
Performance and Tuning Series: Monitoring
Tables

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC00848-01-1570-01

LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning Series: Monitoring Tables iii

CHAPTER 1 Introduction to Monitoring Tables... 1
Monitoring tables in Adaptive Server.. 1

Where does the monitoring information come from? 2
Using Transact-SQL to monitor performance............................ 2

Installing the monitoring tables... 3
Versions earlier than 15.0.2, except Cluster Edition 3

Remotely accessing and editing monitoring tables 4
Configuring the monitoring tables to collect data 5

Allocating memory for pipe error messages.............................. 6
Configuration parameters for the monitoring tables 7
Error 12036 ... 11

The mon_role and additional access controls 11
Wrapping counter datatypes .. 11
Stateful historical monitoring tables.. 12

Transient monitoring data.. 16
Using monitoring tables in a clustered environment....................... 17

Configuring the system view ... 17
InstanceID added to monitor instances 18

Monitoring tables for the statement cache 19
Configuring Adaptive Server to monitor the statement cache . 19
Deleting statements from the statement cache 20
Obtaining the hash key from the SQL text 20
Displaying text and parameter information for cached statements

20
Examples of querying the monitoring tables 21

CHAPTER 2 Wait Events.. 25
Event 19: xact coord: pause during idle loop 27

Action .. 27
Event 29: waiting for regular buffer read to complete..................... 27

Action .. 28
Event 30: wait to write MASS while MASS is changing 28

Action .. 28
Event 31: waiting for buf write to complete before writing 29

Contents

iv Adaptive Server Enterprise

Action .. 29
Event 32: waiting for an APF buffer read to complete.................... 29

Action .. 30
Event 35: waiting for buffer validation to complete......................... 30

Action .. 30
Event 36: waiting for MASS to finish writing before changing........ 30

Action .. 31
Event 37: wait for MASS to finish changing before changing 31

Action .. 31
Event 41: wait to acquire latch ... 31

Action .. 32
Event 46: wait for buf write to finish getting buf from LRU 33

Action .. 33
Event 51: waiting for last i/o on MASS to complete 33

Action .. 33
Event 52: waiting for i/o on MASS initiated by another task........... 34

Action .. 34
Event 53: waiting for MASS to finish changing to start i/o.............. 34

Action .. 34
Event 54: waiting for write of the last log page to complete 35

Action .. 35
Event 55: wait for i/o to finish after writing last log page 35

Action .. 36
Event 57: checkpoint process idle loop.. 36

Action .. 36
Event 61: hk: pause for some time... 36

Action .. 36
Event 70: waiting for device semaphore .. 37

Action .. 37
Event 83: wait for DES state is changing 37

Action .. 37
Event 84: wait for checkpoint to complete...................................... 37

Action .. 38
Event 85: wait for flusher to queue full DFLPIECE 38

Action .. 38
Event 91: waiting for disk buffer manager i/o to complete 38

Action .. 39
Event 99: wait for data from client .. 39

Action .. 39
Event 104: wait until an engine has been offlined.......................... 39

Action .. 40
Event 124: wait for mass read to finish when getting page............ 40

Action .. 40
Event 142: wait for logical connection to free up............................ 40

Contents

Performance and Tuning Series: Monitoring Tables v

Action .. 41
Event 143: pause to synchronise with site manager...................... 41

Action .. 41
Event 150: waiting for a lock .. 41

Action .. 42
Event 157: wait for object to be returned to pool............................ 42

Action .. 42
Event 169: wait for message.. 43

Action .. 43
Event 171: wait for CTLIB event to complete................................. 43

Action .. 43
Event 178: waiting while allocating new client socket 43

Action .. 44
Event 179: waiting while no network read or write is required 44

Action .. 44
Event 197: waiting for read to complete in parallel dbcc................ 44

Action .. 45
Event 200: waiting for page reads in parallel dbcc......................... 45

Action .. 45
Event 201: waiting for disk read in parallel dbcc 45

Action .. 45
Event 202: waiting to re-read page in parallel 46

Action .. 46
Event 203: waiting on MASS_READING bit in parallel dbcc 46

Action .. 46
Event 205: waiting on TPT lock in parallel dbcc............................. 47

Action .. 47
Event 207: waiting sending fault msg to parent in PLL dbcc.......... 47

Action .. 47
Event 209: waiting for a pipe buffer to read 48

Action .. 48
Event 210: waiting for free buffer in pipe manager 48

Action .. 48
Event 214: waiting on run queue after yield 49

Action .. 49
Event 215: waiting on run queue after sleep.................................. 49

Action .. 50
Event 222: replication agent sleeping during flush......................... 50

Action .. 50
Event 250: waiting for incoming network data................................ 50

Action .. 50
Event 251: waiting for network send to complete........................... 51

Action .. 51
Event 259: waiting until last chance threshold is cleared............... 51

Contents

vi Adaptive Server Enterprise

Action .. 52
Event 260: waiting for date or time in waitfor command 52

Action .. 52
Event 266: waiting for message in worker thread mailbox............. 52

Action .. 52
Event 272: waiting for lock on ULC .. 53

Action .. 53
Event 334: waiting for Lava pipe buffer for write 53

Action .. 53
Event 374: wait for lock pending/data pending to be cleared......... 53

Action .. 54
Event 375: OCM wait for finishing BAST handling......................... 54

Action .. 54
Event 389: OCM wait for pushing data flag to be cleared.............. 54
Event 380: lock/data pending to reset when OCM_ERR_DIDNTWAIT

55
Action .. 55

Event 483: Waiting for ack of a multicast synchronous message .. 56
Action .. 56

Index ... 57

Performance and Tuning Series: Monitoring Tables 1

C H A P T E R 1 Introduction to Monitoring Tables

This chapter describes how to query Adaptive Server® monitoring tables
for statistical and diagnostic information.

Monitoring tables in Adaptive Server
Adaptive Server includes a set of system tables that contain monitoring
and diagnostic information. The information in these tables provides a
statistical snapshot of the state of Adaptive Server, which allows you to
analyze the server so as to analyze server performance. For example, you
can execute queries to report information about the activity of server
processes and applications, query performance, usage of database tables,
efficiency of data caches, I/O activity on database devices, and many other
aspects of the Adaptive Server that affect system performance.

The data in the monitoring tables is not stored on disk. The data is
calculated when you execute a query on one of the monitoring tables.
Table definitions are contained in proxy table definitions that are created
by a server installation script. These proxy tables use an interface to the
Adaptive Server to collect monitoring data when you perform a query.

Topic Page

Monitoring tables in Adaptive Server 1

Installing the monitoring tables 3

Remotely accessing and editing monitoring tables 4

Configuring the monitoring tables to collect data 5

The mon_role and additional access controls 11

Wrapping counter datatypes 11

Stateful historical monitoring tables 12

Using monitoring tables in a clustered environment 17

Monitoring tables for the statement cache 19

Examples of querying the monitoring tables 21

Monitoring tables in Adaptive Server

2 Adaptive Server Enterprise

You must create the monitoring tables using a server installation script. See
“Installing the monitoring tables” on page 3.

Because Adaptive Server versions may change the definitions of the
monitoring tables, Sybase® recommends that when you upgrade, you run the
appropriate installation script before using the monitoring tables.

Note You must have the mon_role to query these tables. See “The mon_role
and additional access controls” on page 11.

Where does the monitoring information come from?
Adaptive Server gathers the information for the monitoring tables from:

• Global monitor counters (for example. monSysWaits, which has a limited
number of rows).

• Resource-specific monitor counters (for example, monCachedProcedures,
for which the number of result rows depends on a snapshot of cached,
compiled objects in procedure cache) associated with a single server
resource, such as engines or the procedure or data cache.

• Active process status structures (for example, monProcessWaits and
monProcessSQLText). The number of result rows for monProcessWaits or
monProcessSQLText depends on the number of active user connections or
the number of active process status structures, respectively.

• Circular buffers (for example, monSysStatement and monDeadLock). The
number of result rows for monSysStatement or monDeadLock relate to
configuration parameter settings and how much data the fast data pipes
contain. This buffer is used by all of the historical monitoring tables.

For some large production servers, materializing some monitoring tables may
require resources and time.

Using Transact-SQL to monitor performance
Providing monitoring information as tables enables you to use Transact-SQL
to monitor Adaptive Server. For example, to identify the processes that have
consumed the greatest CPU time or logical I/Os, use:

select SPID, Login = suser_name(ServerUserID), CPUTime,

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 3

LogicalReads
from master..monProcessActivity
order by CPUTime desc

You can use the same query to find the processes that are using the most
physical I/O by substituting PhysicalReads for CPUTime.

The information in each monitoring table can be sorted, selected, joined,
inserted into another table, and treated much the same as the information in a
regular Adaptive Server table.

The monitoring tables are read-only and do not allow updates because they are
in-memory tables that are generated as they are queried. Additionally, you
cannot create triggers on monitoring tables.

You can use access control commands such as grant and revoke select to restrict
access to the monitoring tables.

The monitoring tables definitions use the Component Integration Services
(CIS) proxy table feature, which allows Adaptive Server to define remote
procedures as local tables.

Installing the monitoring tables
The installation procedure for monitoring tables for versions of Adaptive
Server earlier than 15.0.2 differs from the procedure for version 15.0.2 and
later. This section explains the installation procedures for the earlier versions.

Monitoring tables for Adaptive Server version 15.0.2 and later and the Cluster
Edition:

• Are installed when you run the installmaster script

• Use materialized views

• Do require you to create the loopback server

Versions earlier than 15.0.2, except Cluster Edition
Create monitoring tables using the installmontables script located in the
$SYBASE/ASE-15_0/scripts directory (%SYBASE%\ASE-15_0\scripts for
Windows).

Remotely accessing and editing monitoring tables

4 Adaptive Server Enterprise

Run the installmontables script using the isql utility. For example:

isql -Usa -Ppassword -Sserver_name -i $SYBASE/ASE-15_0/scripts/installmontables

Configuring loopback proxy server for 15.0.1 ESD #2 and earlier

Adaptive Server version 15.0.1 ESD #2 and earlier requires that a server named
“loopback” be included in sysservers before you run the installmontables
script. To create this server, enter:

declare @servernetname varchar(30)
select @servernetname=srvnetname
from master..sysservers
where srvname=@@servername
exec sp_addserver loopback, NULL, @servernetname

@@servername cannot be NULL. If it currently is NULL, use sp_addserver to
define a “local” server name. Restart the server for the change to
@@servername to take effect.

Remotely accessing and editing monitoring tables
In versions 15.0.2 and later, Sybase provides installmontables as a sample
script that describes how to remotely access monitoring tables (you need not
run the installmontables script on a server that is directly monitored for
Adaptive Server version 15.0.2 and later to create the monitoring tables). Run
installmontables to view the instructions for editing. For example:

isql -Usa -Psa_password -Sserver name -i $SYBASE/$SYBASE_ASE/scripts/ installmontables
---x---x---x---x---
It is no longer necessary to run this script to install the Monitoring
Tables.Monitoring Tables are now installed by the installmaster script.
This installmontables script is provided as a sample that can be copied and
modified to support remote access of Monitoring Tables. To do so you need to:
1) Replace all instances of @SERVER@ with the name of the remote ASE from which
monitoring data is to be obtained. Note that each remote ASE to be monitored
must be added to the local ASE's sysservers table using sp_addserver.
2) Create a database with the same name as the remote ASE. This database need
only be of the minimum size as these tables do not store any data.
3) Remove this header (i.e. these first 21 lines).
4) Run the script against the local ASE using the isql utility as follows:

isql -Usa -P<password> -S<server name> -i<script name>
5) Retrieve remote monitoring data. E.g. to obtain monEngine information for an

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 5

ASE named REMASE you would execute the following SQL:
use REMASE
go
select * from monEngine
go

Configuring the monitoring tables to collect data
By default, Adaptive Server does not collect the monitoring information
required by the monitoring tables. Use sp_configure to configure Adaptive
Server to start collecting the monitoring information. There are a number of
configuration options, listed below, that control the collection of monitoring
data in various areas.

Many of the monitoring tables require that you enable one or more of the
configuration options before Adaptive Server collects their data. Different
tables require different options. Table 1-1 describes which configuration
options are required for each monitoring table.

To configure Adaptive Server to collect general monitoring information:

1 By default, the enable cis configuration parameter is enabled (set to a value
of 1) when you first configure Adaptive Server. Verify that this parameter
is enabled.

2 The enable monitoring configuration parameter determines whether other
monitoring options are enable; set enable monitoring to 1.

sp_configure “enable monitoring”, 1

Adaptive Server displays a full list of configuration parameters specifically for
monitoring when you enter:

sp_configure Monitoring

The configuration parameters that control the collection of monitoring
information are:

• enable monitoring

• deadlock pipe active

• deadlock pipe max messages

• errorlog pipe active

• errorlog pipe max messages

Configuring the monitoring tables to collect data

6 Adaptive Server Enterprise

• max SQL text monitored

• object lockwait timing

• per object statistics active

• plan text pipe active

• process wait events

• sql text pipe active

• sql text pipe max messages

• statement pipe active

• statement pipe max messages

• statement statistics active

• SQL batch capture

• wait event timing

Note See Chapter 5, “Setting Configuration Parameters,” in System
Administration Guide, Volume One for descriptions of the configuration
parameters.

Allocating memory for pipe error messages
A number of monitoring tables use in-memory buffers (called “pipes”) to
collect monitoring data. These parameters control the amount of memory
allocated for each pipe:

• deadlock pipe max messages

• errorlog pipe max messages

• sql text pipe max messages

• plan text pipe max messages

• statement pipe max messages

Adaptive Server can dynamically add memory to a pipe but cannot
dynamically remove memory from it, so if you reduce the size of a pipe
parameter, you must restart Adaptive Server for the new pipe size to take effect.

These are algorithms for determining the size for the parameters:

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 7

• For an individual Adaptive Server, the memory required for the each pipe
configuration is:

configuration_value x number_of_engines

• In a clustered environment, each cluster instance allocates the memory
required to create the monitoring table pipes. See “Using monitoring
tables in a clustered environment” on page 17.

Configuration parameters for the monitoring tables
Adaptive Server uses configuration parameters to control what data is collected
for the monitoring tables. Many of the monitoring tables require you to enable
configuration parameters before Adaptive Server collects data. You must grant
the mon_role to users before they can query some monitoring tables.

If you are not using a monitoring table, disable the associated configuration
parameters, reducing the load on the Adaptive Server caused by collecting
monitoring data.

Table 1-1 lists all of the monitoring tables and the configuration parameters
that apply to them.

Table 1-1: Configuration parameters required for some monitoring
tables

en
ab

le
 m

on
ito

rin
g

S
Q

L
ba

tc
h

ca
pt

ur
e

de
ad

lo
ck

 p
ip

e
ac

tiv
e

de
ad

lo
ck

 p
ip

e
m

ax
 m

es
sa

ge
s

er
ro

rlo
g

pi
pe

 a
ct

iv
e

er
ro

rlo
g

pi
pe

 m
ax

 m
es

sa
ge

s

ob
je

ct
 lo

ck
w

ai
t t

im
in

g

pe
r

ob
je

ct
 s

ta
tis

tic
s

ac
tiv

e

pl
an

 te
xt

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
m

ax
 m

es
sa

ge
s

pl
an

 te
xt

 p
ip

e
m

ax
 m

es
sa

ge
s

pr
oc

es
s

w
ai

t e
ve

nt
s

S
Q

L
te

xt
 p

ip
e

ac
tiv

e

S
Q

L
te

xt
 p

ip
e

m
ax

 m
es

sa
ge

s

st
at

em
en

t c
ac

he
 s

iz
e

st
at

em
en

t p
ip

e
ac

tiv
e

st
at

em
en

t p
ip

e
m

ax
 m

es
sa

ge
s

st
at

em
en

t s
ta

tis
tic

s
ac

tiv
e

w
ai

t e
ve

nt
 ti

m
in

g

m
ax

 S
Q

L
te

xt
 m

on
ito

re
d

en
ab

le
 s

tm
t c

ac
he

 m
on

ito
rin

g

ca
pt

ur
e

co
m

pr
es

si
on

 s
ta

tis
tic

s

monCachePool X

monCachedObject

monCachedProcedures X X

monCachedStatement X X X

monCIPC

monCIPCEndpoints

Configuring the monitoring tables to collect data

8 Adaptive Server Enterprise

monCIPCLinks

monCIPCMesh

monCLMObjectActivity X

monClusterCacheManager

monCMSFailover

monDataCache X

monDBRecovery

monDBRecoveryLRTypes

monDeadLock X X X

monDeviceIO X

monDeviceSpaceUsage

monEngine X

monErrorLog X X X

monFailoverRecovery

monInmemoryStorage

monIOController

monIOQueue X

monLicense

monLocks X

monLockTimeout X X X

monLogicalCluster

monLogicalClusterAction

monLogicalClusterInstance

monLogicalClusterRoute

monNetworkIO X

monOpenDatabases X

monOpenObjectActivity X X X

en
ab

le
 m

on
ito

rin
g

S
Q

L
ba

tc
h

ca
pt

ur
e

de
ad

lo
ck

 p
ip

e
ac

tiv
e

de
ad

lo
ck

 p
ip

e
m

ax
 m

es
sa

ge
s

er
ro

rlo
g

pi
pe

 a
ct

iv
e

er
ro

rlo
g

pi
pe

 m
ax

 m
es

sa
ge

s

ob
je

ct
 lo

ck
w

ai
t t

im
in

g

pe
r

ob
je

ct
 s

ta
tis

tic
s

ac
tiv

e

pl
an

 te
xt

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
m

ax
 m

es
sa

ge
s

pl
an

 te
xt

 p
ip

e
m

ax
 m

es
sa

ge
s

pr
oc

es
s

w
ai

t e
ve

nt
s

S
Q

L
te

xt
 p

ip
e

ac
tiv

e

S
Q

L
te

xt
 p

ip
e

m
ax

 m
es

sa
ge

s

st
at

em
en

t c
ac

he
 s

iz
e

st
at

em
en

t p
ip

e
ac

tiv
e

st
at

em
en

t p
ip

e
m

ax
 m

es
sa

ge
s

st
at

em
en

t s
ta

tis
tic

s
ac

tiv
e

w
ai

t e
ve

nt
 ti

m
in

g

m
ax

 S
Q

L
te

xt
 m

on
ito

re
d

en
ab

le
 s

tm
t c

ac
he

 m
on

ito
rin

g

ca
pt

ur
e

co
m

pr
es

si
on

 s
ta

tis
tic

s

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 9

monOpenPartitionActivity X X

monPCIBridge

monPCIEngine

monPCISlots

monPCM

monProcedureCache X

monProcedureCacheMemor
yUsage

monProcedureCacheModule
Usage

monProcess X X

monProcessActivity X X

monProcessLookup

monProcessMigration

monProcessNetIO X

monProcessObject X X

monProcessProcedures X X

monProcessSQLText X X X

monProcessStatement X

monProcessWaits X X X

monProcessWorkerThread X

monRepLogActivity

monRepScanners

monRepScannersTotalTime

monRepSenders

monSQLRepActivity X X

monSQLRepMisses X X

monState

en
ab

le
 m

on
ito

rin
g

S
Q

L
ba

tc
h

ca
pt

ur
e

de
ad

lo
ck

 p
ip

e
ac

tiv
e

de
ad

lo
ck

 p
ip

e
m

ax
 m

es
sa

ge
s

er
ro

rlo
g

pi
pe

 a
ct

iv
e

er
ro

rlo
g

pi
pe

 m
ax

 m
es

sa
ge

s

ob
je

ct
 lo

ck
w

ai
t t

im
in

g

pe
r

ob
je

ct
 s

ta
tis

tic
s

ac
tiv

e

pl
an

 te
xt

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
m

ax
 m

es
sa

ge
s

pl
an

 te
xt

 p
ip

e
m

ax
 m

es
sa

ge
s

pr
oc

es
s

w
ai

t e
ve

nt
s

S
Q

L
te

xt
 p

ip
e

ac
tiv

e

S
Q

L
te

xt
 p

ip
e

m
ax

 m
es

sa
ge

s

st
at

em
en

t c
ac

he
 s

iz
e

st
at

em
en

t p
ip

e
ac

tiv
e

st
at

em
en

t p
ip

e
m

ax
 m

es
sa

ge
s

st
at

em
en

t s
ta

tis
tic

s
ac

tiv
e

w
ai

t e
ve

nt
 ti

m
in

g

m
ax

 S
Q

L
te

xt
 m

on
ito

re
d

en
ab

le
 s

tm
t c

ac
he

 m
on

ito
rin

g

ca
pt

ur
e

co
m

pr
es

si
on

 s
ta

tis
tic

s

Configuring the monitoring tables to collect data

10 Adaptive Server Enterprise

monStatementCache X X X

monSysLoad

monSysPlanText X X X

monSysSQLText X X X X X

monSysStatement X X X X X

monSysWaits X X

monSysWorkerThread X

monTableColumns

monTableCompression X X X

monTableParameters

monTables

monTableTransfer

monTask

monTempdbActivity X X X

monThread

monThreadPool

monWaitClassInfo

monWaitEventInfo

monWorkload

monWorkloadPreview

monWorkloadProfile

monWorkloadRaw

monWorkQueue

en
ab

le
 m

on
ito

rin
g

S
Q

L
ba

tc
h

ca
pt

ur
e

de
ad

lo
ck

 p
ip

e
ac

tiv
e

de
ad

lo
ck

 p
ip

e
m

ax
 m

es
sa

ge
s

er
ro

rlo
g

pi
pe

 a
ct

iv
e

er
ro

rlo
g

pi
pe

 m
ax

 m
es

sa
ge

s

ob
je

ct
 lo

ck
w

ai
t t

im
in

g

pe
r

ob
je

ct
 s

ta
tis

tic
s

ac
tiv

e

pl
an

 te
xt

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
ac

tiv
e

lo
ck

 ti
m

eo
ut

 p
ip

e
m

ax
 m

es
sa

ge
s

pl
an

 te
xt

 p
ip

e
m

ax
 m

es
sa

ge
s

pr
oc

es
s

w
ai

t e
ve

nt
s

S
Q

L
te

xt
 p

ip
e

ac
tiv

e

S
Q

L
te

xt
 p

ip
e

m
ax

 m
es

sa
ge

s

st
at

em
en

t c
ac

he
 s

iz
e

st
at

em
en

t p
ip

e
ac

tiv
e

st
at

em
en

t p
ip

e
m

ax
 m

es
sa

ge
s

st
at

em
en

t s
ta

tis
tic

s
ac

tiv
e

w
ai

t e
ve

nt
 ti

m
in

g

m
ax

 S
Q

L
te

xt
 m

on
ito

re
d

en
ab

le
 s

tm
t c

ac
he

 m
on

ito
rin

g

ca
pt

ur
e

co
m

pr
es

si
on

 s
ta

tis
tic

s

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 11

Error 12036
If you query the monitoring tables, but have not enabled all the configuration
parameters the tables require, Adaptive Server issues error 12036 but still runs
the query. Although many of the monitoring tables contain accurate data even
if you have not enabled all the configuration parameters, some data is incorrect
because Adaptive Server is not collecting the data required to populate one or
more columns in the table.

Consider enabling the required configuration parameters. See Table 1-1 for
details.

The mon_role and additional access controls
Access to the monitoring tables is restricted to users with the mon_role. Only
users who are granted this role can execute queries on the monitoring tables.
You can grant or revoke select permissions on the monitoring tables from
specific logins, roles, or groups to add additional access control to some (or all)
of the monitoring tables. For information about acquiring roles, see Chapter 11,
“Managing User Permissions,” in the System Administration Guide, Volume 1.

Some of the monitoring tables may contain sensitive information. For example,
the monSysSQLText and monProcessSQLText tables contain all the SQL text
that is sent to an Adaptive Server. This text may contain information such as
updates to employee salary records. Administrators should consider adding
additional access restrictions to these tables, such as limiting access to users
with specific roles, to meet the security requirements of their systems.

Note If you are using monitoring tables in a clustered environment, the
Workload and LogicalCluster monitoring tables do not require the mon_role.

Wrapping counter datatypes
Some columns in the monitoring tables contain integer counter values that are
incremented throughout the life of Adaptive Server. Once a counter reaches the
highest value possible (2,147,483,647), it is reset to 0, which is called
“wrapping.”

Stateful historical monitoring tables

12 Adaptive Server Enterprise

Because of the potential for wrapping, the values of some columns in the
monitoring tables may not reflect the total accumulated value since the server
started. To effectively use this column data, calculate the difference in counter
values over specific time periods and use the result of this sample instead of the
cumulative value. For example, use the difference between the current value
and the value 10 minutes earlier instead of the current value.

The values of different counters tend to increase at different rates. For example,
on a busy system, the LogicalReads column in the monDataCache table
increases rapidly. Use monTables to identify counters that are likely to wrap; a
value of 1 or 3 in the monTableColumns.Indicators specifies columns that are
prone to wrapping. A server’s behavior depends on load and application
activity , and the Indicator column provides a general guideline; review your
server’s data to identify counters that tend to wrap.

To display a list of columns that are counters, execute:

select TableName, ColumnName
from master..monTableColumns
where (Indicators & 1) = 1

Stateful historical monitoring tables
A number of monitoring tables provide a record of individual events rather
than information about the current state. These tables are called “historical”
because the events reported in them provide a record of the history of the server
over a period of time. Adaptive Server maintains context information for each
client connection that accesses the historical tables, and on each successive
query on the table returns only rows that the client has not previously received.
This “stateful” property of the historical monitoring tables is designed to
maximize performance and to avoid duplicate rows when used to populate a
repository for historical data.

The historical monitoring tables are:

• monErrorLog

• monDeadLock

• monSysStatement

• monSysSQLText

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 13

• monSysPlanText

Note In monSysPlan Text and monSysSQLText, the values of the columns
BatchID, ContextID, ProcedureID, and PlanID are modified effective Adaptive
Server versions 15.0.3 and later. For the changes in these columns, see the
Reference Manual: Tables.

You can identify historical tables from their monTables.Indicators column:

select TableName
from master..monTables
where Indicators & 1=1

The information returned from historical tables is stored in buffers, one for
each historical monitoring table. The sizes of these buffers, which are specified
by configuration parameters, affects the length of time data is stored. Use the
sp_configure options to configure the size of the buffer and the information to
be captured. The sp_configure options you use depend on which monitoring
table you are configuring. For example, for the monSysPlanText table,
configure:

• plan text pipe max messages – the number of messages to be stored for the
particular buffer.

• plan text pipe active – to indicate whether Adaptive Server writes
information to the buffer.

The following table lists the configuration parameters that affect the historical
monitoring tables:

Stateful historical monitoring tables

14 Adaptive Server Enterprise

Note Some historical tables require that you set other configuration parameters
in addition to those listed above. See Table 1-3 on page 19.

The values of the max messages parameters determine the maximum number
of messages per engine. Multiply this value by the number of configured
engines to determine the total number of messages that can be stored.

Each message stored adds one row to the monitoring table. Once all entries in
the buffer have been used, new messages overwrite old messages in the buffers,
so only the most recent messages are returned.

See Chapter 5, “Setting Configuration Parameters” of the System
Administration Guide, Volume 1 and “Configuring the monitoring tables to
collect data” on page 5 for more information about sp_configure.

Adaptive Server returns only the data that was added since the previous read,
so you may get seemingly inconsistent result sets from queries that attempt to
filter results using a where clause because:

• A select from the monitoring table marks all previously unread messages
in the table as having been read.

• Adaptive Server language layer performs the filtering, so rows not
contained in the result set of the query are still considered as “seen” by the
connection.

In this example, the buffer associated with the monErrorLog table contains two
messages:

Monitoring table Configuration parameters

monErrorLog errorlog pipe active

errorlog pipe active messages

monDeadLock deadlock pipe active

deadlock pipe max messages

monSysStatement statement pipe active

statement pipe max messages

monSysSQLText sql text pipe active

sql text pipe max messages

monSysPlanText plan text pipe active

plan text pipe max messages

monProcessSQLText and
monSysSQLText

max SQL text monitored

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 15

select SPID, ErrorMessage
from master..monErrorLog
SPID ErrorMessage
------ --------------------------------------
20 An error from SPID 20
21 An error from SPID 21

(2 rows affected)

If you reconnect, the two messages are returned, but you receive the following
messages when you filter the result set with a where clause:

select SPID, ErrorMessage
from master..monErrorLog
where SPID=20
SPID ErrorMessage
------ --------------------------------------
20 An error from SPID 20
(1 row affected)

And:

select SPID, ErrorMessage
from master..monErrorLog
where SPID=21
SPID ErrorMessage
------ --------------------------------------
(0 rows affected)

Because the first query moved the client connection’s context to include both
of the rows for spids 20 and 21, the second query does not return either of these
rows. The filter specified in the first query required the server to retrieve and
evaluate both rows to return the specified result. Adaptive Server marks the
row for spid 21 as “read” even though it did not participate in a result set
returned to the client connection.

Note Because of the stateful nature of the historical monitoring tables, do not
use them for ad hoc queries. Instead, use a select * into or insert into
to save data into a repository or temporary table and then perform analysis on
the saved data.

Stateful historical monitoring tables

16 Adaptive Server Enterprise

Transient monitoring data
Because monitoring tables often contain transient data, take care when joining
or using aggregates in your queries: results from these operations may be
different if a query plan requires a table to be queried multiple times. For
example:

select s.SPID, s.CpuTime, s.LineNumber, t.SQLText
from master..monProcessStatement s, monProcessSQLText t
where s.SPID=t.SPID
and s.CpuTime = (select max(CpuTime) from master..monProcessStatement)

This example queries monProcessStatement twice; first to find the maximum
CpuTime, and then to match the maximum. When Adaptive Server performs
the second query, there are three potential outcomes returned from
monProcessStatement:

• The statement performs more work, consuming more CPU, and having a
CpuTime value greater than the previous maximum, so there is no match
in the where clause, and the query returns no results.

• The statement finishes executing before the second query executes,
yielding no results unless another statement used exactly the same amount
of CPU as the previously obtained maximum.

• The statement does not use any additional CPU, and its value of CpuTime
still matches the maximum. Only this scenario produces the expected
results.

Sybase recommends that you save data from the monitoring tables to a
temporary table or repository before you analyze it. Doing so freezes the data
and eliminates the potentially undesirable results due to transient data or the
stateful nature of the historical monitoring tables.

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 17

Using monitoring tables in a clustered environment
In a clustered environment,by default monitoring tables report on a per-
instance (that is, a single server in the cluster) basis instead of returning cluster-
wide results. This allows you to monitor the activities of processes and queries
across the cluster to get a better understanding of the statistics for objects that
may be opened on more than one instance, and resource usage on each instance
in the cluster. For example, if you query the monitoring tables about a table, the
table about which you are querying may be opened or accessed by more than
one instance in the cluster, so the descriptors for this table—and the associated
statistics—may be in memory on the instance. Statistics are not aggregated for
the cluster. The statistical results for all instances are returned as a unioned
result set with rows collected from each instance. Each instance is identified in
the result set with a row in the InstanceID column.

Configuring the system view
In a clustered server, system_view is a session-specific setting that allows you
to control the scope of monitoring data that queries return from the monitoring
tables, sysprocesses, sp_who, and other commands. When you set system_view
to cluster, queries on the monitoring tables return data from all active instances
in the cluster. When you set system_view to instance, queries against the
monitoring tables return data only for processes or objects that are active on the
instance to which the client is connected.

Use the set command to configure the scope of the session:

set system_view {instance | cluster | clear}

where:

• instance – returns statistics for only the local instance. Cross-cluster
requests are not sent to any other instance in the cluster.

• cluster – returns statistics for all instances in the cluster.

• clear – returns the system view to the configured default.

If you do not specify an InstanceID when you query a monitoring table or call
a monitoring table RPC, the instance uses the current system_view
configuration.

The session system view is inherited from its host logical cluster. Select the
@@system_view global variable to determine the current system view.

Using monitoring tables in a clustered environment

18 Adaptive Server Enterprise

InstanceID added to monitor instances
Table 1-2 describes monitoring tables to which the Cluster Edition adds the
InstanceID column.

Table 1-2: Monitoring tables with InstanceID column

Table 1-3 describes monitoring tables that return identical information for all
instances.

monCachePool monDataCache

monCachedProcedures monDeviceIO

monDeadLock monErrorLog

monEngine monIOQueue

monLicense monLocks

monOpenDatabases monNetworkIO

monOpenPartitionActivity monOpenObjectActivity

monProcess monProcedureCache

moProcessLookup monProcessActivity

monProcessObject monProcessNetIO

monProcessSQLText monProcessProcedures

monProcessWaits monProcessStatement

monResourceUsage monProcessWorkerThread

monSysPlanText monState

monSysStatement monSysSQLText

monSysWorkerThread monSysWaits

monCachedObject

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 19

Table 1-3: monitoring tables that include the same information for all
instances

Monitoring tables for the statement cache
Once enabled, the Adaptive Server statement cache stores the SQL text of ad
hoc update, delete, and select commands and other statements likely to be
reused. When the statement cache is enabled, the query plans for these
statements are saved for reuse. When a new statement is issued, Adaptive
Server searches the statement cache for a plan to reuse. If Adaptive Server finds
a plan to reuse, the statement does not need to be recompiled, which likely
leads to improved performance.

For more information about the statement cache, see Chapter 3, “Configuring
Memory,” in the System Adminitration Guide, Volume 2.

Literal parameterization allows Adaptive Server to recognize queries that are
identical except for differeing in literal values in the where clause. In addition
to performance benefits, literal parameterization leads to significant space
reduction when the metrics and statements are stored in the cache.

The monitoring tables include two tables that can be used to analyze the status
and performance of the statement cache: monStatementCache provides a
summary snapshot of the statement cache, and monCachedStatement shows
detailed information about each cached statement.

Configuring Adaptive Server to monitor the statement cache
Use enable stmt cache monitoring to configure Adaptive Server to collect the
monitoring information on the statement cache.

Table name Description

monMon Metadata view is identical on all instances.

monTableColumns Metadata view is identical on all instances.

monTableParameters Metadata view is identical on all instances.

monTables Metadata view is identical on all instances.

monWaitClassInfo List of descriptions is identical on all instances.

monWaitEventInfo List of descriptions is identical on all instances.

Monitoring tables for the statement cache

20 Adaptive Server Enterprise

Deleting statements from the statement cache
Use dbcc purgesqlcache to remove statements from the statement cache. When
you specify the statement ID, only the corresponding statement is deleted from
the cache.

The syntax for dbcc purgesqlcache is:

dbcc purgesqlcache (int SSQLID)

Obtaining the hash key from the SQL text
A hash key is generated based on a statement’s text, and acts as an approximate
key for the search mechanism in the statement cache. Since other monitoring
tables display the statement’s text, you can use the hash key as an approximate
key to look up and compare SQL text in these tables.

For information about viewing the entire SQL text of a cached statement, see
“Displaying text and parameter information for cached statements,” below.

Adaptive Server includes two functions you can use to effectively compute the
hash key. Use parse_text to verify the validity of the SQL text before
computing the hash key. The syntax is:

select parse_text(text, prm_opt)

Valid values for prm_opt are:

• 1 – indicates that parse_text will auto-parameterize the output text.

• -1 – indicates that the current session settings for literal parameterization
determine whether the input text is parameterized.

If the SQL text is invalid, the parse_text function returns null.

Use hashbytes to compute the hash key over the statement’s text. For example:

select hashbytes('xor32', 'select * from syskeys')

Displaying text and parameter information for cached statements
Use show_cached_text to view the SQL text of a cached statement.
show_cached_text uses the statement ID as input and displays the text and
parameter information of the corresponding statement.The syntax is:

select show_cached_text(SSQLID)

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 21

Use show_cached_text to obtain text for statements in the statement cache in
queries. For example:

select SSQLID, show_cached_text(SSQLID)
from master..monCachedStatement

Examples of querying the monitoring tables
This section provides examples of querying the monitoring tables.

• To return a list of all available monitoring tables:

select TableName
from master..monTables

• To list the columns in a specific monitoring table, enter:

select ColumnName, TypeName, Length, Description
from master..monTableColumns
where TableName=”monProcessSQLText”

You can determine the columns for any of the monitoring tables by
substituting its name in the where clause and running the query.

• To determine which currently executing queries are consuming the most
CPU, and to list the text of those queries, enter:

select s.SPID, s.CpuTime, t.LineNumber, t.SQLText
from master..monProcessStatement s, master..monProcessSQLText t
where s.SPID = t.SPID
order by s.CpuTime DESC

• To determine the hit ratio for the procedure cache for the life of Adaptive
Server, enter:

select "Procedure Cache Hit Ratio" = (Requests-Loads)*100/Requests
from master..monProcedureCache

The following query also provides the hit ratio for a data cache. In this
example, the hit ratio is calculated for a 10-minute interval rather than for
the entire life of the server:

select * into #moncache_prev
from master..monDataCache
waitfor delay "00:10:00"
select * into #moncache_cur
from master..monDataCache

Examples of querying the monitoring tables

22 Adaptive Server Enterprise

select p.CacheName,
"Hit Ratio"=((c.LogicalReads-p.LogicalReads) - (c.PhysicalReads -
p.PhysicalReads))*100 / (c.LogicalReads - p.LogicalReads)
from #moncache_prev p, #moncache_cur c
where p.CacheName = c.CacheName

To calculate performance metrics for specific sample periods, create a
baseline table that stores monitor values at the beginning of the sample
period. You can calculate the change in monitor values during the sample
period by subtracting the baseline values from the values at the end of the
sample period.

Use queries from the following examples to calculate the hit ratio for a
data cache, create a baseline, and calculate the amount of activity during
the sample period.

• To create a stored procedure that prints the executed SQL and the
backtrace for any process currently executing stored procedures, enter:

create procedure sp_backtrace @spid int as
begin
select SQLText
from master..monProcessSQLText
where SPID=@spid
print "Stacktrace:"
select ContextID, DBName, OwnerName, ObjectName
from master..monProcessProcedures
where SPID=@spid
end

• To identify any indexes that were used for the table in the database with
dbid 5 and object ID 1424005073, enter:

select DBID, ObjectID, LastUsedDate, UsedCount
from master..monOpenObjectActivity
where dbid=5 and ObjectID=1424005073 and IndexID > 1

To determine if you can remove an index because it is not used by the
applications running on your server:

a Run all queries in your applications that access the table in question.
Ensure that Adaptive Server runs long enough so all applications have
performed their selects.

b To determine whether your application did not use any of the indexes
in your database, execute:

select DB = convert(char(20), db_name()),
TableName = convert(char(20), object_name(i.id, db_id())),

CHAPTER 1 Introduction to Monitoring Tables

Performance and Tuning Series: Monitoring Tables 23

IndexName = convert(char(20),i.name),
IndID = i.indid
from master..monOpenObjectActivity a,
sysindexes i
where a.ObjectID =* i.id
and a.IndexID =* i.indid
and (a.UsedCount = 0 or a.UsedCount is NULL)
and i.indid > 0
and i.id > 99 -- No system tables
order by 2, 4 asc

Examples of querying the monitoring tables

24 Adaptive Server Enterprise

Performance and Tuning Series: Monitoring Tables 25

C H A P T E R 2 Wait Events

Topic Page
Event 19: xact coord: pause during idle loop 27

Event 29: waiting for regular buffer read to complete 27

Event 30: wait to write MASS while MASS is changing 28

Event 31: waiting for buf write to complete before writing 29

Event 32: waiting for an APF buffer read to complete 29

Event 35: waiting for buffer validation to complete 30

Event 36: waiting for MASS to finish writing before changing 30

Event 37: wait for MASS to finish changing before changing 31

Event 41: wait to acquire latch 31

Event 46: wait for buf write to finish getting buf from LRU 33

Event 51: waiting for last i/o on MASS to complete 33

Event 52: waiting for i/o on MASS initiated by another task 34

Event 53: waiting for MASS to finish changing to start i/o 34

Event 54: waiting for write of the last log page to complete 35

Event 55: wait for i/o to finish after writing last log page 35

Event 57: checkpoint process idle loop 36

Event 61: hk: pause for some time 36

Event 70: waiting for device semaphore 37

Event 83: wait for DES state is changing 37

Event 84: wait for checkpoint to complete 37

Event 85: wait for flusher to queue full DFLPIECE 38

Event 91: waiting for disk buffer manager i/o to complete 38

Event 99: wait for data from client 39

Event 104: wait until an engine has been offlined 39

Event 124: wait for mass read to finish when getting page 40

Event 142: wait for logical connection to free up 40

Event 143: pause to synchronise with site manager 41

Event 150: waiting for a lock 41

Event 157: wait for object to be returned to pool 42

Event 169: wait for message 43

26 Adaptive Server Enterprise

Adaptive Server task management includes three states for a process: running,
runnable, sleeping, and blocked. When a process is not running (executing on
the CPU), it is:

• Waiting on the CPU (the “runnable” state)

• Sleeping because of disk or network I/O

• Blocked on a resource (a lock, semaphore, spinlock, and so on)

Event 171: wait for CTLIB event to complete 43

Event 178: waiting while allocating new client socket 43

Event 179: waiting while no network read or write is required 44

Event 197: waiting for read to complete in parallel dbcc 44

Event 200: waiting for page reads in parallel dbcc 45

Event 201: waiting for disk read in parallel dbcc 45

Event 202: waiting to re-read page in parallel 46

Event 203: waiting on MASS_READING bit in parallel dbcc 46

Event 205: waiting on TPT lock in parallel dbcc 47

Event 207: waiting sending fault msg to parent in PLL dbcc 47

Event 209: waiting for a pipe buffer to read 48

Event 210: waiting for free buffer in pipe manager 48

Event 214: waiting on run queue after yield 49

Event 215: waiting on run queue after sleep 49

Event 222: replication agent sleeping during flush 50

Event 250: waiting for incoming network data 50

Event 251: waiting for network send to complete 51

Event 259: waiting until last chance threshold is cleared 51

Event 260: waiting for date or time in waitfor command 52

Event 266: waiting for message in worker thread mailbox 52

Event 272: waiting for lock on ULC 53

Event 334: waiting for Lava pipe buffer for write 53

Event 374: wait for lock pending/data pending to be cleared 53

Event 375: OCM wait for finishing BAST handling 54

Event 389: OCM wait for pushing data flag to be cleared 54

Event 380: lock/data pending to reset when
OCM_ERR_DIDNTWAIT

55

Event 483: Waiting for ack of a multicast synchronous message 56

Topic Page

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 27

A wait event occurs when a server process suspends itself, sleeps, and waits for
another event to wake it. Adaptive Server includes unique wait event IDs for
each of these wait events. Query monSysWaits and monProcessWaits to find the
number of times—and the total amount of time—that a process waited for each
wait event.

Note The value of WaitTime in the monSysWaits table is in seconds. The value
of the WaitTime in the monProcessWaits table is in milliseconds.

This chapter describes a selection of the more common wait events and actions
you can perform to avoid them.

Event 19: xact coord: pause during idle loop
The Adaptive Server transaction coordinator (ASTC) sleeps, waiting for an
alarm or a server task to wake it (ASTC handles transactions involving
multiple database servers). If the server does not perform many distributed
transactions, the time per wait for this event is close to 60 seconds.

Action
No action necessary. Even with high values for WaitTime, event 19 does not
affect overall performance.

Event 29: waiting for regular buffer read to complete
A wait caused by a physical read (most likely a cache miss) which occurs when
Adaptive Server does not find a page in the data cache and must read it from
disk. The number of Waits is the number of physical reads that occurred
because of a cache miss. Use the monSysWaits.WaitTime value to derive I/O
response times

Event 30: wait to write MASS while MASS is changing

28 Adaptive Server Enterprise

Action
Because this event’s value for monSysWaits.WaitTime is measured in seconds,
the value for WaitTime for this event should be much less than the value for
Waits (an average physical read should be 2–6 milliseconds; more than 10
milliseconds is considered slow). A high average physical read value may
indicate poor disk throughput performance. Query monIOQueue and
monDeviceIO to identify slow or overloaded disks.

A high value for Waits, regardless of the value for WaitTime, may indicate that
query plans are not as effective as they could be. If you encounter a high value
for Waits, a table scan or Cartesian product may have occurred, or the optimizer
may have selected a bad plan, due to bad, stale, or missing statistics. Consider
adding an index on specific columns to the table on which this occurred.

A high value for Waits can also indicate the data caches are too small, with
active pages first pushed out and then reread. Query monOpenObjectActivity,
monProcessActivity, monDataCache, monCachPool, and monProcessObject to
determine how to proceed.

Event 30: wait to write MASS while MASS is changing
Adaptive Server is attempting to write to a memory address space segment
(MASS). A MASS is one or more contiguous pages Adaptive Server keeps in
a data cache. However, in this event, the status of the MASS is “changing,”
meaning another spid is updating the MASS. The spid initiating the write
cannot write to the MASS until the MASS is no longer in use.

A high value for WaitTime for event 30 may indicate that the data cache is too
small, causing pages in the data cache to reach the wash area frequently,
forcing the checkpoint process to perform more writes than necessary.

Action
You may be able to reduce high wait times by:

• Increasing the size of the data cache

• Using cache partitions or named caches to separate memory-intensive
objects

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 29

• Tuning the housekeeper, washmarker position, or schema implications
(such as sequential key tables)

• Positioning the washmarker

• Adjusting the schema (such as sequential key tables)

Event 31: waiting for buf write to complete before
writing

A server process responsible for writing data pages to the disk (for example, a
checkpoint) has determined that it must write a MASS. However, an earlier
write operation involving the same page has not finished, so the second process
must wait until the first write completes before initiating its write operation.

Action
Generally, the value for WaitTime for event 31 should be less than the value for
Waits. High values for WaitTime may indicate disk contention or slow
performance. Query monIOQueue and monDeviceIO to identify overloaded or
slow disks.

A high value for WaitTime for event 31 may also indicate that the data cache is
too small, causing pages in the data cache to reach the wash area frequently and
forcing the checkpoint process to perform more writes than necessary.

Event 32: waiting for an APF buffer read to complete
When Adaptive Server issues an asynchronous prefetch (APF) on a page,
another process is reading the MASS to which this page belongs. Adaptive
Server must wait for the read to complete before continuing.

Event 35: waiting for buffer validation to complete

30 Adaptive Server Enterprise

Action
A high value for Waits may indicate that Adaptive Server is using
asynchronous prefetch too often. Tuning the local APF limit for cache pools
may reduce contention for APF pages.

Since Adaptive Server often uses APF for table scans, contention involving
APF reads may indicate that an application is performing too many table scans
because of factors such as missing indexes.

Event 35: waiting for buffer validation to complete
Indicates that a process is attempting to read data in a page that another process
has read into cache. After reading a page into a data cache, Adaptive Server
validates the success of the read operation. Because Adaptive Server is
validating whether the read was successful, the second process must wait for
this to complete before accessing the data.

This event commonly occurs during periods of high physical reads.

Action
The value for WaitTime for event 35 should be quite small. If the value is large,
many processes are accessing the same page at the same time, or there is CPU
contention. Query monEngine to determine if the engines are overloaded, and
run system-level utilities to determine if there is overall CPU contention.

Event 36: waiting for MASS to finish writing before
changing

A spid must make changes to a MASS, but another spid is currently writing the
MASS. The second spid must wait until the write completes.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 31

Action
A high value for WaitTime indicates that some condition may be causing
diminished I/O or data cache manager performance. Normally, the value for
Waits should be higher than the value for WaitTime. Query monIOQueue and
monDeviceIO to determine if a disk device is slow or overloaded.

Note If event 36 occurs because of an update to a page, partitioning th cache
has not effect. However, if event 36 occurs when page updates are not taking
place, partitioning the cache may expedite the writes.

Event 37: wait for MASS to finish changing before
changing

A spid attempts to make changes to the MASS, but another spid is currently
changing the MASS. The first spid must wait until the changes are complete
before it can make changes to the MASS.

Action
Typically, the values for Waits for event 37 should be much higher than the
values for WaitTime. If the values are not higher for Waits, either many
processes are accessing the same MASS at once, or there is CPU contention.
Query monEngine to determine if the engines are overloaded. Run system-level
utilities to determine if there is overall CPU contention.

Event 41: wait to acquire latch
Event 41 often indicates that multiple processes are simultaneously attempting
to update rows on a single page.

Event 41: wait to acquire latch

32 Adaptive Server Enterprise

Adaptive Server uses a latch as a transient lock to guarantee a page’s contents
are not changed while another process reads or writes data. Adaptive Server
typically uses latches in data-only locked tables to protect the contents of the
page when multiple processes are simultaneously reading or updating rows on
the same page. If one process attempts to acquire a latch while another process
already holds the latch, the first process may need to wait. If event 41 occurs
frequently, it may indicate a high level of contention for data on a single
physical page within an index or table.

Reduce contention by:

• Introducing an index with a sort order that distributes data differently
across pages, so it spreads the rows that are causing contention

• Changing your application so that such contention does not occur

Action
Consider reducing contention for pages by changing index definitions in a way
that alters the physical distribution of data across the data and index pages
within your table, or modifying your application to reduce contention.

If the average value for WaitTime is high, event 41 may occur because of an
Adaptive Server resource shortage, resulting from:

• A hash table that is too small for a lock, resulting in very long hash chains
that Adaptive Server must search.

• An operating system issue during which calls that should be quick are a
bottle neck (for example, starting asynchronous I/O, which should return
immediately, blocks because of operating system resource limitations.

• Extremely high inserts and expanding updates. Page allocations take place
frequently, and contention for the allocation page latch results in a high
number of Waits. Use dbcc tune(des_greedyalloc) to reduce this contention.
For information about latch contention, see Performance and Tuning
Series: Monitoring Adaptive Server with sp_sysmon.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 33

Event 46: wait for buf write to finish getting buf from
LRU

A spid attempts to acquire a buffer from the least recently used (LRU) chain.
However, the buffer has an outstanding write that must finish before Adaptive
Server can use the buffer for a different page.

Action
Event 46 may indicate that:

• A cache is so busy that the buffer at the end of the LRU chain is still
processing. Query monDataCache and monCachePool to determine which
cache is busy. Possible resolutions include: increasing the size of the
cache, using sp_poolconfig to increase the wash size, and increasing the
housekeeper activity by retuning enable housekeeper GC.

• Disk writes are taking a long time to complete. Query monIOQueue and
monDeviceIO to determine if there is a slow or overloaded disk device.

Event 51: waiting for last i/o on MASS to complete
Occurs when a process is writing a range of pages for an object to disk because
of a change to the object or because the object is removed from the metadata
cache. Because it is important to complete the I/O operations on some pages
before other pages are written, the process must wait until it is notified that the
I/O that was initiated has completed its task.

Action
A high value for WaitTime indicates that writes may be taking a long time to
complete. Typically, the value for Waits should be much higher than the value
for WaitTime. Query monIOQueue and monDeviceIO to determine if there is a
slow or overloaded disk device.

Event 52: waiting for i/o on MASS initiated by another task

34 Adaptive Server Enterprise

Event 52: waiting for i/o on MASS initiated by another
task

A process writes a range of pages for an object to disk because of a change to
the object, or because the object was removed from the metadata cache.
However, another spid has an I/O outstanding on the MASS, and the second
process must sleep until the first process’s finish writing.

Action
A high value for WaitTime for this event indicates that writes may be taking too
long to complete. Typically, the value for Waits should be much higher than the
value for WaitTime. Query monIOQueue and monDeviceIO to determine if there
is a slow or overloaded disk device.

Event 53: waiting for MASS to finish changing to start
i/o

A spid attempts to write to a MASS, but another spid is already changing the
MASS, so the first spid must wait until the changes are complete.

Adaptive Server minimizes the number of disk I/O operations it performs. If a
process responsible for writing pages (for example, the checkpoint process)
needs to modify a page but determines that another process is modifying the
page, the second process waits until the first process completes so the page
write includes the page modification.

Action
Normally, the value for Waits for event 53 should be higher than the value for
WaitTime. If it is not higher, either many processes are simultaneously
accessing the same MASS, or there is CPU contention. Query monEngine to
determine if the engines are overloaded. Run system-level utilities to determine
if there is overall CPU contention.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 35

Event 54: waiting for write of the last log page to
complete

Event 54 occurs when a process is about to initiate a write of the last log page
but discovers another process is already scheduled to perform write. The second
process waits until the first process finishes its I/O, but the second process does
not initiate the I/O operation.

Because Adaptive Server frequently updates the last page of the transaction
log, Adaptive Server avoids performing physical writes of the last log page.
This reduces the amount of I/O the server performs and increases the last log
page’s availability to other processes that need to perform an update, and
thereby impoving performance.

Action
A high average value for WaitTime for event 54 indicates that writes are taking
a long time to complete. Typically, the value for Waits should be much higher
than the value for WaitTime. Query monIOQueue and monDeviceIO to
determine if there is a slow or overloaded disk device.

High values for Waits, regardless of the average time, may indicate contention
for the last log page. Increase the size of the user log cache to reduce
contention, or group operations for applications to avoid committing every
row.

Event 55: wait for i/o to finish after writing last log page
Indicates a process has initiated a write operation on the last page of the
transaction log, and must sleep until the I/O completes. A high value for the
Waits column for event 55 indicates that Adaptive Server is making a large
number of updates to the transaction log because of committed transactions or
other operations that requiring writing the transasction log to disk.

Event 57: checkpoint process idle loop

36 Adaptive Server Enterprise

Action
A high value for WaitTime for event 55 indicates that writes may be taking a
long time to complete. Typically, the value for Waits should be much higher
than the value for WaitTime

Event 57: checkpoint process idle loop
The checkpoint process sleeps between runs to prevent the checkpoint from
monopolizing CPU time.

Action
Event 57 may accumulate large amounts of time since the checkpoint process
starts when the server starts. However, you need not perform any actions based
on this event.

Event 61: hk: pause for some time
The housekeeper pauses occasionally to keep housekeeper functions from
monopolizing CPU time.

Action
Event 61 is expected, and may show large values on servers that have run for
along time. Typically, you need not perform any actions based on this event.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 37

Event 70: waiting for device semaphore
If you are using Adaptive Server mirroring (that is, disable disk mirroring is set
to 0), each disk device access must first hold the semaphore for that device.
Event 70 measures the time spent waiting for that semaphore and can occur if
disk I/O structures are too low.

Action
If you are not using Adaptive Server mirroring, set disable disk mirroring to 1.
If you are using mirroring, high values for WaitTime may indicate a loss of
performance from device contention. Query monIOQueue and monDeviceIO to
determine if there is a slow or overloaded disk device. Evaluate the results to
determine if you can shift some of the load to other devices.

Event 83: wait for DES state is changing
A object descriptor (called a “DES”) is allocated for every open object
(temporary tables, cached query plans and statement cache, stored procedures,
triggers, defaults, rules, tables, and so on). Event 83 occurs when Adaptive
Server is releasing an allocated descriptor, which typically happens when
Adaptive Server is dropping an object.

Action
A high value for Waits for event 83 may indicate a shortage of object
descriptors. You may need to increase the number of open objects.

Event 84: wait for checkpoint to complete
Adaptive Server is dropping a DES, which typically occurs when Adaptive
Server is dropping an object. Event 84 indicates that the drop must wait for a
checkpoint to complete on the database.

Event 85: wait for flusher to queue full DFLPIECE

38 Adaptive Server Enterprise

Action
Although it is unlikely that the Waits value is high for event 84, a high value
may indicate that many drops are occurring simultaneously, or that the
checkpoint process is taking a long time. If the checkpoints are running for an
excessive amount of time, try decreasing the recovery interval (in minutes).

Event 85: wait for flusher to queue full DFLPIECE
When Adaptive Server runs dump database, it uses the “flusher” process to
create lists of pages (which includes a structure called DFLPIECE) that are in
a data cache and have been changed. Adaptive Server sends the Backup Server
a list of pages to include in the dump.

Event 85 measures the time the dump process spends waiting for the flusher
process to fill and queue DFLPIECE.

Action
This event is normal during a dump database. If the average value for WaitTime
is exceptionally high (higher than 2), check other events to determine what is
slowing down the flusher processes.

Event 91: waiting for disk buffer manager i/o to
complete

When Adaptive Server runs load database, it may require the load process to
verify that a disk I/O has completed before continuing. Event 91 measures the
time Adaptive Server spends waiting for verification.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 39

Action
Generally, the value for WaitTime for event 91 should be much lower than the
value for Waits. High values for WaitTime indicate possible disk contention or
slowness. Query monIOQueue and monDeviceIO to determine if there is a slow
or overloaded disk device.

Event 99: wait for data from client
When a process uses a site handler to connect to a remote server, it must
occasionally wait for the server to return the data. Event 99 measures the time
the process must wait.

A site handler is a method for transmitting RPCs from a local server to a remote
server. A site handler establishes a single physical connection between local
and remote servers and multiple logical connections, as required by RPCs.

Action
A high average value for WaitTime for event 99 indicates slow communication
with the remote server. This may be due to complex RPC calls that take a long
time to complete, performance issues in the remote server, or a slow or
overloaded network.

Event 104: wait until an engine has been offlined
Adaptive Server includes an engine cleanup background process that runs
continuously. This service performs clean up tasks after an engine goes offline.
This process typically remains in a sleep state, waking up every 30 seconds to
check for work to do. Event 104 measures the cumulative amount of time this
process slept between tasks.

Event 124: wait for mass read to finish when getting page

40 Adaptive Server Enterprise

Action
The average value for WaitTime for event 104 should be very close to 30. If
engines are frequently taken offline, this value may be slightly lower. If the
average value for WaitTime is significantly higher or lower than 30, contact
Sybase Technical Support.

Event 124: wait for mass read to finish when getting
page

Event 124 occurs when a process attempts to perform a physical read but
another process has already performed the read request (this also counts as a
“cache miss”).

Action
The value for WaitTime for event 124 should be much lower than the value for
Waits. The average value for WaitTime is high if disk performance is poor.
Query monIOQueue and monDeviceIO to determine if there is a slow or
overloaded disk device.

Event 142: wait for logical connection to free up
When Adaptive Server executes an RPC on a remote serer using the site
handler mechanism, it creates logical connections.

Event 142 occurs when Adaptive Server must close a logical connection but
finds another process using it. Adaptive Server must wait until the logical
connection is no longer in use before closing the logical connection.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 41

Action
Event 142 should normally have a very low average value for WaitTime. A high
value for WaitTime may indicate there is a problem communicating with the
remote server.

Event 143: pause to synchronise with site manager
Adaptive Server communicates with a remote server using a site manager, but
of another process is attempting to connect to that remote server. Event 143
measures the amount of time Adaptive Server waits to establish the connection
to the remote server.

Action
A high average value for WaitTime for event 143 may indicate performance
issues on the remote server or a slow or overloaded network. Query
monProcessWaits for WaitEventID 143 to determine which spids have high wait
times.

Event 150: waiting for a lock
A process attempts to obtain a logical lock on an object but another process is
already holding a conflicting lock on this object. Event 150 is a common event
that occurs when Adaptive Server performs an operation that requires locks to
protect data that is being read or updated. The locks involved may be at various
levels, including table, page, or row.

After all conflicting locks are released, Adaptive Server wakes the waiting
process and grants it access to the object.

Event 157: wait for object to be returned to pool

42 Adaptive Server Enterprise

Action
The value for WaitTime for this event can be high if there is contention for a
particular table or page (such as a high number of heap inserts). Query
monLocks and monOpenObjectActivity to identify objects that are experiencing
heavy lock contention.

In some situations, you can reduce the amount of lock contention by changing
the table’s locking scheme from allpages locking to data-only locking.
Application or database design typically causes lock contention; evaluate your
application design to determine the best method to reduce lock contention,
while still considering other application requirements.

Event 157: wait for object to be returned to pool
The Adaptive Server memory manager allocates memory for storing data
describing a wide range of internal objects from separate memory “pools.”
When a pool’s available memory is low, requests for additional memory may
be delayed until another operation returns memory to the pool. When this
occurs, the requesting process must wait until more memory is available.

Event 157 occurs when a process most wait for memory to become available
before allocating the object’s data.

Action
If the average value for WaitTime for event 157 is low, performance may not
noticeably degrade. However, any Waits on this event indicate a condition you
can correct by increasing the configured number of structures for which
Adaptive Server is waiting. Use sp_countmetadata and sp_monitorconfig to
identify which structures are using the maximum configuration to determine
which resources you should increase.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 43

Event 169: wait for message
Some Adaptive Server processes (for example, worker threads, auditing, disk
mirroring, and so on) use a structure called a “mailbox” to pass messages.
Event 169 measures the time Adaptive Server spends waiting for a message in
a mailbox.

Action
Typically, the average value for WaitTime for event 169 is very small. However,
if the value for WaitTime is large, query monProcessWaits for rows with
WaitEventID value of 169 to determine which jobs have long wait times for this
event.

Event 171: wait for CTLIB event to complete
Indicates that Adaptive Server is waiting for the remote server to respond.
Event 171 appears if you use Component Integration Services (CIS) for proxy
tables and RPC calls.

Action
A high average value for WaitTime for this event may indicate remote CIS
server performance issues or a slow or overloaded network. Query
monProcessWaits for WaitEventID 171 to determine which spids have high wait
times for this event.

Event 178: waiting while allocating new client socket
A network listener is an Adaptive Server process that handles a client’s
incoming connection requests. Event 178 measures the time Adaptive Server
spends waiting for new connection requests.

Event 179: waiting while no network read or write is required

44 Adaptive Server Enterprise

Action
You need not perform any actions based on event 178. However, you can use
some of its information for analysis. The value for WaitTime is roughly
equivalent to the amount of time the server has been running. The values for
Waits is a measure of how many connection attempts have been made since the
server started.

Event 179: waiting while no network read or write is
required

The Adaptive Server network task sleeps on event 179 if there is no network
I/O the server must send or receive. When there is network activity, the server
task wakes, handles the requests, and then goes back to sleep.

Action
High values for event 179 indicate high levels of network activity. If the
network activity is unexpectedly high, query other monitoring tables—such as
monNetworkIO and monProcessNetIO—to determine which jobs are slowing
network performance.

A high value for the Waits column for event 179 may indicate that dbcc
checkstorage identified a large number of possible consistency faults. Check
the reports from dbcc checkstorage for more information.

Event 197: waiting for read to complete in parallel dbcc
When you run dbcc checkstorage, Adaptive Server must occasionally perform
asynchronous I/O on the workspace to read or write a single reserved buffer.
Event 197 measures the time Adaptive Server waits for those disk I/Os.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 45

Action
Generally, the value for WaitTime for event 197 should be much lower than the
value for Waits. A high average value for WaitTime may indicate poor disk
throughput performance. Query monIOQueue and monDeviceIO to determine if
there is a slow or overloaded disk device.

Event 200: waiting for page reads in parallel dbcc
Event 200 occurs when you run dbcc checkstorage using multiple worker
processes. This event measures the time spent waiting for reads to complete on
pages that dbcc checks.

Action
Generally, the value for WaitTime for event 200 should be much lower than the
value for Waits. A high average value for WaitTime may indicate poor disk
throughput performance. Query monIOQueue and monDeviceIO to determine if
there is a slow or overloaded disk device.

Event 201: waiting for disk read in parallel dbcc
When you run dbcc checkverify, Adaptive Server performs a disk read to verify
whether a potential fault exists in the disk copy of a page; event 201 measures
the time spent waiting for those reads to complete.

Action
Generally, the value for WaitTime for event 201 should be much lower than the
value for Waits. A high average value for WaitTime may indicate poor disk
throughput. Query monIOQueue and monDeviceIO to determine if there is a
slow or overloaded disk device.

Event 202: waiting to re-read page in parallel

46 Adaptive Server Enterprise

Event 202: waiting to re-read page in parallel
When you run dbcc checkstorage, Adaptive Server determines whether it needs
to perform a disk read to verify whether a potential fault exists in the disk copy
of a page; event 202 measures the time spent waiting for those reads to
complete.

Action
Generally, the value for WaitTime for event 202 should be much lower than the
value for Waits. A high average value for WaitTime may indicate poor disk
throughput. Query monIOQueue and monDeviceIO to determine if there is a
slow or overloaded disk device.

Event 203: waiting on MASS_READING bit in parallel
dbcc

When you run dbcc checkstorage, Adaptive Server determines whether it needs
to perform a disk read to verify whether a fault exists in the disk copy of the
MASS. However, another process may have already started that read. Event
203 measures the time spent waiting for those reads to complete.

Action
Generally, the value for WaitTime for event 203 should be much lower than the
value for Waits. A high average value for WaitTime may indicate poor disk
throughput. Query monIOQueue and monDeviceIO to determine if there is a
slow or overloaded disk device.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 47

Event 205: waiting on TPT lock in parallel dbcc
When you run dbcc checkstorage to check text and image pages, Adaptive
Server must hold a lock to prevent multiple worker threads from accessing the
page links at the same time. Event 205 measures the time spent waiting for
those locks.

Action
The frequency of event 205 depends on how many text and image columns are
contained in the tables you are checking. An exceptionally high average value
for WaitTime may indicate some resource contention for the worker thread
holding the lock. Check CPU and disk metrics to determine if there is
contention.

Event 207: waiting sending fault msg to parent in PLL
dbcc

When you run dbcc checkstorage, each worker process reports possible faults
to the parent process by queuing messages to the parent spid. If the mailbox of
the parent process is full, the worker process must wait for more room in the
mailbox before it can queue the next message. Event 207 measures the time the
worker process spends waiting.

Action
Event 207 is typically caused by Adaptive Server reporting a large number of
faults. You need not take any actions for this event, other than to follow the
normal process of running dbcc checkverify to verify and analyze the faults.

Event 209: waiting for a pipe buffer to read

48 Adaptive Server Enterprise

Event 209: waiting for a pipe buffer to read
When Adaptive Server performs a sort in parallel (for example, create index
that specifies a consumers clause), it uses an internal mechanism to send data
between the various tasks. Event 209 measures the amount of time the tasks
spend waiting for other tasks to add data to a pipe.

Action
The average value for WaitTime for event 209 should be very low. High average
values for WaitTime may indicate that the sort manager producer processes
cannot generate data fast enough to keep the consumer processes busy. Check
the overall system performance to determine if Adaptive Server has sufficient
CPU and I\O bandwidth.

Event 210: waiting for free buffer in pipe manager
When Adaptive Server performs a sort in parallel (for example, create index
that specifies a consumers clause), it uses an internal mechanism, called a
pipe, to send data between the various tasks. Event 210 measures the amount
of time a process waits for Adaptive Server to allocate a free pipe buffer.

Action
The average value for WaitTime for event 210 should be very low. High average
values for WaitTime may indicate that Adaptive Server has some resource
contention. Run sp_monitor or sp_sysmon, or query monEngine to determine if
Adaptive Server has sufficient CPU resources.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 49

Event 214: waiting on run queue after yield
Event 214 measures the amount of time a process waits on the run queue after
yielding to allow other processes to run. This process is “runnable,” not waiting
on a lock, physical I/O, or any other wait condition. This event may be caused
by insufficient CPU (that is, the server is CPU bound) or table scans in
memory.

Event 214 differs from event 215 by indicating a process is performing a CPU-
intesive task that exceeded the CPU time allocated by time slice: the process
yields the CPU voluntarily and is placed in a runnable state while it waits for
the Adaptive Server scheduler to allocate more CPU time. When this occurs,
the process continues with the activity it was performing before it yielded the
CPU.

Event 215 also indicates that a process is in a runnable state, but for event 214,
the process entered this state not because it exceeded the CPU time, but
because it encountered a condition that required it to wait for a resource, such
as disk or network I/O or a logical lock, before it continues performing its task.

Action
Busy servers typically have high values for Waits. However, high values for
WaitTime or the time slice setting may indicate that Adaptive Server has a large
number of spids waiting to execute, or that is has spids running which were
heavily CPU bound and are not readily yielding their CPU. Query
monProcessActivity to identify jobs that have high CPUTime.

Event 215: waiting on run queue after sleep
Event 215 occurs when a process is no longer waiting for another wait event
(for example, a logical lock, disk I/O, or another wait event) and is placed on
the server’s runnable queue. The process must wait until the scheduler allocates
CPU time before continuing its task.

See the description for event 214 for differences between event 214 and 215.

Event 222: replication agent sleeping during flush

50 Adaptive Server Enterprise

Action
Event 215 is a common wait event. The value for Waits for event 215 is
typically large. Busy servers have high values for WaitTime because processes
are waiting for the Adaptive Server runnable queue for a long time. Reduce the
value for time slice to allow more processes to access CPU (this also reduces
the average time some processes spend in the CPU) or, if there are sufficient
CPUs available on the host machine, increase the number of online engines.

Event 222: replication agent sleeping during flush
If Adaptive Server is a primary server performing replication, the RepAgent
process sleeps, waiting for work to do (for example, when rows are added to
the log for a database). Event 222 measures the amount of time RepAgent
spends asleep.

Action
Depending on the level of activity within a replicated database, event 222 may
typically have high values for WaitTime. Typically, you need not perform any
actions for this event.

Event 250: waiting for incoming network data
This event measures the time that application processes are active, but waiting
for the next request from a client (that is, when jobs are in the AWAITING
COMMAND state).

Event 250 typically occurs when the application remains connected to the
Adaptive Server but is idle.

Action
Because event 250 occurs before Adaptive Server processes each command
from a client, the number of Waits and WaitTime may typically be high.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 51

You can use event 250 to estimate how many requests the server has handled
from clients.

A high WaitTime value for this event can indicate a large number of idle client
connections, or that some client connections remain idle for a long period of
time. This wait event can occur between batches or commands sent by the
client application, so the Waits value may be high if applications submit a large
number of separate commands or batches.

Event 251: waiting for network send to complete
Event 251 measures the amount of time a job waits while sending a reply
packet back to a client.

Action
Event 251 may indicate that Adaptive Server is sending large reply sets to
clients, or it may indicate a slow or overloaded network. Check the average
packet size in the monNetworkIO and monProcessNetIO tables. In each of these
tables, the average size is:

(BytesSent) / (PacketsSent)

Increasing the client application’s network packet size may improve network
performance.

Event 259: waiting until last chance threshold is
cleared

When Adaptive Server crosses a last-chance threshold for a database log, every
process trying to allocate more log space receives message 7415, and is put to
sleep, or suspended, while it waits for available log space. Event 259 measures
the amount of time the process waits for this space.

Event 260: waiting for date or time in waitfor command

52 Adaptive Server Enterprise

Action
A high value for Waits for this event may indicate that some databases need
larger log segments. A high value for the average WaitTime may indicate that
you have not defined a threshold procedure, or that a procedure is taking a long
time to free log space.

Increasing the frequency of transaction dumps on the database or allocating
more space to the log segment may reduce the value for WaitTime.

Event 260: waiting for date or time in waitfor command
Event 260 is normal and expected when processes use the waitfor command.

Action
When a process uses a waitfor command, Adaptive Server puts it to sleep until
the requested time expires. Event 260 measures this amount of sleep time.

Event 266: waiting for message in worker thread
mailbox

Adaptive Server worker threads communicate with each other and the parent
spid through an internal Adaptive Server mechanism called a mailbox. Event
266 measures the amount of time a worker process spends waiting for its
mailbox to add a message.

Action
To evaluate event 266, determine the number of parallel queries that were run
from monSysWorkerThread.ParallelQueries. If the value for WaitTime is high
per query, Adaptive Server may have a resource shortage (generally, CPU
time). A high WaitTime value may also indicate unbalanced partitions on
objects, causing some worker threads to wait for others to complete.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 53

Event 272: waiting for lock on ULC
Each process allocates a user log cache (ULC) area, which is used to reduce
contention on the last log page. Adaptive Server uses a lock to protect the ULC
since more than one process can access the records of a ULC and force a flush.
Event 272 measures the time the ULC spends waiting for that lock.

Action
Typically, the average value for WaitTime for event 272 is quite low. A high
value for average WaitTime may indicate high wait times for other events,
forcing the ULC lock holder to wait. You can analyze other wait events to
determine what is causing these waits.

Event 334: waiting for Lava pipe buffer for write
Adaptive Server version 15.0 introduced the lava query execution engine.
When this engine executes a parallel query, it uses an internal structure called
a “pipe buffer” to pass data between the worker processes. Event 334 measures
the amount of time Adaptive Server spends waiting for a pipe buffer to be
available.

Action
The value for WaitTime should be low when processes execute properly. If this
is not the case, contact Sybase Technical Support.

Event 374: wait for lock pending/data pending to be
cleared

A lock request is blocked because a required lock is unavailable at the local
node and a currently pending request.

Event 375: OCM wait for finishing BAST handling

54 Adaptive Server Enterprise

Action
A high number of conflicting requests for the same lock across different nodes
indicates that the application is issuing conflicting lock requests on the same
object from multiple nodes. The lock emanates from the object coherency
manager, which manages the metadata describing database objects across all of
the instances in the cluster.

You may improve performance by directing most requests for the object in
question to a single node.

Event 375: OCM wait for finishing BAST handling
One or more ocm_lock requests are blocked by a conflicting ocm_lock request
from a different node.

Action
A high value for this wait event means that different nodes are sending a high
number of conflicting requests for the same ocm_lock. The application is
probably issuing these conflicting lock requests from multiple nodes. You may
improve performance by directing most requests for the ocm_lock to a single
node.

Event 389: OCM wait for pushing data flag to be
cleared

Adaptive Server cannot process one or more ocm_lock requests because:

• Another lock request is holding the lock

In this situation, a high value indicates there are numerous exclusive lock
requests that need to perform heavy operations without losing the
ocm_lock. This is an internal issue.

To improve performance, determine why Adaptive Server is holding the
lock for so long.

CHAPTER 2 Wait Events

Performance and Tuning Series: Monitoring Tables 55

• Another request is pushing the data.

In this situation, a high value may indicate that data resides only in
memory and Adaptive Server must regularly push this data to other nodes
to avoid loosing data in the case of node failure. This adversely affects
performance because Adaptive Server performs no useful work while it is
pushing the data to other nodes. This is an internal isssue.

To improve performance, determine why Adaptive Server is holding the
lock or pushing the data for so long.

• A canceled transaction is pending (the requested data is probably not being
delivered, and the OCM on this node is taking corrective action).

This wait event is rare (usually when an instance is expecting data from a
node that just crashed). A high value for this wait event may result from a
high rate of node or hardware failure.

Event 380: lock/data pending to reset when
OCM_ERR_DIDNTWAIT

If the cluster lock manager cannot immediately grant a lock request, it returns
a LOCK_DIDNTWAIT message, which Adaptive Server translates as
OCM_ERR_DIDNT_WAIT. The ocm_lock request goes to sleep until the AST
returns from the master database with a response for the lock-request.

Action
A high value for this wait event indicates there are numerous conflicting
requests for the same ocm_lock across different nodes. This may be caused by
the application issuing conflicting lock requests on the same object from
multiple nodes. You may improve performance by directing requests for the
object in question to a single node.

Event 483: Waiting for ack of a multicast synchronous message

56 Adaptive Server Enterprise

Event 483: Waiting for ack of a multicast synchronous
message

Although this wait event occurs with some frequency, it is a result of normal
activity.

Action
No action required.

Performance and Tuning Series: Monitoring Tables 57

Numerics
12036, error 11

A
access controls, in mon_role 11
accessing monitoring tables remotely 4
ad hoc queries, tables not to use 15
Adaptive Server, configuring for statement cache 19
algorithms, to determine size of pipe error parameter

6
allocating memory, for pipe error messages 6

B
buffer read, waiting for, event 29 27
buffers, configuring for monitoring tables 13

C
checkpoint process idle loop, wait event 57 36
client connections and monitoring tables 14
Cluster Edition

adding instanceID 18
installing monitoring tables in version 15.0.1 3
using monitoring tables 17

command
set 17

configuration parameters
enable cis sp_configure, for configuration options

5
enable monitoring sp_configure, for

configuration options 5
list of 5
required for some monitoring tables 7

configuring monitoring tables with sp_configure 5

counter datatypes, wrapping 11

E
enable cis configuration parameter 5
enable monitoring configuration parameter 5
error 12036, how to use 11

F
function

show_cached_text 20

G
global monitor counters 2

H
hash key, obtaining from SQL text 20
historical monitoring tables, list of 12

I
installing

monitoring tables 3
monitoring tables for 15.0.1 Cluster Edition 3
monitoring tables for versions 15.0.2 and later 3
monitoring tables for versions earlier than 15.0.2 3

installmontables script 3
instanceID column, for Cluster Edition 18

Index

Index

58 Adaptive Server Enterprise

M
MASS (memory address space segment)

defined 28
waiting to change, wait event 30 28

max messages parameters 14
mon_role 2

and additional access controls 11
not required in Workload and LogicalCluster tables

11
monCachedProcedures table 2
monCachedStatement table 19
monDeadLock table 2
monitor counters

global 2
monitoring

information sources of 2
performance with Transact-SQL 2

monitoring tables 1–23
affected by configuration options 7
CIS and, 3
client connections 14
configuration options 5
configuring buffers 13
data not stored on disk 1
examples 21–23
for statement cache update, select, delete commands

19
installing 3
installmontables script 3
introduction 1
mon_role 2
not created by default 1
querying 21
remotely accessing and editing 4
remotely accessing and editing for 15.0.2 and later 4
stateful historical monitoring tables 12–16
transient data 16
using in clustered environment 17
using Transact-SQL to monitor performance 2

monProcessSQLText table 2
monProcessWaits table 2
monStatementCache table 19
monSysWaits table 2

O
option

prm_opt 20

P
parameters

max messages 14
pause for some time, wait event 61 hk 36
pause to synchronise with site manager, wait event 143

41
pipe error messages

allocating memory for 6
list of 6

pipe error parameters
list of 6

prm_opt option, valid values 20

Q
querying monitoring tables, examples 21

R
remotely accessing monitoring tables 4

in version 15.0.2 and later 4
replication agent sleeping during flush, wait event 222

50
role

mon_role 11

S
set 19

command 17
show_cached_text function, views SQL text of a cached

statement 20
sources of monitoring information 2
sp_configure, stored procedure 5
stateful monitoring tables 12–16
statement cache

Index

Performance and Tuning Series: Monitoring Tables 59

configuring Adaptive Server 19
deleting statements 20

stored procedure
sp_configure, for configuration options 5

system view, configuring 17

T
table

monCachedStatement 19
monStatementCache 19

Transact-SQL
using to monitor performance 2

transient (stateful) data and monitoring tables 16

V
view, system, configuring system_view, setting 17

W
wait

event 179, waiting while allocating new client
socket 44

event 203,waiting to re-read page in parallel 46
event 266,waiting for date or time in waitfor

command 52
for checkpoint to complete, wait event 84 37
for CTLIB event to complete, wait event 171 43
for data from client, wait event 99 39
for DES state is changing, wait event 83 37
for flusher to queue full DFLP, wait event 85 38
for logical connection to free up, wait event 142

40
for mass read to finish when getting page, wait

event 124 40
for message, wait event 169 43
for object to be returned to pool, wait event 157

42
to acquire latch, wait event 41 31
to finish getting buffer from LRU, wait event 46

33
until an engine has been offlined, wait event 104

39
wait event

104, wait until an engine has been offlined 39
124, wait for mass read to finish when getting page

40
142, wait for logical connection to free up 40
143, pause to synchronise with site manager 41
150, waiting for a lock 41
157, wait for object to be returned to pool 42
169, wait for message 43
171, wait for CTLIB event to complete 43
178, waiting while allocating 43
179, waiting while no network read or write is

required 44
19, xact coord 27
197, waiting for read to complete in parallel dbcc

44
200, waiting for page reads in parallel dbcc 45
201, waiting for disk read in parallel dbcc 45
202 waiting to re-read page in parallel 46
203, waiting on MASS_READING bit in parallel

dbcc 46
205, waiting on TPT lock in parallel dbcc 47
207, waiting sending fault msg to parent in PLL dbcc

47
209, waiting for a pipe buffer to read 48
210, waiting for free buffer in pipe manager 48
214, waiting on run queue after yield 49
215, waiting on run queue after sleep 49
222, replication agent sleeping during flush 50
250, waiting for incoming network data 50
251, waiting for network send to complete 51
259, waiting until last chance threshold is cleared

51
266, waiting for message in worker thread mailbox

52
266,waiting for message in worker thread mailbox

52
272,waiting for lock on ULC 53
29, waiting for regular buffer read 27
30, wait to write MASS 28
31, waiting for buffer write 29
32, waiting for APF buffer to complete 29
334,waiting for Lava pipe buffer for write 53
35, waiting for buffer validation to complete 30
36, waiting for MASS 30

Index

60 Adaptive Server Enterprise

37, waiting for MASS 31
41, wait to acquire latch 31
46, wait to finish getting buffer from LRU 33
51, last IO on MASS 33
52, waiting for I/O on MASS 34
53, waiting for MASS to finish 34
54, waiting for write of last log page 35
55, waiting for I/O to finish after writing 35
57, checkpoint process idle loop 36
61 hk, pause for some time 36
70, waiting for device semaphore 37
83, wait for DES state is changing 37
84, wait for checkpoint to complete 37
85, wait for flusher to queue full DFLP 38
91, waiting for disk buffer manager i/o to complete 38
99, wait for data from client 39
to avoid 25

wait events
definition 27

waiting
allocating new client socket, wait event 179 44
allocating, wait event 334 43
MASS_READING bit in parallel dbcc, wait event 202

46
no network read or write is required, wait event 334

44
re-read page in parallel, wait event 202 46
re-read page in parallelc, wait event 203 46
run queue after sleep, wait event 215 49
run queue after yield, wait event 214 49
sending fault msg to parent in PLL dbcc, wait event 207

47
TPT lock in parallel dbcc, wait event 205 47
until last chance threshold is cleared, wait event 259

51
waiting for

a lock, wait event 150 41
a pipe buffer to read, wait event 209 48
APF buffer to complete, wait event 32 29
buffer event, wait event 31 29
buffer validation to complete, wait event 35 30
date or time in waitfor command, wait event 266 52
device semaphore, wait event 70 37
disk buffer manager i/o to complete, wait event 85 38
disk read in parallel dbcc, wait event 201 45
free buffer in pipe manager, wait event 210 48

I/O on MASS, wait event 52 34
I/O to finish after writing, wait event 55 35
incoming network data, wait event 250 50
last IO on MASS, wait event 51 33
Lava pipe buffer for write, wait event 334 53
lock on ULC, wait event 272 53
MASS to finish, wait event 53 34
MASS, wait event 36 30
MASS, wait event 37 31
message in worker thread mailbox, wait event 202

52
network send to complete, wait event 251 51
page reads in parallel dbcc, wait event 200 45
read to complete in parallel dbcc, wait event 197

44
write of last log page, wait event 54 35

wrapping counter datatypes 11

X
xact coord, wait event 19 27

	Performance and Tuning Series: Monitoring Tables
	CHAPTER 1 Introduction to Monitoring Tables
	Monitoring tables in Adaptive Server
	Where does the monitoring information come from?
	Using Transact-SQL to monitor performance

	Installing the monitoring tables
	Versions earlier than 15.0.2, except Cluster Edition
	Configuring loopback proxy server for 15.0.1 ESD #2 and earlier

	Remotely accessing and editing monitoring tables
	Configuring the monitoring tables to collect data
	Allocating memory for pipe error messages
	Configuration parameters for the monitoring tables
	Error 12036

	The mon_role and additional access controls
	Wrapping counter datatypes
	Stateful historical monitoring tables
	Transient monitoring data

	Using monitoring tables in a clustered environment
	Configuring the system view
	InstanceID added to monitor instances

	Monitoring tables for the statement cache
	Configuring Adaptive Server to monitor the statement cache
	Deleting statements from the statement cache
	Obtaining the hash key from the SQL text
	Displaying text and parameter information for cached statements

	Examples of querying the monitoring tables

	CHAPTER 2 Wait Events
	Event 19: xact coord: pause during idle loop
	Action

	Event 29: waiting for regular buffer read to complete
	Action

	Event 30: wait to write MASS while MASS is changing
	Action

	Event 31: waiting for buf write to complete before writing
	Action

	Event 32: waiting for an APF buffer read to complete
	Action

	Event 35: waiting for buffer validation to complete
	Action

	Event 36: waiting for MASS to finish writing before changing
	Action

	Event 37: wait for MASS to finish changing before changing
	Action

	Event 41: wait to acquire latch
	Action

	Event 46: wait for buf write to finish getting buf from LRU
	Action

	Event 51: waiting for last i/o on MASS to complete
	Action

	Event 52: waiting for i/o on MASS initiated by another task
	Action

	Event 53: waiting for MASS to finish changing to start i/o
	Action

	Event 54: waiting for write of the last log page to complete
	Action

	Event 55: wait for i/o to finish after writing last log page
	Action

	Event 57: checkpoint process idle loop
	Action

	Event 61: hk: pause for some time
	Action

	Event 70: waiting for device semaphore
	Action

	Event 83: wait for DES state is changing
	Action

	Event 84: wait for checkpoint to complete
	Action

	Event 85: wait for flusher to queue full DFLPIECE
	Action

	Event 91: waiting for disk buffer manager i/o to complete
	Action

	Event 99: wait for data from client
	Action

	Event 104: wait until an engine has been offlined
	Action

	Event 124: wait for mass read to finish when getting page
	Action

	Event 142: wait for logical connection to free up
	Action

	Event 143: pause to synchronise with site manager
	Action

	Event 150: waiting for a lock
	Action

	Event 157: wait for object to be returned to pool
	Action

	Event 169: wait for message
	Action

	Event 171: wait for CTLIB event to complete
	Action

	Event 178: waiting while allocating new client socket
	Action

	Event 179: waiting while no network read or write is required
	Action

	Event 197: waiting for read to complete in parallel dbcc
	Action

	Event 200: waiting for page reads in parallel dbcc
	Action

	Event 201: waiting for disk read in parallel dbcc
	Action

	Event 202: waiting to re-read page in parallel
	Action

	Event 203: waiting on MASS_READING bit in parallel dbcc
	Action

	Event 205: waiting on TPT lock in parallel dbcc
	Action

	Event 207: waiting sending fault msg to parent in PLL dbcc
	Action

	Event 209: waiting for a pipe buffer to read
	Action

	Event 210: waiting for free buffer in pipe manager
	Action

	Event 214: waiting on run queue after yield
	Action

	Event 215: waiting on run queue after sleep
	Action

	Event 222: replication agent sleeping during flush
	Action

	Event 250: waiting for incoming network data
	Action

	Event 251: waiting for network send to complete
	Action

	Event 259: waiting until last chance threshold is cleared
	Action

	Event 260: waiting for date or time in waitfor command
	Action

	Event 266: waiting for message in worker thread mailbox
	Action

	Event 272: waiting for lock on ULC
	Action

	Event 334: waiting for Lava pipe buffer for write
	Action

	Event 374: wait for lock pending/data pending to be cleared
	Action

	Event 375: OCM wait for finishing BAST handling
	Action

	Event 389: OCM wait for pushing data flag to be cleared
	Event 380: lock/data pending to reset when OCM_ERR_DIDNTWAIT
	Action

	Event 483: Waiting for ack of a multicast synchronous message
	Action

	Index

