
Performance and Tuning Series:
Locking and Concurrency Control

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC00938-01-1570-01

LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning Series: Locking and Concurrency Control iii

CHAPTER 1 Introduction to Locking .. 1
How locking affects performance ... 1
Locking and data consistency .. 2
Granularity of locks and locking schemes.. 3

Allpages locking .. 4
Datapages locking... 6
Datarows locking ... 7

Types of locks in Adaptive Server .. 7
Page and row locks ... 8
Table locks .. 10
Demand locks.. 13
Row-locked system tables... 16
Range locking for serializable reads 16
Latches.. 17

Lock compatibility and lock sufficiency... 18
How isolation levels affect locking.. 19

Isolation level 0, read uncommitted... 20
Isolation level 1, read committed... 21
Isolation level 2, repeatable read .. 23
Isolation level 3, serializable reads.. 23
Adaptive Server default isolation level 25

Lock types and duration during query processing.......................... 26
Lock types during create index commands 29
Locking for select queries at isolation level 1 29
Table scans and isolation levels 2 and 3................................. 30
When update locks are not required 30
Locking during or processing .. 31
Skipping uncommitted inserts during selects 32
Using alternative predicates to skip nonqualifying rows.......... 33

Pseudocolumn-level locking... 34
Select queries that do not reference the updated column....... 35
Qualifying old and new values for uncommitted updates 36

Reducing contention .. 37

Contents

iv Adaptive Server Enterprise

CHAPTER 2 Locking Configuration and Tuning .. 39
Locking and performance... 39

Using sp_sysmon and sp_object_stats 40
Reducing lock contention .. 40
Additional locking guidelines ... 43

Configuring locks and lock promotion thresholds........................... 44
Configuring the Adaptive Server lock limit............................... 44
Setting lock promotion thresholds ... 46

Choosing the locking scheme for a table 51
Analyzing existing applications.. 52
Choosing a locking scheme based on contention statistics 53
Monitoring and managing tables after conversion................... 54
Applications not likely to benefit from data-only locking 55

Optimistic index locking.. 56
Using optimistic index locking ... 57
Cautions and issues .. 57

CHAPTER 3 Locking Reports .. 59
Locking tools .. 59

Getting information about blocked processes 59
Viewing locks with sp_lock .. 61
Viewing locks with sp_familylock... 64
Intrafamily blocking during network buffer merges.................. 64
Monitoring lock timeouts.. 65

Deadlocks and concurrency... 65
Server-side versus application-side deadlocks 66
Server task deadlocks ... 66
Deadlocks and parallel queries ... 68
Printing deadlock information to the error log.......................... 69
Avoiding deadlocks ... 70

Identifying tables where concurrency is a problem 72
Lock management reporting .. 73

CHAPTER 4 Using Locking Commands ... 75
Specifying the locking scheme for a table...................................... 75

Specifying a server-wide locking scheme 75
Specifying a locking scheme with create table........................ 76
Changing a locking scheme with alter table 76
Before and after changing locking schemes 77
Expense of switching to or from allpages locking.................... 78
Sort performance during alter table... 79
Specifying a locking scheme with select into 79

Controlling isolation levels.. 80

Contents

Performance and Tuning Series: Locking and Concurrency Control v

Setting isolation levels for a session 80
Syntax for query-level and table-level locking options 81
Using holdlock, noholdlock, or shared..................................... 81
Using the at isolation clause.. 82
Making locks more restrictive .. 83
Making locks less restrictive.. 84

Readpast locking.. 84
Cursors and locking ... 85

Using the shared keyword... 86
Additional locking commands... 87

lock table ... 87
Lock timeouts .. 88

CHAPTER 5 Indexes... 89
Types of indexes .. 90

Index pages... 91
Index size .. 92

Indexes and partitions .. 93
Local indexes on partitioned tables ... 93
Global indexes on partitioned tables 93
Local versus global indexes .. 94
Unsupported partition index types... 94

Clustered indexes on allpages-locked tables................................. 94
Clustered indexes and select operations 95
Clustered indexes and insert operations 96
Page splitting on full data pages ... 97
Page splitting on index pages ... 99
Performance impacts of page splitting 99
Overflow pages ... 100
Clustered indexes and delete operations 101

Nonclustered indexes... 103
Leaf pages revisited .. 103
Nonclustered index structure... 104
Nonclustered indexes and select operations......................... 105
Nonclustered index performance .. 106
Nonclustered indexes and insert operations 107
Nonclustered indexes and delete operations 108
Clustered indexes on data-only-locked tables....................... 109

Index covering.. 109
Covering matching index scans .. 110
Covering nonmatching index scans 111

Indexes and caching .. 112
Using separate caches for data and index pages 113
Index trips through the cache .. 113

vi Adaptive Server Enterprise

CHAPTER 6 Indexing for Concurrency Control... 115
How indexes affect performance .. 115
Detecting indexing problems .. 117

Symptoms of poor indexing ... 117
Fixing corrupted indexes .. 120
Index limits and requirements... 123
Choosing indexes ... 123

Index keys and logical keys ... 125
Guidelines for clustered indexes.. 125
Choosing clustered indexes... 126
Candidates for nonclustered indexes 126
Choosing function-based indexes.. 127
Index selection... 127
Other indexing guidelines .. 130
Choosing nonclustered indexes... 131
Choosing composite indexes... 132
Key order and performance in composite indexes 132
Advantages and disadvantages of composite indexes.......... 134
Using online reorg rebuild for data-only-locked indexes........ 135

Techniques for choosing indexes ... 135
Choosing an index for a range query..................................... 135
Adding a point query with different indexing requirements 136

Index and statistics maintenance ... 138
Dropping indexes that hurt performance 138
Choosing space management properties for indexes 138

Additional indexing tips... 139
Creating artificial columns.. 139
Keeping index entries short and avoiding overhead.............. 139
Dropping and rebuilding indexes ... 140
Configuring enough sort buffers .. 140
Creating the clustered index first ... 140
Configure large buffer pools .. 141

Asynchronous log service... 141
Understanding the user log cache (ULC) architecture........... 142
When to use ALS... 143
Using ALS.. 144

Index.. 145

Performance and Tuning Series: Locking and Concurrency Control 1

C H A P T E R 1 Introduction to Locking

This chapter discusses basic locking concepts and the locking schemes
and types of locks used in Adaptive Server®.

How locking affects performance
Adaptive Server protects the tables, data pages, or data rows used by
active transactions by locking them. Locking is a concurrency control
mechanism: it ensures the consistency of data within and across
transactions. Locking is necessary in a multiuser environment, since
several users may be working with the same data at the same time.

Locking affects performance when one process holds locks that prevent
another process from accessing needed data. This is called lock
contention. The process that is blocked by the lock sleeps until the lock is
released.

A more serious impact on performance arises from deadlocks. A
deadlock occurs when two user processes each have a lock on a page, row,
or table and each process wants to acquire a lock on the page, row, or table
held by the other. The transaction with the least accumulated CPU time is
killed and all of its work is rolled back.

Topic Page
How locking affects performance 1

Locking and data consistency 2

Granularity of locks and locking schemes 3

Types of locks in Adaptive Server 7

Lock compatibility and lock sufficiency 18

How isolation levels affect locking 19

Lock types and duration during query processing 26

Pseudocolumn-level locking 34

Reducing contention 37

Locking and data consistency

2 Adaptive Server Enterprise

Understanding the types of locks in Adaptive Server can help to reduce lock
contention and avoid or minimize deadlocks.

Locking and data consistency
Data consistency means that if multiple users repeatedly execute a series of
transactions, the results are correct for each transaction, each time.
Simultaneous retrievals and modifications of data do not interfere with each
other: the results of queries are consistent.

For example, in Table 1-1, transactions T1 and T2 are attempting to access data
at approximately the same time. T1 is updating values in a column, while T2
needs to report the sum of the values.

Table 1-1: Consistency levels in transactions

If T2 runs before T1 starts or after T1 completes, either execution of T2 returns
the correct value. But if T2 runs in the middle of transaction T1 (after the first
update), the result for transaction T2 is different by $100. While such behavior
may be acceptable in some situations, most database transactions must return
correct, consistent results.

T1 Event sequence T2
begin transaction

update account
set balance = balance - 100
where acct_number = 25

update account
set balance = balance + 100
where acct_number = 45

commit transaction

T1 and T2 start.

T1 updates balance
for one account by
subtracting $100.

T2 queries the sum
balance, which is off
by $100 at this point
in time—should it
return results now, or
wait until T1 ends?

T1 updates balance of
the other account by
adding the $100.

T1 ends.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 3

By default, Adaptive Server locks the data used in T1 until the transaction is
finished. Only then does it allow T2 to complete its query. T2 “sleeps,” or
pauses in execution, until the lock it needs it is released when T1 is completed.

The alternative, returning data from uncommitted transactions, is known as a
dirty read. If results do not need to be exact, T2 can read the uncommitted
changes from T1 and return results immediately, without waiting for the lock
to be released.

Locking is handled automatically by Adaptive Server, with options that can be
set at the session and query level by the user. You should know how and when
to use transactions to preserve data consistency while maintaining high
performance and throughput.

Granularity of locks and locking schemes
The granularity of locks in a database refers to how much of the data is locked
at one time. In theory, a database server can lock as much as an entire database
or as little as one column of data. Such extremes affect the concurrency
(number of users that can access the data) and locking overhead (amount of
work to process lock requests) in the server. Adaptive Server supports locking
at the table, page, and row level.

By locking at higher levels of granularity, the amount of work required to
obtain and manage locks is reduced. If a query needs to read or update many
rows in a table it can acquire:

• A table-level lock

• A lock for each page that contains a required row

• A lock on each row

Less overall work is required when a table-level lock is used, but large-scale
locks can degrade performance by making other users wait until locks are
released. Decreasing lock granularity makes more data accessible to other
users. Finer granularity locks can degrade performance, since more work is
necessary to maintain and coordinate the increased number of locks. To
achieve optimum performance, a locking scheme must balance the needs of
concurrency and overhead.

Adaptive Server provides these locking schemes:

• Allpages locking, which locks data pages and index pages

Granularity of locks and locking schemes

4 Adaptive Server Enterprise

• Datapages locking, which locks only data pages

• Datarows locking, which locks only data rows

For each locking scheme, Adaptive Server can lock an entire table, for queries
that acquire many page or row locks, or can lock only the affected pages or
rows.

Note The terms “data-only-locking” and “data-only-locked table” refer to both
the datapages and datarows locking schemes, and are typically refered to as
“DOL” tables. Allpages-locked tables are known as “APL” tables.

Allpages locking
Allpages locking locks data pages and index pages. When a query updates a
value in a row in an allpages-locked table, the data page is locked with an
exclusive lock. Any index pages affected by the update are also locked with
exclusive locks. These locks are transactional, meaning that they are held until
the end of the transaction.

Figure 1-1 shows the locks acquired on data pages and indexes while a new
row is being inserted into an allpages-locked table.

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 5

Figure 1-1: Locks held during allpages locking

In many cases, concurrency problems that result from allpages locking arise
from the index page locks, rather than the locks on the data pages themselves.
Data pages have longer rows than indexes, and often have a small number of
rows per page. If index keys are short, an index page can store between 100 and
200 keys. An exclusive lock on an index page can block other users who need
to access any of the rows referenced by the index page, a far greater number of
rows than on a locked data page.

Index on FirstName Index on LastName

Legend

Locked

Index leaf

Mark 10,1

Index leaf

Twain 10,1

Page 10

Mark Twain

Unlocked

insert authors values ("Mark", "Twain")

Granularity of locks and locking schemes

6 Adaptive Server Enterprise

Datapages locking
In datapages locking, entire data pages are still locked, but index pages are not
locked. When a row needs to be changed on a data page, that page is locked,
and the lock is held until the end of the transaction. The updates to the index
pages are performed using latches, which are nontransactional. Latches are
held only as long as required to perform the physical changes to the page and
are then released immediately. Index page entries are implicitly locked by
locking the data page. No transactional locks are held on index pages. See
“Latches” on page 17 and “Choosing a locking scheme based on contention
statistics” on page 53 for more information.

Figure 1-2 shows an insert into a datapages-locked table. Only the affected data
page is locked.

Figure 1-2: Locks held during datapages locking

Index on FirstName Index on LastName

Index leaf

Mark 10,1

Index leaf

Twain 10,1

Page 10

Mark Twain

Legend

Locked

Unlocked

insert authors values ("Mark", "Twain")

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 7

Datarows locking
In datarows locking, row-level locks are acquired on individual rows on data
pages. Index rows and pages are not locked. When a row is changed on a data
page, a nontransactional latch is acquired on the page. The latch is held while
the physical change is made to the data page, then the latch is released. The
lock on the data row is held until the end of the transaction. The index rows are
updated, using latches on the index page, but are not locked. Index entries are
implicitly locked by acquiring a lock on the data row.

Figure 1-3 shows an insert into a datarows-locked table. Only the affected data
row is locked.

Figure 1-3: Locks held during datarows locking

Types of locks in Adaptive Server
Adaptive Server has two levels of locking:

• Page locks or table locks are used for tables that use allpages locking or
datapages locking.

• Row locks or table locks are used for tables that use datarows locking.

Index on FirstName Index on LastName

Index leaf

Mark 10,1

Index leaf

Twain 10,1

Page 10

Mark Twain

Legend

Locked
Unlocked

insert authors values ("Mark", "Twain")

Types of locks in Adaptive Server

8 Adaptive Server Enterprise

Page or row locks are less restrictive (or smaller) than table locks. A page lock
locks all the rows on a data page or an index page; a table lock locks an entire
table. A row lock locks only a single row on a page. Adaptive Server uses page
or row locks whenever possible to reduce contention and to improve
concurrency.

Adaptive Server uses a table lock to provide more efficient locking when an
entire table or a large number of pages or rows is accessed by a statement.
Locking strategy is directly tied to the query plan, so a query plan can be as
important for its locking strategies as for its I/O implications. For data-only-
locked tables, an update or delete statement without a useful index performs a
table scan and acquires a table lock. For example, the following statement
acquires a table lock if the account table uses the datarows or datapages locking
scheme:

update account set balance = balance * 1.05

An update or delete statement using an index begins by acquiring page or row
locks. It acquires a table lock only when a large number of pages or rows are
affected. To avoid the overhead of managing hundreds of locks on a table,
Adaptive Server uses a lock promotion threshold setting (configured with
sp_setpglockpromote). Once table scan accumulates more page or row locks
than allowed by the lock promotion threshold, Adaptive Server tries to issue a
table lock. If it succeeds, the page or row locks are no longer necessary and are
released. See “Configuring locks and lock promotion thresholds” on page 44.

Adaptive Server chooses which type of lock to use after it determines the query
plan. The way a query or transaction is written can affect the type of lock the
server chooses. You can force the server to make certain locks more or less
restrictive by specifying options for select queries or by changing the
transaction’s isolation level. See “Controlling isolation levels” on page 80.
Applications can use the lock table command to explicitly request a table lock.

Page and row locks
This section describes the types of page and row locks:

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 9

• Shared locks – Adaptive Server applies shared locks for read operations.
If a shared lock has been applied to a data page or data row or to an index
page, other transactions can also acquire a shared lock, even when the first
transaction is active. However, no transaction can acquire an exclusive
lock on the page or row until all shared locks on the page or row are
released. This means that many transactions can simultaneously read a
page or row, but no transaction can change data on the page or row while
a shared lock exists. Transactions that require an exclusive lock wait for,
or “block,” for the release of the shared locks before continuing.

By default, Adaptive Server releases shared locks after it finishes scanning
the page or row. It does not hold shared locks until the statement is
completed or until the end of the transaction unless requested to do so by
the user. For more details on how shared locks are applied, see “Locking
for select queries at isolation level 1” on page 29.

• Exclusive locks – Adaptive Server applies an exclusive lock for a data
modification operation. When a transaction has an exclusive lock, other
transactions cannot acquire a lock of any kind on the page or row until the
exclusive lock is released at the end of its transaction. The other
transactions wait or “block” until the exclusive lock is released.

• Update locks – Adaptive Server applies an update lock during the initial
phase of an update, delete, or fetch (for cursors declared for update)
operation while the page or row is being read. The update lock allows
shared locks on the page or row, but does not allow other update or
exclusive locks. Update locks help avoid deadlocks and lock contention.
If the page or row needs to be changed, the update lock is promoted to an
exclusive lock as soon as no other shared locks exist on the page or row.

In general, read operations acquire shared locks, and write operations acquire
exclusive locks. For operations that delete or update data, Adaptive Server
applies page-level or row-level exclusive and update locks only if the column
used in the search argument is part of an index. If no index exists on any of the
search arguments, Adaptive Server must acquire a table-level lock.

The examples in Table 1-2 show what kind of page or row locks Adaptive
Server uses for basic SQL statements. For these examples, there is an index
acct_number, but no index on balance.

Table 1-2: Page locks and row locks

Statement Allpages-locked table Datarows-locked table
select balance
from account
where acct_number = 25

Shared page lock Shared row lock

Types of locks in Adaptive Server

10 Adaptive Server Enterprise

Table locks
This section describes the types of table locks.

• Intent lock – indicates that page-level or row-level locks are held on a
table. Adaptive Server applies an intent table lock with each shared or
exclusive page or row lock, so an intent lock can be either an exclusive
lock or a shared lock. Setting an intent lock prevents other transactions
from acquiring conflicting table-level locks on the table containing the
locked page. An intent lock is held as long as page or row locks are in
effect for the transaction.

• Shared lock – similar to a shared page or row lock, except that it affects
the entire table. For example, Adaptive Server applies a shared table lock
for a select command with a holdlock clause if the command does not use
an index. A create nonclustered index command also acquires a shared
table lock.

• Exclusive lock – similar to an exclusive page or row lock, except that it
affects the entire table. For example, Adaptive Server applies an exclusive
table lock during a create clustered index command. update and delete
statements on data-only-locked tables require exclusive table locks if their
search arguments do not reference indexed columns of the object.

The examples in Table 1-3 show the respective page, row, and table locks of
page or row locks Adaptive Server uses for basic SQL statements. For these
examples, there is an index on acct_number.

insert account values
(34, 500)

Exclusive page lock on data page
and exclusive page lock on leaf-
level index page

Exclusive row lock

delete account
where acct_number = 25

Update page locks followed by
exclusive page locks on data pages
and exclusive page locks on leaf-
level index pages

Update row locks followed by
exclusive row locks on each
affected row

update account
set balance = 0
where acct_number = 25

Update page lock on data page and
exclusive page lock on data page

Update row locks followed by
exclusive row locks on each
affected row

Statement Allpages-locked table Datarows-locked table

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 11

Table 1-3: Table locks applied during query processing

Exclusive table locks are also applied to tables during select into operations,
including temporary tables created with tempdb..tablename syntax. Tables
created with #tablename are restricted to the sole use of the process that created
them, and are not locked.

Commands that take intent locks

Versions of Adaptive Server earlier than 15.0.2 used table locks to achive
system catalog synchronization. Adaptive Server version 15.0.2 and later uses
intent locks for table-level synchronization and row locks for row-level
synchronization. Earlier releases of Adaptive Server locked the entire system
catalog while performing operations on the object, so a single lock request was
made. However, Adaptive Server version 15.0.2 and later requests locks for all
applicable rows while performing operations on the object if there are multiple
rows corresponding to an object in a system catalog.

This change means that Adaptive Server version 15.0.2 and later requests more
locks to perform the same operation than earlier releases, and increases the
number of lock resources the system needs. Consequently, you may need to
change the number of locks configuration option after you upgrade Adaptive
Server.

These commands take intent locks in Adaptive Server version 15.0.2 later
when they update a system table:

Statement Allpages-locked table Datarows-locked table
select balance from account
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

insert account values
(34, 500)

Intent exclusive table lock
Exclusive page lock on data page
Exclusive page lock on leaf index
pages

Intent exclusive table lock
Exclusive row lock

delete account
where acct_number = 25

Intent exclusive table lock
Update page locks followed by
exclusive page locks on data pages
and leaf-level index pages

Intent exclusive table lock
Update row locks followed by
exclusive row locks on data
rows

update account
set balance = 0
where acct_number = 25

Intent exclusive table lock
Update page locks followed by
exclusive page locks on data pages
and leaf-level index pages

With an index on acct_number,
intent exclusive table lock
Update row locks followed by
exclusive row locks on data
rows. With no index on a data-
only-locked table, exclusive
table lock

Types of locks in Adaptive Server

12 Adaptive Server Enterprise

• create table

• drop table

• create index

• drop index

• create view

• drop view

• create procedure

• drop procedure

• create trigger

• drop trigger

• create default

• drop default

• create rule

• drop rule

• create function

• drop function

• create functional index

• drop functional index

• create computed column

• drop computed column

• select into

• alter table (all versions)

• create schema

• reorg rebuild

If two or more of these commands simultaneously access or update the same
system table, their intent locks do not conflict with each other so they do not
block on the system table.

The sp_fixindex and sp_spaceusage system procedures provide information
about the row-locked catalogs.

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 13

Demand locks
Adaptive Server sets a demand lock to indicate that a transaction is next in the
queue to lock a table, page, or row. Since many readers can hold shared locks
on a given page, row, or table, tasks that require exclusive locks are queued
after a task that already holds a shared lock. Adaptive Server allows up to three
readers’ tasks to skip ahead of a queued update task.

After a write transaction has been skipped by three tasks or families (in the case
of queries running in parallel) that acquire shared locks, Adaptive Server gives
a demand lock to the write transaction. Any subsequent requests for shared
locks are queued behind the demand lock, as shown in Figure 1-4 on page 14.

As soon as the readers queued ahead of the demand lock release their locks, the
write transaction acquires its lock and can proceed. The read transactions
queued behind the demand lock wait for the write transaction to finish and
release its exclusive lock.

Adaptive Server uses demand locks to avoid lock starvation for write
transactions (when the required number of locks are not available).

Demand locking with serial execution

Figure 1-4 illustrates how the demand lock scheme works for serial query
execution. It shows four tasks with shared locks in the active lock position,
meaning that all four tasks are currently reading the page. These tasks can
access the same page simultaneously because they hold compatible locks. Two
other tasks are in the queue waiting for locks on the page. Here is a series of
events that could lead to the situation shown in Figure 1-4 on page 14:

• Originally, task 2 holds a shared lock on the page.

• Task 6 makes an exclusive lock request, but must wait until the shared lock
is released because shared and exclusive locks are not compatible.

• Task 3 makes a shared lock request, which is immediately granted because
all shared locks are compatible.

• Tasks 1 and 4 make shared lock requests, which are also immediately
granted for the same reason.

• Task 6 has now been skipped three times, and is granted a demand lock.

• Task 5 makes a shared lock request. It is queued behind task 6’s exclusive
lock request because task 6 holds a demand lock. Task 5 is the fourth task
to make a shared page request.

Types of locks in Adaptive Server

14 Adaptive Server Enterprise

• After tasks 1, 2, 3, and 4 finish their reads and release their shared locks,
task 6 is granted its exclusive lock.

• After task 6 finishes its write and releases its exclusive page lock, task 5 is
granted its shared page lock.

Figure 1-4: Demand locking with serial query execution

Demand locking with parallel execution

When queries run in parallel, demand locking treats all shared locks from a
family of worker processes as though they were a single task. The demand lock
permits reads from three families (or a total of three serial tasks and families
combined) before granting the exclusive lock.

Figure 1-5 illustrates how the demand lock scheme works when parallel query
execution is enabled. The figure shows six worker processes from three
families with shared locks. A task waits for an exclusive lock, and a worker
process from a fourth family waits behind the task. Here is a series of events
that could lead to the situation shown in Figure 1-5:

• Originally, worker process 1:3 (worker process 3 from a family with
family ID 1) holds a shared lock on the page.

Shared
page

2

3

1

5

Page

Active lock Demand lock Sleep wait

4

Shared
page

6

Exclusive
page

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 15

• Task 9 makes an exclusive lock request, but must wait until the shared lock
is released.

• Worker process 2:3 requests a shared lock, which is immediately granted
because shared locks are compatible. The skip count for task 9 is now 1.

• Worker processes 1:1, 2:1, 3:1, task 10, and worker processes 3:2 and 1:2
are consecutively granted shared lock requests. Since family ID 3 and task
10 have no prior locks queued, the skip count for task 9 is now 3, and task
9 is granted a demand lock.

• Finally, worker process 4:1 makes a shared lock request, but it is queued
behind task 9’s exclusive lock request.

• Any additional shared lock requests from family IDs 1, 2, and 3 and from
task 10 are queued ahead of task 9, but all requests from other tasks are
queued after it.

• After all the tasks in the active lock position release their shared locks, task
9 is granted its exclusive lock.

• After task 9 releases its exclusive page lock, task 4:1 is granted its shared
page lock.

Types of locks in Adaptive Server

16 Adaptive Server Enterprise

Figure 1-5: Demand locking with parallel query execution

Row-locked system tables
System tables—except message tables, fake tables (nonrow-oriented tables),
and logs—in Adaptive Server version 15.0 and later are row-locked. These
tables no longer have a clustered index, but instead have a “placement” index,
with a new index ID. Pages at the data level for Adaptive Server are not chained
together, and table starting locations are no longer set, but are randomly
generated.

Range locking for serializable reads
Rows that can appear or disappear from a results set are called phantoms. Some
queries that require phantom protection (queries at isolation level 3) use range
locks. See “How isolation levels affect locking” on page 19.

1:3

2:3

9 4:1

Page

Active lock Demand lock Sleep wait

1:1

3:2

2:1

10
3:1

1:2

Shared
page

Exclusive
Page

Shared
page

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 17

Isolation level 3 requires serializable reads within the transaction. A query at
isolation level 3 that performs two read operations with the same query clauses
should return the same set of results each time. No other task be modify:

• One of the result rows so that it no longer qualifies for the serializable read
transaction, by updating or deleting the row

• A row that is not included in the serializable read result set so that the row
now qualifies, or insert a row that would qualify for the result set

Adaptive Server uses range locks, infinity key locks, and next-key locks to
protect against phantoms on data-only-locked tables. Allpages-locked tables
protect against phantoms by holding locks on the index pages for the
serializable read transaction.

When a query at isolation level 3 (serializable read) performs a range scan
using an index, all the keys that satisfy the query clause are locked for the
duration of the transaction. Also, the key that immediately follows the range is
locked, to prevent new values from being added at the end of the range. If there
is no next value in the table, an infinity key lock is used as the next key, to
ensure that no rows are added after the last key in the table.

Range locks can be shared, update, or exclusive locks; depending on the
locking scheme, they are either row locks or page locks. sp_lock output shows
“Fam dur, Range” in the context column for range locks. For infinity key locks,
sp_lock shows a lock on a nonexistent row, row 0 of the root index page and
“Fam dur, Inf key” in the context column.

Every transaction that performs an insert or update to a data-only-locked table
checks for range locks.

Latches
Latches are nontransactional synchronization mechanisms used to guarantee
the physical consistency of a page. While rows are being inserted, updated, or
deleted, only one Adaptive Server process can access the page. Latches are
used for datapages and datarows locking, but not for allpages locking.

The most important distinction between a lock and a latch is duration:

• A lock can persist for a long period of time: while a page is being scanned,
while a disk read or network write takes place, for the duration of a
statement, or for the duration of a transaction.

Lock compatibility and lock sufficiency

18 Adaptive Server Enterprise

• A latch is held only for the length of time required to insert or move a few
bytes on a data page, to copy pointers, columns, or rows, or to acquire a
latch on another index page.

Lock compatibility and lock sufficiency
Two basic concepts support issues of locking and concurrency:

• Lock compatibility – if a task holds a lock on a page or row, can another
task also hold a lock on the page or row?

• Lock sufficiency, for the current task–is the current lock held on a page or
row sufficient if the task needs to access the page again?

Lock compatibility affects performance when users must acquire a lock on a
row or page, and that row or page is already locked by another user with an
incompatible lock. The task that needs the lock waits, or blocks, until the
incompatible locks are released.

Lock sufficiency works with lock compatibility. If a lock is sufficient, the task
does not need to acquire a different type of lock. For example, if a task updates
a row in a transaction, it holds an exclusive lock. If the task then selects from
the row before committing the transaction, the exclusive lock on the row is
sufficient; the task does not need to make an additional lock request. The
opposite case is not true: if a task holds a shared lock on a page or row, and
wants to update the row, the task may need to wait to acquire its exclusive lock
if other tasks also hold shared locks on the page.

Table 1-4 summarizes the information about lock compatibility, showing when
locks can be acquired immediately.

Table 1-4: Lock compatibility

Table 1-5 shows the lock sufficiency matrix.

Can another process immediately acquire:

If one process has:
A shared
lock?

An update
lock?

An exclusive
lock?

A shared
intent lock?

An exclusive
intent lock?

A shared lock Yes Yes No Yes No

An update lock Yes No No N/A N/A

An exclusive lock No No No No No

A shared intent lock Yes N/A No Yes Yes

An exclusive intent lock No N/A No Yes Yes

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 19

Table 1-5: Lock sufficiency

How isolation levels affect locking
The SQL standard defines four levels of isolation for SQL transactions. Each
isolation level specifies the kinds of interactions that are not permitted while
concurrent transactions are executing—that is, whether transactions are
isolated from each other, or if they can read or update information in use by
another transaction. Higher isolation levels include the restrictions imposed by
the lower levels.

The isolation levels are summarized in Table 1-6, and are described in more
detail on the following pages.

Table 1-6: Transaction isolation levels

You can choose the isolation level for all select queries during a session, or you
can choose the isolation level for a specific query or table in a transaction.

At all isolation levels, all updates acquire exclusive locks and hold them for the
duration of the transaction.

Note For tables that use allpages locking, requesting isolation level 2 also
enforces isolation level 3. The Adaptive Server default isolation level is level 1.

Is that lock sufficient if the task needs:

If a task has: A shared lock An update lock An exclusive lock

A shared lock Yes No No

An update lock Yes Yes No

An exclusive lock Yes Yes Yes

Number Name Description

0 read uncommitted The transaction is allowed to read uncommitted changes to data.

1 read committed The transaction is allowed to read only committed changes to data.

2 repeatable read The transaction can repeat the same query, and no rows that have
been read by the transaction are updated or deleted.

3 serializable read The transaction can repeat the same query, and receive exactly the
same results. No rows can be inserted that appear in the result set.

How isolation levels affect locking

20 Adaptive Server Enterprise

Isolation level 0, read uncommitted
Level 0, also known as read uncommitted, allows a task to read uncommitted
changes to data in the database. This is also known as a dirty read, since the
task can display results that are later rolled back. Table 1-7 shows a select query
performing a dirty read.

Table 1-7: Dirty reads in transactions

If transaction T4 queries the table after T3 updates it, but before it rolls back
the change, the amount calculated by T4 is off by $100.The update statement
in T3 acquires an exclusive lock on account. However, T4 does not try to
acquire a shared lock before querying account, so it is not blocked by T3. The
opposite is also true. If T4 begins to query account at isolation level 0 before
T3 starts, T3 can still acquire its exclusive lock on account while T4’s query
executes, because T4 does not hold any locks on the pages it reads.

At isolation level 0, Adaptive Server performs dirty reads by:

• Allowing another task to read rows, pages, or tables that have exclusive
locks; that is, to read uncommitted changes to data.

• Not applying shared locks on rows, pages, or tables being searched.

Any data modifications that are performed by T4 while the isolation level is set
to 0 acquire exclusive locks at the row, page, or table level, and block if the data
they need to change is locked.

T3 Event sequence T4
begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T3 and T4 start.

T3 updates balance
for one account by
subtracting $100.

T4 queries current
sum of balance for
accounts.

T4 ends.

T3 rolls back,
invalidating the
results from T4.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 21

If the table uses allpages locking, a unique index is required to perform an
isolation level 0 read, unless the database is read-only. The index is required to
restart the scan if an update by another process changes the query’s result set
by modifying the current row or page. Forcing the query to use a table scan or
a nonunique index can lead to problems if there is significant update activity
on the underlying table, and is not recommended.

Applications that can use dirty reads may see better concurrency and fewer
deadlocks than when the same data is accessed at a higher isolation level. If
transaction T4 requires only an estimate of the current sum of account
balances, which probably changes frequently in a very active table, T4 should
query the table using isolation level 0. Other applications that require data
consistency, such as queries of deposits and withdrawals to specific accounts
in the table, should avoid using isolation level 0.

Isolation level 0 can improve performance for applications by reducing lock
contention, but can impose performance costs in two ways:

• Dirty reads make in-cache copies of dirty data that the isolation level 0
application needs to read.

• If a dirty read is active on a row, and the data changes so that the row is
moved or deleted, the scan must be restarted, which may incur additional
logical and physical I/O.

During deferred update of a data row, there can be a significant time interval
between the delete of the index row and the insert of the new index row. During
this interval, there is no index row corresponding to the data row. If a process
scans the index during this interval at isolation level 0, it does not return the old
or new value of the data row. See “Deferred updates” in Chapter 1,
“Understanding Query Processing” in Performance and Tuning Series: Query
Processing and Abstract Plans.

sp_sysmon reports on these factors. See “Data Cache Management” in
Performance and Tuning Series: Monitoring Adaptive Server with sp_sysmon.

Isolation level 1, read committed
Level 1, also known as read committed, prevents dirty reads. Queries at level
1 can read only committed changes to data. At isolation level 1, if a transaction
needs to read a row that has been modified by an incomplete transaction in
another session, the transaction waits until the first transaction completes
(either commits or rolls back.)

How isolation levels affect locking

22 Adaptive Server Enterprise

For example, compare Table 1-8, showing a transaction executed at isolation
level 1, to Table 1-7, showing a dirty read transaction.

Table 1-8: Transaction isolation level 1 prevents dirty reads

When the update statement in transaction T5 executes, Adaptive Server applies
an exclusive lock (a row-level or page-level lock if acct_number is indexed;
otherwise, a table-level lock) on account.

If T5 holds an exclusive table lock, T6 blocks trying to acquire its shared intent
table lock. If T5 holds exclusive page or exclusive row locks, T6 can begin
executing, but is blocked when it tries to acquire a shared lock on a page or row
locked by T5. The query in T6 cannot execute (preventing the dirty read) until
the exclusive lock is released, when T5 ends with the rollback.

While the query in T6 holds its shared lock, other processes that need shared
locks can access the same data, and an update lock can also be granted (an
update lock indicates the read operation that precedes the exclusive-lock write
operation), but no exclusive locks are allowed until all shared locks have been
released.

T5 Event sequence T6
begin transaction

update account
set balance = balance - 100
where acct_number = 25

rollback transaction

T5 and T6 start.

T5 updates account
after getting
exclusive lock.

T6 tries to get shared
lock to query account
but must wait until
T5 releases its lock.

T5 ends and releases
its exclusive lock.

T6 gets shared lock,
queries account, and
ends.

begin transaction

select sum(balance)
from account
where acct_number < 50

commit transaction

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 23

Isolation level 2, repeatable read
Level 2 prevents nonrepeatable reads. These occur when one transaction
reads a row and a second transaction modifies that row. If the second
transaction commits its change, subsequent reads by the first transaction yield
results that are different from the original read. Isolation level 2 is supported
only on data-only-locked tables. In a session at isolation level 2, isolation level
3 is also enforced on any tables that use the allpages locking scheme. Table 1-
9 shows a nonrepeatable read in a transaction at isolation level 1.

Table 1-9: Nonrepeatable reads in transactions

If transaction T8 modifies and commits the changes to the account table after
the first query in T7, but before the second one, the same two queries in T7
produce different results. Isolation level 2 blocks T8 from executing. It would
also block a transaction that attempted to delete the selected row.

Isolation level 3, serializable reads
Level 3 prevents phantoms. Phantoms occur when one transaction reads a set
of rows that satisfy a search condition, and then a second transaction modifies
the data (through an insert, delete, or update statement). If the first transaction
repeats the read with the same search conditions, it obtains a different set of
rows. In Table 1-10, transaction T9, operating at isolation level 1, sees a
phantom row in the second query.

T7 Event sequence T8
begin transaction

select balance
from account
where acct_number = 25

select balance
from account
where acct_number = 25

commit transaction

T7 and T8 start.

T7 queries the balance
for one account.

T8 updates the balance
for that same account.

T8 ends.

T7 makes same query
as before and gets
different results.

T7 ends.

begin transaction

update account
set balance = balance - 100
where acct_number = 25

commit transaction

How isolation levels affect locking

24 Adaptive Server Enterprise

Table 1-10: Phantoms in transactions

If transaction T10 inserts rows into the table that satisfy T9’s search condition
after T9 executes the first select, subsequent reads by T9 using the same query
result in a different set of rows.

Adaptive Server prevents phantoms by:

• Applying exclusive locks on rows, pages, or tables being changed. It holds
those locks until the end of the transaction.

• Applying shared locks on rows, pages, or tables being searched. It holds
those locks until the end of the transaction.

• Using range locks or infinity key locks for certain queries on data-only-
locked tables.

Holding the shared locks allows Adaptive Server to maintain the consistency
of the results at isolation level 3. However, holding the shared lock until the
transaction ends decreases Adaptive Server concurrency by preventing other
transactions from getting their exclusive locks on the data.

Compare the phantom, shown in Table 1-10, with the same transaction
executed at isolation level 3, as shown in Table 1-11.

T9 Event sequence T10
begin transaction

select * from account
where acct_number < 25

select * from account
where acct_number < 25

commit transaction

T9 and T10 start.

T9 queries a certain set
of rows.

T10 inserts a row that
meets the criteria for
the query in T9.

T10 ends.

T9 makes the same
query and gets a
new row.

T9 ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 25

Table 1-11: Avoiding phantoms in transactions

In transaction T11, Adaptive Server applies shared page locks and holds the
locks until the end of T11. (If account is a data-only-locked table, and no index
exists on the acct_number argument, a shared table lock is acquired.) The insert
in T12 cannot get its exclusive lock until T11 releases its shared locks. If T11
is a long transaction, T12 (and other transactions), may wait for longer periods
of time. Use level 3 only when required.

Adaptive Server default isolation level
Adaptive Server’s default isolation level is 1, which prevents dirty reads.
Adaptive Server enforces isolation level 1 by:

• Applying exclusive locks on pages or tables being changed. It holds those
locks until the end of the transaction. Only a process at isolation level 0
can read a page locked by an exclusive lock.

• Applying shared locks on pages being searched. It releases those locks
after processing the row, page, or table.

T11 Event sequence T12
begin transaction

select * from
account holdlock
where acct_number < 25

select * from
account holdlock
where acct_number < 25

commit transaction

T11 and T12 start.

T11 queries account
and holds acquired
shared locks.

T12 tries to insert row
but must wait until T11
releases its locks.

T11 makes same query
and gets same results.

T11 ends and releases
its shared locks.

T12 gets its exclusive
lock, inserts new row,
and ends.

begin transaction

insert into account
(acct_number, balance)
values (19, 500)

commit transaction

Lock types and duration during query processing

26 Adaptive Server Enterprise

Using exclusive and shared locks allows Adaptive Server to maintain the
consistency of the results at isolation level 1. Releasing the shared lock after
the scan moves off a page improves Adaptive Server concurrency by allowing
other transactions to obtain their exclusive locks on the data.

Lock types and duration during query processing
The types and the duration of locks acquired during query processing depend
on the type of command, the locking scheme of the table, and the isolation level
at which the command is run.

The lock duration depends on the isolation level and the type of query. Lock
duration can be:

• Scan duration – locks are released when the scan moves off the row or
page, for row or page locks, or when the scan of the table completes, for
table locks.

• Statement duration – locks are released when the statement execution
completes.

• Transaction duration – locks are released when the transaction completes.

Table 1-12 shows the types of locks acquired by queries at different isolation
levels, for each locking scheme for queries that do not use cursors. Table 1-13
shows information for cursor-based queries.

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 27

Table 1-12: Lock type and duration without cursors

Statement
Isolation
level

Locking
scheme

Table
lock

Data
page
lock

Index
page
lock

Data
row
lock Duration

select
readtext
any type of
scan

0 Allpages
Datapages
Datarows

-
-
-

-
-
-

-
-
-

-
-
-

No locks are acquired.

1
2 with
noholdlock
3 with
noholdlock

Allpages
Datapages
Datarows

IS
IS
IS

S
*
-

S
-
-

-
-
*

* Depends on setting of read
committed with lock. See
“Locking for select queries at
isolation level 1” on page 29.

2 Allpages
Datapages
Datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks are released at the end
of the transaction. See
“Isolation level 2 and
allpages-locked tables” on
page 30.

select via
index scan

3
1 with holdlock
2 with holdlock

Allpages
Datapages
Datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks are released at the end
of the transaction.

select
via
table scan

3
1 with holdlock
2 with holdlock

Allpages
Datapages
Datarows

IS
S
S

S
-
-

-
-
-

-
-
-

Locks are released at the end
of the transaction.

insert 0, 1, 2, 3 Allpages
Datapages
Datarows

IX
IX
IX

X
X
-

X
-
-

-
-
X

Locks are released at the end
of the transaction.

writetext 0, 1, 2, 3 Allpages
Datapages
Datarows

IX
IX
IX

X
X
-

-
-
-

-
-
X

Locks are held on first text
page or row; locks released at
the end of the transaction.

delete
update
any type of
scan

0, 1, 2 Allpages
Datapages
Datarows

IX
IX
IX

U, X
U, X
-

U, X
-
-

-
-
U, X

“U” locks are released after
the statement completes.
“IX” and “X” locks are
released at the end of the
transaction.

delete
update
via index
scan

3 Allpages
Datapages
Datarows

IX
IX
IX

U, X
U, X
-

U, X
-
-

-
-
U, X

“U” locks are released after
the statement completes. “IX”
and “X” locks are released at
the end of the transaction.

delete
update
via table
scan

3 Allpages
Datapages
Datarows

IX
X
X

U, X
-
-

-
-
-

-
-
-

Locks are released at the end
of the transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive

Lock types and duration during query processing

28 Adaptive Server Enterprise

Table 1-13: Lock type and duration with cursors

Statement
Isolation
level

Locking
scheme

Table
lock

Data
page
lock

Index
page
lock

Data
row
lock Duration

select
(without for
clause)
select... for
read only

0 Allpages
Datapages
Datarows

-
-
-

-
-
-

-
-
-

-
-
-

No locks are acquired.

1
2 with
noholdlock
3 with
noholdlock

Allpages
Datapages
Datarows

IS
IS
IS

S
*
-

S
-
-

-
-
*

* Depends on setting of read
committed with lock. See
“Locking for select queries
at isolation level 1” on page
29.

2, 3

1 with holdlock

2 with holdlock

Allpages
Datapages
Datarows

IS
IS
IS

S
S
-

S
-
-

-
-
S

Locks become transactional
after the cursor moves out of
the page/row. Locks are
released at the end of the
transaction.

select...for
update

1 Allpages
Datapages
Datarows

IX
IX
IX

U, X
U, X
-

X
-
-

-
-
U, X

“U” locks are released after
the cursor moves out of the
page/row. “IX” and “X”
locks are released at the end
of the transaction.

select...for
update with
shared

1 Allpages
Datapages
Datarows

IX
IX
IX

S, X
S, X
-

X
-
-

-
-
S, X

“S” locks are released after
the cursor moves out of
page/row. “IX” and “X”
locks are released at the end
of the transaction.

select...for
update

2, 3, 1 holdlock

2, holdlock

Allpages
Datapages
Datarows

IX
IX
IX

U, X
U, X
-

X
-
-

-
-
U, X

Locks become transactional
after the cursor moves out of
the page/row. Locks are
released at the end of the
transaction.

select...for
update with
shared

2, 3

1 with holdlock

2 with holdlock

Allpages
Datapages
Datarows

IX
IX
IX

S, X
S, X
-

X
-
-

-
-
S, X

Locks become transactional
after the cursor moves out of
the page/row. Locks are
released at the end of the
transaction.

Key: IS intent shared, IX intent exclusive, S shared, U update, X exclusive

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 29

Lock types during create index commands
Table 1-14 describes the types of locks applied by Adaptive Server for create
index statements:

Table 1-14: Summary of locks during create index statements

Locking for select queries at isolation level 1
When a select query on an allpages-locked table performs a table scan at
isolation level 1, it first acquires a shared intent lock on the table and then
acquires a shared lock on the first data page. It locks the next data page, and
drops the lock on the first page, so that the locks “walk through” the result set.
As soon as the query completes, the lock on the last data page is released, and
then the table-level lock is released. Similarly, during index scans on an
allpages-locked table, overlapping locks are held as the scan descends from the
index root page to the data page. Locks are also held on the outer table of a join
while matching rows from the inner table are scanned.

select queries on data-only-locked tables first acquire a shared intent table lock.
You can configure locking behavior on data pages and data rows issuing the
parameter read committed with lock, as follows:

• If read committed with lock is set to 0 (the default), then select queries read
the column values with instant-duration page or row locks. The required
column values or pointers for the row are read into memory, and the lock
is released. Locks are not held on the outer tables of joins while rows from
the inner tables are accessed. This reduces deadlocking and improves
concurrency.

If a select query needs to read a row that is locked with an incompatible
lock, the query still blocks on that row until the incompatible lock is
released. Setting read committed with lock to 0 does not affect the isolation
level; only committed rows are returned to the user.

• If read committed with lock is set to 1, select queries acquire shared page
locks on datapages-locked tables and shared row locks on datarows-
locked tables. The lock on the first page or row is held, then the lock is
acquired on the second page or row and the lock on the first page or row
is dropped.

Statement Table lock Data page lock

create clustered index X -

create nonclustered index S -

Key: S = shared, X = exclusive

Lock types and duration during query processing

30 Adaptive Server Enterprise

You must declare cursors as read-only to avoid holding locks during scans
when read committed with lock is set to 0. Any implicitly or explicitly updatable
cursor on a data-only-locked table holds locks on the current page or row until
the cursor moves off the row or page. When read committed with lock is set to
1, read-only cursors hold a shared page or row lock on the row at the cursor
position.

read committed with lock does not affect locking behavior on allpages-locked
tables. For information on setting the configuration parameter, see Chapter 5,
“Setting Configuration Parameters” in System Administration Guide: Volume
1.

Table scans and isolation levels 2 and 3
This section describes special considerations for locking during table scans at
isolation levels 2 and 3.

Table scans and table locks at isolation level 3

When a query performs a table scan at isolation level 3 on a data-only-locked
table, a shared or exclusive table lock provides phantom protection and reduces
the locking overhead of maintaining a large number of row or page locks. On
an allpages-locked table, an isolation level 3 scan first acquires a shared or
exclusive intent table lock and then acquires and holds page-level locks until
the transaction completes or until the lock promotion threshold is reached and
a table lock can be granted.

Isolation level 2 and allpages-locked tables

On allpages-locked tables, Adaptive Server supports isolation level 2
(repeatable reads) by also enforcing isolation level 3 (serializable reads). If
transaction level 2 is set in a session, and an allpages-locked table is included
in a query, isolation level 3 is also applied on the allpages-locked tables.
Transaction level 2 is used on all data-only-locked tables in the session.

When update locks are not required
All update and delete commands on an allpages-locked table first acquire an
update lock on the data page and then change to an exclusive lock if the row
meets the qualifications in the query.

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 31

update and delete commands on data-only-locked tables do not first acquire
update locks when the query:

• Includes search arguments for every key in the index chosen by the query,
so that the index unambiguously qualifies the row, and

• Does not contain an or clause.

Updates and deletions that meet these requirements immediately acquire an
exclusive lock on the data page or data row. This reduces lock overhead.

Locking during or processing
In some cases, queries using or clauses are processed as a union of more than
one query. Although some rows may match more than one of the or conditions,
each row must be returned only once. Different indexes can be used for each or
clause. If any of the clauses do not have a useful index, the query is performed
using a table scan.

The table’s locking scheme and the isolation level affect how or processing is
performed and the types and duration of locks that are held during the query.

Processing or queries for allpages-locked tables

If the or query uses the “or” strategy (different or clauses might match the same
rows), query processing retrieves the row IDs and matching key values from
the index and stores them in a worktable, holding shared locks on the index
pages containing the rows. When all row IDs have been retrieved, the
worktable is sorted to remove duplicate values. Then, the worktable is scanned,
and the row IDs are used to retrieve the data rows, acquiring shared locks on
the data pages. The index and data page locks are released at the end of the
statement (for isolation level 1) or at the end of the transaction (for isolation
levels 2 and 3).

If the or query has no possibility of returning duplicate rows, no worktable sort
is needed. At isolation level 1, locks on the data pages are released as soon as
the scan moves off the page.

Processing or queries for data-only-locked tables

On data-only-locked tables, the type and duration of locks acquired for or
queries using the “or” strategy (when multiple clauses might match the same
rows) depend on the isolation level.

Lock types and duration during query processing

32 Adaptive Server Enterprise

Processing or queries at isolation levels 1 and 2

No locks are acquired on the index pages or rows of data-only-locked tables
while row IDs are being retrieved from indexes and copied to a worktable.
After the worktable is sorted to remove duplicate values, the data rows are re-
qualified when the row IDs are used to read data from the table. If any rows
were deleted, they are not returned. If any rows were updated, they are re-
qualified by applying the full set of query clauses to them. The locks are
released when the row qualification completes, for isolation level 1, or at the
end of the transaction, for isolation level 2.

Processing or queries at isolation level 3

Isolation level 3 requires serializable reads. At this isolation level, or queries
obtain locks on the data pages or data rows during the first phase of or
processing, as the worktable is being populated. These locks are held until the
transaction completes. Requalification of rows is not required.

Skipping uncommitted inserts during selects
select queries on data-only-locked tables do not block on uncommitted
insertions when the following conditions are true:

• The table uses datarow locking, and

• The isolation level is 1 or 2.

Under these conditions, scans skip such a row.

The only exception to this rule is if the transaction performing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, scans block on the uncommitted inserted
row.

Skipping uncommitted inserts during deletes, updates, and inserts

delete and update queries behave the same way as scans do, with regard to
uncommitted inserts. When the delete or update command encounters an
uncommitted inserted row with the key value of interest, it skips it without
blocking.

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 33

The only exception to this rule is if the transaction doing the uncommitted
insert was overwriting an uncommitted delete of the same row done earlier by
the same transaction. In this case, updates and deletes block on the
uncommitted inserted row.

Insert queries, upon encountering an uncommitted inserted row with the same
key value, raise a duplicate key error if the index is unique.

Locking during DMLs on tables with referential integrity constraints

When a transaction inserts a row in a table with a foreign key constraint, it
performs a scan at isolation level 2 on the table with the primary key constraint
(which is referenced by the table with the foriegn key constraint). Adaptive
Server performs this scan so the row is not updated or deleted until the
transaction commits. Any updates and deletes on the table being scaned block
on the referenced key of the row being inserted but is not yet committed.

Similarly, when a transaction attempts to delete a row from a table with a
primary key constraint, it performs a scan at isolation level 3 on tables with
foreign key constraints that reference this table. Adaptive Server does not
allow a row insert into these tables until the transaction deleting the row
commits.

Using alternative predicates to skip nonqualifying rows
When a select query includes multiple where clauses linked with and, Adaptive
Server can apply the qualification for any columns that have not been affected
by an uncommitted update of a row. If the row does not qualify because of one
of the clauses on an unmodified column, the row does not need to be returned,
so the query does not block.

If the row qualifies when the conditions on the unmodified columns have been
checked, and the conditions described in“Qualifying old and new values for
uncommitted updates” on page 36 do not allow the query to proceed, then the
query blocks until the lock is released.

For example, transaction T15 in Table 1-15 updates balance, while transaction
T16 includes balance in the result set and in a search clause. However, T15
does not update the branch column, so T16 can apply that search argument.
Table 1-15 describes a transaction using pseudo columns, which are columns
in the index table that define the parameters of the search and provide access
to the results data.

Pseudocolumn-level locking

34 Adaptive Server Enterprise

Since the branch value in the row affected by T15 is not 77, the row does not
qualify, and the row is skipped, as shown. If T15 updated a row where branch
equals 77, a select query would block until T15 either commits or rolls back.

Table 1-15: Pseudo-column-level locking with multiple predicates

For select queries to avoid blocking when they reference columns in addition
to columns that are being updated, all of the following conditions must be met:

• The table must use datarows or datapages locking.

• At least one of the search clauses of the select query must be on a column
that is among the first 32 columns of the table.

• The select query must run at isolation level 1 or 2.

• The configuration parameter read committed with lock must be set to 0, the
default value.

Pseudocolumn-level locking
During concurrent transactions that involve select and update commands,
pseudo-column-level locking can allow some queries to return values from
locked rows, and can allow other queries to avoid blocking on locked rows that
do not qualify. Pseudo-column-level locking can reduce blocking when:

• The select query does not reference columns on which there is an
uncommitted update.

T15 Event sequence T16
begin transaction

update accounts
set balance = 80
where acct_number = 20
and branch = 23

commit transaction

T15 and T16 start.

T15 updates accounts
and holds an exclusive
row lock.

T16 queries accounts,
but does not block
because the branch
qualification can be
applied.

begin transaction

select acct_number, balance
from accounts
where balance < 50
and branch = 77
commit tran

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 35

• The where clause of a select query references one or more columns
affected by an uncommitted update, but the row does not qualify due to
conditions in other clauses.

• Neither the old nor the new value of the updated column qualifies, and an
index containing the updated column is being used.

Select queries that do not reference the updated column
A select query on a datarows-locked table can return values without blocking,
even though a row is exclusively locked, when:

• The query does not reference an updated column in the select list or any
clauses (where, having, group by, order by or compute), and

• The query does not use an index that includes the updated column.

Transaction T14 in Table 1-16 requests information about a row that is locked
by T13. However, since T14 does not include the updated column in the result
set or as a search argument, T14 does not block on T13’s exclusive row lock.

Table 1-16: Pseudo-column-level locking with mutually exclusive
columns

If T14 uses an index that includes the updated column (for example,
acct_number, balance), the query blocks trying to read the index row.

For select queries to avoid blocking when they do not reference updated
columns, all of the following conditions must be met:

• The table must use datarows locking.

• The columns referenced in the select query must be among the first 32
columns of the table.

T13 Event sequence T14
begin transaction

update accounts
set balance = 50
where acct_number = 35

commit transaction

T13 and T14 start.

T13 updates accounts
and holds an exclusive
row lock.

T14 queries the same
row in accounts, but
does not access the
updated column. T14
does not block.

begin transaction

select lname, fname, phone
from accounts
where acct_number = 35
commit transaction

Pseudocolumn-level locking

36 Adaptive Server Enterprise

• The select query must run at isolation level 1.

• The select query must not use an index that contains the updated column.

• The configuration parameter read committed with lock must be set to 0, the
default value.

Qualifying old and new values for uncommitted updates
If a select query includes conditions on a column affected by an uncommitted
update, and the query uses an index on the updated column, the query can
examine both the old and new values for the column:

• If neither the old or new value meets the search criteria, the row can be
skipped, and the query does not block.

• If the old value, the new value, or both values qualify, the query blocks. In
Table 1-17, if the original balance is $80, and the new balance is $90, the
row can be skipped, as shown. If either of the values is less than $50, T18
must wait until T17 completes.

Table 1-17: Checking old and new values for an uncommitted update

For select queries to avoid blocking when old and new values of uncommitted
updates do not qualify, all of the following conditions must be met:

• The table must use datarows or datapages locking.

• At least one of the search clauses of the select query must be on a column
that is among the first 32 columns of the table.

T17 Event sequence T18
begin transaction

update accounts
set balance = balance + 10
where acct_number = 20

commit transaction

T17 and T18 start.

T17 updates accounts
and holds an exclusive
row lock; the original
balance was 80, so the
new balance is 90.

T18 queries accounts
using an index that
includes balance. It
does not block since
balance does not
qualify

begin transaction

select acct_number, balance
from accounts
where balance < 50
commit tran

CHAPTER 1 Introduction to Locking

Performance and Tuning Series: Locking and Concurrency Control 37

• The select query must run at isolation level 1 or 2.

• The index used for the select query must include the updated column.

• The configuration parameter read committed with lock must be set to 0, the
default value.

Reducing contention
To help reduce lock contention between update and select queries:

• Use datarows or datapages locking for tables with lock contention caused
by update and select commands.

• If tables have more than 32 columns, make the first 32 columns the
columns most frequently used as search arguments and in other query
clauses.

• Select only needed columns. Avoid using select * when all columns are not
needed by the application.

• Use any available predicates for select queries. When a table uses
datapages locking, the information about updated columns is kept for the
entire page, so that if a transaction updates some columns in one row, and
other columns in another row on the same page, any select query that
needs to access that page must avoid using any of the updated columns.

Reducing contention

38 Adaptive Server Enterprise

Performance and Tuning Series: Locking and Concurrency Control 39

C H A P T E R 2 Locking Configuration and
Tuning

This chapter discusses the types of locks used in Adaptive Server and the
commands that can affect locking.

Locking and performance
Locking affects the Adaptive Server performance by limiting
concurrency. An increase in the number of simultaneous users may
increase lock contention, which decreases performance. Locks affect
performance when:

• Processes wait for locks to be released. Any time a process waits for
another process to complete its transaction and release its locks,
overall response time and throughput are affected.

• Transactions result in frequent deadlocks. A deadlock causes one
transaction to be aborted, and the transaction must be restarted by the
application. If deadlocks occur often, the throughput of applications
is severely affected.

To help reduce deadlock frequency, change the locking scheme to
datapages or datarows locking, or redesign the way transactions
access data.

• Creating indexes locks tables. Creating a clustered index locks all
users out of the table until the index is created; creating a
nonclustered index locks out all updates until it is created.

Either way, create indexes when there is little activity on your server.

Topic Page
Locking and performance 39

Configuring locks and lock promotion thresholds 44

Choosing the locking scheme for a table 51

Optimistic index locking 56

Locking and performance

40 Adaptive Server Enterprise

• Turning off delayed deadlock detection causes spinlock contention.

Setting deadlock checking period to 0 causes more frequent deadlock
checking. The deadlock detection process holds spinlocks on the lock
structures in memory while it looks for deadlocks.

In a high transaction production environment, do not use the deadlock
checking period parameter.

Using sp_sysmon and sp_object_stats
Many of the following sections suggest that you change configuration
parameters to reduce lock contention.

Use sp_object_stats or sp_sysmon to determine whether lock contention is a
problem. Then use the stored procedures to determine how tuning to reduce
lock contention affects the system.

See “Identifying tables where concurrency is a problem” on page 72 for
information on using sp_object_stats.

See “Lock management” in Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon for more information about using sp_sysmon
to view lock contention.

If lock contention is a problem, you can use Adaptive Server Monitor or the
monitoring tables to pinpoint locking problems by checking locks per object.

Reducing lock contention
Lock contention can impact Adaptive Server throughput and response time.
Consider using locking during database design (for example, to avoid joining
a high number of tables during queries), and monitor locking during
application design.

Address locking contention by changing the locking scheme for tables with
high contention, or redesigning the application or tables that have the highest
lock contention. For example:

• Add indexes to reduce contention, especially for deletions and updates.

• Keep transactions short to reduce the time that locks are held.

• Check for contention “hot spots,” especially insertions on allpages-locked
heap tables (a heap table is a table that has no clustered index).

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 41

Adding indexes to reduce contention

For data-only-locked tables, an update or delete statement that has no useful
index on its search arguments results in a table scan that holds an exclusive
table lock for the entire scan time. If the data modification task also updates
other tables:

• It can be blocked by select queries or other updates.

• It may be blocked and have to wait while holding large numbers of locks.

• It can block or deadlock with other tasks.

Creating a useful index for the query allows the data modification statement to
use page or row locks, improving concurrent access to the table. If you cannot
create an index for a lengthy update or delete transaction, you can perform the
operation in a cursor, with frequent commit transaction statements to reduce the
number of page locks.

Keeping transactions short

Keep any transaction that acquires locks as short as possible. In particular,
avoid transactions that wait for user interaction while holding locks.

Table 2-1: Examples

Avoid network traffic as much as possible within transactions. The network is
slower than Adaptive Server. The example below shows a transaction executed
from isql, sent as two packets.

With page-level locking With row-level locking
begin tran

select balance
from account holdlock
where acct_number = 25

Intent shared table lock
Shared page lock

Intent shared table lock
Shared row lock

If the user goes to lunch now, no
one can update rows on the page
that holds this row.

If the user goes to lunch now, no
one can update this row.

update account
set balance = balance + 50
where acct_number = 25

Intent exclusive table lock
Update page lock on data page
followed by
exclusive page lock on data
page

Intent exclusive table lock
Update row lock followed by
exclusive row lock.

No one can read rows on the
page that holds this row.

No one can read this row.

commit tran

Locking and performance

42 Adaptive Server Enterprise

Keeping transactions short is especially crucial for data modifications that
affect nonclustered index keys on allpages-locked tables.

Nonclustered indexes are dense: the level above the data level contains one row
for each row in the table. All inserts and deletes to the table, and any updates
to the key value, affect at least one nonclustered index page, and adjoining
pages in the page chain, if a page split or page shrink takes place.

While locking a data page may slow access for a small number of rows, locks
on frequently used index pages can block access to a much larger set of rows.

Avoiding hot spots

Hot spots occur when all updates take place on a certain page, as in an allpages-
locked heap table, where all insertions happen on the last page of the page
chain.

For example, an unindexed history table that is updated by everyone always
has lock contention on the last page. This sample output from sp_sysmon
shows that 11.9% of the inserts on a heap table need to wait for the lock:

Last Page Locks on Heaps
Granted 3.0 0.4 185 88.1 %
Waited 0.4 0.0 25 11.9 %

To avoid this:

• Change the lock scheme to datapages or datarows locking.

Since these locking schemes do not have chained data pages, they can
allocate additional pages when blocking occurs for inserts.

• Partition the table using the round-robin strategy. Partitioning a heap table
creates multiple page chains in the table, and, therefore, multiple last pages
for insertions.

begin tran
update account
set balance = balance + 50
where acct_number = 25
go

isql batch sent to Adaptive Server
Locks held waiting for commit

update account
set balance = balance - 50
where acct_number = 45
commit tran
go

isql batch sent to Adaptive Server
Locks released

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 43

Concurrent inserts to the table are less likely to block one another, since
multiple last pages are available. Partitioning improves concurrency for
heap tables without creating separate tables for different groups of users.

See “Improving insert performance with partitions” in Performance and
Tuning Series: Physical Database Tuning for information about
partitioning tables.

• Create a clustered index to distribute updates across the data pages in the
table.

Like partitioning, this creates multiple insertion points for the table.
However, it also introduces overhead for maintaining the physical order of
the table’s rows.

Additional locking guidelines
These locking guidelines can help reduce lock contention and speed
performance:

• Use the lowest level of locking required by each application. Use isolation
level 2 or 3 only when necessary.

Updates by other transactions may be delayed until a transaction using
isolation level 3 releases any of its shared locks at the end of the
transaction.

Use isolation level 3 only when nonrepeatable reads or phantoms may
interfere with results.

If only a few queries require isolation level 3, use the holdlock keyword or
the at isolation serializing clause in those queries rather than using set
transaction isolation level 3 for the entire transaction.

If most queries in the transaction require isolation level 3, use set
transaction isolation level 3, but use noholdlock or at isolation read committed
in the queries that can execute at isolation level 1.

• To perform mass insertions, updates, or deletions on active tables, reduce
blocking by performing the operation inside a stored procedure using a
cursor, with frequent commits.

• If the application must return a row, wait for user interaction, and then
update the row, consider using timestamps and the tsequal function rather
than holdlock.

Configuring locks and lock promotion thresholds

44 Adaptive Server Enterprise

• If you use third-party software, check the locking model in applications
carefully for concurrency problems.

Other tuning efforts can also help reduce lock contention. For example, if a
process holds locks on a page, and must perform a physical I/O to read an
additional page, the process holds the lock much longer than it would if the
additional page were already in cache. In this case, better cache utilization or
the use of large I/O can reduce lock contention. You can also reduce lock
contention by improving indexing and distributing physical I/O evenly across
disks.

Configuring locks and lock promotion thresholds
A system administrator can configure:

• The total number of locks available to processes on Adaptive Server

• The size of the lock hash table and the number of spinlocks that protect the
page/row lock hash table, table lock hash table, and address lock hash table

• The server-wide lock timeout limit, and the lock timeout limit for
distributed transactions

• Lock promotion thresholds, server-wide, for a database or for particular
tables

• The number of locks available per engine and the number of locks
transferred between the global free lock list and the engines

Configuring the Adaptive Server lock limit
By default, Adaptive Server is configured with 5000 locks. System
Administrators can use sp_configure to change this limit. For example:

sp_configure "number of locks", 25000

You may also need to adjust the sp_configure parameter max memory, since
each lock uses memory.

The number of locks required by a query can vary widely, depending on the
locking scheme and on the number of concurrent and parallel processes and the
types of actions performed by the transactions. Configuring the correct number
for your system is a matter of experience and familiarity with the system.

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 45

Start with 20 locks for each active concurrent connection, plus 20 locks for
each worker process. Consider increasing the number of locks if:

• You use datarows locking

• Queries run at isolation level 2 or 3, or use serializable or holdlock

• Parallel query processing is enabled, especially for isolation level 2 or 3
queries

• You perform many multirow updates

• You increase lock promotion thresholds

Estimating number of locks for data-only-locked tables

Changing to data-only locking may require more locks or may reduce the
number of locks required:

• Tables using datapages locking require fewer locks than tables using
allpages locking, since queries on datapages-locked tables do not acquire
separate locks on index pages.

• Tables using datarows locking can require a large number of locks.
Although no locks are acquired on index pages for datarows-locked tables,
data modification commands that affect many rows may hold more locks.

Queries running at transaction isolation level 2 or 3 can acquire and hold
very large numbers of row locks.

insert commands and locks

An insert with allpages locking requires N+1 locks, where N is the number of
indexes. The same insert on a data-only-locked table locks only the data page
or data row.

select queries and locks

Scans at transaction isolation level 1, with read committed with lock set to hold
locks (1), acquire overlapping locks that roll through the rows or pages, so they
hold, at most, two data page locks at a time.

However, transaction isolation level 2 and 3 scans, especially those using
datarows locking, can acquire and hold very large numbers of locks, especially
when running in parallel. Using datarows locking, and assuming no blocking
during lock promotion, the maximum number of locks that might be required
for a single table scan is:

Configuring locks and lock promotion thresholds

46 Adaptive Server Enterprise

row lock promotion HWM * parallel_degree

If lock contention from exclusive locks prevents scans from promoting to a
table lock, the scans can acquire a very large number of locks.

Instead of configuring the number of locks to meet the extremely high locking
demands for queries at isolation level 2 or 3, consider changing applications
that affect large numbers of rows to use the lock table command. This command
acquires a table lock without attempting to acquire individual page locks.

See “lock table” on page 87 for information on using lock table.

Data modification commands and locks

For tables that use the datarows-locking scheme, data modification commands
can require many more locks than data modification on allpages- or datapages-
locked tables.

For example, a transaction that performs a large number of inserts into a heap
table may acquire only a few page locks for an allpages-locked table, but
requires one lock for each inserted row in a datarows-locked table. Similarly,
transactions that update or delete large numbers of rows may acquire many
more locks with datarows locking.

Setting lock promotion thresholds
The lock promotion thresholds set the number of page or row locks permitted
by a task or worker process before Adaptive Server attempts to escalate to a
table lock on the object. You can set lock promotion thresholds at the server-
wide level, at the database level, and for individual tables.

The default values provide good performance for a wide range of table sizes.
Configuring the thresholds higher reduces the chance of queries acquiring table
locks, especially for very large tables where queries lock hundreds of data
pages.

Note Lock promotion is always two-tiered: from page locks to table locks or
from row locks to table locks. Row locks are never promoted to page locks.

Lock promotion and scan sessions

Lock promotion occurs on a per-scan-session basis.

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 47

A scan session is how Adaptive Server tracks scans of tables within a
transaction. A single transaction can have more than one scan session for the
following reasons:

• A table may be scanned more than once inside a single transaction in the
case of joins, subqueries, exists clauses, and so on. Each scan of the table
is a scan session.

• A query executed in parallel scans a table using multiple worker processes.
Each worker process has a scan session.

A scan session may scan data from more than one partition. Lock promotion is
based on the number of page or row locks acquired across all the partitions
accessed in the scan.

A table lock is more efficient than multiple page or row locks when an entire
table might eventually be needed. At first, a task acquires page or row locks,
then attempts to escalate to a table lock when a scan session acquires more page
or row locks than the value set by the lock promotion threshold.

Since lock escalation occurs on a per-scan-session basis, the total number of
page or row locks for a single transaction can exceed the lock promotion
threshold, as long as no single scan session acquires more than the lock
promotion threshold number of locks. Locks may persist throughout a
transaction, so a transaction that includes multiple scan sessions can
accumulate a large number of locks.

Lock promotion cannot occur if another task holds locks that conflict with the
type of table lock needed. For instance, if a task holds any exclusive page locks,
no other process can promote to a table lock until the exclusive page locks are
released.

When lock promotion is denied due to conflicting locks, a process can
accumulate page or row locks in excess of the lock promotion threshold and
may exhaust all available locks in Adaptive Server.

The lock promotion parameters are:

• For allpages-locked tables and datapages-locked tables, page lock
promotion HWM, page lock promotion LWM, and page lock promotion PCT.

• For datarows-locked tables, row lock promotion HWM, row lock promotion
LWM, and row lock promotion PCT.

The abbreviations in these parameters are:

• HWM – high water mark

• LWM – ow water mark

Configuring locks and lock promotion thresholds

48 Adaptive Server Enterprise

• PCT – percent

Lock promotion high water mark

page lock promotion HWM and row lock promotion HWM set a maximum number
of page or row locks allowed on a table before Adaptive Server attempts to
escalate to a table lock. The default value is 200.

When the number of locks acquired during a scan session exceeds this number,
Adaptive Server attempts to acquire a table lock.

Setting the high water mark to a value greater than 200 reduces the chance of
any task or worker process acquiring a table lock on a particular table. For
example, if a process updates more than 200 rows of a very large table during
a transaction, setting the lock promotion high water mark higher keeps this
process from attempting to acquire a table lock.

Setting the high water mark to less than 200 increases the chances of a
particular task or worker process acquiring a table lock.

Lock promotion low water mark

page lock promotion LWM and row lock promotion LWM set a minimum number
of locks allowed on a table before Adaptive Server can acquire a table lock.
The default value is 200. Adaptive Server cannot acquire a table lock until the
number of locks on a table is equal to the low water mark.

The low water mark must be less than or equal to the corresponding high water
mark.

Setting the low water mark to a very high value decreases the chance for a
particular task or worker process to acquire a table lock, which uses more locks
for the duration of the transaction, potentially exhausting all available locks in
Adaptive Server. The possibility of all locks being exhausted is especially high
with queries that update a large number of rows in a datarows-locked table, or
that select large numbers of rows from datarows-locked tables at isolation
levels 2 or 3.

If conflicting locks prevent lock promotion, you may need to increase the value
of the number of locks configuration parameter.

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 49

Lock promotion percent

page lock promotion PCT and row lock promotion PCT set the percentage of
locked pages or rows (based on the table size) above which Adaptive Server
attempts to acquire a table lock when the number of locks is between the lock
promotion HWM and the lock promotion LWM.

The default value is 100.

Adaptive Server attempts to promote page locks to a table lock or row locks to
a table lock when the number of locks on the table exceeds:

(PCT * number of pages or rows in the table) / 100

Setting lock promotion PCT to a very low value increases the chance of a
particular user transaction acquiring a table lock. Figure 2-1 shows how
Adaptive Server determines whether to promote page locks on a table to a table
lock.

Figure 2-1: Lock promotion logic

Promote to
table lock.

Do not promote
to table lock.

Does this scan session
hold lock promotion HWM

number of page or row

Does any other process hold
exclusive lock on object?

Yes

No

Yes

Does this scan session
hold lock promotion PCT

page or row locks?

Yes

No

No

Do not

Does this scan session hold
lock promotion LWM number

of page or row locks?

Yes

No Do not promote
to table lock.

promote to
table lock.

locks?

Configuring locks and lock promotion thresholds

50 Adaptive Server Enterprise

Setting server-wide lock promotion thresholds

The following command sets the server-wide page lock promotion LWM to 100,
the page lock promotion HWM to 2000, and the page lock promotion PCT to 50
for all datapages-locked and allpages-locked tables:

sp_setpglockpromote "server", null, 100, 2000, 50

In this example, the task does not attempt to promote to a table lock unless the
number of locks on the table is between 100 and 2000.

If a command requires more than 100 but less than 2000 locks, Adaptive Server
compares the number of locks to the percentage of locks on the table.

If the number of locks is greater than the number of pages resulting from the
percentage calculation, Adaptive Server attempts to issue a table lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-
locked tables:

sp_setrowlockpromote "server", null, 300, 500, 50

The default values for lock promotion configuration parameters are likely to be
appropriate for most applications.

Setting the lock promotion threshold for a table or database

To configure lock promotion values for an individual table or database,
initialize all three lock promotion thresholds. For example:

sp_setpglockpromote "table", titles, 100, 2000, 50
sp_setrowlockpromote "table", authors, 300, 500, 50

After the values are initialized, you can change any individual value. For
example, to change the lock promotion PCT only:

sp_setpglockpromote "table", titles, null, null, 70
sp_setrowlockpromote "table", authors, null, null,
50

To configure values for a database, use:

sp_setpglockpromote "database", pubs3, 1000, 1100,
45
sp_setrowlockpromote "database", pubs3, 1000, 1100,
45

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 51

Precedence of settings

You can change the lock promotion thresholds for any user database or for an
individual table. Settings for an individual table override the database or
server-wide settings; settings for a database override the server-wide values.

Server-wide values for lock promotion apply to all user tables on the server,
unless the database or tables have lock promotion values configured.

Dropping database and table settings

To remove table or database lock promotion thresholds, use
sp_dropglockpromote or sp_droprowlockpromote. When you drop a database’s
lock promotion thresholds, tables that do not have lock promotion thresholds
configured use the server-wide values.

When you drop a table’s lock promotion thresholds, Adaptive Server uses the
database’s lock promotion thresholds, if they have been configured, or the
server-wide values, if the lock promotion thresholds have not been configured.
You cannot drop server-wide lock promotion thresholds.

Using sp_sysmon while tuning lock promotion thresholds

Use sp_sysmon to see how many times lock promotions take place and the
types of promotions they are.

If there is a problem, look for signs of lock contention in the “Granted” and
“Waited” data in the “Lock Detail” section of sp_sysmon output.

See “Lock promotions” and “Lock detail” in Performance and Tuning Series:
Monitoring Adaptive Server with sp_sysmon for more information.

If lock contention is high and lock promotion is frequent, consider changing the
lock promotion thresholds for the tables involved.

Choosing the locking scheme for a table
In general, choose a lock scheme for a new table based on the likelyhood that
applications will experience lock contention on the table. Whether to change
the locking scheme for an existing table can be based on contention
measurements on the table, but should also take application performance into
account.

Choosing the locking scheme for a table

52 Adaptive Server Enterprise

Here are some typical situations and general guidelines for choosing the
locking scheme:

• Applications require clustered access to data rows due to range queries or
order by clauses. Allpages locking provides more efficient clustered access
than data-only-locking. Rows may not be returned in key order of the
clustered index for queries.

• A large number of applications access 10 to 20% of the data rows, with
many updates and selects on the same data.

Use datarows or datapages locking to reduce contention, especially on
tables that have the highest contention.

• The table is a heap table that will have a high rate of inserts.

Use datarows locking to avoid contention. If the number of rows inserted
per batch is high, datapages locking is also acceptable. Allpages locking
has more contention for the “last page” of heap tables.

• Applications need to maintain an extremely high transaction rate;
contention is likely to be low.

Use allpages locking; less locking and latching overhead yields improved
performance.

Analyzing existing applications
If existing applications experience blocking and deadlock problems, to analyze
the problem:

1 Check for deadlocks and lock contention:

• Use sp_object_stats to determine the tables where blocking is a
problem.

• Identify the tables involved in the deadlock, either using
sp_object_stats or by enabling the print deadlock information
configuration parameter.

2 If the table uses allpages locking and has a clustered index, ensure that
performance of the modified clustered index structure on data-only-locked
tables will not hurt performance.

See “Tables where clustered index performance must remain high” on
page 55.

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 53

3 If the table uses allpages locking, convert the locking scheme to datapages
locking to determine whether that solves the concurrency problem.

4 Re-run the concurrency tests. If concurrency is still an issue, change the
locking scheme to datarows locking.

Choosing a locking scheme based on contention statistics
If the locking scheme for the table is allpages, the lock statistics reported by
sp_object_stats include both data page and index lock contention.

If lock contention totals 15% or more for all shared, update, and exclusive
locks, sp_object_stats recommends changing to datapages locking. Make the
recommended change, and run sp_object_stats again.

If contention using datapages locking is more than 15%, sp_object_stats
recommends changing to datarows locking. This two-phase approach is based
on these characteristics:

• Changing from allpages locking to either data-only-locking scheme is
time consuming and expensive, in terms of I/O cost, but changing between
the two data-only-locking schemes is fast and does not require copying the
table.

• Datarows locking requires more locks and consumes more locking
overhead.

If your applications experience little contention after you convert high-
contending tables to use datapages locking, you do not need to incur the
locking overhead of datarows locking.

Note The number of locks available to all processes on the server is
limited by the number of locks configuration parameter.

Changing to datapages locking reduces the number of locks required,
since index pages are no longer locked.

Changing to datarows locking can increase the number of locks required,
since a lock is needed for each row. See “Estimating number of locks for
data-only-locked tables” on page 45.

When examining sp_object_stats output, look at tables that are used together in
transactions in your applications. Locking on tables that are used together in
queries and transactions can affect the locking contention of the other tables.

Choosing the locking scheme for a table

54 Adaptive Server Enterprise

Reducing lock contention on one table could ease lock contention on other
tables as well, or it could increase lock contention on another table that was
masked by blocking on the first table in the application. For example:

• Lock contention is high for two tables that are updated in transactions
involving several tables. Applications first lock TableA, then attempt to
acquire locks on TableB, and block, holding locks on TableA.

Additional tasks running the same application block while trying to
acquire locks on TableA. Both tables show high contention and high wait
times.

Changing TableB to data-only locking may alleviate the contention on both
tables.

• Contention for TableT is high, so its locking scheme is changed to a data-
only locking scheme.

Re-running sp_object_stats now shows contention on TableX, which had
shown very little lock contention. The contention on TableX was masked
by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of tables
to data-only locking gradually, by changing only those tables with the highest
lock contention. Then test the results of these changes by re-running
sp_object_stats.

Run your usual performance monitoring tests both before and after you make
the changes.

Monitoring and managing tables after conversion
After you have converted one or more tables in an application to a data-only-
locking scheme:

• Check query plans and I/O statistics, especially for those queries that use
clustered indexes.

• Monitor the tables to learn how changing the locking scheme affects:

• Cluster ratios, especially for tables with clustered indexes

• The number of forwarded rows in the table

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 55

Applications not likely to benefit from data-only locking
This section describes tables and application types that may get little benefit
from converting to data-only locking, or may require additional management
after the conversion.

Tables where clustered index performance must remain high

If queries with high performance requirements use clustered indexes to return
large numbers of rows in index order, you may see performance degradation if
you change these tables to use data-only locking. Clustered indexes on data-
only-locked tables are structurally the same as nonclustered indexes.

Placement algorithms keep newly inserted rows close to existing rows with
adjacent values, as long as space is available on nearby pages.

Performance for a data-only-locked table with a clustered index should be
close to the performance of the same table with allpages locking immediately
after a create clustered index command or a reorg rebuild command, but
performance, especially with large I/O, declines if cluster ratios decline
because of insertion and forwarded rows.

Performance remains high for tables that do not experience many insertions.
On tables that get many insertions, a System Administrator may need to drop
and re-create the clustered index or run reorg rebuild more frequently.

Using space management properties such as fillfactor, exp_row_size, and
reservepagegap can help reduce the frequency of maintenance operations. In
some cases, using the allpages-locking scheme for the table, even if there is
some contention, may provide better performance for queries performing
clustered index scans than using data-only locking for the tables.

Tables with maximum-length rows

Data-only-locked tables require more overhead per page and per row than
allpages-locked tables, so the maximum row size for a data-only-locked table
is slightly shorter than the maximum row size for an allpages-locked table.

For tables with fixed-length columns only, the maximum row size is 1958 bytes
of user data for data-only-locked tables. Allpages-locked tables allow a
maximum of 1960 bytes.

Optimistic index locking

56 Adaptive Server Enterprise

For tables with variable-length columns, subtract 2 bytes for each variable-
length column (this includes all columns that allow null values). For example,
the maximum user row size for a data-only-locked table with 4 variable-length
columns is 1950 bytes.

If you try to convert an allpages-locked table that has more than 1958 bytes in
fixed-length columns, the command fails as soon as it reads the table schema.

When you try to convert an allpages-locked table with variable-length
columns, and some rows exceed the maximum size for the data-only-locked
table, the alter table command fails at the first row that is too long to convert.

Optimistic index locking
Optimistic index locking can resolve increased contention on some important
resources, such as the spinlocks that guard address locks on the root page of an
index partition.

Applications where this amount of contention might occur are typically those
in which:

• Access to a specified index constitutes a significant portion of the
transaction profile, and many users are concurrently executing the same
workload.

• Different transactions, such as ad hoc and standardized queries, use the
same index concurrently.

Optimistic index locking does not acquire an address lock on the root page of
an index partition during normal data manipulation language (DML)
operations. If your updates and insertions can cause modifications to the root
page of the accessed index partition, optimistic index locking restarts the
search and acquires an exclusive table lock, not an address lock.

Two stored procedures are changed by optimistic index locking:

• sp_chgattribute enables or disables optimistic index locking; when
enabled, setting an exclusive table lock on the table you specify.

• sp_help includes a column that displays optimistic index lock.

For more information, see the Adaptive Server Reference Manual: Procedures.

CHAPTER 2 Locking Configuration and Tuning

Performance and Tuning Series: Locking and Concurrency Control 57

Using optimistic index locking
Use optimistic index locking when any or all of the following conditions are
true:

• There is significant contention on the lock address hash bucket spinlock.

• None of the indexes on this table cause modifications to the root page.

• The number of index levels is high enough to cause no splitting or
shrinking of the root page.

• There are large numbers of concurrent accesses to read-only tables on
heavily trafficked index pages.

• A database is read-only.

Cautions and issues
Since an exclusive table lock blocks all access by other tasks to the entire table,
you must thoroughly understand the user access patterns of your application
before enabling optimistic index locking.

The following circumstances require an exclusive table lock:

• Adding a new level to the root page

• Shrinking the root page

• Splitting or shrinking the immediate child of the root page, causing an
update on the root page

Do not use optimistic index locking when:

• You have small tables (that are not read-only) with index levels no higher
than 3.

• You envision possible modifications to the root page of an index

Note An exclusive table lock is an expensive operation, since it blocks access
to the entire table. Use extreme caution in setting the optimistic index locking
property.

Optimistic index locking

58 Adaptive Server Enterprise

Performance and Tuning Series: Locking and Concurrency Control 59

C H A P T E R 3 Locking Reports

This chapter discusses tools that report on locks and locking behavior.

Locking tools
sp_who, sp_lock, and sp_familylock report on locks held by users and show
processes that are blocked by other transactions.

Getting information about blocked processes
sp_who reports on system processes. If a user’s command is being blocked
by locks held by another task or worker process, the status column
shows “lock sleep” to indicate that this task or worker process is waiting
for an existing lock to be released.

The blk_spid or block_xloid column shows the process ID of the
task or transaction holding the lock or locks.

You can add a user name parameter to get sp_who information about a
particular Adaptive Server user. If you do not provide a user name, sp_who
reports on all processes in Adaptive Server.

For example, consider what happens if you run three sessions in the pubs2
database: session one deletes the authors table, session two selects all the
data from the authors table, and the third session running sp_who against
spid 15. In this situation, session two hangs, and session three reports this
in the sp_who output:

Topic Page
Locking tools 59

Deadlocks and concurrency 65

Identifying tables where concurrency is a problem 72

Lock management reporting 73

Locking tools

60 Adaptive Server Enterprise

sp_who '15'
fid spid status loginame origname hostname blk_spid dbname

tempdbname cmd block_xloid threadpool

--- ---- --------- --------- --------- --------------- -------- -----------

----------- ----------------- ----------- -----------------

0 15 recv sleep sa sa PSALDINGXP 0 pubs2
tempdb AWAITING COMMAND 0 syb_default_pool

If you run sp_who against spid 16:

sp_who '16'
fid spid status loginame origname hostname blk_spid dbname

tempdbname cmd block_xloid threadpool

--- ---- ---------- --------- --------- --------------- -------- -----------

----------- ----------------- ----------- -----------------

0 16 lock sleep sa sa PSALDINGXP 15 pubs2
tempdb SELECT 0 syb_default_pool

If you run sp_lock against spid 15, the class column displays the cursor name
for locks associated with the current user’s cursor and the cursor ID for other
users:

fid spid loid locktype table_id page
row dbname class context
----- ----- ---------- -------------------------- ---------- ----------
----- --------------- --------------------- ---------------
0 15 30 Ex_intent 576002052 0
0 pubs2 Non Cursor Lock
0 15 30 Ex_page-blk 576002052 1008
0 pubs2 Non Cursor Lock
0 15 30 Ex_page 576002052 1040
0 pubs2 Non Cursor Lock Ind pg

If you run sp_lock against spid 16, the class column displays the cursor name
for locks associated with the current user’s cursor and the cursor ID for other
users:

fid spid loid locktype table_id
page row dbname class context
------ ----- ---------- ----------------------- ---------------
------ ----------- ------------- -------------------
0 16 32 Sh_intent 576002052
0 0 pubs2 Non Cursor Lock

Note The sample output for sp_lock and sp_familylock in this chapter omits the
class column to increase readability. The class column reports either the
names of cursors that hold locks or “Non Cursor Lock.”

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 61

Viewing locks with sp_lock
To get a report on the locks currently being held on Adaptive Server, use
sp_lock:

sp_lock
fid spid loid locktype table_id page row dbname context
--- ---- ---- ---------------- ---------- ----- --- -------- ----------------
 0 15 30 Ex_intent 208003772 0 0 sales Fam dur
 0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
 0 15 30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
 0 15 30 Ex_page-blk 208003772 946 0 sales Fam dur
 0 30 60 Ex_intent 208003772 0 0 sales Fam dur
 0 30 60 Ex_page 208003772 997 0 sales Fam dur
 0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
 0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg
 0 35 70 Sh_intent 16003088 0 0 sales Fam dur
 0 35 70 Sh_page 16003088 1096 0 sales Fam dur, Inf key
 0 35 70 Sh_page 16003088 3102 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3113 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3365 0 sales Fam dur, Range
 0 35 70 Sh_page 16003088 3604 0 sales Fam dur, Range
 0 49 98 Sh_intent 464004684 0 0 master Fam dur
 0 50 100 Ex_intent 176003658 0 0 stock Fam dur
 0 50 100 Ex_row 176003658 36773 8 stock Fam dur
 0 50 100 Ex_intent 208003772 0 0 stock Fam dur
 0 50 100 Ex_row 208003772 70483 1 stock Fam dur
 0 50 100 Ex_row 208003772 70483 2 stock Fam dur
 0 50 100 Ex_row 208003772 70483 3 stock Fam dur
 0 50 100 Ex_row 208003772 70483 5 stock Fam dur
 0 50 100 Ex_row 208003772 70483 8 stock Fam dur
 0 50 100 Ex_row 208003772 70483 9 stock Fam dur
 32 13 64 Sh_page 240003886 17264 0 stock
 32 16 64 Sh_page 240003886 4376 0 stock
 32 17 64 Sh_page 240003886 7207 0 stock
 32 18 64 Sh_page 240003886 12766 0 stock
 32 18 64 Sh_page 240003886 12767 0 stock
 32 18 64 Sh_page 240003886 12808 0 stock
 32 19 64 Sh_page 240003886 22367 0 stock
 32 32 64 Sh_intent 16003088 0 0 stock Fam dur
 32 32 64 Sh_intent 48003202 0 0 stock Fam dur
 32 32 64 Sh_intent 80003316 0 0 stock Fam dur
 32 32 64 Sh_intent 112003430 0 0 stock Fam dur
 32 32 64 Sh_intent 176003658 0 0 stock Fam dur
 32 32 64 Sh_intent 208003772 0 0 stock Fam dur
 32 32 64 Sh_intent 240003886 0 0 stock Fam dur

Locking tools

62 Adaptive Server Enterprise

This example shows the lock status of serial processes and one parallel process:

• spid 15 holds an exclusive intent lock on a table, one data page lock, and
two index page locks. A “blk” suffix indicates that this process is blocking
another process that needs to acquire a lock; spid 15 is blocking another
process. As soon as the blocking process completes, the other processes
move forward.

• spid 30 holds an exclusive intent lock on a table, one lock on a data page,
and two locks on index pages.

• spid 35 is performing a range query at isolation level 3. It holds range locks
on several pages and an infinity key lock.

• spid 49 is the task that ran sp_lock; it holds a shared intent lock on the
spt_values table in master while it runs.

• spid 50 holds intent locks on two tables, and several row locks.

• fid 32 shows several spids holding locks: the parent process (spid 32) holds
shared intent locks on 7 tables, while the worker processes hold shared
page locks on one of the tables.

The lock type column indicates not only whether the lock is a shared lock
(“Sh” prefix), an exclusive lock (“Ex” prefix), or an “Update” lock, but also
whether it is held on a table (“table” or “intent”) or on a “page” or “row.”

A “demand” suffix indicates that the process will acquire an exclusive lock as
soon as all current shared locks are released.

The context column consists of one or more of the following values:

• “Fam dur” means that the task will hold the lock until the query completes,
that is, for the duration of the family of worker processes. Shared intent
locks are an example of family duration locks.

For a parallel query, the coordinating process always acquires a shared
intent table lock that is held for the duration of the parallel query. If the
parallel query is part of a transaction, and earlier statements in the
transaction performed data modifications, the coordinating process holds
family duration locks on all the changed data pages.

Worker processes can hold family duration locks when the query operates
at isolation level 3.

• “Ind pg” indicates locks on index pages (allpages-locked tables only).

• “Inf key” indicates an infinity key lock, used on data-only-locked tables
for some range queries at transaction isolation level 3.

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 63

• “Range” indicates a range lock, used for some range queries at transaction
isolation level 3.

To see lock information about a particular login, give the spid for the process:

sp_lock 30

fid spid loid locktype table_id page
row dbname class context

----- ----- ---------- -------------------------- ---------- ----------
----- --------------- --------------------- ---------------
0 30 60 Ex_intent 208003772 0

0 sales Fam dur
0 30 60 Ex_page 208003772 997

0 sales Fam dur
0 30 60 Ex_page 208003772 2405

0 sales Fam dur, Ind pg
0 30 60 Ex_page 208003772 2406

0 sales Fam dur, Ind pg

If the spid you specify is also the fid for a family of processes, sp_who prints
information for all of the processes.

You can also request information about locks on multiple spids:

sp_lock 30, 15
fid spid loid locktype table_id page

row dbname class context
----- ----- ---------- -------------------------- ---------- ----------

----- --------------- --------------------- ---------------
0 15 30 Ex_page 208003772 2400

0 sales Fam dur, Ind pg
0 15 30 Ex_page 208003772 2404

0 sales Fam dur, Ind pg
0 15 30 Ex_page-blk 208003772 946

0 sales Fam dur
0 30 60 Ex_intent 208003772 0

0 sales Fam dur
0 30 60 Ex_page 208003772 997

0 sales Fam dur
0 30 60 Ex_page 208003772 2405

0 sales Fam dur, Ind pg
0 30 60 Ex_page 208003772 2406

0 sales Fam dur, Ind pg

Locking tools

64 Adaptive Server Enterprise

Viewing locks with sp_familylock
sp_familylock displays the locks held by a family. This example shows that the
coordinating process (fid 51, spid 51) holds a shared intent lock on each of four
tables and a worker process holds a shared page lock:

sp_familylock 51
fid spid loid locktype table_id page

row dbname class context
----- ----- ---------- -------------------------- ---------- ----------

----- --------------- --------------------- ---------------
51 23 102 Sh_page 208003772 945

0 sales
51 51 102 Sh_intent 16003088 0

0 sales Fam dur
51 51 102 Sh_intent 48003202 0

0 sales Fam dur
51 51 102 Sh_intent 176003658 0

0 sales Fam dur
51 102 Sh_intent 208003772 0

0 sales Fam dur

You can also specify two IDs for sp_familylock.

Intrafamily blocking during network buffer merges
When many worker processes are returning query results, you may see
blocking between worker processes. This example shows five worker
processes blocking on the sixth worker process:

sp_who 11
fid spid status loginame origname hostname blk_spid dbname

tempdbname cmd block_xloid threadpool

--- ---- ----------- --------- --------- --------------- -------- -----------

----------- ----------------- ----------- -----------------

11 11 sleeping diana diana olympus 0 sales
tempdb SELECT 0 syb_default_pool

11 16 lock sleep diana diana olympus 18 sales
tempdb WORKER PROCESS 0 syb_default_pool

11 17 lock sleep diana diana olympus 18 sales
tempdb WORKER PROCESS 0 syb_default_pool

11 18 send sleep diana diana olympus 0 sales
tempdb WORKER PROCESS 0 syb_default_pool

11 19 lock sleep diana diana olympus 18 sales
tempdb WORKER PROCESS 0 syb_default_pool

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 65

11 20 lock sleep diana diana olympus 18 sales
tempdb WORKER PROCESS 0 syb_default_pool

11 21 lock sleep diana diana olympus 18 sales
tempdb WORKER PROCESS 0 syb_default_pool

Each worker process acquires an exclusive address lock on the network buffer
while writing results to it. When the buffer is full, it is sent to the client, and the
lock is held until the network write completes.

Monitoring lock timeouts
Adaptive Server includes this information for tracking locks:

• The monLockTimeouts monitoring table provides information about lock
requests that are denied because they are blocked for more than the value
configured for lock wait period. See Chapter 3, “Monitoring Tables,” in the
Reference Manual: Tables.

• These configuration parameters configure Adaptive Server to collect lock
wait timeout information and make it available for the monLockTimeout
table:

• lock timeout pipe active

• lock timeout pipe max messages

See Chapter 5, “Setting Configuration Parameters,” in the System
Administration Guide, Volume 1.

Deadlocks and concurrency
Simply stated, a deadlock occurs when two user processes each have a lock on
a separate data page, index page, row, or table and each wants to acquire a lock
on the page, row, or table locked by the other process. When this happens, the
first process is waiting for the second to release the lock, but the second process
will not release it until the lock held by the first process is released.

Deadlocks and concurrency

66 Adaptive Server Enterprise

Server-side versus application-side deadlocks
When tasks deadlock in Adaptive Server, a deadlock detection mechanism
rolls back one of the transactions, and sends messages to the user and to the
Adaptive Server error log. Sometimes application-side deadlock situations
arise in which a client opens multiple connections, and these client connections
wait for locks held by the other connection of the same application. These are
not true server-side deadlocks and cannot be detected by Adaptive Server
deadlock detection mechanisms.

Application deadlock example

Some developers simulate cursors by using two or more connections from DB-
Library™. One connection performs a select and the other connection
performs updates or deletions on the same tables. This can create application
deadlocks. For example:

• Connection A holds a shared lock on a page. As long as there are rows
pending from Adaptive Server, a shared lock is kept on the current page.

• Connection B requests an exclusive lock on the same pages and then waits.

• The application waits for Connection B to succeed before invoking the
logic needed to remove the shared lock. But this never happens.

Since Connection A never requests a lock that is held by Connection B, this is
not a server-side deadlock.

Server task deadlocks
 Below is an example of a deadlock between two processes.

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 67

If transactions T19 and T20 execute simultaneously, and both transactions
acquire exclusive locks with their initial update statements, they deadlock,
waiting for each other to release their locks, which will not happen.

Adaptive Server checks for deadlocks and chooses the user whose transaction
has accumulated the least amount of CPU time as the victim.

Adaptive Server rolls back that user’s transaction, notifies the application
program of this action with message number 1205, and allows the other process
to move forward.

The example above shows two data modification statements that deadlock;
deadlocks can also occur between a process holding and needing shared locks,
and one holding and needing exclusive locks.

In a multiuser situation, each application program should check every
transaction that modifies data for message 1205 if there is any chance of
deadlocking. Message 1205 indicates that a user transaction has been selected
as the victim of a deadlock and rolled back. The application program must
restart that transaction.

T19 Event sequence T20
begin transaction

update savings
set balance = balance - 250
where acct_number = 25

update checking
set balance = balance + 250
where acct_number = 45

commit transaction

T19 and T20 start.

T19 gets exclusive lock
on savings while T20
gets exclusive lock on
checking.

T19 waits for T20 to
release its lock while
T20 waits for T19 to
release its lock;
deadlock occurs.

begin transaction

update checking
set balance = balance - 75
where acct_number = 45

update savings
set balance = balance + 75
where acct_number = 25

commit transaction

Deadlocks and concurrency

68 Adaptive Server Enterprise

Deadlocks and parallel queries
Worker processes can acquire only shared locks, but they can still be involved
in deadlocks with processes that acquire exclusive locks. The locks they hold
meet one or more of these conditions:

• A coordinating process holds a table lock as part of a parallel query.

The coordinating process could hold exclusive locks on other tables as part
of a previous query in a transaction.

• A parallel query is running at transaction isolation level 3 or using holdlock
and holds locks.

• A parallel query is joining two or more tables while another process is
performing a sequence of updates to the same tables within a transaction.

A single worker process can be involved in a deadlock such as those that occur
between two serial processes. For example, a worker process that is performing
a join between two tables can deadlock with a serial process that is updating
the same two tables.

In some cases, deadlocks between serial processes and families involve a level
of indirection.

For example, if a task holds an exclusive lock on tableA and needs a lock on
tableB, but a worker process holds a family-duration lock on tableB, the task
must wait until the transaction that the worker process is involved in completes.

If another worker process in the same family needs a lock on tableA, the result
is a deadlock. Figure 3-1 illustrates the following deadlock scenario:

• The family identified by fid 8 is doing a parallel query that involves a join
of stock_tbl and sales_tbl, at transaction level 3.

• The serial task identified by spid 17 (T17) is performing inserts to stock_tbl
and sales_tbl in a transaction.

These are the steps that lead to the deadlock:

• W8 9, a worker process with a fid of 8 and a spid of 9, holds a shared lock
on page 10862 of stock_tbl.

• T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an
exclusive lock on page 10862, which it cannot acquire until W8 9 releases
its shared lock.

• The worker process W8 10 needs a shared lock on page 634, which it
cannot acquire until T17 releases its exclusive lock.

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 69

Figure 3-1: A deadlock involving a family of worker processes

Printing deadlock information to the error log
Adaptive Server detects server-side deadlocks to the application and reports
them in the server’s error log. The error message sent to the application is error
1205.

To get information about the tasks that deadlock, set the print deadlock
information configuration parameter to 1. This setting sends more detailed
deadlock messages to the log and to the terminal session where the server
started.

The message sent to the error log, by default, merely identifies that a deadlock
occurred. The numbering in the message indicates the number of deadlocks
since the last boot of the server.

03:00000:00029:1999/03/15 13:16:38.19 server Deadlock Id 11 detected

In this output, fid 0, spid 29 started the deadlock detection check, so its fid and
spid values are used as the second and third values in the deadlock message.
(The first value, 03, is the engine number.)

However, setting print deadlock information to 1 can degrade Adaptive Server
performance. For this reason, use it only to determine the cause of deadlocks.

Page 10862

Page 634

stock_tbl

sales_tbl

W8 9

W8 10

T1 7

Shared
intent
lock

Exclusive
page
lock

Shared
page
lock

Worker
process

Legend: Lock held by

Needs lock

Worker
process(level 3)

Deadlocks and concurrency

70 Adaptive Server Enterprise

Disabling print deadlock information (setting it to 0) means that Adaptive Server
does not send any information about deadlocks to the error log.

The deadlock messages contain detailed information, including:

• The family and server-process IDs of the tasks involved

• The commands and tables involved in deadlocks; if a stored procedure was
involved, the procedure name is shown

• The type of locks each task held, and the type of lock each task was trying
to acquire

• The server login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94, spid
38. The deadlock involves exclusive versus shared lock requests on the authors
table. spid 29 is chosen as the deadlock victim:

Deadlock Id 11: detected. 1 deadlock chain(s) involved.

Deadlock Id 11: Process (Familyid 94, 38) (suid 62) was executing a SELECT
command at line 1. SQL Text select * from authors where au_id like '172%'
Deadlock Id 11: Process (Familyid 29, 29) (suid 56) was executing a INSERT
command at line 1
SQL Text: insert authors (au_id, au_fname, au_lname) values (’A999999816’,
’Bill’, ’Dewart’)

Deadlock Id 11: Process (Familyid 0, Spid 29) was waiting for a ’exclusive page’
lock on page 1155 of the ’authors’ table in database 8 but process (Familyid
94, Spid 38) already held a ’shared page’ lock on it.
Deadlock Id 11: Process (Familyid 94, Spid 38) was waiting for a ’shared page’
lock on page 2336 of the ’authors’ table in database 8 but process (Familyid
29, Spid 29) already held a ’exclusive page’ lock on it.
Deadlock Id 11: Process (Familyid 0, 29) was chosen as the victim. End of
deadlock information.

Avoiding deadlocks
Deadlocks may occur when many long-running transactions are executed at the
same time in the same database. Deadlocks become more common as lock
contention increases between transactions, which decreases concurrency.

Methods for reducing lock contention, such as changing the locking scheme,
avoiding table locks, and not holding shared locks, are described in Chapter 2,
“Locking Configuration and Tuning.”

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 71

Acquiring locks on objects in the same order

Well-designed applications can minimize deadlocks by always acquiring locks
in the same order. Updates to multiple tables should always be performed in the
same order.

For example, the transactions described in Figure 3-1 could have avoided their
deadlock by updating either the savings or checking table first in both
transactions. That way, one transaction gets the exclusive lock first and
proceeds while the other transaction waits to receive its exclusive lock on the
same table when the first transaction ends.

In applications with large numbers of tables and transactions that update
several tables, establish a locking order that can be shared by all application
developers.

Delaying deadlock checking

Adaptive Server performs deadlock checking after a minimum period of time
for any process waiting for a lock to be released (sleeping). Deadlock checking
is time-consuming overhead for applications that wait without a deadlock.

If your applications deadlock infrequently, Adaptive Server can delay deadlock
checking and reduce the overhead cost. Use the deadlock checking period
configuration parameter to specify the minimum amount of time (in
milliseconds) that a process waits before it initiates a deadlock check.

Valid values are 0 – 2147483. The default value is 500. deadlock checking
period is a dynamic configuration value, so any change to it takes immediate
effect.

If you set the value to 0, Adaptive Server initiates deadlock checking when the
process begins to wait for a lock. If you set the value to 600, Adaptive Server
initiates a deadlock check for the waiting process after at least 600 ms. For
example:

sp_configure "deadlock checking period", 600

Setting deadlock checking period to a higher value produces longer delays
before deadlocks are detected. However, since Adaptive Server grants most
lock requests before this time elapses, the deadlock checking overhead is
avoided for those lock requests.

Adaptive Server performs deadlock checking for all processes at fixed
intervals, determined by deadlock checking period. If Adaptive Server performs
a deadlock check while a process’s deadlock checking is delayed, the process
waits until the next interval.

Identifying tables where concurrency is a problem

72 Adaptive Server Enterprise

Therefore, a process may wait from the number of milliseconds set by deadlock
checking period to almost twice that value before deadlock checking is
performed. sp_sysmon can help you tune deadlock checking behavior.

See “Deadlock detection” in Performance and Tuning Series: Monitoring
Adaptive Server with sp_sysmon..

Identifying tables where concurrency is a problem
sp_object_stats prints table-level information about lock contention. Use it to:

• Report on tables that have the highest contention level

• Report contention on tables in a single database

• Report contention on individual tables

The syntax is:

sp_object_stats interval [, top_n [, dbname [, objname [, rpt_option]]]]

To measure lock contention on all tables in all databases, specify only the
interval. This example monitors lock contention for 20 minutes, and reports
statistics on the 10 tables with the highest levels of contention:

sp_object_stats "00:20:00"

Additional arguments to sp_object_stats are as follows:

• top_n – allows you to specify the number of tables to be included in the
report. The default is 10. To report on the top 20 high-contention tables,
for example, use:

sp_object_stats "00:20:00", 20

• dbname – prints statistics for the specified database.

• objname – measures contention for the specified table.

• rpt_option – specifies the report type:

• rpt_locks reports grants, waits, deadlocks, and wait times for the tables
with the highest contention. rpt_locks is the default.

• rpt_objlist reports only the names of the objects with the highest level
of lock activity.

Here is sample output for titles, which uses datapages locking:

CHAPTER 3 Locking Reports

Performance and Tuning Series: Locking and Concurrency Control 73

Object Name: pubtune..titles (dbid=7, objid=208003772,lockscheme=Datapages)

 Page Locks SH_PAGE UP_PAGE EX_PAGE
 ---------- ---------- ---------- ----------
 Grants: 94488 4052 4828
 Waits: 532 500 776
 Deadlocks: 4 0 24
 Wait-time: 20603764 ms 14265708 ms 2831556 ms
 Contention: 0.56% 10.98% 13.79%

 *** Consider altering pubtune..titles to Datarows locking.

Table 3-1 shows the meaning of the values.

Table 3-1: sp_object_stats output

sp_object_stats recommends changing the locking scheme when total
contention on a table is more than 15 percent, as follows:

• If the table uses allpages locking, it recommends changing to datapages
locking.

• If the table uses datapages locking, it recommends changing to datarows
locking.

Lock management reporting
Output from sp_sysmon provides statistics on locking and deadlocks discussed
in this chapter.

Use the statistics to determine whether the Adaptive Server system is
experiencing performance problems due to lock contention.

Output row Value

Grants The number of times the lock was granted immediately

Waits The number of times the task needing a lock had to wait

Deadlocks The number of deadlocks that occurred

Wait-time The total number of milliseconds that all tasks spent
waiting for a lock

Contention The percentage of times that a task had to wait or
encountered a deadlock

Lock management reporting

74 Adaptive Server Enterprise

For more information about sp_sysmon and lock statistics, see “Lock
management” in Performance and Tuning Series: Monitoring Adaptive Serve
with sp_sysmon.

Use the monitoring tables to pinpoint locking problems. See the Performance
and Tuning Series: Monitoring Tables.

Performance and Tuning Series: Locking and Concurrency Control 75

C H A P T E R 4 Using Locking Commands

This chapter discusses the types of locks used in Adaptive Server and the
commands that can affect locking.

Specifying the locking scheme for a table
The locking schemes in Adaptive Server provide the flexibility to choose
the best locking scheme for each table in an application and to adapt the
locking scheme for a table if contention or performance requires a change.
The tools for specifying locking schemes are:

• sp_configure – specifies a server-wide default locking scheme

• create table – specifies the locking scheme for newly created tables

• alter table – changes the locking scheme for a table to any other
locking scheme

• select into – specifies the locking scheme for a table created by
selecting results from other tables

Specifying a server-wide locking scheme
The lock scheme configuration parameter sets the locking scheme to be
used for any new table, if the create table command does not specify the
lock scheme.

To see the current locking scheme, use:

Topic Topic
Specifying the locking scheme for a table 75

Controlling isolation levels 80

Readpast locking 84

Cursors and locking 85

Additional locking commands 87

Specifying the locking scheme for a table

76 Adaptive Server Enterprise

sp_configure "lock scheme"
Parameter Name Default Memory Used Config Value Run Value

Unit Type
---------------- ----------- ----------- ------------ -----------

-------------- -----------
lock scheme allpages 0 datarows datarows

name dynamic

The syntax for changing the locking scheme is:

sp_configure "lock scheme", 0,
 {allpages | datapages | datarows}

This command sets the default lock scheme for the server to data pages:

sp_configure "lock scheme", 0, datapages

When you first install Adaptive Server, lock scheme is set to allpages.

Specifying a locking scheme with create table
Use create table to specify the locking scheme for a new table. The syntax is:

create table table_name (column_name_list)
[lock {datarows | datapages | allpages}]

If you do not specify the lock scheme for a table, the default value for the server
is used, as determined by the setting of the lock scheme configuration
parameter.

This command specifies datarows locking for the new_publishers table:

create table new_publishers
(pub_id char(4) not null,
 pub_name varchar(40) null,
 city varchar(20) null,
 state char(2) null)
lock datarows

Specifying the locking scheme with create table overrides the default server-
wide setting.

Changing a locking scheme with alter table
Use alter table to change the locking scheme for a table. The syntax is:

alter table table_name
lock {allpages | datapages | datarows}

CHAPTER 4 Using Locking Commands

Performance and Tuning Series: Locking and Concurrency Control 77

This command changes the locking scheme for the titles table to datarows
locking:

alter table titles lock datarows

alter table supports changing from one locking scheme to any other locking
scheme. Changing from allpages locking to data-only locking requires you to
copy the data rows to new pages and re-create any indexes on the table.

Changing the locking scheme takes several steps and requires sufficient space
to make the copy of the table and indexes. The time required depends on the
size of the table and the number of indexes.

If you are changing from datapages locking to datarows locking or vice versa
you need not copy data pages and rebuild indexes. Switching between data-
only locking schemes updates only system tables, and finishes quickly.

Note You cannot use data-only locking on tables that have rows that are at, or
near, the maximum length of 1962 (including the two bytes for the offset table).

For data-only-locked tables with only fixed-length columns, the maximum
user data row size is 1960 bytes (including the 2 bytes for the offset table).

Tables with variable-length columns require 2 additional bytes for each column
that is variable-length (this includes columns that allow nulls.)

See “Determining Sizes of Tables and Indexes” in Performance and Tuning
Series: Physical Database Tuning for information on rows and row overhead.

Before and after changing locking schemes
Before you change from allpages locking to data-only locking or vice versa,
Sybase® recommends that you take these steps:

• If the table is partitioned, and you have not run update statistics since
making major data modifications to the table, run update statistics on the
table that you plan to alter. alter table...lock performs better with accurate
statistics for partitioned tables.

Changing the locking scheme does not affect the distribution of data on
partitions; rows in partition 1 are copied to partition 1 in the copy of the
table.

• Perform a database dump.

Specifying the locking scheme for a table

78 Adaptive Server Enterprise

• Set any space management properties that should be applied to the copy of
the table or its rebuilt indexes. See “Setting Space Management
Properties” in Performance and Tuning Series: Physical Database Tuning
for information on rows and row overhead.

• Determine if there is enough space. See “Determining the space available
for maintenance activities” in Performance and Tuning Series: Physical
Database Tuning .

• If any of the tables in the database are partitioned and require a parallel
sort:

• Use sp_dboption to set the database option select into/bulkcopy/pllsort
to true.

• Configure for optimum parallel sort performance.

After alter table completes:

• Run dbcc checktable on the table and dbcc checkalloc on the database to
ensure database consistency.

• Perform a database dump.

Note After you have changed the locking scheme from allpages locking
to data-only locking or vice versa, you cannot use dump transaction to back
up the transaction log.

You must first perform a full database dump.

Expense of switching to or from allpages locking
Switching from allpages locking to data-only locking or vice versa is an
expensive operation in terms of I/O cost. Most of the cost comes from the I/O
required to copy the tables and re-create the indexes. Some logging is also
required.

When moving from allpages to data-only locking or from data-only to allpages
locking, alter table ... lock:

1 Copies all rows in the table to new data pages, formatting rows according
to the new format. If you are changing to data-only locking, any data rows
of fewer than 10 bytes are padded to 10 bytes during this step. If you are
changing to allpages locking from data-only locking, padding is stripped
from rows of fewer than 10 bytes.

CHAPTER 4 Using Locking Commands

Performance and Tuning Series: Locking and Concurrency Control 79

2 Drops and re-creates all indexes on the table.

3 Deletes the old set of table pages.

4 Updates the system tables to indicate the new locking scheme.

5 Updates a counter maintained for the table, to cause the recompilation of
query plans.

If a clustered index exists on the table, rows are copied in clustered index key
order onto the new data pages. If no clustered index exists, the rows are copied
in page-chain order for an allpages-locking to data-only-locking conversion.

The entire alter table...lock command is performed as a single transaction to
ensure recoverability. An exclusive table lock is held on the table for the
duration of the transaction.

Sort performance during alter table
During alter table, indexes are re-created one at a time. If your system has
enough engines, data cache, and I/O throughput to handle simultaneous create
index operations, you can reduce the overall time required to change locking
schemes by:

• Dropping the nonclustered indexes

• Altering the locking scheme

• Configuring for best parallel sort performance

• Re-creating two or more nonclustered indexes at once

Specifying a locking scheme with select into
You can specify a locking scheme when you create a new table using select into.
The syntax is:

select [all | distinct] select_list
into [[database.]owner.]table_name
lock {datarows | datapages | allpages}

from...

If you do not specify a locking scheme with select into, the new table uses the
server-wide default locking scheme, as defined by the configuration parameter
lock scheme.

Controlling isolation levels

80 Adaptive Server Enterprise

This command specifies datarows locking for the table it creates:

select title_id, title, price
into bus_titles
lock datarows
from titles
where type = "business"

Temporary tables created with the #tablename form of naming are single-user
tables, so lock contention is not an issue. For temporary tables that can be
shared among multiple users, that is, tables created with tempdb..tablename,
any locking scheme can be used.

Controlling isolation levels
You can set the transaction isolation level used by select commands:

• For all queries in the session, with the set transaction isolation level
command

• For an individual query, with the at isolation clause

• For specific tables in a query, with the holdlock, noholdlock, and shared
keywords

When choosing locking levels in your applications, use the minimum locking
level consistent with your business model. The combination of setting the
session level while providing control over locking behavior at the query level
allows concurrent transactions to achieve required results with the least
blocking.

Note If you use transaction isolation level 2 (repeatable reads) on allpages-
locked tables, isolation level 3 (serializing reads) is also enforced.

Setting isolation levels for a session
The SQL standard specifies a default isolation level of 3. To enforce this level,
Transact-SQL provides the set transaction isolation level command. For
example, you can make level 3 the default isolation level for your session
using:

CHAPTER 4 Using Locking Commands

Performance and Tuning Series: Locking and Concurrency Control 81

set transaction isolation level 3

If the session has enforced isolation level 3, you can make the query operate at
level 1 using noholdlock, as described below.

If you are using the Adaptive Server default isolation level of 1, or if you have
used the set transaction isolation level command to specify level 0 or 2, you can
enforce level 3 by using the holdlock option to hold shared locks until the end
of a transaction.

You can display the current isolation level for a session with the global variable
@@isolation.

Syntax for query-level and table-level locking options
You can specify the holdlock, noholdlock, and shared options for each table in a
select or readtext statement, with the at isolation clause applied to the entire
query.

select select_list
from table_name [holdlock | noholdlock] [shared]

[, table_name [[holdlock | noholdlock] [shared]
{where/group by/order by/compute clauses}
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]]

Here is the syntax for the readtext command:

readtext [[database.]owner.]table_name.column_name text_pointer
offset size

[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {

[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]}]

Using holdlock, noholdlock, or shared
You can override a session’s locking level by applying the holdlock, noholdlock,
and shared options to individual tables in select or readtext commands:

Controlling isolation levels

82 Adaptive Server Enterprise

These keywords affect locking for the transaction: if you use holdlock, all locks
are held until the end of the transaction.

If you specify holdlock in a query while isolation level 0 is in effect for the
session, Adaptive Server issues a warning and ignores the holdlock clause, not
acquiring locks as the query executes.

If you specify holdlock and read uncommitted, Adaptive Server prints an error
message, and the query is not executed.

Using the at isolation clause
You can change the isolation level for all tables in the query by using the at
isolation clause with a select or readtext command. The options in the at
isolation clause are:

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the
transaction; use from level 3 to enforce
level 1.

2, 3 holdlock Hold shared locks until the transaction
completes; use from level 1 to enforce
level 3.

N/A shared Applies shared rather than update locks
for select statements in cursors open for
update.

Level to use Option Effect

0 read
uncommitted

Reads uncommitted changes; use from
level 1, 2, or 3 queries to perform dirty
reads (level 0).

1 read committed Reads only committed changes; wait
for locks to be released; use from level
0 to read only committed changes, but
without holding locks.

2 repeatable read Holds shared locks until the transaction
completes; use from level 0 or level 1
queries to enforce level 2.

3 serializable Holds shared locks until the transaction
completes; use from level 1 or level 2
queries to enforce level 3.

CHAPTER 4 Using Locking Commands

Performance and Tuning Series: Locking and Concurrency Control 83

For example, the following statement queries the titles table at isolation level 0:

select *
from titles
at isolation read uncommitted

Making locks more restrictive
If isolation level 1 is sufficient for most work, but some queries require higher
levels of isolation, you can selectively enforce the higher isolation level using
clauses in the select statement:

• Use repeatable read to enforce level 2

• Use holdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page, row, or table lock more restrictive.
holdlock applies:

• To shared locks

• To the table or view for which it is specified

• For the duration of the statement or transaction containing the statement

The at isolation clause applies to all tables in the from clause, and is applied only
for the duration of the transaction. The locks are released when the transaction
completes.

In a transaction, holdlock instructs Adaptive Server to hold shared locks until
the completion of that transaction instead of releasing the lock as soon as the
required table, view, row, or data page is no longer needed. Adaptive Server
always holds exclusive locks until the end of a transaction.

The use of holdlock in the following example ensures that the two queries return
consistent results:

begin transaction
select branch, sum(balance)
 from account holdlock
 group by branch
select sum(balance) from account
commit transaction

The first query acquires a shared table lock on account so that no other
transaction can update the data before the second query runs. This lock is not
released until the transaction including the holdlock command completes.

Readpast locking

84 Adaptive Server Enterprise

If the session isolation level is 0, and only committed changes must be read
from the database, you can use the at isolation level read committed clause.

Making locks less restrictive
In contrast to holdlock, the noholdlock keyword prevents Adaptive Server from
holding any shared locks acquired during the execution of the query, regardless
of the transaction isolation level currently in effect.

noholdlock is useful in situations where transactions require a default isolation
level of 2 or 3. If any queries in those transactions do not need to hold shared
locks until the end of the transaction, you can improve concurrency by
specifying noholdlock with those queries.

For example, if the transaction isolation level is set to 3, which normally causes
a select query to hold locks until the end of the transaction, this command
releases the locks when the scan moves off the page or row:

select balance from account noholdlock
 where acct_number < 100

If the session isolation level is 1, 2, or 3, and you want to perform dirty reads,
you can use the at isolation level read uncommitted clause.

The shared keyword instructs Adaptive Server to use a shared lock (instead of
an update lock) on a specified table or view in a cursor.

See “Using the shared keyword” on page 86 for more information.

Readpast locking
Readpast locking allows select and readtext queries to skip all rows or pages
locked with incompatible locks. The queries do not block, terminate, or return
error or advisory messages to the user. Readpast locking is largely designed to
be used in queue-processing applications.

In general, these applications allow queries to return the first unlocked row that
meets query qualifications. An example might be an application tracking calls
for service: the query needs to find the row with the earliest timestamp that is
not locked by another repair representative.

CHAPTER 4 Using Locking Commands

Performance and Tuning Series: Locking and Concurrency Control 85

For more information on readpast locking, see “Locking Commands and
Options” in the Transact-SQL User’s Guide.

Cursors and locking
Cursor locking methods are similar to the other locking methods in Adaptive
Server. For cursors declared as read only or declared without the for update
clause, Adaptive Server uses a shared page lock on the data page that includes
the current cursor position.

When additional rows for the cursor are fetched, Adaptive Server acquires a
lock on the next page, the cursor position is moved to that page, and the
previous page lock is released (unless you are operating at isolation level 3).

For cursors declared with for update, Adaptive Server uses update page locks
by default when scanning tables or views referenced with the for update clause
of the cursor. For data-only-locked tables, Adaptive Server may use a table
scan to avoid the Halloween problem. For more information see “Optimization
for Cursors” in Performance and Tuning Series: Query Processing and
Abstract Plans.

If the for update list is empty, all tables and views referenced in the from clause
of the select statement receive update locks. An update lock is a special type of
read lock that indicates that the reader may modify the data soon. An update
lock allows other shared locks on the page, but does not allow other update or
exclusive locks.

If a row is updated or deleted through a cursor, the data modification
transaction acquires an exclusive lock. Any exclusive locks acquired by
updates through a cursor in a transaction are held until the end of that
transaction and are not affected by closing the cursor. This is also true of shared
or update locks for cursors that use the holdlock keyword or isolation level 3.

Locking behavior for cursors at each isolation level is as follows:

• At level 0, Adaptive Server uses no locks on any base table page that
contains a row representing a current cursor position. Cursors acquire no
read locks for their scans, so they do not block other applications from
accessing the same data.

However, cursors operating at this isolation level are not updatable, and
they require a unique index on the base table to ensure accuracy.

Cursors and locking

86 Adaptive Server Enterprise

• At level 1, Adaptive Server uses shared or update locks on base table or
leaf-level index pages that contain a row representing a current cursor
position.

The page remains locked until the current cursor position moves off the
page as a result of fetch statements.

• At level 2 or 3, Adaptive Server uses shared or update locks on any base
table or leaf-level index pages that have been read in a transaction through
the cursor.

Adaptive Server holds the locks until the transaction ends; it does not
release the locks when the data page is no longer needed or when the
cursor is closed.

If you do not set the close on endtran or chained options, a cursor remains open
past the end of the transaction, and its current page locks remain in effect. It
may also continue to acquire locks as it fetches additional rows.

Using the shared keyword
When declaring an updatable cursor using the for update clause, you can use
shared page locks (instead of update page locks) in the declare cursor
statement:

declare cursor_name cursor
for select select_list
from {table_name | view_name} shared
for update [of column_name_list]

This allows other users to obtain an update lock on the table or an underlying
table of the view.

You can use the holdlock keyword with shared after each table or view name.
holdlock must precede shared in the select statement. For example:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
 from authors holdlock shared
 where state != ’CA’
 for update of au_lname, au_fname

These are the effects of specifying the holdlock or shared options when defining
an updatable cursor:

• If you do not specify either option, the cursor holds an update lock on the
row or on the page containing the current row.

CHAPTER 4 Using Locking Commands

Performance and Tuning Series: Locking and Concurrency Control 87

Other users cannot update, through a cursor or otherwise, the row at the
cursor position (for datarows-locked tables) or any row on this page (for
allpages and datapages-locked tables).

Other users can declare a cursor on the same tables you use for your cursor,
and can read data, but they cannot get an update or exclusive lock on your
current row or page.

• If you specify the shared option, the cursor holds a shared lock on the
current row or on the page containing the currently fetched row.

Other users cannot update, through a cursor or otherwise, the current row,
or the rows on this page. They can, however, read the row or rows on the
page.

• If you specify the holdlock option, you hold update locks on all the rows or
pages that have been fetched (if transactions are not being used) or only
the pages fetched since the last commit or rollback (if in a transaction).

Other users cannot update, through a cursor or otherwise, currently fetched
rows or pages.

Other users can declare a cursor on the same tables you use for your cursor,
but they cannot get an update lock on currently fetched rows or pages.

• If you specify both options, the cursor holds shared locks on all the rows
or pages fetched (if not using transactions) or on the rows or pages fetched
since the last commit or rollback.

Other users cannot update, through a cursor or otherwise, currently fetched
rows or pages.

Additional locking commands

lock table
In transactions, you can use the lock table command to:

• To immediately lock the entire table, rather than waiting for lock
promotion to take effect.

Additional locking commands

88 Adaptive Server Enterprise

• When the query or transactions uses multiple scans, and none of the scans
locks a sufficient number of pages or rows to trigger lock promotion, but
the total number of locks is very large.

• When large tables, especially those using datarows locking, need to be
accessed at transaction level 2 or 3, and lock promotion is likely to be
blocked by other tasks. Using lock table can prevent running out of locks.

The table locks are released at the end of the transaction.

lock table allows you to specify a wait period. If the table lock cannot be granted
within the wait period, an error message is printed, but the transaction is not
rolled back.

Lock timeouts
You can specify the amount of time that a task waits for a lock:

• At the server level, with the lock wait period configuration parameter

• For a session or in a stored procedure, with the set lock wait command

• For a lock table command

See the Transact-SQL Users Guide for more information on these commands.

Except for lock table, a task that attempts to acquire a lock and fails to acquire
it within the time period returns an error message and the transaction is rolled
back.

Using lock timeouts can be useful for removing tasks that acquire some locks,
and then wait for long periods of time blocking other users. However, since
transactions are rolled back, and users may simply resubmit their queries,
timing out a transaction means that the work needs to be repeated.

Use sp_sysmon to monitor the number of tasks that exceed the time limit while
waiting for a lock.

See “Lock time-out information” in Performance and Tuning Series:
Monitoring Adaptive Server with sp_sysmon.

Performance and Tuning Series: Locking and Concurrency Control 89

C H A P T E R 5 Indexes

This chapter describes how Adaptive Server stores indexes and uses them
to speed data retrieval for select, update, delete, and insert operations.

Indexes are the most important physical design element in improving
database performance:

• Indexes help to avoid table scans. A few index pages and data pages
can satisfy many queries without requiring reads on hundreds of data
pages.

• For some queries, data can be retrieved from a nonclustered index
without accessing data rows.

• Clustered indexes can randomize data inserts, avoiding insert hot
spots on the last page of a table.

• Indexes can help to avoid sorts, if the index order matches the order
of the columns in an order by clause.

• For most partitioned tables, you can create global indexes with one
index tree to cover the whole table, or you can create local indexes
with multiple index trees, each of which covers one partition of the
table.

In addition to their performance benefits, indexes can enforce the
uniqueness of data.

Indexes are database objects created on a table to speed direct access to
specific data rows. Indexes store the values of the keys named when the
index was created and logical pointers to the data pages or to other index
pages.

Topic Page
Types of indexes 90

Indexes and partitions 93

Clustered indexes on allpages-locked tables 94

Nonclustered indexes 103

Index covering 109

Indexes and caching 112

Types of indexes

90 Adaptive Server Enterprise

Although indexes speed data retrieval, they can slow down data modifications,
since most changes to the data require index updates. Optimal indexing
demands an understanding of:

• The behavior of queries that access unindexed heap tables, tables with
clustered indexes, and tables with nonclustered indexes

• The mix of queries that run on your server

• The relative benefits of local and global indexes on partitioned tables

• The Adaptive Server optimizer

Types of indexes
Adaptive Server provides two general types of indexes that can be created at
the table or at the partition level.

• Clustered indexes, where the data is physically stored in the order of the
keys on the index:

• For allpages-locked tables, rows are stored in key order on pages, and
pages are linked in key order.

• For data-only-locked tables, indexes are used to direct the storage of
data on rows and pages, but strict key ordering is not maintained.

• Nonclustered indexes, where the storage order of data in the table is not
related to index keys

You can create only one clustered index on a table or partition because there is
only one possible physical ordering of the data rows. You can create up to 249
nonclustered indexes per table.

A table that has no clustered index is called a heap. The rows in the table are in
no particular order, and all new rows are added to the end of the table. Chapter
2, “Data Storage,” in Performance and Tuning Series: Physical Database
Tuning discusses heaps and SQL operations on heaps.

For partitioned tables, indexes may be either local or global (see “Indexes and
partitions” on page 93).

Function-based indexes are a type of nonclustered index which use one or
more expressions as the index key. See the Transact-SQL Users Guide for more
on creating function-based indexes. See also Chapter 6, “Indexing for
Concurrency Control,” for information on when to use function-based indexes.

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 91

Index pages
Index entries are stored as rows on index pages in a format similar to that of
data rows on data pages. Index entries store key values and pointers to lower
levels of the index, to the data pages, or to individual data rows.

Adaptive Server uses B-tree indexing, so each node in the index structure can
have multiple children.

Index entries are usually much smaller than a data row in a data page, and index
pages are typically much more densely populated than data pages. If a data row
has 200 bytes (including row overhead), there are 10 rows per page on a 2K
server. However, an index on a 15-byte field has about 100 rows per index page
on a 2K server (the pointers require 4 – 9 bytes per row, depending on the type
of index and the index level).

Indexes can have multiple levels:

• Root level

• Leaf level

• Intermediate level

Root level

The root level is the highest level of the index. There is only one root page. If
an allpages-locked table is very small, so that the entire index fits on a single
page, there are no intermediate or leaf levels, and the root page stores pointers
to the data pages.

Data-only-locked tables always have a leaf level between the root page and the
data pages.

For larger tables, the root page stores pointers to the intermediate level index
pages or to leaf-level pages.

Leaf level

The lowest level of the index is the leaf level. At the leaf level, an index
contains a key value for each row in the table, and the rows are stored in sorted
order by the index key:

• For clustered indexes on allpages-locked tables, the leaf level is the data.
No other level of the index contains one index row for each data row.

Types of indexes

92 Adaptive Server Enterprise

• For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a pointer
to the page, and the row containing the specific key value.

The leaf level is the level just above the data; it contains one index row for
each data row. Index rows on the index page are stored in key value order.

Intermediate level

All levels between the root and leaf levels are intermediate levels. An index on
a large table or an index using long keys may have many intermediate levels.
Indexes on a very small table may not have an intermediate level; the root
pages point directly to the leaf level.

Index size
Table 5-1 describes the limits for index size for APL and DOL tables:

Table 5-1: Index row-size limit

You can create tables with columns wider than the limit for the index key;
however, these columns become nonindexable. For example, if you perform
the following on a 2K page server, then try to create an index on c3, the
command fails and Adaptive Server issues an error message because column
c3 is larger than the index row-size limit (600 bytes).

create table t1 (

c1 int

c2 int

c3 char(700))

You can still create statistics for a nonindexable column, or include it in search
results. Also, if you include the column in a where clause, it is evaluated during
optimization.

Page size
User-visible index row-size
limit

Internal index row-
size limit

2K (2048 bytes) 600 650

4K (4096 bytes) 1250 1310

8K (8192 bytes) 2600 2670

16K (16384 bytes) 5300 5400

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 93

An index row size that is too large can result in frequent index page splits. Page
splits can make the index level grow linearly with the number of rows in the
table, making the index useless because the index traverse becomes expensive.
Adaptive Server limits the index size to, at most, approximately one third of
server’s page size, so that each index page contains at least three index rows.

Indexes and partitions
Partitioned tables include additional indexing options. Indexes on partitioned
tables can be either global (one index tree covering all the data in the table) or
local (multiple index trees, each of which covers only the data within its
corresponding data partition).

Local indexes on partitioned tables
Both clustered and nonclustered local indexes are supported on all types of
partitioned tables. Each index partition spans a single data partition; that is, the
index partition is “equipartitioned” with the table. On range-, list-, and hash-
partitioned tables, clustered indexes are always local indexes. When you create
a local index, you actually create separate index trees for each partition in the
table. However, Adaptive Server does not support partial indexes, so you
cannot selectively create local indexes for certain partitions.

Global indexes on partitioned tables
Global indexes on partitioned tables span all the partitions in the table; that is,
a single index tree covers all the data in the table, regardless of partitions.
Global indexes on range-, list-, or hash-partitioned tables may only be
nonclustered, since clustered index ordering conflicts with partition ordering of
the data.

Global clustered indexes are allowed on round-robin partitioned tables.

Clustered indexes on allpages-locked tables

94 Adaptive Server Enterprise

Local versus global indexes
• Local indexes can increase concurrency through multiple index access

points, which reduces root-page contention.

• You can place local nonclustered index subtrees (index partitions) on
separate segments to increase I/O parallelism.

• You can run reorg rebuild on a per-partition basis, reorganizing the local
index sub-tree while minimizing the impact on other operations.

• Global nonclustered indexes are better for covered scans than local
indexes, especially for queries that need to fetch rows across partitions.

Unsupported partition index types
• Global partitioned indexes are not supported, meaning that global indexes

that cover all the data in the table are not themselves partitioned.

• Global clustered indexes are supported only on round-robin partitioned
tables.

Clustered indexes on allpages-locked tables
In clustered indexes on allpages-locked tables, leaf-level pages are also the
data pages, and all rows are kept in physical order by the keys.

Physical ordering means that:

• All entries on a data page are in index key order.

• By following the “next page” pointers on the data pages, Adaptive Server
reads the entire table in index key order.

On the root and intermediate pages, each entry points to a page on the next
level.

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 95

Clustered indexes and select operations
Adaptive Server uses syspartitions to find the root page to select a particular
column (for example, a last name) using a clustered index (in versions earlier
than 15.0, Adaptive Server used sysindexes). Adaptive Server examines the
values on the root page and then follows page pointers, performing a binary
search on each page it accesses as it traverses the index.

Figure 5-1: Selecting a row using a clustered index, allpages-locked
table

In Figure 5-1, the root level page, “Green” is greater than “Bennet,” but less
than Karsen, so the pointer for “Bennet” is followed to page 1007. On page
1007, “Green” is greater than “Greane,” but less than “Hunter,” so the pointer
to page 1133 is followed to the data page, where the row is located and returned
to the user.

This retrieval using the clustered index requires one read for each of the:

• Root level of the index

• Intermediate level

• Data page

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Green
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

select *
from employees
where lname =
"Green"

K
ey

P
o

in
te

r

K
ey

P
o

in
te

r

Clustered indexes on allpages-locked tables

96 Adaptive Server Enterprise

These reads may come either from cache or from disk. On tables that are
frequently used, the higher levels of the indexes are often found in cache, with
lower levels and data pages being read from disk.

Relationship between physical and logical reads

If Adaptive Server reads a page from disk, it is counted as a physical and a
logical read. The cost of logical I/O is always greater than or equal to physical
I/O.

Logical I/O always reports 2K data pages. Physical reads and writes are
reported in buffer-sized units. Multiple pages that are read in a single I/O
operation are treated as a unit: they are read, written, and moved through the
cache as a single buffer.

Clustered indexes and insert operations
When you insert a row into an allpages-locked table with a clustered index, the
data row must be placed in physical order according to the key value on the
table.

Other rows on the data page move down on the page, as needed, to make room
for the new value. As long as there is room for the new row on the page, the
insertion does not affect any other pages in the database.

The clustered index is used to find the location for the new row.

Figure 5-2 shows a simple case where there is room on an existing data page
for the new row. In this case, the key values in the index do not need to change.

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 97

Figure 5-2: Inserting a row into an allpages-locked table with a
clustered index

Page splitting on full data pages
If there is not enough room on the data page for the new row, a page split must
be performed.

• A new data page is allocated on an extent already in use by the table. If
there is no free page available, a new extent is allocated.

• The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. This requires reading those
pages into memory and locking them.

• Approximately half of the rows are moved to the new page, with the new
row inserted in order.

• The higher levels of the clustered index change to point to the new page.

• If the table also has nonclustered indexes, all pointers to the affected data
rows must be changed to point to the new page and row locations.

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Green
Greene

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

insert employees (lname)
values ("Greco")

K
ey

P
o

in
te

r K
ey

P
o

in
te

r

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Clustered indexes on allpages-locked tables

98 Adaptive Server Enterprise

In some cases, page splitting is handled slightly differently. See “Exceptions to
page splitting” on page 98.

In Figure 5-3, the page split requires adding a new row to an existing index
page, page 1007.

Figure 5-3: Page splitting in an allpages-locked table with a clustered
index

Exceptions to page splitting

There are exceptions to 50-50 page splits:

• If you insert a large row that cannot fit on the page before or the page after
the page that requires splitting, two new pages are allocated, one for the
large row and one for the rows that follow it.

Page 1144
Green
Greene

Page 1133
Greane
Greco
Green
Greene

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greaves
Greco

Page 1127
Hunter
Jenkins

Page 1007
Bennet 1132
Greane 1133
Green 1144
Hunter 1127

Page 1009
Karsen 1315

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

Root page Data pages Intermediate

insert employees
(lname)
values ("Greaves")

Before

K
ey

P
o

in
te

r

K
ey

P
o

in
te

r

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 99

• If possible, Adaptive Server keeps duplicate values together when it splits
pages.

• If Adaptive Server detects that all inserts are taking place at the end of the
page, due to a increasing key value, the page is not split when it is time to
insert a new row that does not fit at the bottom of the page. Instead, a new
page is allocated, and the row is placed on the new page.

• If Adaptive Server detects that inserts are taking place in order at other
locations on the page, the page is split at the insertion point.

Page splitting on index pages
If a new row needs to be added to a full index page, the page split process on
the index page is similar to the data page split.

A new page is allocated, and half of the index rows are moved to the new page.

A new row is inserted at the next highest level of the index to point to the new
index page.

Performance impacts of page splitting
Page splits are expensive operations. In addition to the actual work of moving
rows, allocating pages, and logging the operations, the cost is increased by
updating:

• The clustered index itself

• Page pointers on adjacent pages to maintain page linkage

• All nonclustered index entries that point to the rows affected by the split

When you create a clustered index for a table that will grow over time, you may
want to use fillfactor to leave room on data pages and index pages. This reduces
the number of page splits for a time.

See “Choosing space management properties for indexes” on page 138.

Clustered indexes on allpages-locked tables

100 Adaptive Server Enterprise

Overflow pages
Special overflow pages are created for nonunique clustered indexes on
allpages-locked tables when a newly inserted row has the same key as the last
row on a full data page. A new data page is allocated and linked into the page
chain, and the newly inserted row is placed on the new page.

Figure 5-4: Adding an overflow page to a clustered index, allpages-
locked table

The only rows that are placed on the overflow page are additional rows with
the same key value. In a nonunique clustered index with many duplicate key
values, there can be numerous overflow pages for the same value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow pages
until a value is found that does not match the search value.

insert employees (lname)
values("Greene")

Page 1133
Greane
Greco
Green
Greene

Data pages

Before insert

Overflow
data page

Page 1134
Gresham
Gridley

Page 1133
Greane
Greco
Green
Greene

Page 1156
Greene

Page 1134
Gresham
Gridley

After insert

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 101

Clustered indexes and delete operations
When you delete a row from an allpages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the data
remains contiguous on the page.

Figure 5-5 shows a page that has four rows before a delete operation removes
the second row on the page. The two rows that follow the deleted row are
moved up.

Figure 5-5: Deleting a row from a table with a clustered index

Page 1132
Bennet
Chan
Dull
Edwards

Page 1133
Greane
Greco
Greene

Page 1127
Hunter
Jenkins

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname = "Green"

Page 1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Root page Data pages Intermediate

G
ree

n

Page 1133
Greane
Green
Greco
Greene

Before delete
Data to
be
deleted

K
ey

P
o

in
te

r

K
ey

P
o

in
te

r

Clustered indexes on allpages-locked tables

102 Adaptive Server Enterprise

Deleting the last row on a page

If you delete the last row on a data page, the page is deallocated and the next
and previous page pointers on the adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the index
are removed.

If the deallocated data page is on the same extent as other pages belonging to
the table, it can be used again when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to the
table, the extent is also deallocated and becomes available for the expansion of
other objects in the database.

In Figure 5-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following index
rows on the page have been moved up to keep the used space contiguous.

Figure 5-6: Deleting the last row on a page (after the delete)

G
ridley

Page R1007
Bennet 1132
Greane 1133
Hunter 1127

Page 1009
Karsen 1315

Page 1134

Page 1001
Bennet 1007
Karsen 1009
Smith 1062

delete
from employees
where lname =

Root page Data pages Intermediate

Empty page
available for
reallocation

G
ridley

Page 1133
Greane
Green
Greane

Page 1127
Hunter
Jenkins

K
ey

P
o

in
te

r

K
ey

P
o

in
te

r

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 103

Index page merges

If you delete a pointer from an index page, leaving only one row on that page,
the row is moved onto an adjacent page, and the empty page is deallocated. The
pointers on the parent page are updated to reflect the changes.

Nonclustered indexes
The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

• Leaf pages are not the same as the data pages.

• Leaf level stores one key-pointer pair for each row in the table.

• Leaf-level pages store the index keys, data page number, and row number
for the data row to which this index row is pointing. This combination of
page number and row offset number is called the row ID.

• The root and intermediate levels store index keys and page pointers to
other index pages. They also store the row ID of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

Leaf pages revisited
The leaf page of an index is the lowest level of the index where all of the keys
for the index appear in sorted order.

In clustered indexes on allpages-locked tables, the data rows are stored in order
by the index keys, so by definition, the data level is the leaf level. There is no
other level of the clustered index that contains one index row for each data row.
Clustered indexes on allpages-locked tables are sparse indexes.

The level above the data contains one pointer for every data page, not data row.

In nonclustered indexes and clustered indexes on data-only-locked tables, the
level just above the data is the leaf level: it contains a key-pointer pair for each
data row. These indexes are dense. At the level above the data, they contain one
index row for each data row.

Nonclustered indexes

104 Adaptive Server Enterprise

Nonclustered index structure
The table in Figure 5-7 shows a nonclustered index on lname. The data rows at
the far right show pages in ascending order by employee_id (10, 11, 12, and so
on) because there is a clustered index on that column.

The root and intermediate pages store:

• The key value

• The row ID

• The pointer to the next level of the index

The leaf level stores:

• The key value

• The row ID

The row ID in higher levels of the index is used for indexes that allow duplicate
keys. If a data modification changes the index key or deletes a row, the row ID
positively identifies all occurrences of the key at all index levels.

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 105

Figure 5-7: Nonclustered index structure

Nonclustered indexes and select operations
When you select a row using a nonclustered index, the search starts at the root
level. syspartitions stores the page number for the root page of the nonclustered
index (stored in sysindexes in Adaptive Server versions earlier than 15.0).

In Figure 5-8, “Green” is greater than “Bennet,” but less than “Karsen,” so the
pointer to page 1007 is followed.

“Green” is greater than “Greane,” but less than “Hunter,” so the pointer to page
1133 is followed. Page 1133 is the leaf page, showing that the row for “Green”
is row 2 on page 1421. This page is fetched, the “2” byte in the offset table is
checked, and the row is returned from the byte position on the data page.

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1007

Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1242
10 O’Leary
11 Ringer
12 White
13 Jenkins

Root page Data pages Intermediate

Page 1307
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1421
18 Bennet
19 Green
20 Yokomoto

Page 1409
21 Dull
22 Greene
23 White

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1009
Karsen 1411,3 1315

Page 1001

Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Leaf pages

K
ey

R
o

w
ID

P
o

in
te

r

K
ey

R
o

w
ID

P
o

in
te

r K
ey

P
o

in
te

r

Nonclustered indexes

106 Adaptive Server Enterprise

Figure 5-8: Selecting rows using a nonclustered index

Nonclustered index performance
The query in Figure 5-8 requires one read for each:

• Root level page

• Intermediate level page

• Leaf-level page

• Data page

If your applications use a particular nonclustered index frequently, the root and
intermediate pages are probably in cache, so it is likely that only one or two
physical disk I/Os need to be performed.

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate Leaf pages

select *
from employee
where lname =
"Green"

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

K
ey

R
o

w
ID

P
o

in
te

r K
ey

R
o

w
ID

P
o

in
te

r

K
ey

P
o

in
te

r

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 107

Nonclustered indexes and insert operations
When you insert rows into a heap that has a nonclustered index and no
clustered index, the rows are inserted in the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the partitions.
Then, the nonclustered index is updated to include the new row.

If the table has a clustered index, the clustered index is used to find the location
for the row. The clustered index is updated, if necessary, and each nonclustered
index is updated to include the new row.

Figure 5-9 shows an insert into a heap table with a nonclustered index. The row
is placed at the end of the table. A row containing the new key value and the
row ID is also inserted into the leaf level of the nonclustered index.

Figure 5-9: An insert into a heap table with a nonclustered index

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Edi Greene
Gabe White
Kip Greco

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Root page Data pages Intermediate Leaf pages

insert employees
(empid, lname)
values(24,
"Greco")

K
ey

R
o

w
ID

P
o

in
te

r K
ey

R
o

w
ID

P
o

in
te

r

K
ey

P
o

in
te

r

Nonclustered indexes

108 Adaptive Server Enterprise

Nonclustered indexes and delete operations
When a row is deleted from a table, the query can use a nonclustered index on
the columns in the where clause to locate the data row to delete, as shown in
Figure 5-10.

The row in the leaf level of the nonclustered index that points to the data row
is also removed. If there are other nonclustered indexes on the table, the rows
on the leaf level of those indexes are also deleted.

Figure 5-10: Deleting a row from a table with a nonclustered index

If the deletion removes the last row on the data page, the page is deallocated
and the adjacent page pointers are adjusted in allpages-locked tables. Any
references to the page are also deleted in higher levels of the index.

If the delete operation leaves only a single row on an index intermediate page,
index pages may be merged, as with clustered indexes.

Page 1242
Ray O’Leary
Ron Ringer
Lisa White
Bob Jenkins

Page 1307
Tim Hunter
Liv Smith
Ann Ringer
Jo Greane

Page 1421
Ian Bennet
Andy Green
Les Yokomoto

Page 1409
Chad Dull
Eddy Greene
Gabe White
Kip Greco

Page 1133
Greane 1307,4
Greco 1409,4
Green 1421,2
Greene 1409,2

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1001
Bennet 1421,1 1007
Karsen 1411,3 1009
Smith 1307,2 1062

Page 1007
Bennet 1421,1 1132
Greane 1307,4 1133
Hunter 1307,1 1127

Page 1009
Karsen 1411,3 1315

Root page Data pages Intermediate Leaf pages

delete employees
where lname = "Green"

G
reen

Page 1132
Bennet 1421,1
Chan 1129,3
Dull 1409,1
Edwards 1018,5

K
ey

R
o

w
ID

P
o

in
te

r

K
ey

R
o

w
ID

P
o

in
te

r K
ey

P
o

in
te

r

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 109

See “Index page merges” on page 103.

There is no automatic page merging on data pages, so if your applications make
many random deletes, you may end up with data pages that have only a single
row, or a few rows, on a page.

Clustered indexes on data-only-locked tables
Clustered indexes on data-only-locked tables are structured like nonclustered
indexes. They have a leaf level above the data pages. The leaf level contains
the key values and row ID for each row in the table.

Unlike clustered indexes on allpages-locked tables, the data rows in a data-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have adjacent or
nearby keys.

When a row is inserted in a data-only-locked table with a clustered index, the
insert uses the clustered index key just before the value to be inserted. The
index pointers are used to find that page, and the row is inserted on the page if
there is room. If there is not room, the row is inserted on a page in the same
allocation unit, or on another allocation unit already used by the table.

To provide nearby space for maintaining data clustering during inserts and
updates to data-only-locked tables, you can set space management properties
to provide space on pages (using fillfactor and exp_row_size) or on allocation
units (using reservepagegap).

See “Setting Space Management Properties,” in Performance and Tuning
Series:Physical Database Tuning.

Index covering
Index covering can produce dramatic performance improvements when all
columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns, adding up to a
maximum 600 bytes.

Index covering

110 Adaptive Server Enterprise

If you create a composite nonclustered index on each column referenced in the
query’s select list and in any where, having, group by, and order by clauses, the
query can be satisfied by accessing only the index.

Since the leaf level of a nonclustered index or a clustered index on a data-only-
locked table contains the key values for each row in a table, queries that access
only the key values can retrieve the information by using the leaf level of the
nonclustered index as if it were the actual table data. This is called index
covering.

Both matching and nonmatching index scans can use an index that covers a
query.

For both types of covered queries, the index keys must contain all the columns
named in the query. Matching scans have additional requirements.

“Choosing composite indexes” on page 132 describes query types that make
good use of covering indexes.

Covering matching index scans
Covering matching index scans lets you skip the last read for each row returned
by the query, the read that fetches the data page.

For point queries that return only a single row, the query’s performance gain is
slight— just one page.

For range queries, the performance gain is larger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columns in the where clauses of
the query must include the leading column of the columns in the index.

For example, for an index on columns A, B, C, and D, the following sets can
perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and ABCD. The
columns B, BC, BCD, BD, C, CD, or D do not include the leading column and
can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methods to move from the root of the index to the nonclustered leaf page
that contains the first row.

In Figure 5-11, the nonclustered index on lname, fname covers the query. The
where clause includes the leading column, and all columns in the select list are
included in the index, so the data page need not be accessed.

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 111

Figure 5-11: Matching index access does not have to read the data row

Covering nonmatching index scans
When the columns specified in the where clause do not include the leading
column in the index, but all columns named in the select list and other query
clauses (such as group by or having) are included in the index, Adaptive Server
saves I/O by scanning the entire leaf level of the index, rather than scanning the
table.

It cannot perform a matching scan because the first column of the index is not
specified.

The query in Figure 5-12 shows a nonmatching index scan. This query does
not use the leading columns on the index, but all columns required in the query
are in the nonclustered index on lname, fname, emp_id.

Page 1560
Bennet,Sam 1580,1
Chan,Sandra 1129,3
Dull,Normal 1409,1
Edwards,Linda 1018,5

Page 1561
Greane,Grey 1307,4
Greco,Del 1409,4
Green,Rita 1421,2
Greene,Cindy 1703,2

Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 1242,4

Page 1544
Bennet,Sam 1580,1 1560
Greane,Grey 1649,4 1561
Hunter,Hugh 1649,1 1843

Root page Data pages Intermediate Leaf pages

select fname, lname
from employees
where lname =

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

K
ey

P
o

in
te

r

K
ey

R
o

w
ID

P
o

in
te

r

Indexes and caching

112 Adaptive Server Enterprise

The nonmatching scan must examine all rows on the leaf level. It scans all leaf
level index pages, starting from the first page. It has no way of knowing how
many rows might match the query conditions, so it must examine every row in
the index. Since it must begin at the first page of the leaf level, it can use the
pointer in syspartitions.firstpage rather than descend the index.

Figure 5-12: A nonmatching index scan

Indexes and caching
“How Adaptive Server performs I/O for heap operations” in Performance and
Tuning Series: Physical Database Tuning introduces the basic concepts of the
Adaptive Server data cache, and shows how caches are used when reading heap
tables.

Page 1561
Greane,Grey,486... 1307,4
Greco,Del,672... 1409,4
Green,Rita,398... 1421,2
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pages Intermediate Leaf pages

select lname,
emp_id
from employees

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

sysindexes.fir

Page 1561
Greane,Grey,486... 1307,4
Greco,Del,672... 1409,4
Green,Rita,398... 1421,2
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 1242,4

Page 1560
Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... 1018,5

Root page Data pages Intermediate Leaf pages

select lname,
emp_id
from employees

Page 1647
10 O’Leary
11 Ringer
12 White
13 Jenkins

Page 1649
14 Hunter
15 Smith
16 Ringer
17 Greane

Page 1580
18 Bennet
20 Yokomoto

Page 1703
21 Dull
22 Greene
23 White
24 Greco

sysindexes.firstpag

Page 1544
Bennet,Sam,409... 1580,1 1560
Greane,Grey,486... 1649,4 1561
Hunter,Hugh,457... 1649,1 1843

K
ey

R
o

w
ID

P
o

in
te

r

K
ey

P
o

in
te

r

CHAPTER 5 Indexes

Performance and Tuning Series: Locking and Concurrency Control 113

Index pages get special handling in the data cache:

• Root and intermediate index pages always use least recently used (LRU)
strategy.

• Index pages can use one cache while the data pages use a different cache,
if the index is bound to a different cache.

• Covering index scans can use fetch-and-discard strategy.

• Index pages can cycle through the cache many times, if number of index
trips is configured.

When a query that uses an index is executed, the root, intermediate, leaf, and
data pages are read in that order. If these pages are not in cache, they are read
into the MRU end of the cache and are moved toward the LRU end as
additional pages are read in.

Each time a page is found in cache, it is moved to the MRU end of the page
chain, so the root page and higher levels of the index tend to stay in the cache.

Using separate caches for data and index pages
Indexes and the tables they index can use different caches. A system
administrator or table owner can bind a clustered or nonclustered index to one
cache and its table to another.

Index trips through the cache
A special strategy keeps index pages in cache. Data pages make only a single
trip through the cache: they are read in at the MRU end of the cache or placed
immediately before the wash marker (A point in the cache on the MRU/LRU
chain), depending on the cache strategy chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that page is
reused when another page needs to be read into cache.

For index pages, a counter controls the number of trips that an index page can
make through the cache.

When the counter is greater than 0 for an index page, and it reaches the LRU
end of the page chain, the counter is decremented by 1, and the page is placed
at the MRU end again.

Indexes and caching

114 Adaptive Server Enterprise

By default, the number of trips that an index page makes through the cache is
set to 0. To change the default, a system administrator can set the number of
index trips configuration parameter.

Performance and Tuning Series: Locking and Concurrency Control 115

C H A P T E R 6 Indexing for Concurrency
Control

This chapter introduces the basic query analysis tools that can help you
choose appropriate indexes. It also discusses index selection criteria for
point queries, range queries, and joins.

How indexes affect performance
Carefully considered indexes, built on top of a good database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and delete operations can take
longer when a large number of indexes must be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer analyzes the costs of possible query
plans and chooses the plan that has the lowest estimated cost. Since much
of the cost of executing a query consists of disk I/O, creating the correct
indexes for your applications means that the optimizer can use indexes to:

• Avoid table scans when accessing data

Topic Page
How indexes affect performance 115

Symptoms of poor indexing 117

Detecting indexing problems 117

Fixing corrupted indexes 120

Index limits and requirements 123

Choosing indexes 123

Techniques for choosing indexes 135

Index and statistics maintenance 138

Additional indexing tips 139

How indexes affect performance

116 Adaptive Server Enterprise

• Target specific data pages that contain specific values in a point query

• Establish upper and lower bounds for reading data in a range query

• Avoid data page access completely, when an index covers a query

• Use ordered data to avoid sorting data or to favor the less costly ordered-
input based JOIN, UNION, GROUP, or DISTINCT operators over other more
expensive algorithms (for example, using merge joins instead of nested-
loop joins and so on).

For example, to select the best index for a join clause:

r.c1=s.c1 and ... r.cn=s.cn

• Indexes on r or s that have any subset of c1 ... cn as a prefix avoid
the sort on the side of the merge join with the prefix.

• You can use indexes on both sides of the and clause if they are
compatible (that is, they have a nonempty common prefix covered by
the equijoin clause. This common prefix determines the part of the
equijoin clause used as a merge clause (the longer the merge clause,
the more effective it is).

• The query processor enumerates plans with an index on one side and
a sort on the other. In the example above, the index prefix covered by
the equijoin clause determines the part of the equijoin clause used as a
merge clause (again, the longer the merge clause, the more effective
it is).

You can use similar steps to identify the best index for union, distinct, and
group clauses.

You can create indexes to enforce the uniqueness of data and to randomize the
storage location of inserts.

You can set sp_chgattribute 'concurrency_opt_threshold' parameter to avoid
table scans for increased concurrency. The syntax is:

sp_chgattribute table_name, "concurrency_opt_threshold", min_page_count

For example, this sets the concurrency optimization threshold for a table to 30
pages:

sp_chgattribute lookup_table, "concurrency_opt_threshold", 30

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 117

Detecting indexing problems
Some of the major indications of insufficient or incorrect indexing include:

• A select statement takes too long.

• A join between two or more tables takes an extremely long time.

• select operations perform well, but data modification processes perform
poorly.

• Point queries (for example, where colvalue = 3) perform well, but
range queries (for example, where colvalue > 3 and colvalue <
30) perform poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing
A primary goal of improving performance with indexes is avoiding table scans
(which read every page of the table from disk), or partial table scans, which
read only data pages from disk.

A query searching for a unique value in a table that has 600 data pages requires
600 physical and logical reads. If an index points to the data value, the same
query can be satisfied with 2 or 3 reads, a 200 to 300 fold performance
improvement

On a system with a 12-millisecond disk, this is a difference of several seconds
compared to less than a second. Heavy disk I/O by a single query has a negative
impact on overall throughput.

Lack of indexes is causing table scans

If select operations and joins take too long, it probably indicates that either an
appropriate index does not exist or, it exists, but is not being used by the
optimizer.

showplan output reports whether the table is being accessed by a table scan or
index. If you think an index should be used, but showplan reports a table scan,
dbcc traceon(302) output can help you determine the reason. dbcc traceon
displays the costing computations for all optimizing query clauses.

Detecting indexing problems

118 Adaptive Server Enterprise

If there is no clause is included in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think should
limit the scan is included in dbcc traceon(302) output, look carefully at its
costing, and that of the chosen plan reported with dbcc traceon(310). See
Adaptive Server Reference Manual: Commands for more information about
dbcc traceon.

Index is not selective enough

An index is selective if it helps the optimizer find a particular row or a set of
rows. An index on a unique identifier such as a passport number is highly
selective, since it lets the optimizer pinpoint a single row. An index on a
nonunique entry such as sex (M, F) is not very selective, and the optimizer uses
such an index only in very special cases.

Index does not support range queries

Generally, clustered indexes and covering indexes provide good performance
for range queries and for search arguments that match many rows. Range
queries that reference the keys of noncovering indexes use the index for ranges
that return a limited number of rows.

As the number of rows the query returns increases, however, using a
nonclustered index or a clustered index on a data-only-locked table can cost
more than a table scan.

Too many indexes slow data modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

Every insert or delete operation affects the leaf level, (and sometimes higher
levels) of a clustered index on a data-only-locked table, and each nonclustered
index, for any locking scheme.

Updates to clustered index keys on allpages-locked tables can move the rows
to different pages, requiring an update of every nonclustered index. Analyze
the requirements for each index and try to eliminate those that are unnecessary
or rarely used.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 119

Index entries are too large

Try to keep index entries as small as possible. You can create an index’s total
key length up to one-third the page size. However, indexes with this key length
can store very few rows per index page, and the index level may be high. This
increases the number of pages to traverse from the index root to the leaf pages,
and increases the amount of disk I/O needed during queries.

The following example uses values reported by sp_estspace to demonstrate
how the number of index pages and leaf levels required increases with key size.
It creates nonclustered indexes using 10-, 20-, and 40-character keys on a
server configured for 2K pages.

create table demotable (c10 char(10),
c20 char(20),
c40 char(40))

create index t10 on demotable(c10)
create index t20 on demotable(c20)
create index t40 on demotable(c40)
sp_estspace demotable, 500000

Table 6-1 shows the results.

Table 6-1: Effects of key size on index size and levels

The output shows that the indexes for the 10-column and 20-column keys each
have three levels, while the 40-column key requires a fourth level.

The number of pages required is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows

Indexes with wide rows may be useful when:

• The table has very wide rows, resulting in very few rows per data page.

• The set of queries run on the table provides logical choices for a covering
index.

• Queries return a sufficiently large number of rows.

Index, key size Leaf-level pages Index levels

t10, 10 bytes 4311 3

t20, 20 bytes 6946 3

t40, 40 bytes 12501 4

Fixing corrupted indexes

120 Adaptive Server Enterprise

For example, if a table has very long rows, and only one row per page, a query
that needs to return 100 rows must access 100 data pages. An index that covers
this query, even with long index rows, can improve performance.

For example, if the index rows are 240 bytes, the index stores 8 rows per page,
and the query must access only 12 index pages.

Fixing corrupted indexes
If the index on one of your system tables has been corrupted, you can use the
sp_fixindex system procedure to repair the index. See Adaptive Server
Reference Manual: Procedures.

❖ Repairing the system table index with sp_fixindex

1 Get the object_name, object_ID, and index_ID of the corrupted index. If
you only have a page number and you need to find the object_name, see
the Adaptive Server Troubleshooting and Error Messages Guide for
instructions.

2 If the corrupted index is on a system table in the master database, put
Adaptive Server in single-user mode. See the Adaptive Server
Troubleshooting and Error Messages Guide for instructions.

3 If the corrupted index is on a system table in a user database, put the
database in single-user mode and reconfigure to allow updates to system
tables:

1> use master
2> go
1> sp_dboption database_name, "single user", true
2> go
1> sp_configure "allow updates", 1
2> go

4 Issue the sp_fixindex command:

1> use database_name
2> go

1> checkpoint
2> go

1> sp_fixindex database_name, object_name, index_ID
2> go

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 121

You can use the checkpoint to identify the one or more databases or use an
all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Note You must be assigned sa_role to run sp_fixindex.

5 Run dbcc checktable to verify that the corrupted index is now fixed.

6 Disallow updates to system tables:

1> use master
2> go

1> sp_configure "allow updates", 0
2> go

7 Turn off single-user mode:

1> sp_dboption database_name, "single user", false
2> go

1> use database_name
2> go

1> checkpoint
2> go

You can use the checkpoint to identify the one or more databases or use an
all clause, which means you do not have to issue the use database
command.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

❖ Repairing a nonclustered index on sysobjects

1 Perform steps 1 – 3, as described in “Repairing the system table index
with sp_fixindex,” above.

2 Issue:

1> use database_name
2> go

1> checkpoint
2> go

1> select sysstat from sysobjects
2> where id = 1
3> go

Fixing corrupted indexes

122 Adaptive Server Enterprise

You can use the checkpoint to identify the one or more databases or use an
all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

3 Save the original sysstat value.

4 Change the sysstat column to the value required by sp_fixindex:

1> update sysobjects
2> set sysstat = sysstat | 4096
3> where id = 1
4> go

5 Run:

1> sp_fixindex database_name, sysobjects, 2
2> go

6 Restore the original sysstat value:

1> update sysobjects
2> set sysstat = sysstat_ORIGINAL
3> where id = object_ID
4> go

7 Run dbcc checktable to verify that the corrupted index is now fixed.

8 Disallow updates to system tables:

1> sp_configure "allow updates", 0
2> go

9 Turn off single-user mode:

1> sp_dboption database_name, "single user", false
2> go

1> use database_name
2> go

1> checkpoint
2> go

You can use the checkpoint to identify the one or more databases or use an
all clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 123

Index limits and requirements
These limits apply to indexes in Adaptive Server:

• Because the data for a cluster index is ordered by index key, you can create
only one clustered index per table. Adaptive Server creates a clustered
index by default as a local index for range-, list-, and hash-partitioned
tables. You cannot create global clustered indexes on range-, list-, or hash-
partitioned tables.

• You can create a maximum of 249 nonclustered indexes per table.

• When you create a clustered index, Adaptive Server requires empty free
space to copy the rows in the table and allocate space for the clustered
index pages. It also requires space to re-create any nonclustered indexes
on the table.

The amount of space required can vary, depending on how full the table’s
pages are when you begin and the space management properties are
applied to the table and index pages.

See “Determining the space available for maintenance activities” in
“Database Maintenance,” in Performance and Tuning Series: Physical
Database Tuning.

• The referential integrity constraints unique and primary key create unique
indexes to enforce their restrictions on the keys. By default, unique
constraints create nonclustered indexes and primary key constraints create
clustered indexes.

• A key can be made up of as many as 31 columns. The maximum number
of bytes per index key is varies by the page size in bytes as follows:

Choosing indexes
When you are working with index selection you may want to ask these
questions:

Page Size Max key length

2048 600

4096 1250

8192 2600

16384 5300

Choosing indexes

124 Adaptive Server Enterprise

• What indexes are associated currently with a given table?

• What are the most important processes that make use of the table?

• What is the ratio of select operations to data modifications performed on
the table?

• Has a clustered index been created for the table?

• Can the clustered index be replaced by a nonclustered index?

• Do any of the indexes cover one or more of the critical queries?

• Is a composite index required to enforce the uniqueness of a compound
primary key?

• Do existing queries contain expressions that could be accelerated by using
function-based indexes?

• What indexes can be defined as unique?

• What are the major sorting requirements?

• Do some queries use descending ordering of result sets?

• Do the indexes support joins and referential integrity checks?

• Does indexing affect update types (direct versus deferred)?

• What indexes are needed for cursor positioning?

• If dirty reads are required, are there unique indexes to support the scan?

• Should IDENTITY columns be added to tables and indexes to generate
unique indexes? Unique indexes are required for updatable cursors and
dirty reads.

When deciding how many indexes to use, consider:

• Space constraints

• Access paths to table

• Percentage of data modifications versus select operations

• Performance requirements of reports versus OLTP

• Performance impacts of index changes

• How often you can use update statistics

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 125

Index keys and logical keys
You must differentiate index keys from logical keys. Logical keys are part of
the database design, defining the relationships between tables: primary keys,
foreign keys, and common keys.

When you optimize your queries by creating indexes, the logical keys may or
may not be used as the physical keys for creating indexes. You can create
indexes on columns that are not logical keys, and you may have logical keys
that are not used as index keys.

Choose index keys for performance reasons. Create indexes on columns that
support the joins, search arguments, and ordering requirements in queries.

A common error is to create the clustered index for a table on the primary key,
even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes
These are general guidelines for clustered indexes:

• Most allpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heap tables.

In a high-transaction environment, the locking on the last page severely
limits throughput.

• If your environment requires a lot of inserts, do not place the clustered
index key on a steadily increasing value such as an IDENTITY column.
Instead, choose a key that places inserts on random pages to minimize lock
contention while remaining useful in many queries. Often, the primary key
does not meet this condition.

This problem is less severe on data-only-locked tables, but is often a major
source of lock contention on allpages-locked tables.

• Clustered indexes provide very good performance when the key matches
the search argument in range queries, such as:

where colvalue >= 5 and colvalue < 10

In allpages-locked tables, rows are maintained in key order and pages are
linked in order, providing very fast performance for queries using a
clustered index.

In data-only-locked tables, rows are in key order after the index is created,
but the clustering can decline over time.

Choosing indexes

126 Adaptive Server Enterprise

• Other good choices for clustered index keys are columns used in order by
clauses and in joins.

• If possible, do not include frequently updated columns as keys in clustered
indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to a new page. Also, if the index is clustered, but not unique,
updates are performed in deferred mode.

Choosing clustered indexes
Choose indexes based on the kinds of where clauses or joins you perform.
Choices for clustered indexes are:

• The primary key, if it is used for where clauses and if it randomizes inserts

• Columns that are accessed by range, such as:

col1 between 100 and 200
col12 > 62 and < 70

• Columns used by order by

• Columns that change infrequently

• Columns used in joins

If there are several possible choices, choose the most commonly needed
physical order as a first choice.

As a second choice, look for range queries. During performance testing, check
for “hot spots” due to lock contention.

Candidates for nonclustered indexes
When choosing columns for nonclustered indexes, consider all the uses that
were not satisfied by your clustered index choice. In addition, look at columns
that can provide performance gains through index covering.

On data-only-locked tables, clustered indexes can perform index covering,
since they have a leaf level above the data level.

On allpages-locked tables, noncovered range queries work well for clustered
indexes, but may not be supported by nonclustered indexes, depending on the
size of the range.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 127

Consider using composite indexes to cover critical queries and to support less
frequent queries:

• The most critical queries should be able to perform point queries and
matching scans.

• Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Choosing function-based indexes
Function-based indexes can provide an inexpensive option for enhancing the
performance of certain legacy applications.

Function-based indexes allow you to create indexes based directly on one or
more expressions (see the Transact-SQL Users Guide). When the index is built,
the result of evaluating the expressions for each row is stored as an index key
value, and is not reevaluated at query execution time. This means lookups on
the result of an expression within a SQL query can be very fast. Without
function-based indexes, table scans are typically be required to evaluate the
expression for each row in the table for comparison. Adaptive Server creates a
hidden computed column containing the evaluated key expressions and
indexes this column.

You can effectively use function-based indexes for queries that need to apply a
function or operation to a column value and compare the result to another
column in the same row or to a constant or variable.

You can also obtain the performance benefits of function-based indexes by
adding a materialized computed column with index to a table and rewriting the
query to use the indexed computed column. This can be a good approach for
new application development. The advantage of function-based indexes is that
you can simply add to an existing table an index that matches expressions used
in existing queries. In this way, you can enhance the performance of legacy
applications with a minimal schema addition and no change to SQL query
code.

Index selection
Index selection allows you to determine which indexes are actively being used
and those that are rarely used.

Choosing indexes

128 Adaptive Server Enterprise

This section assumes that the monitoring tables feature is already set up. See
the Performance and Tuning Series: Monitoring Tables for information about
installing and using the monitoring tables.

Index selection uses these columns of the monitoring access table,
monOpenObjectActivity:

• IndexID – unique identifier for the index.

• OptSelectCount – reports the number of times that the corresponding
object (such as a table or index) was used as the access method by the
optimizer.

• LastOptSelectDate – reports the last time OptSelectCount was incremented.

• UsedCount – reports the number of times that the corresponding object
(such as a table or index) was used as an access method when a query
executed.

• LastUsedDate – reports the last time UsedCount was incremented.

If a plan has already been compiled and cached, OptSelectCount is not
incremented each time the plan is executed. However, UsedCount is
incremented when a plan is executed. If no exec is on, OptSelectCount is
incremented, but UsedCount is not.

Monitoring data is nonpersistent. That is, when you restart the server, the
monitoring data is reset. Monitoring data is reported only for active objects.
For example, monitoring data does not exist for objects that have not been
opened, since there are no active object descriptors for such objects. If the
system is inadequately configured and has reused object descriptors,
monitoring data for these object descriptors is reinitialized and the data for the
previous object is lost. When the old object is reopened, its monitoring data is
reset.

Examples of using index selection

The following example queries the monitoring tables for the last time all
indexes for a specific object were selected by the optimizer, as well as the last
time they were actually used during execution, and reports the counts in each
case:

select DBID, ObjectID, IndexID, OptSelectCount, LastOptSelectDate, UsedCount,
LastUsedDate
from monOpenObjectActivity
where DBID=db_id("financials_db") and ObjectID =
object_id('financials_db..expenses')

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 129

order by UsedCount

This example displays all indexes that are used—or not currently used—in an
application:

select DBID, ObjectID, IndexID, ObjectName = object_name(ObjectID, DBID),
LastOptSelectDate, UsedCount, LastUsedDate
from monOpenObjectActivity
where DBID = db_id("MY_1253_RS_RSSD")
and ObjectID = object_id('MY_1253_RS_RSSD..rs_columns')
DBID ObjectID IndexID ObjectName
LastOptSelectDate UsedCount LastUsedDate
---------- ---------- ----------- ------------------------------
----------------------- ----------- --------------------------
4 192000684 0 rs_columns
May 15 2006 4:18PM 450 May 15 2006 4:18PM
4 192000684 1 rs_columns
NULL 0 NULL
4 192000684 2 rs_columns
NULL 0 NULL
4 192000684 3 rs_columns
May 12 2006 6:11PM 1 May 12 2006 6:11PM
4 192000684 4 rs_columns
NULL 0 NULL
4 192000684 5 rs_columns
NULL 0 NULL

If the index is not used, it results in a NULL date. If an index is used, it results
in a date like “May 15 2006 4:18PM.”

In this example, the query displays all indexes that are not currently used in the
current database:

select DB = convert(char(20), db_name()),
TableName = convert(char(20), object_name(i.id, db_id())),
IndexName = convert(char(20),i.name),
IndID = i.indid
from master..monOpenObjectActivity a, sysindexes i
where a.ObjectID =* i.id
and a.IndexID =* i.indid
and (a.UsedCount = 0 or a.UsedCount is NULL)
and i.indid > 0
and object_name(i.id, db_id()) not like "sys%"
order by 2, 4 asc
DB TableName IndexName IndID
------------------- -------------------- -------------------- ------
MY_1253_RS_RSSD rs_articles rs_key_articles 1
MY_1253_RS_RSSD rs_articles rs_key4_articles 2

Choosing indexes

130 Adaptive Server Enterprise

MY_1253_RS_RSSD rs_classes rs_key_classes 1
MY_1253_RS_RSSD rs_classes rs_key2_classes 2
MY_1253_RS_RSSD rs_config rs_key_config 1
MY_1253_RS_RSSD rs_databases rs_key_databases 1
MY_1253_RS_RSSD rs_databases rs_key9_databases 2
MY_1253_RS_RSSD rs_databases rs_key13_databases 3
MY_1253_RS_RSSD rs_databases rs_key14_databases 4
MY_1253_RS_RSSD rs_databases rs_key15_databases 5
MY_1253_RS_RSSD rs_datatype rs_key_datatypes 1
MY_1253_RS_RSSD rs_datatype rs_key2_datatype 2

Other indexing guidelines
Here are some other considerations for choosing indexes:

• If an index key is unique, define it as unique so the optimizer knows
immediately that only one row matches a search argument or a join on the
key.

• If your database design uses referential integrity (the references keyword
or the foreign key...references keywords in the create table statement), the
referenced columns must have a unique index, or the attempt to create the
referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on the
referencing column. If your application updates primary keys or deletes
rows from primary key tables, you may want to create an index on the
referencing column so that these lookups do not perform a table scan.

• If your applications use cursors, see “Index use and requirements for
cursors” in “Optimization for Cursors” in Performance and Tuning Series:
Query Processing and Abstract Plans.

• If you are creating an index on a table that will have a lot of insert activity,
use fillfactor to temporarily minimize page splits, improve concurrency,
and minimize deadlocking.

• If you are creating an index on a read-only table, use a fillfactor of 100 to
make the table or index as compact as possible.

• Keep the size of the key as small as possible. Your index trees remain
flatter, accelerating tree traversals.

• Use small datatypes whenever it fits your design.

• Internally, numerics compare slightly faster than strings.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 131

• Variable-length character and binary types require more row overhead
than fixed-length types, so if there is little difference between the
average length of a column and the defined length, use fixed length.
Character and binary types that accept null values are, by definition,
variable-length.

• Whenever possible, use fixed-length, nonnull types for short columns
that will be used as index keys.

• Be sure that the datatypes of the join columns in different tables are
compatible. If Adaptive Server has to convert a datatype on one side of a
join, it may not use an index for that table.

Choosing nonclustered indexes
When you consider adding nonclustered indexes, you must weigh the
improvement in retrieval time against the increase in data modification time. In
addition, consider:

• How much space will the indexes use?

• How volatile is the candidate column?

• How selective are the index keys? Would a scan be better?

• Are there a lot of duplicate values?

Because of data modification overhead, add nonclustered indexes only when
your testing shows that they are helpful.

Performance price for data modification

For all locking schemes, each nonclustered index needs to be updated for each
insertion into, and each deletion from, the table

An update to the table that changes part of an index’s key requires only that
index be updated.

For tables that use allpages locking, all indexes need to be updated for:

• Any update that changes the location of a row by updating a clustered
index key so that the row moves to another page

• Every row affected by a data page split

Choosing indexes

132 Adaptive Server Enterprise

For allpages-locked tables, exclusive locks are held on affected index pages for
the duration of the transaction, increasing lock contention as well as processing
overhead.

Some applications experience unacceptable performance impacts with only
three or four indexes on tables that experience heavy data modification. Other
applications can perform well with many more tables.

Choosing composite indexes
If your analysis shows that more than one column is a good candidate for a
clustered index key, you may be able to provide clustered-like access with a
composite index that covers a particular query or set of queries. These include:

• Range queries.

• Vector (grouped) aggregates, if both the grouped and grouping columns
are included. Any search arguments must also be included in the index.

• Queries that return a high number of duplicates.

• Queries that include order by.

• Queries that table scan, but use a small subset of the columns on the table.

Tables that are read-only or read-mostly can be heavily indexed, as long as your
database has enough space available. If there is little update activity and high
select activity, provide indexes for all frequently used queries. Be sure to test
the performance benefits of index covering.

Key order and performance in composite indexes
Covered queries can provide excellent response time for specific queries when
the leading columns are used.

With the composite nonclustered index on au_lname, au_fname, au_id, this
query runs very quickly:

select au_id
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

This covered point query needs to read only the upper levels of the index and
a single page in the leaf-level row in the nonclustered index of a 5000-row
table.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 133

This similar-looking query (using the same index) does not perform quite as
well. This query is still covered, but searches on au_id:

select au_fname, au_lname
 from authors
where au_id = "A1714224678"

Since this query does not include the leading column of the index, it has to scan
the entire leaf level of the index, about 95 reads.

Adding a column to the select list in the query above, which may seem like a
minor change, makes the performance even worse:

select au_fname, au_lname, phone
 from authors
where au_id = "A1714224678"

This query performs a table scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
leading column, Adaptive Server has only two possible access methods: a table
scan, or a covered index scan.

It does not scan the leaf level of the index for a nonleading search argument and
then access the data pages. A composite index can be used only when it covers
the query or when the first column appears in the where clause.

For a query that includes the leading column of the composite index, adding a
column that is not included in the index adds only a single data page read. This
query must read the data page to find the phone number:

select au_id, phone
 from authors
where au_fname = "Eliot" and au_lname = "Wilk"

Table 6-2 shows the performance characteristics of different where clauses
with a nonclustered index on au_lname, au_fname, au_id and no other indexes
on the table.

Table 6-2: Composite nonclustered index ordering and performance

Columns in the where clause
Performance with the indexed
columns in the select list

Performance with other
columns in the select list

au_lname

or au_lname, au_fname

or au_lname, au_fname, au_id

Good; index used to descend tree; data
level is not accessed

Good; index used to descend tree;
data is accessed (one more page
read per row)

au_fname

or au_id

or au_fname, au_id

Moderate; index is scanned to return
values

Poor; index not used, table scan

Choosing indexes

134 Adaptive Server Enterprise

Choose the ordering of the composite index so that most queries form a prefix
subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

• A composite index provides opportunities for index covering.

• If queries provide search arguments on each of the keys, the composite
index requires fewer I/Os than the same query using an index on any single
attribute.

• A composite index is a good way to enforce the uniqueness of multiple
attributes.

Good choices for composite indexes are:

• Lookup tables

• Columns that are frequently accessed together

• Columns used for vector aggregates

• Columns that make a frequently used subset from a table with very wide
rows

The disadvantages of composite indexes are:

• Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

• An update to any attribute of a composite index causes the index to be
modified. The columns you choose should not be those that are updated
often.

Poor choices are:

• Index rows that are nearly as wide as the data rows

• Composite indexes where only a minor key is used in the where clause

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 135

Using online reorg rebuild for data-only-locked indexes
You can run online reorg rebuild index on DOL indexes to recompact the data,
collect garbage from spaces left by previous deallocations, and rearrange the
data to improve the index page clustering ratio. Running online reorg rebuild
index reduces the space an index requires, and improves the query execution
with higher clustering.

Techniques for choosing indexes
This section presents a study of two queries that must access a single table, and
the indexing choices for these two queries. The two queries are:

• A range query that returns a large number of rows

• A point query that returns only one or two rows

Choosing an index for a range query
Assume that you need to improve the performance of the following query:

select title
from titles
where price between $20.00 and $30.00

Some basic statistics on the table are:

• The table has 1,000,000 rows, and uses allpages locking.

• There are 10 rows per page; pages are 75 percent full, so the table has
approximately 135,000 pages.

• 190,000 (19%) of the titles are priced between $20 and $30.

With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book and
begin reading sequentially until it gets to the last $30 book. With pages about
75 percent full, the average number of rows per page is 7.5. To read 190,000
matching rows, the query would read approximately 25,300 pages, plus 3 or 4
index pages.

Techniques for choosing indexes

136 Adaptive Server Enterprise

With a nonclustered index on price and random distribution of price values,
using the index to find the rows for this query requires reading about 19 percent
of the leaf level of the index; about 1,500 pages.

If the price values are randomly distributed, the number of data pages that must
be read is likely to be high, perhaps as many data pages as there are qualifying
rows, 190,000. Since a table scan requires only 135,000 pages, you would not
want to use a nonclustered index.

Another choice is a nonclustered index on price, title. The query can perform a
matching index scan, using the index to find the first page with a price of $20,
and then scanning forward on the leaf level until it finds a price of more than
$30. This index requires about 35,700 leaf pages, so to scan the matching leaf
pages requires reading about 19 percent of the pages of this index, or about
6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements
The index choice for the range query on price produced a clear performance
choice when all possibly useful indexes were considered. Now, assume this
query also needs to run against titles:

select price
from titles
where title = "Looking at Leeks"

You know that there are very few duplicate titles, so this query returns only one
or two rows.

Considering both this query and the previous query, Table 6-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75

The values were rounded for easier comparison.

Table 6-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title

1 Nonclustered on title
Clustered on price

36,800
650

Clustered index, about 26,600
pages (135,000 *.19)

With 16K I/O: 3,125 I/Os

Nonclustered index, 6 I/Os

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 137

Examining the figures in Table 6-3 shows that:

• For the range query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K I/O.

• For the point query on titles, indexing choices 1, 2, and 3 are excellent.

The best indexing strategy for a combination of these two queries is to use two
indexes:

• Choice 4, for range queries on price.

• Choice 2, for point queries on title, since the clustered index requires very
little space.

You may need additional information to help you determine which indexing
strategy to use to support multiple queries. Typical considerations are:

• What is the frequency of each query? How many times per day or per hour
is the query run?

• What are the response time requirements? Is one of them especially time
critical?

• What are the response time requirements for updates? Does creating more
than one index slow updates?

• Is the range of values typical? Is a wider or narrower range of prices, such
as $20 to $50, often used? How do different ranges affect index choice?

• Is there a large data cache? Are these queries critical enough to provide a
35,000-page cache for the nonclustered composite indexes in index choice
3 or 4? Binding this index to its own cache would provide very fast
performance.

• What other queries and what other search arguments are used? Is this table
frequently joined with other tables?

2 Clustered on title
Nonclustered on price

3,770
6,076

Table scan, 135,000 pages

With 16K I/O: 17,500 I/Os

Clustered index, 6 I/Os

3 Nonclustered on title,
price

36,835 Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Nonclustered index,
5 I/Os

4 Nonclustered on price,
title

36,835 Matching index scan, about
6,800 pages (35,700 *.19)

With 16K I/O: 850 I/Os

Nonmatching index scan,
about 35,700 pages

With 16K I/O: 4,500 I/Os

Possible index choice Index pages Range query on price Point query on title

Index and statistics maintenance

138 Adaptive Server Enterprise

Index and statistics maintenance
To ensure that indexes evolve with your system:

• Monitor queries to determine if indexes are still appropriate for your
applications.

Periodically, check the query plans, as described in “Using showplan,” in
Performance and Tuning Series: Query Processing and Abstract Plans
and the I/O statistics for your most frequent user queries. Pay special
attention to noncovering indexes that support range queries. They are most
likely to switch to table scans if the data distribution changes

• Drop and rebuild indexes that hurt performance.

• Keep index statistics up to date.

• Use space management properties to reduce page splits and to reduce the
frequency of maintenance operations.

Dropping indexes that hurt performance
Drop indexes that hurt performance. If an application performs data
modifications during the day and generates reports at night, you may want to
drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on the
current transactions and processes that are being run, not on the original
database design.

Check query plans to determine whether your indexes are being used.

See “Maintaining index and column statistics” and “Rebuilding indexes” in
“Maintenance Activities and Performance,” in Performance and Tuning
Series: Physical Database Tuning.

Choosing space management properties for indexes
Space management properties can help reduce the frequency of index
maintenance. In particular, choosing the fillfactor value can reduce the number
of page splits on leaf pages of nonclustered indexes and on the data pages of
allpages-locked tables with clustered indexes.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 139

See “Setting Space Management Properties,” in Performance and Tuning
Series: Physical Database Tuning.

Additional indexing tips
These suggestions may improve performance when you are creating and using
indexes:

• Modify the logical design to make use of an artificial column and a lookup
table for tables that require a large index entry.

• Reduce the size of an index entry for a frequently used index.

• Drop indexes during periods when frequent updates occur, and rebuild
them before periods when frequent selects occur.

• If you perform frequent index maintenance, configure your server to speed
up the sorting.

See “Configuring Adaptive Server to speed sorting” in “Maintenance
Activities and Performance,” in Performance and Tuning Series: Physical
Database Tuning for information about configuration parameters that
enable faster sorting.

Creating artificial columns
When indexes, especially composite indexes, become too large, it may be
beneficial to create an artificial column that is assigned to a row, with a
secondary lookup table that is used to translate between the internal ID and the
original columns.

This may increase response time for certain queries, but the overall
performance gain due to a more compact index and shorter data rows is usually
worth the effort.

Keeping index entries short and avoiding overhead
Avoid storing purely numeric IDs as character data. Use integer or numeric IDs
whenever possible to:

Additional indexing tips

140 Adaptive Server Enterprise

• Save storage space on the data pages

• Make index entries more compact

• Improve performance, since internal comparisons are faster

Index entries on varchar columns require more overhead than entries on char
columns. For short index keys, especially those with little variation in length in
the column data, use char for more compact index entries.

Dropping and rebuilding indexes
You might drop nonclustered indexes prior to a major set of inserts, and then
rebuild them afterwards. This speeds the inserts and bulk copies, since the
nonclustered indexes do not have to be updated with every insert.

See “Rebuilding indexes” in “Database Maintenance” in Performance and
Tuning Series: Physical Database Tuning.

Configuring enough sort buffers
The sort buffers decide how many pages of data you can sort in each run. The
number of pages is the basis for the logarithmic function used to calculate the
number of runs needed to finish the sort.

For example, if you have 500 buffers, then the number of runs is calculated
with “log (number of pages in table) with 500 as the log base.”

Also, the number of sort buffers is shared by threads in the parallel sort; if you
do not have enough sort buffers, the parallel sort may not work as fast as it
should.

Creating the clustered index first
Do not create nonclustered indexes, then clustered indexes. When you create
the clustered index, all previous nonclustered indexes are rebuilt.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 141

Configure large buffer pools
To set up for larger I/Os, configure large buffers pools in a named cache and
bind the cache to the table.

Asynchronous log service
Asynchronous log service, or ALS, enables great scalability in Adaptive
Server, providing higher throughput in logging subsystems for high-end
symmetric multiprocessor systems.

You cannot use ALS if you have fewer than four engines. If you try to enable
ALS with fewer than four online engines, an error message appears.

You can enable, disable, or configure ALS using sp_dboption:

sp_dboption <db Name>, "async log service",
"true|false"

After issuing sp_dboption, you must issue a checkpoint in the database for
which you are setting the ALS option:

sp_dboption "mydb", "async log service", "true"
use mydb
checkpoint

You can use the checkpoint to identify one or more databases, or use an all
clause.

checkpoint [all | [dbname[, dbname[, dbname.....]]]

Disabling ALS Before you disable ALS, make sure there are no active users in the database. If
there are, you receive an error message when you issue the checkpoint:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Error 3647: Cannot put database in single-user mode.
Wait until all users have logged out of the database and
issue a CHECKPOINT to disable "async log service".

If there are no active users in the database, this example disables ALS:

sp_dboption "mydb", "async log service", "false"
use mydb
checkpoint

Asynchronous log service

142 Adaptive Server Enterprise

Displaying ALS You can see whether ALS is enabled in a specified database using:

sp_helpdb "mydb"

mydb 3.0 MB sa 2

July 09, 2002
select into/bulkcopy/pllsort, trunc log on chkpt,

async log service

Understanding the user log cache (ULC) architecture
The Adaptive Server logging architecture features the user log cache, or ULC,
by which each task owns its own log cache. No other task can write to this
cache, and the task continues writing to the user log cache whenever a
transaction generates a log record. When the transaction commits or aborts, or
the user log cache is full, the user log cache is flushed to the common log cache,
shared by all the current tasks, which is then written to the disk.

Flushing the ULC is the first part of a commit or abort operation. It requires the
following steps, each of which can cause delay or increase contention:

1 Obtain a lock on the last log page.

2 Allocate new log pages if necessary.

3 Copy the log records from the ULC to the log cache.

The processes in steps 2 and 3 require you to hold a lock on the last log
page, which prevents any other tasks from writing to the log cache or
performing commit or abort operations.

4 Flush the log cache to disk.

Step 4 requires repeated scanning of the log cache to issue write commands
on dirty buffers.

Repeated scanning can cause contention on the buffer cache spinlock to
which the log is bound. Under a large transaction load, contention on this
spinlock can be significant.

CHAPTER 6 Indexing for Concurrency Control

Performance and Tuning Series: Locking and Concurrency Control 143

When to use ALS
You can enable ALS on any specified database that has at least one of the
following performance issues, so long as your systems runs 4 or more online
engines:

• Heavy contention on the last log page.

You can tell that the last log page is under contention when the sp_sysmon
output in the Task Management Report section shows a significantly high
value. For example:

Table 6-4: Log page under contention

• Heavy contention on the cache manager spinlock for the log cache.

You can tell that the cache manager spinlock is under contention when the
sp_sysmon output in the Data Cache Management Report section for the
database transaction log cache shows a high value in the Spinlock
Contention section. For example:

Table 6-5:

• Under utilized bandwidth in the log device.

Note Use ALS only when you identify a single database with high transaction
requirements, since setting ALS for multiple databases may cause unexpected
variations in throughput and response times. If you want to configure ALS on
multiple databases, first check that your throughput and response times are
satisfactory.

Task
Management
Report per sec per xact count % of total

Log Semaphore
Contention

58.0 0.3 34801 73.1

Cache c_log per sec per xact count % of total

Spinlock
Contention

n/a n/a n/a 40.0%

Asynchronous log service

144 Adaptive Server Enterprise

Using ALS
Two threads—the ULC flusher and the log writer—scan the dirty buffers
(buffers full of data not yet written to the disk), copy the data, and write it to
the log.

ULC flusher

The ULC flusher is a system task thread that is dedicated to flushing the user
log cache of a task into the general log cache. When a task is ready to commit,
the user enters a commit request into the flusher queue. Each entry has a
handle, by which the ULC flusher can access the ULC of the task that queued
the request. The ULC flusher task continuously monitors the flusher queue,
removing requests from the queue and servicing them by flushing ULC pages
into the log cache.

Log writer

Once the ULC flusher has finished flushing the ULC pages into the log cache,
it queues the task request into a wakeup queue. The log writer patrols the dirty
buffer chain in the log cache, issuing a write command if it finds dirty buffers,
and monitors the wakeup queue for tasks whose pages are all written to disk.
Since the log writer patrols the dirty buffer chain, it knows when a buffer is
ready to write to disk.

Stored procedure support for ALS

sp_dboption and sp_help support asynchronous log service by:

• sp_dboption adds an option that enables and disables ALS.

• sp_helpdb adds a column to display ALS.

For more information on sp_helpdb and sp_dboption, see the Reference
Manual: Procedures.

Performance and Tuning Series: Locking and Concurrency Control 145

A
allpages locking 4

changing to with alter table 76
or strategy 31
specifying with create table 76
specifying with select into 79
specifying with sp_configure 75

ALS
log writer 144
user log cache 142
when to use 143

ALS, see asynchronous log service 141
alter table command

changing table locking scheme with 76–80
sp_dboption and changing lock scheme 78

alternative predicates
nonqualifying rows 33

application design
deadlock avoidance 71
deadlock detection in 67
delaying deadlock checking 71
isolation level 0 considerations 21
levels of locking 43
primary keys and 130
user interaction in transactions 41

artificial columns 139

B
batch processing

transactions and lock contention 41
blocking 52
blocking process

avoiding during mass operations 43
sp_lock report on 62
sp_who report on 59

B-trees, index
nonclustered indexes 103

C
chains of pages

overflow pages and 100
clustered indexes 90

changing locking modes and 79
delete operations 101
guidelines for choosing 125
insert operations and 96
order of key values 94
overflow pages and 100
page reads 95
structure of 94

column-level locking
pseudo- 34

columns
artificial 139

composite indexes 132
advantages of 134

concurrency
deadlocks and 65
locking and 3, 65

configuration (Server)
lock limit 44

consistency
transactions and 2

constraints
primary key 123
unique 123

contention
avoiding with clustered indexes 89
reducing 40

contention, lock
locking scheme and 53
sp_object_stats report on 73

context column of sp_lock output 62
CPU usage

deadlocks and 67
create index command

locks acquired by 29

Index

Index

146 Adaptive Server Enterprise

create table command
locking scheme specification 76

cursors
close on endtran option 86
isolation levels and 85
lock duration 28
lock type 28, 30
locking and 85–87
shared keyword in 86

D
data

consistency 2
uniqueness 89

data modification
nonclustered indexes and 131
number of indexes and 118

data pages
clustered indexes and 94
full, and insert operations 97

database design
indexing based on 138
logical keys and index keys 125

databases
lock promotion thresholds for 44

data-only locking (DOL) tables
maximum row size 77
or strategy and locking 31

datapages locking
changing to with alter table 76
described 6
specifying with create table 76
specifying with select into 79
specifying with sp_configure 75

datarows locking
changing to with alter table 76
described 7
specifying with create table 76
specifying with select into 79
specifying with sp_configure 75

datatypes
choosing 130, 139
numeric compared to character 139

deadlock checking period configuration parameter 71

deadlocks 65–72, 73
application-generated 66
avoiding 70
defined 65
delaying checking 71
detection 67, 73
diagnosing 52
error messages 67
performance and 39
read committed with lock effects on 29
sp_object_stats report on 73
worker process example 68

delete
clustered indexes 101
nonclustered indexes 108
transaction isolation levels and 23
uncommitted 32

demand locks 13
sp_lock report on 62

detecting deadlocks 73
dirty reads 3

preventing 21
transaction isolation levels and 20

duration of latches 18
duration of locks

read committed with lock and 29
read-only cursors 30
transaction isolation level and 26

E
error messages

deadlocks 67
escalation, lock 47
exclusive locks

page 9
sp_lock report on 62
table 10

F
family duration locks 62
fetching cursors

locking and 86

Index

Performance and Tuning Series: Locking and Concurrency Control 147

fillfactor
index creation and 130

fixed-length columns
for index keys 131
overhead 131

H
holdlock keyword

locking 83
shared keyword and 86

hot spots
avoiding 42

I
IDENTITY columns

indexing and performance 125
index keys, logical keys and 125
index pages

locks on 5
page splits for 99
storage on 91

index selection 127
indexes 89–114

access through 89
design considerations 115
dropping infrequently used 138
guidelines for 130
intermediate level 92
leaf level 91
leaf pages 103
locking with 9
number allowed 123
partitions 93
performance 89
root level 91
selectivity 118
size of entries and performance 119
types of 90

indexing
configure large buffer pools 141
create a claustered index first 140

infinity key locks 17

insert command
contention and 42
transaction isolation levels and 23

insert operations
clustered indexes 96
nonclustered indexes 107
page split exceptions and 98

intent table locks 10
sp_lock report on 62

intermediate levels of indexes 92
isolation levels 19–26, 80–85

cursors 85
default 80
dirty reads 21
lock duration and 26, 27, 28
nonrepeatable reads 23
phantoms 23
serializable reads and locks 17
transactions 19

J
joins

choosing indexes for 126
datatype compatibility in 131

K
key values

index storage 89
order for clustered indexes 94
overflow pages and 100

keys, index
choosing columns for 125
clustered and nonclustered indexes and 90
composite 132
logical keys and 125
monotonically increasing 99
size and performance 130
size of 123
unique 130

Index

148 Adaptive Server Enterprise

L
latches 17
leaf levels of indexes 91
leaf pages 103
levels

indexes 91
locking 43

lock allpages option
alter table command 77
create table command 76
select into command 79

lock datapages option
alter table command 77
create table command 76
select into command 79

lock datarows option
alter table command 77
create table command 76
select into command 79

lock duration. See duration of locks
lock promotion thresholds 44–??

database 50
default 50
dropping 51
precedence 51
promotion logic 49
server-wide 50
table 50

lock scheme configuration parameter 75
locking 1–45

allpages locking scheme 4
commands 75–88
concurrency 3
contention, reducing 40–44
control over 3, 8
cursors and 85
datapages locking scheme 6
datarows locking scheme 7
deadlocks 65–72
entire table 8
for update clause 85
forcing a write 13
holdlock keyword 81
index pages 5
indexes used 9
isolation levels and 19–26, 80–85

last page inserts and 125
monitoring contention 54
noholdlock keyword 81
noholdlock keyword 84
overhead 3
page and table, controlling 19, 46
performance 39
read committed clause 82
read uncommitted clause 82, 84
reducing contention 40
serializable clause 82
shared keyword 81, 84
sp_lock report on 61
transactions and 3

locking scheme 51–56
allpages 4
changing with alter table 76–80
clustered indexes and changing 79
create table and 76
datapages 6
datarows 7
lock types and 7
server-wide default 75
specifying with create table 76
specifying with select into 79

locks
blocking 59
command type and 27, 28
demand 13
escalation 47
exclusive page 9
exclusive table 10
family duration 62
granularity 3
infinity key 17
intent table 10
isolation levels and 27, 28
latches and 17
limits 29
“lock sleep” status 59
number of, data-only-locking 45
or queries and 31
page 8
reporting on 59
shared page 9
shared table 10

Index

Performance and Tuning Series: Locking and Concurrency Control 149

size of 3
table 10
table versus page 47
table versus row 47
table, table scans and 30
types of 7, 62
update page 9
viewing 61
worker processes and 14

locktype column of sp_lock output 62
logical keys, index keys and 125

M
matching index scans 110
messages

deadlock victim 67
monitoring

index usage 138
indexes 127–130
indexes, examples of 128
lock contention 54

multicolumn index. See composite indexes

N
noholdlock keyword, select 84
nonclustered indexes 90

definition of 103
delete operations 108
guidelines for 126, 127
insert operations 107
number allowed 123
select and 105
size of 103
structure 104

nonmatching index scans 111–112
nonrepeatable reads 23
null columns

variable-length 130
null values

datatypes allowing 130
number (quantity of)

bytes per index key 123

clustered indexes 90
indexes per table 123
locks in the system 44
locks on a table 48
nonclustered indexes 90

number of locks configuration parameter
data-only-locked tables and 45

number of sort buffers 140
numbers

row offset 103

O
observing deadlocks 73
offset table

nonclustered index selects and 105
row IDs and 103

optimistic index locking 56
added option in sp_chgattribute 56
cautions and issues 57
using 57

optimizer
dropping indexes not used by 138
indexes and 115
nonunique entries and 118

or queries
allpages-locked tables and 31
data-only-locked tables and 31
isolation levels and 32
locking and 31
row requalification and 32

order
composite indexes and 132
data and index storage 90
index key values 94

order by clause
indexes and 89

output
sp_estspace 119

overflow pages 100
key values and 100

overhead
datatypes and 130, 140
nonclustered indexes 131
variable-length columns 131

Index

150 Adaptive Server Enterprise

P
page chains

overflow pages and 100
page lock promotion HWM configuration parameter 48
page lock promotion LWM configuration parameter 48
page lock promotion PCT configuration parameter 49
page locks 7

sp_lock report on 62
table locks versus 47
types of 8

page splits
data pages 97
index pages and 99
nonclustered indexes, effect on 97
performance impact of 99

pages
overflow 100

pages, data
splitting 97

pages, index
leaf level 103
storage on 91

parallel query processing
demand locks and 14

parallel sort
configure enough sort buffers 140

performance
clustered indexes and 55
data-only-locked tables and 55
indexes and 115
locking and 39
number of indexes and 118

phantoms 16
serializable reads and 17

phantoms in transactions 23
pointers

index 91
precedence

lock promotion thresholds 51
primary key constraint

index created by 123
promotion, lock 47

Q
qualifying old and new values

uncommitted updates 36
queries

range 118

R
range queries 118
read committed with lock configuration parameter

deadlocks and 29
lock duration 29

reads
clustered indexes and 95

reduce contention
suggestions 37

referential integrity
references and unique index requirements 130

root level of indexes 91
row ID (RID) 103
row lock promotion HWM configuration parameter 48
row lock promotion LWM configuration parameter 48
row lock promotion PCT configuration parameter 49
row locks

sp_lock report on 62
table locks versus 47

row offset number 103
row-level locking. See data-only locking

S
scan session 46
scanning

skipping uncommitted transactions 32
scans, table

avoiding 89
search conditions

clustered indexes and 125
locking 9

select 95
clustered indexes and 95
nonclustered indexes and 105
optimizing 117
queries 35

Index

Performance and Tuning Series: Locking and Concurrency Control 151

skipping uncommitted transactions 32
serial query processing

demand locks and 13
serializable reads

phantoms and 17
set command

transaction isolation level 80
shared keyword

cursors and 86
locking and 86

shared locks
cursors and 86
holdlock keyword 83
page 9
sp_lock report on 62
table 10

size
nonclustered and clustered indexes 103

skip
nonqualifying rows 33

sleeping locks 59
sort operations (order by)

indexing to avoid 89
sp_chgattribute, added option for optimistic index

locking 56
sp_dropglockpromote 51
sp_droprowlockpromote 51
sp_help, displays optimistic index locking 56
sp_lock 61
sp_object_stats 72–73
sp_setpglockpromote 50
sp_setrowlockpromote 50
sp_who

blocking process 59
space

clustered compared to nonclustered indexes 103
space allocation

clustered index creation 123
deallocation of index pages 103
index page splits 99
monotonically increasing key values and 99
page splits and 97

splitting
data pages on inserts 97

SQL standards
concurrency problems 44

storage management
space deallocation and 102

T
table locks 7

controlling 19
page locks versus 47
row locks versus 47
sp_lock report on 62
types of 10

table scans
avoiding 89
locks and 30

tables
locks held on 19, 62
secondary 139

tasks
demand locks and 13

testing
hot spots 126
nonclustered indexes 131

time interval
deadlock checking 71

transaction isolation level option, set 80
transaction isolation levels

lock duration and 26
or processing and 32

transactions
close on endtran option 86
deadlock resolution 67
default isolation level 80
locking 3

tsequal system function
compared to holdlock 43

U
uncommitted

inserts during selects 32
updates, qualifying old and new 36

unique constraints
index created by 123

unique indexes 89

Index

152 Adaptive Server Enterprise

optimizing 130
update command

transaction isolation levels and 23
update locks 9

sp_lock report on 62
update operations

hot spots 42
index updates and 131

user log cache, in ALS 142
using asynchronous log service (Als) 141

V
variable-length columns

index overhead and 140

W
wait times 73
when to use ALS 143
where clause

creating indexes for 126
worker processes

deadlock detection and 68
locking and 14

	Performance and Tuning Series: Locking and Concurrency Control
	CHAPTER 1 Introduction to Locking
	How locking affects performance
	Locking and data consistency
	Granularity of locks and locking schemes
	Allpages locking
	Datapages locking
	Datarows locking

	Types of locks in Adaptive Server
	Page and row locks
	Table locks
	Commands that take intent locks

	Demand locks
	Demand locking with serial execution
	Demand locking with parallel execution

	Row-locked system tables
	Range locking for serializable reads
	Latches

	Lock compatibility and lock sufficiency
	How isolation levels affect locking
	Isolation level 0, read uncommitted
	Isolation level 1, read committed
	Isolation level 2, repeatable read
	Isolation level 3, serializable reads
	Adaptive Server default isolation level

	Lock types and duration during query processing
	Lock types during create index commands
	Locking for select queries at isolation level 1
	Table scans and isolation levels 2 and 3
	Table scans and table locks at isolation level 3
	Isolation level 2 and allpages-locked tables

	When update locks are not required
	Locking during or processing
	Processing or queries for allpages-locked tables
	Processing or queries for data-only-locked tables

	Skipping uncommitted inserts during selects
	Skipping uncommitted inserts during deletes, updates, and inserts
	Locking during DMLs on tables with referential integrity constraints

	Using alternative predicates to skip nonqualifying rows

	Pseudocolumn-level locking
	Select queries that do not reference the updated column
	Qualifying old and new values for uncommitted updates

	Reducing contention

	CHAPTER 2 Locking Configuration and Tuning
	Locking and performance
	Using sp_sysmon and sp_object_stats
	Reducing lock contention
	Adding indexes to reduce contention
	Keeping transactions short
	Avoiding hot spots

	Additional locking guidelines

	Configuring locks and lock promotion thresholds
	Configuring the Adaptive Server lock limit
	Estimating number of locks for data-only-locked tables

	Setting lock promotion thresholds
	Lock promotion and scan sessions
	Lock promotion high water mark
	Lock promotion low water mark
	Lock promotion percent
	Setting server-wide lock promotion thresholds
	Setting the lock promotion threshold for a table or database
	Precedence of settings
	Dropping database and table settings
	Using sp_sysmon while tuning lock promotion thresholds

	Choosing the locking scheme for a table
	Analyzing existing applications
	Choosing a locking scheme based on contention statistics
	Monitoring and managing tables after conversion
	Applications not likely to benefit from data-only locking
	Tables where clustered index performance must remain high
	Tables with maximum-length rows

	Optimistic index locking
	Using optimistic index locking
	Cautions and issues

	CHAPTER 3 Locking Reports
	Locking tools
	Getting information about blocked processes
	Viewing locks with sp_lock
	Viewing locks with sp_familylock
	Intrafamily blocking during network buffer merges
	Monitoring lock timeouts

	Deadlocks and concurrency
	Server-side versus application-side deadlocks
	Application deadlock example

	Server task deadlocks
	Deadlocks and parallel queries
	Printing deadlock information to the error log
	Avoiding deadlocks
	Acquiring locks on objects in the same order
	Delaying deadlock checking

	Identifying tables where concurrency is a problem
	Lock management reporting

	CHAPTER 4 Using Locking Commands
	Specifying the locking scheme for a table
	Specifying a server-wide locking scheme
	Specifying a locking scheme with create table
	Changing a locking scheme with alter table
	Before and after changing locking schemes
	Expense of switching to or from allpages locking
	Sort performance during alter table
	Specifying a locking scheme with select into

	Controlling isolation levels
	Setting isolation levels for a session
	Syntax for query-level and table-level locking options
	Using holdlock, noholdlock, or shared
	Using the at isolation clause
	Making locks more restrictive
	Making locks less restrictive

	Readpast locking
	Cursors and locking
	Using the shared keyword

	Additional locking commands
	lock table
	Lock timeouts

	CHAPTER 5 Indexes
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index size

	Indexes and partitions
	Local indexes on partitioned tables
	Global indexes on partitioned tables
	Local versus global indexes
	Unsupported partition index types

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Relationship between physical and logical reads

	Clustered indexes and insert operations
	Page splitting on full data pages
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Clustered indexes and delete operations
	Deleting the last row on a page
	Index page merges

	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Nonclustered indexes and select operations
	Nonclustered index performance
	Nonclustered indexes and insert operations
	Nonclustered indexes and delete operations
	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Covering nonmatching index scans

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache

	CHAPTER 6 Indexing for Concurrency Control
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Exception for wide data rows and wide index rows

	Fixing corrupted indexes
	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Choosing function-based indexes
	Index selection
	Examples of using index selection

	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Advantages and disadvantages of composite indexes
	Using online reorg rebuild for data-only-locked indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes
	Configuring enough sort buffers
	Creating the clustered index first
	Configure large buffer pools

	Asynchronous log service
	Understanding the user log cache (ULC) architecture
	When to use ALS
	Using ALS
	ULC flusher
	Log writer
	Stored procedure support for ALS

	Index

