SYBASE

Performance and Tuning Series: Physical
Database Tuning

Adaptive Server® Enterprise
15.0.2

DOCUMENT ID: DC00841-01-1502-01
LAST REVISED: March 2009

Copyright © 2009 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the markslisted
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

Java and al Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

PN oo 10) A I g T =T o o PRSP iX
CHAPTER 1 Controlling Physical Data Placement...........ccccoovvcvcvvviiinnneeeeeeeennn, 1
Improving performance by controling object placement................... 2
Identifying poor object placement............ccocccvvieeieeiiiiiiiiieeeeeen, 3
Using sp_sysmon while changing data placement.................... 4
Improving /O PerformMancCeccoveviiiiiiiiiieee e 4
Spreading data across disks to avoid I/O contention 4
Isolating server-wide I/O from database I/O............ccoccvvveennnnn. 5
Keeping transaction logs on a separate disK.............cccvvveeeeenn. 6
Mirroring a device on a separate disKccccccceeriiiiiiieenennnn, 7
USING SEGIMENTSiiiiiiiie et e e et e e e e e s rre e e e e e e sanrraeeeaeeeas 8
Creating objects 0N SEgMENLS.......cvvveiiiiiiiiieeiee e e 9
Separating tables and iINAEXEScccccvevveeeiicciiieeece e, 10
Splitting large tables across deviCescccoccvvvveveeeesiicinnnnn, 10
Moving text storage to a separate device..........ccccceeeriievvnnen. 10
Partitioning tables for performanceccccccccviiiiiiieii e, 11
How Adaptive Server distributes partitions on devices 11
Space planning for partitioned tables............cccccce i 12
Read-only tables ... 13
Read-mostly tables..........ccvviiiii 13
Tables with random data modification.............cccccovcveriiienens 14
Adding disks when devices are fullcccccooviiiiiiiiiiieen 15
Adding disks when devices are full ..., 15
Adding disks when devices are nearly full...............cccvvveeenen. 16
Maintenance issues and partitioned tablescccccceeeeeviiiinnenn, 18
Regular maintenance checks for partitioned tables 18
CHAPTER 2 D U= RS (o] =T =S 21
QuErY OPLIMIZALION ...eeeeiciiiiiieeee e 21
Query processing and page readscccccvveeeeiviiinnereeeeesnnns 22
AdapLiVE SEIVEN PAJES ... ceviveeeieeeeieitiirreeae e e s astiareraaa e e s ansreaneeaaees 23
Page headers and page SizeS.........ccccvcevieeiiiiiiiieeniee e 24

Performance and Tuning Series: Physical Database Tuning iii

CHAPTER 3

Data and iNdeX PAGES.......cevveeeiiiiiiiiiiiee e eiiier e e e e s snirrreeaaae s 24

Large object (LOB) PAQES.....cuieeeiiiirriiieeeeeeiiiiireeeeeeassnisnneeeeens 25
EXEENES ..o 25
Pages that manage space allocation...........cccouevvvviviieeniiiiiiieeeeeenn, 26
Global allocation Map PAGESeevvivieiiiiiiiiiiiie et 27
AllOCALION PAGES ...coooiiiieiiee ettt 27
Object allocation Map PAGESuuvvieeeiiiiiiiiiiiie e 27
How OAM pages and allocation pages manage object storage 28
Page allocation keeps an object’s pages together 29
Data access using sysindexes and syspartitions.................... 29
SPACE OVEINEAUS.........uvviiiiee ittt e a e e 30
Number of columns and Sizeccccceeiiiiiiiiiiiee e, 30
Number of rows per data Pageccccvveeeeeeiiiiiiiieee e ecriieeeenn 35
Additional number of object and size restrictions 36
Tables without clustered INAEXESccoovuiiieiiieiiiiiee e, 36
LOCKING SCREMES ...ttt 37
Select operations on heap tablescccccceveiiiiiiiiis 38
Inserting data into an allpages-locked heap table 39
Inserting data into a data-only-locked heap table.................... 40
Deleting data from a heap table...........cccccovviiiiiiiiiiiniiiiiee. 41
Updating data on a heap table............cccccooviiiiiiiiiinniiie. 42
How Adaptive Server performs I/O for heap operations.......... 43
Maintaining heap tables............cccvviievii i, 44
Transaction log: a special heap tablecccccvveeiieiiinnns 45
Asynchronous prefetch and 1/0 on heap tables....................... 46
Caches and object bindingsccvveeiieiiiicii e a7
Heap tables, I/0, and cache strategies.........ccccccceevvvvivvvenenenn. 47
Select operations and caching...........ccccuvvveeeiiiniiiiiiieee s 49
Data modification and caching...........ccccccovvviiiiiiiiniinnniiiiieee. 49
Setting Space Management Properties.......ccoccecceeeeeeieeniicniinnns 53
Reducing index MainteNanCeocccuuvriiieeeiiiiiiiiieee e essiiieeeee s 53
Advantages of using fillfactor...........ccccoovviiiiiiiiiiis 54
Disadvantages of using fillfactor............cccceeuiiiieiiiinniiiiiinnnn. 55
Setting fillfactor values...........cuveeviie i 55
fillfactor eXamples ... 56
Using the sorted_data and fillfactor options..........ccc.cc.cccvvneee. 59
Reducing row forwarding............ceeeeiieciiieiie e ee e 60
Default, minimum, and maximum values for exp_row_size..... 60
Specifying an expected row size with create table................... 61
Adding or changing an expected row Siz€...........ccccvveveeeriinnns 62
Setting a default expected row size server-wide 62
Displaying the expected row size for a tableccccceee. 63
Choosing an expected row size for atable...........cccccceveeiinnns 63

Adaptive Server Enterprise

CHAPTER 4

CHAPTER 5

Conversion of max_rows_per_page to exp_row_size............. 64
Monitoring and managing tables that use expected row size.. 65

Leaving space for forwarded rows and iNSerts...........cccoecevvvveereenn. 66
Extent allocation commands and reservepagegap........ccc...... 66
Specifying a reserve page gap with create table.................... 67
Specifying a reserve page gap with create index 68
Changing reservepagegapuueeeeeeeeiiuirieeeeesnnniiieeeeeeesnnanes 68
reservepagegap eXamples ..o 69
Choosing a value for reservepagegap......ccccceeevvvvvieeeeeeenininnns 70
Monitoring reservepagegap SettingsS..........cccvvvevveeeeiiicivveeeeeennnn 71
reservepagegap and sorted_data options...........ccccceeeeiicivvnnnn. 71

Using max_rows_per_page on allpages-locked tables.................. 73
Reducing 10Ck CONtENtION........cccoiiiiiiiiiieee e 74
Indexes and MaX_roOWS_Per_PagE........ccceuvcrrrrreeeeesinirrneeeeaenns 75
select into and Max_rows_pPer_Pagecccccveeeeveecrvnneeeeeessannns 75
Applying max_rows_per_page to existing data 75

Table and INAEX SIZ@eveiiiiiiiiii e 77

Determining the sizes of tables and indexes.........cccccccvvvvviieeeieennn, 78

Effects of data modifications on object sizes.........ccccccovviviiiennnnnnn. 79

Using optdiag to display Object SizeS.......cccccvvvviviiiiieiiiiiiiiieeeeeen 79
Advantages Of Optdiagcovvviviriiiiieiiiiiie e 80
Disadvantages of optdiagc.oovvvvriiiiieiiniiiiiiieee e 80

Using sp_spaceused to display object size.........cccccceeeviiciiiienneennn, 80
Advantages of Sp_SpPaceUSEd...........ccoevvvvieerieeiiiiiiiiiee e 81
Disadvantages of Sp_Spaceused..........cccoecuvvvverieeesiiiiiineeeeeenn, 82

Using sp_estspace to estimate object size.........ccccceeevviicviiienneennn, 82
Advantages of Sp_eSISPACE.......cccvvvieeeiiiiiiiiiiee e 84
Disadvantages of Sp_eStSPace.......cccccceevvvcvvveerieeesiiiiiineeeaeen 84

Using formulas to estimate object Size.........ccvcvvvveviieiiiiiiiiieeieeenn, 84
Factors that can affect storage Size..........ccccvvvviieiiiiiciiiiennnennn, 85
Storage sizes for datatypesevvveveeeiiiiiiiiiieee e 85
Tables and indexes used in the formulasccccevvcieeenns 87
Calculating table and clustered index sizes for allpages-locked

TADIES ... 87

Calculating the sizes of data-only-locked tables...................... 94

Other factors affecting object sizeccccccceeiiiiiiiiiiiie s 99

VEry SMAll FOWS ...cccoiiiiiiiiriee et e e 100

LOB PAJES ...iiiiiiiiiiiiiiiii ettt 101
Advantages of using formulas to estimate object size........... 102
Disadvantages of using formulas to estimate object size...... 102
Database MainteNaNCe........ccociiiiiiiiiiiiieeeeee e 103

Performance and Tuning Series: Physical Database Tuning

CHAPTER 6

Vi

Running reorg on tables and indexes.........ccccccovvvvvieeee i, 103

Creating and maintaining iINAEXESccceeviiiiiiieeeeeeeiiiiieee e 104
Configuring Adaptive Server to speed sortingccceeeeeeuees 104
Dumping the database after creating an index.............c........ 105
Creating an index on sorted data............cccvveeeeeeiiniiiiiiieneennnnn 105
Maintaining index and column Statisticsccccccoovcvviieeeennnn. 106
Rebuilding INAEXESccvviiiiieiiiii e 107

Creating or altering a databasecccccevviiviiiieei i 108

Backup and rECOVEIYcooiiiiiiiiii et 110
Local baCKUPS......covvie i 110
RemMOte DaCKUPS.......ccoiiiiiiiie e 110
ONliNE DACKUPSeviiiiiee e 110
Using thresholds to prevent running out of log space............ 111
MiNIiMiziNg reCOVETY tIMEcceeeeiiiiiiiiee e 111
RECOVEIY OFUEN ...vviiie ettt 111

BUIK-COPY ..ttt 111
Parallel DUIK-COPYoocvviiiiiiiii i1 112
Batches and bUlK-COPYcoovvviiiiiiiiiiieie e 112
SIOW DUIK-COPY ..ottt 113
Improving bulk-copy performancecccovceeeiiiniiiieeeennn, 113
Replacing the datain alarge tableccccoveiiiiiiiiieecennn, 114
Adding large amounts of datato atable...............ccccvvvveeneenn. 114
Using partitions and multiple bulk-copy processes................ 114
IMPACtS 0N OthEr USEIS ...uvvviieiiiiiiiiiecee e 114

Database consistency checker..........cccoovvvveiciiiiiiiiiie e, 115

Using dbcc tune (Cleanup)........cceeeviiciiiiieiee i 115

Using dbcc tune on SPINIOCKSccceiiiciiiiiiiec e 115

Determining the space available for maintenance activities......... 116
Overview of space requIreMeNtsooccuvveeeeeeenniiiiieeeeeeeens 117
Checking space usage and space available......................... 117
Estimating the effects of space management properties....... 120
If there is not enough SPaceccvvvveeiiiiviiiiii e, 121

Temporary DatabasesS........coooiiicviiiiiiiiiiec e 123

How temporary database management affects performance....... 123

Using temporary tables...........cccceiiiiiiieii i1 124
Hashed (#) temporary tablescccccce e, 124
Regular user tables..........cccccoe i, 125
WOTKEADIES ... 126

Temporary databases.........ccccvvveeei i 126

Session-assigned temporary databaseocccvveeiieeiiiiiinnnen, 126

Using multiple temporary databasesccccccovvevvvieeiee i, 127
Creating user temporary databasesccccccovvvviiieeiieeniinnns 127
Configuring a default tempdb groupccccccevviiiiiiiiinnniis 128

Adaptive Server Enterprise

Binding to groups and tempdb.........ccccceviviiiiiiiie e, 128

Tuning system temporary databases for performance.................. 129

Placing system tempdb...........ccccccciiiiiiee i, 129

Configuring user-created temporary databases 132

General QUIdElINES......cooooviiiiiiiiieie e 132

Logging optimizations for temporary databases.............ccccceeeenn. 139

User 10g cache (ULC)oooiiiiiiiiiiiiiiiiieee e 140

L0 = P SPSPPPRPPR 141

Performance and Tuning Series: Physical Database Tuning Vii

Viii Adaptive Server Enterprise

About This Book

Audience

How to use this book

Related documents

Thisbook is for system administrators who are configuring the physical
properties of Adaptive Server™.

Chapter 1, “ Controlling Physical Data Placement” —explains how to
improve performance by controlling the location of tables and
indexes.

Chapter 2, “Data Storage” — describes how Adaptive Server stores
data rows on pages, and how those pages are used in select and data
modification statements when there are no indexes.

Chapter 3, “ Setting Space Management Properties’ — describes the
four major space management propertiesfor controlling space usage:
fillfactor, expected row size, reserve page gap, and max rows per

page.

Chapter 4, “Table and Index Size” — explains how to determine the
current sizes of tables and indexes and how to estimate table size for
space planning.

Chapter 5, “ Database Maintenance” — explains how maintenance
activities can affect the performance of other Adaptive Server
activities, and how to improve the performance of maintenance tasks.

Chapter 6, “ Temporary Databases’ — discusses the performance
issues associated with using temporary databases.

The Adaptive Server Enterprise documentation set consists of:

The release bulletin for your platform — contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be avail able on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use
the Sybase Product Manuals Web site.

The Installation Guide for your platform — describes installation,
upgrade, and some configuration procedures for all Adaptive Server
and related Sybase products.

Performance and Tuning Series: Physical Database Tuning iX

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 15.0, the system changes added to support
those features, and changes that may affect your existing applications.

ASE Replicator Users Guide — describes how to use the Adaptive Server
Replicator feature to implement basic replication from aprimary server to
one or more remote Adaptive Servers.

Component Integration Services Users Guide — explains how to use the
Component I ntegration Services feature to connect remote Sybase and
non-Sybase databases.

The Configuration Guide for your platform — provides instructions for
performing specific configuration tasks.

Enhanced Full-Text Search Specialty Data Sore User’s Guide — describes
how to use the Full-Text Search feature with Verity to search Adaptive
Server data

Glossary — defines technical terms used in the Adaptive Server
documentation.

Historical Server Users Guide— describes how to use Historical Server to
obtain performance information for SQL Server® and Adaptive Server.

Javain Adaptive Server Enterprise— describeshow to install and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Job Scheduler Users Guide — provides instructions on how to install and
configure, and create and schedule jobs on alocal or remote Adaptive
Server using the command line or a graphical user interface (GUI).

Messaging Service Users Guide — describes how to use Real Time
Messaging Services to integrate TIBCO Java Message Service and IBM
WebSphere MQ messaging services with all Adaptive Server database
applications.

Monitor Client Library Programmers Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Monitor Server Users Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Performance and Tuning Series —is a series of books that explain how to
tune Adaptive Server for maximum performance:

Adaptive Server Enterprise

About This Book

e Basics— contains the basics for understanding and investigating
performance questions in Adaptive Server.

e Improving Performance with Satistical Analysis— describes how
Adaptive Server stores and displays statistics, and how to use the set
statistics command to analyze server statistics.

e Locking and Concurrency Control — describes how to use locking
schemes to improve performance, and how to select indexes to
minimize concurrency.

e Monitoring Adaptive Server with sp_sysmon — describes how to use
sp_sysmon to monitor performance.

* Monitoring Tables — describes how to query Adaptive Server
monitoring tables for statistical and diagnostic information.

e Physical Database Tuning — describes how to manage physical data
placement, space allocated for data, and the temporary databases.

e Query Processing and Abstract Plans — describes how the optimizer
processes queries and how to use abstract plansto change some of the
optimizer plans.

e Quick Reference Guide — provides a comprehensive listing of the names
and syntax for commands, functions, system procedures, extended system
procedures, datatypes, and utilities in a pocket-sized book (regular size
when viewed in PDF format).

* Reference Manual —is a series of books with detailed Transact-SQL ™
information:

« Building Blocks — discusses datatypes, functions, global variables,
expressions, identifiers and wildcards, and reserved words.

¢ Commands — documents commands.

e Procedures—includes system procedures, catal og stored procedures,
system extended stored procedures, and dbcc stored procedures.

e Tables— discusses system tables and dbcc tables.
e System Administration Guide —

e \olume 1 — provides an introduction to the basics of system
administration, including a description of configuration parameters,
resource issues, character sets, sort orders, and instructions for
diagnosing system problems. The second part of thisbook isan in-
depth description of security administration.

Performance and Tuning Series: Physical Database Tuning Xi

Xii

* Volume 2 —includes instructions and guidelines for managing
physical resources, mirroring devices, configuring memory and data
caches, managing multiprocessor servers and user databases,
mounting and unmounting databases, creating and using segments,
using the reorg command, and checking database consistency. The
second half of this book describes how to back up and restore system
and user databases.

System Tables Diagram — illustrates system tables and their entity
relationshipsin aposter format. Full-size available only in print version; a
compact version is available in PDF format.

Transact-SQL Users Guide — documents Transact-SQL, the Sybase-
enhanced version of the relational database language. This manual serves
as a textbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

Troubleshooting Series —

e Troubleshooting: Error Messages Advanced Resolutions — contains
troubleshooting procedures for problems you may encounter. The
problems discussed here are the ones the Sybase Technical Support
staff hear about most often.

e Troubleshooting and Error Messages Guide — contains detailed
instructions on how to resolvethe most frequently occurring Adaptive
Server error messages. Most of the messages presented here contain
error numbers (from the master..sysmessages table), but some error
messages do not have error numbers, and occur only in the Adaptive
Server error log.

Users Guide for Encrypted Columns— describes how to configure and use
encrypted columns with Adaptive Server.

Using Adaptive Server Distributed Transaction Management Features —
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase Failover to configure an Adaptive Server as
acompanion server in a high availability system.

Unified Agent and Agent Management Console — describes the Unified
Agent, which provides runtime services to manage, monitor, and control
distributed Sybase resources.

Adaptive Server Enterprise

About This Book

Utility Guide — documents the Adaptive Server utility programs, such as
isgl and bep, which are executed at the operating system level.

e Web Services Users Guide — explains how to configure, use, and
troubleshoot Web services for Adaptive Server.

e XAlnterface Integration Guide for CICS Encina, and TUXEDO —
provides instructions for using the Sybase DTM XA interface with
X/Open XA transaction managers.

e XML Servicesin Adaptive Server Enterprise—describesthe Sybase native
XML processor and the Sybase Java-based XML support, introduces
XML in the database, and documents the query and mapping functions
that are available in XML services.

Other sources of Use the Sybase Getting Started CD, the SyBooks CD™, and the Sybase
information Product Manuals Web site to |earn more about your product:

e The Getting Started CD contains release bulletins and installation guides
in PDF format, and may also contain other documents or updated
information not included on the SyBooks CD. It isincluded with your
software. To read or print documents on the Getting Started CD, you need
Adobe Acrobat Reader, which you can download at no charge from the
Adobe Web site using alink provided on the CD.

e The SyBooks CD contains product manuals and is included with your
software. The Eclipse-based SyBooks browser allows you to access the
manuals in an easy-to-use, HTM L -based format.

Some documentation may be provided in PDF format, which you can
access through the PDF directory on the SyBooks CD. To read or print the
PDF files, you need Adobe Acrobat Reader.

Refer to the SyBooks Installation Guide on the Getting Started CD, or the
README.txt file on the SyBooks CD for instructions on installing and
starting SyBooks.

e The Sybase Product Manuals Web siteisan onlineversion of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at
http://lwww.sybase.com/support/manuals/.

Sybﬁse Vse{)tifications Technical documentation at the Sybase Web site is updated frequently.
on the We

Performance and Tuning Series: Physical Database Tuning Xiii

[IFinding the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocsl/.

2 Click Certification Report.

3 IntheCertification Report filter select aproduct, platform, and timeframe
and then click Go.

4 Click aCertification Report title to display the report.

[IFinding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at
http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

[ICreating a personalized view of the Sybase Web site (including support
pages)
Set up aMySybase profile. MySybaseisafree service that allowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.
Sybase EBFs and
software
maintenance

[IFinding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at
http://lwww.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

Select a product.

4 Specify atimeframe and click Go. A list of EBF/Maintenance releasesis
displayed.

Xiv Adaptive Server Enterprise

About This Book

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “ Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions

SQL isafree-formlanguage. Thereare no rulesabout the number of wordsyou

can put on aline or where you must break aline. However, for readability, all
examples and most syntax statementsin this manual are formatted so that each
clause of astatement beginson anew line. Clausesthat have morethan one part
extend to additional lines, which are indented. Complex commands are
formatted using modified Backus Naur Form (BNF) notation.

Table 1 showsthe conventionsfor syntax statementsthat appear in thismanual:

Table 1: Font and syntax conventions for this manual

Element

Example

Command names, procedure hames, utility names,
and other keywords display in sans serif font.

select

sp_configure

Database names and datatypes are in sans serif font.

master database

Book names, file names, variables, and path namesare
initalics.

System Administration Guide
sgl.ini file

column_name
$SYBASE/ASE directory

Variables—or words that stand for valuesthat you fill
in—when they are part of aquery or statement, arein
italicsin Courier font.

select column_name
from table name
where search conditions

Type parentheses as part of the command.

compute row aggregate (column_name)

Double colon, equals sign indicates that the syntax is
written in BNF notation. Do not type this symbal.
Indicates “is defined as”.

Curly braces mean that you must choose at least one
of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean that to choose one or more of the
enclosed optionsisoptional. Do not type the brackets.

[cash | check | credit]

The comma means you may choose as many of the
options shown as you want. Separate your choices
with commas as part of the command.

Performance and Tuning Series: Physical Database Tuning

cash, check, credit

XV

Element

Example

Thepipeor vertical bar (|) meansyoumay selectonly cash | check | credit
one of the options shown.

Anéllipsis(...) meansthat you canrepeat thelast unit buy thing = price [cash | check | credit]
as many times asyou like. [, thing = price [cash | check | credit]]...

You must buy at least onething and giveits price. You may
choose amethod of payment: one of the itemsenclosed in
sguare brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you
buy, giveits name, its price, and (optionally) a method of
payment.

XVi

e Syntax statements (displaying the syntax and all options for a command)
appear as follows:

sp_dropdevice [device_name]
For a command with more options:

select column_name
from table_name
where search_conditions

In syntax statements, keywords (commands) are in normal font and
identifiersare in lowercase. Italic font shows user-supplied words.

» Examples showing the use of Transact-SQL commands are printed like
this:

select * from publishers

e Examples of output from the computer appear as follows:

pub name city state
New Age Books Boston MA
Binnet & Hardley Washington DC
Algodata Infosystems Berkeley CA

(3 rows affected)

In this manual, most of the examples arein lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same.

Adaptive Server sensitivity to the case of database objects, such astable names,
depends on the sort order installed on Adaptive Server. You can change case
sensitivity for single-byte character sets by reconfiguring the Adaptive Server
sort order. For more information, see the System Administration Guide.

Adaptive Server Enterprise

About This Book

Accessibility
features

If you need help

Thisdocument is availablein an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technol ogy such as
ascreen reader, or view it with a screen enlarger.

Adaptive Server HTML documentation has been tested for compliance with
U.S. government Section 508 Accessibility requirements. Documents that
comply with Section 508 generally also meet non-U.S. accessibility guidelines,
such as the World Wide Web Consortium (W3C) guidelines for Web sites.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT asinitias, and MixedCase Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase
Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve aproblem using the manuals or online help, please havethe
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Performance and Tuning Series: Physical Database Tuning XVii

Xviii Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data
Placement

This chapter explains how to improve performance by controlling the
location of tables and indexes.

Topic Page
Improving performance by controling object placement 2
Improving 1/0O performance 4
Partitioning tables for performance 11
Space planning for partitioned tables 12
Adding disks when devices are fulll 15
Maintenance issues and partitioned tables 18

To make the most of physical database tuning, understand these
distinctions between logical and physical devices:

e Thephysica disk or physical device isthe hardware that stores the
data.

e Adatabasedeviceor logical deviceisall or part of aphysical disk that
has been initialized (with the disk init command) for use by Adaptive
Server. A database device can be an operating system file, an entire
disk, or adisk partition.

See the Installation Guide and the Configuration Guide for your
platform for information about specific operating system constraints
on disk and file usage.

e A segment isanamed collection of database devices used by a
database. The database devicesthat make up asegment can belocated
on separate physical devices.

Performance and Tuning Series: Physical Database Tuning 1

Improving performance by controling object placement

A partition isasubset of atable. Partitions are database objectsthat can be
managed independently. You can split partitioned tables, so multiple tasks
can access it smultaneously. You can place a partition on a specific
segment. If each partition is on a different segment and each segment has
its own database device, queries accessing these tables benefit from
improved parallelism. See create table in the Reference Manual:
Commands and the Transact-SQL Users Guide for more information
about creating and using partitions.

Use sp_helpdevice, sp_helpsegment, and sp_helpartition to get more
information about devices, segments, and partitions.

Improving performance by controling object placement

Adaptive Server allows you to control the placement of databases, tables, and
indexes across physical storage devices, which can improve performance by
equalizing the reads and writesto disk across many devicesand controllers. For
example, you can:

Place database data segments on a specific device or devices, storing the
database log on a separate physical device so that reads and writesto the
log do not interfere with data access.

Spread large, heavily used tables across several devices.

Place specific tables or nonclustered indexes on specific devices. For
example, you might place atable on a segment that spans several devices
and its nonclustered indexes on a separate segment.

Place the text and image page chain for atable on a separate device from
the table. The table stores a pointer to the actual datavaluein the separate
database structure, so each accessto atext or image column requires at
least two I/Os.

Distribute tables evenly across partitions on separate physical disksto
provide optimum parallel query performance and improve insert and
update performance.

For multiuser and multi-CPU systems that perform alot of disk I/O, be
especialy aware of physical and logical device issues and the distribution of
I/O across devices:

Plan a balanced separation of objects across logical and physical devices.

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

e Useenough physical devices, including disk controllers, to ensure
physical bandwidth.

e Useanincreased number of logical devicesto ensure minimal contention
for internal 1/0O queues.

e Determine and use a number of partitions that allows parallel scansand
meets query performance goals.

Identifying poor object placement
Your system may benefit from more appropriately placed objectsif:

* Single-user performance is satisfactory, but response time increases
significantly when Adaptive Server executes multiple processes.

e Accessto amirrored disk takes twice as long as access to an unmirrored
disk.

* Objectsthat are frequently accessed (* hot objects’) degrade the
performance of queries that use the tablesin which these objects are
located.

* Maintenance activities take along time.

« tempdb performanceis affected if it shares disk space with other
databases. Most system procedures and applications use tempdb as their
workspace, and are adversely affected if tempdb sharesthe same disk with
other databases.

« insert performance is poor on heavily used tables.

e Queriesthat runin parallel perform poorly, due to an imbalance of data
pages on partitions or devices, or they run in serial, due to extreme
imbalance.

If you experience problems due to disk contention and other problems related
to object placement, check for and correct these issues:

* Random-access (1/O for data and indexes) and serial-access (log 1/0)
processes use the same disks.

« Database processes and operating system processes use the same disks.
e Serial disk mirroring.
» Database logging or auditing takes place on the same disk as data storage.

Performance and Tuning Series: Physical Database Tuning 3

Improving 1/O performance

Using sp_sysmon while changing data placement

Use sp_sysmon to determine whether data placement across physical devices
is causing performance problems. Check the entire sp_sysmon output during
tuning to verify how the changes affect al performance categories.

Pay special attention to the output associated with:
* 1/O device contentions

e All-pageslocked heap tables

e Last pagelocks on heaps

e Disk I/O management

You can also use Monitor Server or the monitoring tables to help identify
problems.

See Monitoring Adaptive Server with sp_sysmon and Monitoring Tables, which
are both part of the Performance and Tuning Series.

Improving I/O performance
To improve I/O performance in Adaptive Server, try:
e Spreading data across disks to avoid I/O contention
» Isolating server-wide I/O from database 1/0
e Separating data storage and log storage for frequently updated databases
e Keeping random disk I/O away from sequential disk I/0O
e Mirroring devices on separate physical disks

» Using partitions to distribute table data across devices

Spreading data across disks to avoid I/O contention

Avoid bottlenecks by spreading data storage across multiple disksand multiple
disk controllers.

4 Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

» Place databases with critical performance requirements on separate
devices. If possible, also use separate controllers than those used by other
databases. Use segments as needed for critical tables, and partitions as
needed for parallel queries.

e Put heavily used and frequently joined tables on separate disks.

e Use segmentsto place tables and indexes on their own disks.

Avoiding physical contention in parallel join queries

Figure 1-1illustratesajoin of two tables, orders_tbl and stock_tbl. Thereare 10
worker process available: orders_tbl has 10 partitions on 10 different physical
devicesandistheouter tableinthejoin; stock_tbl isnonpartitioned. Theworker
processes have a problem with access contention on orders_tbl, but each worker
process must scan stock_tbl. There may be physical 1/O contention if the entire
table does not fit into cache. In the worst case, 10 worker processes attempt to
access the physical device on which stock_tbl resides. Avoid physical 1/0
contention by creating a named cache that contains the entire table stock_tbl.

Another way to reduce or eliminate physical 1/0 contention isto partition both
orders_tbl and stock_tbl and distribute those partitions on different physical
devices.

Figure 1-1: Joining tables on different physical devices

orders_tbl stock_tbl

W

N

Isolating server-wide 1/O from database I/O

Place system databases with heavy 1/0 requirements (for example, tempdb and
sybsecurity) on physical disksand controllers other than where application
databases reside.

Performance and Tuning Series: Physical Database Tuning 5

Improving 1/O performance

tempdb

sybsecurity

Itisaheavily used database that affects all processes on the server and is used
by most system procedures. It is automatically installed on the master device.
If more spaceisneeded, you can expand tempdb to other devices. If you expect
tempdb to be quite active, place it on adisk—the fastest available—that is not
used for other important database activity. .

On some UNIX systems, 1/0 to operating system filesis significantly faster
than 1/O to raw devices. tempdb is always re-created, rather than recovered,
after a shutdown,; therefore, you may be able to improve performance by
moving tempdb onto an operating system fileinstead of araw device. Test this
on your own system.

See Chapter 6, “ Temporary Databases,” for more placement advice for
tempdb.

Once enabled, the auditing system performs frequent /O to the sysaudits table
in the sybsecurity database. If your applications perform a significant amount
of auditing, place sybsecurity on adisk that is used for tables where fast
response timeis not critical. Ideally, place sybsecurity on its own device.

Use the threshold manager to monitor free space to avoid suspending user
transactions if the audit database fills up. See Chapter 16, “Managing Free
Space with Thresholds,” In System Administration Guide, Volume 2 for
information about determing appropriate thresholds.

Keeping transaction logs on a separate disk

Place transaction logs on a separate segment, preventing the logs from
competing with other objects for disk space. Placing the logs on a separate
physical disk:

» Improves performance by reducing I/O contention
» Ensuresfull recovery in the event of hard disk failures on the data device

e Speedsrecovery, since simultaneous asynchronous prefetch requests can
read ahead on both the log device and the data device without contention

Both create database and alter database require you to use with override before
you can place the transaction log on the same device as the data.

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

The log device can experience significant 1/0 on systems with heavy update
activity. Adaptive Server writes |og pages to disk when transactions commit,
and may need to read log pages into memory to replace deferred updates with
deferred operations.

When log and data are on the same database devices, the extents allocated to
store log pages are not contiguous; log extents and data extents are mixed.
When the log is on its own device, Adaptive Server alocates the extents
sequentially, thusreducing disk head travel and seeks, and maintaining ahigher
1/O rate.

Adaptive Server bufferslog records for each user in auser log cache, which
reduces contention for writing to the log page in memory. If log and data are
on the same devices, user log cache buffering is disabled, which resultsin
serious performance degradation on SMP systems.

See Chapter 6, “Overview of Disk Resource Issues,” in the System
Administration Guide: Volume 1.

Mirroring a device on a separate disk

Disk mirroring is ahigh availability feature that allows Adaptive Server to
duplicate the contents of an entire database device.

See Chapter 2, “Disk Mirroring,” in the System Administration Guide,
\olume 2.

If you mirror data, put the mirror on a separate physical disk from the device
that it mirrors, minimizing mirroring’s performance impact. Disk hardware
failure often results in whole physical disks being lost or unavailable

If you do not use mirroring, or use operating system mirroring, you may see
slight performance improvements by setting disable disk mirroring
configuration paramter to 1.

Mirroring can increase the time taken to compl ete disk writes, since the writes
are executed on both disks, either serially or simultaneously. Disk mirroring
has no effect on the time required to read data.

Mirrored devices use one of two modes for disk writes:

* Nonserial mode — can regquire more time to complete a write than an
unmirrored write requires. In nonserial mode, both writes start at the same
time, and Adaptive Server waits for both to complete. The time to
complete nonserial writes is the greater of the two 1/O times.

Performance and Tuning Series: Physical Database Tuning 7

Using segments

Using serial mode

Serial mode — increases the time required to write data even more than
nonserial mode. Adaptive Server starts the first write and waits for it to
complete before starting the second write. The time required is the sum of
the two 1/0 times.

Despite its performance impact, serial mode is the default mode because it
guards against failures that occur while awriteis taking place.

Since seria mode waits until the first writeis complete before starting the
second write, asingle failure cannot affect both disks. Using nonserial mode
improves performance, but you risk losing data if afailure occurs that affects
both writes.

Warning! If your mirrored database system must be absolutely reliable, use
serial mode.

Using segments

A segment isalabel that pointsto one or more logical devices. Use segments
to improve throughput by:

Splitting large tables across disks, including tables that are partitioned for
parallel query performance

Separating tables and their nonclustered indexes across disks
Separating table partitions and index across the disks

Placing the text and image page chain on a disk other than the one on
which the table resides, where the pointers to the text values are stored

In addition, you can use segments to control space usage:

Tables or partitions cannot grow larger than their segment all ocation. You
can use segments to limit the table or partition size.

Tables or partitions on other segments cannot use the space allocated to
objects on another segment.

The threshold manager monitors space usage.

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

Creating objects on segments

Each database can use up to 32 segments, including the 3 segments that are
created by the system (system, log segment, and default) when a database is
created.

Tablesand indexesare stored on segments. |f you execute create table Or create
index without specifying a segment, the objects are stored on the default
segment for the database. Naming a segment in either of these commands
creates the object on that segment. You can use the sp_placeobject system
procedure to assign all future space all ocations to take place on a specified
segment, so tables can span multiple segments.

A system administrator must initialize the device with disk init and allocate the
deviceto the database. Alternatively, the database owner can do thisusing
create database Or alter database.

Once the devices are available to the database, the database owner or object
owners can create segments and place objects on the devices.

When you create a user-defined segment, you can place tables, indexes, and
partitions on that segment using the create table or create index commands.

create table tableA(...) on segl
create nonclustered index myix on tableB(...)
on segz

This example creates the tabl e fictionsales, which is partitioned by range
according to values in the date column:

create table fictionsales
(store_id int not null,
order num int not null,
date datetime not null)
partition by range (date)

(gl values <= ("3/31/2005") on segl,
g2 values <= ("6/30/2005") on seg2,
g3 values <= ("9/30/2005") on seg3,
g4 values <= ("12/31/2005") on seg4)

By controlling the location of critical tables, you can arrange for these tables
and indexes to be spread across disks.

Performance and Tuning Series: Physical Database Tuning 9

Using segments

Separating tables and indexes

Use segments to place tables on one set of disks and nonclustered indexes on
another set of disks. You cannot place a clustered index on adifferent segment
than its data pages. When you create a clustered index using the on
segment_name clause, the entire table is moved to the specified segment, and
the clustered index treeis built on that segment.

You can improve performance by placing nonclustered indexes on a separate
segment.

Splitting large tables across devices

Segments can span multiple devices, so you can use them to spread data across
one or more disks. Thiscan help balancethe I/O load for large and busy tables.
For parallel queries, it is essential that you create segments across multiple
devicesfor I/O parallelism during partitioned-based scans.

See Chapter 8, “Creating and Using Segments,” in the System Administration
Guide, Volume 2.

Moving text storage to a separate device

10

When atable includes atext, image, or Java off-row datatype, the table itself
stores a pointer to the datavalue. The actual datais stored on a separate linked
list of pages called alarge object chain (LOB).

Writing or reading aLOB valuerequires at |east two disk accesses, oneto read
or writethe pointer, and one for subsequent reads or writesfor the data. If your
application frequently reads or writes LOB values, you can improve
performance by placing the LOB chain on a separate physical device. Isolate
LOB chains on disks that are not busy with other application-related table or
index access.

When you create atable with LOB columns, Adaptive Server createsarow in
sysindexes and syspartitions for the object that storesthe LOB data. The value
in the name column is the table name prefixed with a“t”; the indid is always
255. If you have multiple LOB columnsin asingle table, thereis only one
object used to store the data. By default, this object is placed on the same
segment as the table.

Use sp_placeobject to move all future allocations for the LOB columnsto a
separate segment.

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

Partitioning tables for performance

Partitioning a table can improve performance for several types of processes.

« Partitioning allows parallel query processing to access each partition of the
table. Each worker processin a partitioned-based scan reads a separate
partition.

« Partitioning allows you to load atable in parallel with bulk copy.
For more information on parallel bep, see the Utility Programs manual.

« Partitioning allows tou to distribute atable’'s I/O over multiple database
devices.

e Semantic partitioning (range-, hash- and list-partitioned tables) improves
response time because the query processor eliminates some partitions.

« Partitioning provides multiple insertion points for a heap table.

The tables you choose to partition and the type of partition depend on the
performanceissuesyou encounter and the performance goal sfor the querieson
the tables.

See Chapter 10, “Partitioning Tables and Indexes” in the Transact-SQL Users
Guide book for more information about, and examples using and creating
partitions.

How Adaptive Server distributes partitions on devices

In versions earlier than 15.0, Adaptive Server automatically maintained an
affinity between partitionsand devices when you created multiple partitionson
a segment that was mapped to multiple database devices. Thisis no longer the
case in Adaptive Server 15.0 and later; all partitions are created on the first
device. To achieve affinity between partitions and devices:

1 Create asegment for a particular device.
2 Explicitly place a partition on that segment.

You can create as many as 29 user segments, and you must use the alter table
syntax from Adaptive Server version 15.0 and later to create the segments,
because the earlier syntax (alter table t partition 20) does not support explicit
placement of partitions on segments.

Achievethebest 1/0 performance for parallel queries by matching the number
of partitions to the number of devicesin the segment.

Performance and Tuning Series: Physical Database Tuning 11

Space planning for partitioned tables

You can partition tables that use the text, image, or Java off-row data types.
However, the columnsthemselves are not partitioned—they remain onasingle
page chain.

RAID devices and partitioned tables

A striped redundant array of independent disks (RAID) device can contain
multiple physical disks, but Adaptive Server treats such adevice asasingle
logical device. You can use multiple partitions on the singlelogical device and
achieve good parallel query performance.

To determine the optimum number of partitionsfor your application mix, start
with one partition for each device in the stripe set. Use your operating system
utilities (vmstat, sar, and iostat on UNIX; Performance Monitor on Windows)
to check utilization and latency.

To check maximum device throughput, use select count(*), using the index
table_name clause to force atable scan if anonclustered index exists. This
command requires minimal CPU effort and creates very little contention for
other resources.

Space planning for partitioned tables

12

When you are planning for partitioned tables, consider how to maintain;

e Load balance across the disk for partition-based scan performance and for
1/O parallelism

» Cclustered indexes, which require approximately 120% of the space
occupied by the table to drop and re-create the index or to run reorg rebuild

The space planning decisions you make depend on the:
e Availahility of disk resources for storing tables

e Nature of your application mix and of the incoming data (for semantic-
partitioned tables)

Estimate the frequency with which your partitioned tables need maintenance:
some applications need indexesto bere-created frequently to maintain balance,
while others need little maintenance.

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

Read-only tables

For those applications that need frequent load balancing for performance,
having space in which to re-create a clustered index or run reorg rebuild
provides fastest and easiest results. However, since creating clustered indexes
requires copying the data pages, the space available on the segment must be
equal to approximately 120% of the space occupied by the table.

See " Determining the space available for maintenance activities’ on page 116.

The following descriptions of read-only, read-mostly, and random data
maodification provide a general picture of the issuesinvolved in object
placement and in maintaining partitioned tables.

See Chapter 10, “Partitioning Tables and Indexes’ in the Transact-SQL Users
Guide for information about the specific tasks required during maintenance.

Tablesthat are read-only, or that are rarely changed, can completely fill the
space available on a segment, and do not require maintenance. If atable does
not require a clustered index, you can use parallel bulk copy (paralel bep) to
completely fill the space on the segment.

If aclustered index is needed, the table’s data pages can occupy up to 80% of
the space in the segment. The clustered index tree requires about 20% of the
space used by the table.

This space requirement varies, depending on the length of the key. Initially,
loading the datainto the table and creating the clustered index requires several
steps, but once you have performed these steps, maintenance is minimal.

Read-mostly tables

The guidelinesabovefor read-only tables al so apply to read-mostly tableswith
very few inserts. The only exceptions are as follows:

e If there areinserts to the table, and the clustered index key does not
bal ance new space allocations evenly across the partitions, the disks
underlying some partitions may become full, and new extent allocations
aremadeto adifferent physical disk. Thisprocessiscalled extent stealing.

Performance and Tuning Series: Physical Database Tuning 13

Space planning for partitioned tables

In huge tables spread across many disks, asmall percentage of allocations
to other devicesis not a problem. Detect extent stealing by using
sp_helpsegment to check for devices that have no space available, and by
using sp_helpartition to check for partitions that have disproportionate
numbers of pages.

If the imbalance in partition size leads to degradation in parallel query
response times or optimization, you may want to balance the distribution
by using one of the methods described in Chapter 10, “Partitioning Tables
and Indexes’ in the Transact-SQL Users Guide.

If the table is a heap, round-robin-partitioned table, the random nature of
heap table inserts should keep partitions balanced.

Take care with large bulk copy in operations. However, if thetableisa
semanti ¢ partitioned table, consider changing the partition condition using
alter table... partition by for appropriate load balance.

You can use paralléel bulk copy (parallel bep) to send rowsto the partition
with the smallest number of pagesto balance the dataacross the partitions.
See Chapter 4, “Using bep to Transfer Datato and from Adaptive Server,”
in the Utility Guide.

Tables with random data modification

Tables with clustered indexes that experience many inserts, updates, and
deletes over time tend to lead to data pages that are approximately 70 to 75%
full. This can lead to performance degradation in several ways:

14

More pages must be read to access a given number of rows, requiring
additional 1/0 and wasting data cache space.

On tables that use alpages locking, the performance of large I/0 and
asynchronous prefetch suffers because the page chain crosses extents and
allocation units.

Buffers brought in by large 1/0 may be flushed from cache before all of
the pages are read. The asynchronous prefetch look-ahead set sizeis
reduced by cross-allocation unit hops while following the page chain.

For tablesthat use data-only locking, large I/O and asynchronous prefetch
performance suffers because the forward pages cross extents and
allocation units.

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

Once the fragmentati on starts to degrade on application performance, perform
maintenance, keeping in mind that dropping and recreating clustered indexes
requires 120% of the space occupied by the table.

If space is unavail able, maintenance becomes more complex and takes longer.
Thebest, and often cheapest, solution isto add enough disk capacity to provide
room for theindex creation.

Adding disks when devices are full

Simply adding disks and recreating indexes when partitions are full may not
solve load-balancing problems. If a physical device that holds a partition
becomes completely full, the data-copy stage of recreating an index cannot
copy datato that physical device.

If aphysical deviceisamost completely full, recreating the clustered index
does not always succeed in establishing a good load balance.

Adding disks when devices are full

The result of creating a clustered index when a physical deviceis completely
full isthat two partitions are created on one of the other physical devices.

devices?2 and device3 are completely full, as shown in Figure 1-2.

Figure 1-2: A table with three partitions on three devices

devicel device2 device3

In the example above, adding two devices, repartitioning the table to use five
partitions, and dropping and recreating the clustered index produces the
following results:

Performance and Tuning Series: Physical Database Tuning 15

Adding disks when devices are full

Device 1 One partition, approximately 40% full.

Devices2 and 3 Empty. These devices had no free space when create index
started, so a partition for the copy of the index cannot be
created on the device.

Devices4 and 5 Each device has two partitions, and each is 100% full.

Figure 1-3 shows these results.

Figure 1-3: Devices and partitions after create index

devicel device2 device3 device4 deviceb

I Dpata
[] Empty

The only solution, once a device becomes completely full, isto bulk-copy the
data out, truncate the table, and copy the data into the table again.

Adding disks when devices are nearly full

If adeviceisnearly full, recreating a clustered index does not balance data
across devices. Instead, the device that is nearly full stores asmall portion of
the partition, and the other space all ocations for the partition steals extents on
other devices. Figure 1-4 shows a table with nearly full data devices.

16 Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

Figure 1-4: Partitions almost completely fill the devices

devicel device2 device3

After adding devices and recreating the clustered index, the result might be
similar to the results shown in Figure 1-5.

- Data
L JEmpty

Figure 1-5: Extent stealing and unbalanced data distribution

devicel device2 device3 device4 deviceb

- Data

|:| Empty
Stolen
pages

Once the partitions on device2 and device3 use the small amount of space
available, they start stealing extents from device4 and devices.

Re-creating the indexes another time may lead to amore balanced distribution.
However, if one of the devicesis nearly filled by extent stealing, re-creating
indexes again does not solve the problem.

Using bulk copy to copy the data out and back in again is most effective
solution to this form of imbalance.

To avoid situations such as these, monitor space usage on the devices, and add
space early.

Performance and Tuning Series: Physical Database Tuning 17

Maintenance issues and partitioned tables

Maintenance issues and partitioned tables

Maintenance activity requirements for partitioned tables depend on the
frequency and type of updates performed on the table.

Partitioned tables that require little maintenance include:

Tables that are read-only or that experience very few updates. For tables
that have few updates, only periodic checks for balance are required.

Tables where inserts are well-distributed across the partitions. Random
insertsto partitioned heap tables and insertsthat are evenly distributed due
to a clustered index key that places rows on different partitions do not
develop skewed distribution of pages.

If data modifications lead to space fragmentation and partially filled data
pages, you may need to recreate the clustered index.

Heap tables where inserts are performed by bulk copy. You can use
parallel bulk copy to direct the new datato specific partitionsto maintain
load balancing.

Partitioned tables that require frequent monitoring and maintenance include
tables with clustered indexes that tend to direct new rows to a subset of the
partitions. An ascending key index is likely to require more frequent

mai ntenance.

Regular maintenance checks for partitioned tables

Routine monitoring for partitioned tables should include the following types of
checks, in addition to routine database consistency checks:

Use sp_helpartition to check the balance on partitions. If some partitions
are significantly larger or smaller than the average, recreate the clustered
index to redistribute data.

Use sp_helpsegment to check the balance of space on underlying disks.

If you recreate the clustered index to redistribute data for parallel query
performance, check for devicesthat are nearing 50% full. Adding space
before devices become too full avoids the complicated procedures
described earlier in this chapter.

Use sp_helpsegment to check the space available as free pages on each
device, or use sp_helpdb to check for free kilobytes.

You might need to recreate the clustered index on partitioned tables because:

18

Adaptive Server Enterprise

CHAPTER 1 Controlling Physical Data Placement

e Your index key tends to assign inserts to a subset of the partitions.

« Deleteactivity tendsto remove datafrom asubset of the partitions, leading
to I/0 imbalance and partition-based scan imbalances.

e Thetable has many inserts, updates, and deletes, leading to many partially
filled data pages. This condition |eads to wasted space, both ondisk andin
the cache, and increases 1/0 because more pages need to be read for many
queries.

Performance and Tuning Series: Physical Database Tuning 19

Maintenance issues and partitioned tables

20 Adaptive Server Enterprise

CHAPTER 2

Data Storage

This chapter explains how Adaptive Server stores datarowson pages, and
how those pages are used in select and data modification statements when
there are no indexes. This chapter lays the foundation for understanding
how to improve Adaptive Server performance by creating indexes, tuning
queries, and addressing object storage issues.

Topic Page
Query optimization 21
Adaptive Server pages 23
Pages that manage space allocation 26
Space overheads 30
Tables without clustered indexes 36
Caches and object bindings 47

Query optimization

The Adaptive Server optimizer attempts to find the most efficient access
path to your data for each table in a query by estimating the cost of the
physical 1/0 needed to access the data, and the number of times each page
must be read while in the data cache.

In most database applications, there are many tables in the database, and
each table has one or more indexes. Depending on whether you have
created indexes, and what kind of indexes you have created, the
optimizer’s access method options include:

* Tablescan —reading all the table's data pages, sometimes hundreds
or thousands of pages.

¢ Index access—using the index to find only the data pages needed,
sometimes as few as three or four page readsin all.

e Index covering —using only an index to return data, without reading
the actual datarows, requiring only afraction of the page reads
required for atable scan.

Performance and Tuning Series: Physical Database Tuning 21

Query optimization

Using the appopriate indexes on tables should allow most queriesto access the
data they need with a minimum number of page reads.

Query processing and page reads

22

Most of a query’s execution time is spent reading data pages from disk.
Therefore, most performance improvement comes from reducing the number
of disk reads needed for each query.

When a query performs a table scan, Adaptive Server reads every page in the
table because no indexes are available to help it retrieve the data. The query

may have poor response time, because disk reads take time. Queriesthat incur
costly table scans also affect the performance of other queries on your server.

Table scans can increase the time other users have to wait for aresponse, since
they use system resources such as CPU time, disk 1/O, and network capacity.

Table scans use alarge number of disk reads (1/0s) for a given query. When
you have become familiar with the access methods, tuning tools, the size and
structure of your tables, and the queriesin your applications, you should be
able to estimate the number of 1/0O operations a given join or select operation
will perform, given the indexes that are available.

If you know what the indexed columns on your tables are, and the table and
index sizes, you can often look at aquery and predict itsbehavior. For different
gueries on the same table, you might be able to draw these conclusions:

» Thisquery returnsasingle row or asmall number of rows that match the
where clause condition.

The conditioninthewhere clauseisindexed; it should perform twoto four
I/0Os on the index and one more to read the correct data page.

* All columnsin the select list and where clause for this query areincluded
in anonclustered index. This query will probably perform a scan on the
leaf level of the index, about 600 pages.

Adding an unindexed column to the select list would force the query to
scan the table, which would require 5000 disk reads.

* Nouseful indexesare availablefor thisquery; itisgoing to do atable scan,
requiring at least 5000 disk reads.

This chapter describeshow tablesare stored, and how accessto datarowstakes
place when indexes are not being used.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Chapter 5, “Indexes,” in Performance and Tuning Series. Locking and
Concurrency Control describes access methods for indexes. Chapter 3,

“ Setting Space Management Properties” and Chapter 4, “Table and Index
Size” explain how to determine which access method isbeing used for aquery,
the size of the tables and indexes, and the amount of 1/O a query performs.
These chapters provide abasisfor understanding how the optimizer modelsthe
cost of accessing the data for your queries.

Adaptive Server pages

These types of pages store database objects:
« Datapages— store the data rows for atable.
e Index pages— store the index rows for al levels of an index.

* Largeobject (LOB) pages— store the datafor text and image columns, and
for Java off-row columns.

Adaptive Server versions 12.5 and later do not use the buildmaster binary to
build the master device. Instead, Sybase has incorporated the buildmaster
functionality in the dataserver binary.

The dataserver command allows you to create master devices and databases
with logical pages of size 2K, 4K, 8K, or 16K. Larger logical pagesallow you
to create larger rows, which can improve your performance because Adaptive
Server accesses more data each time it reads a page. For example, a 16K page
can hold 8 times the amount of dataas a 2K page, an 8K page holds 4 times as
much data as a 2K page, and so on, for all the sizesfor logical pages.

Thelogical page sizeis a server-wide setting; you cannot have databases with
varying sizelogical pageswithin the same server. All tables are automatically
appropriately sized so that the row size isno greater than the current page size
of the server. That is, rows cannot span multiple pages.

See the Utility Guide for specific information about using the dataserver
command to build your master device.

Adaptive Server may be required to process large volumes of datafor asingle
query, DML operation, or command. For example, if you use a data-only-
locked (DOL) table with a char(2000) column, Adaptive Server must alocate
memory to perform column copying while scanning the table. Increased
memory requests during the life of a query or command means a potential
reduction in throughput.

Performance and Tuning Series: Physical Database Tuning 23

Adaptive Server pages

The size of Adaptive Server logical pages determines the server’s space
allocation. Each allocation page, object all ocation map (OAM) page, data
page, index page, text page, and so onisbuilt on alogical page. For example,
if the logical page size of Adaptive Server is 8K, each of these page types are
8K insize. All of these pages consume the entire size specified by the size of
thelogical page. OAM pages have agreater number of OAM entriesfor larger
logical pages (for example, 8K) than for smaller pages (2K).

Page headers and page sizes

All pageshave aheader that storesinformation, such asthe partition I D that the
page belongs to, and other information used to manage space on the page.
Table 2-1 showsthe number of bytes of overhead and usabl e space on data and
index pages for a server configured for 2K pages.

Table 2-1: Overhead and user data space on data and index pages

Locking Scheme Overhead Bytes for user data
Allpages 32 2016
Data-only 46 2002

Therest of the page is available to store data and index rows.

For information on how text, image, and Java columns are stored, see “Large
object (LOB) pages’ on page 25.

Data and index pages

24

Data pages and index pages on data-only-locked tables have arow offset table
that stores pointers to the starting byte for each row on the page. Each pointer
takes 2 bytes.

Data and index rows are inserted on a page starting just after the page header,
and fill in contiguously. For all tables and indexes on data-only-locked tables,
the row offset table begins at the last byte on the page, and grows upward.

Theinformation stored for each row consists of the actual column data, plus
informati on such asthe row number and the number of variable-length and null
columns in the row. Index pages for allpages-locked tables do not have arow
offset table.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Rows cannot cross page boundaries, except for text, image, and Java off-row
columns. Each datarow has at least 4 bytes of overhead; rows that contain
variable-length data have additional overhead.

See Chapter 4, “ Tableand Index Size,” for moreinformation on dataand index
row sizes and overhead.

Large object (LOB) pages

Extents

text, image, and Java off-row columns for atable are stored as a separate data
structure, consisting of a set of pages. These columns are known as large
object, or LOB, columns. Each table with atext or image column has one of
these structures. If atable has multiple LOB columns, it still has only one of
these separate data structures.

Thetableitself storesa16-byte pointer to thefirst page of the valuefor the row.
Additional pages for the value are linked by next and previous pointers. Each
valueisstored in its own separate page chain. Thefirst page stores the number
of bytesin the text value. The last page in the chain for avalue is terminated
with a null next-page pointer.

Reading or writing a LOB value requires at |east two page reads or writes:
e Onefor the pointer
« Onefor the actual location of the text in the text object

Each L OB page stores up to 1800 bytes. Every non-null value uses at least one
full page.

LOB structures are listed separately in sysindexes. The ID for the LOB
structure isthe same as the table’'s ID. Theindex ID column isindid and is
aways 255, and the name is the table name, prefixed with the letter “t”.

Adaptive Server pages are aways allocated to atabl e, index, or LOB structure.
A block of 8 pagesis called an extent. The size of an extent depends on the
page sizethe server uses. The extent sizeon a2K server is 16K; onan 8K itis
64K, and so on. The smallest amount of space that atable or index can occupy
is 1 extent, or 8 pages. Extents are deallocated only when all the pagesin an
extent are empty.

Performance and Tuning Series: Physical Database Tuning 25

Pages that manage space allocation

The use of extentsin Adaptive Server is transparent to the user except when
examining reports on space usage. For example, reports from sp_spaceused
display the space allocated (the reserved column) and the space used by data
and indexes. The unused column displays the amount of space in extents that
are alocated to an object, but not yet used to store data.

sp_spaceused titles
name rowtotal reserved data index size unused

titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, thetitles table and its indexes have 1392K B reserved on various
extents, including 48K B (24 data pages) that is unall ocated.

Note Adaptive Server avoids wasting extra space by filling up existing
allocated extents in the target allocation page, even though these extents are
assigned to other partitions. The net effect is that extents are allocated only
when there are no free extents in the target allocation page

Pages that manage space allocation

26

In addition to data, index, and LOB pages used for data storage, Adaptive
Server uses other types of pagesto manage storage, track space allocation, and
locate database objects. The sysindexes table also stores pointersthat are used
during data access.

The pagesthat manage space all ocation and the sysindexes pointers are used to:
e Speed the process of finding objects in the database.
» Speed the process of allocating and deallocating space for objects.

» Provide ameansfor Adaptive Server to allocate additional space for an
object that is near the space already used by the object. This helps
performance by reducing disk-head travel.

These pages track the disk space use by database objects:

» Global alocation map (GAM) pages contain allocation bitmaps for an
entire database.

» Allocation pages track space usage and objects within groups of 256
pages, or .SMB.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Global allocation

Allocation pages

Object allocation

e Object alocation map (OAM) pages contain information about the extents
used for an object. Each partition of atable and index has at |east one
OAM page that tracks where pages for the object are stored in the
database.

« OAM pages manage space allocation for partitioned tables.

map pages

Each database has a GAM, which stores a bitmap for all allocation units of a
database, with 1 bit per allocation unit. When an allocation unit has no free
extents available to store objects, the corresponding bit in the GAM isset to 1.

Thismechanism expedites all ocating new space for objects. Users cannot view
the GAM page; it appears in the system catal ogs as the sysgams table.

When you create adatabase or add space to adatabase, the spaceisdividedinto
allocation units of 256 data pages. Thefirst pagein each allocation unit isthe
allocation page. Page 0 and all pages that are multiples of 256 are allocation

pages.

The alocation page tracks space in each extent on the allocation unit by
recording the partition ID, object ID, and index ID for the object that is stored
on the extent, and the number of used and free pages. The allocation page also
stores the page ID for the table or index’s corresponding OAM page.

map pages

Each partition for atable, index, and text chain has one or more object
allocation map (OAM) pages stored on pages allocated to the table or index. If
atable has more than one OAM page, the pages are linked in achain. OAM
pages store pointers to the allocation units that contain pages for the object.

Thefirst pagein the chain stores allocation hints, indicating which OAM page
in the chain stores information about allocation units with free space. This
provides a fast way to allocate additional space for an object and to keep the
new space close to pages already used by the object.

Performance and Tuning Series: Physical Database Tuning 27

Pages that manage space allocation

How OAM pages and allocation pages manage object storage
Figure 2-1 shows how allocation units, extents, and objects are managed by

28

OAM

Page

256

OAM pages and allocation pages.

» Twoallocation unitsare shown, one starting at page 0 and one at page 256.

Thefirst page of each isthe allocation page.

» A tableisstored on four extents, starting at pages 1 and 24 on the first
allocation unit and pages 272 and 504 on the second unit.

e Thefirst page of the tableisthe table’s OAM page. It pointsto the
allocation page for each allocation unit where the object uses pages, so it

points to pages 0 and 256.

» Allocation pages 0 and 256 store the table's object ID, index 1D, and
partition 1D to which the extent belongs. Allocation page 0 pointsto pages
1and 24 for thetable, and allocation page 256 pointsto pages 272 and 504.

Figure 2-1: OAM page and allocation page pointers

112(3|4|5|6

7

Pages reserved

9/10|11|12|13|14

15

23

31

N .
& Allocation page

Other

255

263

271

279

/ o

1617|1819 20| 21 | 22

24125(26|27|28| 29|30

248(249| 250|251|252| 253|254
257(258|259|260| 261|262

264(265|266|267|268|269(270

272|273|274|275|276|277|278

280

281|282(283|284|285|286

287

504|505|506|507|508(509|510

511

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Page allocation keeps an object’s pages together

Adaptive Server tries to keep page allocations close together for objects. In
most cases:

e If thereisan unallocated page in the current extent, that pageis assigned
to the object.

e If thereisno free page in the current extent, but there is an unallocated
page on another of the object’s extents, that extent is used.

e Ifdltheobject’sextentsarefull, but there arefree extentson theallocation
unit, the new extent is allocated in aunit already used by the object.

Data access using sysindexes and syspartitions

The sysindexes table stores information about indexed and nonindexed tables.
sysindexes has one row for each:

« Allpages-locked table —theindid column is O if the table does not have a
clustered index, and 1 if the table does have a clustered index.

» Data-only-locked tables —the indid is always O for the table.

* Nonclustered index — and for each clustered index on a data-only-locked
table.

e Tablewith one or more LOB columns—theindex ID isalways 255 for the
LOB structure.

syspartitions stores information about each table and index partition and
includes one row per partition.

In Adaptive Server version 15.0. and later, each row in syspartitions stores
pointersto atable or index to speed access to objects. Table 2-2 shows how
these pointers are used during data access.

Table 2-2: Use of syspartitions pointers in data access

Column Use for table access Use for index access

root If indid is0 and the tableisapartitioned Used to find the root page of the index
allpages-locked table, root pointstothe tree.
last page of the heap.

first Pointsto thefirst datapageinthepage Pointsto the first leaf-level pageina
chain for allpages-locked tables. nonclustered index, or a clustered

index on adata-only-locked table.

Performance and Tuning Series: Physical Database Tuning 29

Space overheads

Column Use for table access Use for index access
doampg Paints to the first OAM page for the
table.
ioampg Points to the first OAM page for an
index.

Space overheads

Regardless of thelogical page size for which it is configured, Adaptive Server
allocates space for objects (tables, indexes, text page chains) in extents, each
of whichiseight logical pages. That is, if aserver is configured for 2K logical
pages, it allocates one extent, 16K, for each of these objects; if aserver is
configured for 16K logical pages, it allocates one extent, 128K, for each of
these objects.

Thisisalso true for system tables. If your server has many small tables, space
consumption can be quite large if the server uses larger logical pages.

For example, for aserver configured for 2KB logical pages, systypes—with
approximately 31 short rows, a clustered and a non-clustered index—reserves
3 extents, or 48K B of memory. If you migrate the server to use 8K B pages, the
space reserved for systypes is still 3 extents, 192KB of memory.

For aserver configured for 16K B, systypes requires 384K B of disk space. For
small tables, the space unused in the last extent can become significant on
serversusing larger logical page sizes.

Databases are al so affected by larger page sizes. Each database includes the
system catalogs and their indexes. If you migrate from a smaller to larger
logical page size, you must account for the amount of disk space each database
requires.

Number of columns and size
The maximum number of columns you can createin atableis:

e 1024 for fixed-length columnsin both allpages-locked (APL) and data-
only-locked (DOL) tables

e 254 for variable-length columnsin an APL table

30 Adaptive Server Enterprise

CHAPTER 2 Data Storage

e 1024 for variable-length columnsin an DOL table
The maximum size of a column depends on:
e Whether the table includes variable- or fixed-length columns.

e Thelogical page size of the database. For example, in adatabase with 2K
logical pages, the maximum size of acolumnin an APL table can be as
large as a single row, about 1962 bytes, less the row format overheads.
Similarly, for a4K page, the maximum size of acolumninaAPL tablecan
beaslarge as4010 bytes, lessthe row format overheads. See Table 2-3 for
more information.

< If you attempt to create a table with a fixed-length column that is greater
than thelimits of thelogical page size, create table iSsues an error message.

Performance and Tuning Series: Physical Database Tuning 31

Space overheads

Table 2-3: Maximum row and column length

Maximum row

Maximum column

Locking scheme | Page size length length
2K (2048 bytes) | 1962 1960 bytes
4K (4096 bytes) | 4010 4008 bytes
APL tables 8K (8192 bytes) 8106 8104 bytes
16K (16384 bytes) | 16298 16296 bytes
2K (2048 bytes) 1964 1958 bytes
4K (4096 bytes) | 4012 4006 bytes
DOL tables 8K (8192 bytes) 8108 8102 bytes
16K (16384 bytes) | 16300 16294 bytes
if table does not
include any variable-
length columns
16K (16384 bytes) | 16300 8191-6-2=8183bytes

(subject to amax start
offset of varlen =
8191)

if table includes at
least on variable-
length column.

The maximum size of afixed-length columninaDOL tablewith a16K logical
page size depends on whether the table contains variable-length columns. The
maximum possible starting offset of avariable-length column is 8191. If the

table has any variable-length columns, the sum of the fixed-length portion of

therow, plus overheads, cannot exceed 8191 bytes, and the maximum possible
size of all the fixed-length columns isrestricted to 8183 bytes, when the table
contains any variable-length columns.

In Table 2-3, the maximum column length is determined by subtracting 6 bytes
for row overhead and 2 bytes for row length field.

Variable-length columns in APL tables

32

APL tablesthat contain one variable-length column (for example, varchar,
varbinary and so on) have the following minimum overhead for each row:

» 2 bytesfor theinitial row overhead.

» 2 bytesfor the row length.

» 2 bytesfor the column-offset table at the end of the row. Thisis always
n+1 bytes, where n is the number of variable-length columnsin the row.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

A single-column table has an overhead of at least 6 bytes, plus additional
overhead. The maximum column size, after overhead, must be less than or

equal to:
(column length) + (additional overhead) + (six-byte overhead.)

Table 2-4: Maximum size for variable-length columns in an APL table

Maximum row Maximum column
Page size length length
2K (2048 bytes) 1962 1948
4K (4096 bytes) 4010 3988
8K (8192 bytes) 8096 8068
16K (16384 bytes) | 16298 16228

Variable-length columns that exceed the logical page size
If your table uses 2K logical pages, you can create some variable-length
columns whose total row-length exceeds the maximum row-length for a 2K
page size. This allows you to create tables where some, but not all, variable-
length columns contain the maximum possible size. However, when you issue
create table, you receive awarning message that says the resulting row size
may exceed the maximum possible row size, and cause afutureinsert or update
to fail.

For example, if you create atable that uses a 2K page size, and contains a
variable-length column with alength of 1975 bytes, Adaptive Server creates
the table but issues awarning message. You cannot insert data that exceedsthe
maximum length of the row (1962 bytes).

Variable-length columns in DOL tables

For asingle, variable-length column in aDOL table, the minimum overhead
for each row is:

e Six bytesfor theinitia row overhead.
e Two bytes for the row length.

e Two bytesfor the column offset table at the end of the row. Each column
offset entry is two bytes. There are n such entries, where n is the number
of variable-length columnsin the row.

Thetotal overhead is 10 bytes. There is no adjust table for DOL rows. The
actual variable-length column sizeis:

column length + 10 bytes overhead

Performance and Tuning Series: Physical Database Tuning 33

Space overheads

Table 2-5: Maximum size for variable-length columns in an DOL table

Maximum row Maximum column
Page size length length
2K (2048 bytes) 1964 1954
4K (4096 bytes) 4012 4002
8K (8192 bytes) 8108 8098
16K (16384 bytes) | 16300 16290

DOL tables with variable-length columns must have an offset of fewer than
8191 bytesfor all inserts to succeed. For example, thisinsert fails because the
offset for columnsc2, ¢3, and c4 is 9010, which exceeds the maximum of 8191
bytes:

create table tl(
cl int not null,
c2 varchar (5000) not null
c¢3 varchar(4000) not null
c4 varchar (10) not null
. more fixed length columns)
cvarlen varchar (nnn)) lock datarows

Restrictions for converting locking schemes or using select into

The following restrictions apply whether you are using alter table to change a
locking scheme or using select into to copy datainto a new table.

For serversthat use page sizes other than 16K pages, the maximum length of a
variable-length columninan APL tableislessthanthat for aDOL table, soyou
can convert the locking scheme of an APL table with a maximum sized
variable-length column to DOL. You cannot, however, convert aDOL table
containing at least one maximum sized variable-length column to an APL
table.

On servers that use 16K pages, APL tables can store substantially larger sized
variable-length columnsthan DOL tables. You can convert tablesfrom DOL to
APL, but you cannot convert from APL to DOL.

These restrictions on locking-scheme conversions occur only if datain the
source table exceeds the limits of the target table. If this occurs, Adaptive
Server raises an error message while transforming the row format from one
locking scheme to the other. If the table is empty, no such data transformation
isrequired, and the lock-change operation succeeds. However, subsequent
inserts or updatesto the table, users may see errors caused by limitations on the
column or row size for the target schema of the altered table.

34 Adaptive Server Enterprise

CHAPTER 2 Data Storage

Organizing columns in DOL tables by size of variable-length columns

For DOL tablesthat use variable-length columns, arrange the columns so that
the longest columns are placed toward the end of the table definition. This
allows you to create tables with much larger rows than if the large columns
appear at the beginning of the table definition. For instance, in a 16K page
server, the following table definition is acceptable:

create table tl1 (
cl int not null,
c2 varchar (1000) null,
c3 varchar (4000) null,
c4 varchar(9000) null) lock datarows

However, the following table definition typically is unacceptable for future
inserts. The potential start offset for column c2 is greater than the 8192-byte
limit because of the preceding 9000-byte c4 column:

create table t2 (
cl int not null,
c4 varchar (9000) null,
c3 varchar(4000) null,
c2 varchar(1000) null) lock datarows

Thetableis created, but future inserts may fail.

Number of rows per data page
The number of rows alowed for aDOL data page is determined by:
 Thepagesize

e A 10-byte overhead for the row ID, which specifies arow-forwarding
address

Table 2-6 displays the maximum number of rowsthat can fit on aDOL data
page:

Performance and Tuning Series: Physical Database Tuning 35

Tables without clustered indexes

Table 2-6: Maximum number of data rows for a DOL data page

Page size Maximum number of rows
2K 166

4K 337

8K 678

16K 1361

APL data pages can have amaximum of 256 rows. Because each page requires
aone-byte row number specifier, large pages with short rowsincur some
unused space. For example, if Adaptive Server is configured with 8K logical
pages and rows that are 25 bytes, each page has 1275 bytes of unused space,
after accounting for the row-offset table and the page header.

Additional number of object and size restrictions

The maximum number of arguments for stored proceduresis 2048. See
Chapter 16, “Using Stored Procedures,” in the Transact-SQL Users Guide.

Adaptive Server version 12.5 and later can store data that has different limits
than data stored in versions earlier than 12.5. Clients must be able to store and
process these newer data limits. If you are using older versions of Open Client
and Open Server, they cannot process the dataif you:

» Upgrade to Adaptive Server version 12.5 or later
» Drop and recreate the tables with wide columns
* Insert wide data

See Chapter 2, “Basic Configuration for Open Client” in the Open Client
Configuration Guide.

Tables without clustered indexes

36

If you create atable on Adaptive Server, but do not create aclustered index, the
tableis stored as a heap, which means the data rows are not stored in any
particular order. This section describes how select, insert, delete, and update
operations perform on heap tables when thereis no “useful” index to aid in
retrieving data.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

There are very few justifications for heap tables. Most applications perform
better with clustered indexes on the tables. However, heap tableswork well for
small tables that use only afew pages, and for tables where changes are
infrequent

Heap tables can be useful for tables that do not require;
e Direct accessto single, random rows
e Ordering of result sets

Heap tables do not work well for queries against most large tables that must
return a subset of the table'srows.

Partitioned heap tables are useful in applications with frequent, large volumes
of batch insertswhere the overhead of dropping and creating clustered indexes
is unacceptable.

Sequential disk accessisefficient, especialy with large I/0O and asynchronous
prefetch. However, the entire table must always be scanned to find any value,
and this has potentially large impact in the data cache and other queries.

Batch inserts can also perform efficient sequential I/0. However, thereisa
potential bottleneck on the last page if multiple processestry to insert data
concurrently.

Sometimes, an index exists on the columns named in awhere clause, but the
optimizer determines that it would be more costly to use the index than to
perform atable scan.

Table scans are always used when you select al rows in atable. The only
exception is when the query includes only columnsthat are keysin a
nonclustered index.

For more information, see Chapter 5, “Indexes,” in Performance and Tuning
Series: Locking and Concurrency Control.

Locking schemes

The data pagesin an APL table are linked into alist of pages by pointers on
each page. Pages in data-only-locked tables are not linked into a page chain.

In an allpages-locked table, each page stores a pointer to the next page in the
chain and to the previous page in the chain. When you insert new pages, the
pointers on the two adjacent pages change to point to the new page. When
Adaptive Server scans an all pages-locked table, it reads the pagesin order,
following these page pointers.

Performance and Tuning Series: Physical Database Tuning 37

Tables without clustered indexes

Pages are also doubly linked at each index level of allpages-locked tables, and
at the leaf level of indexes on data-only-locked tables. If an allpages-locked
tableis partitioned, there is one page chain for each partition.

Unlike allpages-locked tables, data-only-locked tables typically do not
maintain a page chain, except immediately after you create a clustered index.
However, this page chain is broken the first time you issue acommand on the
table.

When Adaptive Server scans a data-only-locked table, it uses the information
stored in the OAM pages. See “ Object allocation map pages’ on page 27.

Another difference between all pages-locked tables and data-only-locked tables
isthat data-only-locked tables use fixed row 1Ds. This means that row IDs (a
combination of the page number and the row number on the page) do not
change in a data-only-locked table during normal query processing.

Row IDschange only when one of the operationsthat require data-row copying
is performed, for example, during reorg rebuild or while creating a clustered
index.

For information on how fixed row |Ds affect heap operations, see “Deleting
from a data-only locked heap table” on page 41 and “ Data-only-locked heap
tables’ on page 42.

Select operations on heap tables

Whenyouissueaselect query on aheap, and thereisno useful index, Adaptive
Server must scan every datapagein thetableto find every row that satisfiesthe
conditions in the query. There may be one row, many rows, or no rows that
match.

Allpages-locked heap tables

38

For allpages-locked tables, Adaptive Server reads the firstpage column in
syspartitions for the table, reads the first page into cache, and follows the next
page pointers until it finds the last page of the table.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Data-only locked heap tables

Since the pages of data-only-locked tables are not linked in a page chain, a
select query on a data-only-locked heap table uses the table’s OAM and the
allocation pagesto locate all therowsin thetable. The OAM page pointsto the
allocation pages, which point to the extents and pages for the table.

Inserting data into an allpages-locked heap table

When you insert data into an allpages-locked heap table without a clustered
index, the data row is always added to the last page of the table. If thereis no
clustered index on atable, and the tableis not partitioned, the syspartitions.root
entry for the heap table stores a pointer to the last page of the heap to indicate
the page where the data should be inserted.

If the last page isfull, anew pageis allocated in the current extent and linked
onto the chain. If the extent isfull, Adaptive Server looks for empty pages on
other extents being used by the table. If no pages are avail able, anew extent is
allocated to the table.

One of the severe performance limits on heap tables that use allpages locking
isthat the page must belocked when the row isadded, and thelock is held until
the transaction completes. If many users are trying to insert into an allpages-
locked heap table simultaneously, each insert must wait for the preceding
transaction to complete.

This problem of last-page conflicts on heap tablesis true for:
e Single-row inserts

« Multiple row inserts using select into Or insert...select, or severa insert
statements in a batch

e Bulk copyinginto the table

To address last-page conflicts on heap tables, try:

e Switching to datapages or datarows locking

» Creating a clustered index that directs the inserts to different pages

« Partitioning the table, which creates multiple insert points for the table,
giving you multiple “last pages’ in an allpages-locked table

For all transactions where there may be lock conflicts, you can also:

» Keep transactions short

Performance and Tuning Series: Physical Database Tuning 39

Tables without clustered indexes

» Avoid network activity and user interaction whenever possible, once a
transaction acquires locks

Inserting data into a data-only-locked heap table

When users insert datainto a data-only-locked heap table, Adaptive Server
tracks page numbers where the inserts have recently occurred, and keeps the
page number as a suggestion for future tasks that need space. Subsequent
inserts to the table are directed to one of these pages. If the page isfull,
Adaptive Server allocates a new page and replaces the old hint with the new
page number.

Blocking while many users are simultaneously inserting datais much less
likely to occur during inserts to data-only-locked heap tables thanin APL
tables. When blocking does occur, Adaptive Server allocates a small number
of empty pages and directs new inserts to those pages using these newly
allocated pages as hints.

For datarows-locked tables, blocking occurs only while the actual changesto
the data page are being written; although row locks are held for the duration of
the transaction, other rows can be inserted on the page. The row-level locks
allow multiple transaction to hold locks on the page.

There may be dlight blocking on data-only-locked tables, because Adaptive
Server allows a small amount of blocking after many pages have just been
allocated, so that the newly allocated pages are filled before additional pages
are allocated.

Conflictsduring insertsto heap tables are greatly reduced for data-only-locked
tables, but can still take place. If these conflicts low inserts, try:

» Switching to datarows locking, if the table uses datapages locking
» Using aclustered index to spread data inserts

» Partitioning the table, which provides additional hints and allows new
pages to be alocated on each partition when blocking takes place

40 Adaptive Server Enterprise

CHAPTER 2 Data Storage

Deleting data from a heap table

When you delete rows from a heap table that does not have a useful index,
Adaptive Server scans the data rowsin the table to find the rows to delete. It
cannot determine how many rows match the conditions in the query without
examining every row.

Deleting from an allpages-locked heap table

When adatarow is deleted from a page in an alpages-locked table, the rows
that follow it on the page move up so that the data on the page remains
contiguous, avoiding fragmentation within the page.

Deleting from a data-only locked heap table

When you delete rows from a data-only-locked heap table, atable scanis
required if thereisno useful index. The OAM and allocation pages are used to
locate the pages.

The space on the page is not recovered immediately. Rowsin data-only-locked
tables must maintain fixed row 1Ds, and must be reinserted in the same place
if the transaction is rolled back.

After adelete transaction commits, one of the following processes shifts rows
on the page to make the space usage contiguous:

« The housekeeper garbage collection process
« Aninsert that needsto find space on the page

* Thereorg reclaim_space command

Deleting the last row on a page

If you delete the last row on apage, the page is deallocated. If other pages on
the extent are till in use by the table, the page can be used again by the table
when a page is needed.

If all other pages on the extent are empty, the entire extent is deallocated. It can
be alocated to other objects in the database. The first data page for atable or
an index is never deallocated.

Performance and Tuning Series: Physical Database Tuning 41

Tables without clustered indexes

Updating data on a heap table

Like other operations on heap tables, an update on atable that has no useful
index on the columnsin the where clause performs a table scan to locate the
rows to be changed.

Allpages-locked heap tables
You can perform updates on allpages-locked heap tablesin severa ways:

» If thelength of the row does not change, the updated row replaces the
existing row, and no data moves on the page.

» If thelength of the row changes, and there is enough free space on the
page, the row remainsin the same place on the page, but other rows move
up or down to keep the rows contiguous on the page.

The row offset pointers at the end of the page are adjusted to point to the
changed row locations.

» If therow doesnot fit on the page, therow isdeleted from its current page,
and inserted as anew row on the last page of the table. Thistype of update
may cause a conflict on the last page of the heap.

Data-only-locked heap tables

One of the requirementsfor data-only-locked tablesisthat therow ID of adata
row never changes (except during intentional rebuilds of thetable). Therefore,
updates to data-only-locked tables can be performed by the first two methods
described above, aslong as the row fits on the page.

However, when arow in adata-only-locked tableis updated so that it no longer
fits on the page, a process called row forwar ding performs these steps:

1 Therow isinserted onto a different page, and

2 A pointer to therow ID on the new pageis stored in the original location
for the row.

Indexes need not be modified when rows are forwarded. All indexes till point
to the original row ID.

If arow must be forwarded a second time, the original location is updated to
point to the new page—the forwarded row is never more than one hop away
fromits original location.

42 Adaptive Server Enterprise

CHAPTER 2 Data Storage

Row forwarding increases concurrency during update operations because
indexes do not have to be updated. It can slow dataretrieval, however, because
atask must read the page at the original location and then read the page where
the forwarded datais stored.

Use the reorg command to clear forwarded rows from atable.

See Chapter 1, “Understanding Query Processing” in Performance and Tuning
Series: Query Processing and Abstract Plans.

How Adaptive Server performs I/O for heap operations

Sequential prefetch,

When aquery needs a data page, Adaptive Server first checksto seeif the page
isavailable in adata cache. If the page is not available, then it must be read
from disk. A newly installed Adaptive Server with a 2K logical page size has
asingle data cache configured for 2K 1/O. Each 1/O operation reads or writesa
single Adaptive Server data page. A system administrator can:

« Configure multiple caches
* Bindtables, indexes, or text chains to the caches

« Configure data caches to perform /O in page-sized multiples, up to eight
data pages (one extent)

To usethese caches most efficiently, and to reduce I/O operations, the Adaptive
Server optimizer can:

» Chooseto prefetch up to eight data pages at atime

e Choose between different caching strategies

or large I/O

Adaptive Server data caches can be configured to allow large I/Os. When a
cache allows large I/Os, Adaptive Server can prefetch data pages.

Caches have buffer pools that depend on the logical page sizes, alowing
Adaptive Server to read up to an entire extent (eight data pages) inasingle /O
operation.

Since much of the time required to perform /O operationsistaken up in
seeking and positioning, reading eight pagesina 16K /O takes nearly the same
amount of time as asingle page, 2K 1/0. Reading eight pages using eight 2K
I/Osis nearly eight times more costly than reading eight pages using asingle
16K 1/O. Table scans perform much better when you use large 1/Os.

Performance and Tuning Series: Physical Database Tuning 43

Tables without clustered indexes

When several pages are read into cache with asingle I/O, they are treated as a
unit: they age in cache together, and if any page in the unit has been changed
while the buffer was in cache, all pages are written to disk as a unit.

See Chapter 5, “Memory Use and Performance,” in Performance and Tuning
Series: Basics.

Note Referencetolargel/Osareona2K logical page size server. If you have
an 8K page size server, the basic unit for the /O is8K. If you have a 16K page
size server, the basic unit for the 1/0O is 16K.

Maintaining heap tables

Over time, 1/0 on heap tables can become inefficient as storage becomes
fragmented. Deletes and updates can result in:

* Many partialy filled pages

» Inefficient large 1/O, since extents may contain many empty pages
» Forwarded rows in data-only-locked tables

To reclaim space in heap tables:

» Usethereorg rebuild command (data-only-locked tables only)

» Create and then drop a clustered index

* Usebcp (the bulk copy utility) and truncate table

Using reorg rebuild to reclaim space

reorg rebuild copies all datarowsto new pages and rebuilds any indexes on the
heap table. You can use reorg rebuild only on data-only-locked tables.

Reclaiming space by creating a clustered index

44

To create aclustered index, you must have free space in the database that is at
least 120% of the table size.

See " Determining the space available for maintenance activities’ on page 116.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Reclaiming space using bcp
To reclaim space with bep:
1 Usebcp to copy thetableto afile.
2 Usetruncate table to truncate the table, reclaiming unused space.
3 Copy thetable back in again with bcep.

For detailed information about working with partitioned tables, see Chapter 10,
“Partitioning Tables and Indexes,” in the Transact-SQL Users Guide.

For more information on becp, see the Utility Guide.

Transaction log: a special heap table

The Adaptive Server transaction log is a special heap table that stores
information about data modifications in the database. The transaction log is
always a heap table; each new transaction record is appended to the end of the
log. The transaction log has no indexes.

Place logs on separate physical devices from the data and index pages. Since
the log is sequential, the disk head on the log device rarely needs to perform
seeks, and you can maintain a high /O rate to the log.

Transaction log writes occur frequently. Do not |et them contend with other 1/0
in the database, which usually happens at scattered locations on the data pages.

Besides recovery, these operations read the transaction log:
* Any data modification performed in deferred mode.

« Triggersthat contain references to the inserted and deleted tables. These
tables are built from transaction log records when the tables are queried.

¢ Transaction rollbacks.

In most cases, the transaction log pages for these queries are still availablein
the data cache when Adaptive Server needs to read them, and disk 1/0 is not
reguired.

See “Keeping transaction logs on a separate disk” on page 6 for information
about how to improve the performance of the transaction log.

Performance and Tuning Series: Physical Database Tuning 45

Tables without clustered indexes

Asynchronous prefetch and I/O on heap tables

Any task that must perform a physical 1/0O relinquishes the server’s engine
(CPU) whileit waits for the 1/0 to complete. If atable scan must read 1000
pages, and none of those pages are in cache, performing 2K 1/0 with no
asynchronous prefetch means the task makes 1000 |oops, executing on the
engine, and then sleeping to wait for 1/0. Using 16K 1/O requires only 125
loops

Asynchronous prefetch speed the performance of queries that perform table
scans. Asynchronous prefetch can request all of the pages on an all ocation unit
that belong to atable when the task fetches the first page from the alocation
unit. If the 1000-page table resides on just 4 allocation units, the task requires
many fewer cycles through the execution and sleep loops.

Type of /O Loops Steps in each loop

2K 1/0 1000 1 Request apage.

No prefetch Sleep until the page has been read from disk.
Request a page.

A WDN

Wait for aturn to run on the Adaptive Server
engine (CPU).

Read the rows on the page.

Request an extent.

Sleep until the extent has been read from disk.

Wait for aturn to run on the Adaptive Server
engine (CPU).

Read the rows on the eight pages.

Request all the pagesin an allocation unit.

Sleep until the first page has been read from disk.

Wait for aturn to run on the Adaptive Server
engine (CPU).

4 Read all therows on al the pagesin cache.

16K I/0 125
No prefetch

wWw N PO,

Prefetch 4

w N RPN

Actua performance depends on cache size and other activity in the data cache.

See Chapter 6, “ Tuning Asynchronous Prefetch,” in Performance and Tuning
Series: Basics.

46 Adaptive Server Enterprise

CHAPTER 2 Data Storage

Caches and object bindings

A table can be bound to a specific cache. If atableis not bound to a specific
cache, but its database is bound to a cache, al of its /O takes placein that
cache.

Otherwise, the table’s I/O takes place in the default data cache. You can
configure the default data cachefor large I/O. Applicationsthat use heap tables
are likely to give the best performance when they use a cache configured for
16K 1/0.

See Chapter 4, “Configuring Data Caches,” in the System Administration
Guide: Volume 2.

Heap tables, I/O, and cache strategies

Each Adaptive Server data cache is managed as an MRU/LRU (most recently
used/least recently used) chain of buffers. As buffers age in the cache, they
move from the MRU end toward the LRU end.

When changed pages in the cache pass a point called the wash marker, onthe
MRU/LRU chain, Adaptive Server initiates an asynchronous write on any
pagesthat have changed while they werein cache. This helps ensure that when
the pages reach the LRU end of the cache, they are clean and can be reused.

Adaptive Server has two major strategies for using its data cache efficiently:
e LRU replacement strategy
* MRU, or fetch-and-discard replacement strategy

LRU replacement strategy
Adaptive Server uses LRU strategy for:

e Statementsthat modify data on pages

e Pagesthat are needed more than once by a single query
¢ OAM pages

e Most index pages

e Any query where LRU strategy is specified

Performance and Tuning Series: Physical Database Tuning 47

Caches and object bindings

LRU replacement strategy reads the data pages sequentially into the cache,
replacing a“least recently used” buffer. The buffer is placed on the MRU end
of the data buffer chain. It moves toward the LRU end as more pages are read
into the cache.

Figure 2-2: LRU strategy takes a clean page from the LRU end of the
cache

L >

- I I I l -

Clean /

Wash marker
D Clean I Dirty page

MRU replacement strategy

MRU (fetch-and-discard) ismost often used for querieswhere apageisneeded
only once by the query, including:

To disk

* Most table scans in queries that do not use joins
» Oneor moretablesin ajoin query

MRU replacement strategy is used for table scanning on heap tables. This
strategy places pages into the cache just before the wash marker, as shown in
Figure 2-3.

Figure 2-3: MRU strategy places pages just before the wash marker
Wash

MRU I I I LRU

Clean

Placing the pages needed only once at the wash marker meansthey do not push
other pages out of the cache.

48 Adaptive Server Enterprise

CHAPTER 2 Data Storage

The fetch-and-discard strategy is used only on pages actually read from the
disk for the query. If apageisaready in cache due to earlier activity on the
table, the pageis placed at the MRU end of the cache.

Figure 2-4: Finding a needed page in cache

MRU Wash

LR
N

LRU

Select operations and caching
Under most conditions, single-table select operations on a heap use:
e Thelargest I/O available to the table, and
* Fetch-and-discard (MRU) replacement strategy

For heap tables, select operations performing large 1/0 can be very effective.
Adaptive Server can read sequentially through all the extentsin atable.

See Chapter 1, “ Understanding Query Processing” in Performance and Tuning
Series: Query Processing and Abstract Plans.

Unless the heap is being scanned as the inner table of a nested-loop join, data
pages are needed only once for the query, so MRU replacement strategy reads
and discards the pages from cache.

Note Large /O on allpages-locked heap tablesis effective only when the page
chains are not fragmented. See “Maintaining heap tables’ on page 44.

Data modification and caching

Adaptive Server tries to minimize disk writes by keeping changed pagesin
cache. Many users can make changes to a data page while it resides in the
cache. The changes arelogged in the transaction log, but the changed data and
index pages are not immediately written to disk.

Performance and Tuning Series: Physical Database Tuning 49

Caches and object bindings

Caching and inserts on heap tables

50

Inserts to heap tables take place:
» Onthelast page of atable that uses allpages locking

* Onapagethat wasrecently used for asuccessful insert, on atablethat uses
data-only-locking

If aninsert is the first row on anew page for the table, a clean data buffer is
allocated to store the data page, as shown in Figure 2-5. This page starts to
move down the MRU/LRU chain in the data cache as other processes read
pages into memory.

If asecond insert to the page takes place while the pageis still in memory, the
pageislocated in cache, and moves back to the top of the MRU/LRU chain.

Figure 2-5: Inserts to a heap page in the data cache

Firstinsert on a page takes a clean page
from the LRU and puts it on the MRU

MRU Washv LRU

e

‘\ Clean page//

Second insert on a page finds the page
in cache, and puts in back at the MRU

.
I

The changed data page remains in cache until it reaches the LRU end of the
chain of pages. The page may be changed or referenced many timeswhileitis
inthecache, but it iswritten to disk only when one of the following takes place:

AN

e The page moves past the wash marker.
e A checkpoaint or the housekeeper wash task writesit to disk.

See Chapter 5, “Memory Use and Performance” in Performance and Tuning
Series: Basics.

Adaptive Server Enterprise

CHAPTER 2 Data Storage

Caching, update, and delete operations on heap tables

When you update or delete arow from a heap table, the effects on the data
cache are similar to the processfor inserts. If apageisalready inthe cache, the
row is changed and the entire buffer (a single page or more, depending on the
1/0O size) is placed on the MRU end of the chain.

If the page is not in cache, it isread from disk into cache and examined to
determine whether the rows on the page match query clauses. Its placement on
the MRU/LRU chain depends on whether data on the page needs to be
changed:

« |f data on the page needs to be changed, the buffer is placed on the MRU
end. It remainsin cache, where it can be updated repeatedly, or read by
other users before being flushed to disk.

« |If data on the page does not need to be changed, the buffer is placed
immediately before the wash marker in the cache.

Performance and Tuning Series: Physical Database Tuning 51

Caches and object bindings

52 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management
Properties

Setting space management properties can help reduce the amount of
maintenance work required to maintain high performance for tables and
indexes

This chapter describes the major space management properties for
controlling space usage, how these properties aff ect space usage, and how
you can apply them to different tables and indexes.

Topic Page
Reducing index maintenance 53
Reducing row forwarding 60
Leaving space for forwarded rows and inserts 66
Using max_rows_per_page on allpages-locked tables 73

Reducing index maintenance

The fillfactor option for the create index command allows you to specify
how full to make index pages and the data pages of clustered indexes.
When you specify afillfactor value of any amount other than 100%, data
and index rows use more disk space than the default setting requires.

If you are creating indexesfor tablesthat will grow in size, you can reduce
the impact of page splitting on your tables and indexes by using the
fillfactor option.

fillfactor is used when you create an index, and again when you use reorg
rebuild to rebuild indexes as part of table reorganization operations (for
example, when you rebuild clustered indexes or run reorg rebuild on a
table). fillfactor values are not saved in sysindexes, and the fullness of the
data or index pagesis not maintained over time. fillfactor isnot maintained
over time during subsequent inserts or updates to the table.

Performance and Tuning Series: Physical Database Tuning 53

Reducing index maintenance

If the leaf-level pages of your index areinitially only partialy full (because of
thefillfactor value), but thisfree spaceis used because of subsequent insertions,
the leaf-level pages are prone to future splits. Use reorg rebuild...index to build
the leaf-level pages, creating them with the specified value for fillfactor so that
future insertions do not cause these splits. Run reorg rebuild on the entire index
level so the value for fillfactor allows additional space at the leaf level for the
whole index. If thereisalocal index, run reorg rebuild index at the partition
level so only leaf pagesin thelocal index partition are adjusted, leaving
additional space for future inserts at the leaf level.

Note Adaptive Server 15.0 and later allows you to run reorg rebuild...index on
local index partitions.

When you issue create index, the fillfactor value specified as part of the
command is applied as follows:

* Clustered index:
e Onanalpages-locked table, the fillfactor is applied to the data pages.

e Onadata-only-locked table, thefillfactor is applied to the leaf pages of
the index, and the data pages are fully packed (unless sp_chgattribute
has been used to store afillfactor for the table).

* Nonclustered index — the fillfactor value is applied to the leaf pages of the
index.

You can also use sp_chgattribute to store values for fillfactor that are used when
reorg rebuild isrun on atable.

See “ Setting fillfactor values’ on page 55.

Advantages of using fillfactor

54

Setting fillfactor to alow value provides atemporary performance enhancement.
Asinserts to the database increase the amount of space used on data or index
pages, its performance improvement decreases.

Using alower value for fillfactor:

» Reduces page splits on the |leaf-level of indexes, and the data pages of
allpages-locked tables.

* Improves data-row clustering on data-only-locked tables with clustered
indexes that experience inserts.

Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

Can reduce lock contention for tables that use page-level locking, sinceit
reduces the likelihood that two processes will need the same data or index
page simultaneously.

Can help maintain large /O efficiency for the data pages and for the leaf
levelsof nonclustered indexes, since page splitsoccur lessfrequently. This
means that eight pages on an extent are likely to be sequential.

Disadvantages of using fillfactor

If you usefillfactor (especialy with avery low value), you may notice these
effects on queries and maintenance activities:

More pages must be read for each query that performs atable scan or leaf-
level scan on a nonclustered index.

In some cases, alevel may be added to an index’s B-tree structure, since
there will be more pages at the datalevel and possibly more pages at each
index level.

Increased index size, reducing the index’s space efficiency. Because you
cannot tune thefillfactor value at the page level, page splits with skewed
data distribution occur frequently, even when there is available reserved
space.

dbcc commands take more time because they must check more pages.

Thetime required to run dump database increases because more pages
must be dumped. dump database copiesall pagesthat store data, but does
not dump pages that are not yet in use. Dumps and loads may also use
more tapes.

Fillfactor values fade over time. If you use fillfactor to reduce the
performance impact of page splits, monitor your system and recreate
indexes when page splitting begins to hurt performance.

Setting fillfactor values

Use sp_chgattribute to store afillfactor percentage for each index and for the
table. Thefillfactor you set with sp_chgattribute is applied when you:

Run reorg rebuild against tables using any locking scheme.

Use alter table...partition by to repartition atable.

Performance and Tuning Series: Physical Database Tuning 55

Reducing index maintenance

e Usealter table...lock to change the locking scheme for atable. or use an
alter table...add/modify command that requires copying the table.

* Run create clustered index and avalue is stored for the table.

See the Reference Manual: Commands for details information about each of
these commands.

With the default fillfactor of O, the index management process |eaves room for
two additional rows on each index page when you create a new index. When
you set fillfactor to 100 percent, it no longer leaves room for these rows.The
only effect that fillfactor has on size cal culationsis when cal cul ating the number
of clustered index pages and when calculating the number of non-leaf pages.
Both of these calculations subtract 2 from the number of rows per page.
Eliminate the -2 from these calculations.

Other valuesfor fillfactor reduce the number of rows per page on data pages and
leaf index pages. To compute the correct values when using fillfactor, multiply
the size of the available data page (2016) by the fillfactor. For example, if your
fillfactor is 75 percent, your data page would hold 1471 bytes. Usethisvaluein
place of 2016 when you calcul ate the number of rows per page. For these
calculations, see“ Compute the number of data pages’ on page 89 and
“Calculate the number of leaf pagesin theindex” on page 92.

Adaptive Server does not apply the stored fillfactor when it builds nonclustered
indexes as aresult of acreate clustered index command:

e If afillfactor valueis specified with create clustered index, that valueis
applied to each nonclustered index.

» If nofillfactor valueis specified with create clustered index, the server-wide
default value (set with the default fillfactor percent configuration parameter)
isapplied to all indexes.

fillfactor examples

The following examples show the application of fillfactor values.

No stored fillfactor values

With no fillfactor values stored in sysindexes, Adaptive Server applies the
fillfactor specified in create index as shown in Table 3-1.

create clustered index title id ix
on titles (title id)

56 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

with fillfactor = 80

Table 3-1: fillfactor values applied with no table-level saved value

Command Allpages-locked table Data-only-locked table
create clustered Data pages: 80 Data pages: fully packed
index Leaf pages: 80
Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

The nonclustered indexes use thefillfactor specified in the create clustered index
command.

If no fillfactor is specified in create clustered index, the nonclustered indexes
always use the server-wide default; they never use a value from sysindexes.

Values used for alter table...lock and reorg rebuild

When no fillfactor values are stored, both alter table...lock and reorg rebuild apply
the server-wide default value, set by default fillfactor percentage. The default
fillfactor is applied as shown in Table 3-2.

Table 3-2: fillfactor values applied during rebuilds

Command Allpages-locked table Data-only-locked table

Clustered index rebuild Data pages: default value Data pages: fully packed
Leaf pages: default value

Nonclustered index rebuilds Leaf pages: default Leaf pages: default

Table-level or clustered index fillfactor value stored
This command stores afillfactor value of 50 for the table:
sp_chgattribute titles, "fillfactor", 50

If you set the stored table-level value for fillfactor to 50, this create clustered
index command applies the fillfactor values shown in Table 3-3.

create clustered index title id_ ix
on titles (title id)
with fillfactor = 80

Table 3-3: Using stored fillfactor values for clustered indexes

Command Allpages-Locked Table Data-Only-Locked Table
create clustered index Data pages: 80 Data pages: 50

Leaf pages: 80
Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Performance and Tuning Series: Physical Database Tuning 57

Reducing index maintenance

Note When you run create clustered index, any table-level fillfactor value stored
in sysindexes isreset to 0.

You must first issue sp_chgattribute to specify that data-only-locked datapages
arefilled during a create clustered index or reorg command.

Effects of alter table...lock when values are stored

Stored values for fillfactor are used when an alter table...lock command copies
tables and rebuilds indexes.

Tables with clustered indexes

58

In an allpages-locked table, the table and the clustered index share the
sysindexes row, so only one value for fillfactor can be stored and used for the
table and clustered index. You can set the fillfactor value for the data pages by
providing either the table name or the clustered index name. This command
saves the value 50:

sp_chgattribute titles, "fillfactor", 50

This command saves the value 80, overwriting the value of 50 set by the
previous command:

sp_chgattribute "titles.clust ix", "fillfactor", 80

If you alter thetitles table to use data-only locking after issuing the
sp_chgattribute commands above, the stored val ue fillfactor of 80 is used for
both the data pages and the leaf pages of the clustered index.

In a data-only-locked table, information about the clustered index is stored in
a separate row in sysindexes. Thefillfactor value you specify for the table
appliesto the data pages and the fillfactor value you specify for the clustered
index appliesto the leaf level of the clustered index.

When you change a DOL table to use allpages |ocking, the fillfactor stored for
the table isused for the data pages. Adaptive Server ignores thefillfactor stored
for the clustered index.

Table 3-4 shows the fillfactor values that are set on data and index pages using
an alter table...lock command, executed after the sp_chgattribute commands
above have been run.

Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

Table 3-4: Effects of stored fillfactor values during alter table

alter table...lock No clustered index Clustered index
From allpages locking to Data pages. 80 Data pages: 80
data-only locking Leaf pages: 80
From data-only locking to Data pages. 80 Data pages: 80
allpageslocking

Note alter table...lock sets all stored fillfactor values for atable to 0.

fillfactor values stored for nonclustered indexes

Each nonclustered index is represented by a separate sysindexes row. These
commands store different values for two nonclustered indexes:

sp_chgattribute "titles.ncl ix", "fillfactor", 90
sp_chgattribute "titles.pubid ix", "fillfactor", 75

Table 3-5 shows the effects of areorg rebuild command on a data-only-locked
table when the sp_chgattribute commands above are used to storefillfactor
values.

Table 3-5: Effect of stored fillfactor values during reorg rebuild

reorg rebuild No clustered index Clustered index Nonclustered indexes
Data-only-locked table Data pages: 80 Data pages: 50 ncl_ix leaf pages. 90
Leaf pages: 80 pubid_ix leaf pages: 75

Using the sorted_data and fillfactor options

Usethesorted_data option for create index when the datato be sorted isalready
in an order specified by theindex key. Thisallowscreate clustered index to skip
data sorting, reallocating, and rebuilding the table's data pages..

For example, if datathat is bulk copied into atable isaready in order by the

clustered index key, creating an index with the sorted_data option creates the
index without performing a sort. If the data does not need to be copied to new
pages, thefillfactor isnot applied. However, the use of other create index options
might still require copying.

See “Creating an index on sorted data’ on page 105.

Performance and Tuning Series: Physical Database Tuning 59

Reducing row forwarding

Reducing row forwarding

You may want to specify an expected row size for a data-only-locked table
when an application allows rows with null values or short variable-length
character fieldsto be inserted, and these rows grow in length with subsegquent
updates. Set an expected row size to reduce row forwarding.

For example, the titles table in the pubs2 database has many varchar columns
and columnsthat allow null values. The maximum row sizefor thistableis 331
bytes, and the average row size (as reported by optdiag) is 184 bytes, but you
can insert arow with lessthan 40 bytes, since many columnsallow null values.
In a data-only-locked table, inserting short rows and then updating them may
result in row forwarding.

See “Data-only-locked heap tables’ on page 42.

Set the expected row size for tables with variable-length columns, using:
* exp_row_size parameter, in acreate table statement.

* sp_chgattribute, for an existing table.

* A server-wide default value, using the configuration parameter default
exp_row_size percent. Thisvalueis applied to all tables with variable-
length columns, unless create table or sp_chgattribute is used to set arow
size explicitly or to indicate that rows should be fully packed on data

pages.

If you specify an expected row size value for an allpages-locked table, the
value is stored in sysindexes, but the value is not applied during inserts and
updates. If you later convert the table to data-only locking, Adaptive Server
applies the exp_row_size during the conversion process and to all subsequent
inserts and updates. The value for exp_row_size applies to the entire table.

Default, minimum, and maximum values for exp_row_size

Table 3-6 shows the minimum and maximum valuesfor expected row size and
the meaning of the special values 0 and 1.

Table 3-6: Valid values for expected row size

exp_row_size values Minimum, maximum, and special values
Minimum The greater of:
e 2bytes

60

¢ The sum of all fixed-length columns

Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

exp_row_size values

Minimum,

maximum, and special values

Maximum Maximum data row length
0 Use server-wide default value
1 Fully pack al pages; do not reserve room for expanding rows

You cannot specify an expected row size for tables that have fixed-length
columns only. Columns that accept null values are, by definition, variable-
length, since they are zero-length when null.

Default value

If you do not specify an expected row size or avalue of 0 when you create a
data-only-locked table with variable-length columns, Adaptive Server usesthe
amount of space specified by the configuration parameter default exp_row_size
percent for any table that has variable-length columns.

See “ Setting a default expected row size server-wide” on page 62 for
information on how default exp_row_size affects space on data pages. Use
sp_help to see the defined length of the columnsin the table.

Specifying an expected row size with create table
This create table statement specifies an expected row size of 200 bytes:

Performance and Tuning Series: Physical Database Tuning

create table new titles (

title id
title
type
pub_ id
price
advance
total sales
notes
pubdate
contract
lock datapages
with exp row_ size

tid,
varchar (80)
char(12),
char(4) null,
money null,
money null,
int null,
varchar (200)
datetime,

bit)

not null,

null,

= 200

61

Reducing row forwarding

Adding or changing an expected row size

Use sp_chgattribute to add or change the expected row size for atable. For
example, to set the expected row size to 190 for the new_titles table, enter:

sp_chgattribute new titles, "exp row size", 190

To switch the row size for atable from a current, explicit valut to the default
exp_row_size percent, enter:

sp_chgattribute new titles, "exp row size", 0

To fully pack the pages, rather than saving space for expanding rows, set the
valueto 1.

Changing the expected row size with sp_chgattribute does not immediately
affect the storage of existing data. The new valueis applied:

* When you create a clustered index on the table or run reorg rebuild. The
expected row size is applied as rows are copied to new data pages.

If you increase exp_row_size, and recreate the clustered index or run reorg
rebuild, the new copy of the table may require more storage space.

» Thenext time apageis affected by data modifications.

Setting a default expected row size server-wide

default exp_row_size percent reserves a percentage of the page sizeto set aside
for expanding updates. The default value, 5, sets aside 5% of the space
available per data page for all data-only-locked tables that include variable-
length columns. Since there are 2002 bytes avail able on data pages in data-
only-locked tables, the default value sets aside 100 bytes for row expansion.
This command sets the default value to 10%:

sp_configure "default exp row size percent", 10

Setting default exp_row_size percent to O means that no spaceis reserved for
expanding updates for any tables where the expected row sizeis not explicitly
set with create table or sp_chgattribute.

If an expected row size for atableis specified with create table or
sp_chgattribute, that value takes precedence over the server-wide setting.

62 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

Displaying the expected row size for a table
Use sp_help to display the expected row size for atable:
sp_help titles

If the valueis 0, and the table has nullable or variable-length columns, use
sp_configure to display the server-wide default value:

sp_configure "default exp row size percent"

Thisquery displaysthe value of the exp_rowsize column for all user tablesina
database;

select object name(id), exp rowsize
from sysindexes
where id > 100 and (indid = 0 or indid = 1)

Choosing an expected row size for atable

Setting an expected row size hel ps reduce the number of forwarded rows only
if the rows expand after they are inserted into the table. Setting the expected
row size correctly means that:

e Your application resultsin a small percentage of forwarded rows.

* You do not waste space on data pages due to over-all ocating space towards
the expected row size value.

Using optdiag to check for forwarded rows

For tables that already contain data, use optdiag to display statistics for the
table. The “Datarow size” shows the average data row length, including the
row overhead. This sample optdiag output for the titles table shows 12
forwarded rows and an average data row size of 184 bytes:

Statistics for table: "titles"
Data page count: 655
Empty data page count: 5
Data row count: 4959.000000000
Forwarded row count: 12.000000000
Deleted row count: 84.000000000
Data page CR count: 0.000000000
OAM + allocation page count: 6
Pages in allocation extent: 1
Data row size: 184.000000000

Performance and Tuning Series: Physical Database Tuning 63

Reducing row forwarding

Use optdiag to check the number of forwarded rows for atable to determine
whether your setting for exp_row_size is reducing the number of forwarded
rows generated by your applications.

See Chapter 2, “ Statistics Tables and Displaying Statistics with optdiag,” inthe
Performance and Tuning Series: Improving Performance with Satistical
Analysis.

Querying systabstats for forwarded rows

The forwrowent column in the systabstats table stores the number of forwarded
rowsfor atable. To display the number of forwarded rowsand averagerow size
for all user tables with object IDs greater than 100, use this query:

select objectname = object name (id),
partitionname = (select name from syspartitions p
where p.id = t.id and p.indid = t.indid)
, forwrowcnt, datarowsize
, exprowsize = (select i.exp rowsize from sysindexes i
where i.id = t.id and i.indid = t.indid)
into #temptable
from systabstats t
where id > 100 and indid IN (0,1)

exec sp autoformat #temptable

Note Forwarded row counts are updated in memory, and the housekeeper tasks
periodicaly flushes them to disk.

Query the systabstats table using SQL, use sp_flushstats first to ensure that the
most recent statistics are available. optdiag flushes statistics to disk before
displaying values.

Conversion of max_rows_per_page to exp_row_size

If amax_rows_per_page valueis set for an allpages-locked table, thevalueis
used to compute an expected row size during the alter table...lock command.
The formulais shown in Table 3-7.

Table 3-7: Conversion of max_rows_per_page to exp_row_size

Value of max_rows_per_page Value of exp_row_size
0 Percentage value set by default exp_row_size percent

64 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

Value of max_rows_per_page Value of exp_row_size
1-254 The smaller of:
e Maximum row size

¢ (logica page size) — (page header overheads) /
max_rows_per_page

For example, if max_rows_per_page isset to 10 for an all pages-locked table on
aserver configured for 2K pages with a maximum defined row size of 300
bytes, the exp_row_size valueis 200 (2002/10) after the table is altered to use
data-only locking.

If max_rows_per_page is set to 10, but the maximum defined row sizeisonly
150, the expected row size valueis set to 150.

Monitoring and managing tables that use expected row size

After setting an expected row size for atable, use optdiag or queries on
systabstats to determine the number of forwarded rows being generated by
your applications. Run reorg forwarded_rows the number of forwarded rowsis
high enough to affect application performance. reorg forwarded_rows uses short
transactions and is nonintrusive, so you can run it while applications are active.

See Chapter 9 “Using the reorg Command,” in the System Administration
Guide: Volume 2.

You can monitor forwarded rows on a per-partition basis, and run reorg
forwarded rows on those partitionsthat have alarge number of forwarded rows.
See the Reference Manual: Commands.

If the application continues to generate alarge number of forwarded rows,
consider using sp_chgattribute to increase the expected row size for the table.

You may want to allow acertain percentage of forwarded rows. If running reorg
to clear forwarded rows does not cause concurrency problems for your
applications, or if you can run reorg at nonpeak times, allowing a small
percentage of forwarded rows does not cause a serious performance problem.

Setting the expected row size for atable increases the amount of storage space
and the number of 1/Os required to read a set of rows. If the increase in the
number of I/Os due to increased storage space is high, allowing rows to be
forwarded and occasionally running reorg may have less overall performance
impact.

Performance and Tuning Series: Physical Database Tuning 65

Leaving space for forwarded rows and inserts

Leaving space for forwarded rows and inserts

Extent allocation

66

Set areservepagegap valueto reduce storage fragmentation, thus al so reducing
the frequency of maintenance activities such as running reorg rebuild and
recreating indexes for some tables. Good performance on data-only-locked
tables requires good data clustering on the pages, extents, and allocation units
used by thetable.

The clustering of dataand index pagesin physical storage stayshigh aslong as
there is space nearby for storing forwarded rows and rows that are inserted in
index key order. Use the reservepagegap space management property to

reserve empty pages for expansion when additional pages need to be allocated.

Row and page cluster ratios are usually 1.0, or very closeto 1.0, immediately
after you create a clustered index on atable or immediately after you run reorg
rebuild. However, future data modifications may cause row forwarding and
require allocation of additional data and index pages to store inserted rows.

You can set the reserve page gap on the data and index layer pagesfor allpages
and data-only-locked tables.

commands and reservepagegap

Extent allocation means that pages are allocated in multiples of eight, rather
than one page at atime. This reduces logging activity by writing only onelog
record instead of eight.

Commands that perform extent allocation are: select into, create index, reorg
rebuild, bep, alter table...lock, and the alter table...unique and primary key
constraint options, since these constraints create indexes. alter table commands
that add, drop, or modify columns, or change atable’s partitioning scheme
sometimes also require atable-copy operation. By default, all these commands
use extent allocation.

Specify reservepagegap value in pages, indicating aratio of empty pages to
filled pages. For example, if you specify areservepagegap value of 8, an
operation that uses extent allocation fills seven pages and leaves the eighth
page empty.

Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

Extent allocation operations do not use the first page on each allocation unit,
because it stores the allocation page. For example, if you create a clustered
index on alarge table and do not specify areserve page gap, each allocation
unit has seven empty, unallocated pages, 248 used pages, and the allocation
page. Adaptive Server can use the seven empty pages for row forwarding and
insertsto thetable, which hel ps keep forwarded rows and insertswith clustered
indexes on the same allocation unit. Using reservepagegap |leaves additional
empty pages on each allocation unit.

See Chapter 12, “Creating Indexes on Tables” in the Transact-SQL Users
Guide for information about when to use reservepagegap.

Figure 3-1 shows how an allocation unit might look after a clustered index is
created with areservepagegap value of 16 on the table. The pages that share
thefirst extent with the allocation unit are not used and are not allocated to the
table. Pages 279, 295, and 311 are the unused pages on extents that are
alocated to the table.

Figure 3-1: Reserved pages after creating a clustered index

?\\‘\\\‘\\\Q 257|258|259|260|261|262|263

264|265|266|267|268|269|270|271
272|273|274|275|276|277|278)279 Allocation page
280|281|282|283|284|285| 286|287
288|288|290(291|291|293| 294) 295
296/297/298(299|300(301|302(303 j Reserved pages

304|305|306|307|308|309| 310§ 311 Unallocated pages

Pages used by object

504|505|506|507 508|509 510| 511

Specifying areserve page gap with create table

This create table command specifies areservepagegap value of 16:

Performance and Tuning Series: Physical Database Tuning 67

Leaving space for forwarded rows and inserts

create table more titles (

title id tid,

title varchar (80) not null,
type char(12),

pub_ id char (4) null,

price money null,

advance money null,

total sales int null,

notes varchar (200) null,
pubdate datetime,

contract bit

)
lock datarows
with reservepagegap = 16

Any operation that performs extent allocation on the more_titles table leaves 1
empty page for each 15 filled pages. For partitioned tables, the reservepagegap
value appliesto all partitions.

The default value for reservepagegap is 0, meaning that no spaceis reserved.

Specifying areserve page gap with create index
This command specifies areservepagegap of 10 for nonclustered index pages:

create index type price ix
on more titles(type, price)
with reservepagegap = 10

You can specify areservepagegap va ue with the alter table...constraint options,
primary key and unique, that create indexes. The value of reservepagegap for
local index on partitioned tables appliesto al local index partitions.

This example creates a unique constraint:

alter table more titles
add constraint unig id unique (title id)
with reservepagegap = 20

Changing reservepagegap
To change the reserve page gap for the titles table to 20, enter:
sp_chgattribute more titles, "reservepagegap", 20

This command sets the reserve page gap for the index title_ix to 10:

68 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

sp_chgattribute "titles.title ix",
"reservepagegap", 10

sp_chgattribute changesonly valuesin system tables; datais not moved on data
pagesasaresult of running the procedure. Changing reservepagegap for atable
affects future storage as follows:

e When dataisbulk-copied into the table, the reserve page gap is applied to
al newly allocated space, but the storage of existing pagesis not affected.

* Any command that copies the table’s data to create a new version of the
table applies the reserve page gap during the data copy phase of the
operation. For example, using reorg rebuild or using alter table to change
the locking or partitioning scheme of atable or any change of schemathat
requires a data copy both apply to reserver page gap.

* When you create a clustered index, the reserve page gap value stored for
the tableis applied to the data pages.

The reserve page gap is applied to index pages during:
e alter table...lock, indexes are rebuilt.

* Theindex rebuild phase during reorg rebuild when using alter table to
change the locking or partitioning scheme of atable, or when changing
any schemathat requires a data copy.

e create clustered index and alter table commands that create a clustered
index, as nonclustered indexes are rebuilt

reservepagegap examples

These examples show how reservepagegap is applied during alter table and
reorg rebuild commands.

reservepagegap specified only for the table

The following commands specify areservepagegap for the table, but do not
specify avalue in the create index commands:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title ix on titles(title_id)
create index type price on titles(type, price)

Table 3-8 showsthe values applied when running reorg rebuild or dropping and
creating a clustered index.

Performance and Tuning Series: Physical Database Tuning 69

Leaving space for forwarded rows and inserts

Table 3-8: reservepagegap values applied with table-level saved value

Command Allpages-locked table Data-only-locked table
create clustered Data and index pages: 16 Data pages: 16

index or clustered index rebuild Index pages: O (filled extents)
dueto reorg rebuild

Nonclustered index rebuild Index pages: O (filled extents) Index pages: O (filled extents)

For an allpages-locked table with aclustered index, reservepagegap is applied
to both the dataand index pages. For adata-only-locked table, reservepagegap
is applied to the data pages, but not to the clustered index pages.

reservepagegap specified for a clustered index

These commands specify different reservepagegap valuesfor the table and the
clustered index, and a value for the nonclustered type_price index:

sp_chgattribute titles, "reservepagegap", 16

create clustered index title ix on titles(title)
with reservepagegap = 20

create index type price on titles(type, price)
with reservepagegap = 24

Table 3-9 shows the effects of this sequence of commands.

Table 3-9: reservepagegap values applied with for index pages

Command Allpages-locked table Data-only-locked table
create clustered Data and index pages: 20 Data pages: 16

index or clustered index rebuild due to Index pages: 20

reorg rebuild

Nonclustered index rebuilds Index pages. 24 Index pages: 24

For allpages-locked tables, the reservepagegap specified with create clustered
index applies to both data and index pages. For data-only-locked tables, the
reservepagegap specified with create clustered index applies only to the index
pages. If there is a stored reservepagegap value for the table, that valueis
applied to the data pages.

Choosing a value for reservepagegap
Choosing a value for reservepagegap depends on:
* Whether the table has a clustered index,
* Therateof insertsto thetable,

70 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

* The number of forwarded rows that occur in the table, and

e Thefrequency with which you recreate the clustered index or runthereorg
rebuild command.

When reservepagegap is configured correctly, enough pages are left for
alocation of new pages to tables and indexes so that the cluster ratios for the
table, clustered index, and nonclustered | eaf-level pagesremain high during the
interval's between regular index maintenance tasks.

Monitoring reservepagegap settings
Use optdiag to check the cluster ratio and the number of forwarded rowsin

tables. Declinesin cluster ratios may also indicate that you can improve
performance by running reorg commands:

« |If the datapage cluster ratio for a clustered index islow, run reorg rebuild
or drop and recreate the clustered index.

« If theindex page cluster ratio islow, drop and recreate the nonclustered
index.

To reduce the frequency with which you run reorg commands to maintain
cluster ratios, increase thereservepagegap sightly before running reorg rebuild.

See Chapter 2, “ Statistics Tables and Displaying Statistics with optdiag,” in
Performance and Tuning Series: Improving Performance with Satistical
Analysis.

reservepagegap and sorted_data options

When you create a clustered index on atable that is already stored on the data
pagesinindex key order, the sorted_data option suppresses the step of copying
the datapagesin key order for unpartitioned tables. Thereservepagegap option
can be specified in create clustered index commands, to |eave empty pages on
the extents used by the table, leaving room for later expansion. There are rules
that determine which option takes effect. You cannot use sp_chgattribute to

change the reservepagegap value and get the benefits of both of these options.

If you specify both with create clustered index:

Performance and Tuning Series: Physical Database Tuning 71

Leaving space for forwarded rows and inserts

On unpartitioned, allpages-locked tables, if the reservepagegap value
specified with create clustered index matches the values already stored in
sysindexes, the sorted_data option takes precedence. Data pages are not
copied, so the reservepagegap is not applied. If the reservepagegap value
specified in the create clustered index command is different from the
values stored in sysindexes, the data pages are copied, and the
reservepagegap value specified in the command is applied to the copied

pages.
On data-only-locked tables, the reservepagegap value specified with

create clustered index applies only to the index pages. Data pages are not
copied.

Besides reservepagegap, other options to create clustered index may require a
sort, which causesthe sorted_data option to beignored. For moreinformation,
see “ Creating an index on sorted data” on page 105.

In particular, the following comments rel ate to the use of reservepagegap:

On partitioned tables, any create clustered index command that requires
copying data pages performs a parallel sort and then copies the data pages
in sorted order, applying thereservepagegap valuesasthe pagesare copied
to new extents.

Whenever the sorted_data option is not superseded by other create
clustered index options, the table is scanned to determine whether the data
isstored in key order. Theindex is built during the scan, without a sort
being performed.

Table 3-10 shows how these rules apply.

Table 3-10: reservepagegap and sorted_data options

Partitioned table Unpartitioned table

Allpages-locked table

create index with sorted_data

Does not copy data pages; buildsthe Does not copy data pages; buildsthe

and matching reservepagegap index as pages are scanned. index as pages are scanned.
value
create index with sorted_data Performs parallel sort, applying Copies data pages, applying
and different reservepagegap reservepagegap as pages are stored reservepagegap and building the
value in new locations in sorted order. index as pages are copied; no sort is
performed.
Data-only-locked table
create index with sorted_data reservepagegap appliesto index reservepagegap applies to index
and any reservepagegap value pagesonly; does not copy data pages only; does not copy data
pages. pages.

72

Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

Matching options and goals

To redistribute the data pages of atable, leaving room for later expansion:

* For alpages-locked tables, drop and recreate the clustered index without
using the sorted_data option. If the value stored in sysindexes is not the
value you want, use create clustered index to specify the desired
reservepagegap.

« For data-only-locked tables, use sp_chgattribute to set the reservepagegap
for the table to the desired value, then drop and recreate the clustered
index, without using the sorted_data option. The reservepagegap stored
for thetable appliesto the data pages. If reservepagegap is specified in the
create clustered index command, it applies only to the index pages.

To create a clustered index without copying data pages:

» For alpages-locked tables, use the sorted_data option, but do not use
create clustered index to specify areservepagegap. Alternatively, specify a
value that matches the value stored in sysindexes.

e For data-only-locked tables, use the sorted_data option. If a
reservepagegap value is specified in the create clustered index command,
it applies only to the index pages and does not cause data page copying.

To use the sorted_data option following a bulk-copy operation, a select into
command, or another command that uses extent allocation, set the
reservepagegap valuethat you want for the data pages before copying the data,
or specify it in the select into command. Once the data pages have been
allocated and filled, the following command applies reservepagegap to the
index pages only, since the data pages do not need to be copied:

create clustered index title ix
on titles(title id)
with sorted data, reservepagegap = 32

Using max_rows_per_page on allpages-locked tables

Setting a maximum number of rows per pages can reduce contention for
allpages-locked tablesand indexes. In most cases, it ispreferableto convert the
tables to use a data-only-locking scheme. If there is some reason that you
cannot change the locking scheme, and contention is a problem on an all pages-
locked table or index, setting a max_rows_per_page value may help
performance.

Performance and Tuning Series: Physical Database Tuning 73

Using max_rows_per_page on allpages-locked tables

When there are fewer rows on the index and data pages, the chances of lock
contention arereduced. Asthekeysare spread out over more pages, it becomes
more likely that the page you want is not the page someone else needs. To
change the number of rows per page, adjust thefillfactor or max_rows_per_page
values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how full
Adaptive Server makes each data page when it creates anew index on existing
data. Since fillfactor helps reduce page splits, exclusive locks are also
minimized on the index, improving performance. However, the fillfactor value
is not maintained by subsequent changes to the data. max_rows_per_page
(defined by sp_chgattribute, create index, create table, or alter table) is similar
to fillfactor, except that Adaptive Server maintains the max_rows_per_page
value as the data changes.

The costs associated with decreasing the number of rows per page using
fillfactor or max_rows_per_page include more |/O to read the same number of
data pages, more memory for the same performance from the data cache, and
more locks. In addition, alow value for max_rows_per_page for atable may
increase page splits when data is inserted into the table.

Reducing lock contention

The max_rows_per_page value specified in acreate table, create index, or alter
table command restricts the number of rows allowed on adata page, aclustered
index leaf page, or anonclustered index leaf page. Thisreduceslock contention
and improves concurrency for frequently accessed tables.

max_rows_per_page appliesto the data pages of aheap table, or the leaf pages
of an index. Unlikefillfactor, which is not maintained after creating atable or
index, Adaptive Server retains the max_rows_per_page value when adding or
deleting rows.

The following command creates the sales table and limits the maximum rows
per page to four:

create table sales

(stor_ id char (4) not null,
ord_num varchar (20) not null,
date datetime not null)
with max rows per page = 4

74 Adaptive Server Enterprise

CHAPTER 3 Setting Space Management Properties

If you create atable with amax_rows_per_page value, and then create a
clustered index on the table without specifying max_rows_per_page, the
clustered index inherits the max_rows_per_page value from the create table
statement. Creating a clustered index with max_rows_per_page changes the
value for the table’s data pages.

Indexes and max_rows_per_page

Thedefault valuefor max_rows_per_page is0, which creates clustered indexes
with full data pages, creates nonclustered indexes with full leaf pages, and
leaves a comfortable amount of space within the index B-tree in both the
clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page iSO —
256.

For nonclustered indexes, the maximum value for max_rows_per_page isthe
number of index rows that fit on the leaf page, without exceeding 256. To
determine the maximum value, subtract 32 (the size of the page header) from
the page size and divide the difference by the index key size. The following
statement cal culates the maximum value of max_rows_per_page for a
nonclustered index:

select (e@pagesize - 32)/minlen
from sysindexes
where name = "indexname"

select into and max_rows_per_page

By default, select into does not carry over abase table’'s max_rows_per_page
value, but creates the new table with amax_rows_per_page value of 0.
However, you can add the with max_rows_per_page option to select into to
specify avalue other than O.

Applying max_rows_per_page to existing data
There are several waysto apply a max_rows_per_page value to existing data:

« If thetable has a clustered index, drop and recreate the index using a
different max_rows_per_page value.

Performance and Tuning Series: Physical Database Tuning 75

Using max_rows_per_page on allpages-locked tables

e Usesp_chgattribute to change the value of max_rows_per_page, then
rebuild the entire table and its indexes with reorg rebuild. For example, to
change the max_rows_per_page value of the authors table to 1, enter:

sp_chgattribute authors, "max rows per page", 1

go
reorg rebuild authors

go
e Usebcp to repopulate the table, and:
a Copy out the table data.
b Truncatethetable.
¢ Usegp_chgattribute to set the max_rows_per_page value.
d Copy the databack in.

76 Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

This chapter explains how to determine the current sizes of tables and

indexes and how to estimate table size for space planning.

Topic Page
Determining the sizes of tables and indexes 78
Effects of data modifications on object sizes 79
Using optdiag to display object sizes 79
Using sp_spaceused to display object size 80
Using sp_estspace to estimate object size 82
Using formulas to estimate object size 84

Knowing the sizes of your tables and indexes is important to

understanding query and system behavior. At several stages of tuning

work, you need size datato:

e Understand statistics io reports for a specific query plan. Chapter 1,
“Using the set statistics Commands,” in Performance and Tuning
Series. Improving Performance with Satistical Analysis describes

how to use statistics io to examine the 1/0 performed.

e Understand the optimizer’s choice of query plan. The Adaptive
Server cost-based optimizer estimates the physical and logical 1/0
required for each possible access method and chooses the cheapest
method. If you think a particular query plan is unusual, use dbcc
traceon(302) to determine why the optimizer made the decision. This

output includes page number estimates.

e Determine object placement, based on the sizes of database objects
and the expected 1/O patterns on the objects. limprove performance
by distributing database objects across physical devices so that reads

and writesto disk are evenly distributed. Object placement is

described in Chapter 1, “Controlling Physical Data Placement.”

Performance and Tuning Series: Physical Database Tuning

77

Determining the sizes of tables and indexes

Understand changes in performance. If objects grow, their performance
characteristics can change. One exampleisatablethat is heavily used and
isusually 100% cached. If that table growstoo large for its cache, queries
that access the table can suddenly suffer poor performance. Thisis
particularly true for joins requiring multiple scans.

Perform capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you must know your space
requirements to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor and from sp_sysmon
reports on physical /0.

Determining the sizes of tables and indexes

Adaptive Server includes several toolsthat provide information about the
current sizes of tables or indexes, or that can predict future sizes:

78

optdiag displaysthe sizes and many other statisticsfor tables and indexes.
See Chapter 2, “Statistics Tables and Displaying Statistics with optdiag,”
in Performance and Tuning Series: Improving Performance with
Satistical Analysis

sp_spaceused reports on the current size of existing tables and indexes.

sp_estspace can predict the size of atable and itsindexes, given anumber
of rows as a parameter.

You can also compute table and index size using formulas provided in this
chapter. sp_spaceused and optdiag report actual space usage. The other
methods presented in this chapter provide size estimates.

For partitioned tables, sp_helpartition reports on the number of pages stored on
each partition of the table. See Chapter 10, “Partitioning Tables and Indexes”
in the Transact-SQL Users Guide.

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Effects of data modifications on object sizes

Over time, the effects of randomly distributed data modifications on a set of
tables tend to produce data pages and index pages that average approximately
75% full. The mgjor factors are:

* Whenyou insert arow to be placed on a page of an allpages-locked table
with a clustered index, and there is no room on the page for that row, the
pageis split, leaving two pages that are about 50 percent full.

* When you delete rows from heaps or from tables with clustered indexes,
the space used on the page decreases. You can have pagesthat contain very
few rows or even asingle row.

« After some deletes or page splits have occurred, inserting rows into tables
with clustered indexes tendsto fill up pages that have been split, or pages
where rows have been deleted.

Page splits also take place when rows need to be inserted into full index pages,
so index pages also tend to average approximately 75% full, unless you drop
and recreate them periodically.

Using optdiag to display object sizes

The optdiag command displays statistics for tables, indexes, and columns,
including the size of tables and indexes. If you are performing query tuning,
optdiag provides the best tool for viewing all the statistics you need. Hereis a
sample report for the titles table in the pubtune database:

Table owner: "dbo"

Statistics for table: "titles"
Data page count: 662
Empty data page count: 10
Data row count: 4986.0000000000000000
Forwarded row count: 18.0000000000000000
Deleted row count: 87.0000000000000000
Data page CR count: 86.0000000000000000
OAM + allocation page count: 5
First extent data pages: 3

Data row size: 238.8634175691937287

See Chapter 2, “ Statistics Tables and Displaying Statistics with optdiag,” in
Performance and Tuning Series: Improving Performance with Satistical
Analysis.

Performance and Tuning Series: Physical Database Tuning 79

Using sp_spaceused to display object size

Advantages of optdiag
The advantages of optdiag are that:
e ltcandisplay statistics for all tablesin a database, or for asingle table.

e optdiag output contains addition information useful for understanding
query costs, such asindex height and the average row length.

» Itisfrequently used for other tuning tasks, so you may have these reports
readily available.

Disadvantages of optdiag

The principle disadvantage of optdiag isthat it produces alot of output. If you
need only asingle piece of information, such asthe number of pagesin atable,
other methods are faster and incur lower system overhead.

Using sp_spaceused to display object size

The system procedure sp_spaceused reads values stored on an object’'s OAM
page to provide a quick report on the space used by the object.

sp_spaceused titles
name rowtotal reserved data index size wunused

titles 5000 1756 KB 1242 KB 440 KB 74 KB

The rowtotal value may be inaccurate at times; not all Adaptive Server
processes update thisvalue onthe OAM page. The commands update statistics,
dbcc checktable, and dbcc checkdb correct the rowtotal value onthe OAM page.
Table 4-1 explains the headings in sp_spaceused outpuit.

80 Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Table 4-1: sp_spaceused output

Column

Meaning

rowtotal

Reports an estimate of the number of rows. Thevalueis
read from the OAM page. Though not always exact, this
estimate is much quicker and leads to less contention than
select count(*).

reserved

Reports pages reserved for use by the table and itsindexes.
It includes both the used and unused pages in extents
alocated to the objects. It is the sum of data, index_size,
and unused.

data

Reports the kilobytes on pages used by the table.

index_size

Reports the total kilobytes on pages used by the indexes.

unused

Reports the kilobytes of unused pages in extents all ocated
to the object, including the unused pages for the object’s
indexes.

To report index sizes separately, use:

sp_spaceused titles, 1

index name size

title id cix 14 KB

title ix 256 KB

type price ix 170 KB
name rowtotal reserved
titles 5000 1756 KB

reserved unused

1294 KB 38 KB

272 KB 16 KB

190 KB 20 KB

data index size wunused
1242 KB 440 KB 74 KB

For clustered indexes on allpages-locked tables, the size value represents the
space used for the root and intermediate index pages. The reserved value
includes the index size and the reserved and used data pages.

The“1” in the sp_spaceused syntax indicates that detailed index information
should be printed. It has no relation to index IDs or other information.

Advantages of sp_spaceused

The advantages of sp_spaceused are that:

e It provides quick reports without excessive 1/0 and locking, sinceit uses
only valuesin the table and index OAM pages to return results.

Performance and Tuning Series: Physical Database Tuning 81

Using sp_estspace to estimate object size

» It showsthe amount of spacethat isreserved for expansion of the object,
but not currently used to store data.

e It provides detailed reports on the size of indexes and of text and image,
and Java off-row column storage.

Note Use sp_helpartition to report the number of pages in each partition.
sp_helpartition does not report the same level of detail as sp_spaceused, but
does give a general idea of the amount of space a partition uses. In Adaptive
Server version 15.0.2 and later, sp_spaceusage provides detailed information
about avariety of subjects, including the space used by tables at the index and
partition level, and fragmentation.

See the Adaptive Server Reference Manual: Procedures for more information
about all these system procedures.

Disadvantages of sp_spaceused

The disadvantages of sp_spaceused are:
* It may report inaccurate counts for row total and space usage.

* Output isonly in kilobytes, while most query-tuning activities use pages
as a unit of measure. However, you can use sp_spaceusage to report
information in any unit you specify.

Using sp_estspace to estimate object size

82

sp_spaceused and optdiag report on actual space usage. sp_estspace can help
you plan for future growth of your tables and indexes. This procedure uses
information in the system tables (sysobjects, syscolumns, and sysindexes) to
determine the length of data and index rows. You provide atable name, and the
number of rows you expect to have in the table, and sp_estspace estimatesthe
size for the table and for any indexes that exist. It does not look at the actual
size of the dataiin the tables.

To use sp_estspace:

» Createthetable, if it does not already exist.

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

titles
title id cix
title id cix
title id cix
title ix
title ix
title ix
title ix

type price ix
type price ix
type price ix
type price ix

Total_ Mbytes

title id cix
title ix
type price ix

e Createany indexes on thetable.

e Execute the procedure, estimating the number of rows that the table will
hold.

The output reports the number of pages and bytes for the table and for each
level of theindex.

Thefollowing example estimates the size of thetitles table with 500,000 rows,
aclustered index, and two nonclustered indexes:

sp_estspace titles, 500000

type idx level Pages Kbytes
data 0 50002 100004
clustered 0 302 604
clustered 1 3 6
clustered 2 1 2
nonclustered 0 13890 27780
nonclustered 1 410 819
nonclustered 2 13 26
nonclustered 3 1 2
nonclustered 0 6099 12197
nonclustered 1 88 176
nonclustered 2 2 5
nonclustered 3 1 2
type total pages time mins
clustered 50308 250
nonclustered 14314 91
nonclustered 6190 55

sp_estspace also allowsyou to specify afillfactor, the average size of variable-
length fields and text fields, and the I/O speed. For more information, see
Reference Manual: Procedures.

Note Theindex creation times printed by sp_estspace do not factor in the
effects of parallel sorting.

Performance and Tuning Series: Physical Database Tuning 83

Using formulas to estimate object size

Advantages of sp_estspace
The advantages of sp_estspace are that it:

Provides an efficient way to perform initial capacity planning and to plan
for table and index growth.

Helps you estimate the number of index levels.

Helps you estimate future disk space, cache space, and memory
requirements.

Disadvantages of sp_estspace
The disadvantages of sp_estspace are that:

Returned sizes are only estimates and may differ from actual sizes, dueto
fillfactors, page splitting, actual size of variable-length fields, and other
factors.

Index creation times can vary widely, depending on disk speed, the use of
extent 1/O buffers, and system |oad.

Using formulas to estimate object size

Theformulas discussed here can hel p you estimate the future sizes of the tables
and indexes in your database. The amount of overhead in each row for tables
and indexes that contain variable-length fieldsis greater than the overhead for
tables that contain only fixed-length fields, so two sets of formulas are
required.

84

The processinvolves cal cul ating the number of bytes of data and overhead for
each row, and dividing that number into the number of bytesavailable on adata
page. Each page requires some overhead, which limits the number of bytes
available for data:

For allpages-locked tables, page overhead is 32 bytes, leaving 2016 bytes
available for dataon a 2K page.

For data-only-locked tables, page overhead is 46 bytes, |eaving 2002 bytes
available for data.

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

For the most accurate estimate, round down divisionsthat cal cul ate the number
of rows per page (rows are never split across pages), and round up divisions
that calculate the number of pages.

Factors that can affect storage size

Using space management properties can increase the space needed for atable
or an index. See “Effects of space management properties’ on page 99, and
“max_rows_per_page” on page 100.

If your table includes text or image datatypes or Java off-row columns, use 16
(the size of the text pointer that is stored in the row) in your calculations. Then
see “L OB pages’ on page 101 to see how to calcul ate the storage space
required for the actual text or image data.

Indexes on data-only-locked tables may be smaller than the formulas predict

dueto two factors:

* Duplicate keys are stored only once, followed by alist of row IDsfor the
key.

e Compression of keyson nonleaf levels; only enough of the key to

differentiate from the neighboring keysis stored. Thisis especially
effective in reducing the size when long character keys are used.

If the configuration parameter page utilization percent is set to less than 100,
Adaptive Server may allocate new extents before filling all pages on the
allocated extents. This does not change the number of pages used by an object,
but leaves empty pagesin the extents allocated to the object.

Storage sizes for datatypes
The storage sizes for datatypes are shown in Table 4-2:

Performance and Tuning Series: Physical Database Tuning 85

Using formulas to estimate object size

86

Table 4-2: Storage sizes for Adaptive Server datatypes

Datatype Size

char Defined size

nchar Defined size* @@ncharsize

unichar n* @@unicharsize (@@unicharsize equals 2)
univarchar the actual number of characters* @@unicharsize
varchar Actual number of characters

nvarchar Actual number of characters* @@ncharsize
binary Defined size

varbinary Datasize

int 4

smallint 2

tinyint 1

float 4 or 8, depending on precision

double precision 8

real 4

numeric 2-17, depending on precision and scale
decimal 2-17, depending on precision and scale
money

smallmoney

datetime

smalldatetime

bit

[l = e RN - o]

text

16 bytes + 2K * number of pages used

image

16 bytes + 2K * number of pages used

timestamp

8

The storage size for anumeric or decimal column depends on its precision. The
minimum storage requirement is 2 bytesfor al- or 2-digit column. Storagesize
increases by 1 byte for each additional 2 digits of precision, up to a maximum
of 17 bytes.

Any columns defined as NULL are considered variable-length columns, since
they involve the overhead associated with variable-length columns.

All calculationsin the examplesthat follow are based on the maximum sizefor
varchar, univarchar, nvarchar, and varbinary data—the defined size of the
columns. They a so assume that the columns were defined as NOT NULL.

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Tables and indexes used in the formulas

The example illustrates the computations on atable that contains 9,000,000
rows:

e The sum of fixed-length column sizesis 100 bytes.

e Thesum of variable-length column sizesis 50 bytes; there are 2 variable-
length columns.

The table has two indexes:
e A clustered index, on afixed-length column, of 4 bytes
e A composite nonclustered index with these columns:

e A fixed length column, of 4 bytes

e A variable length column, of 20 bytes

Different formulas are needed for all pages-locked and data-only-locked tables,
since they have different amounts of overhead on the page and per row:

e See“Calculating table and clustered index sizes for allpages-locked
tables’ on page 87 for tables that use allpages-locking.

e See“Calculating the sizes of data-only-locked tables’ on page 94 for the
formulasto use if tables that use data-only locking.

Calculating table and clustered index sizes for allpages-locked

tables

The formulas and examples for allpages-locked tables are listed below as a
series of steps. Steps 1-6 outline the calculations for an allpages-locked table
with aclustered index, giving the table size and the size of theindex tree. Steps
7-12 outline the cal culations for computing the space required by nonclustered
indexes. All of the formulas use the maximum size of the variable-length
fields. The steps are:

1 “Caculatethe datarow size’ on page 88
“Compute the number of data pages’ on page 89
“Compute the size of clustered index rows” on page 89

“Compute the number of clustered index pages’ on page 90

g b~ W N

“Compute the total number of index pages’ on page 90

Performance and Tuning Series: Physical Database Tuning 87

Using formulas to estimate object size

6 “Calculate allocation overhead and total pages’ on page 91

7 “Calculate the size of the leaf index row” on page 92

8 “Calculate the number of leaf pagesin the index” on page 92

9 “Calculate the size of the nonleaf rows’ on page 93

10 “Calculate the number of non-leaf pages’ on page 93

11 “Calculate the total number of non-leaf index pages’ on page 93
12 “Calculate alocation overhead and total pages’ on page 94

Theseformulas show how to calculate the sizes of tablesand clustered indexes.
If your table does not have clustered indexes, skip steps 3, 4, and 5. When you
have computed the number of data pagesin step 2, go to step 6 to add the
number of OAM pages.

optdiag output includes the average length of data rows and index rows. You
can use these values for the data and index row lengths, if you want to use
average lengths instead.

Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only

If the table contains only fixed-length columns, and all are defined as NOT
NULL, use:

Formula
4 (Overhead)
+ Sum of bytesin all fixed-length columns
= Datarow size

Some variable-length columns

88

If the table contains any variable-length columns or columnsthat allow NULL
values, use this formula.

The table in the example contains variable-length columns, so the
computations are shown in the right column.

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size
Formula Example
4 (Overhead) 4
Sum of bytesin all fixed-length columns + 100
Sum of bytesin al variable-length columns + 50
= Subtotal 154
(Subtotal / 256) + 1 (Overhead) 1
Number of variable-length columns + 1 3
2 (Overhead) 2
= Datarow size 160

Compute the number of data pages

Formula
2016 / Datarow size = Number of data rows per page

Number of rows/ Rows per page = Number of data pages required

Example
2016/ 160 = 12 datarows per page
9,000,000/ 12 = 750,000 data pages

Compute the size of clustered index rows

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values. Use thefirst formulaif all the
keys are fixed length. Use the second formulaif the keysinclude variable-

length columns or allow NULL values.

Fixed-length columns only

The clustered index in the example has only fixed-length keys.

Formula
5 (Overhead)
+ Sum of bytesin the fixed-length index keys
= Clustered row size

Performance and Tuning Series: Physical Database Tuning

Example

5
4
9

89

Using formulas to estimate object size

Some variable-length columns

5 (Overhead)
Sum of bytesin the fixed-length index keys
Sum of bytesin variable-length index keys
= Subtotal

(Subtotal / 256) + 1 (Overhead)

Number of variable-length columns + 1
2 (Overhead)

= Clustered index row size

The results of the division (Subtotal / 256) are rounded down.

Compute the number of clustered index pages

Formula Example

(2016 / Clustered row size) - 2 = No. of clustered index (2016/9) -2 = 222
rows per page

No. of rows/ No. of Cl rowsper page = No. of index pagesat next 750,000 / 222 = 3379

level

If the result for the “ number of index pages at the next level” is greater than 1,
repeat the following division step, using the quotient asthe next dividend, until
the quotient equals 1, which means that you have reached the root level of the

index:
Formula
No. of index pages / No. of clusteredindex = No. of index pages at
at last level rows per page next level
Example
3379/ 222 = 16index pages(Level 1)
16/222 = 1lindex page (Level 2)

Compute the total number of index pages

Add the number of pages at each level to determine the total number of pages
in the index:

90 Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Formula Example

Index levels Pages Pages Rows

2 1 16

1 + + 16 3379

0 + + 3379 750000
Total number of index pages 3396

Calculate allocation overhead and total pages

Each table and each index on atable has an object allocation map (OAM). A
single OAM page holds all ocation mapping for between 2,000 and 63,750 data
pages or index pages. In most cases, the number of OAM pages required is
close to the minimum value. To calculate the number of OAM pages for the

table, use:
Formula Example
Number of reserved data pages/ 63,750 = Minimum OAM pages 750,000/63,750 = 12
Number of reserved data pages/ 2000 = Maximum OAM pages 750,000/ 2000 = 376
To calculate the number of OAM pages for the index, use:
Formula Example
Number of reserved index pages/ 63,750 = Minimum OAM pages 3396/ 63,750 =1
Number of reserved index pages/ 2000 = Maximum OAM pages 3396 / 2000 = 2

Total pages needed

Finally, add the number of OAM pages to the earlier totals to determine the
total number of pages required:

Formula Example

Minimum Maximum Minimum Maximum
Clustered index pages 3396 3396
OAM pages + + 1 2
Data pages + + 750000 750000
OAM pages + + 12 376
Tota 753409 753773

Performance and Tuning Series: Physical Database Tuning 91

Using formulas to estimate object size

Calculate the size of the leaf index row

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only
If the index contains only fixed-length keys and are defined as NOT NULL,
use:

Formula
7 (Overhead)
+ Sum of fixed-length keys
= Size of leaf index row

Some variable-length keys
If the index contains any variable-length keys or columns defined as NULL,

use:

Formula Example
9 (Overhead) 9

Sum of length of fixed-length keys + 4

Sum of length of variable-length keys + 20

Number of variable-length keys + 1 + 2

= Subtotal 35

+ (Subtotal / 256) + 1 (overhead) + 1
= Size of leaf index row 36

Calculate the number of leaf pages in the index

Formula Example

(2016 / leaf row size) = No. of leaf index rowsper 2016/ 36 = 56
page

No. of tablerows/ No. of leaf rowsper page = No. of index pagesat next 9,000,000/ 56 = 160,715

level

92 Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Calculate the size of the nonleaf rows

Formula Example
Size of leaf index row 36

+ 4 Overhead + 4
= Size of non-leaf row 40

Calculate the number of non-leaf pages

Formula Example
(2016 / Size of non-leaf row) - 2 = No. of non-leaf index rows per page (2016/40) - 2=48

If the number of leaf pages from step 8 is greater than 1, repeat the following
division step, using the quotient as the next dividend, until the quotient equals
1, which means that you have reached the root level of the index:

Formula
No. of index pages at previouslevel / No. of non-leaf index rowsper page = No. of index pagesat next level

Example

160715/ 48 = 3349 Index pages, level 1
3349/48="70 Index pages, level 2
70/48=2 Index pages, level 3
2/48=1 Index page, level 4 (root level)

Calculate the total number of non-leaf index pages
Add the number of pages at each level to determine the total number of pages

in the index:
Index Levels Pages Pages Rows
4 1 2
3 + + 2 70
2 + + 70 3348
1 + + 3349 160715
0 + + 160715 9000000
Total number of 2K data pages used 164137

Performance and Tuning Series: Physical Database Tuning 93

Using formulas to estimate object size

Calculate allocation overhead and total pages

Formula Example
Number of index pages/ 63,750 = Minimum OAM pages 164137/ 63,750 = 3
Number of index pages/ 2000 = Maximum OAM pages 164137/ 2000 = 83

Total Pages Needed

Formula

Nonclustered index pages
OAM pages

Total

Add the number of OAM pages to the total in step 11 to determine the total
number of index pages:

Example
Minimum Maximum Minimum Maximum
164137 164137
+ + 3 83
164140 164220

Calculating the sizes of data-only-locked tables

94

The formulas and examples that follow show how to calculate the sizes of
tables and indexes. This example uses the same column sizes and index as the
previous example. All of the formulas use the maximum size of the variable-
length fields. See“ Tablesand indexes used in theformulas’ on page 87 for the
specifications.

The formulas for data-only-locked tables are divided into two sets of steps:

* Steps 1-3 outline the calculations for a data-only-locked table. The
examplethat follows step 3 illustrates the computations on atable that has
9,000,000 rows.

* Steps4-8 outline the calculations for computing the space required by an
index, followed by an example using the 9,000,000-row table.

optdiag output includes the average length of data rows and index rows. You
can use these values for the data and index row lengths, if you want to use
average lengths instead.

The steps are:

1 “Caculate the datarow size” on page 95

2 “Compute the number of data pages’ on page 96

3 “Calculate allocation overhead and total pages’ on page 96
4

“Calculate the size of the index row” on page 96

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

“Calculate the number of leaf pagesin theindex” on page 97
“Calculate the number of non-leaf pagesin theindex” on page 97
“Calculate the total number of non-leaf index pages’ on page 98

0 N o O

“Calculate allocation overhead and total pages’ on page 98

Calculate the data row size

Rows that store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-length columns only
If the table contains only fixed-length columns defined as NOT NULL, use:

6 (Overhead)
+ Sum of bytesin all fixed-length columns
Datarow size

Note Data-only-locked tables must allow room for each row to store a 6-byte
forwarded row ID. If a data-only-locked table has rows shorter than 10 bytes,
each row ispadded to 10 byteswhen it isinserted. Thisaffects only data pages,
and not indexes, and does not affect allpages-locked tables.

Some variable-length columns
If the table contains variable-length columns or columns that allow NULL

values, use:
Formula Example
8 (Overhead) 8
+ Sum of bytesin al fixed-length columns + 100
+ Sum of bytesin al variable-length columns + 50
+ Number of variable-length columns* 2 + 4
Datarow size 162

Performance and Tuning Series: Physical Database Tuning 95

Using formulas to estimate object size

Compute the number of data pages

Formula
2002 / Datarow size = Number of data rows per page
Number of rows/ Rows per page = Number of data pages required

In the first part of this step, the number of rows per page is rounded down:

Example
2002/ 162 = 12 datarows per page
9,000,000/ 12 = 750,000 data pages

Calculate allocation overhead and total pages

Allocation overhead

Each table and each index on atable has an object allocation map (OAM). The
OAM is stored on pages allocated to the table or index. A single OAM page
holds allocation mapping for between 2,000 and 63,750 data pages or index
pages. In most cases, the number of OAM pages required is close to the
minimum value. To calculate the number of OAM pages for the table, use:

Formula Example
Number of reserved data pages/ 63,750 = Minimum OAM pages 750,000/ 63,750 = 12
Number of reserved data pages/ 2000 = Maximum OAM pages 750,000/ 2000 = 375

Total pages needed

Add the number of OAM pages to the earlier totals to determine the total
number of pages required:

Formula Example

Minimum Maximum Minimum Maximum
Data pages + + 750000 750000
OAM pages + + 12 375
Total 750012 750375

Calculate the size of the index row

Usethese formulasfor clustered and nonclustered indexes on data-only-length
tables.

96 Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Index rows containing variable-length columns require more overhead than
index rows containing only fixed-length values.

Fixed-length keys only

If the index contains only fixed-length keys defined as NOT NULL, use:

9 (Overhead)
+ Sum of fixed-length keys
Size of index row

Some variable-length keys

If the index contains any variable-length keys or columns that allow NULL

values, use:
Formula Example
9 (Overhead) 9
Sum of length of fixed-length keys + 4
Sum of length of variable-length keys + 20
+ Number of variable-length keys* 2 + 2
Size of index row 35

Calculate the number of leaf pages in the index

Formula
2002 / Size of index row = No. of rows per page
No. of rowsin table/ No. of rows per page = No. of leaf pages

Example
2002 / 35 = 57 Nonclustered index rows per page
9,000,000/ 57 = 157,895 leaf pages

Calculate the number of non-leaf pages in the index

Formula
No. of leaf pages / No. of index rows per page = No. of pagesat next level

Performance and Tuning Series: Physical Database Tuning 97

Using formulas to estimate object size

If the number of index pages at the next level aboveisgreater than 1, repeat the
following division step, using the quotient as the next dividend, until the
quotient equals 1, which means that you have reached the root level of the
index:

Formula
No. of index pages at previouslevel / No. of non-leaf index rows per page = No. of index pages at next level

Example

157895/57 = 2771 Index pages, level 1
2770/ 57 =49 Index pages, level 2
48/57 =1 Index pages, level 3

Calculate the total number of non-leaf index pages
Add the number of pages at each level to determine the total number of pages

in the index:
Formula Example
Index levels Pages Pages Rows
3 1 49
2 49 2771
1 + 2771 157895
0 157895 9000000

Total number of 2K pagesused 160716

Calculate allocation overhead and total pages

Formula
Number of index pages/ 63,750 = Minimum OAM pages
Number of index pages/ 2000 = Maximum OAM pages

Example
160713/ 63,750 = 3 (minimum)
160713/ 2000 = 81 (maximum)

98 Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

Total pages needed

Add the number of OAM pages to the total in step 8 to determine the total
number of index pages:

Formula Example

Minimum Maximum Minimum Maximum
Nonclustered index pages 160716 160716
OAM pages + + 3 81
Total 160719 160797

Other factors affecting object size

In addition to the effects of data modifications that occur over time, other
factors can affect object size and size estimates:

« Space management properties
« Whether computations used average row size or maximum row size
e Very small text rows

* Useof text and image data

Effects of space management properties

fillfactor

Values for fillfactor, exp_row_size, reservepagegap and max_rows_per_page
can affect object size.

Thefillfactor you specify for create index is applied when the index is created.
Thefillfactor is not maintained during insertsto the table. If afillfactor has been
stored for an index using sp_chgattribute, this value is used when indexes are
re-created with alter table commands and reorg rebuild. The main function of
fillfactor isto allow space on the index pages, to reduce page splits. Very small
fillfactor val ues can cause the storage space required for atable or an index to
be significantly greater.

See “Reducing index maintenance” on page 53 for details about setting
fillfactor val ues.

Performance and Tuning Series: Physical Database Tuning 99

Using formulas to estimate object size

exp_row_size

reservepagegap

max_rows_per_page

Very small rows

100

Setting an expected row size for atable can increase the amount of storage
required. If your tables have many rowsthat are shorter than the expected row
size, setting this value and running reorg rebuild or changing the locking
scheme increases the storage space required for the table. However, the space
usage for tables that formerly used max_rows_per_page should remain
approximately the same.

See “Reducing row forwarding” on page 60 for details about setting
exp_row_size values.

Setting areservepagegap for atable or an index leaves empty pages on extents
that are allocated to the object when commands that perform extent allocation
are executed. Setting reservepagegap to alow value increases the number of
empty pages and spreads the data across more extents, so the additional space
required is greatest immediately after acommand such as create index O reorg
rebuild. Row forwarding and inserts into the table fill in the reserved pages.

See “Leaving space for forwarded rows and inserts” on page 66.

The max_rows_per_page value (specified by create index, create table, alter
table, or sp_chgattribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the
max_rows_per_page Value or the computed number of data rows per page,
whichever issmaller, in “ Compute the number of data pages’ on page 89 and
“Calculate the number of leaf pagesin theindex” on page 92.

See “Using max_rows_per_page on allpages-locked tables’ on page 73.

For all-pages locked tables, Adaptive Server cannot store more than 256 data
or index rows on a page. Even if your rows are extremely short, the minimum
number of data pagesis:

Number of Rows/ 256 = Number of data pages required

Adaptive Server Enterprise

CHAPTER 4 Table and Index Size

LOB pages

Each text or image or Java off-row column stores a 16-byte pointer in the data
row with the datatype varbinary(16). Each column that isinitialized requires at
least 2K (one data page) of storage space.

Columns store implicit NULL values, meaning that the text pointer in the data
row remains NULL and no text page isinitialized for the value, saving 2K of
storage space.

If aLOB columnisdefined to allow NULL values, and the row is created with
an insert statement that includes NULL for the column, the column is not
initialized, and the storage is not allocated.

If aLOB column is changed in any way with update, then the text pageis
allocated. Inserts or updates that place actual datain acolumn initialize the
page. If the column is subsequently set to NULL, asingle page remains
allocated.

Each LOB page stores approximately 1800 bytes of data. To estimate the
number of pages that a particular entry will use, use this formula:

Datalength / 1800 = Number of 2K pages

Theresult should berounded up in al cases; that is, adatalength of 1801 bytes
reguirestwo 2K pages.

Thetotal space required for the data may be dightly larger than the cal cul ated
value, because some LOB pages store pointer information for other page
chainsin the column. Adaptive Server usesthis pointer information to perform
random access and prefetch datawhen accessing L OB columns. The additional
space required to store pointer information depends on the total size and type
of the datastored in the column. Use Tabl e 4-3 to estimate the additional pages
required to store pointer information for datain LOB columns.

Performance and Tuning Series: Physical Database Tuning 101

Using formulas to estimate object size

Table 4-3: Estimated additional pages for pointer information in LOB

columns
Additional pages required for pointer
Data size and type information
400K image 0to 1 page
700K image 0to 2 pages
5MB image 1to 11 pages
400K of multibyte text 1to 2 pages
700K of multibyte text 1to 3 pages
5MB of multibyte text 2to 22 pages

Advantages of using formulas to estimate object size

The advantages of using the formulas are:

You learn more details of the internals of data and index storage.

The formulas provide flexibility for specifying averages sizes for
character or binary columns.

While computing theindex size, you see how many levels each index has,
which helps estimate performance.

Disadvantages of using formulas to estimate object size
The disadvantages of using the formulas are:

102

The estimates are only as good as your estimates of average size for
variable-length columns.

The multistep calculations are complex, and skipping steps may lead to
errors.

The actual size of an object may be different from the cal culations, based
on use.

Adaptive Server Enterprise

CHAPTER 5

Database Maintenance

This chapter explains how maintenance activities can affect the
performance of other Adaptive Server activities, and how to improve the
performance of maintenance tasks.

Topic Page
Running reorg on tables and indexes 103
Creating and maintaining indexes 104
Creating or atering a database 108
Backup and recovery 110
Bulk-copy 111
Database consistency checker 115
Using dbcc tune (cleanup) 115
Using dbcc tune on spinlocks 115
Determining the space available for maintenance activities 116

Maintenance activities include tasks such as dropping and recreating
indexes, performing dbcc checks, and updating table and index statistics.
All of these activities can compete with other processing work on the
server.

Whenever possible, perform maintenance tasks when your Adaptive
Server usageislow. Thischapter can help you determine the impact these
activities have on individua applicaton performance, and on overall
Adaptive Server performance.

Running reorg on tables and indexes

Thereorg command can improve performance for data-only-locked tables
by improving the space utilization for tables and indexes. The reorg
subcommands and their uses are:

e reclaim_space — clears committed deletes and the space that is left
when updates shorten the length of data rows.

Performance and Tuning Series: Physical Database Tuning 103

Creating and maintaining indexes

e forwarded_rows — returns forwarded rows to home pages.
e compact — performs both of the operations above.

* rebuild —rebuildsan entire table or index. You can usereorg rebuild on both
all-pages and data-only locked tables.

When you run reorg rebuild on atable, and thetableislocked for the entiretime
it takesto rebuild thetable and itsindexes. Schedulethereorg rebuild command
on atable when users do not need access to the table.

All of the other reorg commands, including reorg rebuild on an index, lock a
small number of pages at atime, and use short, independent transactionsto
perform their work. You can run these commands at any time. The only
negative effect might be on systems that are very 1/0 bound.

For more information on running reorg commands, see Chapter 9, “Using the
reorg Command” in System Administration Guide: Volume 2.

Creating and maintaining indexes

When a user creates an index, all other users are locked out of thetable.. The
type of lock depends on the type of index:

» Creating aclustered index requires an exclusive tablelock, locking out al
table activity. Since rowsin aclustered index are arranged in order by the
index key, create clustered index reorders data pages.

» Creating anonclustered index requires a shared table lock, locking out
update activity.

Configuring Adaptive Server to speed sorting

104

Use the number of sort buffers configuration parameter to set the number of
buffers that can be used in cache to hold pages from the input tables. In
addition, parallel sorting can benefit from large I/O in the cache used to
perform the sort.

See Chapter 5, “ Parallel Query Processing” in Performance and Tuning Series:
Query Processing and Abstract Plans.

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

Dumping the database after creating an index

When you create an index, Adaptive Server writes the create index transaction
and the page allocations to the transaction log, but does not |og the actual
changes to the data and index pages. To recover a database that you have not
dumped since you created the index, the entire create index processis executed
again while loading transaction log dumps.

If you routinely re-create indexes (for example, to maintain the fillfactor in the
index), you may want to schedule these operations to run shortly before a
routi ne database dump.

Creating an index on sorted data

Torecreate aclustered index, or to create one on datathat was bulk copied into
the server in index key order, use the sorted_data option to create index to
shorten index creation time.

Since the data rows must be arranged in key order for clustered indexes,
creating a clustered index without sorted_data requires you to rewrite the data
rows to acomplete new set of data pages. In some cases, Adaptive Server can
skip sorting and copying the table's data rows: Factorsinclude table
partitioning and on clauses used in the create index statement.

When you are creating an index on a nonpartitioned table, sorted_data and the
use of any of the following clauses requires you to copy the data, but does not
reguire a sort:

* ignore_dup_row
* fillfactor

* Theon segment_name clause, specifying a different segment from the
segment where the table data is |ocated

* Themax_rows_per_page clause, specifying avalue that is different from
the value associated with the table

When these options and sorted_data are included in acreate index on a
partitioned table, the sort step is performed and the datais copied, distributing
the data pages evenly on the table’s partitions.

Table 5-1: Using options for creating a clustered index

Options

Partitioned table Unpartitioned table

No options specified

Parallel sort; copies data, distributing Either parallel or nonparallel sort;
evenly on partitions; createsindex tree. copies data, creates index tree.

Performance and Tuning Series: Physical Database Tuning 105

Creating and maintaining indexes

Options Partitioned table Unpartitioned table

with sorted_data only Creates index tree only. Does not Creates index tree only. Does not
or perform the sort or copy data. Doesnot perform the sort or copy data. Does
with sorted_data on runin paralel. not run in parallel.

same_segment

with sorted_data and
ignore_dup_row

or fillfactor

or on other_segment
OF max_rows_per_page

Parallel sort; copies data, distributing Copies data and creates the index
evenly on partitions; createsindex tree. tree. Does not perform the sort. Does
not run in parallel.

Inthe simplest case, using sorted_data and no other optionson anonpartitioned
table, the order of the table rows is checked and the index treeis built during
this single scan.

If the data rows must be copied, but no sort needs to be performed, asingle
table scan checks the order of rows, builds the index tree, and copies the data
pages to the new location in a single table scan.

For largetablesthat require numerous passesto build theindex, saving the sort
time considerably reduces 1/0 and CPU utilization.

When you create aclustered index that copiesthe datarows, the spaceavailable
must be approximately 120 percent of the table size to copy the data and store
the index pages.

Maintaining index and column statistics

106

The histogram and density values for an index are not maintained as datarows
are added and deleted. The database owner must issue an update statistics
command to ensure that statistics are current. Run update statistics after:

» Deleting or inserting rows that change the skew of key valuesin theindex.

e Adding rowsto atable for which rows were previously deleted with
truncate table.

e Updating valuesin index columns.

e Insertstoany index that includesan IDENTITY column or any increasing
key value. Date columns often have regularly increasing keys.

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

Running update statistics onthesetypesof indexesisespecially important if the
IDENTITY column or other increasing key isthe leading column in the index.
After anumber of rows have been inserted past the last key in the table when
theindex was created, al that the optimizer can tell isthat the search valuelies
beyond the last row in the distribution page. It cannot accurately determine
how many rows match a given value.

Note Failureto update statistics can severely impair performance.

See Performance and Tuning Series: Improving Performance with Satistical
Analysis.

Rebuilding indexes

Rebuilding indexes reclaims space in the binary trees (atree where all leaf
pages are the same distance from the root page of theindex). As pages are split
and rows are deleted, indexes may contain many pagesthat contain only afew
rows. Also, if the application performs scans on covering nonclustered indexes
and large 1/0, rebuilding the nonclustered index maintains the effectiveness of
large 1/O by reducing fragmentation.

You can rebuild indexes by dropping and recreating the index.
Rebuild indexes when:

« Dataand usage patterns have changed significantly.

« A period of heavy insertsis expected, or has just been completed.
e The sort order has changed.

e Queriesthat uselargel/O require more disk readsthan expected, or optdiag
reports lower cluster ratios than usual.

* Space usage exceeds estimates because heavy data modification has left
many data and index pages partially full.

» Spacefor expansion provided by the space management properties
(fillfactor, expected row size, and reserve page gap) has been filled by

inserts and updates, resulting in page splits, forwarded rows, and
fragmentation.

* dbcc hasidentified errorsin the index.

Performance and Tuning Series: Physical Database Tuning 107

Creating or altering a database

If you recreate a clustered index or run reorg rebuild on a data-only-locked or
all-pages-locked table, all nonclustered indexes are recreated, since creating
the clustered index moves rows to different pages.

When system activity is low:
» Deéleteall indexesto allow more efficient bulk inserts.

» Create anew group of indexesto help generate a set of reports.

Creating or altering a database

108

Creating or altering a database is I/O-intensive; consequently, other |/O-
intensive operations may suffer. When you create a database, Adaptive Server
copies the model database to the new database and then initializes al the
allocation pages and clears database pages.

To speed database creation or minimize its impact on other processes:

» Usethe create database...for load option if you are restoring a database;
that is, if you are getting ready to issue aload database command.

When you create a database without for load, Adaptive Server copies
model and then initializes all of the alocation units.

When you use for load, Adaptive Server doesinitialize the allocation units
until theload iscomplete. Thenit initializes only the untouched all ocation
units. If you are loading avery large database dump, this can save alot of
time.

» Create databases during off-peak hours if possible.

create database and alter database perform concurrent, parallel 1/0 when
clearing database pages. The number of devicesislimited by the number of
large i/o buffers configuration parameter. The default value for this parameter is
6, allowing parallel 1/0 on 6 devices at once.

A singlecreate database and alter database command can use up to 32 of these
buffers at once. These buffers are also used by load database, disk mirroring,
and some dbcc commands.

Using the default value of 6, if you specify more than 6 devices, the first 6
writes are immediately started. Asthe /O to each device completes, the 16K
buffers are used for remaining devices listed in the command. The following
example names 10 separate devices:

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

create database hugedb

on devl = 100,

dev2 = 100,
dev3 = 100,
dev4 = 100,
dev5 = 100,
devé = 100,
dev7 = 100,
dev8 = 100

log on logdevl =
logdev2 = 100

100,

During operations that use these buffers, amessage is sent to the log when the
number of buffersis exceeded. Thisinformation, for the create database
command above, shows that create database started clearing devices on the
first 6 disks, using all of the large I/O buffers, and then waited for them to
complete before clearing the pages on other devices:

DATABASE:
DATABASE:
DATABASE:
DATABASE:
DATABASE:
DATABASE:
01:00000:00013:1999/07/26 15:36:17.54 server

allocating
allocating
allocating
allocating
allocating
allocating

51200
51200
51200
51200
51200
51200

are available for this operation.
controlled by the configuration parameter ’'number of large i/o
buffers’.

CREATE
CREATE
CREATE
CREATE

DATABASE:
DATABASE:
DATABASE:
DATABASE:

pages
pages
pages
pages
pages
pages

on
on
on
on
on
on

disk
disk
disk
disk
disk
disk

'devl’
rdev2’
dev3’
'dev4’
'dev5s’
'devé’

No disk i/o buffers

The total number of buffers is

allocating 51200 pages on disk ‘dev7’
allocating 51200 pages on disk ‘dev8’
pages on disk ’‘logdevl’
pages on disk ’logdev2’

allocating
allocating

51200
51200

Note In Adaptive Server version 12.5.0.3 and later, the size of the large |/O
buffers used by create database, alter database, load database, and dbcc
checkalloc is one allocation (256 pages), not one extent (8 pages), asit wasin
earlier versions. The server thus requires more memory alocation for large
buffers. For example, adisk buffer that required memory for 8 pagesin earlier
versions now requires memory for 256 pages.

Performance and Tuning Series: Physical Database Tuning

109

Backup and recovery

Backup and recovery

Local backups

Remote backups

Online backups

110

All Adaptive Server backups are performed by Backup Server. The backup
architecture uses a client/server paradigm, with Adaptive Servers as clientsto
Backup Server.

Adaptive Server sends the local Backup Server instructions, viaremote
procedure calls, telling the Backup Server which pagesto dump or load, which
backup devicesto use, and other options. Backup Server performs all the disk
1/O.

Adaptive Server does not read or send dump and load data, it sends only
instructions.

Backup Server aso supports backups to remote machines. For remote dumps
and loads, alocal Backup Server performsthe disk 1/0 related to the database
device and sendsthe dataover the network to the remote Backup Server, which
stores it on the dump device.

You can perform backups while a database is active. Clearly, such processing
affects other transactions, but you should not hesitate to back up critical
databases as often as necessary to satisfy the reliability requirements of the
system.

See the System Administration Guide, Volume 2 for a complete discussion of
backup and recovery strategies.

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

Using thresholds to prevent running out of log space

If your database haslimited |og space, and you occasionally hit thelast-chance
threshold, install a second threshold that provides ample time to perform a
transaction log dump. Running out of log space has severe performance
impacts. Users cannot execute any datamodification commands until log space
has been freed.

Minimizing recovery time

You can help minimize recovery time by changing the recovery interval
configuration parameter. The default value of 5 minutes per database worksfor
most installations. Reduce this value only if functional requirements dictate a
faster recovery period. Reducing the value increases the amount of 1/0
reguired.

See Chapter 5, “Memory Use and Performance,” in Performance and Tuning
Series: Basics.

Recovery speed may al so be affected by the value of the housekeeper free write
percent configuration parameter. The default value of this parameter allowsthe
server’s housekeeper wash task to write dirty buffersto disk during the server’s
idle cycles, aslong as disk I/O is not increased by more than 20 percent.

Recovery order

During recovery, system databasesarerecovered first. Then, user databasesare
recovered in order by database ID.

Bulk-copy

Bulk-copying into atable on Adaptive Server runs fastest when there are no
clustered indexes on the table and you have enabled select into/ bulkcopy. If you
have not enabled thisoption, slow bcp isused for tableswith any index or active
trigger.

Performance and Tuning Series: Physical Database Tuning 111

Bulk-copy

fast bep logs page allocation only for tables without an index. fast bcp saves
time because it does not update indexes for each datainsert, nor doesit log the
changes to the index pages. However, if you use fast bcp on atable with an
index, it does log index updates.

fast bep isautomatically used for tables with triggers. To use slow bep, disable
the select into/bulk copy database option while you perform the copy.

To use fast bulk-copy:

1 Usesp_dboptionto set the select into/bulkcopy/plisort option. Remember to
disabl e the option after the bulk-copy operation compl etes.

2 Drop any clustered indexes. Recreate them when the bulk-copy compl etes.

Note You need not deactivate triggers during the copy.

During fast bulk-copy, rules are not enforced, but defaults are.

Since changes to the data are not logged, perform a dump database soon after
afast bulk-copy operation. Performing afast bulk-copy in a database blocks
the use of dump transaction, since the unlogged data changes cannot be
recovered from the transaction log dump.

Parallel bulk-copy

For fastest performance, use fast bulk-copy to copy datainto partitioned tables.
For each bulk-copy session, specify the partition on which the data should
reside.

If your input fileis already in sorted order, you can bulk-copy datainto
partitionsin order, and avoid the sorting step while creating clustered indexes.

See Chapter 10, “Partitioning Tables and Indexes,” in the Transact-SQL Users
Guide for step-by-step procedures.

Batches and bulk-copy

112

If you specify a batch size during afast bulk-copy, each new batch must start
on anew data page, since only the page allocations, and not the data changes,
are logged during afast bulk-copy. Copying 1000 rows with a batch size of 1
requires 1000 data pages and 1000 allocation records in the transaction log.

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

If you useasmall batch sizeto help detect errorsintheinput file, you may want
to choose abatch size that correspondsto the numbers of rowsthat fit on adata

page.

Slow bulk-copy

By default, Adaptive Server uses slow bep by default if atable has a clustered
index, index, or trigger with the select into/bulk copy enabled.

For slow bulk-copy:

You do not have to set select into/bulkcopy.
Rules are not enforced and triggers are not fired, but defaults are enforced.
All data changes are logged, as are page allocations.

Indexes are updated as rows are copied in, and index changes are logged.

Improving bulk-copy performance
Other ways to increase bulk-copy performance are:

Set the trunc log on chkpt option to keep the transaction log from filling up.
If your database has a threshold procedure that automatically dumps the
log when it fills, you save the transaction dump time

Each batch is a separate transaction, so if you do not specify a batch size,
setting trunc log on chkpt does not improve performance.

Set the number of pre-allocated extents configuration parameter highif you
perform many large bulk copies.

See Chapter 5, “ Setting Configuration Parameters,” in the System
Administration Guide: Volume 1.

Find the optimal network packet size.

See Chapter 2, “Networks and Performance,” in Performance and Tuning
Series: Basics.

Performance and Tuning Series: Physical Database Tuning 113

Bulk-copy

Replacing the data in a large table

If you arereplacing al the datain alarge table, use truncate table, which
performs reduced logging, instead of delete. Only page deallocations are
logged.

1 Truncatethetable.

2 Dropal indexes on the table.
3 Loadthedata

4 Recreate the indexes.

See the Reference Manual: Commands.

Adding large amounts of data to a table

When you are adding 10 — 20 percent or more to alarge table, drop the
nonclustered indexes, load the data, and then recreate nonclustered indexes.

For very large tables, you may need to leave the clustered index in place dueto
space constraints. Adaptive Server must make a copy of the table when it
creates a clustered index. In many cases, once tables become very large, the
time required to perform a slow bulk-copy with the index in placeis less than
the amount of time it takes to perform afast bulk-copy and recreate the
clustered index.

Using partitions and multiple bulk-copy processes

If you load data into atable without indexes, you can create partitions on the
table and use one bep session for each partition.

See Chapter 4, “Using bep to Transfer Data to and from Adaptive Server” in
the Utility Guide.

Impacts on other users

114

Bulk-copying large tablesin or out may affect response time for other users. If
possible:

e Schedule bulk-copy operations for off-peak hours.

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

* Usefast bulk-copy, since it performs less logging and less /0.

Database consistency checker

Periodically, use dbcc to run database consistency checks. If you back up a
corrupt database, the backup is useless. dbcc affects performance, since dbcc
must acquire locks on the objects it checks.

See Chapter 10, “ Checking Database Consistency” in the System
Administration Guide: Volume 2 for information about dbcc and locking, with
additional information about how to minimize the effects of dbcc on user
applications.

Using dbcc tune (cleanup)

Adaptive Server performs redundant memory cleanup checking as a final
integrity check after processing each task. In very high throughput
environments, you may realize a slight performance improvement by skipping
this cleanup error check. To turn off error checking, enter:

dbcc tune (cleanup, 1)

The final cleanup frees any memory atask might hold. If you turn error
checking off, but you get memory errors, reenable the checking by entering:

dbcc tune (cleanup, 0)

Using dbcc tune on spinlocks

When you see ascaling problem due to a spinlock contention, use des_bind to
improve the scalability of the server where object descriptors are reserved for
hot objects. The descriptors for these hot objects are never reserved.

dbcc tune(des bind, <dbid>, <objnames>)

To remove the binding, use:

Performance and Tuning Series: Physical Database Tuning 115

Determining the space available for maintenance activities

dbcc tune (des _unbind, <dbid>, <objnames)

Note To unbind an object from the database, the database must bein single
user mode.

Do not use des_bind:
* Onobjectsin system databases such as master and tempdb
* Onsystemtables

Sincedes_bind isnot persistent, you must reissue any binding commands each
time you restart the server.

Determining the space available for maintenance

activities

116

Several maintenance operations require room to make a copy of the data pages
of atable:

* create clustered index

e alter table...lock

* Some alter table commands that add or modify columns
* alter table...partition by

* reorg rebuild on atable

In most cases, these commands also require space to recreate any indexes, so
you must determine:

* Thesize of the table and itsindexes
» Theamount of space available on the segment where the table is stored

» The space management properties set for the table and its indexes

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

Overview of space requirements

Any command that copiesatable’srowsalso recreatesall of theindexes onthe
table.You need enough available space for a complete copy of the table and
copies of al indexes.

These commands do not estimate how much space is needed. If acommand
runs out of space on any segment used by the table or itsindexes the command
stops, and issues an error message. For large tables, can occur minutes, even
hours, after the command starts.

You need free space on the segments used by the table and its indexes, as
follows:

« Free space on the tabl€e's segment must be at least equal to:
e Thesizeof thetable, plus

« Approximately 20 percent of thetablesize, if the table hasa clustered
index and you are changing from allpages locking to data-only
locking.

« Free space on the segments used by nonclustered indexes must be at |east
equal to the size of the indexes.

Clustered indexes for data-only-locked tables have a leaf level above the data
pages. If you alter atable with a clustered index from allpages locking to data-
only locking, the resulting clustered index requires more space. The additional
space required depends on the size of the index keys.

Checking space usage and space available

Asasimple guideline, copying atable and its indexes requires space equal to
the current space used by the table and its indexes, plus about 20% additional
space. However:

« |f data modifications have created many partially full pages, the space
reguirement for the copy of the table can be smaller than the current size.

» |If space-management properties for the table have changed, or if space
required by fillfactor or reservepagegap has been filled by data
modifications, the size required for the copy of the table can be larger.

e Adding columns or modifying columnsto larger datatypes requires more
space for the copy.

Performance and Tuning Series: Physical Database Tuning 117

Determining the space available for maintenance activities

Log spaceisalso required. Because Adaptive Server processes reorg rebuild as
asingletransaction, the amount of 1og space required can belarge, particularly
if the table it is rebuilding has multiple nonclustered indexes. Each
nonclustered index requires|og space, and there must be sufficient log spaceto
create al indexes.

Checking space used for tables and indexes
To seethe size of atable and its indexes, use:

sp_spaceused titles, 1

See “Calculating the sizes of data-only-locked tables’ on page 94 for
information on estimating the size of the clustered index.

Checking space on segments

Tables are always copied to free space on the segment where they are currently
stored, and indexes are recreated on the segment where they are currently
stored. Commands that create clustered indexes can specify a segment. The
copy of the table and the clustered index are created on the target segment.

To determine the number of pagesavailable on asegment, use sp_helpsegment.
Thelast line of sp_helpsegment showsthe total number of free pages available
on a segment.

This command prints segment information for the default segment, where
objects are stored when no segment was explicitly specified:

sp_helpsegment "default"

sp_helpsegment reports the names of indexes on the segment. If you do not
know the segment name for atable, use sp_help and the table name. The
segment names for indexes are also reported by sp_help.

Checking space requirements for space management properties

If you make significant changes to space management property values, the
table copy can be considerably larger or smaller thantheoriginal table. Settings
for space management properties are stored in the sysindexes tables, and are
displayed by sp_help and sp_helpindex. This output shows the space
management properties for the titles table:

exp row_size reservepagegap fillfactor max rows per page

118 Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

sp_helpindex produces this report:

index name index description
index keys
index max rows per page index fillfactor index reservepagegap

title_id ix nonclustered located on default
title id
0 75 0
title ix nonclustered located on default
title
0 80 16
type price nonclustered located on default

type, price
0 90 0

Space management properties applied to the table

During the copy step, the space management properties for the table are used
asfollows:

e |f an expected row size value is specified for the table, and the locking
scheme is being changed from allpages |ocking to data-only locking, the
expected row size is applied to the data rows as they are copied.

If no expected row sizeis set, but thereisamax_rows_per_page value for
the table, an expected row sizeis computed, and that value is used.

Otherwise, the default value specified with the configuration parameter
default exp_row_size percent is used for each page allocated for the table.

e Thereservepagegap is applied as extents are allocated to the table.

* If sp_chgattribute has been used to save afillfactor value for the table, it is
applied to the new data pages as the rows are copied.

Space management properties applied to the index

When indexes are rebuilt, space management properties for the indexes are
applied, asfollows:

e If sp_chgattribute has been used to save fillfactor values for indexes, these
values are applied when the indexes are recreated.

* If reservepagegap valuesare set for indexes, these values are applied when
the indexes are recreated.

Performance and Tuning Series: Physical Database Tuning 119

Determining the space available for maintenance activities

Estimating the effects of space management properties
Table 5-2 shows how to estimate the effects of setting space management

properties.
Table 5-2: Effects of space management properties on space use
Property Formula Example
fillfactor Requires fillfactor of 75 requires 1.33 times current
(100ffillfactor) * num_pagesif pagesare number of pages; atable of 1,000 pages
currently fully packed grows to 1,333 pages.
reservepagegap Increases space by reservepagegap of 10increase space used

1/reservepagegap if extents are currently
filled

by 10%; atable of 1,000 pages grows to
1,100 pages.

max_rows_per_page

Converted to exp_row_size when
converting to data-only-locking

See Table 5-3 on page 120.

exp_row_size

Increase depends on number of rows
smaller than exp_rowsize, and theaverage
length of those rows

If exp_row_size is 100, and 1,000 rows
have alength of 60, the increase in space
is:

(200 - 60) * 1000 or 40,000 bytes;
approximately 20 additional pages.

See Chapter 3, “ Setting Space Management Properties.”

If atable hasmax_rows_per_page set, and the table is converted from all pages
locking to data-only locking, the value is converted to an exp_row_size value
before the alter table...lock command copies the table to its new location.

exp_row_size isenforced during the copy. Table 5-3 shows how the values are

converted.

Table 5-3: Converting max_rows_per_page to exp_row_size

If max_rows_per_page is set to

Set exp_row_size to

0

Percentage val ue set by default exp_row_size percent

1-254

The smaller of:

e Maximum row size

« 2K logical page — 2002/max_rows_per_page value
4K logica page—4050/max_rows_per_page vaue
8K logical page — 8146/max_rows_per_page vaue
16K logical page — 16338/max_rows_per_page value

120

Adaptive Server Enterprise

CHAPTER 5 Database Maintenance

If there is not enough space

If you do not have enough space to copy the table and recreate all the indexes,
determine whether dropping the nonclustered indexes on the table leaves
enough room to create a copy of the table. Without any nonclustered indexes,
the copy operation requires space just for the table and the clustered index.

Do not drop the clustered index, sinceit is used to order the copied rows, and
attempting to recreate it later may require space to make a copy of the table.
Recreate the nonclustered indexes when the command compl etes.

Performance and Tuning Series: Physical Database Tuning 121

Determining the space available for maintenance activities

122 Adaptive Server Enterprise

CHAPTER 6

Temporary Databases

This chapter discusses performance issues associated with temporary
databases. Temporary databases are server-wide resources, and are used
primarily for processing sorts, creating worktables, reformatting, and
storing temporary tables and indexes created by users. Anyone can create
objects in temporary databases. Many processes use them silently.

Many applications use stored procedures that create tables in temporary
databases to expedite complex joins or to perform other complex data
analysis that cannot be performed easily in asingle step.

Topic Page
How temporary database management affects performance 123
Using temporary tables 124
Temporary databases 126
Session-assigned temporary database 126
Using multiple temporary databases 127
Tuning system temporary databases for performance 129
L ogging optimizations for temporary databases 139

How temporary database management affects

performance

Good management of temporary databasesis critical to the overall
performance of Adaptive Server. However, temporary tables can add to
the size requirement of tempdb. Using temporary tables greatly affectsthe
performance of Adaptive Server and your applications. You cannot
overlook the management of temporary databases or leave them in a
default state. On many servers, tempdb is the most dynamic database.

You can avoid most of the performance issues with temporary databases
by planning in advance, and taking these issues into consideration:

Performance and Tuning Series: Physical Database Tuning 123

Using temporary tables

Temporary databases fill frequently, generating error messages to users,
who must then resubmit their queries when space becomes available.

Temporary databases sort slowly and queries against them display uneven
performance.

User queriesare often temporarily blocked from creating temporary tables
because of locks on system tables.

Heavily used objects in atemporary database flush other pages out of the
data cache.

Resolve these issues by:

Configuring a sufficient number of user temporary databases.

Sizing temporary databases correctly for all Adaptive Server activity
Placing temporary databases optimally to minimize contention
Minimizing the resource locking within temporary databases
Binding temporary databases to their own data cache

Configuring temporary database groups correctly

Binding logins and applications to the appropriate temporary database or
group.

Using temporary tables

Tables created in temporary database are called temporary tables. Use the
temporary database to create different types of temporary tables. The types of
temporary tables are:

Hashed (#) temporary tables
Regular user tables
Worktables

Hashed (#) temporary tables
Hashed temporary tables:

124

Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

e Exist only for the duration of the user session or for the scope of the
procedure that creates them, and can be either manually or automatically
dropped at the end of the session or procedure.

e Cannot be shared between user connections
e Arecreated in the temporary database assigned for the session.

Create hashed temporary tables by including a hash mark (“#") asthefirst
character of the table name:

create table #temptable (...)
or:

select select list
into #temptable ...

When you create indexes on temporary tables, the indexes are stored in the
same session assigned to the temporary database where the hashed table
resides:

create index littletableix on #littletable(coll)

Regular user tables

To createregular user tablesin atemporary table, specify the database namein
the create table command:

create table tempdb..temptable (...)
Regular user tables in the temporary database:
e Can persist across sessions
e Can be used by bulk copy (bcp) operations
e Can be shared by granting permissions on them

* Must either be explicitly dropped by the owner or are automatically
removed when Adaptive Server is restarted

or:

select select list
into tempdb..temptable

You can create indexes on regular user tables created in the temporary
database;

create index tempix on tempdb..temptable (coll)

Performance and Tuning Series: Physical Database Tuning 125

Temporary databases

Worktables

Adaptive Server creates internal temporary tables for the session-assigned
tempdb for merges, sorts, joins, and so on. These temporary tables are called
worktables, and they:

* Arenever shared

e Disappear as soon as the command compl etes

Temporary databases

To avoid performance concerns that result from using a single temporary
databases, you can create multiple temporary databases.

Adaptive Server includes one system-created temporary database called
tempdb, which is created on the master device when you install Adaptive
Server.

In addition to tempdb, Adaptive Server alows usersto create multiple
temporary databases. User-created temporary databases are similar to the
system tempdb: they are used primarily to create temporary objects, and are
recreated instead of recovered during start-up. Unlike tempdb, you can drop
user-created temporary databases.

Multiple temporary databases:

» Reduce contention on system catalogs and log files in the system tempdb
» Can be created on fast access devices

e Can be created or dropped as needed.

Session-assigned temporary database

126

When a client connects, Adaptive Server assigns atemporary database to its
session. Adaptive Server uses this session-assigned temporary database as a
default space where it creates temporary objects (including hashed-temporary
tables and worktables) for work the client performs. The session-assigned
temporary database remains assigned to the session until the session connects
to the client.

Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

Adaptive Server selects temporary databases for a session according to these
rules:

e If abinding aready existsfor alogin, that binding is used.
e |f an application name is specified and it has a binding, use that binding.

e |f Adaptive Server doesnot find abinding, it assigns atemporary database
from the default group using a round-robin scheme.

To specify that Adaptive Server creates an object in a specific temporary
database. For example:

create procedure inv_amounts as
select stor_id, "Total Due" = sum(amount)
from #tempstores
group by stor id

Using multiple temporary databases

This section discussing how to create, configure, bind, and select temporary
databases.

Creating user temporary databases

Create multiple temporary databases using the temporary database keyword in
the create database Syntax:

create temporary database temporary_database_name on
device_name=size log on device_name=size

For example, to create a user temporary database named tempdb_1 on the
tempdb_device, enter:

create temporary database tempdb 1 on tempdb device = 3
log on log device =1

Performance and Tuning Series: Physical Database Tuning 127

Using multiple temporary databases

Configuring a default tempdb group

Adaptive Server includes a group of temporary databases called the default
group. When Adaptive Server starts a session, it selects atemporary database
from the default group (using a round-robin technique) in which all temporary
database activities are performed. Adaptive Server assigns this temporary
database to the session. sp_who displays this temporary database in the
tempdbname column. The round-robin scheme allows Adaptive Server to
distribute the load evenly across all temporary databases in the default group
because a single temporary database from the group is not performing all
activities.

Initially, the default group consists only of tempdb. However, users may add
multiple user databases to the default group. Use sp_tempdb to add a user
database to the default group. For example, to add tempdb_1 to the default
group, USe;

sp_temodb "add'", "tempdb_1" , "default"
To drop tempdb_1 from the default group, use:
sp_tempdb "drop", "tempdb 1" , "default"

See the Reference Manual: Procedures for the complete sp_tempdb syntax.

Binding to groups and tempdb

128

The sp_tempdb. . . 'bind"...’'unbind’ System procedure allows you to bind, or
unbind, an application or login to specific temporary database or tempdb
group. After you create the binding, when the application or login connectsto
the server, Adaptive Server assigns the specified temporary database or
temporary database group to which it is bound. Binding allows you to control
the temporary database assignments for specific applications or logins.

This example binds the log in sa to the default group:
sp_tempdb 'bind', 'lg', 'sa', 'GR', 'default'
This example unbinds the login sa:
sp_tempdb 'unbind', 'lg', 'sa'
See Reference Manual: Procedures for the complete sp_tempdb syntax.

Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

Binding applications and logins to temporary databases

I dentify your application and login requirementsfor temporary databases. Bind
these applications and logins to different databases or default groups to
distribute the load evenly across available temporary databasesto avoid
catalog contention. Inappropriate bindings do not solve catalog contention
even if there is a sufficient number of temporary databases—A daptive Server
may not distribute the load evenly across the temporary databases. See
“Binding to groups and tempdb” on page 128.

Tuning system temporary databases for performance

This section discusses configuration issues related to temporary databases.

Placing system tempdb
When deciding where to place tempdb:

« Keep tempdb on separate physical disks than your critical application
databases.

» Usethefastest disksavailable. If your platform supports solid state
devices and tempdb useis a bottleneck for your applications, use those
devices.

e After you expand tempdb onto additional devices, drop the master device
from the system, default, and logsegment segments.

Although you can expand tempdb on the same device as the master database,
Sybase suggests that you use separate devices. Also, remember that logical
devices, but not databases, are mirrored using Adaptive Server mirroring. If
you mirror the master device, you create amirror of all portions of the
databases that reside on the master device. If the mirror uses serial writes, this
can have a serious performance impact if tempdb is heavily used.

Performance and Tuning Series: Physical Database Tuning 129

Tuning system temporary databases for performance

Initial allocation of system tempdb

When you install Adaptive Server, the size of tempdb is4MB, and is located

completely on the master device, as shown in Figure 6-1. tempdb istypicaly

the first database that a system administrator needs to make larger. The more
usersonthe server, thelarger it needsto be. Depending on your needs, you may
want to stripe tempdb across several devices.

Figure 6-1: tempdb default allocation

tempdb
data and log (4@

d _master

Use sp_helpdb to see the size and status of tempdb. The following example
shows tempdb defaults at installation time:

sp_helpdb tempdb

name db size owner dbid created status
tempdb 2.0MB sa 2 may 22, 1999 select into/bulkcopy
device frag size usage free kbytes

master 2.0 MB data and log 1248

Dropping the master device from tempdb segments

By default, the system, default, and logsegment segments for tempdb includeits
4MB allocation on the master device. When you allocate new devicesto
tempdb, they automatically become part of all three segments unless you add
them as dedicated data or log. Once you allocate a second device to tempdb,
you can drop the master device from the default, system, and logsegment
segments. Thisway, you can be sure that the worktables and other temporary
tablesin tempdb do not contend with other uses on the master device.

To drop the master device from the segments:

1 Alter tempdb onto another device, if you have not already done so. For
example:

130 Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

alter database tempdb on tune3 = 20

2 Issueause tempdb command, and then drop the master device from the
segments:

sp_dropsegment "default", tempdb, master
sp_dropsegment "system", tempdb, master
sp_dropsegment "logsegment", tempdb, master

3 To verify the segments no longer include the master device, issue this
command against the master database:

select dbid, name, segmap

from sysusages, sysdevices

where sysdevices.vdevno= sysusages.vdevno
and dbid = 2

and (status&2=2 or status&3=3))

The segmap column should report “0” for any allocations on the master
device, indicating that no segment allocations exist:

dbid name segmap

2 master 0
2 tune3 7

Alternatively, issue:

use tempdb
sp_helpdb 'tempdb'

device fragments size usage created free kbytes
master 4.0 MB data only Feb 7 2008 2:18AM 2376
tune3 20.0 MB data and log May 16 2008 1:55PM 16212
device segment

master -- unused by any segments --

tune3 default

tune3 logsegment

tune3 system

Performance and Tuning Series: Physical Database Tuning 131

Tuning system temporary databases for performance

Configuring user-created temporary databases

Applications have individual resource and space regquirements for temporary
databases. Unless you understand your applications requirements, and
maintain application to database or group bindings that satisfy these database
requirements, make all temporary databases the same size. If all temporary
databases are the same size, applications should not run out of resources or
space, regardless of which database is assigned an application or session.

Caching user temporary databases

Generally, configure caches similarly across temporary databases within a
group. The query processor may choose a query plan based on these caching
characteristics, and you may see poor performanceif the plan isexecuted using
acache with a different configuration.

General guidelines

This section provide general guidelines for configuring the temporary
databases, which apply to both system and user temporary databases.

Using multiple disks for parallel query performance

If temporary databases span multiple devices, as shown in Figure 6-2, you can
take advantage of parallel query performance for some temporary tables or
worktables.

132 Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

Figure 6-2: tempdb spanning disks

d_master

tempdb tempdb

Binding tempdb to its own cache

Under normal Adaptive Server use, temporary databases make heavy use of the
data cache as temporary tables are created, populated, and dropped.

Assigning atemporary database to its own data cache:

« Keepstheactivity on temporary objects from flushing other objects out of
the default data cache

e Helps spread I/O between multiple caches

Commands for cache binding
Use sp_cacheconfig and sp_poolconfig to create named data caches and to
configure pools of agiven sizefor large I/0. Only a system administrator can
configure caches and pools.

Note Referencetolargel/Osareona2K logical page size server. If you have
an 8K page size server, the basic unit for the 1/0is 8K. If you have a 16K page
Size server, the basic unit for the 1/0 is 16K.

For instructions on configuring named caches and pools, see Chapter 4,
“Configuring Data Caches’ in the System Administration Guide: Volume 2.

Once the caches have been configured, and the server has been restarted, you
can bind tempdb to the new cache:

sp_bindcache "tempdb cache", tempdb

Performance and Tuning Series: Physical Database Tuning 133

Tuning system temporary databases for performance

Determining the size of temporary databases

Allocate sufficient space to temporary databases to handle the following
processes for every concurrent Adaptive Server user:

134

Worktables for merge joins

Worktables that are created for distinct, group by, and order by, for
reformatting, and for the or strategy, and for materializing some views and
subqueries

Hashed temporary tables (those created with “#” asthefirst character of
their names)

Indexes on temporary tables
Regular user tables in temporary databases

Procedures built by dynamic SQL

Some applications may perform better if you use temporary tables to split up
multitable joins. This strategy is often used for:

Cases where the optimizer does not choose a good query plan for a query
that joins more than four tables

Queriesthat join avery large number of tables
Very complex queries

Applications that need to filter data as an intermediate step

You might also use temporary databases to:

Denormalize several tablesinto afew temporary tables

Normalize a denormalized table to do aggregate processing

Determinethe sizes of temporary databases based on usage scenarios. For most
applications, make temporary databases 20 — 25% of the size of your user
databases to provide enough space for these uses.

Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

Minimizing the effects of lock contentions

Creating or dropping temporary tables and their indexes can cause lock
contention on the system tablesin temporary databases. When users create
temporary tables, information about the tables must be stored in system tables
such as sysobjects, syscolumns, and sysindexes in the temporary database. If
multiple user processes are creating and dropping tables in atemporary
database, heavy contention can occur on the system tables. Worktables created
internally do not store information in system tables.

If contention for temporary database system tablesis a problem with
applications that must repeatedly create and drop the same set of temporary
tables, try creating the tables at the start of the application, then use
insert...select to populate them, and truncate table to remove all the data rows.
Although insert...select requires logging and is slower than select into, it can
provide a solution to the locking problem.

See “Creating user temporary databases’ on page 127 for more information
about how to avoid blocking due to locking of system tables's multiple user
temporary databases.

Minimizing logging in temporary databases

Using select into

Even though the trunc log on checkpoint database option isturned onin
temporary databases, Adaptive Server still writes changes to temporary
databases to the transaction log. You can reduce log activity in atemporary
database by:

e Using select into instead of create table and insert

e Selecting only the columns you need into the temporary tables

When you create and popul ate temporary tables in atemporary database, use
the select into command, rather than create table and insert...select, whenever
possible. The select into/bulkcopy database option is turned on by default in
temporary databases to enable this behavior.

select into operations are faster because they are only minimally logged. Only
the allocation of data pagesistracked, not the actual changesfor each datarow.
Each datainsert in an insert...select query is fully logged, resulting in more
overhead.

Performance and Tuning Series: Physical Database Tuning 135

Tuning system temporary databases for performance

Using shorter rows
If the application creating tables in atemporary database uses only afew
columns of atable, you can minimize the number and size of log records by:

» Selecting only the columns you need for the application, rather than using
select * in queries that insert data into the tables

» Limiting the rows selected to just the rows that the applications requires
These suggestions also keep the size of the tables themselves smaller.

Optimizing temporary tables
Many uses of temporary tables are simple and brief and require little
optimization. However, if your applications require multiple accessesto tables
in atemporary database, examine them for possible optimization strategies.
Usually, thisinvolves splitting out the creation and indexing of the table from
the accessto it by using more than one procedure or batch.

When you create atablein the same stored procedure or batch whereit is used,
the query optimizer cannot determine how large the table is because the table
was not created when the query was optimized, as shown in Figure 6-3. This
appliesto both temporary tables and regular user tables.

136 Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

Figure 6-3: Optimizing and creating temporary tables

Parse and
Normalize

Query optimized here

Optimize
>

Compile

Table created here Execute

The optimizer assumes that any such table has 10 data pages and 100 rows. If
the tableisreally large, this assumption can lead the optimizer to choose a
suboptimal query plan.

These two techniques can improve the optimization of temporary tables:
e Creating indexes on temporary tables

e Breaking complex use of temporary tablesinto multiple batches or
procedures to provide information for the optimizer

Creating indexes on temporary tables

You can define indexes on temporary tables. In many cases, these indexes can
improve the performance of queries that use temporary databases. The
optimizer usestheseindexesjust likeindexeson ordinary user tables. The only
reguirements are:

Performance and Tuning Series: Physical Database Tuning 137

Tuning system temporary databases for performance

The table must contain data when the index is created. If you create the
temporary table and create the index on an empty table, Adaptive Server
does not create column statistics such as histograms and densities. If you
insert data rows after creating the index, the optimizer has incomplete
statistics.

Theindex must exist while the query using it is optimized. You cannot
create an index and then use it in a query in the same batch or procedure.
The query processor uses indexes created in astored procedure in queries
that are run inside the stored procedure.

The optimizer may choose a suboptimal plan if rows have been added or
deleted since the index was created or since update statistics was run.

Providing an index for the optimizer can greatly increase performance,
especialy in complex procedures that create temporary tables and then
perform numerous operations on them.

Creating nested procedures with temporary tables

You need to take an extra step to create the procedures described above. You
cannot create base_proc until select_proc exists, and you cannot create
select_proc until the temporary table exists.

1

Create the temporary table outside the procedure. It can be empty; it just
must exist and have columns that are compatible with select_proc:

select * into #huge result from ... where 1 = 2
Create the procedure select_proc, as shown above.
Drop #huge_result.

Create the procedure base_proc.

Breaking tempdb uses into multiple procedures

138

For example, this query causes optimization problems with #huge_resuilt:

create proc base_proc
as
select *
into #huge_result
from ...
select *
from tab,
#huge_result where ...

Adaptive Server Enterprise

CHAPTER 6 Temporary Databases

You can achieve better performance by using two procedures. When the
base_proc procedure calls the select_proc procedure, the optimizer can
determine the size of the table:

create proc select proc
as
select *
from tab, #huge result where ...
create proc base_proc
as
select *
into #huge_result
from ...
exec select_proc

If the processing for #huge_result requires multiple accesses, joins, or other
processes (such as looping with while), creating an index on #huge_result may
improve performance. Createtheindex inbase_proc sothat itisavailablewhen
select_proc is optimized.

Logging optimizations for temporary databases

Adaptive Server does not recover temporary databases when you shut it down
or it fails, but Adaptive Server does create the temporary databases when you
restart the server. Because temporary databases do not require recovery,
Adaptive Server optimizes the logging mechanism for temporary databases to
improve performance by:

e Single log records — force Adaptive Server to flush syslogs to disk
immediately after Adaptive Server logs the record. Adaptive Server
creates singlelog recordswhile modifying OAM pages or alocation pages
(in adatabase that is configured to use mixed log and data on the same
device). Adaptive Server must flush syslogs to avoid undetected deadl ocks
created during buffer pinning. Because Adaptive Server does not pin
buffers for temporary databases, it need not flush the syslogs data for the
temporary databasewhen it writesan singlelog records, which reduceslog
semaphore contention.

Performance and Tuning Series: Physical Database Tuning 139

Logging optimizations for temporary databases

e Flushing dirty pagesto disk —for databasesthat requirerecovery, Adaptive
Server flushes dirty pagesto disk during the checkpoint, ensuring that, if
Adaptive Server fails, all committed datais saved to disk. For temporary
databases, Adaptive Server supports runtime rollbacks, but not failure
recovery, alowing it to avoid flushing dirty data pages at the checkpoint.

» Avoiding write-ahead logging — write-ahead logging guarantees that
Adaptive Server can recover datafor committed transactions by reissuing
the transactions listed in the log, and undoing the changes performed by
aborted or rolled back transactions. Adaptive Server does not support
write-ahead logging on databases that do not require recovery. Because
Adaptive Server does not recover temporary database, buffers for
temporary databases are not pinned, which allows Adaptive Server to skip
flushing the temporary databaselog when it commits atransaction using a
temporary database.

User log cache (ULC)

Adaptive Server contains a separate user log cache (ULC) for the temporary
database assigned to the session. The UL C allows Adaptive Server to avoid log
flushes when users switch between a user database and session’s temporary
database, or if al the following conditions are met:

» Adaptive Server is currently committing the transaction.
» All thelog records arein the ULC.
* There are no post-commit log records.

The configuration option, session tempdb log cache size, which allows you to
configurethe size of the UL C, hel ps determine how often it needs flushing. See
Chapter 5, “ Setting Configuration Parameters,” in the System Administration

Guide: Volume 1.

140 Adaptive Server Enterprise

Index

Symbols
::= (BNF notation)

in SQL statements xv
, (comma)

in SQL statements xv
{} (curly braces)

in SQL statements xv
() (parentheses)

in SQL statements xv
[1 (square brackets)

in SQL statements xv

A

access
index 21
optimizer methods 21
Adaptive Server
logical pagesizes 23
aggregate functions
denormalization and temporary tables 134
allocation map. See object allocation map (OAM)
pages
alocation pages 27
dlocation units 25, 27
database creationand 108
allpages-locked table, inserting data 39
alter table command
lock option and fillfactor and 58
reservepagegap for indexes 68
APL tables. See allpages locking
application design
temporary tablesin 134
auditing
disk contentionand 3

B

Backup Server 110
Backus Naur Form (BNF) notation xv
batch processing
bulk copy and 112
temporary tablesand 137
bep (bulk copy utility) 111
heap tablesand 39
reclaiming spacewith 45

binding
objectsto datacaches 47
tempdb 133

BNF notation in SQL statements xv
brackets. See square brackets|]
buffers
alocation and caching 50
chainof 47
bulk copying. See bep (bulk copy utility)

C

cachereplacement strategy ~ 48-51
caches, data
agingin 47
binding objectsto 47
data modificationand 49
deleteson heapsand 51
1/0 configuration 43
insertsto heagpsand 50
joinsand 48
MRU replacement strategy 48
poolsin 43
tempdb bound toown 133
updatesto heapsand 51
wash marker 47
case sensitivity
inSQL xvi
chain of buffers (datacache) 47

Performance and Tuning Series: Physical Database Tuning 141

Index

chains of pages
placement 2
cluster ratio
reservepagegap and 66, 71
clustered indexes
computing number of datapages 96
computing number of pages 89
computing size of rows 89
estimating sizeof 87,94
exp_row_size and row forwarding 6065
fillfactor effecton 56
overhead 37
performanceand 37
reclaiming spacewith 44
reducing forwarded rows 6065
segmentsand 10
sizeof 81,90
columns
datatypesizesand 88, 95
fixed- and variable-length 88
fixed-length 95
unindexed 22
variable-length 95
comma(,)
in SQL statements xv
configuration (server)
number of rows per page 75
contention
diskI/O 4
1/0 device 4
logical devicesand 3
max_rows_per_page and 74
partitionsto avoid 11
systemtablesintempdb 135
transaction log writes 45
underlying problems 3
controller, device 5
conventions
See syntax
Transact-SQL syntax xv
covered queries
index covering 21
covering nonclustered indexes
rebuilding 107
create clustered index command
sorted_data and fillfactor interaction 59

142

sorted_data and reservepagegap interaction
73

create index command

fillfactor and 54-59
locksacquired by 104
reservepagegap option 68
segmentsand 105
sorted_data option 105

create table command

exp_row_size option 61
reservepagegap option 67
space management properties 61

curly braces ({}) in SQL statements xv

data

max_rows_per_page and storage 74
storage 4, 21-45

data caches

agingin 47

binding objectsto 47
datamodificationand 49
deleteson heapsand 51
fetch-and-discard strategy 48
insertsto heapsand 50
joinsand 48

tempdb bound to own 133
updatesto heapsand 51
wash marker 47

data modification

datacachesand 49
heap tablesand 39

log spaceand 111
transactionlogand 45

datapages 23-45

computing number of 89, 96
fillfactor effect on 56

limiting number of rowson 74
linking 37

partialy full 44
textandimage 25

data, inserting into an allpages locked table 39
database devices 1

paralel queriesand 5

71—

Adaptive Server Enterprise

sybsecurity 6
tempdb 6
database objects
binding to caches 47
placement 1-19
placement on segments 2
storage 21-45
databases

creation speed 108
devicesand 5
placement 2
dbcc tune

cleanup 115

des bind 115

default exp_row_size percent configuration

parameter 62

default fill factor percentage configuration parameter

57

default settings

max_rows_per_page 75
delete operations

heap tables 41

object sizeand 79
denormalization

temporary tablesand 134
devices

adding for partitioned tables 15

object placementon 2

partitioned tablesand 15

throughput, measuring 12
disk devices

performanceand 1-19
disk mirroring

deviceplacement 7

performanceand 3

E

exceed logical pagesize 33
exp_row_size option 60-65
create table 61

default value 61
server-wide default 62
setting before alter table...lock
sp_chgattribute 62

storage required by 100

expected row size. See exp_row_size option

extents

alocation and reservepagegap 66

space alocationand 25

F

fetch-and-discard cache strategy 48
fillfactor
advantagesof 54
disadvantagesof 55
index pagesizeand 56
lockingand 74
max_rows_per_page compared to
page splitsand 54
fillfactor option
See aso fillfactor values
create index 54
sorted_data optionand 59
fillfactor values
See fillfactor option
fillfactor values
alter table...lock 57
applied to datapages 58
appliedtoindex pages 58
clustered index creationand 57
nonclustered index rebuilds 57
reorg rebuild 57
table-level 57
first page
alocation page 27
text pointer 25
fixed-length columns
caculating spacefor 84
datarow sizeof 88, 95
index row sizeand 89
for load option
performanceand 108
formulas
table or index sizes 84-102
forwarded rows
query on systabstats 64
reservepagegapand 66

74

fragmentation, reserve pagegapand 66

Performance and Tuning Series: Physical Database Tuning

Index

G

global alocation map (GAM) pages

H

hardware
terminology 1

hash-based scans
joinsand 5

header information
datapages 24

heap tables 3645
bep (bulk copy utility) and 114
delete operations 41
deletes and pagesin cache 51
guidelinesfor using 37
I/Oand 43
1/Oinefficiency and 44
insert operationson 39
inserts and pagesin cache 50
locking 39
maintaining 44
performance limits 39
select operationson 38, 49
updates and pagesin cache 51
updateson 42

110
accessproblemsand 3
balancing load with segments 10
bep (bulk copy utility) and 114
create database and 108
default cachesand 47
devicesand 2
efficiency on heap tables 44
expected row sizeand 65
heap tablesand 43
increasing sizeof 43
performanceand 4
recovery interval and 111

select operations on heap tablesand 49

server-wide and database 5

144

sp_spaceused and 81
spreading between caches 133
transactionlogand 45
image datatype
page sizefor storage 25
storage on separate device 10, 25
index covering
definition 21
index pages
fillfactor effecton 55, 56
limiting number of rowson 74
indexes
accessthrough 21
bulk copy and 111

choosing 22

computing number of pages 90
creating 104
max_rows_per_page and 75
rebuilding 107

recovery and creation 105
sizeof 78
sort order changes 107
sp_spaceused sizereport 81
temporary tablesand 137
usefulnessof 37
initializing
text or image pages 101
insert operations
heap tablesand 39
loggingand 135
partitionsand 11
performanceof 3
rebuilding indexes after many 107

J

joins
datacacheand 48
hash-based scanand 5
temporary tablesfor 134

L

large object (LOB) 10

Adaptive Server Enterprise

leaf levels of indexes
fillfactor and number of rows 56
querieson 22
row sizecalculation 92, 96
leaf pages
calculating number inindex 92, 97
limiting number of rowson 74
load balancing for partitioned tables
maintaining 18
local backups 110
locking
create index and 104
heap tablesand inserts 39
tempdband 135
worktablesand 135
logging
bulk copy and 111
minimizingintempdb 135
logical devicename 1
logical pagesizes 23
LRU replacement strategy 47, 48

M

maintenancetasks 103-115
performanceand 3

map, object allocation. See object allocation map

(OAM) pages
max_rows_per_page option
fillfactor comparedto 74
lockingand 74
select into effects 75
modes of disk mirroring 7
MRU replacement strategy 47

N
nesting
temporary tablesand 138
networks
reducing trafficon 115
nonclustered indexes
estimating sizeof 9294
sizeof 81,92, 96

nonleaf rows 93
normalization
temporary tablesand 134
null columns
storage of rows 24
storagesize 86
null values
text and image columns 101
number (quantity of)
OAM pages 94, 98
rows (rowtotal), estimated 80
rowsonapage 74
number of columnsand sizes 30

O

object allocation map (OAM) pages 27
LRU strategy in datacache 47
overhead calculationand 91, 96

object size
viewing with optdiag 79

offset table
sizeof 24

online backups 110

optdiag utility command
object sizesand 79

optimizer
temporary tablesand 136

order
presorted data and index creation 105
recovery of databases 111
result sets and performance 37

output
sp_spaceused 80
overhead 30

calculation (space alocation) 94, 98
clustered indexesand 37

object size caculations 84

row and page 84

space allocation calculation 91, 96
variable-length and null columns 86

Performance and Tuning Series: Physical Database Tuning

Index

145

Index

P

page chains
placement 2
text orimagedata 101

page splits
fillfactor effecton 54
max_rows_per_page Settingand 74
objectsizeand 79
reducing 54

page utilization percent configuration parameter

object sizeestimationand 85
pages
global alocation map (GAM) 27
pages, data 2345
bulk copy and alocations 111
calculating number of 89, 96
fillfactor effect on 56
linking 37
size 23
pages, index
calculating number of 90
calculating number of nonleaf 97
fillfactor effect on 55, 56
pages, OAM (object allocation map) 27
number of 91, 94, 96, 98
parallel query processing
object placementand 2
performanceof 3
parentheses ()
in SQL statements xv
partitioned tables 11
bep (bulk copy utility) and 114
devicesand 15
maintaining 18
read-mostly 13
read-only 13
space planning for 12
updatesand 14
performance
backupsand 110
bep (bulk copy utility) and 113
clustered indexesand 37
tempdband 138
physical devicename 1
point query 22
pointers

146

last page, for heap tables 39

page chain 37

text and imagepage 25
pools, data cache

configuring for operations on heap tables 43
precision, datatype

sizeand 86
prefetch
sequential 43

Q

queries
point 22
unindexed columnsin 22

R

RAID devices
partitioned tablesand 12
reads
disk mirroringand 7
imagevaues 25
text values 25
recovery
index creationand 105
log placement and speed 6
recovery interval in minutes configuration parameter
I/Oand 111
recreating
indexes 105
remote backups 110
replacement strategy. See LRU replacement strategy;
MRU replacement strategy
reports
sp_estspace 83
reserved pages, sp_spaceused reporton 82
reservepagegap option 66-71
cluster ratios 66, 71
createindex 68
create table 67
extent allocationand 66
forwarded rowsand 66
sp_chgattribute 68

Adaptive Server Enterprise

space usageand 66

storage required by 100
response time

tablescansand 22
rounding

object size calculationand 85
rows per datapage 35
rows, index

sizeof leaf 92, 96

sizeof nonleaf 93

S

scans, table
performanceissues 22
segments 1
changing table locking schemes 118
clustered indexeson 10
database object placementon 5, 10
nonclustered indexeson 10
tempdb 130
select * command
logging of 136
select into command
heap tablesand 39
select operations
heaps 38
sequential prefetch 43
size
datapages 23
datatypes with precisions 86
formulasfor tables or indexes 84-102
110 43
indexes 78
object (sp_spaceused) 80
predicting tables and indexes 87-102
sp_spaceused estimation 82
tables 78
tempdb database 130
sort operations (order by)
improving performance of 104
performance problems 124
sort order
rebuilding indexes after changing 107
sorted data, reindexing 105

sorted_data option
fillfactorand 59
reservepagegap and 71
sorted_data option, create index
sort suppressionand 105
sp_chgattribute system procedure
fillfactor 55
sp_chgattribute system procedure
exp_row_size 62
reservepagegap 68
sp_estspace system procedure
advantagesof 84
disadvantagesof 84
planning future growth with 82
sp_help system procedure
displaying expected row size 63
sp_spaceused System procedure 80
row total estimate reported 80
space 30

estimating table and index size 87-102

extents 25
for text or image storage 25
reclaiming 44
unused 26
space allocation
contiguous 29
deletesand 41
extents 25

Index

object allocation map (OAM) pages 91, 96

overhead calculation 91, 94, 96, 98
predicting tablesand indexes 87102
sp_spaceused 82
tempdb 132
unused space within 26

space management properties 53-76
object sizeand 99
reservepagegap 66-71
spaceusage 120

speed (server)
selectinto 135
sort operations 104

square brackets| |
in SQL statements xv

storage management
delete operationsand 41
1/0 contention avoidance 4

Performance and Tuning Series: Physical Database Tuning

147

Index

page proximity 29
row storage 24
stored procedures
performanceand 3
temporary tablesand 138
striping tempdb 130

sybsecurity database
placement 6
symbols

in SQL statements xv
syntax conventions, Transact-SQL ~ xv
sysgamstable 27
sysindexes table
dataaccessand 29
text objectslistedin 25
system tables
dataaccessand 29
performanceand 3

T

table scans
performanceissues 22
tables
estimatingsizeof 84
hesp 3645
sizeof 78
sizewith aclustered index 87, 94
tempdb database
datacaches 133
loggingin 135
performanceand 138
placement 6, 129
segments 130
space allocation 132
striping 130
temporary tables
denormalizationand 134
indexing 137
nesting proceduresand 138
normalizationand 134
optimizing 136
performance considerations 3
text datatype
chain of text pages 101

148

page sizefor storage 25

storage on separate device 10, 25

sysindexestableand 25
thresholds

bulk copy and 113

database dumpsand 111
throughput

measuring for devices 12
transaction logs

placing on separate segment 6

onsamedevice 7

storageasheap 45
transactions

loggingand 135

U
units, allocation. See allocation units
unused space
dlocationsand 26
update command

imagedataand 101

text dataand 101
update operations

heap tablesand 42

Vv

variable-length 33

W

wash marker 47

where clause
tablescansand 37

worktables
lockingand 135

write operations
disk mirroringand 7
imagevaues 25
serial mode of disk mirroring 8
text values 25

Adaptive Server Enterprise

	Performance and Tuning Series: Physical Database Tuning
	About This Book
	CHAPTER 1 Controlling Physical Data Placement
	Improving performance by controling object placement
	Identifying poor object placement
	Using sp_sysmon while changing data placement

	Improving I/O performance
	Spreading data across disks to avoid I/O contention
	Avoiding physical contention in parallel join queries

	Isolating server-wide I/O from database I/O
	tempdb
	sybsecurity

	Keeping transaction logs on a separate disk
	Mirroring a device on a separate disk
	Using serial mode

	Using segments
	Creating objects on segments
	Separating tables and indexes
	Splitting large tables across devices
	Moving text storage to a separate device

	Partitioning tables for performance
	How Adaptive Server distributes partitions on devices
	RAID devices and partitioned tables

	Space planning for partitioned tables
	Read-only tables
	Read-mostly tables
	Tables with random data modification

	Adding disks when devices are full
	Adding disks when devices are full
	Adding disks when devices are nearly full

	Maintenance issues and partitioned tables
	Regular maintenance checks for partitioned tables

	CHAPTER 2 Data Storage
	Query optimization
	Query processing and page reads

	Adaptive Server pages
	Page headers and page sizes
	Data and index pages
	Large object (LOB) pages
	Extents

	Pages that manage space allocation
	Global allocation map pages
	Allocation pages
	Object allocation map pages
	How OAM pages and allocation pages manage object storage
	Page allocation keeps an object’s pages together
	Data access using sysindexes and syspartitions

	Space overheads
	Number of columns and size
	Variable-length columns in APL tables
	Variable-length columns in DOL tables

	Number of rows per data page
	Additional number of object and size restrictions

	Tables without clustered indexes
	Locking schemes
	Select operations on heap tables
	Allpages-locked heap tables
	Data-only locked heap tables

	Inserting data into an allpages-locked heap table
	Inserting data into a data-only-locked heap table
	Deleting data from a heap table
	Deleting from an allpages-locked heap table
	Deleting from a data-only locked heap table
	Deleting the last row on a page

	Updating data on a heap table
	Allpages-locked heap tables
	Data-only-locked heap tables

	How Adaptive Server performs I/O for heap operations
	Sequential prefetch, or large I/O

	Maintaining heap tables
	Using reorg rebuild to reclaim space
	Reclaiming space by creating a clustered index
	Reclaiming space using bcp

	Transaction log: a special heap table
	Asynchronous prefetch and I/O on heap tables

	Caches and object bindings
	Heap tables, I/O, and cache strategies
	LRU replacement strategy
	MRU replacement strategy

	Select operations and caching
	Data modification and caching
	Caching and inserts on heap tables
	Caching, update, and delete operations on heap tables

	CHAPTER 3 Setting Space Management Properties
	Reducing index maintenance
	Advantages of using fillfactor
	Disadvantages of using fillfactor
	Setting fillfactor values
	fillfactor examples
	No stored fillfactor values
	Table-level or clustered index fillfactor value stored

	Using the sorted_data and fillfactor options

	Reducing row forwarding
	Default, minimum, and maximum values for exp_row_size
	Default value

	Specifying an expected row size with create table
	Adding or changing an expected row size
	Setting a default expected row size server-wide
	Displaying the expected row size for a table
	Choosing an expected row size for a table
	Using optdiag to check for forwarded rows
	Querying systabstats for forwarded rows

	Conversion of max_rows_per_page to exp_row_size
	Monitoring and managing tables that use expected row size

	Leaving space for forwarded rows and inserts
	Extent allocation commands and reservepagegap
	Specifying a reserve page gap with create table
	Specifying a reserve page gap with create index
	Changing reservepagegap
	reservepagegap examples
	reservepagegap specified only for the table
	reservepagegap specified for a clustered index

	Choosing a value for reservepagegap
	Monitoring reservepagegap settings
	reservepagegap and sorted_data options
	Matching options and goals

	Using max_rows_per_page on allpages-locked tables
	Reducing lock contention
	Indexes and max_rows_per_page
	select into and max_rows_per_page
	Applying max_rows_per_page to existing data

	CHAPTER 4 Table and Index Size
	Determining the sizes of tables and indexes
	Effects of data modifications on object sizes
	Using optdiag to display object sizes
	Advantages of optdiag
	Disadvantages of optdiag

	Using sp_spaceused to display object size
	Advantages of sp_spaceused
	Disadvantages of sp_spaceused

	Using sp_estspace to estimate object size
	Advantages of sp_estspace
	Disadvantages of sp_estspace

	Using formulas to estimate object size
	Factors that can affect storage size
	Storage sizes for datatypes
	Tables and indexes used in the formulas
	Calculating table and clustered index sizes for allpages-locked tables
	Calculate the data row size
	Compute the number of data pages
	Compute the size of clustered index rows
	Compute the number of clustered index pages
	Compute the total number of index pages
	Calculate allocation overhead and total pages
	Calculate the size of the leaf index row
	Calculate the number of leaf pages in the index
	Calculate the size of the nonleaf rows
	Calculate the number of non-leaf pages
	Calculate the total number of non-leaf index pages
	Calculate allocation overhead and total pages

	Calculating the sizes of data-only-locked tables
	Calculate the data row size
	Compute the number of data pages
	Calculate allocation overhead and total pages
	Calculate the size of the index row
	Calculate the number of leaf pages in the index
	Calculate the number of non-leaf pages in the index
	Calculate the total number of non-leaf index pages
	Calculate allocation overhead and total pages

	Other factors affecting object size
	Effects of space management properties

	Very small rows
	LOB pages
	Advantages of using formulas to estimate object size
	Disadvantages of using formulas to estimate object size

	CHAPTER 5 Database Maintenance
	Running reorg on tables and indexes
	Creating and maintaining indexes
	Configuring Adaptive Server to speed sorting
	Dumping the database after creating an index
	Creating an index on sorted data
	Maintaining index and column statistics
	Rebuilding indexes

	Creating or altering a database
	Backup and recovery
	Local backups
	Remote backups
	Online backups
	Using thresholds to prevent running out of log space
	Minimizing recovery time
	Recovery order

	Bulk-copy
	Parallel bulk-copy
	Batches and bulk-copy
	Slow bulk-copy
	Improving bulk-copy performance
	Replacing the data in a large table
	Adding large amounts of data to a table
	Using partitions and multiple bulk-copy processes
	Impacts on other users

	Database consistency checker
	Using dbcc tune (cleanup)
	Using dbcc tune on spinlocks
	Determining the space available for maintenance activities
	Overview of space requirements
	Checking space usage and space available
	Checking space on segments
	Checking space requirements for space management properties
	Space management properties applied to the table
	Space management properties applied to the index

	Estimating the effects of space management properties
	If there is not enough space

	CHAPTER 6 Temporary Databases
	How temporary database management affects performance
	Using temporary tables
	Hashed (#) temporary tables
	Regular user tables
	Worktables

	Temporary databases
	Session-assigned temporary database
	Using multiple temporary databases
	Creating user temporary databases
	Configuring a default tempdb group
	Binding to groups and tempdb
	Binding applications and logins to temporary databases

	Tuning system temporary databases for performance
	Placing system tempdb
	Initial allocation of system tempdb
	Dropping the master device from tempdb segments

	Configuring user-created temporary databases
	Caching user temporary databases

	General guidelines
	Using multiple disks for parallel query performance
	Binding tempdb to its own cache
	Determining the size of temporary databases
	Minimizing the effects of lock contentions
	Minimizing logging in temporary databases
	Optimizing temporary tables

	Logging optimizations for temporary databases
	User log cache (ULC)

	Index

