
Performance and Tuning Series: Physical
Database Tuning

Adaptive Server® Enterprise
15.7

DOCUMENT ID: DC00841-01-1570-01

LAST REVISED: September 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Performance and Tuning Series: Physical Database Tuning iii

CHAPTER 1 Controlling Physical Data Placement.. 1
Improving performance by controling object placement................... 2

Identifying poor object placement.. 3
Using sp_sysmon while changing data placement.................... 4

Improving I/O performance .. 4
Spreading data across disks to avoid I/O contention 4
Isolating server-wide I/O from database I/O.............................. 5
Keeping transaction logs on a separate disk............................. 6
Mirroring a device on a separate disk 7

Using segments ... 8
Creating objects on segments... 9
Separating tables and indexes .. 10
Splitting large tables across devices 10
Moving text storage to a separate device................................ 10

Partitioning tables for performance .. 11
How Adaptive Server distributes partitions on devices 11

Space planning for partitioned tables... 12
Read-only tables ... 13
Read-mostly tables.. 13
Tables with random data modification..................................... 14

Adding disks when devices are full .. 15
Adding disks when devices are full ... 15
Adding disks when devices are nearly full............................... 16

Maintenance issues and partitioned tables 18
Regular maintenance checks for partitioned tables 18

CHAPTER 2 Data Storage .. 21
Query optimization ... 21

Query processing and page reads .. 22
Adaptive Server pages ... 23

Page headers and page sizes... 24
Data and index pages ... 24
Large object (LOB) pages ... 25
Extents .. 25

Contents

iv Adaptive Server Enterprise

Pages that manage space allocation ... 26
Global allocation map pages ... 27
Allocation pages .. 27
Object allocation map pages ... 27
How OAM pages and allocation pages manage object storage 28
Page allocation keeps an object’s pages together 29
Data access using sysindexes and syspartitions 29

Space overheads ... 30
Number of columns and size... 31
Number of rows per data page.. 37
Additional number of object and size restrictions 38

Tables without clustered indexes ... 38
Locking schemes... 39
Select operations on heap tables .. 40
Inserting data into an allpages-locked heap table 41
Inserting data into a data-only-locked heap table.................... 42
Deleting data from a heap table .. 43
Updating data on a heap table .. 44
How Adaptive Server performs I/O for heap operations.......... 45
Maintaining heap tables .. 46
Transaction log: a special heap table...................................... 47
Asynchronous prefetch and I/O on heap tables 48

Caches and object bindings ... 49
Heap tables, I/O, and cache strategies 49
Select operations and caching .. 51
Data modification and caching .. 51

CHAPTER 3 Setting Space Management Properties 55
Reducing index maintenance... 55

Advantages of using fillfactor .. 56
Disadvantages of using fillfactor.. 57
Setting fillfactor values .. 57
fillfactor examples.. 58
Using the sorted_data and fillfactor options 61

Reducing row forwarding ... 62
Default, minimum, and maximum values for exp_row_size 62
Specifying an expected row size with create table.................. 63
Adding or changing an expected row size............................... 64
Setting a default expected row size server-wide 64
Displaying the expected row size for a table 65
Choosing an expected row size for a table 65
Conversion of max_rows_per_page to exp_row_size............. 66
Monitoring and managing tables that use expected row size.. 67

Leaving space for forwarded rows and inserts............................... 68

Contents

Performance and Tuning Series: Physical Database Tuning v

Extent allocation commands and reservepagegap 68
Specifying a reserve page gap with create table..................... 69
Specifying a reserve page gap with create index.................... 70
Changing reservepagegap .. 70
reservepagegap examples .. 71
Choosing a value for reservepagegap 72
Monitoring reservepagegap settings 73
reservepagegap and sorted_data options............................... 73

Using max_rows_per_page on allpages-locked tables.................. 75
Reducing lock contention .. 76
Indexes and max_rows_per_page .. 77
select into and max_rows_per_page....................................... 77
Applying max_rows_per_page to existing data....................... 77

CHAPTER 4 Table and Index Size... 79
Determining the sizes of tables and indexes.................................. 80
Effects of data modifications on object sizes 81
Using optdiag to display object sizes ... 81

Advantages of optdiag... 82
Disadvantages of optdiag.. 82

Using sp_spaceused to display object size.................................... 82
Advantages of sp_spaceused ... 83
Disadvantages of sp_spaceused .. 84

Using sp_estspace to estimate object size 84
Advantages of sp_estspace .. 86
Disadvantages of sp_estspace ... 86

Using formulas to estimate object size... 86
Factors that can affect storage size .. 87
Storage sizes for datatypes... 87
Tables and indexes used in the formulas................................ 89
Calculating table and clustered index sizes for allpages-locked

tables .. 89
Calculating the sizes of data-only-locked tables 96
Other factors affecting object size ... 101
Very small rows ... 102
LOB pages .. 103
Advantages of using formulas to estimate object size 104
Disadvantages of using formulas to estimate object size...... 104

CHAPTER 5 Database Maintenance ... 105
Running reorg on tables and indexes .. 105
Creating and maintaining indexes.. 106

Configuring Adaptive Server to speed sorting....................... 106

Contents

vi Adaptive Server Enterprise

Dumping the database after creating an index...................... 107
Creating an index on sorted data .. 107
Maintaining index and column statistics 108
Rebuilding indexes .. 109

Creating or altering a database.. 110
Backup and recovery ... 112

Local backups ... 112
Remote backups ... 112
Online backups.. 112
Using thresholds to prevent running out of log space 113
Minimizing recovery time... 113
Recovery order.. 113

Bulk-copy ... 113
Parallel bulk-copy .. 114
Batches and bulk-copy .. 114
Slow bulk-copy .. 115
Improving bulk-copy performance ... 115
Replacing the data in a large table.. 116
Adding large amounts of data to a table................................ 116
Using partitions and multiple bulk-copy processes 116
Impacts on other users.. 116

Database consistency checker .. 117
Using dbcc tune (cleanup) ... 117
Using dbcc tune on spinlocks... 117
Determining the space available for maintenance activities 118

Overview of space requirements... 119
Checking space usage and space available 119
Estimating the effects of space management properties 122
If there is not enough space .. 123

CHAPTER 6 Temporary Databases ... 125
How temporary database management affects performance 125
Using temporary tables .. 126

Hashed (#) temporary tables... 126
Regular user tables ... 127
Worktables .. 128

Temporary databases .. 128
Session-assigned temporary database.. 128
Using multiple temporary databases.. 129

Creating user temporary databases 129
Configuring a default tempdb group 130
Binding to groups and tempdb .. 130

Tuning system temporary databases for performance................. 131
Placing system tempdb ... 131

Contents

Performance and Tuning Series: Physical Database Tuning vii

Configuring user-created temporary databases 134
General guidelines .. 134

Logging optimizations for temporary databases 140
User log cache (ULC).. 141

Index ... 143

viii Adaptive Server Enterprise

Performance and Tuning Series: Physical Database Tuning 1

C H A P T E R 1 Controlling Physical Data
Placement

This chapter explains how to improve performance by controlling the
location of tables and indexes.

To make the most of physical database tuning, understand these
distinctions between logical and physical devices:

• The physical disk or physical device is the hardware that stores the
data.

• A database device or logical device is all or part of7 a physical disk
that has been initialized (with the disk init command) for use by
Adaptive Server®. A database device can be an operating system file,
an entire disk, or a disk partition.

See the Installation Guide and the Configuration Guide for your
platform for information about specific operating system constraints
on disk and file usage.

• A segment is a named collection of database devices used by a
database. The database devices that make up a segment can be located
on separate physical devices.

Topic Page
Improving performance by controling object placement 2

Improving I/O performance 4

Partitioning tables for performance 11

Space planning for partitioned tables 12

Adding disks when devices are full 15

Maintenance issues and partitioned tables 18

Improving performance by controling object placement

2 Adaptive Server Enterprise

• A partition is a subset of a table. Partitions are database objects that can be
managed independently. You can split partitioned tables, so multiple tasks
can access it simultaneously. You can place a partition on a specific
segment. If each partition is on a different segment and each segment has
its own database device, queries accessing these tables benefit from
improved parallelism. See create table in the Reference Manual:
Commands and the Transact-SQL Users Guide for more information
about creating and using partitions.

Use sp_helpdevice, sp_helpsegment, and sp_helpartition to get more
information about devices, segments, and partitions.

Improving performance by controling object placement
Adaptive Server allows you to control the placement of databases, tables, and
indexes across physical storage devices, which can improve performance by
equalizing the reads and writes to disk across many devices and controllers. For
example, you can:

• Place database data segments on a specific device or devices, storing the
database log on a separate physical device so that reads and writes to the
log do not interfere with data access.

• Spread large, heavily used tables across several devices.

• Place specific tables or nonclustered indexes on specific devices. For
example, you might place a table on a segment that spans several devices
and its nonclustered indexes on a separate segment.

• Place the text and image page chain for a table on a separate device from
the table. The table stores a pointer to the actual data value in the separate
database structure, so each access to a text or image column requires at
least two I/Os.

• Distribute tables evenly across partitions on separate physical disks to
provide optimum parallel query performance and improve insert and
update performance.

For multiuser and multi-CPU systems that perform a lot of disk I/O, be
especially aware of physical and logical device issues and the distribution of
I/O across devices:

• Plan a balanced separation of objects across logical and physical devices.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 3

• Use enough physical devices, including disk controllers, to ensure
physical bandwidth.

• Use an increased number of logical devices to ensure minimal contention
for internal I/O queues.

• Determine and use a number of partitions that allows parallel scans and
meets query performance goals.

Identifying poor object placement
Your system may benefit from more appropriately placed objects if:

• Single-user performance is satisfactory, but response time increases
significantly when Adaptive Server executes multiple processes.

• Access to a mirrored disk takes twice as long as access to an unmirrored
disk.

• Objects that are frequently accessed (“hot objects”) degrade the
performance of queries that use the tables in which these objects are
located.

• Maintenance activities take a long time.

• tempdb performance is affected if it shares disk space with other
databases. Most system procedures and applications use tempdb as their
workspace, and are adversely affected if tempdb shares the same disk with
other databases.

• insert performance is poor on heavily used tables.

• Queries that run in parallel perform poorly, due to an imbalance of data
pages on partitions or devices, or they run in serial, due to extreme
imbalance.

If you experience problems due to disk contention and other problems related
to object placement, check for and correct these issues:

• Random-access (I/O for data and indexes) and serial-access (log I/O)
processes use the same disks.

• Database processes and operating system processes use the same disks.

• Serial disk mirroring.

• Database logging or auditing takes place on the same disk as data storage.

Improving I/O performance

4 Adaptive Server Enterprise

Using sp_sysmon while changing data placement
Use sp_sysmon to determine whether data placement across physical devices
is causing performance problems. Check the entire sp_sysmon output during
tuning to verify how the changes affect all performance categories.

Pay special attention to the output associated with:

• I/O device contentions

• All-pages locked heap tables

• Last page locks on heaps

• Disk I/O management

See Monitoring Adaptive Server with sp_sysmon.

Improving I/O performance
To improve I/O performance in Adaptive Server, try:

• Spreading data across disks to avoid I/O contention

• Isolating server-wide I/O from database I/O

• Separating data storage and log storage for frequently updated databases

• Keeping random disk I/O away from sequential disk I/O

• Mirroring devices on separate physical disks

• Using partitions to distribute table data across devices

Spreading data across disks to avoid I/O contention
Avoid bottlenecks by spreading data storage across multiple disks and multiple
disk controllers.

• Place databases with critical performance requirements on separate
devices. If possible, also use separate controllers than those used by other
databases. Use segments as needed for critical tables, and partitions as
needed for parallel queries.

• Put heavily used and frequently joined tables on separate disks.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 5

• Use segments to place tables and indexes on their own disks.

Avoiding physical contention in parallel join queries

Figure 1-1 illustrates a join of two tables, orders_tbl and stock_tbl. There are 10
worker process available: orders_tbl has 10 partitions on 10 different physical
devices and is the outer table in the join; stock_tbl is nonpartitioned. The worker
processes have a problem with access contention on orders_tbl, but each worker
process must scan stock_tbl. There may be physical I/O contention if the entire
table does not fit into cache. In the worst case, 10 worker processes attempt to
access the physical device on which stock_tbl resides. Avoid physical I/O
contention by creating a named cache that contains the entire table stock_tbl.

Another way to reduce or eliminate physical I/O contention is to partition both
orders_tbl and stock_tbl and distribute those partitions on different physical
devices.

Figure 1-1: Joining tables on different physical devices

Isolating server-wide I/O from database I/O
Place system databases with heavy I/O requirements (for example, tempdb and
sybsecurity) on physical disks and controllers other than where application
databases reside.

orders_tbl stock_tbl

Improving I/O performance

6 Adaptive Server Enterprise

tempdb

It is a heavily used database that affects all processes on the server and is used
by most system procedures. It is automatically installed on the master device.
If more space is needed, you can expand tempdb to other devices. If you expect
tempdb to be quite active, place it on a disk—the fastest available—that is not
used for other important database activity. .

On some UNIX systems, I/O to operating system files is significantly faster
than I/O to raw devices. tempdb is always re-created, rather than recovered,
after a shutdown; therefore, you may be able to improve performance by
moving tempdb onto an operating system file instead of a raw device. Test this
on your own system.

See Chapter 6, “Temporary Databases,” for more placement advice for
tempdb.

sybsecurity

Once enabled, the auditing system performs frequent I/O to the sysaudits table
in the sybsecurity database. If your applications perform a significant amount
of auditing, place sybsecurity on a disk that is used for tables where fast
response time is not critical. Ideally, place sybsecurity on its own device.

Use the threshold manager to monitor free space to avoid suspending user
transactions if the audit database fills up. See Chapter 16, “Managing Free
Space with Thresholds,” In System Administration Guide, Volume 2 for
information about determing appropriate thresholds.

Keeping transaction logs on a separate disk
Place transaction logs on a separate segment, preventing the logs from
competing with other objects for disk space. Placing the logs on a separate
physical disk:

• Improves performance by reducing I/O contention

• Ensures full recovery in the event of hard disk failures on the data device

• Speeds recovery, since simultaneous asynchronous prefetch requests can
read ahead on both the log device and the data device without contention

Both create database and alter database require you to use with override before
you can place the transaction log on the same device as the data.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 7

The log device can experience significant I/O on systems with heavy update
activity. Adaptive Server writes log pages to disk when transactions commit,
and may need to read log pages into memory to replace deferred updates with
deferred operations.

When log and data are on the same database devices, the extents allocated to
store log pages are not contiguous; log extents and data extents are mixed.
When the log is on its own device, Adaptive Server allocates the extents
sequentially, thus reducing disk head travel and seeks, and maintaining a higher
I/O rate.

Adaptive Server buffers log records for each user in a user log cache, which
reduces contention for writing to the log page in memory. If log and data are
on the same devices, user log cache buffering is disabled, which results in
serious performance degradation on SMP systems.

See Chapter 6, “Overview of Disk Resource Issues,” in the System
Administration Guide: Volume 1.

Mirroring a device on a separate disk
Disk mirroring is a high availability feature that allows Adaptive Server to
duplicate the contents of an entire database device.

See Chapter 2, “Disk Mirroring,” in the System Administration Guide,
Volume 2.

If you mirror data, put the mirror on a separate physical disk from the device
that it mirrors, minimizing mirroring’s performance impact. Disk hardware
failure often results in whole physical disks being lost or unavailable

If you do not use mirroring, or use operating system mirroring, you may see
slight performance improvements by setting disable disk mirroring
configuration paramter to 1.

Mirroring can increase the time taken to complete disk writes, since the writes
are executed on both disks, either serially or simultaneously. Disk mirroring
has no effect on the time required to read data.

Mirrored devices use one of two modes for disk writes:

• Nonserial mode – can require more time to complete a write than an
unmirrored write requires. In nonserial mode, both writes start at the same
time, and Adaptive Server waits for both to complete. The time to
complete nonserial writes is the greater of the two I/O times.

Using segments

8 Adaptive Server Enterprise

• Serial mode – increases the time required to write data even more than
nonserial mode. Adaptive Server starts the first write and waits for it to
complete before starting the second write. The time required is the sum of
the two I/O times.

Using serial mode

Despite its performance impact, serial mode is the default mode because it
guards against failures that occur while a write is taking place.

Since serial mode waits until the first write is complete before starting the
second write, a single failure cannot affect both disks. Using nonserial mode
improves performance, but you risk losing data if a failure occurs that affects
both writes.

 Warning! If your mirrored database system must be absolutely reliable, use
serial mode.

Using segments
A segment is a label that points to one or more logical devices. Use segments
to improve throughput by:

• Splitting large tables across disks, including tables that are partitioned for
parallel query performance

• Separating tables and their nonclustered indexes across disks

• Separating table partitions and index across the disks

• Placing the text and image page chain on a disk other than the one on
which the table resides, where the pointers to the text values are stored

In addition, you can use segments to control space usage:

• Tables or partitions cannot grow larger than their segment allocation. You
can use segments to limit the table or partition size.

• Tables or partitions on other segments cannot use the space allocated to
objects on another segment.

• The threshold manager monitors space usage.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 9

Creating objects on segments
Each database can use up to 32 segments, including the 3 segments that are
created by the system (system, log segment, and default) when a database is
created.

Tables and indexes are stored on segments. If you execute create table or create
index without specifying a segment, the objects are stored on the default
segment for the database. Naming a segment in either of these commands
creates the object on that segment. You can use the sp_placeobject system
procedure to assign all future space allocations to take place on a specified
segment, so tables can span multiple segments.

A system administrator must initialize the device with disk init and allocate the
device to the database. Alternatively, the database owner can do this using
create database or alter database.

Once the devices are available to the database, the database owner or object
owners can create segments and place objects on the devices.

When you create a user-defined segment, you can place tables, indexes, and
partitions on that segment using the create table or create index commands:

create table tableA(...) on seg1
create nonclustered index myix on tableB(...)
 on seg2

This example creates the table fictionsales, which is partitioned by range
according to values in the date column:

create table fictionsales
(store_id int not null,
order_num int not null,
date datetime not null)
partition by range (date)
(q1 values <= ("3/31/2005") on seg1,
q2 values <= ("6/30/2005") on seg2,
q3 values <= ("9/30/2005") on seg3,
q4 values <= ("12/31/2005") on seg4)

By controlling the location of critical tables, you can arrange for these tables
and indexes to be spread across disks.

Using segments

10 Adaptive Server Enterprise

Separating tables and indexes
Use segments to place tables on one set of disks and nonclustered indexes on
another set of disks. You cannot place a clustered index on a different segment
than its data pages. When you create a clustered index using the on
segment_name clause, the entire table is moved to the specified segment, and
the clustered index tree is built on that segment.

You can improve performance by placing nonclustered indexes on a separate
segment.

Splitting large tables across devices
Segments can span multiple devices, so you can use them to spread data across
one or more disks. This can help balance the I/O load for large and busy tables.
For parallel queries, it is essential that you create segments across multiple
devices for I/O parallelism during partitioned-based scans.

See Chapter 8, “Creating and Using Segments,” in the System Administration
Guide, Volume 2.

Moving text storage to a separate device
When a table includes a text, image, or Java off-row datatype, the table itself
stores a pointer to the data value. The actual data is stored on a separate linked
list of pages called a large object chain (LOB).

Writing or reading a LOB value requires at least two disk accesses, one to read
or write the pointer, and one for subsequent reads or writes for the data. If your
application frequently reads or writes LOB values, you can improve
performance by placing the LOB chain on a separate physical device. Isolate
LOB chains on disks that are not busy with other application-related table or
index access.

When you create a table with LOB columns, Adaptive Server creates a row in
sysindexes and syspartitions for the object that stores the LOB data. The value
in the name column is the table name prefixed with a “t”; the indid is always
255. If you have multiple LOB columns in a single table, there is only one
object used to store the data. By default, this object is placed on the same
segment as the table.

Use sp_placeobject to move all future allocations for the LOB columns to a
separate segment.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 11

Partitioning tables for performance
Partitioning a table can improve performance for several types of processes.

• Partitioning allows parallel query processing to access each partition of the
table. Each worker process in a partitioned-based scan reads a separate
partition.

• Partitioning allows you to load a table in parallel with bulk copy.

For more information on parallel bcp, see the Utility Programs manual.

• Partitioning allows tou to distribute a table’s I/O over multiple database
devices.

• Semantic partitioning (range-, hash- and list-partitioned tables) improves
response time because the query processor eliminates some partitions.

• Partitioning provides multiple insertion points for a heap table.

The tables you choose to partition and the type of partition depend on the
performance issues you encounter and the performance goals for the queries on
the tables.

See Chapter 10, “Partitioning Tables and Indexes” in the Transact-SQL Users
Guide book for more information about, and examples using and creating
partitions.

How Adaptive Server distributes partitions on devices
In versions earlier than 15.0, Adaptive Server automatically maintained an
affinity between partitions and devices when you created multiple partitions on
a segment that was mapped to multiple database devices. This is no longer the
case in Adaptive Server 15.0 and later; all partitions are created on the first
device. To achieve affinity between partitions and devices:

1 Create a segment for a particular device.

2 Explicitly place a partition on that segment.

You can create as many as 29 user segments, and you must use the alter table
syntax from Adaptive Server version 15.0 and later to create the segments,
because the earlier syntax (alter table t partition 20) does not support explicit
placement of partitions on segments.

Achieve the best I/O performance for parallel queries by matching the number
of partitions to the number of devices in the segment.

Space planning for partitioned tables

12 Adaptive Server Enterprise

You can partition tables that use the text, image, or Java off-row data types.
However, the columns themselves are not partitioned—they remain on a single
page chain.

RAID devices and partitioned tables

A striped redundant array of independent disks (RAID) device can contain
multiple physical disks, but Adaptive Server treats such a device as a single
logical device. You can use multiple partitions on the single logical device and
achieve good parallel query performance.

To determine the optimum number of partitions for your application mix, start
with one partition for each device in the stripe set. Use your operating system
utilities (vmstat, sar, and iostat on UNIX; Performance Monitor on Windows)
to check utilization and latency.

To check maximum device throughput, use select count(*), using the index
table_name clause to force a table scan if a nonclustered index exists. This
command requires minimal CPU effort and creates very little contention for
other resources.

Space planning for partitioned tables
When you are planning for partitioned tables, consider how to maintain:

• Load balance across the disk for partition-based scan performance and for
I/O parallelism

• Cclustered indexes, which require approximately 120% of the space
occupied by the table to drop and re-create the index or to run reorg rebuild

The space planning decisions you make depend on the:

• Availability of disk resources for storing tables

• Nature of your application mix and of the incoming data (for semantic-
partitioned tables)

Estimate the frequency with which your partitioned tables need maintenance:
some applications need indexes to be re-created frequently to maintain balance,
while others need little maintenance.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 13

For those applications that need frequent load balancing for performance,
having space in which to re-create a clustered index or run reorg rebuild
provides fastest and easiest results. However, since creating clustered indexes
requires copying the data pages, the space available on the segment must be
equal to approximately 120% of the space occupied by the table.

See “Determining the space available for maintenance activities” on page 118.

The following descriptions of read-only, read-mostly, and random data
modification provide a general picture of the issues involved in object
placement and in maintaining partitioned tables.

See Chapter 10, “Partitioning Tables and Indexes” in the Transact-SQL Users
Guide for information about the specific tasks required during maintenance.

Read-only tables
Tables that are read-only, or that are rarely changed, can completely fill the
space available on a segment, and do not require maintenance. If a table does
not require a clustered index, you can use parallel bulk copy (parallel bcp) to
completely fill the space on the segment.

If a clustered index is needed, the table’s data pages can occupy up to 80% of
the space in the segment. The clustered index tree requires about 20% of the
space used by the table.

This space requirement varies, depending on the length of the key. Initially,
loading the data into the table and creating the clustered index requires several
steps, but once you have performed these steps, maintenance is minimal.

Read-mostly tables
The guidelines above for read-only tables also apply to read-mostly tables with
very few inserts. The only exceptions are as follows:

• If there are inserts to the table, and the clustered index key does not
balance new space allocations evenly across the partitions, the disks
underlying some partitions may become full, and new extent allocations
are made to a different physical disk. This process is called extent stealing.

Space planning for partitioned tables

14 Adaptive Server Enterprise

In huge tables spread across many disks, a small percentage of allocations
to other devices is not a problem. Detect extent stealing by using
sp_helpsegment to check for devices that have no space available, and by
using sp_helpartition to check for partitions that have disproportionate
numbers of pages.

If the imbalance in partition size leads to degradation in parallel query
response times or optimization, you may want to balance the distribution
by using one of the methods described in Chapter 10, “Partitioning Tables
and Indexes” in the Transact-SQL Users Guide.

• If the table is a heap, round-robin-partitioned table, the random nature of
heap table inserts should keep partitions balanced.

Take care with large bulk copy in operations. However, if the table is a
semantic partitioned table, consider changing the partition condition using
alter table... partition by for appropriate load balance.

You can use parallel bulk copy (parallel bcp) to send rows to the partition
with the smallest number of pages to balance the data across the partitions.
See Chapter 4, “Using bcp to Transfer Data to and from Adaptive Server,”
in the Utility Guide.

Tables with random data modification
Tables with clustered indexes that experience many inserts, updates, and
deletes over time tend to lead to data pages that are approximately 70 to 75%
full. This can lead to performance degradation in several ways:

• More pages must be read to access a given number of rows, requiring
additional I/O and wasting data cache space.

• On tables that use allpages locking, the performance of large I/O and
asynchronous prefetch suffers because the page chain crosses extents and
allocation units.

Buffers brought in by large I/O may be flushed from cache before all of
the pages are read. The asynchronous prefetch look-ahead set size is
reduced by cross-allocation unit hops while following the page chain.

For tables that use data-only locking, large I/O and asynchronous prefetch
performance suffers because the forward pages cross extents and
allocation units.

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 15

Once the fragmentation starts to degrade on application performance, perform
maintenance, keeping in mind that dropping and recreating clustered indexes
requires 120% of the space occupied by the table.

If space is unavailable, maintenance becomes more complex and takes longer.
The best, and often cheapest, solution is to add enough disk capacity to provide
room for the index creation.

Adding disks when devices are full
Simply adding disks and recreating indexes when partitions are full may not
solve load-balancing problems. If a physical device that holds a partition
becomes completely full, the data-copy stage of recreating an index cannot
copy data to that physical device.

If a physical device is almost completely full, recreating the clustered index
does not always succeed in establishing a good load balance.

Adding disks when devices are full
The result of creating a clustered index when a physical device is completely
full is that two partitions are created on one of the other physical devices.

devices2 and device3 are completely full, as shown in Figure 1-2.

Figure 1-2: A table with three partitions on three devices

In the example above, adding two devices, repartitioning the table to use five
partitions, and dropping and recreating the clustered index produces the
following results:

Data

Empty

device1 device2 device3

Adding disks when devices are full

16 Adaptive Server Enterprise

Figure 1-3 shows these results.

Figure 1-3: Devices and partitions after create index

The only solution, once a device becomes completely full, is to bulk-copy the
data out, truncate the table, and copy the data into the table again.

Adding disks when devices are nearly full
If a device is nearly full, recreating a clustered index does not balance data
across devices. Instead, the device that is nearly full stores a small portion of
the partition, and the other space allocations for the partition steals extents on
other devices. Figure 1-4 shows a table with nearly full data devices.

Device 1 One partition, approximately 40% full.

Devices 2 and 3 Empty. These devices had no free space when create index
started, so a partition for the copy of the index cannot be
created on the device.

Devices 4 and 5 Each device has two partitions, and each is 100% full.

device1 device2 device3 device4 device5

Data

Empty

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 17

Figure 1-4: Partitions almost completely fill the devices

After adding devices and recreating the clustered index, the result might be
similar to the results shown in Figure 1-5.

Figure 1-5: Extent stealing and unbalanced data distribution

Once the partitions on device2 and device3 use the small amount of space
available, they start stealing extents from device4 and device5.

Re-creating the indexes another time may lead to a more balanced distribution.
However, if one of the devices is nearly filled by extent stealing, re-creating
indexes again does not solve the problem.

Using bulk copy to copy the data out and back in again is most effective
solution to this form of imbalance.

To avoid situations such as these, monitor space usage on the devices, and add
space early.

Data

Empty

device1 device2 device3

Data

Empty

device1 device3 device5

Stolen
pages

device2 device4

Maintenance issues and partitioned tables

18 Adaptive Server Enterprise

Maintenance issues and partitioned tables
Maintenance activity requirements for partitioned tables depend on the
frequency and type of updates performed on the table.

Partitioned tables that require little maintenance include:

• Tables that are read-only or that experience very few updates. For tables
that have few updates, only periodic checks for balance are required.

• Tables where inserts are well-distributed across the partitions. Random
inserts to partitioned heap tables and inserts that are evenly distributed due
to a clustered index key that places rows on different partitions do not
develop skewed distribution of pages.

If data modifications lead to space fragmentation and partially filled data
pages, you may need to recreate the clustered index.

• Heap tables where inserts are performed by bulk copy. You can use
parallel bulk copy to direct the new data to specific partitions to maintain
load balancing.

Partitioned tables that require frequent monitoring and maintenance include
tables with clustered indexes that tend to direct new rows to a subset of the
partitions. An ascending key index is likely to require more frequent
maintenance.

Regular maintenance checks for partitioned tables
Routine monitoring for partitioned tables should include the following types of
checks, in addition to routine database consistency checks:

• Use sp_helpartition to check the balance on partitions. If some partitions
are significantly larger or smaller than the average, recreate the clustered
index to redistribute data.

• Use sp_helpsegment to check the balance of space on underlying disks.

• If you recreate the clustered index to redistribute data for parallel query
performance, check for devices that are nearing 50% full. Adding space
before devices become too full avoids the complicated procedures
described earlier in this chapter.

• Use sp_helpsegment to check the space available as free pages on each
device, or use sp_helpdb to check for free kilobytes.

You might need to recreate the clustered index on partitioned tables because:

CHAPTER 1 Controlling Physical Data Placement

Performance and Tuning Series: Physical Database Tuning 19

• Your index key tends to assign inserts to a subset of the partitions.

• Delete activity tends to remove data from a subset of the partitions, leading
to I/O imbalance and partition-based scan imbalances.

• The table has many inserts, updates, and deletes, leading to many partially
filled data pages. This condition leads to wasted space, both on disk and in
the cache, and increases I/O because more pages need to be read for many
queries.

Maintenance issues and partitioned tables

20 Adaptive Server Enterprise

Performance and Tuning Series: Physical Database Tuning 21

C H A P T E R 2 Data Storage

This chapter explains how Adaptive Server® stores data rows on pages,
and how those pages are used in select and data modification statements
when there are no indexes. This chapter lays the foundation for
understanding how to improve Adaptive Server performance by creating
indexes, tuning queries, and addressing object storage issues.

Query optimization
The Adaptive Server optimizer attempts to find the most efficient access
path to your data for each table in a query by estimating the cost of the
physical I/O needed to access the data, and the number of times each page
must be read while in the data cache.

In most database applications, there are many tables in the database, and
each table has one or more indexes. Depending on whether you have
created indexes, and what kind of indexes you have created, the
optimizer’s access method options include:

• Table scan – reading all the table’s data pages, sometimes hundreds
or thousands of pages.

• Index access – using the index to find only the data pages needed,
sometimes as few as three or four page reads in all.

• Index covering – using only an index to return data, without reading
the actual data rows, requiring only a fraction of the page reads
required for a table scan.

Topic Page
Query optimization 21

Adaptive Server pages 23

Pages that manage space allocation 26

Space overheads 30

Tables without clustered indexes 38

Caches and object bindings 49

Query optimization

22 Adaptive Server Enterprise

Using the appopriate indexes on tables should allow most queries to access the
data they need with a minimum number of page reads.

Query processing and page reads
Most of a query’s execution time is spent reading data pages from disk.
Therefore, most performance improvement comes from reducing the number
of disk reads needed for each query.

When a query performs a table scan, Adaptive Server reads every page in the
table because no indexes are available to help it retrieve the data. The query
may have poor response time, because disk reads take time. Queries that incur
costly table scans also affect the performance of other queries on your server.

Table scans can increase the time other users have to wait for a response, since
they use system resources such as CPU time, disk I/O, and network capacity.

Table scans use a large number of disk reads (I/Os) for a given query. When
you have become familiar with the access methods, tuning tools, the size and
structure of your tables, and the queries in your applications, you should be
able to estimate the number of I/O operations a given join or select operation
will perform, given the indexes that are available.

If you know what the indexed columns on your tables are, and the table and
index sizes, you can often look at a query and predict its behavior. For different
queries on the same table, you might be able to draw these conclusions:

• This query returns a single row or a small number of rows that match the
where clause condition.

The condition in the where clause is indexed; it should perform two to four
I/Os on the index and one more to read the correct data page.

• All columns in the select list and where clause for this query are included
in a nonclustered index. This query will probably perform a scan on the
leaf level of the index, about 600 pages.

Adding an unindexed column to the select list would force the query to
scan the table, which would require 5000 disk reads.

• No useful indexes are available for this query; it is going to do a table scan,
requiring at least 5000 disk reads.

This chapter describes how tables are stored, and how access to data rows takes
place when indexes are not being used.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 23

Chapter 5, “Indexes,” in Performance and Tuning Series: Locking and
Concurrency Control describes access methods for indexes. Chapter 3,
“Setting Space Management Properties” and Chapter 4, “Table and Index
Size” explain how to determine which access method is being used for a query,
the size of the tables and indexes, and the amount of I/O a query performs.
These chapters provide a basis for understanding how the optimizer models the
cost of accessing the data for your queries.

Adaptive Server pages
These types of pages store database objects:

• Data pages – store the data rows for a table.

• Index pages – store the index rows for all levels of an index.

• Large object (LOB) pages – store the data for text and image columns, and
for Java off-row columns.

Adaptive Server versions 12.5 and later do not use the buildmaster binary to
build the master device. Instead, Sybase® has incorporated the buildmaster
functionality in the dataserver binary.

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pages allow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of data as a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizes for logical pages.

The logical page size is a server-wide setting; you cannot have databases with
varying size logical pages within the same server. All tables are automatically
appropriately sized so that the row size is no greater than the current page size
of the server. That is, rows cannot span multiple pages.

See the Utility Guide for specific information about using the dataserver
command to build your master device.

Adaptive Server may be required to process large volumes of data for a single
query, DML operation, or command. For example, if you use a data-only-
locked (DOL) table with a char(2000) column, Adaptive Server must allocate
memory to perform column copying while scanning the table. Increased
memory requests during the life of a query or command means a potential
reduction in throughput.

Adaptive Server pages

24 Adaptive Server Enterprise

The size of Adaptive Server logical pages determines the server’s space
allocation. Each allocation page, object allocation map (OAM) page, data
page, index page, text page, and so on is built on a logical page. For example,
if the logical page size of Adaptive Server is 8K, each of these page types are
8K in size. All of these pages consume the entire size specified by the size of
the logical page. OAM pages have a greater number of OAM entries for larger
logical pages (for example, 8K) than for smaller pages (2K).

Page headers and page sizes
All pages have a header that stores information, such as the partition ID that the
page belongs to, and other information used to manage space on the page.
Table 2-1 shows the number of bytes of overhead and usable space on data and
index pages for a server configured for 2K pages.

Table 2-1: Overhead and user data space on data and index pages

The rest of the page is available to store data and index rows.

For information on how text, image, and Java columns are stored, see “Large
object (LOB) pages” on page 25.

Data and index pages
Data pages and index pages on data-only-locked tables have a row offset table
that stores pointers to the starting byte for each row on the page. Each pointer
takes 2 bytes.

Data and index rows are inserted on a page starting just after the page header,
and fill in contiguously. For all tables and indexes on data-only-locked tables,
the row offset table begins at the last byte on the page, and grows upward.

The information stored for each row consists of the actual column data, plus
information such as the row number and the number of variable-length and null
columns in the row. Index pages for allpages-locked tables do not have a row
offset table.

Locking Scheme Overhead Bytes for user data

Allpages 32 2016

Data-only 46 2002

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 25

Rows cannot cross page boundaries, except for text, image, and Java off-row
columns. Each data row has at least 4 bytes of overhead; rows that contain
variable-length data have additional overhead.

See Chapter 4, “Table and Index Size,” for more information on data and index
row sizes and overhead.

Large object (LOB) pages
text, image, and Java off-row columns for a table are stored as a separate data
structure, consisting of a set of pages. These columns are known as large
object, or LOB, columns. Each table with a text or image column has one of
these structures. If a table has multiple LOB columns, it still has only one of
these separate data structures.

The table itself stores a 16-byte pointer to the first page of the value for the row.
Additional pages for the value are linked by next and previous pointers. Each
value is stored in its own separate page chain. The first page stores the number
of bytes in the text value. The last page in the chain for a value is terminated
with a null next-page pointer.

Reading or writing a LOB value requires at least two page reads or writes:

• One for the pointer

• One for the actual location of the text in the text object

Each LOB page stores up to 1800 bytes. Every non-null value uses at least one
full page.

LOB structures are listed separately in sysindexes. The ID for the LOB
structure is the same as the table’s ID. The index ID column is indid and is
always 255, and the name is the table name, prefixed with the letter “t”.

Extents
Adaptive Server pages are always allocated to a table, index, or LOB structure.
A block of 8 pages is called an extent. The size of an extent depends on the
page size the server uses. The extent size on a 2K server is 16K; on an 8K it is
64K, and so on. The smallest amount of space that a table or index can occupy
is 1 extent, or 8 pages. Extents are deallocated only when all the pages in an
extent are empty.

Pages that manage space allocation

26 Adaptive Server Enterprise

The use of extents in Adaptive Server is transparent to the user except when
examining reports on space usage. For example, reports from sp_spaceused
display the space allocated (the reserved column) and the space used by data
and indexes. The unused column displays the amount of space in extents that
are allocated to an object, but not yet used to store data.

sp_spaceused titles
name rowtotal reserved data index_size unused
------ -------- -------- ------- ---------- ------
titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, the titles table and its indexes have 1392KB reserved on various
extents, including 48KB (24 data pages) that is unallocated.

Note Adaptive Server avoids wasting extra space by filling up existing
allocated extents in the target allocation page, even though these extents are
assigned to other partitions. The net effect is that extents are allocated only
when there are no free extents in the target allocation page

Pages that manage space allocation
In addition to data, index, and LOB pages used for data storage, Adaptive
Server uses other types of pages to manage storage, track space allocation, and
locate database objects. The sysindexes table also stores pointers that are used
during data access.

The pages that manage space allocation and the sysindexes pointers are used to:

• Speed the process of finding objects in the database.

• Speed the process of allocating and deallocating space for objects.

• Provide a means for Adaptive Server to allocate additional space for an
object that is near the space already used by the object. This helps
performance by reducing disk-head travel.

These pages track the disk space use by database objects:

• Global allocation map (GAM) pages contain allocation bitmaps for an
entire database.

• Allocation pages track space usage and objects within groups of 256
pages, or .5MB.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 27

• Object allocation map (OAM) pages contain information about the extents
used for an object. Each partition of a table and index has at least one
OAM page that tracks where pages for the object are stored in the
database.

• OAM pages manage space allocation for partitioned tables.

Global allocation map pages
Each database has a GAM, which stores a bitmap for all allocation units of a
database, with 1 bit per allocation unit. When an allocation unit has no free
extents available to store objects, the corresponding bit in the GAM is set to 1.

This mechanism expedites allocating new space for objects. Users cannot view
the GAM page; it appears in the system catalogs as the sysgams table.

Allocation pages
When you create a database or add space to a database, the space is divided into
allocation units of 256 data pages. The first page in each allocation unit is the
allocation page. Page 0 and all pages that are multiples of 256 are allocation
pages.

The allocation page tracks space in each extent on the allocation unit by
recording the partition ID, object ID, and index ID for the object that is stored
on the extent, and the number of used and free pages. The allocation page also
stores the page ID for the table or index’s corresponding OAM page.

Object allocation map pages
Each partition for a table, index, and text chain has one or more object
allocation map (OAM) pages stored on pages allocated to the table or index. If
a table has more than one OAM page, the pages are linked in a chain. OAM
pages store pointers to the allocation units that contain pages for the object.

The first page in the chain stores allocation hints, indicating which OAM page
in the chain stores information about allocation units with free space. This
provides a fast way to allocate additional space for an object and to keep the
new space close to pages already used by the object.

Pages that manage space allocation

28 Adaptive Server Enterprise

How OAM pages and allocation pages manage object storage
Figure 2-1 shows how allocation units, extents, and objects are managed by
OAM pages and allocation pages.

• Two allocation units are shown, one starting at page 0 and one at page 256.
The first page of each is the allocation page.

• A table is stored on four extents, starting at pages 1 and 24 on the first
allocation unit and pages 272 and 504 on the second unit.

• The first page of the table is the table’s OAM page. It points to the
allocation page for each allocation unit where the object uses pages, so it
points to pages 0 and 256.

• Allocation pages 0 and 256 store the table’s object ID, index ID, and
partition ID to which the extent belongs. Allocation page 0 points to pages
1 and 24 for the table, and allocation page 256 points to pages 272 and 504.

Figure 2-1: OAM page and allocation page pointers

27 2824 25 26 29 30 31

750 1 2 3 4 6

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

248 249 250 251 252 253 254 255

283

511

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.
504 505 506 507 508 509 510

Pages reserved

Other

Allocation page

OAM
Page
0
256

...

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 29

Page allocation keeps an object’s pages together
Adaptive Server attempts to keep page allocations close together for each
object (for example, a table partition, index, or a table’s text or image chain).

Typically, when Adaptive Server requires a new page:

• If the object’s current extent contains a free page, Adaptive Server uses
this page.

• If the current extent has no free pages, but another extent assigned to the
object on the same allocation unit has a free page, Adaptive Server uses
this page.

• If the current allocation unit has no extents with free pages assigned to the
object, but has a free extent, Adaptive Sever allocates the first available
page of the free extent.

• If the current allocation unit is full, Adaptive Server scans the object’s
OAM page for another allocation unit containing extents with free pages,
and uses the first available page.

• If no OAM entries indicate available free pages, Adaptive Server
compares the OAM entries to the global allocation map page to see if any
allocation units have free extents. Adaptive Server allocates the first
available page of first free extent.

• If all of the OAM entries are for full allocation units, Adaptive Server
searches the global allocation map for an allocation unit with at least one
free extent. Adaptive Server adds a new OAM entry for that allocation unit
to the object's OAM, allocates a free extent, and uses the first free page on
the extent.

Note Operations like bcp and reorg rebuild using large scale allocation do not
look for free pages on already allocated extents; instead they allocate full free
extents. Large scale allocation cannot typically use the first extent of each
allocation unit. The first extent only has 7 usable pages because its first page
holds the allocation page structure.

Data access using sysindexes and syspartitions
The sysindexes table stores information about indexed and nonindexed tables.
sysindexes has one row for each:

Space overheads

30 Adaptive Server Enterprise

• Allpages-locked table – the indid column is 0 if the table does not have a
clustered index, and 1 if the table does have a clustered index.

• Data-only-locked tables – the indid is always 0 for the table.

• Nonclustered index – and for each clustered index on a data-only-locked
table.

• Table with one or more LOB columns – the index ID is always 255 for the
LOB structure.

syspartitions stores information about each table and index partition and
includes one row per partition.

In Adaptive Server version 15.0. and later, each row in syspartitions stores
pointers to a table or index to speed access to objects. Table 2-2 shows how
these pointers are used during data access.

Table 2-2: Use of syspartitions pointers in data access

Space overheads
Regardless of the logical page size for which it is configured, Adaptive Server
allocates space for objects (tables, indexes, text page chains) in extents, each
of which is eight logical pages. That is, if a server is configured for 2K logical
pages, it allocates one extent, 16K, for each of these objects; if a server is
configured for 16K logical pages, it allocates one extent, 128K, for each of
these objects.

This is also true for system tables. If your server has many small tables, space
consumption can be quite large if the server uses larger logical pages.

Column Use for table access Use for index access

root If indid is 0 and the table is a partitioned
allpages-locked table, root points to the
last page of the heap.

Used to find the root page of the index
tree.

first Points to the first data page in the page
chain for allpages-locked tables.

Points to the first leaf-level page in a
nonclustered index, or a clustered
index on a data-only-locked table.

doampg Points to the first OAM page for the
table.

ioampg Points to the first OAM page for an
index.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 31

For example, for a server configured for 2KB logical pages, systypes—with
approximately 31 short rows, a clustered and a non-clustered index—reserves
3 extents, or 48KB of memory. If you migrate the server to use 8KB pages, the
space reserved for systypes is still 3 extents, 192KB of memory.

For a server configured for 16KB, systypes requires 384KB of disk space. For
small tables, the space unused in the last extent can become significant on
servers using larger logical page sizes.

Databases are also affected by larger page sizes. Each database includes the
system catalogs and their indexes. If you migrate from a smaller to larger
logical page size, you must account for the amount of disk space each database
requires.

Number of columns and size
The maximum number of columns you can create in a table is:

• 1024 for fixed-length columns in both allpages-locked (APL) and data-
only-locked (DOL) tables

• 254 for variable-length columns in an APL table

• 1024 for variable-length columns in an DOL table

The maximum size of a column depends on:

• Whether the table includes variable- or fixed-length columns.

• The logical page size of the database. For example, in a database with 2K
logical pages, the maximum size of a column in an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a 4K page, the maximum size of a column in a APL table can
be as large as 4010 bytes, less the row format overheads. See Table 2-3 for
more information.

• If you attempt to create a table with a fixed-length column that is greater
than the limits of the logical page size, create table issues an error message.

Space overheads

32 Adaptive Server Enterprise

Table 2-3: Maximum row and column length

The maximum size of a fixed-length column in a DOL table with a 16K logical
page size depends on whether the table contains variable-length columns. The
maximum possible starting offset of a variable-length column is 8191. If the
table has any variable-length columns, the sum of the fixed-length portion of
the row, plus overheads, cannot exceed 8191 bytes, and the maximum possible
size of all the fixed-length columns is restricted to 8183 bytes, when the table
contains any variable-length columns.

In Table 2-3, the maximum column length is determined by subtracting 6 bytes
for row overhead and 2 bytes for row length field.

Variable-length columns in APL tables

APL tables that contain one variable-length column (for example, varchar,
varbinary and so on) have the following minimum overhead for each row:

• 2 bytes for the initial row overhead.

• 2 bytes for the row length.

• 2 bytes for the column-offset table at the end of the row. This is always
n+1 bytes, where n is the number of variable-length columns in the row.

Locking scheme Page size
Maximum row
length

Maximum column
length

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes

APL tables 8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes

DOL tables 8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes
if table does not
include any variable-
length columns

16K (16384 bytes) 16300
(subject to a max start
offset of varlen =
8191)

8191-6-2 = 8183 bytes
if table includes at
least on variable-
length column.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 33

A single-column table has an overhead of at least 6 bytes, plus additional
overhead. The maximum column size, after overhead, must be less than or
equal to:
(column length) + (additional overhead) + (six-byte overhead.)

Table 2-4: Maximum size for variable-length columns in an APL table

Variable-length columns that exceed the logical page size

If your table uses 2K logical pages, you can create some variable-length
columns whose total row-length exceeds the maximum row-length for a 2K
page size. This allows you to create tables where some, but not all, variable-
length columns contain the maximum possible size. However, when you issue
create table, you receive a warning message that says the resulting row size
may exceed the maximum possible row size, and cause a future insert or update
to fail.

For example, if you create a table that uses a 2K page size, and contains a
variable-length column with a length of 1975 bytes, Adaptive Server creates
the table but issues a warning message. You cannot insert data that exceeds the
maximum length of the row (1962 bytes).

Variable-length columns in DOL tables

For a single, variable-length column in a DOL table, the minimum overhead
for each row is:

• Six bytes for the initial row overhead.

• Two bytes for the row length.

• Two bytes for the column offset table at the end of the row. Each column
offset entry is two bytes. There are n such entries, where n is the number
of variable-length columns in the row.

The total overhead is 10 bytes. There is no adjust table for DOL rows. The
actual variable-length column size is:

column length + 10 bytes overhead

Page size
Maximum row
length

Maximum column
length

2K (2048 bytes) 1962 1948

4K (4096 bytes) 4010 3988

8K (8192 bytes) 8096 8068

16K (16384 bytes) 16298 16228

Space overheads

34 Adaptive Server Enterprise

Table 2-5: Maximum size for variable-length columns in an DOL table

DOL tables with variable-length columns must have an offset of fewer than
8191 bytes for all inserts to succeed. For example, this insert fails because the
offset for columns c2, c3, and c4 is 9010, which exceeds the maximum of 8191
bytes:

create table t1(
c1 int not null,
c2 varchar(5000) not null
c3 varchar(4000) not null
c4 varchar(10) not null
... more fixed length columns)

cvarlen varchar(nnn)) lock datarows

Wide, variable-length rows

Adaptive Server allows data-only locked (DOL) columns to use a row offset of
up to 32767 bytes for wide, variable-length DOL rows if it is configured for a
logical page size of 16K.

Enable wide, variable-length DOL rows for each database using:

sp_dboption database_name, 'allow wide dol rows', true

Note allow wide dol rows is on by default for temporary databases. You cannot
set allow wide dol rows for the master database.

sp_dboption 'allow wide dol rows' has no effect on user databases with logical
page sizes smaller than 16K; Adaptive Server cannot create a wide, variable-
length DOL rows on pages smaller than 16384 bytes.

This example configures the pubs2 database on a server using a page size of
16K to use wide, variable-length DOL rows:

1 Enable wide, variable-length rows for the pubs2 database:

sp_dboption pubs2, 'allow wide dol rows', true

Page size
Maximum row
length

Maximum column
length

2K (2048 bytes) 1964 1954

4K (4096 bytes) 4012 4002

8K (8192 bytes) 8108 8098

16K (16384 bytes) 16300 16290

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 35

2 Create the book_desc table, which includes wide, variable-length DOL
columns that begin after the row offset of 8192:

create table book_desc
(title varchar(80) not null,
title_id varchar(6) not null,
author_desc char(8192) not null,
book_desc varchar(5000) not null)
lock datarows

Bulk-copying wide
data

You must use the version of bcp shipped with Adaptive Server version 15.7 and
later to bulk-copy-in data that contains wide, variable-length DOL rows. You
must configure the database receiving the data to accept wide, variable-length
DOL rows (that is, bcp does not copy wide rows into databases for which you
have not enabled allow wide dol rows).

Checking for
downgrade

See the Installation Guide for your platform for details about downgrading an
Adaptive Server that uses wide, variable-length rows.

Dumping and loading
wide, variable-length
DOL columns

Database and transaction log dumps retain their setting for allow wide dol rows,
which is imported into the database into which you are loading the dump (if this
database does not already have the option set).

For example, if you load a transaction log dump named my_table_log.dmp,
which has allow wide dol rows set to true, into database big_database, for which
you have not set allow wide dol rows, my_table.log retains its setting of true for
allow wide dol rows after the load to big_database completes.

However, if the database or transaction log dump does not have allow wide dol
rows set, but the database into which you are loading the dump does, allow wide
dol rows remains set.

You cannot load a dump of a database that has allow wide dol rows enabled to
versions of Adaptive Server earlier than 15.7.

Using proxy tables
with wide, variable-
length DOL rows

You can use proxy tables with wide, variable-length DOL rows.

When you create proxy tables (regardless of their row length), the controlling
Adaptive Server is the one on which you execute the create table or create proxy
table command. Adaptive Server executes these commands on the server to
which you are connected. However, Adaptive Server executes data
manipulation statements (insert, delete) on the server on which the data is
stored, and the user’s local server only formats the request and then sends it;
the local server does not control anything.

Space overheads

36 Adaptive Server Enterprise

Adaptive Server creates proxy tables as though they are created on the local
server, even though the data resides on remote servers. If the create proxy_table
command creates a DOL table that contains wide, variable-length rows, the
command succeeds only if the database in which you are creating the proxy
table has allow wide dol rows set to true.

Note Adaptive Server creates proxy tables using the local server’s lock
scheme configuration, and creates a proxy table with DOL rows if lock scheme
is set to datarows or datapages.

When you insert or update data in proxy tables, Adaptive Server ignores the
local database’s setting for allow wide dol rows. The server where the data
resides determines whether an insert or update succeeds

Restrictions for converting locking schemes or using select into

The following restrictions apply whether you are using alter table to change a
locking scheme or using select into to copy data into a new table.

For servers that use page sizes other than 16K pages, the maximum length of a
variable-length column in an APL table is less than that for a DOL table, so you
can convert the locking scheme of an APL table with a maximum sized
variable-length column to DOL. You cannot, however, convert a DOL table
containing at least one maximum sized variable-length column to an APL
table.

On servers that use 16K pages, APL tables can store substantially larger sized
variable-length columns than DOL tables. You can convert tables from DOL to
APL, but you cannot convert from APL to DOL.

These restrictions on locking-scheme conversions occur only if data in the
source table exceeds the limits of the target table. If this occurs, Adaptive
Server raises an error message while transforming the row format from one
locking scheme to the other. If the table is empty, no such data transformation
is required, and the lock-change operation succeeds. However, subsequent
inserts or updates to the table, users may see errors caused by limitations on the
column or row size for the target schema of the altered table.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 37

Organizing columns in DOL tables by size of variable-length columns

For DOL tables that use variable-length columns, arrange the columns so that
the longest columns are placed toward the end of the table definition. This
allows you to create tables with much larger rows than if the large columns
appear at the beginning of the table definition. For instance, in a 16K page
server, the following table definition is acceptable:

create table t1 (
c1 int not null,
c2 varchar(1000) null,
c3 varchar(4000) null,
c4 varchar(9000) null) lock datarows

However, the following table definition typically is unacceptable for future
inserts. The potential start offset for column c2 is greater than the 8192-byte
limit because of the preceding 9000-byte c4 column:

create table t2 (
c1 int not null,
c4 varchar(9000) null,
c3 varchar(4000) null,
c2 varchar(1000) null) lock datarows

The table is created, but future inserts may fail.

Number of rows per data page
The number of rows allowed for a DOL data page is determined by:

• The page size

• A 10-byte overhead for the row ID, which specifies a row-forwarding
address

Table 2-6 displays the maximum number of rows that can fit on a DOL data
page:

Tables without clustered indexes

38 Adaptive Server Enterprise

Table 2-6: Maximum number of data rows for a DOL data page

APL data pages can have a maximum of 256 rows. Because each page requires
a one-byte row number specifier, large pages with short rows incur some
unused space. For example, if Adaptive Server is configured with 8K logical
pages and rows that are 25 bytes, each page has 1275 bytes of unused space,
after accounting for the row-offset table and the page header.

Additional number of object and size restrictions
The maximum number of arguments for stored procedures is 2048. See
Chapter 16, “Using Stored Procedures,” in the Transact-SQL Users Guide.

Adaptive Server version 12.5 and later can store data that has different limits
than data stored in versions earlier than 12.5. Clients must be able to store and
process these newer data limits. If you are using older versions of Open Client
and Open Server, they cannot process the data if you:

• Upgrade to Adaptive Server version 12.5 or later

• Drop and recreate the tables with wide columns

• Insert wide data

See Chapter 2, “Basic Configuration for Open Client” in the Open Client
Configuration Guide.

Tables without clustered indexes
If you create a table on Adaptive Server, but do not create a clustered index, the
table is stored as a heap, which means the data rows are not stored in any
particular order. This section describes how select, insert, delete, and update
operations perform on heap tables when there is no “useful” index to aid in
retrieving data.

Page size Maximum number of rows

2K 166

4K 337

8K 678

16K 1361

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 39

There are very few justifications for heap tables. Most applications perform
better with clustered indexes on the tables. However, heap tables work well for
small tables that use only a few pages, and for tables where changes are
infrequent

Heap tables can be useful for tables that do not require:

• Direct access to single, random rows

• Ordering of result sets

Heap tables do not work well for queries against most large tables that must
return a subset of the table’s rows.

Partitioned heap tables are useful in applications with frequent, large volumes
of batch inserts where the overhead of dropping and creating clustered indexes
is unacceptable.

Sequential disk access is efficient, especially with large I/O and asynchronous
prefetch. However, the entire table must always be scanned to find any value,
and this has potentially large impact in the data cache and other queries.

Batch inserts can also perform efficient sequential I/O. However, there is a
potential bottleneck on the last page if multiple processes try to insert data
concurrently.

 Sometimes, an index exists on the columns named in a where clause, but the
optimizer determines that it would be more costly to use the index than to
perform a table scan.

Table scans are always used when you select all rows in a table. The only
exception is when the query includes only columns that are keys in a
nonclustered index.

For more information, see Chapter 5, “Indexes,” in Performance and Tuning
Series: Locking and Concurrency Control.

Locking schemes
The data pages in an APL table are linked into a list of pages by pointers on
each page. Pages in data-only-locked tables are not linked into a page chain.

In an allpages-locked table, each page stores a pointer to the next page in the
chain and to the previous page in the chain. When you insert new pages, the
pointers on the two adjacent pages change to point to the new page. When
Adaptive Server scans an allpages-locked table, it reads the pages in order,
following these page pointers.

Tables without clustered indexes

40 Adaptive Server Enterprise

Pages are also doubly linked at each index level of allpages-locked tables, and
at the leaf level of indexes on data-only-locked tables. If an allpages-locked
table is partitioned, there is one page chain for each partition.

Unlike allpages-locked tables, data-only-locked tables typically do not
maintain a page chain, except immediately after you create a clustered index.
However, this page chain is broken the first time you issue a command on the
table.

When Adaptive Server scans a data-only-locked table, it uses the information
stored in the OAM pages. See “Object allocation map pages” on page 27.

Another difference between allpages-locked tables and data-only-locked tables
is that data-only-locked tables use fixed row IDs. This means that row IDs (a
combination of the page number and the row number on the page) do not
change in a data-only-locked table during normal query processing.

Row IDs change only when one of the operations that require data-row copying
is performed, for example, during reorg rebuild or while creating a clustered
index.

For information on how fixed row IDs affect heap operations, see “Deleting
from a data-only locked heap table” on page 43 and “Data-only-locked heap
tables” on page 44.

Select operations on heap tables
When you issue a select query on a heap, and there is no useful index, Adaptive
Server must scan every data page in the table to find every row that satisfies the
conditions in the query. There may be one row, many rows, or no rows that
match.

Allpages-locked heap tables

For allpages-locked tables, Adaptive Server reads the firstpage column in
syspartitions for the table, reads the first page into cache, and follows the next
page pointers until it finds the last page of the table.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 41

Data-only locked heap tables

Since the pages of data-only-locked tables are not linked in a page chain, a
select query on a data-only-locked heap table uses the table’s OAM and the
allocation pages to locate all the rows in the table. The OAM page points to the
allocation pages, which point to the extents and pages for the table.

Inserting data into an allpages-locked heap table
When you insert data into an allpages-locked heap table without a clustered
index, the data row is always added to the last page of the table. If there is no
clustered index on a table, and the table is not partitioned, the syspartitions.root
entry for the heap table stores a pointer to the last page of the heap to indicate
the page where the data should be inserted.

If the last page is full, a new page is allocated in the current extent and linked
onto the chain. If the extent is full, Adaptive Server looks for empty pages on
other extents being used by the table. If no pages are available, a new extent is
allocated to the table.

One of the severe performance limits on heap tables that use allpages locking
is that the page must be locked when the row is added, and the lock is held until
the transaction completes. If many users are trying to insert into an allpages-
locked heap table simultaneously, each insert must wait for the preceding
transaction to complete.

This problem of last-page conflicts on heap tables is true for:

• Single-row inserts

• Multiple row inserts using select into or insert...select, or several insert
statements in a batch

• Bulk copying into the table

To address last-page conflicts on heap tables, try:

• Switching to datapages or datarows locking

• Creating a clustered index that directs the inserts to different pages

• Partitioning the table, which creates multiple insert points for the table,
giving you multiple “last pages” in an allpages-locked table

For all transactions where there may be lock conflicts, you can also:

• Keep transactions short

Tables without clustered indexes

42 Adaptive Server Enterprise

• Avoid network activity and user interaction whenever possible, once a
transaction acquires locks

Inserting data into a data-only-locked heap table
When users insert data into a data-only-locked heap table, Adaptive Server
tracks page numbers where the inserts have recently occurred, and keeps the
page number as a suggestion for future tasks that need space. Subsequent
inserts to the table are directed to one of these pages. If the page is full,
Adaptive Server allocates a new page and replaces the old hint with the new
page number.

Blocking while many users are simultaneously inserting data is much less
likely to occur during inserts to data-only-locked heap tables than in APL
tables. When blocking does occur, Adaptive Server allocates a small number
of empty pages and directs new inserts to those pages using these newly
allocated pages as hints.

For datarows-locked tables, blocking occurs only while the actual changes to
the data page are being written; although row locks are held for the duration of
the transaction, other rows can be inserted on the page. The row-level locks
allow multiple transaction to hold locks on the page.

There may be slight blocking on data-only-locked tables, because Adaptive
Server allows a small amount of blocking after many pages have just been
allocated, so that the newly allocated pages are filled before additional pages
are allocated.

Conflicts during inserts to heap tables are greatly reduced for data-only-locked
tables, but can still take place. If these conflicts slow inserts, try:

• Switching to datarows locking, if the table uses datapages locking

• Using a clustered index to spread data inserts

• Partitioning the table, which provides additional hints and allows new
pages to be allocated on each partition when blocking takes place

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 43

Deleting data from a heap table
When you delete rows from a heap table that does not have a useful index,
Adaptive Server scans the data rows in the table to find the rows to delete. It
cannot determine how many rows match the conditions in the query without
examining every row.

Deleting from an allpages-locked heap table

When a data row is deleted from a page in an allpages-locked table, the rows
that follow it on the page move up so that the data on the page remains
contiguous, avoiding fragmentation within the page.

Deleting from a data-only locked heap table

When you delete rows from a data-only-locked heap table, a table scan is
required if there is no useful index. The OAM and allocation pages are used to
locate the pages.

The space on the page is not recovered immediately. Rows in data-only-locked
tables must maintain fixed row IDs, and must be reinserted in the same place
if the transaction is rolled back.

After a delete transaction commits, one of the following processes shifts rows
on the page to make the space usage contiguous:

• The housekeeper garbage collection process

• An insert that needs to find space on the page

• The reorg reclaim_space command

Deleting the last row on a page

If you delete the last row on a page, the page is deallocated. If other pages on
the extent are still in use by the table, the page can be used again by the table
when a page is needed.

If all other pages on the extent are empty, the entire extent is deallocated. It can
be allocated to other objects in the database. The first data page for a table or
an index is never deallocated.

Tables without clustered indexes

44 Adaptive Server Enterprise

Updating data on a heap table
Like other operations on heap tables, an update on a table that has no useful
index on the columns in the where clause performs a table scan to locate the
rows to be changed.

Allpages-locked heap tables

You can perform updates on allpages-locked heap tables in several ways:

• If the length of the row does not change, the updated row replaces the
existing row, and no data moves on the page.

• If the length of the row changes, and there is enough free space on the
page, the row remains in the same place on the page, but other rows move
up or down to keep the rows contiguous on the page.

The row offset pointers at the end of the page are adjusted to point to the
changed row locations.

• If the row does not fit on the page, the row is deleted from its current page,
and inserted as a new row on the last page of the table. This type of update
may cause a conflict on the last page of the heap.

Data-only-locked heap tables

One of the requirements for data-only-locked tables is that the row ID of a data
row never changes (except during intentional rebuilds of the table). Therefore,
updates to data-only-locked tables can be performed by the first two methods
described above, as long as the row fits on the page.

However, when a row in a data-only-locked table is updated so that it no longer
fits on the page, a process called row forwarding performs these steps:

1 The row is inserted onto a different page, and

2 A pointer to the row ID on the new page is stored in the original location
for the row.

Indexes need not be modified when rows are forwarded. All indexes still point
to the original row ID.

If a row must be forwarded a second time, the original location is updated to
point to the new page—the forwarded row is never more than one hop away
from its original location.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 45

Row forwarding increases concurrency during update operations because
indexes do not have to be updated. It can slow data retrieval, however, because
a task must read the page at the original location and then read the page where
the forwarded data is stored.

Use the reorg command to clear forwarded rows from a table.

See Chapter 1, “Understanding Query Processing” in Performance and Tuning
Series: Query Processing and Abstract Plans.

How Adaptive Server performs I/O for heap operations
When a query needs a data page, Adaptive Server first checks to see if the page
is available in a data cache. If the page is not available, then it must be read
from disk. A newly installed Adaptive Server with a 2K logical page size has
a single data cache configured for 2K I/O. Each I/O operation reads or writes a
single Adaptive Server data page. A system administrator can:

• Configure multiple caches

• Bind tables, indexes, or text chains to the caches

• Configure data caches to perform I/O in page-sized multiples, up to eight
data pages (one extent)

To use these caches most efficiently, and to reduce I/O operations, the Adaptive
Server optimizer can:

• Choose to prefetch up to eight data pages at a time

• Choose between different caching strategies

Sequential prefetch, or large I/O

Adaptive Server data caches can be configured to allow large I/Os. When a
cache allows large I/Os, Adaptive Server can prefetch data pages.

Caches have buffer pools that depend on the logical page sizes, allowing
Adaptive Server to read up to an entire extent (eight data pages) in a single I/O
operation.

Since much of the time required to perform I/O operations is taken up in
seeking and positioning, reading eight pages in a 16K I/O takes nearly the same
amount of time as a single page, 2K I/O. Reading eight pages using eight 2K
I/Os is nearly eight times more costly than reading eight pages using a single
16K I/O. Table scans perform much better when you use large I/Os.

Tables without clustered indexes

46 Adaptive Server Enterprise

When several pages are read into cache with a single I/O, they are treated as a
unit: they age in cache together, and if any page in the unit has been changed
while the buffer was in cache, all pages are written to disk as a unit.

See Chapter 5, “Memory Use and Performance,” in Performance and Tuning
Series: Basics.

Note Reference to large I/Os are on a 2K logical page size server. If you have
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page
size server, the basic unit for the I/O is 16K.

Maintaining heap tables
Over time, I/O on heap tables can become inefficient as storage becomes
fragmented. Deletes and updates can result in:

• Many partially filled pages

• Inefficient large I/O, since extents may contain many empty pages

• Forwarded rows in data-only-locked tables

To reclaim space in heap tables:

• Use the reorg rebuild command (data-only-locked tables only)

• Create and then drop a clustered index

• Use bcp (the bulk copy utility) and truncate table

Using reorg rebuild to reclaim space

reorg rebuild copies all data rows to new pages and rebuilds any indexes on the
heap table. You can use reorg rebuild only on data-only-locked tables.

Reclaiming space by creating a clustered index

To create a clustered index, you must have free space in the database that is at
least 120% of the table size.

See “Determining the space available for maintenance activities” on page 118.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 47

Reclaiming space using bcp

To reclaim space with bcp:

1 Use bcp to copy the table to a file.

2 Use truncate table to truncate the table, reclaiming unused space.

3 Copy the table back in again with bcp.

For detailed information about working with partitioned tables, see Chapter 10,
“Partitioning Tables and Indexes,” in the Transact-SQL Users Guide.

For more information on bcp, see the Utility Guide.

Transaction log: a special heap table
The Adaptive Server transaction log is a special heap table that stores
information about data modifications in the database. The transaction log is
always a heap table; each new transaction record is appended to the end of the
log. The transaction log has no indexes.

Place logs on separate physical devices from the data and index pages. Since
the log is sequential, the disk head on the log device rarely needs to perform
seeks, and you can maintain a high I/O rate to the log.

Transaction log writes occur frequently. Do not let them contend with other I/O
in the database, which usually happens at scattered locations on the data pages.

Besides recovery, these operations read the transaction log:

• Any data modification performed in deferred mode.

• Triggers that contain references to the inserted and deleted tables. These
tables are built from transaction log records when the tables are queried.

• Transaction rollbacks.

In most cases, the transaction log pages for these queries are still available in
the data cache when Adaptive Server needs to read them, and disk I/O is not
required.

See “Keeping transaction logs on a separate disk” on page 6 for information
about how to improve the performance of the transaction log.

Tables without clustered indexes

48 Adaptive Server Enterprise

Asynchronous prefetch and I/O on heap tables
Any task that must perform a physical I/O relinquishes the server’s engine
(CPU) while it waits for the I/O to complete. If a table scan must read 1000
pages, and none of those pages are in cache, performing 2K I/O with no
asynchronous prefetch means the task makes 1000 loops, executing on the
engine, and then sleeping to wait for I/O. Using 16K I/O requires only 125
loops

Asynchronous prefetch speed the performance of queries that perform table
scans. Asynchronous prefetch can request all of the pages on an allocation unit
that belong to a table when the task fetches the first page from the allocation
unit. If the 1000-page table resides on just 4 allocation units, the task requires
many fewer cycles through the execution and sleep loops.

Actual performance depends on cache size and other activity in the data cache.

See Chapter 6, “Tuning Asynchronous Prefetch,” in Performance and Tuning
Series: Basics.

Type of I/O Loops Steps in each loop

2K I/O
No prefetch

1000 1 Request a page.

2 Sleep until the page has been read from disk.

3 Request a page.

4 Wait for a turn to run on the Adaptive Server
engine (CPU).

5 Read the rows on the page.

16K I/O
No prefetch

125 1 Request an extent.

2 Sleep until the extent has been read from disk.

3 Wait for a turn to run on the Adaptive Server
engine (CPU).

4 Read the rows on the eight pages.

Prefetch 4 1 Request all the pages in an allocation unit.

2 Sleep until the first page has been read from disk.

3 Wait for a turn to run on the Adaptive Server
engine (CPU).

4 Read all the rows on all the pages in cache.

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 49

Caches and object bindings
A table can be bound to a specific cache. If a table is not bound to a specific
cache, but its database is bound to a cache, all of its I/O takes place in that
cache.

Otherwise, the table’s I/O takes place in the default data cache. You can
configure the default data cache for large I/O. Applications that use heap tables
are likely to give the best performance when they use a cache configured for
16K I/O.

See Chapter 4, “Configuring Data Caches,” in the System Administration
Guide: Volume 2.

Heap tables, I/O, and cache strategies
Each Adaptive Server data cache is managed as an MRU/LRU (most recently
used/least recently used) chain of buffers. As buffers age in the cache, they
move from the MRU end toward the LRU end.

When changed pages in the cache pass a point called the wash marker, on the
MRU/LRU chain, Adaptive Server initiates an asynchronous write on any
pages that have changed while they were in cache. This helps ensure that when
the pages reach the LRU end of the cache, they are clean and can be reused.

Adaptive Server has two major strategies for using its data cache efficiently:

• LRU replacement strategy

• MRU, or fetch-and-discard replacement strategy

LRU replacement strategy

Adaptive Server uses LRU strategy for:

• Statements that modify data on pages

• Pages that are needed more than once by a single query

• OAM pages

• Most index pages

• Any query where LRU strategy is specified

Caches and object bindings

50 Adaptive Server Enterprise

LRU replacement strategy reads the data pages sequentially into the cache,
replacing a “least recently used” buffer. The buffer is placed on the MRU end
of the data buffer chain. It moves toward the LRU end as more pages are read
into the cache.

Figure 2-2: LRU strategy takes a clean page from the LRU end of the
cache

MRU replacement strategy

MRU (fetch-and-discard) is most often used for queries where a page is needed
only once by the query, including:

• Most table scans in queries that do not use joins

• One or more tables in a join query

MRU replacement strategy is used for table scanning on heap tables. This
strategy places pages into the cache just before the wash marker, as shown in
Figure 2-3.

Figure 2-3: MRU strategy places pages just before the wash marker

Placing the pages needed only once at the wash marker means they do not push
other pages out of the cache.

Clean

To disk

MRU

Wash marker

Clean Dirty page

LRU

Clean

MRU LRU

Wash

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 51

The fetch-and-discard strategy is used only on pages actually read from the
disk for the query. If a page is already in cache due to earlier activity on the
table, the page is placed at the MRU end of the cache.

Figure 2-4: Finding a needed page in cache

Select operations and caching
Under most conditions, single-table select operations on a heap use:

• The largest I/O available to the table, and

• Fetch-and-discard (MRU) replacement strategy

For heap tables, select operations performing large I/O can be very effective.
Adaptive Server can read sequentially through all the extents in a table.

See Chapter 1, “Understanding Query Processing” in Performance and Tuning
Series: Query Processing and Abstract Plans.

Unless the heap is being scanned as the inner table of a nested-loop join, data
pages are needed only once for the query, so MRU replacement strategy reads
and discards the pages from cache.

Note Large I/O on allpages-locked heap tables is effective only when the page
chains are not fragmented. See “Maintaining heap tables” on page 46.

Data modification and caching
Adaptive Server tries to minimize disk writes by keeping changed pages in
cache. Many users can make changes to a data page while it resides in the
cache. The changes are logged in the transaction log, but the changed data and
index pages are not immediately written to disk.

MRU LRUWash

Caches and object bindings

52 Adaptive Server Enterprise

Caching and inserts on heap tables

Inserts to heap tables take place:

• On the last page of a table that uses allpages locking

• On a page that was recently used for a successful insert, on a table that uses
data-only-locking

If an insert is the first row on a new page for the table, a clean data buffer is
allocated to store the data page, as shown in Figure 2-5. This page starts to
move down the MRU/LRU chain in the data cache as other processes read
pages into memory.

If a second insert to the page takes place while the page is still in memory, the
page is located in cache, and moves back to the top of the MRU/LRU chain.

Figure 2-5: Inserts to a heap page in the data cache

The changed data page remains in cache until it reaches the LRU end of the
chain of pages. The page may be changed or referenced many times while it is
in the cache, but it is written to disk only when one of the following takes place:

• The page moves past the wash marker.

• A checkpoint or the housekeeper wash task writes it to disk.

See Chapter 5, “Memory Use and Performance” in Performance and Tuning
Series: Basics.

MRU LRU

Clean page

First insert on a page takes a clean page
from the LRU and puts it on the MRU

Second insert on a page finds the page
in cache, and puts in back at the MRU

Wash

CHAPTER 2 Data Storage

Performance and Tuning Series: Physical Database Tuning 53

Caching, update, and delete operations on heap tables

When you update or delete a row from a heap table, the effects on the data
cache are similar to the process for inserts. If a page is already in the cache, the
row is changed and the entire buffer (a single page or more, depending on the
I/O size) is placed on the MRU end of the chain.

If the page is not in cache, it is read from disk into cache and examined to
determine whether the rows on the page match query clauses. Its placement on
the MRU/LRU chain depends on whether data on the page needs to be
changed:

• If data on the page needs to be changed, the buffer is placed on the MRU
end. It remains in cache, where it can be updated repeatedly, or read by
other users before being flushed to disk.

• If data on the page does not need to be changed, the buffer is placed
immediately before the wash marker in the cache.

Caches and object bindings

54 Adaptive Server Enterprise

Performance and Tuning Series: Physical Database Tuning 55

C H A P T E R 3 Setting Space Management
Properties

Setting space management properties can help reduce the amount of
maintenance work required to maintain high performance for tables and
indexes

This chapter describes the major space management properties for
controlling space usage, how these properties affect space usage, and how
you can apply them to different tables and indexes.

Reducing index maintenance
The fillfactor option for the create index command allows you to specify
how full to make index pages and the data pages of clustered indexes.
When you specify a fillfactor value of any amount other than 100%, data
and index rows use more disk space than the default setting requires.

If you are creating indexes for tables that will grow in size, you can reduce
the impact of page splitting on your tables and indexes by using the
fillfactor option.

fillfactor is used when you create an index, and again when you use reorg
rebuild to rebuild indexes as part of table reorganization operations (for
example, when you rebuild clustered indexes or run reorg rebuild on a
table). fillfactor values are not saved in sysindexes, and the fullness of the
data or index pages is not maintained over time. fillfactor is not maintained
over time during subsequent inserts or updates to the table.

Topic Page
Reducing index maintenance 55

Reducing row forwarding 62

Leaving space for forwarded rows and inserts 68

Using max_rows_per_page on allpages-locked tables 75

Reducing index maintenance

56 Adaptive Server Enterprise

If the leaf-level pages of your index are initially only partially full (because of
the fillfactor value), but this free space is used because of subsequent insertions,
the leaf-level pages are prone to future splits. Use reorg rebuild...index to build
the leaf-level pages, creating them with the specified value for fillfactor so that
future insertions do not cause these splits. Run reorg rebuild on the entire index
level so the value for fillfactor allows additional space at the leaf level for the
whole index. If there is a local index, run reorg rebuild index at the partition
level so only leaf pages in the local index partition are adjusted, leaving
additional space for future inserts at the leaf level.

Note Adaptive Server 15.0 and later allows you to run reorg rebuild...index on
local index partitions.

When you issue create index, the fillfactor value specified as part of the
command is applied as follows:

• Clustered index:

• On an allpages-locked table, the fillfactor is applied to the data pages.

• On a data-only-locked table, the fillfactor is applied to the leaf pages of
the index, and the data pages are fully packed (unless sp_chgattribute
has been used to store a fillfactor for the table).

• Nonclustered index – the fillfactor value is applied to the leaf pages of the
index.

You can also use sp_chgattribute to store values for fillfactor that are used when
reorg rebuild is run on a table.

See “Setting fillfactor values” on page 57.

Advantages of using fillfactor
Setting fillfactor to a low value provides a temporary performance enhancement.
As inserts to the database increase the amount of space used on data or index
pages, its performance improvement decreases.

Using a lower value for fillfactor:

• Reduces page splits on the leaf-level of indexes, and the data pages of
allpages-locked tables.

• Improves data-row clustering on data-only-locked tables with clustered
indexes that experience inserts.

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 57

• Can reduce lock contention for tables that use page-level locking, since it
reduces the likelihood that two processes will need the same data or index
page simultaneously.

• Can help maintain large I/O efficiency for the data pages and for the leaf
levels of nonclustered indexes, since page splits occur less frequently. This
means that eight pages on an extent are likely to be sequential.

Disadvantages of using fillfactor
If you use fillfactor (especially with a very low value), you may notice these
effects on queries and maintenance activities:

• More pages must be read for each query that performs a table scan or leaf-
level scan on a nonclustered index.

In some cases, a level may be added to an index’s B-tree structure, since
there will be more pages at the data level and possibly more pages at each
index level.

• Increased index size, reducing the index’s space efficiency. Because you
cannot tune the fillfactor value at the page level, page splits with skewed
data distribution occur frequently, even when there is available reserved
space.

• dbcc commands take more time because they must check more pages.

• The time required to run dump database increases because more pages
must be dumped. dump database copies all pages that store data, but does
not dump pages that are not yet in use. Dumps and loads may also use
more tapes.

• Fillfactor values fade over time. If you use fillfactor to reduce the
performance impact of page splits, monitor your system and recreate
indexes when page splitting begins to hurt performance.

Setting fillfactor values
Use sp_chgattribute to store a fillfactor percentage for each index and for the
table. The fillfactor you set with sp_chgattribute is applied when you:

• Run reorg rebuild against tables using any locking scheme.

• Use alter table...partition by to repartition a table.

Reducing index maintenance

58 Adaptive Server Enterprise

• Use alter table...lock to change the locking scheme for a table. or use an
alter table...add/modify command that requires copying the table.

• Run create clustered index and a value is stored for the table.

See the Reference Manual: Commands for details information about each of
these commands.

With the default fillfactor of 0, the index management process leaves room for
two additional rows on each index page when you create a new index. When
you set fillfactor to 100 percent, it no longer leaves room for these rows.The
only effect that fillfactor has on size calculations is when calculating the number
of clustered index pages and when calculating the number of non-leaf pages.
Both of these calculations subtract 2 from the number of rows per page.
Eliminate the -2 from these calculations.

Other values for fillfactor reduce the number of rows per page on data pages and
leaf index pages. To compute the correct values when using fillfactor, multiply
the size of the available data page (2016) by the fillfactor. For example, if your
fillfactor is 75 percent, your data page would hold 1471 bytes. Use this value in
place of 2016 when you calculate the number of rows per page. For these
calculations, see “Compute the number of data pages” on page 91 and
“Calculate the number of leaf pages in the index” on page 94.

Adaptive Server does not apply the stored fillfactor when it builds nonclustered
indexes as a result of a create clustered index command:

• If a fillfactor value is specified with create clustered index, that value is
applied to each nonclustered index.

• If no fillfactor value is specified with create clustered index, the server-wide
default value (set with the default fillfactor percent configuration parameter)
is applied to all indexes.

fillfactor examples
The following examples show the application of fillfactor values.

No stored fillfactor values

With no fillfactor values stored in sysindexes, Adaptive Server applies the
fillfactor specified in create index as shown in Table 3-1.

create clustered index title_id_ix
on titles (title_id)

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 59

with fillfactor = 80

Table 3-1: fillfactor values applied with no table-level saved value

The nonclustered indexes use the fillfactor specified in the create clustered index
command.

If no fillfactor is specified in create clustered index, the nonclustered indexes
always use the server-wide default; they never use a value from sysindexes.

Values used for alter table...lock and reorg rebuild

When no fillfactor values are stored, both alter table...lock and reorg rebuild apply
the server-wide default value, set by default fillfactor percentage. The default
fillfactor is applied as shown in Table 3-2.

Table 3-2: fillfactor values applied during rebuilds

Table-level or clustered index fillfactor value stored

This command stores a fillfactor value of 50 for the table:

sp_chgattribute titles, "fillfactor", 50

If you set the stored table-level value for fillfactor to 50, this create clustered
index command applies the fillfactor values shown in Table 3-3.

create clustered index title_id_ix
on titles (title_id)
with fillfactor = 80

Table 3-3: Using stored fillfactor values for clustered indexes

Command Allpages-locked table Data-only-locked table

create clustered
index

Data pages: 80 Data pages: fully packed
Leaf pages: 80

Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Command Allpages-locked table Data-only-locked table

Clustered index rebuild Data pages: default value Data pages: fully packed
Leaf pages: default value

Nonclustered index rebuilds Leaf pages: default Leaf pages: default

Command Allpages-Locked Table Data-Only-Locked Table

create clustered index Data pages: 80 Data pages: 50
Leaf pages: 80

Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Reducing index maintenance

60 Adaptive Server Enterprise

Note When you run create clustered index, any table-level fillfactor value stored
in sysindexes is reset to 0.

You must first issue sp_chgattribute to specify that data-only-locked data pages
are filled during a create clustered index or reorg command.

Effects of alter table...lock when values are stored

Stored values for fillfactor are used when an alter table...lock command copies
tables and rebuilds indexes.

Tables with clustered indexes

In an allpages-locked table, the table and the clustered index share the
sysindexes row, so only one value for fillfactor can be stored and used for the
table and clustered index. You can set the fillfactor value for the data pages by
providing either the table name or the clustered index name. This command
saves the value 50:

sp_chgattribute titles, "fillfactor", 50

This command saves the value 80, overwriting the value of 50 set by the
previous command:

sp_chgattribute "titles.clust_ix", "fillfactor", 80

If you alter the titles table to use data-only locking after issuing the
sp_chgattribute commands above, the stored value fillfactor of 80 is used for
both the data pages and the leaf pages of the clustered index.

In a data-only-locked table, information about the clustered index is stored in
a separate row in sysindexes. The fillfactor value you specify for the table
applies to the data pages and the fillfactor value you specify for the clustered
index applies to the leaf level of the clustered index.

When you change a DOL table to use allpages locking, the fillfactor stored for
the table is used for the data pages. Adaptive Server ignores the fillfactor stored
for the clustered index.

Table 3-4 shows the fillfactor values that are set on data and index pages using
an alter table...lock command, executed after the sp_chgattribute commands
above have been run.

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 61

Table 3-4: Effects of stored fillfactor values during alter table

Note alter table...lock sets all stored fillfactor values for a table to 0.

fillfactor values stored for nonclustered indexes

Each nonclustered index is represented by a separate sysindexes row. These
commands store different values for two nonclustered indexes:

sp_chgattribute "titles.ncl_ix", "fillfactor", 90
sp_chgattribute "titles.pubid_ix", "fillfactor", 75

Table 3-5 shows the effects of a reorg rebuild command on a data-only-locked
table when the sp_chgattribute commands above are used to store fillfactor
values.

Table 3-5: Effect of stored fillfactor values during reorg rebuild

Using the sorted_data and fillfactor options
Use the sorted_data option for create index when the data to be sorted is already
in an order specified by the index key. This allows create clustered index to skip
data sorting, reallocating, and rebuilding the table's data pages..

For example, if data that is bulk copied into a table is already in order by the
clustered index key, creating an index with the sorted_data option creates the
index without performing a sort. If the data does not need to be copied to new
pages, the fillfactor is not applied. However, the use of other create index options
might still require copying.

See “Creating an index on sorted data” on page 107.

alter table...lock No clustered index Clustered index

From allpages locking to
data-only locking

Data pages: 80 Data pages: 80
Leaf pages: 80

From data-only locking to
allpages locking

Data pages: 80 Data pages: 80

reorg rebuild No clustered index Clustered index Nonclustered indexes

Data-only-locked table Data pages: 80 Data pages: 50
Leaf pages: 80

ncl_ix leaf pages: 90
pubid_ix leaf pages: 75

Reducing row forwarding

62 Adaptive Server Enterprise

Reducing row forwarding
You may want to specify an expected row size for a data-only-locked table
when an application allows rows with null values or short variable-length
character fields to be inserted, and these rows grow in length with subsequent
updates. Set an expected row size to reduce row forwarding.

For example, the titles table in the pubs2 database has many varchar columns
and columns that allow null values. The maximum row size for this table is 331
bytes, and the average row size (as reported by optdiag) is 184 bytes, but you
can insert a row with less than 40 bytes, since many columns allow null values.
In a data-only-locked table, inserting short rows and then updating them may
result in row forwarding.

See “Data-only-locked heap tables” on page 44.

Set the expected row size for tables with variable-length columns, using:

• exp_row_size parameter, in a create table statement.

• sp_chgattribute, for an existing table.

• A server-wide default value, using the configuration parameter default
exp_row_size percent. This value is applied to all tables with variable-
length columns, unless create table or sp_chgattribute is used to set a row
size explicitly or to indicate that rows should be fully packed on data
pages.

If you specify an expected row size value for an allpages-locked table, the
value is stored in sysindexes, but the value is not applied during inserts and
updates. If you later convert the table to data-only locking, Adaptive Server
applies the exp_row_size during the conversion process and to all subsequent
inserts and updates. The value for exp_row_size applies to the entire table.

Default, minimum, and maximum values for exp_row_size
Table 3-6 shows the minimum and maximum values for expected row size and
the meaning of the special values 0 and 1.

Table 3-6: Valid values for expected row size

exp_row_size values Minimum, maximum, and special values

Minimum The greater of:

• 2 bytes

• The sum of all fixed-length columns

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 63

You cannot specify an expected row size for tables that have fixed-length
columns only. Columns that accept null values are, by definition, variable-
length, since they are zero-length when null.

Default value

If you do not specify an expected row size or a value of 0 when you create a
data-only-locked table with variable-length columns, Adaptive Server uses the
amount of space specified by the configuration parameter default exp_row_size
percent for any table that has variable-length columns.

See “Setting a default expected row size server-wide” on page 64 for
information on how default exp_row_size affects space on data pages. Use
sp_help to see the defined length of the columns in the table.

Specifying an expected row size with create table
This create table statement specifies an expected row size of 200 bytes:

create table new_titles (
 title_id tid,
 title varchar(80) not null,
 type char(12),
 pub_id char(4) null,
 price money null,
 advance money null,
 total_sales int null,
 notes varchar(200) null,
 pubdate datetime,
 contract bit)
lock datapages
with exp_row_size = 200

Maximum Maximum data row length

0 Use server-wide default value

1 Fully pack all pages; do not reserve room for expanding rows

exp_row_size values Minimum, maximum, and special values

Reducing row forwarding

64 Adaptive Server Enterprise

Adding or changing an expected row size
Use sp_chgattribute to add or change the expected row size for a table. For
example, to set the expected row size to 190 for the new_titles table, enter:

sp_chgattribute new_titles, "exp_row_size", 190

To switch the row size for a table from a current, explicit valut to the default
exp_row_size percent, enter:

sp_chgattribute new_titles, "exp_row_size", 0

To fully pack the pages, rather than saving space for expanding rows, set the
value to 1.

Changing the expected row size with sp_chgattribute does not immediately
affect the storage of existing data. The new value is applied:

• When you create a clustered index on the table or run reorg rebuild. The
expected row size is applied as rows are copied to new data pages.

If you increase exp_row_size, and recreate the clustered index or run reorg
rebuild, the new copy of the table may require more storage space.

• The next time a page is affected by data modifications.

Setting a default expected row size server-wide
default exp_row_size percent reserves a percentage of the page size to set aside
for expanding updates. The default value, 5, sets aside 5% of the space
available per data page for all data-only-locked tables that include variable-
length columns. Since there are 2002 bytes available on data pages in data-
only-locked tables, the default value sets aside 100 bytes for row expansion.
This command sets the default value to 10%:

sp_configure "default exp_row_size percent", 10

Setting default exp_row_size percent to 0 means that no space is reserved for
expanding updates for any tables where the expected row size is not explicitly
set with create table or sp_chgattribute.

If an expected row size for a table is specified with create table or
sp_chgattribute, that value takes precedence over the server-wide setting.

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 65

Displaying the expected row size for a table
Use sp_help to display the expected row size for a table:

sp_help titles

If the value is 0, and the table has nullable or variable-length columns, use
sp_configure to display the server-wide default value:

sp_configure "default exp_row_size percent"

This query displays the value of the exp_rowsize column for all user tables in a
database:

select object_name(id), exp_rowsize
from sysindexes
where id > 100 and (indid = 0 or indid = 1)

Choosing an expected row size for a table
Setting an expected row size helps reduce the number of forwarded rows only
if the rows expand after they are inserted into the table. Setting the expected
row size correctly means that:

• Your application results in a small percentage of forwarded rows.

• You do not waste space on data pages due to over-allocating space towards
the expected row size value.

Using optdiag to check for forwarded rows

For tables that already contain data, use optdiag to display statistics for the
table. The “Data row size” shows the average data row length, including the
row overhead. This sample optdiag output for the titles table shows 12
forwarded rows and an average data row size of 184 bytes:

Statistics for table: "titles"

 Data page count: 655
 Empty data page count: 5
 Data row count: 4959.000000000
 Forwarded row count: 12.000000000
 Deleted row count: 84.000000000
 Data page CR count: 0.000000000
 OAM + allocation page count: 6
 Pages in allocation extent: 1
 Data row size: 184.000000000

Reducing row forwarding

66 Adaptive Server Enterprise

Use optdiag to check the number of forwarded rows for a table to determine
whether your setting for exp_row_size is reducing the number of forwarded
rows generated by your applications.

See Chapter 2, “Statistics Tables and Displaying Statistics with optdiag,” in the
Performance and Tuning Series: Improving Performance with Statistical
Analysis.

Querying systabstats for forwarded rows

The forwrowcnt column in the systabstats table stores the number of forwarded
rows for a table. To display the number of forwarded rows and average row size
for all user tables with object IDs greater than 100, use this query:

select objectname = object_name(id),
 partitionname = (select name from syspartitions p

where p.id = t.id and p.indid = t.indid)
, forwrowcnt, datarowsize
, exprowsize = (select i.exp_rowsize from sysindexes i

where i.id = t.id and i.indid = t.indid)
into #temptable
from systabstats t
where id > 100 and indid IN (0,1)

exec sp_autoformat #temptable

Note Forwarded row counts are updated in memory, and the housekeeper tasks
periodically flushes them to disk.

Query the systabstats table using SQL, use sp_flushstats first to ensure that the
most recent statistics are available. optdiag flushes statistics to disk before
displaying values.

Conversion of max_rows_per_page to exp_row_size
If a max_rows_per_page value is set for an allpages-locked table, the value is
used to compute an expected row size during the alter table...lock command.
The formula is shown in Table 3-7.

Table 3-7: Conversion of max_rows_per_page to exp_row_size

Value of max_rows_per_page Value of exp_row_size

0 Percentage value set by default exp_row_size percent

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 67

For example, if max_rows_per_page is set to 10 for an allpages-locked table on
a server configured for 2K pages with a maximum defined row size of 300
bytes, the exp_row_size value is 200 (2002/10) after the table is altered to use
data-only locking.

If max_rows_per_page is set to 10, but the maximum defined row size is only
150, the expected row size value is set to 150.

Monitoring and managing tables that use expected row size
After setting an expected row size for a table, use optdiag or queries on
systabstats to determine the number of forwarded rows being generated by
your applications. Run reorg forwarded_rows the number of forwarded rows is
high enough to affect application performance. reorg forwarded_rows uses short
transactions and is nonintrusive, so you can run it while applications are active.

See Chapter 9 “Using the reorg Command,” in the System Administration
Guide: Volume 2.

You can monitor forwarded rows on a per-partition basis, and run reorg
forwarded rows on those partitions that have a large number of forwarded rows.
See the Reference Manual: Commands.

If the application continues to generate a large number of forwarded rows,
consider using sp_chgattribute to increase the expected row size for the table.

You may want to allow a certain percentage of forwarded rows. If running reorg
to clear forwarded rows does not cause concurrency problems for your
applications, or if you can run reorg at nonpeak times, allowing a small
percentage of forwarded rows does not cause a serious performance problem.

Setting the expected row size for a table increases the amount of storage space
and the number of I/Os required to read a set of rows. If the increase in the
number of I/Os due to increased storage space is high, allowing rows to be
forwarded and occasionally running reorg may have less overall performance
impact.

1 – 254 The smaller of:

• Maximum row size

• (logical page size) – (page header overheads) /
max_rows_per_page

Value of max_rows_per_page Value of exp_row_size

Leaving space for forwarded rows and inserts

68 Adaptive Server Enterprise

Leaving space for forwarded rows and inserts
Set a reservepagegap value to reduce storage fragmentation, thus also reducing
the frequency of maintenance activities such as running reorg rebuild and
recreating indexes for some tables. Good performance on data-only-locked
tables requires good data clustering on the pages, extents, and allocation units
used by the table.

The clustering of data and index pages in physical storage stays high as long as
there is space nearby for storing forwarded rows and rows that are inserted in
index key order. Use the reservepagegap space management property to
reserve empty pages for expansion when additional pages need to be allocated.

Row and page cluster ratios are usually 1.0, or very close to 1.0, immediately
after you create a clustered index on a table or immediately after you run reorg
rebuild. However, future data modifications may cause row forwarding and
require allocation of additional data and index pages to store inserted rows.

You can set the reserve page gap on the data and index layer pages for allpages
and data-only-locked tables.

Extent allocation commands and reservepagegap
Extent allocation means that pages are allocated in multiples of eight, rather
than one page at a time. This reduces logging activity by writing only one log
record instead of eight.

Commands that perform extent allocation are: select into, create index, reorg
rebuild, bcp, alter table...lock, and the alter table...unique and primary key
constraint options, since these constraints create indexes. alter table commands
that add, drop, or modify columns, or change a table’s partitioning scheme
sometimes also require a table-copy operation. By default, all these commands
use extent allocation.

Specify reservepagegap value in pages, indicating a ratio of empty pages to
filled pages. For example, if you specify a reservepagegap value of 8, an
operation that uses extent allocation fills seven pages and leaves the eighth
page empty.

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 69

Extent allocation operations do not use the first page on each allocation unit,
because it stores the allocation page. For example, if you create a clustered
index on a large table and do not specify a reserve page gap, each allocation
unit has seven empty, unallocated pages, 248 used pages, and the allocation
page. Adaptive Server can use the seven empty pages for row forwarding and
inserts to the table, which helps keep forwarded rows and inserts with clustered
indexes on the same allocation unit. Using reservepagegap leaves additional
empty pages on each allocation unit.

See Chapter 12, “Creating Indexes on Tables” in the Transact-SQL Users
Guide for information about when to use reservepagegap.

Figure 3-1 shows how an allocation unit might look after a clustered index is
created with a reservepagegap value of 16 on the table. The pages that share
the first extent with the allocation unit are not used and are not allocated to the
table. Pages 279, 295, and 311 are the unused pages on extents that are
allocated to the table.

Figure 3-1: Reserved pages after creating a clustered index

Specifying a reserve page gap with create table
This create table command specifies a reservepagegap value of 16:

295

283

279

..

274

256 257 258 259 260 261 262 263

264 265 266 267 268 269 270 271

272 273 275 276 277 278

280 281 282 284 285 286 287

.

504 505 506 507 508 509 510

291288 288 290 291 293 294

299296 297 298 300 301 302 303

307304 305 306 308 309 310 311

Pages used by object

Reserved pages

Allocation page

Unallocated pages

511

Leaving space for forwarded rows and inserts

70 Adaptive Server Enterprise

create table more_titles (
 title_id tid,
 title varchar(80) not null,
 type char(12),
 pub_id char(4) null,
 price money null,
 advance money null,
 total_sales int null,
 notes varchar(200) null,
 pubdate datetime,
 contract bit
)
lock datarows
with reservepagegap = 16

Any operation that performs extent allocation on the more_titles table leaves 1
empty page for each 15 filled pages. For partitioned tables, the reservepagegap
value applies to all partitions.

The default value for reservepagegap is 0, meaning that no space is reserved.

Specifying a reserve page gap with create index
This command specifies a reservepagegap of 10 for nonclustered index pages:

create index type_price_ix
on more_titles(type, price)
with reservepagegap = 10

You can specify a reservepagegap value with the alter table...constraint options,
primary key and unique, that create indexes. The value of reservepagegap for
local index on partitioned tables applies to all local index partitions.

This example creates a unique constraint:

alter table more_titles
add constraint uniq_id unique (title_id)
with reservepagegap = 20

Changing reservepagegap
To change the reserve page gap for the titles table to 20, enter:

sp_chgattribute more_titles, "reservepagegap", 20

This command sets the reserve page gap for the index title_ix to 10:

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 71

sp_chgattribute "titles.title_ix",
 "reservepagegap", 10

sp_chgattribute changes only values in system tables; data is not moved on data
pages as a result of running the procedure. Changing reservepagegap for a table
affects future storage as follows:

• When data is bulk-copied into the table, the reserve page gap is applied to
all newly allocated space, but the storage of existing pages is not affected.

• Any command that copies the table’s data to create a new version of the
table applies the reserve page gap during the data copy phase of the
operation. For example, using reorg rebuild or using alter table to change
the locking or partitioning scheme of a table or any change of schema that
requires a data copy both apply to reserver page gap.

• When you create a clustered index, the reserve page gap value stored for
the table is applied to the data pages.

The reserve page gap is applied to index pages during:

• alter table...lock, indexes are rebuilt.

• The index rebuild phase during reorg rebuild when using alter table to
change the locking or partitioning scheme of a table, or when changing
any schema that requires a data copy.

• create clustered index and alter table commands that create a clustered
index, as nonclustered indexes are rebuilt

reservepagegap examples
These examples show how reservepagegap is applied during alter table and
reorg rebuild commands.

reservepagegap specified only for the table

The following commands specify a reservepagegap for the table, but do not
specify a value in the create index commands:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title_ix on titles(title_id)
create index type_price on titles(type, price)

Table 3-8 shows the values applied when running reorg rebuild or dropping and
creating a clustered index.

Leaving space for forwarded rows and inserts

72 Adaptive Server Enterprise

Table 3-8: reservepagegap values applied with table-level saved value

For an allpages-locked table with a clustered index, reservepagegap is applied
to both the data and index pages. For a data-only-locked table, reservepagegap
is applied to the data pages, but not to the clustered index pages.

reservepagegap specified for a clustered index

These commands specify different reservepagegap values for the table and the
clustered index, and a value for the nonclustered type_price index:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title_ix on titles(title)
 with reservepagegap = 20
create index type_price on titles(type, price)
 with reservepagegap = 24

Table 3-9 shows the effects of this sequence of commands.

Table 3-9: reservepagegap values applied with for index pages

For allpages-locked tables, the reservepagegap specified with create clustered
index applies to both data and index pages. For data-only-locked tables, the
reservepagegap specified with create clustered index applies only to the index
pages. If there is a stored reservepagegap value for the table, that value is
applied to the data pages.

Choosing a value for reservepagegap
Choosing a value for reservepagegap depends on:

• Whether the table has a clustered index,

• The rate of inserts to the table,

Command Allpages-locked table Data-only-locked table

create clustered
index or clustered index rebuild
due to reorg rebuild

Data and index pages: 16 Data pages: 16
Index pages: 0 (filled extents)

Nonclustered index rebuild Index pages: 0 (filled extents) Index pages: 0 (filled extents)

Command Allpages-locked table Data-only-locked table

create clustered
index or clustered index rebuild due to
reorg rebuild

Data and index pages: 20 Data pages: 16
Index pages: 20

Nonclustered index rebuilds Index pages: 24 Index pages: 24

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 73

• The number of forwarded rows that occur in the table, and

• The frequency with which you recreate the clustered index or run the reorg
rebuild command.

When reservepagegap is configured correctly, enough pages are left for
allocation of new pages to tables and indexes so that the cluster ratios for the
table, clustered index, and nonclustered leaf-level pages remain high during the
intervals between regular index maintenance tasks.

Monitoring reservepagegap settings
Use optdiag to check the cluster ratio and the number of forwarded rows in
tables. Declines in cluster ratios may also indicate that you can improve
performance by running reorg commands:

• If the data page cluster ratio for a clustered index is low, run reorg rebuild
or drop and recreate the clustered index.

• If the index page cluster ratio is low, drop and recreate the nonclustered
index.

To reduce the frequency with which you run reorg commands to maintain
cluster ratios, increase the reservepagegap slightly before running reorg rebuild.

See Chapter 2, “Statistics Tables and Displaying Statistics with optdiag,” in
Performance and Tuning Series: Improving Performance with Statistical
Analysis.

reservepagegap and sorted_data options
When you create a clustered index on a table that is already stored on the data
pages in index key order, the sorted_data option suppresses the step of copying
the data pages in key order for unpartitioned tables. The reservepagegap option
can be specified in create clustered index commands, to leave empty pages on
the extents used by the table, leaving room for later expansion. There are rules
that determine which option takes effect. You cannot use sp_chgattribute to
change the reservepagegap value and get the benefits of both of these options.

If you specify both with create clustered index:

Leaving space for forwarded rows and inserts

74 Adaptive Server Enterprise

• On unpartitioned, allpages-locked tables, if the reservepagegap value
specified with create clustered index matches the values already stored in
sysindexes, the sorted_data option takes precedence. Data pages are not
copied, so the reservepagegap is not applied. If the reservepagegap value
specified in the create clustered index command is different from the
values stored in sysindexes, the data pages are copied, and the
reservepagegap value specified in the command is applied to the copied
pages.

• On data-only-locked tables, the reservepagegap value specified with
create clustered index applies only to the index pages. Data pages are not
copied.

Besides reservepagegap, other options to create clustered index may require a
sort, which causes the sorted_data option to be ignored. For more information,
see “Creating an index on sorted data” on page 107.

In particular, the following comments relate to the use of reservepagegap:

• On partitioned tables, any create clustered index command that requires
copying data pages performs a parallel sort and then copies the data pages
in sorted order, applying the reservepagegap values as the pages are copied
to new extents.

• Whenever the sorted_data option is not superseded by other create
clustered index options, the table is scanned to determine whether the data
is stored in key order. The index is built during the scan, without a sort
being performed.

Table 3-10 shows how these rules apply.

Table 3-10: reservepagegap and sorted_data options

Partitioned table Unpartitioned table

Allpages-locked table

create index with sorted_data
and matching reservepagegap
value

Does not copy data pages; builds the
index as pages are scanned.

Does not copy data pages; builds the
index as pages are scanned.

create index with sorted_data
and different reservepagegap
value

Performs parallel sort, applying
reservepagegap as pages are stored
in new locations in sorted order.

Copies data pages, applying
reservepagegap and building the
index as pages are copied; no sort is
performed.

Data-only-locked table

create index with sorted_data
and any reservepagegap value

reservepagegap applies to index
pages only; does not copy data
pages.

reservepagegap applies to index
pages only; does not copy data
pages.

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 75

Matching options and goals

To redistribute the data pages of a table, leaving room for later expansion:

• For allpages-locked tables, drop and recreate the clustered index without
using the sorted_data option. If the value stored in sysindexes is not the
value you want, use create clustered index to specify the desired
reservepagegap.

• For data-only-locked tables, use sp_chgattribute to set the reservepagegap
for the table to the desired value, then drop and recreate the clustered
index, without using the sorted_data option. The reservepagegap stored
for the table applies to the data pages. If reservepagegap is specified in the
create clustered index command, it applies only to the index pages.

To create a clustered index without copying data pages:

• For allpages-locked tables, use the sorted_data option, but do not use
create clustered index to specify a reservepagegap. Alternatively, specify a
value that matches the value stored in sysindexes.

• For data-only-locked tables, use the sorted_data option. If a
reservepagegap value is specified in the create clustered index command,
it applies only to the index pages and does not cause data page copying.

To use the sorted_data option following a bulk-copy operation, a select into
command, or another command that uses extent allocation, set the
reservepagegap value that you want for the data pages before copying the data,
or specify it in the select into command. Once the data pages have been
allocated and filled, the following command applies reservepagegap to the
index pages only, since the data pages do not need to be copied:

create clustered index title_ix
on titles(title_id)
with sorted_data, reservepagegap = 32

Using max_rows_per_page on allpages-locked tables
Setting a maximum number of rows per pages can reduce contention for
allpages-locked tables and indexes. In most cases, it is preferable to convert the
tables to use a data-only-locking scheme. If there is some reason that you
cannot change the locking scheme, and contention is a problem on an allpages-
locked table or index, setting a max_rows_per_page value may help
performance.

Using max_rows_per_page on allpages-locked tables

76 Adaptive Server Enterprise

When there are fewer rows on the index and data pages, the chances of lock
contention are reduced. As the keys are spread out over more pages, it becomes
more likely that the page you want is not the page someone else needs. To
change the number of rows per page, adjust the fillfactor or max_rows_per_page
values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how full
Adaptive Server makes each data page when it creates a new index on existing
data. Since fillfactor helps reduce page splits, exclusive locks are also
minimized on the index, improving performance. However, the fillfactor value
is not maintained by subsequent changes to the data. max_rows_per_page
(defined by sp_chgattribute, create index, create table, or alter table) is similar
to fillfactor, except that Adaptive Server maintains the max_rows_per_page
value as the data changes.

The costs associated with decreasing the number of rows per page using
fillfactor or max_rows_per_page include more I/O to read the same number of
data pages, more memory for the same performance from the data cache, and
more locks. In addition, a low value for max_rows_per_page for a table may
increase page splits when data is inserted into the table.

Reducing lock contention
The max_rows_per_page value specified in a create table, create index, or alter
table command restricts the number of rows allowed on a data page, a clustered
index leaf page, or a nonclustered index leaf page. This reduces lock contention
and improves concurrency for frequently accessed tables.

max_rows_per_page applies to the data pages of a heap table, or the leaf pages
of an index. Unlike fillfactor, which is not maintained after creating a table or
index, Adaptive Server retains the max_rows_per_page value when adding or
deleting rows.

The following command creates the sales table and limits the maximum rows
per page to four:

create table sales
 (stor_id char(4) not null,
 ord_num varchar(20) not null,
 date datetime not null)
 with max_rows_per_page = 4

CHAPTER 3 Setting Space Management Properties

Performance and Tuning Series: Physical Database Tuning 77

If you create a table with a max_rows_per_page value, and then create a
clustered index on the table without specifying max_rows_per_page, the
clustered index inherits the max_rows_per_page value from the create table
statement. Creating a clustered index with max_rows_per_page changes the
value for the table’s data pages.

Indexes and max_rows_per_page
The default value for max_rows_per_page is 0, which creates clustered indexes
with full data pages, creates nonclustered indexes with full leaf pages, and
leaves a comfortable amount of space within the index B-tree in both the
clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page is 0 –
256.

For nonclustered indexes, the maximum value for max_rows_per_page is the
number of index rows that fit on the leaf page, without exceeding 256. To
determine the maximum value, subtract 32 (the size of the page header) from
the page size and divide the difference by the index key size. The following
statement calculates the maximum value of max_rows_per_page for a
nonclustered index:

select (@@pagesize - 32)/minlen
 from sysindexes
 where name = "indexname"

select into and max_rows_per_page
By default, select into does not carry over a base table’s max_rows_per_page
value, but creates the new table with a max_rows_per_page value of 0.
However, you can add the with max_rows_per_page option to select into to
specify a value other than 0.

Applying max_rows_per_page to existing data
There are several ways to apply a max_rows_per_page value to existing data:

• If the table has a clustered index, drop and recreate the index using a
different max_rows_per_page value.

Using max_rows_per_page on allpages-locked tables

78 Adaptive Server Enterprise

• Use sp_chgattribute to change the value of max_rows_per_page, then
rebuild the entire table and its indexes with reorg rebuild. For example, to
change the max_rows_per_page value of the authors table to 1, enter:

sp_chgattribute authors, "max_rows_per_page", 1
go
reorg rebuild authors
go

• Use bcp to repopulate the table, and:

a Copy out the table data.

b Truncate the table.

c Use sp_chgattribute to set the max_rows_per_page value.

d Copy the data back in.

Performance and Tuning Series: Physical Database Tuning 79

C H A P T E R 4 Table and Index Size

This chapter explains how to determine the current sizes of tables and
indexes and how to estimate table size for space planning.

Knowing the sizes of your tables and indexes is important to
understanding query and system behavior. At several stages of tuning
work, you need size data to:

• Understand statistics io reports for a specific query plan. Chapter 1,
“Using the set statistics Commands,” in Performance and Tuning
Series: Improving Performance with Statistical Analysis describes
how to use statistics io to examine the I/O performed.

• Understand the optimizer’s choice of query plan. The Adaptive
Server cost-based optimizer estimates the physical and logical I/O
required for each possible access method and chooses the cheapest
method. If you think a particular query plan is unusual, use dbcc
traceon(302) to determine why the optimizer made the decision. This
output includes page number estimates.

• Determine object placement, based on the sizes of database objects
and the expected I/O patterns on the objects. Iimprove performance
by distributing database objects across physical devices so that reads
and writes to disk are evenly distributed. Object placement is
described in Chapter 1, “Controlling Physical Data Placement.”

Topic Page

Determining the sizes of tables and indexes 80

Effects of data modifications on object sizes 81

Using optdiag to display object sizes 81

Using sp_spaceused to display object size 82

Using sp_estspace to estimate object size 84

Using formulas to estimate object size 86

Determining the sizes of tables and indexes

80 Adaptive Server Enterprise

• Understand changes in performance. If objects grow, their performance
characteristics can change. One example is a table that is heavily used and
is usually 100% cached. If that table grows too large for its cache, queries
that access the table can suddenly suffer poor performance. This is
particularly true for joins requiring multiple scans.

• Perform capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you must know your space
requirements to plan for physical disks and memory needs.

• Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical I/O.

Determining the sizes of tables and indexes
Adaptive Server includes several tools that provide information about the
current sizes of tables or indexes, or that can predict future sizes:

• optdiag displays the sizes and many other statistics for tables and indexes.
See Chapter 2, “Statistics Tables and Displaying Statistics with optdiag,”
in Performance and Tuning Series: Improving Performance with
Statistical Analysis

• sp_spaceused reports on the current size of existing tables and indexes.

• sp_estspace can predict the size of a table and its indexes, given a number
of rows as a parameter.

You can also compute table and index size using formulas provided in this
chapter. sp_spaceused and optdiag report actual space usage. The other
methods presented in this chapter provide size estimates.

For partitioned tables, sp_helpartition reports on the number of pages stored on
each partition of the table. See Chapter 10, “Partitioning Tables and Indexes”
in the Transact-SQL Users Guide.

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 81

Effects of data modifications on object sizes
Over time, the effects of randomly distributed data modifications on a set of
tables tend to produce data pages and index pages that average approximately
75% full. The major factors are:

• When you insert a row to be placed on a page of an allpages-locked table
with a clustered index, and there is no room on the page for that row, the
page is split, leaving two pages that are about 50 percent full.

• When you delete rows from heaps or from tables with clustered indexes,
the space used on the page decreases. You can have pages that contain very
few rows or even a single row.

• After some deletes or page splits have occurred, inserting rows into tables
with clustered indexes tends to fill up pages that have been split, or pages
where rows have been deleted.

Page splits also take place when rows need to be inserted into full index pages,
so index pages also tend to average approximately 75% full, unless you drop
and recreate them periodically.

Using optdiag to display object sizes
The optdiag command displays statistics for tables, indexes, and columns,
including the size of tables and indexes. If you are performing query tuning,
optdiag provides the best tool for viewing all the statistics you need. Here is a
sample report for the titles table in the pubtune database:

Table owner: "dbo"
Statistics for table: "titles"
 Data page count: 662
 Empty data page count: 10
 Data row count: 4986.0000000000000000
 Forwarded row count: 18.0000000000000000
 Deleted row count: 87.0000000000000000
 Data page CR count: 86.0000000000000000
 OAM + allocation page count: 5
 First extent data pages: 3
Data row size: 238.8634175691937287

See Chapter 2, “Statistics Tables and Displaying Statistics with optdiag,” in
Performance and Tuning Series: Improving Performance with Statistical
Analysis.

Using sp_spaceused to display object size

82 Adaptive Server Enterprise

Advantages of optdiag
The advantages of optdiag are that:

• It can display statistics for all tables in a database, or for a single table.

• optdiag output contains addition information useful for understanding
query costs, such as index height and the average row length.

• It is frequently used for other tuning tasks, so you may have these reports
readily available.

Disadvantages of optdiag
The principle disadvantage of optdiag is that it produces a lot of output. If you
need only a single piece of information, such as the number of pages in a table,
other methods are faster and incur lower system overhead.

Using sp_spaceused to display object size
The system procedure sp_spaceused reads values stored on an object’s OAM
page to provide a quick report on the space used by the object.

sp_spaceused titles
name rowtotal reserved data index_size unused
------------ -------- ---------- --------- ----------- --------
titles 5000 1756 KB 1242 KB 440 KB 74 KB

The rowtotal value may be inaccurate at times; not all Adaptive Server
processes update this value on the OAM page. The commands update statistics,
dbcc checktable, and dbcc checkdb correct the rowtotal value on the OAM page.
Table 4-1 explains the headings in sp_spaceused output.

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 83

Table 4-1: sp_spaceused output

To report index sizes separately, use:

sp_spaceused titles, 1
 index_name size reserved unused
 -------------------- ---------- ---------- ----------
 title_id_cix 14 KB 1294 KB 38 KB
 title_ix 256 KB 272 KB 16 KB
 type_price_ix 170 KB 190 KB 20 KB

name rowtotal reserved data index_size unused
------------ -------- ---------- --------- ----------- --------
titles 5000 1756 KB 1242 KB 440 KB 74 KB

For clustered indexes on allpages-locked tables, the size value represents the
space used for the root and intermediate index pages. The reserved value
includes the index size and the reserved and used data pages.

The “1” in the sp_spaceused syntax indicates that detailed index information
should be printed. It has no relation to index IDs or other information.

Advantages of sp_spaceused
The advantages of sp_spaceused are that:

• It provides quick reports without excessive I/O and locking, since it uses
only values in the table and index OAM pages to return results.

Column Meaning

rowtotal Reports an estimate of the number of rows. The value is
read from the OAM page. Though not always exact, this
estimate is much quicker and leads to less contention than
select count(*).

reserved Reports pages reserved for use by the table and its indexes.
It includes both the used and unused pages in extents
allocated to the objects. It is the sum of data, index_size,
and unused.

data Reports the kilobytes on pages used by the table.

index_size Reports the total kilobytes on pages used by the indexes.

unused Reports the kilobytes of unused pages in extents allocated
to the object, including the unused pages for the object’s
indexes.

Using sp_estspace to estimate object size

84 Adaptive Server Enterprise

• It shows the amount of space that is reserved for expansion of the object,
but not currently used to store data.

• It provides detailed reports on the size of indexes and of text and image,
and Java off-row column storage.

Note Use sp_helpartition to report the number of pages in each partition.
sp_helpartition does not report the same level of detail as sp_spaceused, but
does give a general idea of the amount of space a partition uses. In Adaptive
Server version 15.0.2 and later, sp_spaceusage provides detailed information
about a variety of subjects, including the space used by tables at the index and
partition level, and fragmentation.

See the Adaptive Server Reference Manual: Procedures for more information
about all these system procedures.

Disadvantages of sp_spaceused
The disadvantages of sp_spaceused are:

• It may report inaccurate counts for row total and space usage.

• Output is only in kilobytes, while most query-tuning activities use pages
as a unit of measure. However, you can use sp_spaceusage to report
information in any unit you specify.

Using sp_estspace to estimate object size
sp_spaceused and optdiag report on actual space usage. sp_estspace can help
you plan for future growth of your tables and indexes. This procedure uses
information in the system tables (sysobjects, syscolumns, and sysindexes) to
determine the length of data and index rows. You provide a table name, and the
number of rows you expect to have in the table, and sp_estspace estimates the
size for the table and for any indexes that exist. It does not look at the actual
size of the data in the tables.

 To use sp_estspace:

• Create the table, if it does not already exist.

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 85

• Create any indexes on the table.

• Execute the procedure, estimating the number of rows that the table will
hold.

The output reports the number of pages and bytes for the table and for each
level of the index.

The following example estimates the size of the titles table with 500,000 rows,
a clustered index, and two nonclustered indexes:

sp_estspace titles, 500000
name type idx_level Pages Kbytes
--------------------- ------------ --------- -------- --------
titles data 0 50002 100004
title_id_cix clustered 0 302 604
title_id_cix clustered 1 3 6
title_id_cix clustered 2 1 2
title_ix nonclustered 0 13890 27780
title_ix nonclustered 1 410 819
title_ix nonclustered 2 13 26
title_ix nonclustered 3 1 2
type_price_ix nonclustered 0 6099 12197
type_price_ix nonclustered 1 88 176
type_price_ix nonclustered 2 2 5
type_price_ix nonclustered 3 1 2

Total_Mbytes

 138.30

name type total_pages time_mins
--------------------- ------------ ------------ ------------
title_id_cix clustered 50308 250
title_ix nonclustered 14314 91
type_price_ix nonclustered 6190 55

sp_estspace also allows you to specify a fillfactor, the average size of variable-
length fields and text fields, and the I/O speed. For more information, see
Reference Manual: Procedures.

Note The index creation times printed by sp_estspace do not factor in the
effects of parallel sorting.

Using formulas to estimate object size

86 Adaptive Server Enterprise

Advantages of sp_estspace
The advantages of sp_estspace are that it:

• Provides an efficient way to perform initial capacity planning and to plan
for table and index growth.

• Helps you estimate the number of index levels.

• Helps you estimate future disk space, cache space, and memory
requirements.

Disadvantages of sp_estspace
The disadvantages of sp_estspace are that:

• Returned sizes are only estimates and may differ from actual sizes, due to
fillfactors, page splitting, actual size of variable-length fields, and other
factors.

• Index creation times can vary widely, depending on disk speed, the use of
extent I/O buffers, and system load.

Using formulas to estimate object size
The formulas discussed here can help you estimate the future sizes of the tables
and indexes in your database. The amount of overhead in each row for tables
and indexes that contain variable-length fields is greater than the overhead for
tables that contain only fixed-length fields, so two sets of formulas are
required.

The process involves calculating the number of bytes of data and overhead for
each row, and dividing that number into the number of bytes available on a data
page. Each page requires some overhead, which limits the number of bytes
available for data:

• For allpages-locked tables, page overhead is 32 bytes, leaving 2016 bytes
available for data on a 2K page.

• For data-only-locked tables, page overhead is 46 bytes, leaving 2002 bytes
available for data.

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 87

For the most accurate estimate, round down divisions that calculate the number
of rows per page (rows are never split across pages), and round up divisions
that calculate the number of pages.

Factors that can affect storage size
Using space management properties can increase the space needed for a table
or an index. See “Effects of space management properties” on page 101, and
“max_rows_per_page” on page 102.

If your table includes text or image datatypes or Java off-row columns, use 16
(the size of the text pointer that is stored in the row) in your calculations. Then
see “LOB pages” on page 103 to see how to calculate the storage space
required for the actual text or image data.

Indexes on data-only-locked tables may be smaller than the formulas predict
due to two factors:

• Duplicate keys are stored only once, followed by a list of row IDs for the
key.

• Compression of keys on nonleaf levels; only enough of the key to
differentiate from the neighboring keys is stored. This is especially
effective in reducing the size when long character keys are used.

If the configuration parameter page utilization percent is set to less than 100,
Adaptive Server may allocate new extents before filling all pages on the
allocated extents. This does not change the number of pages used by an object,
but leaves empty pages in the extents allocated to the object.

Storage sizes for datatypes
The storage sizes for datatypes are shown in Table 4-2:

Using formulas to estimate object size

88 Adaptive Server Enterprise

Table 4-2: Storage sizes for Adaptive Server datatypes

The storage size for a numeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytes for a 1- or 2-digit column. Storage size
increases by 1 byte for each additional 2 digits of precision, up to a maximum
of 17 bytes.

Any columns defined as NULL are considered variable-length columns, since
they involve the overhead associated with variable-length columns.

All calculations in the examples that follow are based on the maximum size for
varchar, univarchar, nvarchar, and varbinary data—the defined size of the
columns. They also assume that the columns were defined as NOT NULL.

Datatype Size

char Defined size

nchar Defined size * @@ncharsize

unichar n*@@unicharsize (@@unicharsize equals 2)

univarchar the actual number of characters*@@unicharsize

varchar Actual number of characters

nvarchar Actual number of characters * @@ncharsize

binary Defined size

varbinary Data size

int 4

smallint 2

tinyint 1

float 4 or 8, depending on precision

double precision 8

real 4

numeric 2–17, depending on precision and scale

decimal 2–17, depending on precision and scale

money 8

smallmoney 4

datetime 8

smalldatetime 4

bit 1

text 16 bytes + 2K * number of pages used

image 16 bytes + 2K * number of pages used

timestamp 8

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 89

Tables and indexes used in the formulas
The example illustrates the computations on a table that contains 9,000,000
rows:

• The sum of fixed-length column sizes is 100 bytes.

• The sum of variable-length column sizes is 50 bytes; there are 2 variable-
length columns.

The table has two indexes:

• A clustered index, on a fixed-length column, of 4 bytes

• A composite nonclustered index with these columns:

• A fixed length column, of 4 bytes

• A variable length column, of 20 bytes

Different formulas are needed for allpages-locked and data-only-locked tables,
since they have different amounts of overhead on the page and per row:

• See “Calculating table and clustered index sizes for allpages-locked
tables” on page 89 for tables that use allpages-locking.

• See “Calculating the sizes of data-only-locked tables” on page 96 for the
formulas to use if tables that use data-only locking.

Calculating table and clustered index sizes for allpages-locked
tables

The formulas and examples for allpages-locked tables are listed below as a
series of steps. Steps 1–6 outline the calculations for an allpages-locked table
with a clustered index, giving the table size and the size of the index tree. Steps
7–12 outline the calculations for computing the space required by nonclustered
indexes. All of the formulas use the maximum size of the variable-length
fields. The steps are:

1 “Calculate the data row size” on page 90

2 “Compute the number of data pages” on page 91

3 “Compute the size of clustered index rows” on page 91

4 “Compute the number of clustered index pages” on page 92

5 “Compute the total number of index pages” on page 92

Using formulas to estimate object size

90 Adaptive Server Enterprise

6 “Calculate allocation overhead and total pages” on page 93

7 “Calculate the size of the leaf index row” on page 94

8 “Calculate the number of leaf pages in the index” on page 94

9 “Calculate the size of the nonleaf rows” on page 95

10 “Calculate the number of non-leaf pages” on page 95

11 “Calculate the total number of non-leaf index pages” on page 95

12 “Calculate allocation overhead and total pages” on page 96

These formulas show how to calculate the sizes of tables and clustered indexes.
If your table does not have clustered indexes, skip steps 3, 4, and 5. When you
have computed the number of data pages in step 2, go to step 6 to add the
number of OAM pages.

optdiag output includes the average length of data rows and index rows. You
can use these values for the data and index row lengths, if you want to use
average lengths instead.

Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only

If the table contains only fixed-length columns, and all are defined as NOT
NULL, use:

Some variable-length columns

If the table contains any variable-length columns or columns that allow NULL
values, use this formula.

The table in the example contains variable-length columns, so the
computations are shown in the right column.

Formula

4 (Overhead)

+ Sum of bytes in all fixed-length columns

= Data row size

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 91

Compute the number of data pages

Compute the size of clustered index rows

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values. Use the first formula if all the
keys are fixed length. Use the second formula if the keys include variable-
length columns or allow NULL values.

Fixed-length columns only

The clustered index in the example has only fixed-length keys.

Formula Example

4 (Overhead) 4

+ Sum of bytes in all fixed-length columns + 100

+ Sum of bytes in all variable-length columns + 50

= Subtotal 154

+ (Subtotal / 256) + 1 (Overhead) 1

+ Number of variable-length columns + 1 3

+ 2 (Overhead) 2

= Data row size 160

Formula

2016 / Data row size = Number of data rows per page

Number of rows / Rows per page = Number of data pages required

Example

2016 / 160 = 12 data rows per page

9,000,000 / 12 = 750,000 data pages

Formula Example

5 (Overhead) 5

+ Sum of bytes in the fixed-length index keys + 4

= Clustered row size 9

Using formulas to estimate object size

92 Adaptive Server Enterprise

Some variable-length columns

The results of the division (Subtotal / 256) are rounded down.

Compute the number of clustered index pages

If the result for the “number of index pages at the next level” is greater than 1,
repeat the following division step, using the quotient as the next dividend, until
the quotient equals 1, which means that you have reached the root level of the
index:

Compute the total number of index pages

Add the number of pages at each level to determine the total number of pages
in the index:

5 (Overhead)

+ Sum of bytes in the fixed-length index keys

+ Sum of bytes in variable-length index keys

= Subtotal

+ (Subtotal / 256) + 1 (Overhead)

+ Number of variable-length columns + 1

+ 2 (Overhead)

= Clustered index row size

Formula Example

(2016 / Clustered row size) - 2 = No. of clustered index
rows per page

(2016 / 9) - 2 = 222

No. of rows / No. of CI rows per page = No. of index pages at next
level

750,000 / 222 = 3379

Formula

No. of index pages
at last level

/ No. of clustered index
rows per page

= No. of index pages at
next level

Example

3379 / 222 = 16 index pages (Level 1)

16 / 222 = 1 index page (Level 2)

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 93

Calculate allocation overhead and total pages

Each table and each index on a table has an object allocation map (OAM). A
single OAM page holds allocation mapping for between 2,000 and 63,750 data
pages or index pages. In most cases, the number of OAM pages required is
close to the minimum value. To calculate the number of OAM pages for the
table, use:

To calculate the number of OAM pages for the index, use:

Total pages needed

Finally, add the number of OAM pages to the earlier totals to determine the
total number of pages required:

Formula Example

Index levels Pages Pages Rows

2 1 16

1 + + 16 3379

0 + + 3379 750000

Total number of index pages 3396

Formula Example

Number of reserved data pages / 63,750 = Minimum OAM pages 750,000 / 63,750 = 12

Number of reserved data pages / 2000 = Maximum OAM pages 750,000 / 2000 = 376

Formula Example

Number of reserved index pages / 63,750 = Minimum OAM pages 3396/ 63,750 = 1

Number of reserved index pages / 2000 = Maximum OAM pages 3396 / 2000 = 2

Formula Example

Minimum Maximum Minimum Maximum

Clustered index pages 3396 3396

OAM pages + + 1 2

Data pages + + 750000 750000

OAM pages + + 12 376

Total 753409 753773

Using formulas to estimate object size

94 Adaptive Server Enterprise

Calculate the size of the leaf index row

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only

If the index contains only fixed-length keys and are defined as NOT NULL,
use:

Some variable-length keys

If the index contains any variable-length keys or columns defined as NULL,
use:

Calculate the number of leaf pages in the index

Formula

7 (Overhead)

+ Sum of fixed-length keys

= Size of leaf index row

Formula Example

9 (Overhead) 9

+ Sum of length of fixed-length keys + 4

+ Sum of length of variable-length keys + 20

+ Number of variable-length keys + 1 + 2

= Subtotal 35

+ (Subtotal / 256) + 1 (overhead) + 1

= Size of leaf index row 36

Formula Example

(2016 / leaf row size) = No. of leaf index rows per
page

2016 / 36 = 56

No. of table rows / No. of leaf rows per page = No. of index pages at next
level

9,000,000 / 56 = 160,715

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 95

Calculate the size of the nonleaf rows

Calculate the number of non-leaf pages

If the number of leaf pages from step 8 is greater than 1, repeat the following
division step, using the quotient as the next dividend, until the quotient equals
1, which means that you have reached the root level of the index:

Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Formula Example

Size of leaf index row 36

+ 4 Overhead + 4

= Size of non-leaf row 40

Formula Example

(2016 / Size of non-leaf row) - 2 = No. of non-leaf index rows per page (2016 / 40) - 2 = 48

Formula

No. of index pages at previous level / No. of non-leaf index rows per page = No. of index pages at next level

Example

160715 / 48 = 3349 Index pages, level 1

3349 / 48 = 70 Index pages, level 2

 70 / 48 = 2 Index pages, level 3

2 / 48 = 1 Index page, level 4 (root level)

Index Levels Pages Pages Rows

4 1 2

3 + + 2 70

2 + + 70 3348

1 + + 3349 160715

0 + + 160715 9000000

Total number of 2K data pages used 164137

Using formulas to estimate object size

96 Adaptive Server Enterprise

Calculate allocation overhead and total pages

Total Pages Needed Add the number of OAM pages to the total in step 11 to determine the total
number of index pages:

Calculating the sizes of data-only-locked tables
The formulas and examples that follow show how to calculate the sizes of
tables and indexes. This example uses the same column sizes and index as the
previous example. All of the formulas use the maximum size of the variable-
length fields. See “Tables and indexes used in the formulas” on page 89 for the
specifications.

The formulas for data-only-locked tables are divided into two sets of steps:

• Steps 1–3 outline the calculations for a data-only-locked table. The
example that follows step 3 illustrates the computations on a table that has
9,000,000 rows.

• Steps 4–8 outline the calculations for computing the space required by an
index, followed by an example using the 9,000,000-row table.

optdiag output includes the average length of data rows and index rows. You
can use these values for the data and index row lengths, if you want to use
average lengths instead.

The steps are:

1 “Calculate the data row size” on page 97

2 “Compute the number of data pages” on page 98

3 “Calculate allocation overhead and total pages” on page 98

4 “Calculate the size of the index row” on page 98

Formula Example

Number of index pages / 63,750 = Minimum OAM pages 164137 / 63,750 = 3

Number of index pages / 2000 = Maximum OAM pages 164137 / 2000 = 83

Formula Example

Minimum Maximum Minimum Maximum

Nonclustered index pages 164137 164137

OAM pages + + 3 83

Total 164140 164220

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 97

5 “Calculate the number of leaf pages in the index” on page 99

6 “Calculate the number of non-leaf pages in the index” on page 99

7 “Calculate the total number of non-leaf index pages” on page 100

8 “Calculate allocation overhead and total pages” on page 100

Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only

If the table contains only fixed-length columns defined as NOT NULL, use:

Note Data-only-locked tables must allow room for each row to store a 6-byte
forwarded row ID. If a data-only-locked table has rows shorter than 10 bytes,
each row is padded to 10 bytes when it is inserted. This affects only data pages,
and not indexes, and does not affect allpages-locked tables.

Some variable-length columns

If the table contains variable-length columns or columns that allow NULL
values, use:

6 (Overhead)

+ Sum of bytes in all fixed-length columns

Data row size

Formula Example

8 (Overhead) 8

+ Sum of bytes in all fixed-length columns + 100

+ Sum of bytes in all variable-length columns + 50

+ Number of variable-length columns * 2 + 4

 Data row size 162

Using formulas to estimate object size

98 Adaptive Server Enterprise

Compute the number of data pages

In the first part of this step, the number of rows per page is rounded down:

Calculate allocation overhead and total pages

Allocation overhead

Each table and each index on a table has an object allocation map (OAM). The
OAM is stored on pages allocated to the table or index. A single OAM page
holds allocation mapping for between 2,000 and 63,750 data pages or index
pages. In most cases, the number of OAM pages required is close to the
minimum value. To calculate the number of OAM pages for the table, use:

Total pages needed

Add the number of OAM pages to the earlier totals to determine the total
number of pages required:

Calculate the size of the index row

Use these formulas for clustered and nonclustered indexes on data-only-length
tables.

Formula

2002 / Data row size = Number of data rows per page

Number of rows / Rows per page = Number of data pages required

Example

2002 / 162 = 12 data rows per page

9,000,000 / 12 = 750,000 data pages

Formula Example

Number of reserved data pages / 63,750 = Minimum OAM pages 750,000 / 63,750 = 12

Number of reserved data pages / 2000 = Maximum OAM pages 750,000 / 2000 = 375

Formula Example

Minimum Maximum Minimum Maximum

Data pages + + 750000 750000

OAM pages + + 12 375

Total 750012 750375

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 99

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only

If the index contains only fixed-length keys defined as NOT NULL, use:

Some variable-length keys

If the index contains any variable-length keys or columns that allow NULL
values, use:

Calculate the number of leaf pages in the index

Calculate the number of non-leaf pages in the index

9 (Overhead)

+ Sum of fixed-length keys

Size of index row

Formula Example

9 (Overhead) 9

+ Sum of length of fixed-length keys + 4

+ Sum of length of variable-length keys + 20

+ Number of variable-length keys * 2 + 2

 Size of index row 35

Formula

2002 / Size of index row = No. of rows per page

No. of rows in table / No. of rows per page = No. of leaf pages

Example

2002 / 35 = 57 Nonclustered index rows per page

9,000,000 / 57 = 157,895 leaf pages

Formula

No. of leaf pages / No. of index rows per page = No. of pages at next level

Using formulas to estimate object size

100 Adaptive Server Enterprise

If the number of index pages at the next level above is greater than 1, repeat the
following division step, using the quotient as the next dividend, until the
quotient equals 1, which means that you have reached the root level of the
index:

Calculate the total number of non-leaf index pages

Add the number of pages at each level to determine the total number of pages
in the index:

Calculate allocation overhead and total pages

Formula

No. of index pages at previous level / No. of non-leaf index rows per page = No. of index pages at next level

Example

157895/57 = 2771 Index pages, level 1

2770 / 57 = 49 Index pages, level 2

48 / 57 =1 Index pages, level 3

Formula Example

Index levels Pages Pages Rows

3 1 49

2 + 49 2771

1 + 2771 157895

0 + 157895 9000000

Total number of 2K pages used 160716

Formula

Number of index pages / 63,750 = Minimum OAM pages

Number of index pages / 2000 = Maximum OAM pages

Example

160713 / 63,750 = 3 (minimum)

160713 / 2000 = 81 (maximum)

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 101

Total pages needed

Add the number of OAM pages to the total in step 8 to determine the total
number of index pages:

Other factors affecting object size
In addition to the effects of data modifications that occur over time, other
factors can affect object size and size estimates:

• Space management properties

• Whether computations used average row size or maximum row size

• Very small text rows

• Use of text and image data

Effects of space management properties

Values for fillfactor, exp_row_size, reservepagegap and max_rows_per_page
can affect object size.

fillfactor

The fillfactor you specify for create index is applied when the index is created.
The fillfactor is not maintained during inserts to the table. If a fillfactor has been
stored for an index using sp_chgattribute, this value is used when indexes are
re-created with alter table commands and reorg rebuild. The main function of
fillfactor is to allow space on the index pages, to reduce page splits. Very small
fillfactor values can cause the storage space required for a table or an index to
be significantly greater.

See “Reducing index maintenance” on page 55 for details about setting
fillfactor values.

Formula Example

Minimum Maximum Minimum Maximum

Nonclustered index pages 160716 160716

OAM pages + + 3 81

Total 160719 160797

Using formulas to estimate object size

102 Adaptive Server Enterprise

exp_row_size

Setting an expected row size for a table can increase the amount of storage
required. If your tables have many rows that are shorter than the expected row
size, setting this value and running reorg rebuild or changing the locking
scheme increases the storage space required for the table. However, the space
usage for tables that formerly used max_rows_per_page should remain
approximately the same.

See “Reducing row forwarding” on page 62 for details about setting
exp_row_size values.

reservepagegap

Setting a reservepagegap for a table or an index leaves empty pages on extents
that are allocated to the object when commands that perform extent allocation
are executed. Setting reservepagegap to a low value increases the number of
empty pages and spreads the data across more extents, so the additional space
required is greatest immediately after a command such as create index or reorg
rebuild. Row forwarding and inserts into the table fill in the reserved pages.

See “Leaving space for forwarded rows and inserts” on page 68.

max_rows_per_page

The max_rows_per_page value (specified by create index, create table, alter
table, or sp_chgattribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the
max_rows_per_page value or the computed number of data rows per page,
whichever is smaller, in “Compute the number of data pages” on page 91 and
“Calculate the number of leaf pages in the index” on page 94.

See “Using max_rows_per_page on allpages-locked tables” on page 75.

Very small rows
For all-pages locked tables, Adaptive Server cannot store more than 256 data
or index rows on a page. Even if your rows are extremely short, the minimum
number of data pages is:

Number of Rows / 256 = Number of data pages required

CHAPTER 4 Table and Index Size

Performance and Tuning Series: Physical Database Tuning 103

LOB pages
Each text or image or Java off-row column stores a 16-byte pointer in the data
row with the datatype varbinary(16). Each column that is initialized requires at
least 2K (one data page) of storage space.

Columns store implicit NULL values, meaning that the text pointer in the data
row remains NULL and no text page is initialized for the value, saving 2K of
storage space.

If a LOB column is defined to allow NULL values, and the row is created with
an insert statement that includes NULL for the column, the column is not
initialized, and the storage is not allocated.

If a LOB column is changed in any way with update, then the text page is
allocated. Inserts or updates that place actual data in a column initialize the
page. If the column is subsequently set to NULL, a single page remains
allocated.

Each LOB page stores approximately 1800 bytes of data. To estimate the
number of pages that a particular entry will use, use this formula:

The result should be rounded up in all cases; that is, a data length of 1801 bytes
requires two 2K pages.

The total space required for the data may be slightly larger than the calculated
value, because some LOB pages store pointer information for other page
chains in the column. Adaptive Server uses this pointer information to perform
random access and prefetch data when accessing LOB columns. The additional
space required to store pointer information depends on the total size and type
of the data stored in the column. Use Table 4-3 to estimate the additional pages
required to store pointer information for data in LOB columns.

Data length / 1800 = Number of 2K pages

Using formulas to estimate object size

104 Adaptive Server Enterprise

Table 4-3: Estimated additional pages for pointer information in LOB
columns

Advantages of using formulas to estimate object size
The advantages of using the formulas are:

• You learn more details of the internals of data and index storage.

• The formulas provide flexibility for specifying averages sizes for
character or binary columns.

• While computing the index size, you see how many levels each index has,
which helps estimate performance.

Disadvantages of using formulas to estimate object size
The disadvantages of using the formulas are:

• The estimates are only as good as your estimates of average size for
variable-length columns.

• The multistep calculations are complex, and skipping steps may lead to
errors.

• The actual size of an object may be different from the calculations, based
on use.

Data size and type
Additional pages required for pointer
information

400K image 0 to 1 page

700K image 0 to 2 pages

5MB image 1 to 11 pages

400K of multibyte text 1 to 2 pages

700K of multibyte text 1 to 3 pages

5MB of multibyte text 2 to 22 pages

Performance and Tuning Series: Physical Database Tuning 105

C H A P T E R 5 Database Maintenance

This chapter explains how maintenance activities can affect the
performance of other Adaptive Server activities, and how to improve the
performance of maintenance tasks.

Maintenance activities include tasks such as dropping and recreating
indexes, performing dbcc checks, and updating table and index statistics.
All of these activities can compete with other processing work on the
server.

Whenever possible, perform maintenance tasks when your Adaptive
Server usage is low. This chapter can help you determine the impact these
activities have on individual applicaton performance, and on overall
Adaptive Server performance.

Running reorg on tables and indexes
The reorg command can improve performance for data-only-locked tables
by improving the space utilization for tables and indexes. The reorg
subcommands and their uses are:

• reclaim_space – clears committed deletes and the space that is left
when updates shorten the length of data rows.

Topic Page
Running reorg on tables and indexes 105

Creating and maintaining indexes 106

Creating or altering a database 110

Backup and recovery 112

Bulk-copy 113

Database consistency checker 117

Using dbcc tune (cleanup) 117

Using dbcc tune on spinlocks 117

Determining the space available for maintenance activities 118

Creating and maintaining indexes

106 Adaptive Server Enterprise

• forwarded_rows – returns forwarded rows to home pages.

• compact – performs both of the operations above.

• rebuild – rebuilds an entire table or index. You can use reorg rebuild on both
all-pages and data-only locked tables.

When you run reorg rebuild on a table, and the table is locked for the entire time
it takes to rebuild the table and its indexes. Schedule the reorg rebuild command
on a table when users do not need access to the table.

All of the other reorg commands, including reorg rebuild on an index, lock a
small number of pages at a time, and use short, independent transactions to
perform their work. You can run these commands at any time. The only
negative effect might be on systems that are very I/O bound.

For more information on running reorg commands, see Chapter 9, “Using the
reorg Command” in System Administration Guide: Volume 2.

Creating and maintaining indexes
When a user creates an index, all other users are locked out of the table.. The
type of lock depends on the type of index:

• Creating a clustered index requires an exclusive table lock, locking out all
table activity. Since rows in a clustered index are arranged in order by the
index key, create clustered index reorders data pages.

• Creating a nonclustered index requires a shared table lock, locking out
update activity.

Configuring Adaptive Server to speed sorting
Use the number of sort buffers configuration parameter to set the number of
buffers that can be used in cache to hold pages from the input tables. In
addition, parallel sorting can benefit from large I/O in the cache used to
perform the sort.

See Chapter 5, “Parallel Query Processing” in Performance and Tuning Series:
Query Processing and Abstract Plans.

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 107

Dumping the database after creating an index
When you create an index, Adaptive Server writes the create index transaction
and the page allocations to the transaction log, but does not log the actual
changes to the data and index pages. To recover a database that you have not
dumped since you created the index, the entire create index process is executed
again while loading transaction log dumps.

If you routinely re-create indexes (for example, to maintain the fillfactor in the
index), you may want to schedule these operations to run shortly before a
routine database dump.

Creating an index on sorted data
To recreate a clustered index, or to create one on data that was bulk copied into
the server in index key order, use the sorted_data option to create index to
shorten index creation time.

Since the data rows must be arranged in key order for clustered indexes,
creating a clustered index without sorted_data requires you to rewrite the data
rows to a complete new set of data pages. In some cases , Adaptive Server can
skip sorting and copying the table’s data rows: Factors include table
partitioning and on clauses used in the create index statement.

When you are creating an index on a nonpartitioned table, sorted_data and the
use of any of the following clauses requires you to copy the data, but does not
require a sort:

• ignore_dup_row

• fillfactor

• The on segment_name clause, specifying a different segment from the
segment where the table data is located

• The max_rows_per_page clause, specifying a value that is different from
the value associated with the table

When these options and sorted_data are included in a create index on a
partitioned table, the sort step is performed and the data is copied, distributing
the data pages evenly on the table’s partitions.

Table 5-1: Using options for creating a clustered index

Options Partitioned table Unpartitioned table

No options specified Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Either parallel or nonparallel sort;
copies data, creates index tree.

Creating and maintaining indexes

108 Adaptive Server Enterprise

In the simplest case, using sorted_data and no other options on a nonpartitioned
table, the order of the table rows is checked and the index tree is built during
this single scan.

If the data rows must be copied, but no sort needs to be performed, a single
table scan checks the order of rows, builds the index tree, and copies the data
pages to the new location in a single table scan.

For large tables that require numerous passes to build the index, saving the sort
time considerably reduces I/O and CPU utilization.

When you create a clustered index that copies the data rows, the space available
must be approximately 120 percent of the table size to copy the data and store
the index pages.

Maintaining index and column statistics
The histogram and density values for an index are not maintained as data rows
are added and deleted. The database owner must issue an update statistics
command to ensure that statistics are current. Run update statistics after:

• Deleting or inserting rows that change the skew of key values in the index.

• Adding rows to a table for which rows were previously deleted with
truncate table.

• Updating values in index columns.

• Inserts to any index that includes an IDENTITY column or any increasing
key value. Date columns often have regularly increasing keys.

with sorted_data only
or
with sorted_data on
same_segment

Creates index tree only. Does not
perform the sort or copy data. Does not
run in parallel.

Creates index tree only. Does not
perform the sort or copy data. Does
not run in parallel.

with sorted_data and
ignore_dup_row
or fillfactor
or on other_segment
or max_rows_per_page

Parallel sort; copies data, distributing
evenly on partitions; creates index tree.

Copies data and creates the index
tree. Does not perform the sort. Does
not run in parallel.

Options Partitioned table Unpartitioned table

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 109

Running update statistics on these types of indexes is especially important if the
IDENTITY column or other increasing key is the leading column in the index.
After a number of rows have been inserted past the last key in the table when
the index was created, all that the optimizer can tell is that the search value lies
beyond the last row in the distribution page. It cannot accurately determine
how many rows match a given value.

Note Failure to update statistics can severely impair performance.

See Performance and Tuning Series: Improving Performance with Statistical
Analysis.

Rebuilding indexes
Rebuilding indexes reclaims space in the binary trees (a tree where all leaf
pages are the same distance from the root page of the index). As pages are split
and rows are deleted, indexes may contain many pages that contain only a few
rows. Also, if the application performs scans on covering nonclustered indexes
and large I/O, rebuilding the nonclustered index maintains the effectiveness of
large I/O by reducing fragmentation.

You can rebuild indexes by dropping and recreating the index.

Rebuild indexes when:

• Data and usage patterns have changed significantly.

• A period of heavy inserts is expected, or has just been completed.

• The sort order has changed.

• Queries that use large I/O require more disk reads than expected, or optdiag
reports lower cluster ratios than usual.

• Space usage exceeds estimates because heavy data modification has left
many data and index pages partially full.

• Space for expansion provided by the space management properties
(fillfactor, expected row size, and reserve page gap) has been filled by
inserts and updates, resulting in page splits, forwarded rows, and
fragmentation.

• dbcc has identified errors in the index.

Creating or altering a database

110 Adaptive Server Enterprise

If you recreate a clustered index or run reorg rebuild on a data-only-locked or
all-pages-locked table, all nonclustered indexes are recreated, since creating
the clustered index moves rows to different pages.

When system activity is low:

• Delete all indexes to allow more efficient bulk inserts.

• Create a new group of indexes to help generate a set of reports.

Creating or altering a database
Creating or altering a database is I/O-intensive; consequently, other I/O-
intensive operations may suffer. When you create a database, Adaptive Server
copies the model database to the new database and then initializes all the
allocation pages and clears database pages.

To speed database creation or minimize its impact on other processes:

• Use the create database...for load option if you are restoring a database;
that is, if you are getting ready to issue a load database command.

When you create a database without for load, Adaptive Server copies
model and then initializes all of the allocation units.

When you use for load, Adaptive Server does initialize the allocation units
until the load is complete. Then it initializes only the untouched allocation
units. If you are loading a very large database dump, this can save a lot of
time.

• Create databases during off-peak hours if possible.

create database and alter database perform concurrent, parallel I/O when
clearing database pages. The number of devices is limited by the number of
large i/o buffers configuration parameter. The default value for this parameter is
6, allowing parallel I/O on 6 devices at once.

A single create database and alter database command can use up to 32 of these
buffers at once. These buffers are also used by load database, disk mirroring,
and some dbcc commands.

Using the default value of 6, if you specify more than 6 devices, the first 6
writes are immediately started. As the I/O to each device completes, the 16K
buffers are used for remaining devices listed in the command. The following
example names 10 separate devices:

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 111

create database hugedb
 on dev1 = 100,
 dev2 = 100,
 dev3 = 100,
 dev4 = 100,
 dev5 = 100,
 dev6 = 100,
 dev7 = 100,
 dev8 = 100
log on logdev1 = 100,
 logdev2 = 100

During operations that use these buffers, a message is sent to the log when the
number of buffers is exceeded. This information, for the create database
command above, shows that create database started clearing devices on the
first 6 disks, using all of the large I/O buffers, and then waited for them to
complete before clearing the pages on other devices:

CREATE DATABASE: allocating 51200 pages on disk ’dev1’
CREATE DATABASE: allocating 51200 pages on disk ’dev2’
CREATE DATABASE: allocating 51200 pages on disk ’dev3’
CREATE DATABASE: allocating 51200 pages on disk ’dev4’
CREATE DATABASE: allocating 51200 pages on disk ’dev5’
CREATE DATABASE: allocating 51200 pages on disk ’dev6’
01:00000:00013:1999/07/26 15:36:17.54 server No disk i/o buffers
are available for this operation. The total number of buffers is
controlled by the configuration parameter ’number of large i/o
buffers’.
CREATE DATABASE: allocating 51200 pages on disk ’dev7’
CREATE DATABASE: allocating 51200 pages on disk ’dev8’
CREATE DATABASE: allocating 51200 pages on disk ’logdev1’
CREATE DATABASE: allocating 51200 pages on disk ’logdev2’

Note In Adaptive Server version 12.5.0.3 and later, the size of the large I/O
buffers used by create database, alter database, load database, and dbcc
checkalloc is one allocation (256 pages), not one extent (8 pages), as it was in
earlier versions. The server thus requires more memory allocation for large
buffers. For example, a disk buffer that required memory for 8 pages in earlier
versions now requires memory for 256 pages.

Backup and recovery

112 Adaptive Server Enterprise

Backup and recovery
All Adaptive Server backups are performed by Backup Server. The backup
architecture uses a client/server paradigm, with Adaptive Servers as clients to
Backup Server.

Local backups
Adaptive Server sends the local Backup Server instructions, via remote
procedure calls, telling the Backup Server which pages to dump or load, which
backup devices to use, and other options. Backup Server performs all the disk
I/O.

Adaptive Server does not read or send dump and load data, it sends only
instructions.

Remote backups
Backup Server also supports backups to remote machines. For remote dumps
and loads, a local Backup Server performs the disk I/O related to the database
device and sends the data over the network to the remote Backup Server, which
stores it on the dump device.

Online backups
You can perform backups while a database is active. Clearly, such processing
affects other transactions, but you should not hesitate to back up critical
databases as often as necessary to satisfy the reliability requirements of the
system.

See the System Administration Guide, Volume 2 for a complete discussion of
backup and recovery strategies.

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 113

Using thresholds to prevent running out of log space
If your database has limited log space, and you occasionally hit the last-chance
threshold, install a second threshold that provides ample time to perform a
transaction log dump. Running out of log space has severe performance
impacts. Users cannot execute any data modification commands until log space
has been freed.

Minimizing recovery time
You can help minimize recovery time by changing the recovery interval
configuration parameter. The default value of 5 minutes per database works for
most installations. Reduce this value only if functional requirements dictate a
faster recovery period. Reducing the value increases the amount of I/O
required.

See Chapter 5, “Memory Use and Performance,” in Performance and Tuning
Series: Basics.

Recovery speed may also be affected by the value of the housekeeper free write
percent configuration parameter. The default value of this parameter allows the
server’s housekeeper wash task to write dirty buffers to disk during the server’s
idle cycles, as long as disk I/O is not increased by more than 20 percent.

Recovery order
During recovery, system databases are recovered first. Then, user databases are
recovered in order by database ID.

Bulk-copy
Bulk-copying into a table on Adaptive Server runs fastest when there are no
clustered indexes on the table and you have enabled select into/ bulkcopy. If you
have not enabled this option, slow bcp is used for tables with any index or active
trigger.

Bulk-copy

114 Adaptive Server Enterprise

fast bcp logs page allocation only for tables without an index. fast bcp saves
time because it does not update indexes for each data insert, nor does it log the
changes to the index pages. However, if you use fast bcp on a table with an
index, it does log index updates.

fast bcp is automatically used for tables with triggers. To use slow bcp, disable
the select into/bulk copy database option while you perform the copy.

To use fast bulk-copy:

1 Use sp_dboption to set the select into/bulkcopy/pllsort option. Remember to
disable the option after the bulk-copy operation completes.

2 Drop any clustered indexes. Recreate them when the bulk-copy completes.

Note You need not deactivate triggers during the copy.

During fast bulk-copy, rules are not enforced, but defaults are.

Since changes to the data are not logged, perform a dump database soon after
a fast bulk-copy operation. Performing a fast bulk-copy in a database blocks
the use of dump transaction, since the unlogged data changes cannot be
recovered from the transaction log dump.

Parallel bulk-copy
For fastest performance, use fast bulk-copy to copy data into partitioned tables.
For each bulk-copy session, specify the partition on which the data should
reside.

If your input file is already in sorted order, you can bulk-copy data into
partitions in order, and avoid the sorting step while creating clustered indexes.

See Chapter 10, “Partitioning Tables and Indexes,” in the Transact-SQL Users
Guide for step-by-step procedures.

Batches and bulk-copy
If you specify a batch size during a fast bulk-copy, each new batch must start
on a new data page, since only the page allocations, and not the data changes,
are logged during a fast bulk-copy. Copying 1000 rows with a batch size of 1
requires 1000 data pages and 1000 allocation records in the transaction log.

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 115

If you use a small batch size to help detect errors in the input file, you may want
to choose a batch size that corresponds to the numbers of rows that fit on a data
page.

Slow bulk-copy
By default, Adaptive Server uses slow bcp by default if a table has a clustered
index, index, or trigger with the select into/bulk copy enabled.

For slow bulk-copy:

• You do not have to set select into/bulkcopy.

• Rules are not enforced and triggers are not fired, but defaults are enforced.

• All data changes are logged, as are page allocations.

• Indexes are updated as rows are copied in, and index changes are logged.

Improving bulk-copy performance
Other ways to increase bulk-copy performance are:

• Set the trunc log on chkpt option to keep the transaction log from filling up.
If your database has a threshold procedure that automatically dumps the
log when it fills, you save the transaction dump time

Each batch is a separate transaction, so if you do not specify a batch size,
setting trunc log on chkpt does not improve performance.

• Set the number of pre-allocated extents configuration parameter high if you
perform many large bulk copies.

See Chapter 5, “Setting Configuration Parameters,” in the System
Administration Guide: Volume 1.

• Find the optimal network packet size.

See Chapter 2, “Networks and Performance,” in Performance and Tuning
Series: Basics.

Bulk-copy

116 Adaptive Server Enterprise

Replacing the data in a large table
If you are replacing all the data in a large table, use truncate table, which
performs reduced logging, instead of delete. Only page deallocations are
logged.

1 Truncate the table.

2 Drop all indexes on the table.

3 Load the data.

4 Recreate the indexes.

See the Reference Manual: Commands.

Adding large amounts of data to a table
When you are adding 10 – 20 percent or more to a large table, drop the
nonclustered indexes, load the data, and then recreate nonclustered indexes.

For very large tables, you may need to leave the clustered index in place due to
space constraints. Adaptive Server must make a copy of the table when it
creates a clustered index. In many cases, once tables become very large, the
time required to perform a slow bulk-copy with the index in place is less than
the amount of time it takes to perform a fast bulk-copy and recreate the
clustered index.

Using partitions and multiple bulk-copy processes
If you load data into a table without indexes, you can create partitions on the
table and use one bcp session for each partition.

See Chapter 4, “Using bcp to Transfer Data to and from Adaptive Server” in
the Utility Guide.

Impacts on other users
Bulk-copying large tables in or out may affect response time for other users. If
possible:

• Schedule bulk-copy operations for off-peak hours.

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 117

• Use fast bulk-copy, since it performs less logging and less I/O.

Database consistency checker
Periodically, use dbcc to run database consistency checks. If you back up a
corrupt database, the backup is useless. dbcc affects performance, since dbcc
must acquire locks on the objects it checks.

See Chapter 10, “Checking Database Consistency” in the System
Administration Guide: Volume 2 for information about dbcc and locking, with
additional information about how to minimize the effects of dbcc on user
applications.

Using dbcc tune (cleanup)
Adaptive Server performs redundant memory cleanup checking as a final
integrity check after processing each task. In very high throughput
environments, you may realize a slight performance improvement by skipping
this cleanup error check. To turn off error checking, enter:

dbcc tune(cleanup,1)

The final cleanup frees any memory a task might hold. If you turn error
checking off, but you get memory errors, reenable the checking by entering:

dbcc tune(cleanup,0)

Using dbcc tune on spinlocks
"When you see a scaling problem resulting from spinlock contention, use
des_bind to improve the scalability of the server where object descriptors are
reserved for hot objects. Descriptors for bound objects are never released.
Binding the descriptors for even a few commonly used objects may reduce the
overall metadata spinlock contention and improve performance.

dbcc tune(des_bind, <dbid>, <objname>)

Determining the space available for maintenance activities

118 Adaptive Server Enterprise

To remove the binding, use:

dbcc tune(des_unbind, <dbid>, <objname>)

Note To unbind an object from the database, the database must be in single
user mode.

Do not use des_bind:

• On objects in system databases such as master and tempdb

• On system tables

Since des_bind is not persistent, you must reissue any binding commands each
time you restart the server.

Determining the space available for maintenance
activities

Several maintenance operations require room to make a copy of the data pages
of a table:

• create clustered index

• alter table...lock

• Some alter table commands that add or modify columns

• alter table...partition by

• reorg rebuild on a table

In most cases, these commands also require space to recreate any indexes, so
you must determine:

• The size of the table and its indexes

• The amount of space available on the segment where the table is stored

• The space management properties set for the table and its indexes

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 119

Overview of space requirements
Any command that copies a table’s rows also recreates all of the indexes on the
table.You need enough available space for a complete copy of the table and
copies of all indexes.

These commands do not estimate how much space is needed. If a command
runs out of space on any segment used by the table or its indexes the command
stops, and issues an error message. For large tables, can occur minutes, even
hours, after the command starts.

You need free space on the segments used by the table and its indexes, as
follows:

• Free space on the table’s segment must be at least equal to:

• The size of the table, plus

• Approximately 20 percent of the table size, if the table has a clustered
index and you are changing from allpages locking to data-only
locking.

• Free space on the segments used by nonclustered indexes must be at least
equal to the size of the indexes.

Clustered indexes for data-only-locked tables have a leaf level above the data
pages. If you alter a table with a clustered index from allpages locking to data-
only locking, the resulting clustered index requires more space. The additional
space required depends on the size of the index keys.

Checking space usage and space available
As a simple guideline, copying a table and its indexes requires space equal to
the current space used by the table and its indexes, plus about 20% additional
space. However:

• If data modifications have created many partially full pages, the space
requirement for the copy of the table can be smaller than the current size.

• If space-management properties for the table have changed, or if space
required by fillfactor or reservepagegap has been filled by data
modifications, the size required for the copy of the table can be larger.

• Adding columns or modifying columns to larger datatypes requires more
space for the copy.

Determining the space available for maintenance activities

120 Adaptive Server Enterprise

Log space is also required. Because Adaptive Server processes reorg rebuild as
a single transaction, the amount of log space required can be large, particularly
if the table it is rebuilding has multiple nonclustered indexes. Each
nonclustered index requires log space, and there must be sufficient log space to
create all indexes.

Checking space used for tables and indexes

To see the size of a table and its indexes, use:

sp_spaceused titles, 1

See “Calculating the sizes of data-only-locked tables” on page 96 for
information on estimating the size of the clustered index.

Checking space on segments

Tables are always copied to free space on the segment where they are currently
stored, and indexes are recreated on the segment where they are currently
stored. Commands that create clustered indexes can specify a segment. The
copy of the table and the clustered index are created on the target segment.

To determine the number of pages available on a segment, use sp_helpsegment.
The last line of sp_helpsegment shows the total number of free pages available
on a segment.

This command prints segment information for the default segment, where
objects are stored when no segment was explicitly specified:

sp_helpsegment "default"

sp_helpsegment reports the names of indexes on the segment. If you do not
know the segment name for a table, use sp_help and the table name. The
segment names for indexes are also reported by sp_help.

Checking space requirements for space management properties

If you make significant changes to space management property values, the
table copy can be considerably larger or smaller than the original table. Settings
for space management properties are stored in the sysindexes tables, and are
displayed by sp_help and sp_helpindex. This output shows the space
management properties for the titles table:

exp_row_size reservepagegap fillfactor max_rows_per_page
------------ -------------- ---------- -----------------
 190 16 90 0

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 121

sp_helpindex produces this report:

index_name index_description
 index_keys
 index_max_rows_per_page index_fillfactor index_reservepagegap
 ----------------------- ---------------- --------------------
title_id_ix nonclustered located on default
 title_id
 0 75 0
title_ix nonclustered located on default
 title
 0 80 16
type_price nonclustered located on default
 type, price
 0 90 0

Space management properties applied to the table

During the copy step, the space management properties for the table are used
as follows:

• If an expected row size value is specified for the table, and the locking
scheme is being changed from allpages locking to data-only locking, the
expected row size is applied to the data rows as they are copied.

If no expected row size is set, but there is a max_rows_per_page value for
the table, an expected row size is computed, and that value is used.

Otherwise, the default value specified with the configuration parameter
default exp_row_size percent is used for each page allocated for the table.

• The reservepagegap is applied as extents are allocated to the table.

• If sp_chgattribute has been used to save a fillfactor value for the table, it is
applied to the new data pages as the rows are copied.

Space management properties applied to the index

When indexes are rebuilt, space management properties for the indexes are
applied, as follows:

• If sp_chgattribute has been used to save fillfactor values for indexes, these
values are applied when the indexes are recreated.

• If reservepagegap values are set for indexes, these values are applied when
the indexes are recreated.

Determining the space available for maintenance activities

122 Adaptive Server Enterprise

Estimating the effects of space management properties
Table 5-2 shows how to estimate the effects of setting space management
properties.

Table 5-2: Effects of space management properties on space use

See Chapter 3, “Setting Space Management Properties.”

If a table has max_rows_per_page set, and the table is converted from allpages
locking to data-only locking, the value is converted to an exp_row_size value
before the alter table...lock command copies the table to its new location.

exp_row_size is enforced during the copy. Table 5-3 shows how the values are
converted.

Table 5-3: Converting max_rows_per_page to exp_row_size

Property Formula Example

fillfactor Requires
(100/fillfactor) * num_pages if pages are
currently fully packed

fillfactor of 75 requires 1.33 times current
number of pages; a table of 1,000 pages
grows to 1,333 pages.

reservepagegap Increases space by
1/reservepagegap if extents are currently
filled

reservepagegap of 10 increase space used
by 10%; a table of 1,000 pages grows to
1,100 pages.

max_rows_per_page Converted to exp_row_size when
converting to data-only-locking

See Table 5-3 on page 122.

exp_row_size Increase depends on number of rows
smaller than exp_rowsize, and the average
length of those rows

If exp_row_size is 100, and 1,000 rows
have a length of 60, the increase in space
is:

(100 - 60) * 1000 or 40,000 bytes;
approximately 20 additional pages.

If max_rows_per_page is set to Set exp_row_size to

0 Percentage value set by default exp_row_size percent

1 – 254 The smaller of:

• Maximum row size

• 2K logical page – 2002/max_rows_per_page value
4K logical page – 4050/max_rows_per_page value
8K logical page – 8146/max_rows_per_page value
16K logical page – 16338/max_rows_per_page value

CHAPTER 5 Database Maintenance

Performance and Tuning Series: Physical Database Tuning 123

If there is not enough space
If you do not have enough space to copy the table and recreate all the indexes,
determine whether dropping the nonclustered indexes on the table leaves
enough room to create a copy of the table. Without any nonclustered indexes,
the copy operation requires space just for the table and the clustered index.

Do not drop the clustered index, since it is used to order the copied rows, and
attempting to recreate it later may require space to make a copy of the table.
Recreate the nonclustered indexes when the command completes.

Determining the space available for maintenance activities

124 Adaptive Server Enterprise

Performance and Tuning Series: Physical Database Tuning 125

C H A P T E R 6 Temporary Databases

This chapter discusses performance issues associated with temporary
databases. Temporary databases are server-wide resources, and are used
primarily for processing sorts, creating worktables, reformatting, and
storing temporary tables and indexes created by users. Anyone can create
objects in temporary databases. Many processes use them silently.

Many applications use stored procedures that create tables in temporary
databases to expedite complex joins or to perform other complex data
analysis that cannot be performed easily in a single step.

How temporary database management affects
performance

Good management of temporary databases is critical to the overall
performance of Adaptive Server. However, temporary tables can add to
the size requirement of tempdb. Using temporary tables greatly affects the
performance of Adaptive Server and your applications. You cannot
overlook the management of temporary databases or leave them in a
default state. On many servers, tempdb is the most dynamic database.

You can avoid most of the performance issues with temporary databases
by planning in advance, and taking these issues into consideration:

Topic Page
How temporary database management affects performance 125

Using temporary tables 126

Temporary databases 128

Session-assigned temporary database 128

Using multiple temporary databases 129

Tuning system temporary databases for performance 131

Logging optimizations for temporary databases 140

Using temporary tables

126 Adaptive Server Enterprise

• Temporary databases fill frequently, generating error messages to users,
who must then resubmit their queries when space becomes available.

• Temporary databases sort slowly and queries against them display uneven
performance.

• User queries are often temporarily blocked from creating temporary tables
because of locks on system tables.

• Heavily used objects in a temporary database flush other pages out of the
data cache.

Resolve these issues by:

• Configuring a sufficient number of user temporary databases.

• Sizing temporary databases correctly for all Adaptive Server activity

• Placing temporary databases optimally to minimize contention

• Minimizing the resource locking within temporary databases

• Binding temporary databases to their own data cache

• Configuring temporary database groups correctly

• Binding logins and applications to the appropriate temporary database or
group.

Using temporary tables
Tables created in temporary database are called temporary tables. Use the
temporary database to create different types of temporary tables. The types of
temporary tables are:

• Hashed (#) temporary tables

• Regular user tables

• Worktables

Hashed (#) temporary tables
Hashed temporary tables:

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 127

• Exist only for the duration of the user session or for the scope of the
procedure that creates them, and can be either manually or automatically
dropped at the end of the session or procedure.

• Cannot be shared between user connections

• Are created in the temporary database assigned for the session.

Create hashed temporary tables by including a hash mark (“#”) as the first
character of the table name:

create table #temptable (...)

or:

select select_list
into #temptable ...

When you create indexes on temporary tables, the indexes are stored in the
same session assigned to the temporary database where the hashed table
resides:

create index littletableix on #littletable(col1)

Regular user tables
To create regular user tables in a temporary table, specify the database name in
the create table command:

create table tempdb..temptable (...)

Regular user tables in the temporary database:

• Can persist across sessions

• Can be used by bulk copy (bcp) operations

• Can be shared by granting permissions on them

• Must either be explicitly dropped by the owner or are automatically
removed when Adaptive Server is restarted

or:

select select_list
into tempdb..temptable

You can create indexes on regular user tables created in the temporary
database:

create index tempix on tempdb..temptable(col1)

Temporary databases

128 Adaptive Server Enterprise

Worktables
Adaptive Server creates internal temporary tables for the session-assigned
tempdb for merges, sorts, joins, and so on. These temporary tables are called
worktables, and they:

• Are never shared

• Disappear as soon as the command completes

Temporary databases
To avoid performance concerns that result from using a single temporary
databases, you can create multiple temporary databases.

Adaptive Server includes one system-created temporary database called
tempdb, which is created on the master device when you install Adaptive
Server.

In addition to tempdb, Adaptive Server allows users to create multiple
temporary databases. User-created temporary databases are similar to the
system tempdb: they are used primarily to create temporary objects, and are
recreated instead of recovered during start-up. Unlike tempdb, you can drop
user-created temporary databases.

Multiple temporary databases:

• Reduce contention on system catalogs and log files in the system tempdb

• Can be created on fast access devices

• Can be created or dropped as needed.

Session-assigned temporary database
When a client connects, Adaptive Server assigns a temporary database to its
session. Adaptive Server uses this session-assigned temporary database as a
default space where it creates temporary objects (including hashed-temporary
tables and worktables) for work the client performs. The session-assigned
temporary database remains assigned to the session until the session connects
to the client.

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 129

Adaptive Server selects temporary databases for a session according to these
rules:

• If a binding already exists for a login, that binding is used.

• If an application name is specified and it has a binding, use that binding.

• If Adaptive Server does not find a binding, it assigns a temporary database
from the default group using a round-robin scheme.

To specify that Adaptive Server creates an object in a specific temporary
database. For example:

create procedure inv_amounts as
select stor_id, "Total Due" = sum(amount)
from #tempstores
group by stor_id

Using multiple temporary databases
This section discussing how to create, configure, bind, and select temporary
databases.

Creating user temporary databases
Create multiple temporary databases using the temporary database keyword in
the create database syntax:

create temporary database temporary_database_name on
device_name=size log on device_name=size

For example, to create a user temporary database named tempdb_1 on the
tempdb_device, enter:

create temporary database tempdb_1 on tempdb_device = 3
log on log_device = 1

Using multiple temporary databases

130 Adaptive Server Enterprise

Configuring a default tempdb group
Adaptive Server includes a group of temporary databases called the default
group. When Adaptive Server starts a session, it selects a temporary database
from the default group (using a round-robin technique) in which all temporary
database activities are performed. Adaptive Server assigns this temporary
database to the session. sp_who displays this temporary database in the
tempdbname column. The round-robin scheme allows Adaptive Server to
distribute the load evenly across all temporary databases in the default group
because a single temporary database from the group is not performing all
activities.

Initially, the default group consists only of tempdb. However, users may add
multiple user databases to the default group. Use sp_tempdb to add a user
database to the default group. For example, to add tempdb_1 to the default
group, use:

sp_temodb "add'", "tempdb_1" , "default"

To drop tempdb_1 from the default group, use:

sp_tempdb "drop", "tempdb_1" , "default"

See the Reference Manual: Procedures for the complete sp_tempdb syntax.

Binding to groups and tempdb
The sp_tempdb. . . 'bind'...’unbind’ system procedure allows you to bind, or
unbind, an application or login to specific temporary database or tempdb
group. After you create the binding, when the application or login connects to
the server, Adaptive Server assigns the specified temporary database or
temporary database group to which it is bound. Binding allows you to control
the temporary database assignments for specific applications or logins.

This example binds the log in sa to the default group:

sp_tempdb 'bind', 'lg', 'sa', 'GR', 'default'

This example unbinds the login sa:

sp_tempdb 'unbind', 'lg', 'sa'

See Reference Manual: Procedures for the complete sp_tempdb syntax.

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 131

Binding applications and logins to temporary databases

Identify your application and login requirements for temporary databases. Bind
these applications and logins to different databases or default groups to
distribute the load evenly across available temporary databases to avoid
catalog contention. Inappropriate bindings do not solve catalog contention
even if there is a sufficient number of temporary databases—Adaptive Server
may not distribute the load evenly across the temporary databases. See
“Binding to groups and tempdb” on page 130.

Tuning system temporary databases for performance
This section discusses configuration issues related to temporary databases.

Placing system tempdb
When deciding where to place tempdb:

• Keep tempdb on separate physical disks than your critical application
databases.

• Use the fastest disks available. If your platform supports solid state
devices and tempdb use is a bottleneck for your applications, use those
devices.

• After you expand tempdb onto additional devices, drop the master device
from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master database,
Sybase suggests that you use separate devices. Also, remember that logical
devices, but not databases, are mirrored using Adaptive Server mirroring. If
you mirror the master device, you create a mirror of all portions of the
databases that reside on the master device. If the mirror uses serial writes, this
can have a serious performance impact if tempdb is heavily used.

Tuning system temporary databases for performance

132 Adaptive Server Enterprise

Initial allocation of system tempdb

When you install Adaptive Server, the size of tempdb is 4MB, and is located
completely on the master device, as shown in Figure 6-1. tempdb is typically
the first database that a system administrator needs to make larger. The more
users on the server, the larger it needs to be. Depending on your needs, you may
want to stripe tempdb across several devices.

Figure 6-1: tempdb default allocation

Use sp_helpdb to see the size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_helpdb tempdb
name db_size owner dbid created status
--------- -------- ------ ------ ----------- --------------------
tempdb 2.0 MB sa 2 May 22, 1999 select into/bulkcopy

device_frag size usage free kbytes
------------ -------- ------------ --------
master 2.0 MB data and log 1248

Dropping the master device from tempdb segments

By default, the system, default, and logsegment segments for tempdb include its
4MB allocation on the master device. When you allocate new devices to
tempdb, they automatically become part of all three segments unless you add
them as dedicated data or log. Once you allocate a second device to tempdb,
you can drop the master device from the default, system, and logsegment
segments. This way, you can be sure that the worktables and other temporary
tables in tempdb do not contend with other uses on the master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For
example:

tempdb
data and log (4mb)

d_master

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 133

alter database tempdb on tune3 = 20

2 Issue a use tempdb command, and then drop the master device from the
segments:

sp_dropsegment "default", tempdb, master
sp_dropsegment "system", tempdb, master
sp_dropsegment "logsegment", tempdb, master

3 To verify the segments no longer include the master device, issue this
command against the master database:

select dbid, name, segmap
from sysusages, sysdevices
where sysdevices.vdevno= sysusages.vdevno
and dbid = 2
and (status&2=2 or status&3=3))

The segmap column should report “0” for any allocations on the master
device, indicating that no segment allocations exist:

 dbid name segmap
 ------ --------------- -----------

2 master 0
2 tune3 7

Alternatively, issue:

use tempdb
sp_helpdb 'tempdb'
device_fragments size usage created free kbytes
----------------- ------ ---------- ----------------- ----------
master 4.0 MB data only Feb 7 2008 2:18AM 2376
tune3 20.0 MB data and log May 16 2008 1:55PM 16212

device segment
--------- -----------------------------
master -- unused by any segments --
tune3 default
tune3 logsegment
tune3 system

Tuning system temporary databases for performance

134 Adaptive Server Enterprise

Configuring user-created temporary databases
Applications have individual resource and space requirements for temporary
databases. Unless you understand your applications requirements, and
maintain application to database or group bindings that satisfy these database
requirements, make all temporary databases the same size. If all temporary
databases are the same size, applications should not run out of resources or
space, regardless of which database is assigned an application or session.

Caching user temporary databases

Generally, configure caches similarly across temporary databases within a
group. The query processor may choose a query plan based on these caching
characteristics, and you may see poor performance if the plan is executed using
a cache with a different configuration.

General guidelines
This section provide general guidelines for configuring the temporary
databases, which apply to both system and user temporary databases.

Using multiple disks for parallel query performance

If temporary databases span multiple devices, as shown in Figure 6-2, you can
take advantage of parallel query performance for some temporary tables or
worktables.

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 135

Figure 6-2: tempdb spanning disks

Binding tempdb to its own cache

Under normal Adaptive Server use, temporary databases make heavy use of the
data cache as temporary tables are created, populated, and dropped.

Assigning a temporary database to its own data cache:

• Keeps the activity on temporary objects from flushing other objects out of
the default data cache

• Helps spread I/O between multiple caches

Commands for cache binding

Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of a given size for large I/O. Only a system administrator can
configure caches and pools.

Note Reference to large I/Os are on a 2K logical page size server. If you have
an 8K page size server, the basic unit for the I/O is 8K. If you have a 16K page
size server, the basic unit for the I/O is 16K.

For instructions on configuring named caches and pools, see Chapter 4,
“Configuring Data Caches” in the System Administration Guide: Volume 2.

Once the caches have been configured, and the server has been restarted, you
can bind tempdb to the new cache:

sp_bindcache "tempdb_cache", tempdb

disk_2 disk_3

d_master

disk_1

tempdbtempdb

Tuning system temporary databases for performance

136 Adaptive Server Enterprise

Determining the size of temporary databases

Allocate sufficient space to temporary databases to handle the following
processes for every concurrent Adaptive Server user:

• Worktables for merge joins

• Worktables that are created for distinct, group by, and order by, for
reformatting, and for the or strategy, and for materializing some views and
subqueries

• Hashed temporary tables (those created with “#” as the first character of
their names)

• Indexes on temporary tables

• Regular user tables in temporary databases

• Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split up
multitable joins. This strategy is often used for:

• Cases where the optimizer does not choose a good query plan for a query
that joins more than four tables

• Queries that join a very large number of tables

• Very complex queries

• Applications that need to filter data as an intermediate step

You might also use temporary databases to:

• Denormalize several tables into a few temporary tables

• Normalize a denormalized table to do aggregate processing

Determine the sizes of temporary databases based on usage scenarios. For most
applications, make temporary databases 20 – 25% of the size of your user
databases to provide enough space for these uses.

Minimizing logging in temporary databases

Even though the trunc log on checkpoint database option is turned on in
temporary databases, Adaptive Server still writes changes to temporary
databases to the transaction log. You can reduce log activity in a temporary
database by:

• Using select into instead of create table and insert

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 137

• Selecting only the columns you need into the temporary tables

Using select into

When you create and populate temporary tables in a temporary database, use
the select into command, rather than create table and insert...select, whenever
possible. The select into/bulkcopy database option is turned on by default in
temporary databases to enable this behavior.

select into operations are faster because they are only minimally logged. Only
the allocation of data pages is tracked, not the actual changes for each data row.
Each data insert in an insert...select query is fully logged, resulting in more
overhead.

Using shorter rows

If the application creating tables in a temporary database uses only a few
columns of a table, you can minimize the number and size of log records by:

• Selecting only the columns you need for the application, rather than using
select * in queries that insert data into the tables

• Limiting the rows selected to just the rows that the applications requires

These suggestions also keep the size of the tables themselves smaller.

Optimizing temporary tables

Many uses of temporary tables are simple and brief and require little
optimization. However, if your applications require multiple accesses to tables
in a temporary database, examine them for possible optimization strategies.
Usually, this involves splitting out the creation and indexing of the table from
the access to it by using more than one procedure or batch.

When you create a table in the same stored procedure or batch where it is used,
the query optimizer cannot determine how large the table is because the table
was not created when the query was optimized, as shown in Figure 6-3. This
applies to both temporary tables and regular user tables.

Tuning system temporary databases for performance

138 Adaptive Server Enterprise

Figure 6-3: Optimizing and creating temporary tables

The optimizer assumes that any such table has 10 data pages and 100 rows. If
the table is really large, this assumption can lead the optimizer to choose a
suboptimal query plan.

These two techniques can improve the optimization of temporary tables:

• Creating indexes on temporary tables

• Breaking complex use of temporary tables into multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables

You can define indexes on temporary tables. In many cases, these indexes can
improve the performance of queries that use temporary databases. The
optimizer uses these indexes just like indexes on ordinary user tables. The only
requirements are:

Query optimized here

Table created here

Compile

Optimize

Parse and
Normalize

Query

Results

Execute

Optimize

Compile

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 139

• The table must contain data when the index is created. If you create the
temporary table and create the index on an empty table, Adaptive Server
does not create column statistics such as histograms and densities. If you
insert data rows after creating the index, the optimizer has incomplete
statistics.

• The index must exist while the query using it is optimized. You cannot
create an index and then use it in a query in the same batch or procedure.
The query processor uses indexes created in a stored procedure in queries
that are run inside the stored procedure.

• The optimizer may choose a suboptimal plan if rows have been added or
deleted since the index was created or since update statistics was run.

Providing an index for the optimizer can greatly increase performance,
especially in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables

You need to take an extra step to create the procedures described above. You
cannot create base_proc until select_proc exists, and you cannot create
select_proc until the temporary table exists.

1 Create the temporary table outside the procedure. It can be empty; it just
must exist and have columns that are compatible with select_proc:

select * into #huge_result from ... where 1 = 2

2 Create the procedure select_proc, as shown above.

3 Drop #huge_result.

4 Create the procedure base_proc.

Breaking tempdb uses into multiple procedures

For example, this query causes optimization problems with #huge_result:

create proc base_proc
as
 select *
 into #huge_result
 from ...
 select *
 from tab,
 #huge_result where ...

Logging optimizations for temporary databases

140 Adaptive Server Enterprise

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can
determine the size of the table:

create proc select_proc
as
 select *
 from tab, #huge_result where ...
create proc base_proc
as
 select *
 into #huge_result
 from ...
 exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or other
processes (such as looping with while), creating an index on #huge_result may
improve performance. Create the index in base_proc so that it is available when
select_proc is optimized.

Logging optimizations for temporary databases
Adaptive Server does not recover temporary databases when you shut it down
or it fails, but Adaptive Server does create the temporary databases when you
restart the server. Because temporary databases do not require recovery,
Adaptive Server optimizes the logging mechanism for temporary databases to
improve performance by:

• Single log records – force Adaptive Server to flush syslogs to disk
immediately after Adaptive Server logs the record. Adaptive Server
creates single log records while modifying OAM pages or allocation pages
(in a database that is configured to use mixed log and data on the same
device). Adaptive Server must flush syslogs to avoid undetected deadlocks
created during buffer pinning. Because Adaptive Server does not pin
buffers for temporary databases, it need not flush the syslogs data for the
temporary database when it writes an single log records, which reduces log
semaphore contention.

CHAPTER 6 Temporary Databases

Performance and Tuning Series: Physical Database Tuning 141

• Flushing dirty pages to disk – for databases that require recovery, Adaptive
Server flushes dirty pages to disk during the checkpoint, ensuring that, if
Adaptive Server fails, all committed data is saved to disk. For temporary
databases, Adaptive Server supports runtime rollbacks, but not failure
recovery, allowing it to avoid flushing dirty data pages at the checkpoint.

• Avoiding write-ahead logging – write-ahead logging guarantees that
Adaptive Server can recover data for committed transactions by reissuing
the transactions listed in the log, and undoing the changes performed by
aborted or rolled back transactions. Adaptive Server does not support
write-ahead logging on databases that do not require recovery. Because
Adaptive Server does not recover temporary database, buffers for
temporary databases are not pinned, which allows Adaptive Server to skip
flushing the temporary database log when it commits a transaction using a
temporary database.

User log cache (ULC)
Adaptive Server contains a separate user log cache (ULC) for the temporary
database assigned to the session. The ULC allows Adaptive Server to avoid log
flushes when users switch between a user database and session’s temporary
database, or if all the following conditions are met:

• Adaptive Server is currently committing the transaction.

• All the log records are in the ULC.

• There are no post-commit log records.

The configuration option, session tempdb log cache size, which allows you to
configure the size of the ULC, helps determine how often it needs flushing. See
Chapter 5, “Setting Configuration Parameters,” in the System Administration
Guide: Volume 1.

Logging optimizations for temporary databases

142 Adaptive Server Enterprise

Performance and Tuning Series: Physical Database Tuning 143

A
access

index 21
optimizer methods 21

Adaptive Server
logical page sizes 23

aggregate functions
denormalization and temporary tables 136

allocation map. See object allocation map (OAM)
pages

allocation pages 27
allocation units 25, 27

database creation and 110
allpages-locked table, inserting data 41
alter table command

lock option and fillfactor and 60
reservepagegap for indexes 70

APL tables. See allpages locking
application design

temporary tables in 136
auditing

disk contention and 3

B
Backup Server 112
batch processing

bulk copy and 114
temporary tables and 138

bcp (bulk copy utility) 113
heap tables and 41
reclaiming space with 47

binding
objects to data caches 49
tempdb 135

buffers
allocation and caching 52
chain of 49

bulk copying. See bcp (bulk copy utility)

C
cache replacement strategy 50–53
caches, data

aging in 49
binding objects to 49
data modification and 51
deletes on heaps and 53
I/O configuration 45
inserts to heaps and 52
joins and 50
MRU replacement strategy 50
pools in 45
tempdb bound to own 135
updates to heaps and 53
wash marker 49

chain of buffers (data cache) 49
chains of pages

placement 2
cluster ratio

reservepagegap and 68, 73
clustered indexes

computing number of data pages 98
computing number of pages 91
computing size of rows 91
estimating size of 89, 96
exp_row_size and row forwarding 62–67
fillfactor effect on 58
overhead 39
performance and 39
reclaiming space with 46
reducing forwarded rows 62–67
segments and 10
size of 83, 92

columns
datatype sizes and 90, 97
fixed- and variable-length 90

Index

Index

144 Adaptive Server Enterprise

fixed-length 97
unindexed 22
variable-length 97

configuration (server)
number of rows per page 77

contention
disk I/O 4
I/O device 4
logical devices and 3
max_rows_per_page and 76
partitions to avoid 11
transaction log writes 47
underlying problems 3

controller, device 4
covered queries

index covering 21
covering nonclustered indexes

rebuilding 109
create clustered index command

sorted_data and fillfactor interaction 61
sorted_data and reservepagegap interaction 73–75

create index command
fillfactor and 56–61
locks acquired by 106
reservepagegap option 70
segments and 107
sorted_data option 107

create table command
exp_row_size option 63
reservepagegap option 69
space management properties 63

D
data

max_rows_per_page and storage 76
storage 4, 21–47

data caches
aging in 49
binding objects to 49
data modification and 51
deletes on heaps and 53
fetch-and-discard strategy 50
inserts to heaps and 52
joins and 50

tempdb bound to own 135
updates to heaps and 53
wash marker 49

data modification
data caches and 51
heap tables and 41
log space and 113
transaction log and 47

data pages 23–47
computing number of 91, 98
fillfactor effect on 58
limiting number of rows on 76
linking 39
partially full 46
text and image 25

data, inserting into an allpages locked table 41
database devices 1

parallel queries and 5
sybsecurity 6
tempdb 6

database objects
binding to caches 49
placement 1–19
placement on segments 2
storage 21–47

databases
creation speed 110
devices and 4
placement 2

dbcc tune
cleanup 117
des _bind 117

default exp_row_size percent configuration parameter
64

default fill factor percentage configuration parameter
59

default settings
max_rows_per_page 77

delete operations
heap tables 43
object size and 81

denormalization
temporary tables and 136

devices
adding for partitioned tables 15
object placement on 2

Index

Performance and Tuning Series: Physical Database Tuning 145

partitioned tables and 15
throughput, measuring 12

disk devices
performance and 1–19

disk mirroring
device placement 7
performance and 3

DOL columns
wide, variable length 34–36

E
exceed logical page size 33
exp_row_size option 62–67

create table 63
default value 63
server-wide default 64
setting before alter table...lock 122
sp_chgattribute 64
storage required by 102

expected row size. See exp_row_size option
extents

allocation and reservepagegap 68
space allocation and 25

F
fetch-and-discard cache strategy 50
fillfactor

advantages of 56
disadvantages of 57
index page size and 58
locking and 76
max_rows_per_page compared to 76
page splits and 56

fillfactor option
See also fillfactor values
create index 56
sorted_data option and 61

fillfactor values
See fillfactor option

fillfactor values
alter table...lock 59
applied to data pages 60

applied to index pages 60
clustered index creation and 59
nonclustered index rebuilds 59
reorg rebuild 59
table-level 59

first page
allocation page 27
text pointer 25

fixed-length columns
calculating space for 86
data row size of 90, 97
index row size and 91

for load option
performance and 110

formulas
table or index sizes 86–104

forwarded rows
query on systabstats 66
reserve page gap and 68

fragmentation, reserve page gap and 68

G
global allocation map (GAM) pages 27

H
hardware

terminology 1
hash-based scans

joins and 5
header information

data pages 24
heap tables 38–47

bcp (bulk copy utility) and 116
delete operations 43
deletes and pages in cache 53
guidelines for using 39
I/O and 45
I/O inefficiency and 46
insert operations on 41
inserts and pages in cache 52
locking 41
maintaining 46

Index

146 Adaptive Server Enterprise

performance limits 41
select operations on 40, 51
updates and pages in cache 53
updates on 44

I
I/O

access problems and 3
balancing load with segments 10
bcp (bulk copy utility) and 116
create database and 110
default caches and 49
devices and 2
efficiency on heap tables 46
expected row size and 67
heap tables and 45
increasing size of 45
performance and 4
recovery interval and 113
select operations on heap tables and 51
server-wide and database 5
sp_spaceused and 83
spreading between caches 135
transaction log and 47

image datatype
page size for storage 25
storage on separate device 10, 25

index covering
definition 21

index pages
fillfactor effect on 57, 58
limiting number of rows on 76

indexes
access through 21
bulk copy and 113
choosing 22
computing number of pages 92
creating 106
max_rows_per_page and 77
rebuilding 109
recovery and creation 107
size of 80
sort order changes 109
sp_spaceused size report 83

temporary tables and 138
usefulness of 39

initializing
text or image pages 103

insert operations
heap tables and 41
logging and 137
partitions and 11
performance of 3
rebuilding indexes after many 109

J
joins

data cache and 50
hash-based scan and 5
temporary tables for 136

L
large object (LOB) 10
leaf levels of indexes

fillfactor and number of rows 58
queries on 22
row size calculation 94, 98

leaf pages
calculating number in index 94, 99
limiting number of rows on 76

load balancing for partitioned tables
maintaining 18

local backups 112
locking

create index and 106
heap tables and inserts 41

logging
bulk copy and 113
minimizing in tempdb 136

logical device name 1
logical page sizes 23
LRU replacement strategy 49, 50

Index

Performance and Tuning Series: Physical Database Tuning 147

M
maintenance tasks 105–117

performance and 3
map, object allocation. See object allocation map

(OAM) pages
max_rows_per_page option

fillfactor compared to 76
locking and 76
select into effects 77

modes of disk mirroring 7
MRU replacement strategy 49

N
nesting

temporary tables and 139
networks

reducing traffic on 117
nonclustered indexes

estimating size of 94–96
size of 83, 94, 98

nonleaf rows 95
normalization

temporary tables and 136
null columns

storage of rows 24
storage size 88

null values
text and image columns 103

number (quantity of)
OAM pages 96, 100
rows (rowtotal), estimated 82
rows on a page 76

number of columns and sizes 31

O
object allocation map (OAM) pages 27

LRU strategy in data cache 49
overhead calculation and 93, 98

object size
viewing with optdiag 81

offset table
size of 24

online backups 112
optdiag utility command

object sizes and 81
optimizer

temporary tables and 137
order

presorted data and index creation 107
recovery of databases 113
result sets and performance 39

output
sp_spaceused 82

overhead 30
calculation (space allocation) 96, 100
clustered indexes and 39
object size calculations 86
row and page 86
space allocation calculation 93, 98
variable-length and null columns 88

P
page chains

placement 2
text or image data 103

page splits
fillfactor effect on 56
max_rows_per_page setting and 76
object size and 81
reducing 56

page utilization percent configuration parameter
object size estimation and 87

pages
global allocation map (GAM) 27

pages, data 23–47
bulk copy and allocations 113
calculating number of 91, 98
fillfactor effect on 58
linking 39
size 23

pages, index
calculating number of 92
calculating number of nonleaf 99
fillfactor effect on 57, 58

pages, OAM (object allocation map) 27
number of 93, 96, 98, 100

Index

148 Adaptive Server Enterprise

parallel query processing
object placement and 2
performance of 3

partitioned tables 11
bcp (bulk copy utility) and 116
devices and 15
maintaining 18
read-mostly 13
read-only 13
space planning for 12
updates and 14

performance
backups and 112
bcp (bulk copy utility) and 115
clustered indexes and 39
tempdb and 139

physical device name 1
point query 22
pointers

last page, for heap tables 41
page chain 39
text and image page 25

pools, data cache
configuring for operations on heap tables 45

precision, datatype
size and 88

prefetch
sequential 45

Q
queries

point 22
unindexed columns in 22

R
RAID devices

partitioned tables and 12
reads

disk mirroring and 7
image values 25
text values 25

recovery

index creation and 107
log placement and speed 6

recovery interval in minutes configuration parameter
I/O and 113

recreating
indexes 107

remote backups 112
replacement strategy. See LRU replacement strategy;

MRU replacement strategy
reports

sp_estspace 85
reserved pages, sp_spaceused report on 84
reservepagegap option 68–73

cluster ratios 68, 73
create index 70
create table 69
extent allocation and 68
forwarded rows and 68
sp_chgattribute 70
space usage and 68
storage required by 102

response time
table scans and 22

rounding
object size calculation and 87

row offsets 34
rows per data page 37
rows, index

size of leaf 94, 98
size of nonleaf 95

S
scans, table

performance issues 22
segments 1

changing table locking schemes 120
clustered indexes on 10
database object placement on 5, 10
nonclustered indexes on 10
tempdb 132

select * command
logging of 137

select into command
heap tables and 41

Index

Performance and Tuning Series: Physical Database Tuning 149

select operations
heaps 40

sequential prefetch 45
size

data pages 23
datatypes with precisions 88
formulas for tables or indexes 86–104
I/O 45
indexes 80
object (sp_spaceused) 82
predicting tables and indexes 89–104
sp_spaceused estimation 84
tables 80
tempdb database 132

sort operations (order by)
improving performance of 106
performance problems 126

sort order
rebuilding indexes after changing 109

sorted data, reindexing 107
sorted_data option

fillfactor and 61
reservepagegap and 73

sorted_data option, create index
sort suppression and 107

sp_chgattribute system procedure
fillfactor 57

sp_chgattribute system procedure
exp_row_size 64
reservepagegap 70

sp_estspace system procedure
advantages of 86
disadvantages of 86
planning future growth with 84

sp_help system procedure
displaying expected row size 65

sp_spaceused system procedure 82
row total estimate reported 82

space 30, 31
estimating table and index size 89–104
extents 25
for text or image storage 25
reclaiming 46
unused 26

space allocation
contiguous 29

deletes and 43
extents 25
object allocation map (OAM) pages 93, 98
overhead calculation 93, 96, 98, 100
predicting tables and indexes 89–104
sp_spaceused 84
tempdb 134
unused space within 26

space management properties 55–78
object size and 101
reserve page gap 68–73
space usage 122

speed (server)
select into 137
sort operations 106

storage management
delete operations and 43
I/O contention avoidance 4
page proximity 29
row storage 24

stored procedures
performance and 3
temporary tables and 139

striping tempdb 132
sybsecurity database

placement 6
sysgams table 27
sysindexes table

data access and 29
text objects listed in 25

system tables
data access and 29
performance and 3

T
table scans

performance issues 22
tables

estimating size of 86
heap 38–47
size of 80
size with a clustered index 89, 96

tempdb database
data caches 135

Index

150 Adaptive Server Enterprise

logging in 136
performance and 139
placement 6, 131
segments 132
space allocation 134
striping 132

temporary tables
denormalization and 136
indexing 138
nesting procedures and 139
normalization and 136
optimizing 137
performance considerations 3

text datatype
chain of text pages 103
page size for storage 25
storage on separate device 10, 25
sysindexes table and 25

thresholds
bulk copy and 115
database dumps and 113

throughput
measuring for devices 12

transaction logs
placing on separate segment 6
on same device 7
storage as heap 47

transactions
logging and 137

U
units, allocation. See allocation units
unused space

allocations and 26
update command

image data and 103
text data and 103

update operations
heap tables and 44

V
variable-length 33

variable-length rows, wide 34

W
wash marker 49
where clause

table scans and 39
wide, variable length DOL columns 34–36

BCP 35
downgrade 35
dump and loading 35
proxy tables 35

write operations
disk mirroring and 7
image values 25
serial mode of disk mirroring 8
text values 25

	Performance and Tuning Series: Physical Database Tuning
	CHAPTER 1 Controlling Physical Data Placement
	Improving performance by controling object placement
	Identifying poor object placement
	Using sp_sysmon while changing data placement

	Improving I/O performance
	Spreading data across disks to avoid I/O contention
	Avoiding physical contention in parallel join queries

	Isolating server-wide I/O from database I/O
	tempdb
	sybsecurity

	Keeping transaction logs on a separate disk
	Mirroring a device on a separate disk
	Using serial mode

	Using segments
	Creating objects on segments
	Separating tables and indexes
	Splitting large tables across devices
	Moving text storage to a separate device

	Partitioning tables for performance
	How Adaptive Server distributes partitions on devices
	RAID devices and partitioned tables

	Space planning for partitioned tables
	Read-only tables
	Read-mostly tables
	Tables with random data modification

	Adding disks when devices are full
	Adding disks when devices are full
	Adding disks when devices are nearly full

	Maintenance issues and partitioned tables
	Regular maintenance checks for partitioned tables

	CHAPTER 2 Data Storage
	Query optimization
	Query processing and page reads

	Adaptive Server pages
	Page headers and page sizes
	Data and index pages
	Large object (LOB) pages
	Extents

	Pages that manage space allocation
	Global allocation map pages
	Allocation pages
	Object allocation map pages
	How OAM pages and allocation pages manage object storage
	Page allocation keeps an object’s pages together
	Data access using sysindexes and syspartitions

	Space overheads
	Number of columns and size
	Variable-length columns in APL tables
	Variable-length columns in DOL tables

	Number of rows per data page
	Additional number of object and size restrictions

	Tables without clustered indexes
	Locking schemes
	Select operations on heap tables
	Allpages-locked heap tables
	Data-only locked heap tables

	Inserting data into an allpages-locked heap table
	Inserting data into a data-only-locked heap table
	Deleting data from a heap table
	Deleting from an allpages-locked heap table
	Deleting from a data-only locked heap table
	Deleting the last row on a page

	Updating data on a heap table
	Allpages-locked heap tables
	Data-only-locked heap tables

	How Adaptive Server performs I/O for heap operations
	Sequential prefetch, or large I/O

	Maintaining heap tables
	Using reorg rebuild to reclaim space
	Reclaiming space by creating a clustered index
	Reclaiming space using bcp

	Transaction log: a special heap table
	Asynchronous prefetch and I/O on heap tables

	Caches and object bindings
	Heap tables, I/O, and cache strategies
	LRU replacement strategy
	MRU replacement strategy

	Select operations and caching
	Data modification and caching
	Caching and inserts on heap tables
	Caching, update, and delete operations on heap tables

	CHAPTER 3 Setting Space Management Properties
	Reducing index maintenance
	Advantages of using fillfactor
	Disadvantages of using fillfactor
	Setting fillfactor values
	fillfactor examples
	No stored fillfactor values
	Table-level or clustered index fillfactor value stored

	Using the sorted_data and fillfactor options

	Reducing row forwarding
	Default, minimum, and maximum values for exp_row_size
	Default value

	Specifying an expected row size with create table
	Adding or changing an expected row size
	Setting a default expected row size server-wide
	Displaying the expected row size for a table
	Choosing an expected row size for a table
	Using optdiag to check for forwarded rows
	Querying systabstats for forwarded rows

	Conversion of max_rows_per_page to exp_row_size
	Monitoring and managing tables that use expected row size

	Leaving space for forwarded rows and inserts
	Extent allocation commands and reservepagegap
	Specifying a reserve page gap with create table
	Specifying a reserve page gap with create index
	Changing reservepagegap
	reservepagegap examples
	reservepagegap specified only for the table
	reservepagegap specified for a clustered index

	Choosing a value for reservepagegap
	Monitoring reservepagegap settings
	reservepagegap and sorted_data options
	Matching options and goals

	Using max_rows_per_page on allpages-locked tables
	Reducing lock contention
	Indexes and max_rows_per_page
	select into and max_rows_per_page
	Applying max_rows_per_page to existing data

	CHAPTER 4 Table and Index Size
	Determining the sizes of tables and indexes
	Effects of data modifications on object sizes
	Using optdiag to display object sizes
	Advantages of optdiag
	Disadvantages of optdiag

	Using sp_spaceused to display object size
	Advantages of sp_spaceused
	Disadvantages of sp_spaceused

	Using sp_estspace to estimate object size
	Advantages of sp_estspace
	Disadvantages of sp_estspace

	Using formulas to estimate object size
	Factors that can affect storage size
	Storage sizes for datatypes
	Tables and indexes used in the formulas
	Calculating table and clustered index sizes for allpages-locked tables
	Calculate the data row size
	Compute the number of data pages
	Compute the size of clustered index rows
	Compute the number of clustered index pages
	Compute the total number of index pages
	Calculate allocation overhead and total pages
	Calculate the size of the leaf index row
	Calculate the number of leaf pages in the index
	Calculate the size of the nonleaf rows
	Calculate the number of non-leaf pages
	Calculate the total number of non-leaf index pages
	Calculate allocation overhead and total pages

	Calculating the sizes of data-only-locked tables
	Calculate the data row size
	Compute the number of data pages
	Calculate allocation overhead and total pages
	Calculate the size of the index row
	Calculate the number of leaf pages in the index
	Calculate the number of non-leaf pages in the index
	Calculate the total number of non-leaf index pages
	Calculate allocation overhead and total pages

	Other factors affecting object size
	Effects of space management properties

	Very small rows
	LOB pages
	Advantages of using formulas to estimate object size
	Disadvantages of using formulas to estimate object size

	CHAPTER 5 Database Maintenance
	Running reorg on tables and indexes
	Creating and maintaining indexes
	Configuring Adaptive Server to speed sorting
	Dumping the database after creating an index
	Creating an index on sorted data
	Maintaining index and column statistics
	Rebuilding indexes

	Creating or altering a database
	Backup and recovery
	Local backups
	Remote backups
	Online backups
	Using thresholds to prevent running out of log space
	Minimizing recovery time
	Recovery order

	Bulk-copy
	Parallel bulk-copy
	Batches and bulk-copy
	Slow bulk-copy
	Improving bulk-copy performance
	Replacing the data in a large table
	Adding large amounts of data to a table
	Using partitions and multiple bulk-copy processes
	Impacts on other users

	Database consistency checker
	Using dbcc tune (cleanup)
	Using dbcc tune on spinlocks
	Determining the space available for maintenance activities
	Overview of space requirements
	Checking space usage and space available
	Checking space on segments
	Checking space requirements for space management properties
	Space management properties applied to the table
	Space management properties applied to the index

	Estimating the effects of space management properties
	If there is not enough space

	CHAPTER 6 Temporary Databases
	How temporary database management affects performance
	Using temporary tables
	Hashed (#) temporary tables
	Regular user tables
	Worktables

	Temporary databases
	Session-assigned temporary database
	Using multiple temporary databases
	Creating user temporary databases
	Configuring a default tempdb group
	Binding to groups and tempdb
	Binding applications and logins to temporary databases

	Tuning system temporary databases for performance
	Placing system tempdb
	Initial allocation of system tempdb
	Dropping the master device from tempdb segments

	Configuring user-created temporary databases
	Caching user temporary databases

	General guidelines
	Using multiple disks for parallel query performance
	Binding tempdb to its own cache
	Determining the size of temporary databases
	Minimizing logging in temporary databases
	Optimizing temporary tables

	Logging optimizations for temporary databases
	User log cache (ULC)

	Index

