are
chosen for each of the queries. The output XML file contains the best
plans or optgoal settings for each of the queries.

QPTune reference information

50 Adaptive Server Enterprise

You may also apply the fixes to the server: Click Fix to apply the best
plans or optgoal setting to the queries. This generates entries in the
sysqueryplans table for the queries that are being fixed.

Select Apply Default Optimization Goal if you want to apply the
default optimization goal to the server during the Fix operation. The
default optimization goal is the optgoal setting that most queries
selected as their best optgoal during the Compare operation.

If Apply Default Optimization Goal is selected, subsequent Fix
operations apply the best result to the rest of the queries that have not
selected this default optgoal setting as their best optgoal.

If Apply Default Optimization Goal is not selected, the Fix operation
is applied to all the queries in the result file.

QPTune reference information
Description QPTune is an Adaptive Server utility written in Java/XML. It enables users to

identify the best query plan, optimization goals, or other configuration settings,
and apply them at the query or server level. This results in optimal performance
of later query executions.

Syntax QPTune [-U <username>] [-P <password>] [-S
<hostname:port/database>]
[-A <action
[start|collect(_full)|compare|fix|(start|collect|fix|undo_fix)_stats]>]
[-M <mode>] [-T <appTime>] [-i <inputFile>] [-o <outputFile>]
[-f <fileList(,)>] [-c <configFile>] [-l <limit>] [-e <evalField>]
[-d <diff%(,diff_abs)>] [-m <missingCount>] [-n <login>] [-J <charset>]
[-N (noexec)] [-g (applyOptgoal)][-v (verbose)] [-s (sort)] [-h (help)]

Example:

QPTune -U sa -P -S my_host:5000/my_database -A collect
-M allrows_mix -T 0
-o metrics.xml -c config.xml -e elap_avg -d 5,5 -l 5 -
i metrics.xml
-fa1.xml,a2.xml,a3.xml -v –s

Parameters -U username

 specifies the database user name.

-P password

CHAPTER 2 QPTune

Migration Technology Guide 51

specifies the database password.

-S server

specifies the database server. The database server is denoted by
host:port/database.

Note You must specify the -S option while using any QPTune actions.

-A action

specifies the action to be taken. One of: start | collect | collect_full | compare
| fix | start_stats | collect_stats | fix_stats | undo_fix_stats.

-J charset

specifies the character set used to connect to Adaptive Server. If this option
is not specified, the Adaptive Server uses the server’s default character set.

Note If the installed JRE does not support the server's default charset
encoding, you see an error message during the login process. Use the -J option
to specify a more generic character set, such as -J utf8.

-M mode

specifies the optimization goal or custom mode for an application. One of:
allrows_oltp, allrows_dss, allrows_mix. You may also define custom modes;
basic is a system reserved custom mode.

-T appTime

specifies the application running time, in minutes.

-o outputFile

specifies the output file.

-i inputFile

specifies the input file for the fix, fix_stats, and undo_fix_stats actions. You
can also use -i to apply special rules to the specified queries for start for custom
modes.

-f fileList

compares a list of files to get the best plans; use commas to separate
filenames.

-c configFile

QPTune reference information

52 Adaptive Server Enterprise

specifies the configuration file.

-l limit

specifies a limit on the number of queries that should be analyzed and
applied with special rules.

-e evalField

evaluation field used for performance comparison.

-d difference

specifies the percentage and absolute value difference for performance
improvement to be considered outstanding.

-N

used along with fix_stats and undo_fix_stats, -N generates a SQL script with
update statistics or delete statistics statements. The update or delete statements
are not executed through QPTune. The statements are written into a SQL script
that is specified by the -o option.

-n login

 specifies the user’s login whose query executions are collected and
analyzed.

-m missingCount

specifies the threshold value for missing statistics. The default value is 5.

-v

specifies verbose mode.

-g

when used along with the fix action, applies the default goal. The default
goal is the best optgoal setting that most queries used as the best plan using
QPTune’s fix action. This option only generates plans for queries that do not
currently use the server’s default optimization goal.

 If specific values are not indicated for the parameters, the following defaults
are used:

• -A : collect

• -M : allrows_dss

• -T : 0

• -o : metrics.xml

CHAPTER 2 QPTune

Migration Technology Guide 53

• -c : config.xml

• -e : elap_avg

• -d : 5,5. If only percentage is specified, absolute value defaults to 0.

• -l limit

• -m 5

Permissions Only users with sa_role and sso_role can run actions other than compare on
QPTune.

QPTune reference information

54 Adaptive Server Enterprise

Migration Technology Guide 55

C H A P T E R 3 Running the Query Processor in
Compatibility Mode

Adaptive Server version 15.0 includes substantive changes to the query
processor. For most customers, the new query processor provides a faster
and more efficient environment. However, you may have tuned your
server and applications based on the more restricted query processor from
Adaptive Server version 12.5.4 and earlier and find the benefits of the
version 15.0 query processor unsuitable in some situations. In that case,
use the compatibility mode to upgrade to Adaptive Server 15.0 from
version 12.5.x but retain performance characteristics similar to version
12.5.x. When you enable compatibility mode, Adaptive Server 15.0 uses
a query engine similar to the one used in version 12.5.4, and provides an
alternative optimization and execution strategy.

Enabling compatibility mode
On Adaptive Server 15.0.3 ESD #1 and later, you can enable compatibility
mode at the session or server-wide level:

• Session level – use set compatibility_mode on | off to enable or disable
compatibility mode for the current session.

• Server-wide – use sp_configure 'enable compatibility mode', 1 | 0 to
enable or disable compatibility mode for the server.

Topic Page
Enabling compatibility mode 55

Feature support in compatibility mode 56

Additional trace flag for diagnostics 58

New stored procedure sp_compatmode 58

Changes to @@qpmode global variable 59

Diagnostic tool 60

Feature support in compatibility mode

56 Adaptive Server Enterprise

Setting compatibility mode at the session level takes precedence over the
server level.

enable compatibility mode is a dynamic configuration parameter; you need not
restart Adaptive Server for it to take effect. However, you must remove any
compiled plans for stored procedures, or ad hoc queries, from the statement
cache.

Note sp_configure generates warnings to indicate that enabling compatibility
mode does not affect cached query plans that are already in the procedure or
statement cache.

sp_configure also generates warnings if it detects configuration options that
conflict with compatibility mode, such as:

• One of abstract plan dump, abstract plan load or abstract plan replace is set.

• statement cache and literal autoparam are set.

• The histogram tuning factor is set to a value other than 1.

Feature support in compatibility mode
Once you enable compatibility mode, Adaptive Server uses the query
processor for all insert, delete, update, and select queries.

The query processor uses either full or partial compatibility mode:

• Full compatibility mode – Adaptive Server 15.0 uses an optimization and
execution strategy similar to the one used in version 12.5.x.

• Restricted compatibility mode – Adaptive Server uses only an
optimization strategy similar to the one used in version 12.5.x.

Generally, Adaptive Server uses full compatibility mode wherever possible. If
it cannot use full compatibility mode, it switches to restricted compatibility
mode.

Table 3-1 lists restricted compatibility mode support for features in Adaptive
Server versions earlier than 15.0:

CHAPTER 3 Running the Query Processor in Compatibility Mode

Migration Technology Guide 57

Table 3-1: Version 12.5 feature support in compatibility mode

Compatibility mode does not support these Adaptive Server 15.0 features:

• Partitioned tables

• group bys with more than 31 columns

• Scrollable and insensitive cursors

• Commands on computed columns

• Queries that fire “instead-of-triggers”

• Queries executed inside “instead-of-triggers”

• Queries that issue parameterized literals in the statement cache, unless the
query includes an insert...values command

• Query processing diagnostics used by showplan_in_xml

• Queries that include hash or hashbyte functions

• User-defined functions (SQL UDFs)

12.5.4 features with limited
support in compatibility mode

Supported in full
compatibility mode?

Supported in
restricted
compatibility mode?

Queries with text and image
columns

No Yes

Referential integrity No Yes

Inserts that require referential
integrity

No No

Proxy tables No Yes

Round-robin partitions No No

Encryption and cipher text No Yes

Queries that include the rand2
function

No Yes

Abstract plans, either explicit (with
plan clause) or implicit (plan dump
or plan load);

No Yes

Extended datatypes, such as Java
ADT and Java UDF

No Yes

XML functions No Yes

Browse mode No Yes

Parallel hints No No

Parallel sort No No

Additional trace flag for diagnostics

58 Adaptive Server Enterprise

• Explicit timestamp inserts (available for Adaptive Server version 15.0.2
and later and in Replication Server®)

• SQL-based replication (available for Adaptive Server version 15.0.3 and
later)

• group by result rows that are wider than the maximum size that fits on a
data page

• xmltable function

Note Query plans in compatibility mode are not executed as parallel plans.

Additional trace flag for diagnostics
Trace flag 477 alters compatibility mode. For every query evaluated, Adaptive
Server prints this message to the error log, which indicates if Adaptive Server
used full compatibility mode to process the query:

Compatibility = true | false

The message includes the reason if compatibility mode is not chosen, and the
query text, if available.

New stored procedure sp_compatmode
Use sp_compatmode on Adaptive Server 15.0.3 ESD #1 and later, to verify if
full compatibility mode can be used effectively. sp_compatmode generates
warnings if it detects configuration options that conflict with compatibility
mode, such as:

• One of abstract plan dump, abstract plan load or abstract plan replace is set

• statement cache and literal autoparam are set

• The histogram tuning factor is set to a value other than 1

Example 1: Execute sp_compatmode with these server options:

• compatibility mode is set

CHAPTER 3 Running the Query Processor in Compatibility Mode

Migration Technology Guide 59

• dump/load/replace is “on”

• statement cache is “on”

• literal autoparam is “on”

• histogram tuning factor is set to 20
1> sp_compatmode
Compatibility mode is enabled.
WARNING: Compatibility mode will not be used when
'abstract plan dump/load/replace' is on.
WARNING: Compatibility mode may not be used when
statement cache and literal autoparam are enabled.
WARNING: The configuration option 'histogram tuning
factor' is configured with value '20', which is not the
default value in ASE 12.5. This may lead to different
accuracy of statistics and different query plans.
(return status = 0)

Example 2: Execute sp_compatmode when compatibility mode is not set:

1> sp_compatmode
Compatibility mode is not enabled.
(return status = 0)

Note Changing the configuration of the histogram tuning factor from the
default in Adaptive Server 15.0 (20) to the default in Adaptive Server 12.5 (1),
creates plans that are more consistent with Adaptive Server 12.5.

Changes to @@qpmode global variable
In compatibility mode, @@qpmode displays the query processing mode in
which the previously executed query was processed. There are four query
processing modes:

• 0 – a query that cannot be optimized; for example, create table, set, and so
on.

• 1 – a query executed in full compatibility mode.

• 2 – a query executed in restricted compatibility mode.

• 3 – a query executed with the 15.0 query processor.

Diagnostic tool

60 Adaptive Server Enterprise

Diagnostic tool
set showplan output displays the query plan in a format similar to Adaptive
Server 12.5.4, provided that the query is processed using full compatibility
mode.

Migration Technology Guide 61

Symbols
::= (BNF notation)

in SQL statements xi
, (comma)

in SQL statements xi
{} (curly braces)

in SQL statements xi
() (parentheses)

in SQL statements xi
[] (square brackets)

in SQL statements xi
@@qpmode global variable 59

Numerics
701 errors 13

A
actions

collect 28, 49
collect_stats 21
compare 29, 49
custom start 27
fix 30
fix_stats 23
simple start 27
start 27
start_stats to fix missing statistics 21
undo_fix_stats 24

Adaptive Server, tuning using the QPTune GUI 48

B
Backus Naur Form (BNF) notation xi
BNF notation in SQL statements xi

brackets. See square brackets []

C
case sensitivity

in SQL xii
collect action of QPTune 28
comma (,)

in SQL statements xi
compare action of QPTune 29
compatibility mode

definition 55
enabling at session or server level 55
feature support 56
full 56
restricted 56
trace flag 477 58
unsupported features 57
using @@qpmode 59
using set showplan 60
using sp_compatmode 58

configurable shared memory dump 13
configuration file 32

custom mode 27
end section 32
fix_stats section 33
mode section 33
start section 32
start_stats section 33

conventions
See also syntax
Transact-SQL syntax xi

curly braces ({}) in SQL statements xi
custom mode 27
custom start action of QPTune 27

Index

Index

62 Adaptive Server Enterprise

D
dbcc traceon 16

E
errors, 701 13
examples

fixing missing statistics 34–36
optimizing an application 37–41
using custom modes 42–43

F
fix action, best settings 30
fix action, using QPTune GUI 50
Fix missing statistics 46
full compatibility mode

feature support 56
features 56

G
Global variable

@@qpmode 59

L
literal autoparameterization 12
localization 44

M
migration strategy

flow-chart 7
not using new features 10
preupgrade steps 1
using new features 9
using new features later 9

missing statistics
collect_stats action 21

fix_stats action 23
flow-chart 19
noexec option 23
procedure to fix missing statistics 19
start_stats action 21
threshold count 21
undo_fix_stats action 24

missing statistics, fixing with QPTune GUI 46
modes

custom 27
pre-programmed 27

O
obsolete optimization commands 12
optimization criteria 3
optimization goals 2

allrows_dss 2
allrows_mix 2
allrows_oltp 2
defining 3

P
parentheses ()

in SQL statements xi
performance

comparison of different versions 5
problems with limited queries 14

pre-programmed modes 27

Q
QPTune

applying best settings 30
collect action 28
collect_stats action 21
compare action 29
configuration 18
configuration file 32
custom start action for tuning 27
description 17
environment variables 18

Index

Migration Technology Guide 63

examples 34–36, 37–41, 42–43
fix statistics action 30
fix_stats action 23
flow-chart for fix missing statistics 19
flow-chart for tuning applications or queries 25
optimized query plan 31
parameters 50
permissions 53
procedure to fix missing statistics 19
procedure to tune queries or applications 24
reference page 50
simple start action for tuning applications or queries

27
start action for tuning applications or queries 27
start_stats action to fix missing statistics 21
syntax 50
tuning queries or applications 24
undo_fix_stats action 24

QPTune GUI 44
Adaptive Server Name and Configuration 48
Adaptive Server set-up 48
collect action 49
compare action 49
configuration commands 48
creating a tuning task 47
environment 45
fix action 50
fix missing statistics 46
modes 48
results page 49
starting the GUI 46
system requirements 45
tuning task panel 47
undo missing statistics fix 47
wizard for tuning Adaptive Server 48

query plan, optimized 31
query processing

parallel 4
query-processing

tips 10

R
resource recommendations

procedure cache 4

tempdb 4
restricted mode, features 56

S
set compatibility_mode 55
settings, applying fix action 30
set-up

GUI 48
set-up, environment 18
simple start action of QPTune 27
sp_compatmode 58
sp_configure 55, 56
sp_shmdumpconfig 13
square brackets []

in SQL statements xi
statistics

automatic updates 5
fix missing 46
fix missing with QPTune GUI 47

symbols
in SQL statements xi

syntax conventions, Transact-SQL xi

T
tasks

creating with QPTune GUI 47
Technical Support

contact 13
troubleshooting information 15

testing
recommended steps before upgrade 5
tips 6

threshold count for missing statistics 21
trace flags

15307 11
15308 11
477 58
757 16

troubleshooting 10
701 errors 13
contacting Technical Support 13
dbcc traceon 16

Index

64 Adaptive Server Enterprise

information for Technical Support 15
obsolete optimization commands 12
performance problems with limited queries 14
query-processing tips 10
sp_shmdumpconfig stored procedure 13
statement cache usage 12
system-wide performance issues 16
tempdb space 11

tuning
flowchart 25

tuning task
creating 47

tuning task panel of QPTune GUI 47

U
upgrade 43

migrating to Adaptive Server 15.0 43
recommended testing prior to 5
using new features 9
using new features later 9

	Migration Technology Guide
	About This Book
	CHAPTER 1 Migration Strategy
	Preupgrade considerations
	Understanding optimization goals
	Optimization criteria

	Resource recommendations for Adaptive Server 15.0
	Incorporating statistics in Adaptive Server 15.0
	Recommended testing before upgrade

	Migrating to Adaptive Server 15.0 features
	Upgrading, and using new features immediately
	Upgrading, and using new features later
	Upgrading, but not using new features

	Troubleshooting
	Query processing tips
	Information to capture before contacting Technical Support
	701 errors
	Performance problems with a limited number of queries
	System-wide performance issues
	Uploading diagnostics to Technical Support

	CHAPTER 2 QPTune
	Setting up your system
	Using QPTune to fix missing statistics
	Starting QPTune to fix missing statistics
	Collecting statistics
	Fixing statistics
	Using undo_fix_stats

	Using QPTune to tune queries or applications
	Starting QPTune to tune queries or applications
	Simple start
	Custom start

	Collecting metrics
	Comparing metrics
	Applying the best results

	Configuration file
	Examples
	Upgrade issues
	Localization
	QPTune GUI
	Environment and system requirements
	Starting the QPTune GUI
	Fixing missing statistics
	Tuning Task

	QPTune reference information

	CHAPTER 3 Running the Query Processor in Compatibility Mode
	Enabling compatibility mode
	Feature support in compatibility mode
	Additional trace flag for diagnostics
	New stored procedure sp_compatmode
	Changes to @@qpmode global variable
	Diagnostic tool

	Index

