Contents

Multiplex Overview .. 1
 Audience ... 1
 Introduction to Sybase IQ Multiplex .. 1
 Sybase IQ Multiplex Architecture ... 2
 Multiplex Architecture Diagram .. 2
 Data Storage .. 3
 Multiplex Configuration ... 4
 Files on Shared Disk Arrays .. 5
 Communication Infrastructure ... 6
 Changes in Sybase IQ 15.3 Multiplex Functionality .. 8

Multiplex Creation .. 11
 Multiplex Storage Requirements .. 11
 Main Store Requirements ... 11
 Hardware Requirements ... 12
 Multiplex Planning Worksheet ... 12
 Converting Databases to Multiplex .. 13
 Converting Databases to Multiplex with
 Interactive SQL ... 13
 Converting Databases to Multiplex with Sybase Central .. 15
 Converting Databases to Multiplex with Sybase Control Center 15
 Multiplex Database Files .. 15

Multiplex Server Administration ... 17
 Multiplex Administration with Interactive SQL ... 17
 Starting Multiplex Servers from the Command Line .. 17
 Checking Server Status in Interactive SQL .. 17
 Adding Multiplex Servers with Interactive SQL ... 18
 Renaming Multiplex Servers with Interactive SQL ... 18
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sp_iqdbspace Procedure</td>
<td>116</td>
</tr>
<tr>
<td>sp_iqfile Procedure</td>
<td>116</td>
</tr>
<tr>
<td>sp_iqindexinfo Procedure</td>
<td>116</td>
</tr>
<tr>
<td>sp_iqmpxincconnpoolinfo Procedure</td>
<td>116</td>
</tr>
<tr>
<td>sp_iqmpxfilestatus Procedure</td>
<td>117</td>
</tr>
<tr>
<td>sp_iqmpxincheartbeatinfo Procedure</td>
<td>118</td>
</tr>
<tr>
<td>sp_iqmpxinfo Procedure</td>
<td>119</td>
</tr>
<tr>
<td>sp_iqmpxvalidate Procedure</td>
<td>121</td>
</tr>
<tr>
<td>sp_iqmpxversioninfo Procedure</td>
<td>122</td>
</tr>
<tr>
<td>sp_iqsharedtempdistrib Procedure</td>
<td>123</td>
</tr>
<tr>
<td>sp_iqspaceinfo Procedure</td>
<td>124</td>
</tr>
<tr>
<td>sp_iqspaceused Procedure</td>
<td>124</td>
</tr>
<tr>
<td>sp_iqstatus Procedure</td>
<td>125</td>
</tr>
<tr>
<td>sp_iqtransaction Procedure</td>
<td>125</td>
</tr>
<tr>
<td>sp_iqversionuse Procedure</td>
<td>128</td>
</tr>
</tbody>
</table>

Startup and Database Administration Utilities .. 129
Backup Utility (dbbackup) ... 129
Server Startup Utility (start_iq) ... 129

Index .. 133
Multiplex Overview

Administering Sybase® IQ multiplex servers and transactions requires basic knowledge of data storage and communication in the multiplex architecture.

Audience

This guide is for users who need Sybase® IQ multiplex capability to manage large query loads across multiple nodes.

Use the appendix in combination with the other Sybase IQ reference manuals to understand syntax, system objects, and utilities that support multiplex operations.

Introduction to Sybase IQ Multiplex

Sybase IQ multiplex is a highly scalable shared disk grid technology that allows concurrent data loads and queries via independent data processing nodes connected to a shared data source.

IQ multiplex technology provides the following benefits:

- Performance
 IQ multiplex uses the standard IQ server engine, providing proven query and load performance.
- Low total cost of ownership
 IQ multiplex uses standard, low cost hardware and operating systems.
- Easy, flexible setup and configuration
 IQ multiplex can be configured easily using an SQL interface or through the user-friendly Sybase Central GUI.
- Scalability
 IQ multiplex can scale to large number of nodes to support tens of thousands of users, with little or no data load and query performance degradation as nodes are added to the multiplex.
- High availability
 Failure of any node leaves query jobs unaffected on other nodes.

IQ multiplex provides an ideal platform for enterprise-wide deployment of critical applications.
Sybase IQ Multiplex Architecture

Sybase IQ multiplexes have a hybrid cluster architecture that involves both shared and local storage.

Shared storage is used for permanent IQ data and shared temporary data for distributed query processing. Local storage is used for catalog metadata, temporary data, and transaction logs.

Each server has its own temporary store and catalog store.

The shared IQ store and shared temporary store are common to all servers.

Multiplex Architecture Diagram

Sybase IQ multiplex nodes may have different roles with different capabilities, unlike other database cluster architectures, which usually follow either a “shared everything” or “shared nothing” architecture.

The configuration can be described as an "asymmetrical cluster."
Data Storage
Understand the distinction between data managed solely by Sybase IQ and data that is managed by underlying SQL Anywhere software.

See System Administration Guide: Volume 1 > Overview of Sybase IQ System Administration > Data Storage in Sybase IQ and System Administration Guide: Volume 1 > Overview of Sybase IQ System Administration > SQL Anywhere and Sybase IQ.
Table 1. Dbspace administration

<table>
<thead>
<tr>
<th>Managed by IQ</th>
<th>Managed by SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ_SYSTEM_MAIN</td>
<td>System catalog</td>
</tr>
<tr>
<td>IQ_SYSTEM_MSG</td>
<td>SA temporary dbspace</td>
</tr>
<tr>
<td>IQ_SYSTEM_TEMP</td>
<td>SA catalog dbspaces</td>
</tr>
<tr>
<td>IQ_SHARED_TEMP</td>
<td></td>
</tr>
<tr>
<td>IQ user main dbspaces</td>
<td></td>
</tr>
</tbody>
</table>

IQ_SYSTEM_MAIN, IQ_SHARED_TEMP, and IQ user main dbspaces are shared by all multiplex servers, and all servers need access to the same physical file. See *Files on Shared Disk Arrays* for address formats.

Data managed by SQL Anywhere is not shared. Each node requires a separate copy of such data.

Each server has its own set of files in IQ_SYSTEM_TEMP and IQ_SYSTEM_MSG.

Note: If you have a small test multiplex with servers on the same physical host, follow this guideline: To address dbspaces managed by IQ, use absolute, not relative paths. To address catalog dbspaces managed by SA, use relative paths, not absolute paths.

See also
- *Files on Shared Disk Arrays* on page 5

Multiplex Configuration

Sybase IQ multiplex requires configuration data consisting of static and dynamic components.

For a Sybase IQ multiplex:

- *Static configuration* includes which nodes are part of the multiplex and the properties of those nodes.
- *Dynamic configuration* includes runtime process and connection status, as well as table version usage.

Coordinator Node

Each multiplex configuration requires a *coordinator node*.

When you convert an existing simplex server to multiplex, it becomes the coordinator node.

The coordinator node:

- Runs read-only and read-write operations against shared IQ objects.
- Manages IQ main dbspaces.
• Manipulates local data in SQL Anywhere system and user tables.
• Coordinates all read-write operations on shared IQ objects, including:
 • Shared IQ table locking
 • Shared IQ storage management
 • Providing global transaction IDs for read-write transactions involving shared IQ objects
 • Maintaining the global catalog
• Controls catalog synchronization for secondary servers
• Performs schema changes on shared IQ store objects
• Performs schema changes on SQL Anywhere store objects
• Maintains and cleans up object versions

Secondary Node
One or more secondary nodes may participate in a Sybase IQ multiplex configuration.

One secondary node acts as a designated failover node, the first choice node to assume the coordinator role if the current coordinator is unable to continue.

The number of secondary nodes supported depends on the license purchased, as follows:

• Demo/Trial Edition: Unlimited secondary nodes
• Small Business Edition: None (multiplex not allowed)
• Single Application Server Edition: One secondary node
• Enterprise Edition: Unlimited secondary nodes (license needed for each)

Secondary nodes:
• Can be either read-only nodes (reader nodes) or read-write nodes (writer nodes).

Writer nodes:
• Can run read-only and read-write operations against shared IQ objects.
• Can manipulate local data in temporary and SA base tables.

Reader nodes:
• Can run read-only operations against shared IQ objects.
• Can manipulate local data in temporary and SA base tables.

Files on Shared Disk Arrays
Sybase IQ multiplex functionality requires using the same file paths to access files in dbspaces in the shared stores from all nodes.

All files in all dbspaces in the shared store, namely all files in IQ_SYSTEM_MAIN and shared dbspaces, must be accessible in exactly the same way from all nodes. Files in the shared temporary store should be accessible from all nodes in the multiplex.
In Sybase IQ 12.7, every node in the multiplex had its own database path, called an alias, to use when opening files in the shared IQ main store, temp store and .iqmsg file.

Sybase IQ 15.3 no longer supports aliases for shared IQ stores. For IQ_SYSTEM_TEMP and IQ_SYSTEM_MSG, independent files are maintained for each node. The paths for these files must be accessible on the node that owns them.

UNIX or Linux Shared Array Path Definitions

On UNIX or Linux, there are two ways to access shared disks.

Use absolute paths to shared stores. For example:

```plaintext
/dev/rdsk/c4t600A0B80005A7F5D0000024B49757E55d0s0
/dev/rdsk/c4t600A0B80005A7F5D0000024B49757E55d0s1
/dev/rdsk/c4t600A0B80005A7F5D0000024B49757E55d0s2
```

Use soft links to shared stores. For example:

```plaintext
store/mainstore/userdb1store/userdb2
```

where each of these soft links point to raw devices as shown in the absolute path example.

Windows Shared Disk Array Path Definitions

On Windows, there are two ways to access shared disks.

Use the Disk Physical number. For example:

```plaintext
\\.\PhysicalDrive1
\\.\PhysicalDrive2
\\.\PhysicalDrive3
```

Use absolute paths using drive letters. For example:

```plaintext
x:\main
y:\userdb1
z:\userdb2
```

Using the drive letters limits the number of disks to fewer than 26, so the first method is better.

Communication Infrastructure

The servers that participate in the multiplex share messages and data using two frameworks.

Inter-node Communication (INC)

INC provides transactional communication between coordinator and secondary nodes.

The topology view tab in Sybase Central shows the relationships between the nodes of a multiplex. INC links exist between the coordinator to the secondary nodes and from secondary nodes to the coordinator, but not between secondary nodes.

Secondary servers communicate with the coordinator via INC for executing DDL and read-write DML statements. The coordinator communicates with the secondary servers via inter-node communication when certain stored procedures are executed on the coordinator. Secondary servers never communicate with each other using INC.
The INC link consists of heartbeat and pooled connections.

Heartbeat Connections

Every secondary node has a *heartbeat connection*, a dedicated connection to the coordinator node. This connection is established at the time of secondary node startup and remains active as long as the secondary node is active.

Both the coordinator and secondary node monitor the heartbeat connection. If this connection is broken, the node is declared offline. If the heartbeat is not reestablished within a given time period, the coordinator can automatically exclude the secondary server depending on setting of the option `MPX_AUTOEXCLUDE_TIMEOUT`.

See also

- *Internode Communication State* on page 73

Pooled Connections

Each secondary node maintains an INC connection pool. The connection pool manages connections from the secondary node to the coordinator node used by INC for transactional communication.

The INC connection pool reduces communication overhead by re-using existing connections rather than opening new ones, and controls how many INC connections may be established by a secondary node to the coordinator at the same time.

Two database options govern the characteristics of the INC connections from the secondary servers:

- The maximum number of connections to be allowed to be open from a secondary node to the coordinator, `MPX_MAX_CONNECTION_POOL_SIZE`.
- The maximum number of unused connections to be kept alive when the connection is returned to the unused pool, `MPX_MAX_UNUSED_POOL_SIZE`.

See also

- *MPX_MAX_CONNECTION_POOL_SIZE Option* on page 104
- *MPX_MAX_UNUSED_POOL_SIZE Option* on page 104
- *Internode Communication State* on page 73

Multiplex Interprocess Communication (MIPC)

MIPC connects all multiplex nodes to support distributed query processing and high availability.

As multiplex servers start, they establish MIPC connections.

MIPC is a fully meshed communication framework that runs on both public and private interconnection configurations. Public interconnection configuration is mandatory while private configuration is optional.
Private high-speed interconnection configurations are for distributed query processing. Currently, private interconnection configurations are restricted to physical networks supporting the TCP/IP protocol.

If no private interconnection configuration is provided, MIPC uses the legacy public interconnection configuration specified in the system table column SYSIQMPXSERVER.conn_info. This set of host/port addresses is shared between external user connections, INC connections, and internal MIPC connections.

Redundant networks provide a more robust cluster. If both private and public interconnection configurations exist, MIPC uses the private connections if available, and reroutes traffic to the public connections if the private network fails. The multiplex monitors the messages between nodes to detect failures.

Possible interconnection link failures include:

- A physical failure, such as a cable that is disconnected or broken
- A power supply failure, such as a piece of network infrastructure equipment
- A software failure within the networking stack

For recommendations on planning network configurations for distributed query processing, see the Installation and Configuration Guide.

Changes in Sybase IQ 15.3 Multiplex Functionality

Sybase IQ 15.3 extends the performance and scalability of multiplexes by leveraging the resources of multiple nodes.

Sybase IQ 15.3 includes these features:

- Distributed query processing – provides a core set of distributable query operators which makes most queries distributable so they benefit from multinode scaling. Query distribution occurs automatically based on the server and multiplex configuration.
- Logical servers – allows a subset of compute resources (multiplex servers) to be grouped together and presented to the end user as a logical entity.
- Parallel operator support – provides additional parallelization and distribution support, thus improving performance and scalability of queries. To the existing set of parallelizable operators, this feature adds: sorted IN subquery, right outer hash join, OLAP (partition by), insert select, NLPD, and small-to-midsize queries.
- Shared temporary dbspace – provides a new built-in dbspace to store temporary on-disk structures for distributed query processing.

The procedure for adding files to IQ_SHARED_TEMP has changed. The new procedure is described in *Multiplex Transactions > DDL Commands > Dbspace Updates in Multiplex > Updates on IQ_SHARED_TEMP > Adding Dbfiles to Shared Dbspaces.*
Multiplex interprocess communication (MIPC) – provides inter-node communication to support distributed query processing and high availability.

See also

- Distributed Query Processing on page 67
- Logical Servers on page 55
- Multiplex Interprocess Communication (MIPC) on page 7
- Adding Dbfiles to Shared Dbspaces on page 51
Multiplex Creation

Convert a single Sybase IQ server into a multiplex.

1. Set up the main store and hardware to meet requirements.
2. Convert databases to multiplex.

Multiplex Storage Requirements

Create multiplex stores on the appropriate device.

<table>
<thead>
<tr>
<th>Stores</th>
<th>Supported Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ shared stores (IQ_SYSTEM_MAIN, IQ_SHARED_TEMP, user dbspaces)</td>
<td>Raw device required</td>
</tr>
<tr>
<td>IQ non-shared store (IQ_SYSTEM_TEMP)</td>
<td>Both raw devices and O/S files supported</td>
</tr>
<tr>
<td>Catalog and transaction log</td>
<td>O/S files required</td>
</tr>
</tbody>
</table>

Main Store Requirements

Make sure that your main store meets prerequisites for multiplex operation.

Main store file paths must be absolute or relative in such a way that they are accessible to all servers in the multiplex.

- See Sybase IQ System Administration Guide: Volume 1 > Database Object Management > Database Definition to create IQ databases.
- See Installation and Configuration Guide > Database Upgrades to migrate your database from an earlier release of Sybase IQ.

See also

- Files on Shared Disk Arrays on page 5
- UNIX or Linux Shared Array Path Definitions on page 6
- Windows Shared Disk Array Path Definitions on page 6
Hardware Requirements

A Sybase IQ multiplex requires shared storage for data on IQ_SYSTEM_MAIN, IQ_SHARED_TEMP, and user dbspaces.

All machines running servers participating in the multiplex must have Sybase IQ 15.3 installed. For upgrade instructions, see Installation and Configuration Guide > Planning Your Installation > Upgrading From an Earlier Version.

When you convert an existing simplex server to multiplex, it becomes the coordinator. For secondary servers, set up a computer with access to the shared IQ store using paths identical to those used by the coordinator.

Sybase IQ does not support:

- Multiplexes of Sybase IQ servers at different release levels.
- Heterogeneous multiplexes (UNIX and Windows servers in a mixed multiplex).
 Coordinator and secondary servers must be on the same operating system and hardware platform.
- Multiplex server instances on virtual machines.

Multiplex Planning Worksheet

Before creating a multiplex, check that the paths of proposed objects meet requirements.

Database paths on all platforms, whether raw device or operating system files, are limited to 128 bytes. Sybase IQ supports:

- Raw devices for IQ shared stores (IQ_SYSTEM_MAIN, IQ_SHARED_TEMP, and user dbspaces)
- Both raw devices and operating system files for non-shared IQ stores (IQ_SYSTEM_TEMP)
- Operating system files only for the catalog and transaction log

Sybase Central dialogs and SQL statements for creating a multiplex require some or all of the following values.

Table 2. Multiplex database requirements

<table>
<thead>
<tr>
<th>Dialog item</th>
<th>Type/length</th>
<th>Notes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host name</td>
<td>CHAR 128</td>
<td>Name of the machine where the database engine will run.</td>
<td></td>
</tr>
</tbody>
</table>
Converting Databases to Multiplex

Use Sybase Central, Sybase® Control Center, or Interactive SQL to create multiplex servers.

To change a simplex database to a multiplex, connect to the simplex database and add a multiplex server.

The simplex database server becomes the coordinator and the servers you add are called the secondary servers.

Converting Databases to Multiplex with Interactive SQL

To change a simplex database to a multiplex, connect to the simplex database and use CREATE MULTIPLEX SERVER.

Prerequisites

In a multiplex environment, all IQ main store file paths must be absolute or relative in a way accessible to all servers in the multiplex.

Task

1. Make sure that your system meets hardware prerequisites. The main store dbfiles must be visible to secondary nodes.

2. Start a Sybase IQ server and connect to a database with a shareable main store. This server becomes the coordinator of the multiplex:

Dialog Item Table

<table>
<thead>
<tr>
<th>Dialog item</th>
<th>Type/length</th>
<th>Notes</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server name</td>
<td>CHAR 128</td>
<td>Server name for the coordinator. (The server name must be unique across the local area network.)</td>
<td></td>
</tr>
<tr>
<td>Database path</td>
<td>CHAR 128</td>
<td>Create the database files on a local disk, not a remote location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Create Database wizard asks for the path to the dbfile. Users cannot specify where the server will be started.</td>
<td></td>
</tr>
<tr>
<td>IQ store paths (temp and main)</td>
<td>CHAR 128</td>
<td>All files in IQ_SYSTEM_MAIN and shared user dbspaces must be accessible in exactly the same way using the same file paths from all nodes. IQ main dbspace paths are shared and temporary and .iqmsg dbspace paths are only valid on the owning node.</td>
<td></td>
</tr>
<tr>
<td>Database name</td>
<td>CHAR 70</td>
<td>Database name, limited to 70 characters. Included in the path.</td>
<td></td>
</tr>
</tbody>
</table>
3. Connect using Interactive SQL:
   ```
   dbisql
   ```

4. In Interactive SQL, run the **CREATE MULTIPLEX SERVER** command:
   ```
   CREATE MULTIPLEX SERVER mpxnode_w1 DATABASE 'host2/mpx/ mpptest.db' HOST 'host2' PORT 2957 ROLE WRITER STATUS INCLUDED
   ```
 This command makes the connected server `mpxnode_c` into the coordinator and creates the definition for a secondary writer server `mpxnode_w1`.

5. The server shuts down to re-initialize the server as a multiplex coordinator. (As a normal part of this shutdown, when the first secondary node is created, Interactive SQL may return a disconnected (-308) error that requires no corrective action.)

6. Restart the coordinator:
   ```
   start_iq @params.cfg -n mpxnode_c -x
   "tcpip{host=host1;port=2763}" mpptest.db
   ```

7. Back up the catalog store to the directory where the secondary server will run.
 From the secondary node machine, run this backup command from the computer where the secondary node will run, because the `.db` file should be on a local disk. For example, run the following command from the directory where the secondary node’s `.db` file resides:
   ```
   dbbackup -y -d -c
   "uid=DBA;pwd=sql;links=tcpip{port=2763};eng=mpxnode_c" .
   ```
 If you have changed to the directory where the secondary node’s `.db` file will reside, you can specify a dot (.) instead of the path on the `dbbackup` command.

8. Remove the transaction log files in the directory where the secondary server will run:
   ```
   rm -rf mpptest.log
   ```

9. Run `dblog` to reset the transaction log:
   ```
   dblog -r -t mpptest.log mpptest.db
   ```

10. Start the secondary server:
    ```
        start_iq -STARTDIR /host2/mpx @params.cfg -n mpxnode_w1 -x
        "tcpip{port=2957}" mpptest.db
    ```

11. Start Interactive SQL and connect to the secondary multiplex node:
    ```
        dbisql -c "uid=DBA;pwd=sql;eng=mpxnode_w1;links=tcpip{port=2957}" mpptest.db
    ```

12. Add the temporary dbfile in Interactive SQL using the **ALTER DBSPACE** statement.
    ```
    ALTER DBSPACE IQ_SYSTEM_TEMP ADD FILE mpxnode_w1_temp
    'w1_temp1.iqtmp' SIZE 500
    ```
 (Secondary servers do not allow **CREATE DBSPACE**.)

Starting the server creates a message log for you, but you must create the temporary store file yourself. You must connect to the secondary server to add a temp store file for that
server. Adding temporary store files in multiplex always adds a file specifically to the server to which you are connected. You can start the server, but cannot run IQ queries until a temporary store is added.

For command reference details, see Reference: Statements and Options > SQL Statements > ALTER DBSPACE Statement.

Converting Databases to Multiplex with Sybase Central

Use the Create Server Wizard to enable a simplex server for multiplex.

Prerequisites

DBA authority is required to perform the following steps.

Task

1. Make sure that your system meets hardware prerequisites. The main store dbfiles must be visible to secondary nodes.
2. Start Sybase Central using the method appropriate for your platform.
3. If on UNIX, check that the IQ Agent is running:

 stop_iq -agent

4. Use the Start Server Wizard to start a Sybase IQ server.
5. Connect to the IQ server.
6. Right-click the server name and choose Convert to Multiplex (Alt+M). If you lack DBA authority, the Convert to Multiplex menu item is disabled.
7. Follow the instructions on the Create Server Wizard screens.

Converting Databases to Multiplex with Sybase Control Center

If you prefer a web-based tool for converting databases to multiplex, use Sybase Control Center.

See the Sybase Control Center for Sybase IQ online help in SCC or at http://sybooks.sybase.com/nav/summary.do?prod=10680.

Multiplex Database Files

Each server in the multiplex uses several files to store data, metadata, and configuration information.

Note: Some of these files are only created automatically by Sybase Central.
Table 3. Contents of multiplex database directories

<table>
<thead>
<tr>
<th>Folder, Directory, or File-name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbname.db</td>
<td>File that contains the catalog store. This cannot be a raw device.</td>
</tr>
<tr>
<td>dbname.iqmsg</td>
<td>File that contains messages from Sybase IQ</td>
</tr>
<tr>
<td>dbname.iqtmp</td>
<td>This is the IQ temporary store. This file exists only if the temporary file is added as an OS file. The IQ_SYSTEM_TEMP store can be on either a raw device or a system file.</td>
</tr>
<tr>
<td>dbname.log</td>
<td>File that contains the database transaction log. This cannot be a raw device.</td>
</tr>
<tr>
<td>dbname.lmp</td>
<td>License management property file. Creating a database generates this file automatically. Dropping a database deletes all database files except this one.</td>
</tr>
<tr>
<td>params.cfg</td>
<td>Contains startup parameters for this particular server. May be customized for performance or specific requirements. This file is only created automatically if you use Sybase Central. (If created by Sybase Central, params.cfg does not contain server name or tcpip parameters.)</td>
</tr>
<tr>
<td>start_server</td>
<td>Sybase Central generates these scripts. If you use Sybase Central to create the multiplex, they are generated automatically. You can also generate them using Sybase Central after you create the multiplex with Interactive SQL.</td>
</tr>
<tr>
<td>stop_server</td>
<td></td>
</tr>
<tr>
<td>sync_server</td>
<td></td>
</tr>
</tbody>
</table>

See also
- *Administrative Shell Scripts* on page 29
Multiplex Server Administration

Use Sybase Central, Sybase® Control Center, or a combination of command line utilities and Interactive SQL to manage multiplex servers.

Multiplex Administration with Interactive SQL

If you prefer the flexibility of scripts or are familiar with Interactive SQL from other products, use Interactive SQL.

Interactive SQL is a command line interface that lets you enter SQL statements individually or run them in command scripts to query, modify, or load Sybase servers, including Sybase IQ.

Starting Multiplex Servers from the Command Line

To start and stop IQ multiplex servers interactively, use Sybase Central or the start server utility, start_iq. To start IQ multiplex servers in scripts, you may use command line parameters.

The start_iq utility starts simplex or multiplex servers. The -n <engine name> switch is required. The engine name must match the server name used when creating the multiplex server. The -x (connection string) value must match tcpip connection parameters specified when creating the multiplex server. The database file path must match the database file path as specified when creating the multiplex server. For applications, the -gn value must be set higher than the total number of expected simultaneous requests plus 5 (for internal events and connections.) For a complete list of parameters, see Utility Guide > start_iq Database Server Startup Utility > start_iq Server Options.

The following command starts a server and names it host1_test1_writer:

```
start_iq @/host1/mpxdevices/params.cfg -n host1_test1_writer -x "tcpip{host=host1;port=2763}" /host1/mpxdevices/test1.db
```

Checking Server Status in Interactive SQL

Check the server status to determine if any servers are not responding or not included in the multiplex, and to see which server will be the new coordinator in the event of a failover.

1. Connect to the coordinator as a user with DBA authority, or as a user who has been assigned EXECUTE permission on the sp_iqmpxinfo procedure.

2. Run sp_iqmpxinfo.

See also

- sp_iqmpxinfo Procedure on page 119
Adding Multiplex Servers with Interactive SQL

Follow these steps to add multiplex servers from Interactive SQL.

1. Check server status. The coordinator must be running in order to add secondary servers.

2. In Interactive SQL, run the CREATE MULTIPLEX SERVER command.

 For example:

   ```sql
   CREATE MULTIPLEX SERVER mpxnode_w2 DATABASE 'host1/mpx/xxxxxxxxxxxxxx' HOST 'host1' PORT 2957 ROLE WRITER STATUS INCLUDED
   ```

 For command reference details, see Multiplex Reference > SQL Statements > CREATE MULTIPLEX SERVER Statement.

 This command creates the definition for a secondary writer server mpxnode_w2.

3. Follow steps 7 through 12 in Multiplex Creation > Converting Databases to Multiplex > Converting Databases to Multiplex with Interactive SQL.

The first time you start the multiplex after adding a secondary server, the coordinator may return an error similar to:

```
I. 12/11 12:50:08. Trying to start TCPIP link ...
I. 12/11 12:50:08. Multiplex environment incorrect for this server
I. 12/11 12:50:08. Please connect and run procedure sp_iqmpxvalidate for help
```

This error occurs because the secondary server has no temporary file in IQ_SYSTEM_TEMP. You must add a temporary dbfile to IQ_SYSTEM_TEMP on the newly added server. See Multiplex Server Administration > Multiplex Server Administration with Interactive SQL > Converting databases to multiplex with Interactive SQL, steps 11 and 12. After adding this file, run `sp_iqmpxvalidate` to make sure that no errors are reported on this server.

See also

- Multiplex Administration with Interactive SQL on page 17
- CREATE MULTIPLEX SERVER Statement on page 100

Renaming Multiplex Servers with Interactive SQL

You can use Interactive SQL to change the name of a multiplex server.

Prerequisites

Although you can run the ALTER MULTIPLEX SERVER command from any server in the multiplex, it is recommended that, like all DDL, commands be run on the coordinator. Except when altering role from reader to writer, the named server automatically shuts down once the change is committed.
Task
Start the server, connect to it, and issue a command in the following format:

```
ALTER MULTIPLEX SERVER oldname RENAME newname
```

This command renames and shuts down the named server.

An alternate method is to right-click the server and select context menu Control > Include/Exclude.

See also
• `ALTER MULTIPLEX SERVER Statement` on page 97

Requirements for Altering Multiplex Servers
Familiarize yourself with requirements and results before you alter a multiplex server.

The coordinator must be running.

Run the `ALTER MULTIPLEX SERVER` command from the coordinator.

The named server automatically shuts down once the change is committed, except when altering role from reader to writer.

Changing the Database File Path with Interactive SQL
If you have to move your database, for example to a disk with more space, you can change the file path with Interactive SQL.

Start the server, connect to it, and issue a command in the following format:

```
ALTER MULTIPLEX SERVER server-name DATABASE 'new db file path'
```

This command also shuts down the named server.

Changing Server Roles with Interactive SQL
You can use Interactive SQL to change a reader to a write server.

Start the server, connect to it, and issue a command in the following format:

```
ALTER MULTIPLEX SERVER server name ROLE {WRITER|READER}
```

You cannot change the role of coordinator. Changing a write server to a reader automatically shuts down the server.

Changing Host and Port with Interactive SQL
You can use Interactive SQL to change the host and port information for a multiplex server.

Start the server, connect to it, and issue a command in the following format:

```
ALTER MULTIPLEX SERVER server name HOST 'hostname' PORT portnumber
```

This command also shuts down the named server.
Including or Excluding Servers with Interactive SQL

If a multiplex secondary server will be shut down for an extended period of time, exclude that server from the multiplex.

1. Start the server, connect to it, and issue a command in the following format:

 \`\`\`sql
 ALTER MULTIPLEX SERVER server-name STATUS {INCLUDED | EXCLUDED}
 \`\`\`

2. If the target server is running, it is strongly recommended that you shut it down before excluding it. In case you do not, it will eventually shut itself down, but it is better that you plan for and shut it down prior to excluding it. Excluding a server shuts it down. After including a server, the server must be synchronized and then started.

Designating Failover Node with Interactive SQL

You must designate a failover node to continue the coordinator role in the event that the current coordinator is unable to continue.

You must designate a failover node to continue the coordinator role in the event that the current coordinator is unable to continue.

1. Start the server, connect to it, and issue a command in the following format:

 \`\`\`sql
 ALTER MULTIPLEX SERVER server-name ASSIGN AS FAILOVER SERVER
 \`\`\`

2. The designated failover node defaults to the first multiplex server added to the multiplex.

See also
- Designated Failover Node on page 37
- `sp_iqmpxinfo Procedure` on page 119

Requirements for Dropping Multiplex Servers

Familiarize yourself with requirements and results before you drop a multiplex server.

If the target server is running, it is strongly recommended that you shut it down before dropping it. In case you do not, it will eventually shut itself down, but it is better that you plan for and shut it down prior to dropping it. You cannot drop the coordinator node and the designated failover node unless it is the last secondary node. When the last secondary server is removed, the multiplex is converted back to simplex and the coordinator shuts down. A write server that is holding free list cannot be dropped.

A normal restart of the write server will give up its free list and then you can shut it down and then drop it. If, for some reason, the writer cannot start, and you can guarantee that its process is dead, you can restart the coordinator with the `-iqmpx_reclaimwriterfreelist` switch. This forces the coordinator to reclaim the writer’s free list and it can then be dropped. This startup flag should be used only when you can guarantee that the writer process is dead and cannot be
started. If the writer process is still writing to the database when the coordinator reclaims its free list, database corruption may result.

Dropping Multiplex Servers with Interactive SQL

Dropping a secondary server removes it from the multiplex configuration.

1. Connect to the coordinator.
2. Issue a command in the following format:

   ```
   DROP MULTIPLEX SERVER server-name
   ```

Synchronizing Servers from the Command Line

Synchronizing copies the coordinator's version of the database catalog to secondary servers.

Prerequisites

Perform the following steps on the computer where the secondary server runs.

Note: If you checked “Generate Admin Scripts” when creating the multiplex server in Sybase Central, you can run the `sync_server` script instead of `dbbackup`.

Task

1. Remove the `.LOG` transaction log file in the secondary server directory.
2. Back up the catalog store to the directory where the secondary server runs:

   ```
   dbbackup -y -d -c
   "uid=dba;pwd=sql;links=tcpip{port=2763};eng=mpxnode_c" /host1/mpx/
   ```
3. Set the log file path:

   ```
   dblog -r -t mpxtest.log mpxtest.db
   ```
4. Start the secondary node using the `start_iq` command.
5. Repeat the previous steps for each secondary server in the multiplex.

See also

- *Requirements for Failover* on page 37
- *Updates on IQ_SYSTEM_MAIN* on page 47

Counting User Connections

To avoid exceeding the maximum number of connections, periodically check the current number of user connections.

The `DB_PROPERTY` function returns the number of client connections and the number of INC connections made by the secondary nodes to the coordinator.
The INC connections do not affect the number of connections (set by startup parameter `-gm`) that can be made to the coordinator node.
From the coordinator, run the system function **DB_PROPERTY**.
SELECT db_property('conncount')

Multiplex Administration with Sybase Central

If you are a new user, or more comfortable with graphical interfaces, use Sybase Central.

Sybase Central is a graphical tool to administer and monitor many Sybase server products, including Sybase IQ.

Starting Multiplex Servers with Sybase Central

To start IQ multiplex servers in scripts, you may use command line parameters.

Use Sybase Central to start multiplex servers interactively.

1. Log in using an account with DBA privileges and start Sybase Central as appropriate for your platform.
2. In the left pane of Sybase Central, select Sybase IQ 15.

 By default, the wizard starts a single server. To start all servers, select the “All servers in multiplex” option button.
4. Follow the instructions in the wizard.

 When starting all of the servers in a multiplex, supply information for the coordinator.
 Always change the default port number for each server to a different number that is not in use.

Note: If you checked “Generate Admin Scripts” when creating the multiplex server in Sybase Central, **start_server** and **sync_server** scripts are created. You can run these scripts from the command line in place of start_iq and dbbackup, respectively.

Checking Server Status in Sybase Central

After you add the first secondary server, the database is enabled for multiplex. You can then check the status of all the multiplex nodes, if desired.

1. Open the multiplex folder.
2. Select the Servers tab to view server status.
Table 4. Servers tab content

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Server name</td>
</tr>
<tr>
<td>Role</td>
<td>Coordinator, Reader, or Writer.</td>
</tr>
<tr>
<td>IsConnected</td>
<td>Yes if server is connected. Otherwise No. Indicates whether Sybase Central</td>
</tr>
<tr>
<td></td>
<td>has a connection to the server. Sybase Central only needs a connection to</td>
</tr>
<tr>
<td></td>
<td>one of the servers in the multiplex, but the user may connect Sybase Central</td>
</tr>
<tr>
<td></td>
<td>to more than one.</td>
</tr>
<tr>
<td>Failover node</td>
<td>Yes if this is the designated failover node, otherwise No.</td>
</tr>
<tr>
<td>Sync State</td>
<td>Synchronized, Unsynchronized (not a valid state), Excluded, Coordinator, or</td>
</tr>
<tr>
<td></td>
<td>Not Running</td>
</tr>
<tr>
<td>As Of</td>
<td>When the displayed information was last updated. For example: “8/5/08 7:</td>
</tr>
<tr>
<td></td>
<td>01:18 PM</td>
</tr>
</tbody>
</table>

3. Status displays are not instantaneous and depend on network latency. To refresh the status display, select View > Refresh Folder from the main menu bar.

Note: In a multiplex environment, users with RESOURCE authority see coordinators in the Servers folder, rather than the Multiplex folder.

See also
- *sp_iqmpxinfo Procedure* on page 119

The Sybase IQ Agent

The Sybase IQ Agent enables Sybase Central to perform functions required to administer Sybase IQ servers.

An agent is a process (often running on a remote machine) that acts on behalf of a client.

The Sybase IQ Agent enables Sybase Central to:
- Start/stop servers
- Access log files
- Perform system functions

The Sybase IQ Agent Log Location

The path to the Sybase IQ Agent log is platform specific.

On UNIX systems, if the default Sybase IQ Agent port (1099) is used, the log name is: $IQDIR15/logfiles/SybaseIQAgent1099.nnn.log where *nnn* is the number of times you have started the agent since the directory was last cleaned out. For example, if you
have started the agent three times since the last cleanup: $IQDIR15/logfiles/SybaseIQAgent1099.003.log

On Windows systems, if the user explicitly set the Sybase IQ Agent port, the log name defaults to: %ALLUSERSPROFILE%\SybaseIQ\logfiles\SybaseIQAgent_pppp.nnn.log where pppp is the port number and nnn is the number of times you have started the agent since the directory was last cleaned out. For example: C:\Documents and Settings\All Users\SybaseIQ\logfiles\SybaseIQAgent_7899.001.log.

Moving the Sybase IQ Agent Log on UNIX

To generate the IQ agent log files in a different directory, set the log directory environment variable.

On UNIX systems, set the $IQLOGDIR15 environment variable to the full path of the desired directory. For example, for the C shell (csh):

```bash
setenv IQLOGDIR15 /work/mydir/agentlogs
```

Moving the Sybase IQ Agent Log on Windows

To generate the agent log files in a different directory, set the log directory environment variable.

2. Click New under System variables.
3. Type IQLOGDIR15 for Variable and the full path of the directory for Value.
4. Click OK.

Viewing the Sybase IQ Agent Log in Sybase Central

If you experience any problems with Sybase Central, check the agent log file for errors and messages. Right-click the server name and choose Agent > View Agent Log

Troubleshooting Sybase IQ Agent Startup on Windows

If you receive an error message that Sybase IQ Agent is not running, start the agent.

1. Open the Services utility under Control Panel.
2. If Sybase IQ Agent does not have the status “Started,” click Start.
3. Restart Sybase Central after starting the agent.

Troubleshooting Sybase IQ Agent Startup on UNIX

To check if the agent is running on UNIX, run the stop_iq utility.

1. Enter the `stop_iq` command with the `-agent` argument:
stop_iq -agent

Checking system ...

The following 1 agent(s) are owned by 'fiona'
Owner PID Started CPU Time Additional Information
-- --------- ------- -------- -------- -----------------------
- 1: fiona 6669 Sep.01 5:11 PORT:1100 java
 -Diq.agent="/work/sybase15/
 IQ-15_3/java/IQAgent15.jar
 -Di q.agent_log=/

-- Do you want to stop the agent displayed above <Y/N>?

This output shows that user fiona is running the agent.

2. To stop the agent, type “Y” for yes at the prompt: Y

3. Should you receive an error that the agent is not running, change directory to $IQDIR15/
 bin64 (or $IQDIR15/bin32, depending on your platform) and type
 S99SybaseIQAgent15 to restart the agent.

Setting permissions for the Sybase IQ Agent on Windows
On Windows, you must change the owner of the Sybase IQ Agent because the System account
starts the agent by default.

The user who starts the agent becomes the creator and owner of multiplex databases and server
directories, and must have write privileges on all of the servers in the multiplex.

2. Right-click “Sybase IQ Agent” and choose Start.
3. On the General tab, choose Automatic for Startup Type.
4. On the Log On tab, change the Log on as: option from the System Account to This
 Account.
5. Browse to select an account with the appropriate privileges, then click OK.
6. Type and reconfirm that account’s password, then click OK.

Permissions for the Sybase IQ Agent on UNIX
You must start the Sybase IQ Agent from an account with appropriate privileges.

Make sure that the S99SybaseIQAgent15 script is owned by the same UID that is used to
run all the servers. Do not use the root user account.

Overriding the Sybase IQ Agent Port Number on Windows
Sybase IQ Agents on a given host require unique port numbers. Use the Service Manager to
override the default Sybase IQ Agent Port Number on Windows.

1. Select the name Sybase IQ Agent 15.
2. Choose Action > Properties from the menu bar.
 Click Stop under Service status to stop the agent.
 In the Start Parameters text box, type `-port nnnn` where nnnn is the port number.
 Click Start to restart the agent.

If the agent fails to start on Windows, check the event log for diagnostic information.

Overriding the Sybase IQ Agent Port Number on UNIX

Sybase IQ Agents on a given host require unique port numbers.

Specify the `-DIQPORT` parameter on the Sybase Central startup command, for example:

```bash
scjview -DIQPORT=3356
```

Changing the port number lets you run multiple version 15.3 Sybase IQ Agents on a given host, or to run agents for Sybase IQ 12.7, 15.0, 15.1, 15.2, and 15.3 on the same host.

Uninstalling and Reinstalling Sybase IQ Agent Windows Service

If you experience problems with the Sybase IQ Agent on Windows, try uninstalling and reinstalling the Sybase IQ Agent Windows Service.

1. To uninstall the Sybase IQ Agent 15 Windows Service:
   ```cmd
   SybaseIQagent15.exe -u "SybaseIQAgent15"
   ```

2. To reinstall the Sybase IQ Agent 15 Windows Service:
   ```cmd
   SybaseIQagent15.exe -i "SybaseIQAgent15"
   ```

Disabling Remote File Browsing on Windows

The Sybase IQ Agent supports remote file browsing by default. If you have security concerns, disable browsing

1. In a DOS shell, set the environment variable `IQAGENTNOBROWSE` to any value:
   ```cmd
   SET IQAGENTNOBROWSE=1
   SET IQPORT=2525
   ```

2. Start the agent in the window where you started the DOS shell:
   ```cmd
   SybaseIQAgent15.exe -r "SybaseIQAgent15"
   ```

Disabling Remote File Browsing on the Sybase IQ Agent on UNIX

The Sybase IQ Agent supports remote file browsing by default. If you have security concerns, disable browsing

To disable browsing on UNIX:

Start the agent with the parameter `-nobrowse`:

```bash
$IQDIR15/bin64/S99SybaseIQAgent15 -nobrowse
```
Setting IQAGENTNOBROWSE
The Sybase IQ Agent supports remote file browsing by default.

Set the IQAGENTNOBROWSE environment variable to disable browsing if you have security concerns. This method is an alternative to using the **nobrowse** startup parameter.

Configuring the IQ Agent on Windows
On Windows systems, the Sybase IQ 15.3 installation installs the Windows service Sybase IQ Agent 15, but you must reboot the machine to make the agent service function correctly.

Configuring the Sybase IQ Agent to Start Automatically on UNIX
You can configure the Sybase IQ agent to start automatically whenever you reboot your system.

To avoid restarting the Sybase IQ Agent repeatedly, enable it for automatic startup.

1. To enable automatic startup for the Sybase IQ Agent, place the following file in the UNIX startup directory (usually `/etc/rc*`):
   ```bash
   $IQDIR15/bin64/S99SybaseIQAgent15
   ```
 On a 32-bit system use “bin32” instead of “bin64”.

2. After you install Sybase IQ and move the file, the agent starts automatically whenever you reboot your system.

Remote Sybase IQ Agents
If the Sybase IQ Agent is on a remote server, you need to specify the host name for that server to start the agent.

When you use scripts to start the Sybase IQ Agent, use the optional **-host** parameter on the `S99SybaseIQAgent15` command to specify the host name explicitly.

To start the agent using the host name returned by `uname -n` use the optional **-host** parameter without an argument, as follows:

```
S99SybaseIQAgent15 -host
```

This is the also the default behavior if you omit the **-host** parameter entirely.

To start the agent using the host’s alias enter:

```
S99SybaseIQAgent15 -host <foo>
```

where `foo` is an alias present in the `/etc/hosts` file.

You can supply a list of alternate host names or IP addresses, separated by commas, instead of a single argument. Blank spaces are disallowed in the list. IP aliases may be used on a single host that supports multiple network cards with unique addresses. For example:

```
S99SybaseIQAgent15 -host "host1.sybase.com,10.20.30.40,
host2,12.20.30.41"
```
To avoid problems, start the Sybase IQ Agent using either the short host name only or all three structures. For example:

```
S99SybaseIQAgent15 -host host2 -port 2099
```

or

```
S99SybaseIQAgent15 -host "ciaran,ciaran.sybase.com,10.50.7.70" -port 2199
```

The agent binds in the following order:

1. The local host name
2. The host IP address
3. The item(s) specified in the `-host` command line parameter

Running the Sybase IQ Agent on UNIX

If you have a multiplex database, the Sybase IQ Agent must be running *on each machine in your multiplex* in order to fully administer a remote IQ server.

Prerequisites

Sybase Central can be running while you start and stop agents.

Task

Enter the following command on the command line or in a script:

```
S99SybaseIQAgent15
```

Starting Sybase Central on Windows

Before you can administer your multiplex, you must start Sybase Central.

To start Sybase Central on Windows, run Sybase > Sybase Central v6.0 from the Programs menu.

Starting Sybase Central on UNIX

Before you can administer your multiplex, you must start Sybase Central.

1. If you have not started the Sybase IQ Agent, see *Running the Sybase IQ Agent on UNIX*.
2. To start Sybase Central on UNIX, at the command prompt, type:

```
% scjview
```

See also

- *Running the Sybase IQ Agent on UNIX* on page 28
Managing Servers with Sybase Central

Sybase Central is a graphical interface for managing Sybase IQ multiplex servers.

1. Right-click the desired server.
2. Select the desired operation from the menu.

You can perform the following operations from the popup menus:

- View IQ Agent properties (version, port number, timeout setting) or Agent log.
- Disconnect or drop the selected server.
- Open Interactive SQL
 This option connects without requiring the user to enter login information.
- Rename, stop, or synchronize the selected server. If the server is a coordinator, ping the host, rename, or stop the server.
- Generate Administrative Scripts
 Use this option to create or update the optional scripts that start or stop the server. You should generate the scripts after you install a new release or update of Sybase IQ.
- View the selected server’s properties
- View the console log.

Note: Wizards on the coordinator (Start, Stop, and Synchronize) allow you to affect all servers in the multiplex.

See also
- Administrative Shell Scripts on page 29
- Multiplex Reference on page 89

Administrative Shell Scripts

You can use administrative scripts to automate operations that you might normally perform periodically with Sybase Central.

The scripts can:

- Start, stop, or synchronize servers
- Start dbisql

For example, you could use the scripts to synchronize secondary servers during the night.

The scripts start_server and sync_server are located in the database directory. On a Windows host, these scripts are .bat files. On UNIX, they are shell scripts. You can run these scripts from the command line in place of start_iq and dbbackup, respectively.

Open each script with a text editor to see comments about how to use it.

Scripts that require a password define it as an input parameter.
Creating Administrative Shell Scripts
Create administrative shell scripts for your multiplex servers from the Sybase Central navigation pane.

1. Right click the server
2. Choose Generate Admin Scripts from the popup menu.

Scheduling Administrative Shell Scripts on UNIX
Schedule administrative scripts to run overnight or perform tasks that you need to repeat periodically.
You can use the `crontab` system utility to schedule administrative tasks.

Scheduling Administrative Shell Scripts on Windows
Schedule administrative scripts to run overnight or perform tasks that you need to repeat periodically.
Use Start > Settings > Control Panel > Scheduled Tasks to schedule the administrative scripts.

Multiplex Server Synchronization
Sybase IQ generally propagates DDL and DML changes to secondary servers, so you only need to synchronize a secondary server for certain server management actions.

The process that updates a secondary server with respect to the coordinator is called **synchronization**.

The multiplex automatically makes committed changes, including global schema changes, changes to data in IQ tables visible on all servers in the multiplex.

You only need to synchronize in the following situations:

- While creating a new secondary server
- Restoring the coordinator from backup
- Restarting a secondary server that has been excluded or shut down for an extended time period
- After running the coordinator in single-node mode
- After adding a file to the IQ_SYSTEM_MAIN dbspace

See also

- **Adding a Catalog Dbspace** on page 52
- **Dropping a Catalog Dbspace** on page 52
Editing the params.cfg File to Start Servers with Sybase Central

The params.cfg file holds values for switches to control server startup features such as main and temp cache settings and error logging.

Prerequisites
Before you start the server, review and edit the params.cfg file located in the database directory for the server.

If you use Sybase Central to start the database:

Task
1. Remove any -n switch in a params.cfg file used to start a multiplex database. Remove -x tcpip{port = } switch because Sybase Central prompts for the port number.
The configuration file must not contain -n to name the server, or the database name or path.

2. The configuration file must be named params.cfg.

3. The configuration file must be located in the same folder or directory as the database file (.db).

The Utility Guide describes startup switches. For more about params.cfg, see the System Administration Guide: Volume 1.

Adding Multiplex Servers from Sybase Central

Follow these steps to add multiplex servers from Sybase Central.

1. Check the server status. The coordinator must be running in order to add secondary servers.

2. Right-click the server name in the Multiplexes folder.

3. Choose Add Server from the popup.

4. Follow the instructions in the Create Server Wizard.

The first time you start the multiplex after adding a secondary server, the coordinator may return an error similar to:

```
I. 12/11 12:50:08. Trying to start TCPIP link ...
I. 12/11 12:50:08. Multiplex environment incorrect for this server
I. 12/11 12:50:08. Please connect and run procedure sp_iqmpxvalidate for help
```

This error occurs because the secondary server has no temporary file in IQ_SYSTEM_TEMP. You must add a temporary dbfile to IQ_SYSTEM_TEMP on the newly added server. After adding this file, run `sp_iqmpxvalidate` to make sure that no errors are reported on this server.

Renaming Multiplex Servers with Sybase Central

You can use Sybase Central to change the name of a multiplex server.

1. Open the server property sheet.

2. Change the server name on the Configuration tab.

An alternate method is to right-click the server and select context menu Control > Include/Exclude.

Changing the Database File Path with Sybase Central

If you have to move your database, for example to a disk with more space, you can change the file path with Sybase Central.

1. Open the server’s property sheet.
2. On the Configuration tab, change the database file path.

Changing Server Roles with Sybase Central
You can use Sybase Central to change a reader to a write server.

1. Open the server property sheet.
2. On the General tab, change the server role (reader/writer).

Changing Host and Port with Sybase Central
You can use Sybase Central to change the host and port information for a multiplex server.

1. Open the server’s property sheet.
2. On the Configuration tab, change the host/port information.

Including or Excluding Servers with Sybase Central
If a multiplex secondary server will be shut down for an extended period of time, exclude that server from the multiplex.

Excluding a server allows the coordinator to ignore that server when performing version cleanup. Otherwise, the coordinator will need to reserve all old versions of IQ objects since the secondary node was shut down. This takes up unnecessary disk space. A designated failover server cannot be excluded unless it is the last secondary node to be excluded in the multiplex. Include/exclude does not apply to the coordinator.

1. Open the server property sheet.
2. On the General tab, include or exclude the server.

An alternate method is to right-click the server and select context menu Control > Include/Exclude.

Designating Failover Node with Sybase Central
You must designate a failover node to continue the coordinator role in the event that the current coordinator is unable to continue.

1. Right-click the Multiplex Name in the Sybase Central tree view.
2. Choose Designate Failover.

See also
- *Designated Failover Node* on page 37
- *sp_iqmpxinfo Procedure* on page 119
Dropping Multiplex Servers with Sybase Central

Dropping a secondary server removes it from the multiplex configuration.

1. To delete a secondary server, right-click that server and choose Drop Server from the popup menu.
2. The wizard prompts you before dropping the server.
3. Click the option button to delete associated files, if desired, and choose Finish.

If, for some reason, you did not shut down the server you are dropping, Sybase Central may fail to delete all files for that secondary server because they are in use.

Multiplex Administration with Sybase Control Center

If you prefer a web-based tool for monitoring and administering Sybase IQ servers, use Sybase Control Center.

Sybase Control Center can add, drop, or synchronize secondary servers, or include or exclude secondary servers from the multiplex. You can also use Sybase Control Center to convert a simplex to multiplex or perform multiplex failover.

See the Sybase Control Center for Sybase IQ online help in SCC or at http://sybooks.sybase.com/nav/summary.do?prod=10680.

Administration Authorities

Administration authorities enable users to perform well-defined sets of database administration tasks.

For an overview of authorities that affect both simplex and multiplex servers, see System Administration Guide: Volume 1 > Managing User IDs and Permissions > Database Permissions and Authorities Overview.

MULTIPLEX ADMIN Authority

MULTIPLEX ADMIN authority allows a user without DBA authority to perform multiplex administration tasks.

MULTIPLEX ADMIN or DBA authority is required to:

- Rename the multiplex and store the multiplex name in SYS.ISYSIQINFO system table.
- Change multiplex server settings.
- Create multiplex servers.
- Delete servers from the multiplex.
MULTIPLEX ADMIN authority can be granted only by the DBA or PERMS ADMIN to other users.

Using Multiplex Procedures for Tailored Security

For strict security, you can disallow all access to underlying tables, and grant permissions to users or groups of users to execute certain stored procedures. This approach strictly defines who can define data in the database.

Prerequisites

To allow users with the particular authorities to administer certain tasks using IQ system procedures:

Task

Create a group for each desired authority.

Grant the authority to the designated group.

Grant EXECUTE permissions on the IQ procedure for performing the authority tasks to the group.

When you create a new user who is to be granted the authority, grant membership for this user to the group created for that authority. Since most authorities are inherited through group membership, the user inherits the authority and also the execute permissions for the IQ procedures from the group.

Granting Users the Permissions to Run Related Stored Procedures

When you create a new user who is to be granted an authority, grant membership for this user to the group created for that authority. Since most authorities are inherited through group membership, the user inherits the authority and also the execute permissions for the IQ procedures from the group.

Prerequisites

Except as noted, the following steps require DBA or PERMS ADMIN authority.

To grant MULTIPLEX ADMIN authority and permissions to execute procedures related to multiplex administration to a user named user1:

Task

1. Connect to the database as a user with DBA authority or a user with USER ADMIN and PERMS ADMIN authority.
2. Create a group MPX_ADMIN_GRP. You could write this as:

```sql
CREATE USER MPX_ADMIN_GRP
GRANT GROUP TO MPX_ADMIN_GRP
```
or:
```
call sp_addgroup('MPXADMIN_GRP')
```

3. Grant MULTIPLEX ADMIN authority to MPXADMIN_GRP:
```
GRANT MULTIPLEX ADMIN TO MPXADMIN_GRP
```

4. Grant EXECUTE permission on Sybase IQ stored procedures for user administration to MPXADMIN_GRP:
```
GRANT EXECUTE on sp_iqmpxgetconnversion
to MPXADMIN_GRP
GRANT EXECUTE on sp_iqmpxinfo
to MPXADMIN_GRP
GRANT EXECUTE on sp_iqmpxinconnpoolinfo
to MPXADMIN_GRP
GRANT EXECUTE on sp_iqmpxinheartbeatinfo
to MPXADMIN_GRP
GRANT EXECUTE on sp_iqmpxvalidate
to MPXADMIN_GRP
GRANT EXECUTE on sp_iqmpxversioninfo
to MPXADMIN_GRP
```

5. Grant membership in group MPXADMIN_GRP to user1. user1 inherits the MULTIPLEX ADMIN authority and the ability to execute the assigned IQ procedures through membership in MPXADMIN_GRP group.
```
GRANT MEMBERSHIP IN GROUP MPXADMIN_GRP TO user1
```

Multiplex Login Management

Login policies control the capabilities of users and connections to a database.

For an overview of Sybase IQ login policies, see *System Administration Guide: Volume 1 > Managing User IDs and Permissions > Login Management.*

Coordinator Failure

If the current coordinator node fails, or must be shut down for maintenance, the entire multiplex is placed in a read-only state. In this state, you can query the existing IQ data but not modify it.

To re-establish read-write capabilities, you must promote another server to be the coordinator. This operation is called *manual failover.*
Designated Failover Node

A multiplex requires a designated failover node to take over as coordinator if the current coordinator is not running.

You must use the failover node when performing manual failover. During multiplex creation, the first secondary server created becomes the designated failover node, but you can later designate any other secondary server as failover node.

Use the `sp_iqmpxinfo` procedure to display the designated failover node.

You can perform failover from the command line, from Sybase Central, or from Sybase Control Center. If you prefer a web-based management tool, use Sybase Control Center to designate a failover node or perform failover.

See the Sybase Control Center for Sybase IQ online help in SCC or at http://sybooks.sybase.com/nav/summary.do?prod=10680.

See also
- `sp_iqmpxinfo` Procedure on page 119
- Designating Failover Node with Sybase Central on page 33
- Designating Failover Node with Interactive SQL on page 20
- Viewing the Multiplex Topology on page 71
- Printing the Multiplex Topology on page 72

Requirements for Failover

You must ensure that the former coordinator process is no longer running before attempting failover.

In a worst case scenario, the former coordinator computer might be running but disconnected from the network, or in a hardware hibernation state. In this situation, you cannot log into the coordinator computer, which would be unreachable by tools such as Sybase Central, but the coordinator computer could start functioning normally without warning. Ideally, the computer on which the coordinator was running should be shut down during the manual failover process.

Warning! Initiating manual failover while the former coordinator process is alive may cause database corruption.

See also
- Synchronizing Servers from the Command Line on page 21
- Replacing the Coordinator from the Command Line on page 38
- Viewing the Multiplex Topology on page 71
- Printing the Multiplex Topology on page 72
Replacing the Coordinator with Sybase Central

Make sure that the coordinator is really down before you replace it.

1. Right-click the multiplex set node in the Sybase Central tree view. The Failover wizard is only enabled when the coordinator is down and the designated failover node is running.

2. Specify the action to take against the current coordinator by choosing one of three options from the drop-down list: Drop it (the default), Keep it as Reader, or Keep it as Writer.

 If you choose to drop the server, the Delete Server Files check box appears (deselected by default).

 If you choose to keep the server as reader or writer, two radio buttons display: Included and Excluded (the default).

 Choose Included or Excluded (the default). If you choose Included, the Synchronize After Failover check box appears. This check box is deselected by default.

3. Specify the new failover node by choosing a node from the Identify the New Failover Node dropdown.

4. Click Finish to start the failover process.

 Two dialog boxes display.

5. Click Yes if you are certain that the coordinator is down and you are ready to fail over.

 Several progress messages display at the base of the wizard screen.

Replacing the Coordinator from the Command Line

Make sure that the coordinator is really down before you replace it.

Prerequisites

The coordinator process must be dead before you initiate replacement. The designated coordinator node must be included and part of the multiplex. Sybase recommends that you have a reader be the designated failover node. Readers have no pending writeable transactions, which makes failover easier.

Task

1. Ensure that coordinator process is dead.

 If there were any read-write transactions running on secondary nodes when the original coordinator was shut down, these transactions will be rolled back. Ideally if the coordinator is running on dedicated server hardware, that computer should be shut down during the failover process.

 - On UNIX, log into the coordinator machine and make sure that the environment variables are set, then issue the following command:

   ```bash
   stop_iq
   ```
and stop the appropriate iqsrv15 process.

- On Windows, log into the coordinator machine. Start Task Manager and look for the process name iqsrv15.exe. Stop the iqsrv15.exe process.

2. To identify the designated failover node, connect to any running multiplex server and execute the stored procedure sp_iqmpxinfo. The column coordinator_failover shows the designated failover node.

3. Connect to the designated failover node and run COMMIT, then BEGIN TRANSACTION to ensure that this node is up to date with the latest TLV log.

Shut down the designated failover node cleanly, using Sybase Central (Right-click > Control > Stop) or the dbstop utility.

4. At the command line, restart the intended coordinator using the failover switch (-iqmpx_failover 1) on the server startup utility:

```bash
start_iq -STARTDIR/host1/mpx
@params.cfg -iqmpx_failover 1
-n mpxnode_w1 -x "tcpip{port=2764}" mpxtest.db
```

Once the server startup is complete, the failover process is complete and the designated failover node becomes the new coordinator node. After failover, on the next transactions, other secondary servers recognize the new coordinator and connect to it for all read-write transactions. The former coordinator becomes a reader and can be started as a regular secondary node.

To start the former coordinator, you must synchronize it against the new coordinator. Follow steps 1 through 4 in "Synchronizing Servers from the Command Line," but in step 2 (dbbackup), the connection string specified with the -c parameter must contain the new coordinator’s connection parameters.

See also

- Requirements for Failover on page 37

Replacing the Coordinator using Sybase Control Center

If you prefer a web-based tool for multiplex failover, use Sybase Control Center.

Sybase Control Center can designate the failover node or perform coordinator node failover.

Multiplex Transactions

Multiplex transactions that modify shared objects behave according to certain rules.

Multiplex Transactions Overview

Transactions are either local or global.

Local Transactions

A *local transaction* is any transaction that does not modify a shared object.

Note that a local transaction may be read-only or read-write but modify data in local objects only (SA tables or temp tables). Local transactions may be performed on any multiplex node, and the effects of the transaction are only visible to that node.

Global Transactions

A *global transaction* is any transaction that modifies data in shared objects or changes the schema of any persistent object. Global transactions may only be performed on the coordinator node or a writer node. The effects of a global transaction are visible on all nodes of the multiplex.

All multiplex transactions begin as local transactions. A transaction only becomes global when the first read-write operation (such as an insert) is initiated on a shared IQ object. When a global transaction is initiated from a secondary writer node, the coordinator node must be running, because the writer node must communicate with the coordinator node in order to coordinate the global aspects of the transaction.

In a writer-initiated global transaction, the writer node CPU and local disks are used to do the work of the read-write operation, while the coordinator node handles the global bookkeeping for the transaction, such as the assignment of global transaction IDs, global lock management, and writing the TLV log.

Coordinator Failure During Global Transaction

If the coordinator fails or is shut down during a writer-initiated global transaction, a “Coordinator node not responding” error occurs. Depending on the current state of the global transaction, one of the following will happen:

- If this error occurs during the initiation of the transaction, only the current command is rolled back and the transaction can continue.
- If a global transaction is already initiated, and this error occurs before committing the global transaction, that transaction cannot be committed and must be rolled back.
If this error occurs during the commit of a global transaction, the user’s connection is terminated.

Note: If a global transaction initiated from a writer node modifies both global and local persistent objects (for example, an SA base table and an IQ base table), and the coordinator fails during commit, global object changes may be committed while local object changes are lost. This is consistent with the same scenario updating both local and proxy tables in the same transaction, where “best effort” is used to commit both local and global components of a transaction.

DML Commands

In IQ 15.0, global transactions can be run from the coordinator and any write server. DML commands that modify tables in the shared IQ store are global DML commands. Any transaction that contains a global DML command becomes a global transaction.

Global DML Commands

Global DML commands behave as if they were executed on the coordinator, and obey the same locking rules as on a single server.

For example, if one transaction on any server has modified a shared IQ table, no other transaction may modify that table until the original transaction commits or rolls back. Whenever a global transaction commits, whether it runs on a writer node or the coordinator, the metadata for that global transaction is communicated to all servers in the multiplex through the TLV log.

Table Data Scope

When running DML commands in multiplex, the visibility of the table rows differs for different table types.

There are three types of row visibility in multiplex:

- Global scope – All connections on all servers can see the rows.
- Server scope – All connections on a particular multiplex server can see the rows.
- Connection scope – Only a single connection on a particular multiplex server can see the rows.

<table>
<thead>
<tr>
<th>Table type</th>
<th>Data scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ base</td>
<td>Global</td>
</tr>
<tr>
<td>IQ temporary</td>
<td>Connection</td>
</tr>
<tr>
<td>Global temporary table</td>
<td>Connection</td>
</tr>
<tr>
<td>Table type</td>
<td>Data scope</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>SA catalog (table created IN SYSTEM)</td>
<td>Server</td>
</tr>
<tr>
<td>SA temporary (table created IN SYSTEM)</td>
<td>Connection</td>
</tr>
</tbody>
</table>

Sybase IQ copies data in SA catalog tables on the coordinator node to the secondary node catalog store whenever a secondary node is synchronized. The data in catalog store tables is otherwise not related between secondary server and coordinator server instances. After synchronization, local SA table data on the secondary server is lost, because table data from the coordinator overwrites it.

Note: Because CIS proxy tables point to data on remote servers, the data scope is external. Data management for such tables is done by the remote server.

Tables in Join Indexes

Some restrictions apply to tables in join indexes.

Any schema change for tables participating in a join index is not allowed in a 15.0 or higher multiplex. Any DML operation permitted on a table participating in a join index is allowed only on the coordinator, which must be in single node mode.

DDL Commands

Command type and object type affect the scope of Data Definition Language (DDL) commands in a multiplex.

DDL Command Scope

DDL commands may be propagated to all nodes or be local to the executing node.

DDL command scope is as follows:

- **Local scope** – execute on the local server and affect the local catalog store or local temporary store only.
- **Global scope** – execute on the coordinator and affect the shared IQ store and global catalog store. The coordinator writes statements with global scope to the TLV log on commit.

Local DDL Commands

DDL commands that affect temporary objects, which lack a permanent object ID, are local.

Local commands affect these object types:

- Local temporary tables
- Local procedures
- Temporary options
Global DDL Commands

DDL commands that create, alter, or drop a permanent object ID in the ISYSOBJECT table are global.

Global commands affect these object types

- Table – includes SA base tables, IQ base tables, and global temporary tables
- View
- Materialized view (SA tables only)
- Column
- Index
- Procedure
- Event
- User
- Publication
- Remote type
- Login mapping
- JAR
- Java class
- Service
- Database options (minus locally scoped option exceptions)

DDL Command Dependencies Example 1

You cannot run global DDL commands if the coordinator node is not running. Attempting to do so results in the error SQLCODE: -1004011, SQLSTATE QIA11: Coordinator node not responding.

For example, if you created this temporary function or stored procedure:

```sql
CREATE TEMPORARY FUNCTION f1() RETURNS INT
BEGIN
RETURN 1;
END
```

Next, if you tried to create a view that is dependent on the temporary function:

```sql
CREATE VIEW v1 AS SELECT * FROM f1()
```

You would receive the error Procedure 'f1' not found since it is not a permanent procedure. Sybase IQ does not allow such operations in a multiplex environment.

DDL Command Dependencies Example 2

When creating objects that are global, make sure that they do not depend on objects that are local.

This example creates a global object with a dependency on a local object. Assume that you create the `lineitem` temporary table on a secondary node:
DECLARE LOCAL TEMPORARY TABLE #lineitem (
 l_orderkey integer,
 l_partkey integer iq unique(20000000),
 l_suppkey integer iq unique(20000000),
 l_linenumber integer,
 l_quantity integer iq unique(50),
 l_extendedprice double,
 l_discount double iq unique(11),
 l_tax double iq unique(9),
 l_returnflag char(1) iq unique(3),
 l_linestatus char(1) iq unique(2),
 l_shipdate date iq unique(270),
 l_commitdate date iq unique(256),
 l_receiptdate date iq unique(300),
 l_shipinstruct char(25),
 l_shipmode char(10) iq unique(7),
 l_comment char(44)
)

Next, you create indexes—which are global objects—on the columns of the lineitem temporary table using the BEGIN PARALLEL IQ command:

BEGIN PARALLEL IQ
CREATE LF INDEX LFIQ_IDX_TXXX_CXX_L_PK on #lineitem (l_partkey);
CREATE LF INDEX LFIQ_IDX_TXXX_CXX_L_OK on #lineitem (l_orderkey);
END PARALLEL IQ

Sybase IQ returns the error Table 'lineitem' not found because the BEGIN PARALLEL IQ command is a global command sent to the coordinator node, but the lineitem table is a local temporary table on the secondary node.

Role Restriction

Some statements are restricted to nodes of certain roles.

Restricted statements include:

- **Coordinator** – Statements with a coordinator role restriction only run on a coordinator node.
- **Writer** – Statements with a writer role restriction run on a writer node or a coordinator.
- **None** – Statements with no role restriction run on any node in the multiplex.
Table 6. Role restricted commands

<table>
<thead>
<tr>
<th>Coordinator role restriction</th>
<th>Writer role restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• All CREATE/ALTER/DROP DBSPACE commands operating on IQ main store dbspaces</td>
<td>All DDL commands that affect objects in the IQ main store dbspaces. This includes ALTER/DROP of:</td>
</tr>
<tr>
<td>• BACKUP DATABASE</td>
<td>• Tables</td>
</tr>
<tr>
<td>• LOCK TABLE</td>
<td>• Single and multicolon indexes</td>
</tr>
<tr>
<td>• sp_iqemptyfile</td>
<td>• Table constraints</td>
</tr>
</tbody>
</table>

Unlisted statements are unrestricted.

Preserving Rows
In Sybase IQ 15.3, a global temporary table created with ON COMMIT PRESERVE ROWS cannot be altered or dropped from a secondary node if the instance of the global temporary table on the connection of the secondary node executing the drop table has data.

You need to truncate the table and try again or alter or drop the table from the coordinator node. If the global temporary table is created with ON COMMIT DELETE ROWS, you may alter or drop the table even if it has rows.

For example, connect to a secondary node:

```sql
CREATE GLOBAL TEMPORARY TABLE foo_gtt(c1 int)
ON COMMIT PRESERVE ROWS;
INSERT INTO foo_gtt VALUES(200);
COMMIT;
DROP TABLE foo_gtt;
```

The drop statement fails with the following error:

```
Operation not allowed on global temporary table foo_gtt as it is in use. Please reconnect and try again. SQLCODE=1287. ODBC 3 State="HY000"
```

Dbspace Updates in Multiplex
Dbspace updates on multiplex differ slightly from those on simplex databases.

In general, when updating shared dbspaces:

• Only the coordinator can manipulate shared IQ dbspaces.
• Before you can drop a shared dbspace file, you must alter the file to read-only mode. All servers must have advanced to the version corresponding to the ALTER READONLY statement, and must have returned all reserved blocks on the file.
• CREATE DBSPACE, ALTER DBSPACE and DROP DBSPACE commands for main and catalog dbspaces are allowed only on the coordinator.
• For IQ_SHARED_TEMP behavior, see Multiplex Transactions > DDL Commands > Role Restriction > Dbspace Updates in Multiplex > Updates on IQ_SHARED_TEMP.

Due to delays in TLV propagation and version maintenance, there may be a delay of a few minutes before you can drop an empty dbfile or dbspace. You see a Command not replayed error. To perform the DROP DBSPACE or ALTER DBSPACE DROP FILE commands, the OkToDrop column reported by the sp_iqdbspace and sp_iqfile procedures must indicate “Y.”

See also
• Updates on IQ_SHARED_TEMP on page 50

Updates on IQ_SYSTEM_TEMP
Familiarize yourself with requirements before updating IQ_SYSTEM_TEMP dbspaces.

When updating IQ_SYSTEM_TEMP:

• Create, alter, and drop temporary dbspace files only from the node where they reside. The syntax for these commands is the same as for simplex temporary dbspaces.
• Secondary servers must be synchronized before you run ALTER DBSPACE ALTER FILE RENAME PATH. Synchronization happens automatically through TLV log replay, but there may be a time delay of up to two minutes between the previous dbspace operation on this dbspace (create or alter) and when you can run ALTER DBSPACE ALTER FILE RENAME PATH. If secondary servers are not synchronized, you may see a “Command not replayed” error.

Before updating dbspaces, see the overview of dbspaces and dbfiles in System Administration Guide: Volume 1 > Overview of System Administration > Data Storage in Sybase IQ.

Updates on IQ_SYSTEM_MAIN
The IQ_SYSTEM_MAIN dbspace manages important database structures including the free list, which lists blocks in use.

Before adding space to IQ_SYSTEM_MAIN, shut down secondary nodes. Active secondary nodes shut down automatically if a dbfile is added to IQ_SYSTEM_MAIN. The IQ message file for the secondary node reports:

Multiplex secondary node shutting down
due to a file added to the IQ_SYSTEM_MAIN dbspace.
This node must be synchronized and restarted.

This behavior applies only to the IQ_SYSTEM_MAIN dbspace. Other dbspace operations cause no disruption and all nodes in the multiplex continue to run. See Adding space to IQ_SYSTEM_MAIN on a coordinator.

When updating IQ_SYSTEM_MAIN:
If any shared IQ main dbspace files have paths inaccessible from a secondary node, that secondary node cannot access the file or any contents of that file until the path is corrected. See Files on Shared Disk Arrays.

ALTER DBSPACE ALTER FILE RENAME PATH is prohibited on IQ_SYSTEM_MAIN.

After adding new files to IQ_SYSTEM_MAIN, synchronize and restart secondary nodes.

See also
- Adding Space to IQ_SYSTEM_MAIN on a Coordinator on page 49
- Synchronizing Multiple Servers with Sybase Central on page 31
- Synchronizing Servers from the Command Line on page 21

Changing an IQ_SYSTEM_MAIN File Path

The paths of all dbfiles in IQ_SYSTEM_MAIN must be visible to the secondary nodes. Otherwise, the secondary node does not start, and reports Error opening DBFILE 'filepath'.

To change an IQ_SYSTEM_MAIN file path that cannot be resolved by creating links, follow these steps on the coordinator:

1. Shut down all the servers in the multiplex.
2. Start the coordinator in single node mode using the -iqmpx_sn 1 switch.
3. Make the dbfile read-only:

   ```
   ALTER DBSPACE IQ_SYSTEM_MAIN ALTER FILE mainfile READONLY
   ```
4. Run:

   ```
   sp_iqemptyfile mainfile
   ```
5. Drop the dbfile:

   ```
   ALTER DBSPACE IQ_SYSTEM_MAIN DROP FILE mainfile
   ```
6. Add the dbfile with the path visible to all secondary nodes. For example, on UNIX:

   ```
   ALTER DBSPACE IQ_SYSTEM_MAIN ADD FILE mainfile '/dev/rdsk/c4t600a0b80005a7f5d0000024'
   ```

 On Windows:

   ```
   ALTER DBSPACE IQ_SYSTEM_MAIN ADD FILE mainfile '\\\\\\PhysicalDrive1'
   ```
7. Restart the coordinator normally, without the -iqmpx_sn 1 switch.
8. Synchronize secondary nodes. See Multiplex Server Synchronization.

The IQ_SYSTEM_MAIN dbspace manages important database structures including the freelist, which tracks which blocks are in use. Sybase recommends shutting down secondary nodes before adding space to IQ_SYSTEM_MAIN. In a 15.0 or higher multiplex, if a dbfile is
added to IQ_SYSTEM_MAIN, all running secondary nodes shut down automatically and the IQ message file for the secondary node reports:

Multiplex secondary node shutting down
due to a file added to the IQ_SYSTEM_MAIN dbspace.
This node must be synchronized and restarted.

See also
• Multiplex Server Synchronization on page 30

Adding Space to IQ_SYSTEM_MAIN on a Coordinator
If the coordinator runs out of space in IQ_SYSTEM_MAIN, including reserve space, it may abort to prevent database corruption and you may be unable to start the coordinator normally.

Should the coordinator abort due to lack of space, start the coordinator in a single node mode using the -iqmpx_sn startup switch, and add more space by adding file(s) to IQ_SYSTEM_MAIN. Restart the coordinator normally and synchronize all secondary nodes, as in the following procedure.

When the coordinator needs space in IQ_SYSTEM_MAIN, proceed as follows:

1. Shut down all servers in the multiplex.
2. Start the coordinator in single node mode using -iqmpx_sn 1:

```
start_iq @params.cfg mpxtest.db -iqmpx_sn 1 -n mpxnode_c
```
3. To add more space to IQ_SYSTEM_MAIN with a new file on a raw device, use syntax like the following:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX</td>
<td>ALTER DBSPACE IQ_SYSTEM_MAIN ADD FILE mymainfile '/dev/rdsk/c4t600A0B80005A7P5D0000024'</td>
</tr>
<tr>
<td></td>
<td>where mymainfile is the logical or chosen logical name of the new dbfile.</td>
</tr>
<tr>
<td>Windows</td>
<td>ALTER DBSPACE IQ_SYSTEM_MAIN ADD FILE mymainfile '\\PhysicalDrive3'</td>
</tr>
</tbody>
</table>

4. Restart the coordinator normally, without the -iqmpx_sn 1 switch.
5. Synchronize secondary nodes. For details, see Multiplex Server Synchronization.

See also
• Updates on IQ_SYSTEM_MAIN on page 47
• Multiplex Server Synchronization on page 30

Replacing Dbfiles in IQ_SYSTEM_TEMP on a Multiplex Coordinator
To replace a damaged dbfile, drop the file, restart the server, and add the dbfile in the coordinator.
1. Use the -iqlnotemp parameter to start the database.
 The only temporary file operation allowed on a database while running with -iqlnotemp is
to drop one or more of the temporary file definitions.
2. Drop the last file in IQ_SYSTEM_TEMP:
 ALTER DBSPACE IQ_SYSTEM_TEMP DROP FILE filename
3. Stop the database.
4. Start the database in single-node mode with no files to empty the checkpoint log:
 start_iq @params.cfg mpxtest.db -iqmpx_ov 1
 -iqmpx_sn 1 -n mpxnode_c
5. Add a “dummy” dbfile to the coordinator. You will need to drop this file and add it again in
 coordinator mode, because files added in single-node mode have a null server ID; they are
 owned by the coordinator instead of the server that added the file. To add more space to
 IQ_SYSTEM_MAIN with a new file on a raw device, use syntax like the following:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Syntax</th>
</tr>
</thead>
</table>
 | UNIX | ALTER DBSPACE IQ_SYSTEM_TEMP ADD FILE tempfile
 | | '/dev/rdsk/c4t600A0B80005A7F5D0000024' |
 | | where tempfile is the logical or chosen logical name of the new dbfile. |
 | Windows | ALTER DBSPACE IQ_SYSTEM_TEMP ADD FILE |
 | | tempfile '\\.\PhysicalDrive3' |
6. Stop and restart the server.
7. Drop the dummy file.

Updates on IQ_SHARED_TEMP

When you update IQ_SHARED_TEMP dbspaces, certain restrictions apply.

These rules affect IQ_SHARED_TEMP dbspace updates:

- Only the coordinator can manipulate shared IQ dbspaces.
- Start the coordinator in single-node mode before dropping files from
 IQ_SHARED_TEMP. The first file made read-write in IQ_SHARED_TEMP must be the
 last file dropped. You may also drop files in IQ_SHARED_TEMP in simplex.
- Updates on the IQ_SHARED_TEMP store require SPACE ADMIN authority.
- **ALTER FILE RENAME PATH** is not allowed for the IQ_SHARED_TEMP dbspace.
- **ALTER DBSPACE ALTER FILE READONLY** is not allowed for the IQ_SHARED_TEMP
dbpace.

Shared File Status Data

When opening databases and executing certain commands, multiplex nodes maintain a file
status for each shared dbspace file.
The coordinator maintains status data for all nodes, and each secondary node maintains its own file status data.

All included servers must return valid read-write status for a new IQ_SHARED_TEMP file, or the statement returns an error. If all nodes can access the newly added file, they return a Valid status message. All secondary servers return file status for all shared files to the coordinator. Sybase IQ maintains shared file status information for dbfiles of all shared dbspaces, but uses the information only in dbspace update commands that target the IQ_SHARED_TEMP dbspace.

If a secondary node does not have write access to one or more files in IQ_SHARED_TEMP, that node will not be eligible for participating in any DQP operations. Diagnose distributed file problems using \texttt{sp_iqmpxfilestatus}.

\textbf{Adding Dbfiles to Shared Dbspaces}

Perform these steps in Interactive SQL or Sybase Central.

\textbf{Prerequisites}

When adding space to IQ_SHARED_TEMP, consider the distributed query processing workload. Dbspace commands on IQ_SHARED_TEMP require SPACE ADMIN authority.

\textbf{Task}

1. Connect to the coordinator.
2. Add the file. On the ADD FILE clause, specify either a full path to a raw device, or a soft link. These examples specify full paths:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIX</td>
<td>ALTER DBSPACE IQ_SHARED_TEMP ADD FILE mydbfilename '/dev/rdsk/c4t600A0B80005A7F5D0000024'</td>
</tr>
<tr>
<td>Windows</td>
<td>ALTER DBSPACE IQ_SHARED_TEMP ADD FILE mydbfilename '\\PhysicalDrive2'</td>
</tr>
</tbody>
</table>

This example specifies a soft link on a UNIX system:

```
ALTER DBSPACE IQ_SHARED_TEMP ADD FILE mydbfilename 'store/userdb1'
```

You need not synchronize or restart any secondary servers.

3. Confirm that the file is visible to all secondary nodes:

```
sp_iqmpxfilestatus
```

4. Shared files on IQ.SYSTEM_MAIN and user main dbspaces are implicitly read-write. Dbfiles on IQ_SHARED_TEMP are created read-only. If the dbfile is on a shared temporary dbspace, alter the new file to read-write status:
ALTER DBSPACE IQ_SHARED_TEMP ALTER FILE mydbfilename READWRITE

Next

If an error is returned regarding the file status issues from one or more nodes, run the `sp_iqmpxfilestatus` procedure to troubleshoot and correct problems. If you postpone correction, you can force read-write status on IQ_SHARED_TEMP dbfiles:

```
ALTER DBSPACE IQ_SHARED_TEMP ALTER FILE mydbfilename
FORCE READWRITE
```

Use of the FORCE READWRITE clause returns an error on IQ_SYSTEM_MAIN and user main dbfiles.

Adding a Catalog Dbspace

Under normal circumstances, you will need not add catalog dbspaces; they automatically grow as needed. However, if your catalog dbspace file is on constrained storage, you may need to add a new catalog dbspace to accommodate catalog data.

1. Shut down all servers in the multiplex.
2. Start the coordinator in single node mode:

   ```
   start_iq @params.cfg mpxtest.db -iqmpx_sn 1
   -n mpxnode_c
   ```
3. Create the dbspace:

   ```
   CREATE DBSPACE DspCat2 AS 'sadb2.db'
   CATALOG STORE
   ```
4. Restart the coordinator without the `-iqmpx_sn1` switch:

   ```
   start_iq @params.cfg mpxtest.db -n mpxnode_c
   ```
5. Synchronize all secondary servers in the multiplex. See *Multiplex Server Synchronization*.

See also

- *Multiplex Server Synchronization* on page 30

Dropping a Catalog Dbspace

Under normal circumstances, you need not remove catalog dbspaces; they automatically grow as needed.

1. Shut down all the servers in the multiplex.
2. Start the coordinator with the `-gm` and `-iqmpx_sn` switches:

   ```
   start_iq @params.cfg mpxtest.db -gm 1
   -iqmpx_sn 1 -n mpxnode_c
   ```
3. In Interactive SQL, enter:
4. Restart the coordinator normally, without the -iqmpx_sn 1 switch.
5. Synchronize all secondary servers in the multiplex. See *Multiplex Server Synchronization*.

See also
- *Multiplex Server Synchronization* on page 30

Dynamic Collisions

A dynamic collision occurs when a schema change is committed on a table, procedure, function, or view while a secondary server is querying the same object. The collision results from the TLV replay of shared IQ object schema updates.

Dynamic collisions only occur on secondary nodes. In an interactive setting, a dynamic collision results in a forced disconnect of a user connection from a secondary node.

To resolve a dynamic collision during DDL execution, the secondary server finds the connections responsible and disconnects them. The disconnect is logged in the .iqmsg file with a message similar to:

```bash
Shared IQ Store update DDL statement:
drop table DBA.gtt44
Disposition: SQLSTATE:42W21 --
dropped 1 connection(s) for table:
DBA.gtt44 Retry successful
```

To avoid dynamic collisions, schedule schema changes when the multiplex is not heavily loaded.
Multiplex Transactions
Logical Servers

Logical servers provide resource provisioning for the IQ multiplex, allowing you to group together a subset of computing resources (multiplex servers) as a logical entity.

Logical Servers Overview

A logical server allows one or more servers of a multiplex to be grouped together to serve one or more applications or users.

When you connect to a logical server and run a query, Sybase IQ distributes the query execution to only those nodes that are members of the logical server. You can dynamically add or drop member nodes for a logical server to accommodate the changing resource needs of applications.

Access to Sybase IQ multiplex nodes is provided only via logical servers. You can create multiple logical servers to serve different groups of applications or users. When you create a logical server, explicitly select one or more multiplex servers to add them as members. A multiplex node can be a member of more than one logical server. A logical server can have both reader and writer nodes. You can also make the coordinator node a member of a logical server, although specific rules govern coordinator membership.

A workload directed to a logical server can only be processed by member servers. Only queries that can be parallelized are eligible for work distribution; all other operations are confined to the node of initial connection. Users must connect to a node that has the role (reader or writer) required for the intended operation.

Built-in Logical Servers

OPEN and SERVER are built-in logical servers that always exist; their membership is implicitly defined, and is never stored in the catalog.

OPEN Logical Server

A node that is not a part of any user-defined logical server is implicitly a member of the OPEN logical server. The OPEN logical server consists of all multiplex nodes that are not members of any user-defined logical servers.

You cannot directly manipulate membership of a multiplex node into the OPEN logical server; it changes implicitly when you add multiplex nodes to, or drop them from, user-defined logical servers. The OPEN logical server may be empty when each server of a multiplex is a member of one or more logical servers.
Note: When there are no user-defined logical servers, the OPEN logical server consists of all multiplex servers.

The OPEN logical server supports these use cases:

- A large multiplex deployment is likely to have some applications that require provisioning of their own resources. It is also likely to have other applications that are used in an ad hoc manner, and do not require dedicated resources. These ad hoc applications can be served by the OPEN logical server, rather than by user-defined logical servers.
- In a utility computing environment where resources are used on a chargeback basis, you can keep the OPEN logical server empty as all applications and users access the multiplex with their assigned logical servers.

SERVER Logical Server

On each multiplex server, the SERVER logical server has implicit membership to that server only, allowing certain privileged users to connect to any node of the multiplex and execute server-level administrative tasks without knowing which logical servers include that node.

You must have one of these authorities to connect to a multiplex with the SERVER logical server context:

- DBA
- MULTIPLEX ADMIN
- SPACE ADMIN
- OPERATOR

NONE Logical Server

The NONE logical server is defined to be always empty.

Effective Logical Server Configuration

Not all member nodes of a logical server may be available at all times due to failure or exclusion from the multiplex.

The effective logical server configuration represents the current dynamic constitution of the logical server consisting of all member nodes that are actually available for use. The effective logical server configuration is based on the static logical server configuration and dynamic state of the multiplex.

Coordinator as a Logical Server Member

Logical server memberships that are defined using the multiplex server name of the current coordinator server are ineffective.

These memberships become effective again when the multiplex server no longer acts as the current coordinator.
Logical Membership of the Coordinator

You can define the coordinator’s logical membership in a logical server using the **FOR LOGICAL COORDINATOR** clause instead of the multiplex server name of the current coordinator.

The logical membership of the coordinator means the coordinator is always available to the logical server as its member, regardless of which multiplex node plays the coordinator role.

Note: The coordinator role can move from one multiplex server to another, for example, during a failover. If a logical server has logical membership of the coordinator, the new coordinator server becomes part of the effective configuration of the logical server.

The current coordinator node is available only to those logical servers that have the coordinator as its logical member, and not to those logical servers that have membership to the current coordinator node using the multiplex node name. If the current coordinator is both a logical member and a named member of a logical server, then it is available to the logical server, but only by virtue of its logical membership. The named membership is still considered ineffective.

The coordinator node membership rules ensure predictability of the workload on the coordinator. The coordinator is available to a known set of logical servers and that does not change as the coordinator fails over from one multiplex node to another.

Logical Server Policy

Each logical server is associated with a logical server policy. A logical server policy affects certain aspects and behavior of associated logical servers via configurable logical server policy options.

Sybase IQ database includes a built-in root logical server policy that applies to all logical servers. The only change you can make in the root policy is to set the **ALLOWCOORDINATORASMEMBER** option to ON (the default) or OFF. You cannot drop the root logical server policy.

Note: You cannot create user-defined logical server policies.

ALLOWCOORDINATORASMEMBER Option

Use **ALLOWCOORDINATORASMEMBER** option of the root logical server policy to control the coordinator's eligibility to participate in a user-defined logical server. Set the option to OFF to prevent coordinator from being used as a member of any user-defined logical servers. The default setting is ON.

You can define logical membership of the coordinator as well as named membership to the current coordinator server even when **ALLOWCOORDINATORASMEMBER** is set to OFF, but these memberships will not be effective.
Note: The named memberships for the current coordinator server are always ineffective, regardless of the setting of the ALLOW_COORDINATOR_AS_MEMBER option. Changing the setting only affects logical memberships of the coordinator. For example, changing the current setting of ALLOW_COORDINATOR_AS_MEMBER from OFF to ON causes the current coordinator to become available to logical servers that have the logical membership of the coordinator.

Logical Server Administration Using Interactive SQL

If you prefer the flexibility of scripts or are familiar with Interactive SQL from other products, use Interactive SQL to administer logical servers.

Creating a Logical Server Using Interactive SQL

Create a user-defined logical server using Interactive SQL.

1. Connect to the database as a user with DBA or MPX ADMIN authority.
2. Execute a CREATE LOGICAL SERVER statement.

 For example, to create a user-defined logical server `ls1` with three multiplex nodes, n1, n2, and n3, as its members:

 \[
 \text{CREATE LOGICAL SERVER ls1 MEMBERSHIP (n1, n2, n3);}\]

Altering a Logical Server Using Interactive SQL

Alter a user-defined logical server using Interactive SQL.

1. Connect to the database as a user with DBA or MPX ADMIN authority.
2. Execute an ALTER LOGICAL SERVER statement.

 For example, to alter a user-defined logical server `ls1` by adding multiplex nodes n4 and n5:

 \[
 \text{ALTER LOGICAL SERVER ls1 ADD MEMBERSHIP (n4, n5);}\]

Adding a Comment to a Logical Server Using Interactive SQL

Comment on a user-defined logical server using Interactive SQL.

1. Connect to the database as a user with DBA or MPX ADMIN authority.
2. Execute a COMMENT ON LOGICAL SERVER statement.

 For example, to add a comment to a user-defined logical server `ls1`, enter:

 \[
 \text{COMMENT ON LOGICAL SERVER ls1 IS ‘ls1: Primary Logical Server’;}\]
Altering Root Logical Server Policy Using Interactive SQL

Alter the root logical server policy of a user-defined logical server using Interactive SQL.

1. Connect to the database as a user with DBA or MPX ADMIN authority.
2. Execute an **ALTER LS POLICY** statement:

   ```sql
   ALTER LS POLICY root ALLOW_COORDINATOR_AS_MEMBER=ON;
   ```

Dropping a Logical Server Using Interactive SQL

Drop a user-defined logical server using Interactive SQL.

1. Connect to the database as a user with DBA or MPX ADMIN authority.
2. Execute a **DROP LOGICAL SERVER** statement.

 For example, to drop a user-defined logical server `ls1`:

   ```sql
   DROP LOGICAL SERVER ls1
   ```

Results of Dropping Logical Servers

Dropping a user-defined logical server results in dropping all node membership definitions.

Each login policy that has an explicit assignment to the logical server drops the logical server assignment from the login policy. However, if the logical server is the only one that is assigned to the login policy, then the logical server assignment for the login policy is set to NONE.

Note: Existing connections to a logical server remain unaffected when it is dropped. Sybase recommends that you ensure that there are no active connections for a logical server when it is being dropped.

See also

- *Dropping a Logical Server Using Sybase Central* on page 60

Logical Server Administration Using Sybase Central

If you are a new user, or more comfortable with graphical interfaces, use Sybase Central to administer logical servers.

Altering a Logical Server Using Sybase Central

Alter a user-defined logical server using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or MPX ADMIN authority.
2. In the Logical Servers folder list, right-click the logical server name and select Properties.
3. In the General tab, enter any comments.
4. In the Servers tab, select the available multiplex nodes to add to the logical server. Click Add.
5. (Optional) Click Remove to delete selected multiplex nodes.
6. Click Apply.
7. Click OK.

Creating a Logical Server Using Sybase Central
Create a user-defined logical server using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or MPX ADMIN authority.
2. In the left pane, right-click the Logical Servers folder and select New > Logical Server.
3. Type a name for the logical server. Click Next.
4. Select the multiplex node to add to the logical server. Click Add, then click Next.
5. Type a comment describing the logical server, and click Finish.

Adding a Comment to a Logical Server Using Sybase Central
Comment on a user-defined logical server using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or MPX ADMIN authority.
2. In the Logical Servers folder list, right-click the logical server name and select Properties.
3. In the General tab, type a comment describing the logical server.
4. Click Apply.
5. Click OK.

Dropping a Logical Server Using Sybase Central
Drop a user-defined logical server using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or MPX ADMIN authority.
2. In the Logical Servers folder list, right-click the logical server name and select Delete.
3. Click Yes to confirm the deletion.

See also
• Results of Dropping Logical Servers on page 59

Altering Root Logical Server Policy Using Sybase Central
Alter the root logical server policy of a user-defined logical server using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or MPX ADMIN authority.
2. In the left pane, click the Logical Server Policy folder.
3. In the right pane, right-click the ‘root’ logical server policy and select Properties.
4. Select the value of ALLOW_COORDINATOR_AS_MEMBER.
5. Click Apply.
6. Click OK

Logical Server Administration Using Sybase Control Center

If you prefer a web-based tool for managing logical servers, use Sybase Control Center.

Sybase Control Center can add or delete logical servers, change logical server properties or policies, configure logical server node membership, or alter a logical server assignment.

See the Sybase Control Center for Sybase IQ online help in SCC or at http://sybooks.sybase.com/nav/summary.do?prod=10680.

Logical Server Access

Multiplex servers can only be accessed by using logical servers. Login policies control user access to the logical servers.

You can assign one or more logical servers to a login policy. All users using the login policy can only access those multiplex servers that are effective member of the assigned logical servers. You can make one of these assignments to a login policy:

- One or more user-defined logical servers, and/or the OPEN logical server.
- SERVER — allows access to all of the multiplex nodes, subject to the semantics of the SERVER logical server.
- NONE — denies access to any multiplex server.

Note: You cannot specify SERVER or NONE in combination with other logical servers.

Node Membership Overlap

When multiple logical servers are assigned to a single login policy, no overlap in node membership is allowed among those logical servers, including the logical membership of the coordinator.

An automatic membership overlap check is enforced during changes to:

- Logical server membership — If one or more member nodes are added to a logical server, each login policy that allows access to this logical server is examined to ensure that the new membership does not overlap with memberships of other logical servers assigned to the login policy. Attempt to change a logical server membership fails if such an overlap occurs.
- Logical server assignment of a login policy — If one or more user-defined logical servers are added to a login policy, a check ensures that the new logical server assignment of the
login policy does not cause a membership overlap among assigned logical servers. Attempt to change logical server assignment for a login policy fails if such an overlap occurs.

Note: Logical servers can be defined with overlapping memberships as long as they are not assigned to the same login policy.

Logical Server Assignment Inheritance

A login policy inherits logical server assignments from the root login policy when it has no logical server assignments of its own. By default, the logical server assignment of the root login policy includes only the OPEN logical server. This ensures that all multiplex servers are accessible when default configuration is in use.

The effective logical server assignment of a login policy is either from the logical server assignment that is made explicitly to the login policy or from the inheritance of logical server assignments of the root login policy.

You can completely remove existing logical server assignments from a user-defined login policy by setting the logical server assignment to DEFAULT. Setting the logical server assignment to DEFAULT in the root login policy restores the default assignment of OPEN logical server.

Note: Logical server assignment of NONE is different from the case when there are no logical server assignments.

Logical Server Context of a Connection

When you establish a user connection, the logical server context of the connection is automatically determined by the user’s login policy and the current node:

- When effective logical server assignment of the user’s login policy is one or more logical servers, the logical server context of the connection is based on the current node’s unambiguous membership into one of the specified logical servers.
- A connection fails if the current node is not a member of any of the logical servers assigned to the user’s login policy.
- A connection fails if effective logical server assignment of user’s login policy is SERVER logical server and user does not have sufficient authority.
- A connection also fails if logical server assignment for the user’s login policy is NONE.

Lock-down Prevention

To prevent a lock-down situation due to login policy logical server access configuration, DBA connections will not fail even if the login policy prevents access to the node.

When the connection cannot be accepted based upon login policy’s logical server access configuration, then the DBA connection is accepted with SERVER logical server context.
Setting Logical Server Assignment When Creating a Login Policy
Using Sybase Central

Create logical server assignment using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or USER ADMIN authority.
2. In the left pane, right-click the Logical Policies folder and select New > Login Policy.
3. Set the appropriate policy options, then click Next.
4. Select the logical server assignment type and add the logical servers to the login policy.
 Click Add, then click Next.
5. Select the appropriate logical server option override values, then click Next.
6. Type a comment describing the login policy, and click Finish.

Setting Logical Server Assignment When Altering a Login Policy
Using Sybase Central

Alter logical server assignment using Sybase Central.

1. In Sybase Central, connect to the database as a user with DBA or USER ADMIN authority.
2. In the left pane, click Login Policies.
3. In the right pane, right-click a login policy and choose Properties.
4. In the General tab, alter the appropriate policy options.
5. In the Logical Server Assignment tab, alter the logical server assignment type and add or remove the logical servers to the login policy. Click Add or Remove, then click Next.
6. In the Logical Server Option Override tab, alter the appropriate logical server option override values.
7. Click Apply.
8. Click OK.

Setting Logical Server Assignment When Altering a Login Policy
Using Interactive SQL

Alter logical server assignment using Interactive SQL.

1. Connect to the database as a user with DBA or USER ADMIN authority.
2. Execute an ALTER LOGIN POLICY statement. The LOGICAL SERVER clause lets you configure values of certain login policy options on a per logical server basis.
 For example, to alter a logical server assignment by assigning logical server ls1 to the login policy lp1, enter:

   ```sql
   ALTER LOGIN POLICY lp1 ADD LOGICAL SERVER ls1;
   ```
See also
• ALTER LOGIN POLICY Statement on page 90

Login Policy Options
You can specify a per logical server level setting for the login policy options max_connections and dqp_enabled.

Logical server overrides for locked login policy option are not allowed.

Note: You cannot use the ALTER LOGIN POLICY command with the MULTIPLEX SERVER override clause for login policy options.

locked Option
Logical servers assigned to a login policy can be accessed only when the locked option is OFF.

Set the locked option to ON to lock all login policy users out. Use this setting to temporarily deny access to login policy users.

max_connections Option
The max_connections setting is enforced at each member node of the logical server and can be set at the base level or the per logical server level.

Note: Once a user reaches a limit of maximum connections on a logical server member node, additional user connections on that node fail. This occurs even when other member nodes may not have reached the limit for number of connections for the user.

dqp_enabled Login Policy Option
dqp_enabled login policy option enables or disables DQP for all database users assigned to that login policy.

You can also specify logical server specific overrides for dqp_enabled login policy option. The possible settings for the option are ON and OFF.

Note: By default, dqp_enabled is set to ON in the root login policy.
Distributed Query Processing Options

Query execution may be distributed to all available and eligible member nodes of the logical server. Not all users connecting to a logical server may require workload distribution at the same time.

You can enable or disable the DQP option for sets of users or at an individual connection level by setting a `dqp_enabled` login policy option and/or the temporary database option `dqp_enabled`.

See also
- Distributed Query Processing on page 67

dqp_enabled Temporary Database Option

Temporary database option `dqp_enabled` allows you to enable or disable DQP at the connection level.

You can set the temporary database option `dqp_enabled` to OFF to disable DQP for the current connection. You can set the option to ON (the default value) to enable DQP for the current connection, but only when DQP is enabled for the user by that user's login policy for the logical server of the current connection.

Setting `dqp_enabled` to ON results in an error if DQP is disabled based upon the user's login policy:

```
Invalid setting for option 'dqp_enabled'
```

Note: Any changes you make to a user's login policy options affect new connections only. Login policy option settings for existing connections are based upon the time the connection was initially established.

Logical Server Configuration

Only multiplexes support logical servers.

Information about built-in logical servers and logical server policies can remain in the catalog in a simplex environment, but are not used.

Logical Servers and New Simplex Databases

When you create a new simplex database, catalogs are created with the information for built-in logical servers OPEN, SERVER, and NONE.

The root logical server policy is also automatically created. The OPEN logical server is assigned to the root login policy.
Note: Executing DDL commands to create a new logical server returns an error.

Multiplex Database Conversion Into a Simplex Database

Before converting a multiplex into a simplex database, drop all user-defined logical servers.

Use `DROP MULTIPLEX SERVER` clause `WITH DROP LOGICAL SERVER` to drop all user-defined logical servers.

The catalog retains this information:

- Built-in logical servers
- ‘root’ logical server policy
- Login policy assignments to built-in logical servers
- Logical-server-level overrides for the login policy option. These could exist only for the built-in logical servers.

The information is reused if you convert the simplex database back to multiplex.

Connection in Simplex

Connecting to a simplex database is unaffected by the login policy setting of logical server assignments. The connections have no logical server context.

The login policy `locked` option is still applied before connections are accepted by the server.
Distributed Query Processing

Distributed query processing (DQP) improves performance in IQ multiplex configurations by spreading work across multiple nodes in the cluster.

You need not set any configuration options to activate distributed query processing. Unless you disable DQP by turning off the `dqp_enabled` Login Policy option or the `dqp_enabled` temporary database option, DQP occurs automatically for qualifying queries when:

- The server is part of a multiplex where servers have established MIPC connections. Servers establish these connections automatically on startup. To verify, run `sp_iqmpxinfo` and look for `active` status in the `mipc_public_state` column.

 If you configured private interconnect on the multiplex and expect DQP to run on private interconnect, run `sp_iqmpxinfo` and look for `active` status in the `mipc_private_state` column.

- The logical server of the current connection has at least one another member node available.

 Note: By partitioning multiplex server nodes into logical servers, you control which multiplex nodes participate in distributed query processing.

Not all users connecting to a logical server may need to have their workload distributed at all times. Use the distributed query processing options to enable or disable DQP for sets of users, and at the individual connection level. Use the `dqp_enabled` Login Policy option to enable/disable DQP for sets of users. Use the `dqp_enabled` temporary database option to enable/disable DQP at the individual connection level.

See also

- *Distributed Query Processing Options* on page 65

Leader and Worker Nodes

In distributed query processing, leader nodes pass work units to worker nodes and the work is performed by threads running on both the leader and worker nodes.

The leader node can be any node in the cluster where a query originates. A worker node can be any node in the cluster that is capable of accepting distributed query processing work. Do not confuse these nodes with multiplex coordinator, writer, and reader nodes.
Distributed Query Processing

You can view details of distributed query processing thread usage using the `sp_iqcontext` system stored procedure.

When a query is submitted to a node, work units may be distributed, but only to those nodes that are members of the logical server of the current connection. Multiplex nodes that are not members of the current connection's logical server do not take part in the distributed query processing for that query. The leader node automatically chooses worker nodes for the distributed query from within the same logical server as the leader node. If you exclude multiplex nodes from a logical server, no distributed query processing occurs on those nodes for that logical server.

Query Portions

Queries are distributed in separate portions.

These query portions are never distributed:

- Read-write query portions (including DDL, INSERT, LOAD, UPDATE, and DELETE)
- Query portions that reference temporary tables
- Query portions that reference SYSTEM dbspace tables
- Query portions that reference proxy tables
- Query portions that reference nondeterministic functions, such as NEWID

Distributed Query Performance

In general, the more nodes and resources that are available, the better the potential query performance.

Distributed query processing uses the available memory and CPU resources of all nodes of the logical server.

The amount of improvement benefit depends on the type of query, the size of the query, and the current workload of the nodes in the logical server.

Note: If you change the properties of multiplex server, including the server name, hostname, and port, then you must wait at least two minutes after restarting the multiplex server for it to participate in a DQP eligible query. In the first two minutes after restarting the server, if a DQP eligible query is executed, then the server may not participate.

It is unlikely that any two runs of the same query result in exactly the same work distribution — as load levels change in the cluster, so does the load distribution. Distributed query performance is determined by the overall workload of the logical server at any given time. Similarly, in a single run of a query with a long processing time, the work distribution changes over the course of query execution as the load balance changes across worker nodes.
Note: The -iqmc and -iqtc switches allow different cache sizes for each node in a multiplex, but this may have adverse affects. For example, if a node worker is configured with a much smaller cache than the leader, hash joins on the leader will operate in a paging mode that disallows parallelism.

A high-speed private interconnect is preferred for best distributed query performance, but not required. See the Installtion and Configuration Guide > Preparing for Installation > Planning Your Installation > Planning for Distributed Query Processing or High Availability.

Note: Do not use the NOEXEC option to examine DQP performance. NOEXEC is not useful for troubleshooting DQP.
Distributed Query Processing
Sybase Central Performance and Statistics Monitor

The topology view graphically represents the entire multiplex environment, and complements the existing list view, making it easy to visually monitor the state of the multiplex environment.

Topology View

The graphical detail pane is available from the Multiplexes container in the Sybase IQ plug-in for Sybase Central.

The view consists of nodes and links. A node represents a multiplex server, while a link represents a connection between two multiplex servers. Links exist only between the coordinator node, of which there can be only one, and a secondary node. Links cannot exist between two secondary nodes.

You can rearrange the layout by moving nodes in the view; the next time you display the topology view, the most-recently used graphical layout is restored as nearly as possible. (If the multiplex configuration has changed, the layout can be only partially restored.)

You can use the topology view to designate a failover node and to perform failover. See Designated Failover Node and Requirements for Failover.

See also
- Viewing the Multiplex Topology on page 71
- Printing the Multiplex Topology on page 72

Viewing the Multiplex Topology

The topology view in Sybase Central shows the types of servers in the multiplex and their current states.

In the Sybase Central tree view, select the multiplex name, then click the Topology tab.

You can also print and save the topology view.

See also
- Topology View on page 71
- Designated Failover Node on page 37
- Requirements for Failover on page 37
Printing the Multiplex Topology

You can print the performance graph in the Sybase Central topology view.

1. Select the multiplex name in the Sybase Central tree view, and switch to the Topology tab.
2. Right-click in the Topology view, and select Print Graph.
3. Review your print options and print the page to the desired printer.

See also
- Topology View on page 71
- Designated Failover Node on page 37
- Requirements for Failover on page 37

Saving the Graph

You can save the performance monitor graph in Sybase Central.

1. In the topology view, right-click and select Save Graph As.
2. Specify a file name for the .JPEG file.
3. Click Save.

Changing the Refresh Rate of the Multiplex Status Monitor

The top of the topology pane displays a status message that logs the last updated timestamp, a summary of server status, and, if raised, a status change event message.

1. Sybase Central monitors the status of the multiplex and automatically refreshes the topology view and status message when servers are deleted or excluded. You can also specify a refresh interval.
2. Right-click in the topology view and select Change Monitor Rate.
3. Specify the number of seconds between status checks.
4. Click OK.
Viewing Node Information

In addition to the graphic display, the topology view also displays some text information about servers.

1. View labels beside each icon for the server name and mode.
2. Move the mouse over a server icon to display a tooltip that shows the host, port, state, role, and status.

Internode Communication State

The topology view displays the communication link from each secondary node to the coordinator as a line.

The label, style and color of the link show internode communication (INC) state:

- Active – solid green line.
- Not Responding – dashed orange line.
- Timed Out – dotted red line.
- Excluded – link contains label “(Excluded).”

Right-click on any link to see a popup menu with a property sheet that provides the state and statistics about the heartbeat and connection pool. See *Heartbeat Connections* and *Pooled Connections*.

See also

- *Heartbeat Connections* on page 7
- *Pooled Connections* on page 7

Server Mode

Node labels display the server name and mode:

- Coordinator – R/W server that allocates work and maintains configuration data for the multiplex. There can be only one coordinator per multiplex.
- Reader – R/O secondary server.
- Writer – R/W secondary server.

Server State

The server icon indicates the server state:

- Running – if currently connected, green. If not connected, gray with an adaptor (electrical plug) in the upper-right corner.
- Stopped – red with down arrow.
Server Status
The server icon indicates the server state:

- Included.
- Excluded – “(Excluded)” label.

Performance Monitor Access
The Performance Monitor displays a collection of statistics for one or more participating nodes. Statistics display in a dynamic chart in real time.

You can access the performance monitor at two different levels:

- Multiplex level – monitor only one statistic, across multiple servers.
- Server level – on a single server or a multiplex server, monitor up to ten statistics at a time.

In the Sybase Central tree view, select the server or multiplex, then click the Performance Monitor tab. You can change the type or contents of the performance monitor graphs.

Configuring Data Collection Rates
The Configure Collection Rates dialog is available only for the server-level performance monitor. Use this dialog to change the rates at which statistics are collected.

When the performance monitor displays, a multi-threaded data collection engine collects monitored statistics at two different rates. Less-expensive statistics are collected more frequently, while more-expensive statistics are collected less frequently. To change this default collection rate, configure the rates yourself.

1. In the Sybase Central tree view, select the server, then click the Performance Monitor tab.
2. Right-click in the chart area and select Configure Collection Rates.
3. Select the rates, in seconds, for statistics collection.
4. To reduce the impact on server performance, increase the rate values so that statistics are collected less frequently.
5. Click OK.

The Configure Collection Rates Dialog
The Configure Collection Rates dialog behaves differently for server-level monitoring and multiplex-level monitoring:

- When you launch this dialog from the server-level performance monitor (the server can be a single server or a multiplex server), you can select up to ten statistics to monitor at a time.
• When you launch it from the multiplex-level performance monitor, you can only monitor one statistic at a time.

Monitoring a Single Statistic

Launch the Configure Collection Rates dialog from the multiplex-level performance monitor if you only need to monitor one statistic at a time.

1. Click the multiplex server, then click the Performance Monitor tab.
2. Right-click in the chart area and select Change Statistics.
4. To save any changes, click OK.

Changing the Servers that are Monitored

The Change Servers to Monitor dialog is available only for the multiplex-level performance monitor.

1. Click the multiplex and switch to the Performance Monitor tab.
2. Right-click in the Performance Monitor chart and select Change Servers.
3. Select each server to monitor. Deselect any servers not to be monitored.
4. To save any changes, click OK.

Saving the Chart

Sybase Central lets you save the Performance Monitor chart as a .JPEG image file.

1. Right-click in the Performance Monitor chart and select Save Chart As.
2. Specify a file name for the .JPEG file.
3. Click Save.

Printing the Chart

You can print the performance monitor chart.

1. Right-click in the Performance Monitor chart and select Print Chart.
2. Review your print options and send the page to the desired printer.

Switching Chart Views

You can choose between time-series, 2-D bar, and 3-D bar chart views.

1. Right-click the Performance Monitor chart and select Chart View.
2. Select Time Series Chart, Bar Chart 2-D Vertical, or Bar Chart 3-D Vertical.
Customizing the Chart

Customize the chart to change chart settings and chart refresh (monitor GUI heartbeat) rate.

To change chart settings and chart refresh (monitor GUI heartbeat) rate:

1. Right-click in the performance monitor chart area and select Customize Chart.

 Change any of these components:
 - **Time Window** – appears only if the chart is a Time Series chart. Specify the period of time during which the data tracked to produce chart statistics. The minimum value is 1 minute. The maximum value is 240 minutes (4 hours).
 - **Chart Refresh Rate** – specify how often, in seconds, the data in the chart is refreshed. The chart refresh rate also shows at the bottom of the Performance Monitor panel.
 - **Real vs. Normalized Value** – Real Value (the default) reflects actual data. Normalized Value scales chart data into a fixed range. This option is for display purposes only, so that statistics with different ranges display better in one chart.
 - **Legend** – select to display or hide the legend.

2. To save any changes, click OK.

Categories of Statistics

Statistics are grouped into these categories:

- **CPU Usage Statistics**
- **Memory Usage Statistics**
- **Cache Statistics**
- **Thread Statistics**
- **Connection Statistics**
- **Request Statistics**
- **Transaction Statistics**
- **Store I/O Statistics**
- **Dbspace Usage**
- **Network Statistics**

CPU Usage Statistics

CPU usage statistics display the percentage used by system, owner, and total CPU usage.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Usage</td>
<td>IQ process CPU usage percentage, including both system and user usage</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Memory Usage Statistics

Memory usage statistics show the current allocation and the maximum allocation, in megabytes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Allocated</td>
<td>Memory allocated by the IQ server, in megabytes</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum Memory Allocated</td>
<td>Maximum memory allocated by the IQ server, in megabytes</td>
<td>No</td>
</tr>
</tbody>
</table>

Cache Statistics

Cache statistics display the main, temporary, and catalog hits and reads per second, the percentage of each cache in use, pinned, and dirty, and the number of pinned pages.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog Cache Hits</td>
<td>Number of catalog cache hits per second</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Cache Hits</td>
<td>Number of temporary cache hits per second</td>
<td>No</td>
</tr>
<tr>
<td>Main Cache Hits</td>
<td>Number of main cache hits per second</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Cache Reads</td>
<td>Number of catalog cache page lookups per second</td>
<td>Yes</td>
</tr>
<tr>
<td>Temporary Cache Reads</td>
<td>Number of temporary cache page lookups per second</td>
<td>No</td>
</tr>
<tr>
<td>Main Cache Reads</td>
<td>Number of main cache page lookups per second</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Cache Current Size</td>
<td>Current catalog cache size, in megabytes</td>
<td>No</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Monitored by default?</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Temporary Cache Current Size</td>
<td>Current temporary cache size, in megabytes</td>
<td>No</td>
</tr>
<tr>
<td>Main Cache Current Size</td>
<td>Current main cache size, in megabytes</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Cache in Use Percentage</td>
<td>Percentage of catalog cache in use</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Cache in Use Percentage</td>
<td>Percentage of temporary cache in use</td>
<td>No</td>
</tr>
<tr>
<td>Main Cache in Use Percentage</td>
<td>Percentage of main cache size in use</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Cache Pinned</td>
<td>Number of pinned catalog cache pages</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Cache Pinned</td>
<td>Number of pinned temporary cache pages</td>
<td>No</td>
</tr>
<tr>
<td>Main Cache Pinned</td>
<td>Number of pinned main cache pages</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Cache Pinned Percentage</td>
<td>Percentage of catalog cache pinned</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Cache Pinned Percentage</td>
<td>Percentage of temporary cache pinned</td>
<td>No</td>
</tr>
<tr>
<td>Main Cache Pinned Percentage</td>
<td>Percentage of main cache pinned</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Cache Dirty Pages Percentage</td>
<td>Percentage of catalog cache dirty pages</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Cache Dirty Pages Percent-</td>
<td>Percentage of temporary cache dirty pages</td>
<td>No</td>
</tr>
<tr>
<td>age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Cache Dirty Pages Percentage</td>
<td>Percentage of main cache dirty pages</td>
<td>No</td>
</tr>
</tbody>
</table>
Thread Statistics
Thread statistics display the number of SA and IQ threads in use and the number of IQ threads available.

Table 10. Thread statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQ Threads in Use</td>
<td>Number of threads used by the IQ server</td>
<td>No</td>
</tr>
<tr>
<td>IQ Threads Available</td>
<td>Number of threads available in the IQ server</td>
<td>No</td>
</tr>
<tr>
<td>SA Threads in Use</td>
<td>Number of threads used by the SQL Anywhere engine.</td>
<td>No</td>
</tr>
</tbody>
</table>

Connection Statistics
Connection statistics display the number of user connections, the number of user connections and disconnections per minute, and the number of INC incoming and outgoing connections.

Table 11. Connection Statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Connections</td>
<td>Total number of connections including user and INC connections.</td>
<td>Yes</td>
</tr>
<tr>
<td>User Connections</td>
<td>Number of user connections.</td>
<td>No</td>
</tr>
<tr>
<td>INC Incoming Connections</td>
<td>Number of INC incoming connections</td>
<td>No</td>
</tr>
<tr>
<td>INC Outgoing Connections</td>
<td>Number of INC outgoing connections</td>
<td>No</td>
</tr>
<tr>
<td>User Connections Per Minute</td>
<td>Number of user connections per minute</td>
<td>No</td>
</tr>
<tr>
<td>User Disconnections Per Minute</td>
<td>Number of user disconnections per minute</td>
<td>No</td>
</tr>
</tbody>
</table>
Request Statistics
Request statistics display the number of requests, unscheduled requests, waiting, and active operations.

Table 12. Request statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requests</td>
<td>Number of times per second the server has been entered to allow it to handle a new request or continue processing an existing request</td>
<td>No</td>
</tr>
<tr>
<td>Unscheduled Requests</td>
<td>Number of requests that are currently queued up waiting for an available server thread</td>
<td>No</td>
</tr>
<tr>
<td>IQ Waiting Operations</td>
<td>Number of IQ operations waiting for the resource governor</td>
<td>No</td>
</tr>
<tr>
<td>IQ Active Operations</td>
<td>Number of active IQ operations</td>
<td>No</td>
</tr>
</tbody>
</table>

Transaction Statistics
Transaction statistics display the number of active user and INC transactions and the number of active load table statements.

Table 13. Transaction statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Transaction Count</td>
<td>Total number of active transactions including user and INC transactions</td>
<td>No</td>
</tr>
<tr>
<td>User Transaction Count</td>
<td>Number of active user transactions</td>
<td>No</td>
</tr>
<tr>
<td>INC Transaction Count</td>
<td>Number of active INC transactions</td>
<td>No</td>
</tr>
<tr>
<td>Active Load Table Statements</td>
<td>Number of active load table statements</td>
<td>No</td>
</tr>
</tbody>
</table>
Store I/O Statistics
Store I/O statistics display the number of kilobytes per second read from and written to the catalog store, main store, and temporary store.

Table 14. Store I/O statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog Store Disk Reads</td>
<td>Number of kilobytes per second that have been read from the catalog store</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Store Disk Reads</td>
<td>Number of kilobytes per second that have been read from the temporary store</td>
<td>No</td>
</tr>
<tr>
<td>Main Store Disk Reads</td>
<td>Number of kilobytes per second that have been read from the main store</td>
<td>No</td>
</tr>
<tr>
<td>Catalog Store Disk Writes</td>
<td>Number of kilobytes per second that have been written to the catalog store</td>
<td>No</td>
</tr>
<tr>
<td>Temporary Store Disk Writes</td>
<td>Number of kilobytes per second that have been written to the temporary store</td>
<td>No</td>
</tr>
<tr>
<td>Main Store Disk Writes</td>
<td>Number of kilobytes per second that have been written to the main store</td>
<td>No</td>
</tr>
</tbody>
</table>

Db-space Usage
Db-space statistics display the amount of space available and in use per file and the amount of space available and in use per db-space.

Table 15. Dbspace Usage

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per DBSpace Free Space Percentage</td>
<td>Percentage of free space available for every dbspace. There is one such statistic per dbspace.</td>
<td>No</td>
</tr>
<tr>
<td>Per DBSpace Size in Use</td>
<td>Dbspace size in use. There is one such statistic per dbspace.</td>
<td>No</td>
</tr>
</tbody>
</table>
Network Statistics

Network statistics display the number of bytes per second sent and received during client server communications and the number of available and total communication buffers.

Table 16. Network statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Monitored by default?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes Received</td>
<td>Number of bytes per second received during client/server communications</td>
<td>Yes</td>
</tr>
<tr>
<td>Bytes Received Uncompressed</td>
<td>Number of bytes per second received during client/server communications if compression is disabled</td>
<td>No</td>
</tr>
<tr>
<td>Bytes Sent</td>
<td>Number of bytes per second sent during client/server communications</td>
<td>Yes</td>
</tr>
<tr>
<td>Bytes Sent Uncompressed</td>
<td>Number of bytes per second sent during client/server communications if compression is disabled</td>
<td>No</td>
</tr>
<tr>
<td>Free Communication Buffers</td>
<td>Number of available network communication buffers</td>
<td>No</td>
</tr>
<tr>
<td>Total Communication Buffers</td>
<td>Total number of network communication buffers</td>
<td>No</td>
</tr>
</tbody>
</table>
Multiplex Backup and Restore Operations

Execute BACKUP and RESTORE SQL commands only on the coordinator node.

Checking Database Consistency

Check database consistency before backing up.

The sp_iqcheckdb procedure performs various functions, depending on the parameters specified.

The four modes for checking and repairing database consistency are described in Reference: Building Blocks, Tables, and Procedures > System Procedures > sp_iqcheckdb Procedure.

You may run sp_iqcheckdb on any multiplex node, but on a secondary server the procedure cannot access the freelist, so no freelist checks occur.

Start a multiplex coordinator single-node mode (-iqmpx_sn 1) to run sp_iqcheckdb dropleaks. You cannot run dropleaks mode on multiplex secondary nodes.

Backup Requirements

Execute the BACKUP SQL command only on the coordinator node.

- If you use symbolic links for raw device names, as Sybase recommends, make sure the system backup utility follows the symbolic link and backs up the device.
- If using virtual backup, add to your system backup specification all the main store dbfiles that are specified in the backup. Use the stored procedure sp_iqfile to create the system backup list.
- Use the stored procedures sp_iqbackupsummary, sp_iqbackupdetails, and sp_iqrestoreaction, the system views SYSIQBACKUPHISTORY and SYSIQBACKUPHISTORYDETAIL, and the db_backupheader utility to track backups and plan restore actions.

Backing Up IQ Stores and Catalog Stores

Follow these guidelines to back up multiplex databases.

1. To back up the IQ store and catalog store on a multiplex database, log in to the coordinator using an account with DBA or backup authority.
2. Issue a SQL BACKUP command. For complete syntax, see Reference: Statements and Options > SQL Statements > BACKUP Statement.

3. Back up the IQ store as described in System Administration Guide: Volume I > Data Backup, Recovery, and Archiving > Types of Backups.

Before You Restore

Before you restore, verify with Sybase Technical Support that a restore operation is necessary.

If you cannot open your database on a secondary server, synchronize the server, following the instructions in Multiplex Server Synchronization. It is never necessary to restore a coordinator node due to secondary node problems.

You can perform read-write restore operations only against a server running the utility database. You cannot run restore operations against a secondary server.

For complete syntax, see Reference: Statements and Options > SQL Statements > RESTORE Statement.

During restore operations, the database can be running only if you restore a backup of read-only files. When restoring files in a read-only dbspace, the dbspace must be offline.

You can also use the restore operation to re-create a multiplex on a different system when no problems have occurred.

See also

- Restoring IQ Store Data When Restoring the Database in the Same Location on page 86
- Restoring IQ Store Data When Restoring Database in a Different Location on page 84

Restoring IQ Store Data When Restoring Database in a Different Location

Restore operations vary depending on where you restore the data.

1. Confirm that database home directories for each server still exist. If not, create them or restore them from file system backups.

2. If this is not the first time you have restored to the new location, shut down all multiplex servers running at the destination location (coordinator and secondary servers). In Sybase Central, right-click the multiplex and use the Stop Server wizard. The wizard lets you stop one or more servers. The multiplex at the original location where the backup was taken may continue running.
Note: If automatic startup is enabled in your ODBC configuration, users on the same machine as the server may be set up to automatically start the server. Prevent this from happening while you are restoring the database.

3. Confirm that the database shut down successfully:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Actions</th>
</tr>
</thead>
</table>
| UNIX | % ps -ef | grep iqsrv15
 If you see an active iqsrv15 process with name of a multiplex, stop the process. |
| Windows | In Task Manager, look on the Processes tab for iqsrv15.exe, or find the IQ Server icon in the system tray and stop it using right-click and Shutdown. |

4. Move files required for debugging and reconfiguring the multiplex.

 • Make a file system copy of the .iqmsg file. If you have message log archiving configured, see *System Administration Guide: Volume 1 > Data Backup, Recovery, and Archiving > System-Level Backups > Back Up the Right Files.*

5. Shut down the original coordinator, then start the utility database from the coordinator server directory using the coordinator server’s name:

 % start_iq -n coordinator_svr -c 32MB
 -x tcpip(port=1234)

6. Connect to the utility database (utility_db).

 % dbisql -c "eng=coordinator_svr;uid=DBA;pwd=SQL;
 dbn=utility_db" -host myhost -port 1234

7. Run the **RESTORE** command with a new location path for the database and all of its dbspaces. To restore certain dbspace files to a different path, specify a RENAME clause. See *Reference: Statements and Options > SQL Statements > RESTORE Statement.*

8. Start the restored database either by reconnecting to the utility_db server and specifying the restored database file name or by stopping the server and restarting it with the restored database. If you restart the server, use the single-node and override flags (iqmpx_sn 1 -iqmpx_ov 1).

9. Use **DROP MULTIPLEX SERVER** statement to drop all the secondary nodes. For example, DROP MULTIPLEX SERVER node_w3_skm.

 Once you drop the last secondary node, the coordinator shuts down automatically, signifying conversion to simplex.

10. Restart the coordinator without the single node or override switch.

11. Recreate all the secondary nodes with the correct location path, including the database file extension (.DB):

 CREATE MULTIPLEX SERVER node_r2_skm DATABASE
 '/sunx3005/mpx_simdb.db'
 HOST 'localhost' PORT 8998
 ROLE READR STATUS INCLUDED
After you create the first secondary node, the server automatically shuts down, signifying conversion to multiplex.

12. When you restart the coordinator, you see a warning in the server log about the multiplex environment being invalid. This warning displays if IQ_SYSTEM_TEMP dbspace does not contain any files, and is the case for all the secondary nodes you created in step 12. Ignore this warning for now.

13. Synchronize the secondary servers, following the instructions in *Multiplex Server Synchronization*.

14. Start the secondary servers.

15. Connect to each secondary server and add files in IQ_SYSTEM_TEMP.

16. Run `sp_iqmpxvalidate` on the coordinator. It should report no error detected.

To restore an exact copy of the multiplex to a different location, when copies of all of the server's temporary files exist at the new location, replace steps 9 through 16 with:

Use **ALTER MULTIPLEX SERVER** to alter the server name, host, port, and database path of each server.

See also
- *Before You Restore* on page 84
- *Multiplex Server Synchronization* on page 30

Restoring IQ Store Data When Restoring the Database in the Same Location

Restore operations vary depending on where you are restoring the data.

1. Confirm that database home directories for each server still exist. If not, create them or restore them from file system backups.

2. Shut down every server in the multiplex (coordinator and all secondary servers). In Sybase Central, right-click the multiplex icon and use the Stop Server wizard. The wizard lets you select servers to stop.

 Note: If automatic startup is enabled in your ODBC configuration, users on the same machine as the server may be set up to start the server automatically. Prevent this from happening while you are restoring the database.

3. Confirm that the database shut down successfully:

Platform	**Actions**
 UNIX | `%% ps -ef | grep iqsrv15`
 If you see an active **iqsrv15** process with name of a multiplex, stop the process.
<table>
<thead>
<tr>
<th>Platform</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>In Task Manager, look on the Processes tab for iqsrv15.exe, or find the IQ Server icon in the system tray and stop it using right-click and Shutdown.</td>
</tr>
</tbody>
</table>

4. Move files required for debugging and reconfiguring the multiplex.
 - Make a file system copy of the .iqmsg file. If you have message log archiving configured, see *System Administration Guide: Volume 1 > Data Backup, Recovery, and Archiving > System-Level Backups > Back Up the Right Files*.
 - On each server, preserve any files that were added to IQ_SYSTEM_TEMP for that server. These files are of the form dbname.iqtmp if you used an operating system file, or they may be raw devices. If the IQ temporary store is damaged, start the server with the -iqnotemp switch to drop and recreate the temporary store dbspaces. For more information, see the *Release Bulletin*.

 Either drop the database or delete the following files from the coordinator:
   ```
   <database_home>/<dbname>.db
   <database_home>/<dbname>.log
   ```

 If a query server is damaged, however, drop it and re-create it after RESTORE. Then follow the instructions in *Restoring IQ Store Data When Restoring the Database in a Different Location*.

5. Start the utility database from the coordinator server directory. Use any valid identifier as the server name except the name of a registered secondary server. If you use the coordinator’s name, rename the coordinator after the restore.

   ```sh
   % start_iq -n utility_startup_svr -c 32MB -x tcpip(port=1234)
   ```

6. Connect to the utility database (utility_db):

   ```sh
   % dbisql -c "eng=utility_startup_svr;uid=DBA;pwd=SQL;
   dbn=utility_db"
   ```

7. Run the RESTORE command. To restore certain dbspace files to a different path, specify a RENAME clause. For details, see *Reference: Statements and Options >SQL Statements > RESTORE Statement*.

8. Shut down the utility database.

9. Make sure that the temporary dbspaces exist as before, on raw devices or as files of the correct length. See *System Administration Guide: Volume 1 > Data Backup, Recovery, and Archiving > System-Level Backups > Back Up the Right Files*. For information on starting the server without using the IQ temporary store, see the *Release Bulletin* for your platform.

10. Start the coordinator server and, if restoring to the same location, synchronize the secondary servers. For more information, see *Multiplex Server Synchronization*.

11. Start the secondary servers.
Selective Restore Operations in a Multiplex Environment

Restore databases either completely or selectively (by restoring only read-write dbspaces, or a set of read-only dbspaces or read-only files).

Restoring Read-only Backups for a Coordinator

This procedure lets you restore a coordinator without renaming the utility database to use the coordinator's name. This is the only supported way to do a read-only selective restore for a multiplex coordinator.

Use this procedure to correct problems resulting from inadvertently restoring read-only dbspaces from a read-write archive or vice versa.

1. Start the utility server with any server name except that of a secondary node.
2. Connect to the utility_db and run the RESTORE statement for the read-write database. Use RENAME clauses to move dbfiles to the corresponding locations.
3. Disconnect and stop the utility server.
4. Start the restored database. If the database has been moved to a different location, start the server with -iqmpx_sn 1 and -iqmpx_ov 1 flags.
5. Run ALTER DBSPACE <dbspace name> offline for the RO dbspaces that have been backed up on the separate RO backup only.
6. Disconnect and stop the server.
7. Start the utility database with any server name except that of a secondary node.
8. Connect to the utility server and run the restore command for the RO dbspace.
Multiplex Reference

Certain SQL statements, utilities database options, and system objects have special syntax for multiplex functionality.

See also
• Administrative Shell Scripts on page 29
• Managing Servers with Sybase Central on page 29
• Administrative Shell Scripts on page 29

SQL Statements

Many SQL statements include special syntax to support multiplex functionality.

ALTER LOGICAL SERVER Statement

Modifies configuration for the existing user-defined logical server in the database.

Syntax

```
ALTER LOGICAL SERVER  logical-server-name
    { alter_clause }
```

Parameters

- **alter_clause:**
  ```
  { ADD_MEMBERSHIP  '(' ( ls-member, ... ) ')' |
  DROP_MEMBERSHIP  '(' ( ls-member, ... ) ')' } |
  ```

- **ls-member:**
  ```
  FOR LOGICALCOORDINATOR | mpx-server-name
  ```

Examples

- **Example 1** – This example alters a user-defined logical server by adding multiplex nodes n1 and n2 to logical server ls1:
  ```
  ALTER LOGICAL SERVER ls1 ADD MEMBERSHIP (n1, n2)
  ```

- **Example 2** – This example adds logical membership of COORDINATOR and drops a named membership of the current coordinator node n1 from logical server ls1:
ALTER LOGICAL SERVER ls1 ADD MEMBERSHIP (FOR LOGICAL COORDINATOR)
ALTER LOGICAL SERVER ls1 DROP MEMBERSHIP (n1)

Usage

logical-server-name refers to an existing user-defined logical server name, in other words, it cannot be a built-in or reserved logical server name. The SYS.ISYSIQLSMEMBER system table stores definitions for the logical server memberships.

A member node that is added to or dropped from a logical server starts or stops accepting logical server connections only after the TLV log corresponding to ALTER LOGICAL SERVER is played on that node. Existing connections of a logical server continue to run on a node when that node is dropped from the logical server, however, distributed processing is stopped for these connections.

An error is returned if:

• Any ls-member specified with the ADD MEMBERSHIP clause is already a member of the logical server.
• Any ls-member specified with the DROP MEMBERSHIP clause is not an existing member of the logical server.
• Logical server membership change causes membership overlap check to fail.

Permissions

Must have DBA or MPX ADMIN authority.

ALTER LOGIN POLICY Statement

This statement performs two functions. It can modify option values for existing login policies in the database or configure logical server access.

Syntax

ALTER LOGIN POLICY policy-name {alter-clause}

Parameters

• alter-clause: –

 { ({ ADD | DROP | SET | policy-option-name = policy-option-value | LOGICAL SERVER ls-override-list } }

• ls-assignment-list: –

 { { ls-name, ... } | SERVER | NONE | DEFAULT }

• ls-override-list: –
Examples

• Example 1 – See Logical Server Access Configuration and Login Policy Option Configuration.

Usage

See Logical Server Access Configuration and Login Policy Option Configuration.

Permissions

Must have DBA or USER ADMIN authority.

Logical Server Access Configuration

You can use ALTER LOGIN POLICY to configure logical server access.

Example 1

Assume that the root login policy allows access to logical servers ls4 and ls5 and login policy lp1 exists with no logical server assignment. The statement below effectively assigns login policy lp1 to logical servers ls4 and ls5.

Assign logical server ls1 to login policy lp1.

ALTER LOGIN POLICY lp1 ADD LOGICAL SERVER ls1

Example 2

This statement allows access of logical servers ls2 and ls3 from login policy ls1.

ALTER LOGIN POLICY lp1 ADD LOGICAL SERVER ls2, ls3

Example 3

Modify login policy lp1 to allow access to ls3 and ls4 only.

ALTER LOGIN POLICY lp1 ADD LOGICAL SERVER ls4

ALTER LOGIN POLICY lp1 DROP LOGICAL SERVER ls1, ls2

or

ALTER LOGIN POLICY lp1 SET LOGICAL SERVER ls3, ls4

Example 4

Modify login policy lp1 to deny access to any logical servers.

ALTER LOGIN POLICY lp1 SET LOGICAL SERVER NONE
Example 5

Drop current logical server assignments of login policy lp1 and allow it to inherit the logical server assignments of the root login policy.

```
ALTER LOGIN POLICY lp1 SET LOGICAL SERVER DEFAULT
```

Usage

ADD, DROP, or SET clauses let you configure the logical server assignments of a login policy:

- **ADD** – adds new logical server assignments to a login policy
- **DROP** – deletes existing logical server assignments from a login policy
- **SET** – replaces all logical server assignments for a login policy with a new set of logical server

Use only one ADD, DROP, or SET clause. Use SERVER, NONE, and DEFAULT only with the SET clause. Specify a particular logical server name only once per ls-assignment list or ls-override list.

An error is returned if:

- Any logical server specified with the ADD clause is already assigned to the login policy.
- Any logical server specified with the DROP clause is currently not assigned to the login policy.
- Logical server assignment change may cause a membership overlap among assigned logical servers.

SYS.ISYSIQLOGINPOLICYLSINFO stores logical server assignment information. For each logical server override of a login policy option of a login policy, a corresponding row exists in **ISYSIQLOGINPOLICYLSINFO**.

Login Policy Option Configuration

You can use ALTER LOGIN POLICY to configure login policy options.

Example

The following example overrides the login policy settings on two logical servers, enabling distributed query processing on logical server ls1 and increasing the maximum number of connections on logical server ls2

```
ALTER LOGIN POLICY lp1 dqp_enabled=ON LOGICAL SERVER ls1;
ALTER LOGIN POLICY lp2 max_connections=20 LOGICAL SERVER ls2;
```

Usage

A logical server level override means that a particular login policy option has different settings for different logical servers. **SYS.ISYSIQLSLOGINPOLICYOPTION** stores login policy option values for logical server override. For each logical server override of a login policy option of a login policy, a corresponding row exists in **ISYSIQLSLOGINPOLICYOPTION**.
Note: You can only specify a logical server override setting for login policy options `max_connections` and `dqp_enabled`. (The `dqp_enabled` option only affects multiplex servers. See Multiplex Reference > Database Options > `dqp_enabled Option`.) You cannot specify logical server overrides for the root login policy.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
<th>Initial value for ROOT policy</th>
<th>Applies to</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dqp_enabled</code></td>
<td>If ON, enables distributed query processing for users assigned to that login policy.</td>
<td>ON, OFF</td>
<td>ON</td>
<td>Multiplex servers only. All users including those with DBA authority...</td>
</tr>
<tr>
<td><code>locked</code></td>
<td>If the value for this option is ON, users are prohibited from establishing new connections</td>
<td>ON, OFF</td>
<td>OFF</td>
<td>Users without DBA authority only</td>
</tr>
<tr>
<td><code>max_connections</code></td>
<td>The maximum number of concurrent connections allowed for a user.</td>
<td>0 – 2147483647</td>
<td>Unlimited</td>
<td>Users without DBA authority only</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
<td>Initial value for ROOT policy</td>
<td>Applies to</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>max_days_since_login</td>
<td>The maximum number of days that can elapse between two successive logins by the same user.</td>
<td>0 – 2147483647</td>
<td>Unlimited</td>
<td>Users without DBA authority only.</td>
</tr>
<tr>
<td>max_failed_login_attempts</td>
<td>The maximum number of failed attempts, since the last successful attempt, to login to the user account before the account is locked.</td>
<td>0 – 2147483647</td>
<td>Unlimited</td>
<td>Users without DBA authority only.</td>
</tr>
<tr>
<td>max_non_dba_connections</td>
<td>The maximum number of concurrent connections that a user without DBA authority can make. This option is only supported in the root login policy.</td>
<td>0 – 2147483647</td>
<td>Unlimited</td>
<td>Users without DBA authority only. Only to the root login policy.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
<td>Values</td>
<td>Initial value for ROOT policy</td>
<td>Applies to</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>password_expiry_on_next_login</td>
<td>If the value for this option is ON, the user's password will expire in the next login.</td>
<td>ON, OFF</td>
<td>OFF</td>
<td>All users including those with DBA authority</td>
</tr>
<tr>
<td>password_grace_time</td>
<td>The number of days before password expiration during which login is allowed but the default post_login procedure issues warnings.</td>
<td>0 – 2147483647</td>
<td>0</td>
<td>All users including those with DBA authority</td>
</tr>
<tr>
<td>password_life_time</td>
<td>The maximum number of days before a password must be changed.</td>
<td>0 – 2147483647</td>
<td>Unlimited</td>
<td>All users including those with DBA authority</td>
</tr>
</tbody>
</table>

Note: Sybase IQ no longer supports the `MULTIPLEX SERVER` override clause. Using `ALTER LOGIN POLICY` statement with the `MULTIPLEX SERVER` override clause for login policy options returns an error.
ALTER LS POLICY Statement

Modifies some or all option values for the existing root logical server policy in the database.

Syntax

ALTER LS POLICY *policy-name* *option-value-list*

Parameters

- **option-value-list**:

 `{option-name=value}`

Examples

- **Example 1** – The following example alters the logical server policy:

  ```sql
  ALTER LS POLICY root
  ALLOW_COORDINATOR_AS_MEMBER=ON;
  ```

 Note: ALLOW_COORDINATOR_AS_MEMBER is the only logical server policy option, and root is the only logical server policy. You cannot create logical server policies.

Permissions

Must have DBA or MPX ADMIN authority.

ALTER MULTIPLEX RENAME Statement

Renames the multiplex and stores the multiplex name in SYS.ISYSIQINFO system table.

Syntax

ALTER MULTIPLEX RENAME *multiplex-name*

Usage

When a multiplex is created, it is named after the coordinator. The multiplex name is only used in Sybase Central to identify a multiplex in the Multiplexes folder. This statement is automatically committed.

Permissions

Must have DBA or MULTIPLEX ADMIN authority.
ALTER MULTIPLEX SERVER Statement

Changes the name, catalog file path, role, or status of the given server.

Syntax

Syntax 1:

```
ALTER MULTIPLEX SERVER server-name server-option
```

Syntax 2:

```
ALTER MULTIPLEX SERVER PRIVATE NULL
```

Parameters

- **server-option:**
 - `{ server-option }`
 - `{ RENAME new-server-name }`
 - `{ DATABASE 'dbfile' }`
 - `{ ROLE { WRITER | READER | COORDINATOR } }`
 - `{ STATUS { INCLUDED | EXCLUDED } }`
 - `{ ASSIGN AS FAILOVER SERVER }`
 - `{ host-port-list }`

- **host-port-list:**
 - `{ HOST 'hostname' PORT port number ... }`
 - `{ PRIVATE HOST 'hostname' PORT port number ... }`

Note: Sybase recommends you shut down the target server before you exclude it. If you do not, an excluded server automatically shuts down and requires `ALTER MULTIPLEX SERVER server-name STATUS INCLUDED` and a synchronize to rejoin the multiplex.

Examples

Example – This example excludes secondary server `mpx_writer1`:

```
ALTER_MULTIPLEX_SERVER mpx_writer1 STATUS EXCLUDED
```

Usage

Changes the multiplex server, as follows:

RENAME – changes the name of the given server. The server automatically shuts down. The next restart requires the new name.

DATABASE – changes the catalog file path for the given server. The server will automatically shut down and next time it should be started using new catalog path. Its user's responsibility (Sybase central might hide it) to relocate the catalog file itself.
ROLE – changes the role of the given server. Users are not allowed to change the role of coordinator or role to coordinator. If the writer node’s role is changed to reader, the server shuts down.

STATUS – changes the status of the given server. A failover node cannot be excluded unless it is the last node to be excluded. The server automatically shuts down after exclusion. After including a node, you must be synchronize and restart it.

ASSIGN – designates the given server as the new failover server. The node should not be in the excluded state. The ASSIGN AS FAILOVER clause is a standalone clause that cannot be used with any other ALTER MULTIPLEX SERVER clause.

The coordinator must be running, but you can run the ALTER MULTIPLEX SERVER command from any server in the multiplex. (Sybase recommends that all DDL statements be run on the coordinator.) In all cases except when altering role from reader to writer, the named server is automatically shut down.

Note: Sybase recommends that the target server be shut down before you exclude it. If you do not, an excluded server will automatically shut down and requires ALTER MULTIPLEX SERVER server-name STATUS INCLUDED and a synchronize to rejoin the multiplex.

Permissions

Must have DBA or MULTIPLEX ADMIN authority.

See also

• Renaming Multiplex Servers with Interactive SQL on page 18

COMMENT ON LOGICAL SERVER Statement

Comments on the user-defined logical server.

Syntax

COMMENT ON LOGICAL SERVER logical-server-name IS 'comment'

Examples

• Example – This example creates a comment on a user-defined logical server ls1.

 COMMENT ON LOGICAL SERVER ls1 IS ‘ls1: Primary Logical Server’;

Permissions

Must have DBA or MPX ADMIN authority.
CREATE LOGICAL SERVER Statement

Creates a user-defined logical server.

Syntax

```
CREATE LOGICAL SERVER  logical-server-name  [MEMBERSHIP
   "('  {  ls-member,  ...} ')"]
```

Parameters

- **ls-member**: – FOR LOGICAL COORDINATOR | mpx-server-name

Examples

- **Example 1** – This example creates a user-defined logical server `ls1` with three multiplex nodes as its members.

  ```
  CREATE LOGICAL SERVER ls1 MEMBERSHIP ( n1, n2, n3 )
  ```

Usage

The catalog stores the logical server and its membership definitions. To define a logical membership to the coordinator, specify FOR LOGICAL COORDINATOR in the MEMBERSHIP clause.

When no members are specified during the creation of a logical server, the logical server is created empty.

Note: Implicit logical server membership definitions such as those for OPEN and SERVER logical servers are not stored at all.

The SYS.ISYSLOGICALSERVER system table stores information about logical servers.

The SYS.ISYSLOGICALMEMBER system table stores information about logical server membership definitions.

`logical-server-name` can be any user specified identifier except:

- OPEN
- SERVER
- NONE
- DEFAULT
- COORDINATOR
- ALL

Changing ALLOW_COORDINATOR_AS_MEMBER option of the root logical server policy from ON to OFF does not affect the membership information stored in the catalog. Instead, it only affects the effective configuration of the logical server.
You can define a logical server membership to the current coordinator either by specifying the multiplex server name or by using FOR LOGICAL COORDINATOR clause, even when ALLOWCOORDINATORAS_MEMBER is set to OFF. Membership definition is stored in the catalog, but is inactive while that multiplex server acts as the coordinator.

Permissions

Must have DBA or MULTIPLEX ADMIN authority.

CREATE MULTIPLEX SERVER Statement

Creates a multiplex server.

Syntax

Variable declaration:

```
CREATE MULTIPLEX SERVER server-name DATABASE 'dbfile' 
' host-port list [ ROLE { READER | WRITER } ] [ STATUS { INCLUDED | EXCLUDED } ]
```

Parameters

- host-port-list: – {[PRIVATE] HOST 'hostname' PORT port number }

Examples

- Example 1 – See Adding Multiplex Servers with Interactive SQL.

Usage

If you plan to use UNIX soft (symbolic) links for server paths, create the soft link before you run `CREATE MULTIPLEX SERVER`. When you start the new server, the database file path must match the database file path specified when creating that server.

Choose the name of the multiplex server (server-name) according to the rules for server startup option -n. See “Database server startup” in Chapter 1, “Running the Database Server,” in the Utility Guide.

When creating the initial multiplex server, both coordinator node and secondary node rows are added to SYS.ISYSIQMPXSERVER. The transaction log records this operation as two separate CREATE MULTIPLEX SERVER commands, one for the coordinator node and one for the secondary node.

The SYS.ISYSIQMPXSERVER system table stores the HOST hostname PORT portname pairs in its connection_info string as host:port[;host:port…].

Note: Use multiple host:port pairs if the computer the multiplex server is running on has multiple redundant network cards mapped to different network addresses.
You may specify the clauses DATABASE, host-port list, ROLE and STATUS in any order. The default ROLE is READER. The default STATUS is INCLUDED.

The host-port-list keyword PRIVATE specifies that the particular HOST PORT pair is for private interconnection. A separate private interconnection for multiplex interprocess communication (MIPC) enables highly available and high-performance network configurations. Sybase IQ automatically opens private ports; you need not list them in the host-port-list used to start the server. All public and private ports require unique port numbers to avoid conflicts.

When you add a server, the coordinator must be running, but you can run the `CREATE MULTIPLEX SERVER` command from any server in the multiplex.

This statement is automatically committed.

Permissions

Must have DBA or MULTIPLEX ADMIN authority.

DROP LOGICAL SERVER Statement

Drops a user-defined logical server.

Syntax

```
DROP LOGICAL SERVER logical-server-name
```

Examples

- **Example 1** – This example drops a user-defined logical server `ls1`.

  ```
  DROP LOGICAL SERVER ls1
  ```

Usage

Sybase IQ performs the following catalog changes internally when dropping a logical server:

- Drops all membership definitions of the logical server.
- Drops its logical server assignment from each login policy that has an explicit assignment to the subject logical server. If it is the only logical server assigned to the login policy, Sybase IQ sets the logical server assignment for the login policy to NONE.
- Removes the logical server entry from ISYSIQ.LOGICALSERVER.

Permissions

Must have DBA or MULTIPLEX ADMIN authority.
DROP MULTIPLEX SERVER Statement

Deletes a server from the multiplex.

Syntax

```sql
DROP MULTIPLEX SERVER {server-name} [drop_mpx_server_clause]
```

Parameters

- `drop_mpx_server_clause`: ±
  ```sql
  { WITH DROP MEMBERSHIP | WITH DROP LOGICAL SERVER }
  ```

Examples

- Example 1 –
  ```sql
  DROP MULTIPLEX SERVER writer1
  ```

Usage

Sybase recommends that you shut down each multiplex server before dropping it. This statement is automatically committed.

If not already stopped as recommended, the dropped server automatically shuts down after executing this statement.

Dropping the last secondary server converts the multiplex back to simplex. After dropping the last secondary server within the multiplex, the coordinator automatically shuts down. If required, it needs to be restarted. Please refer to section 3.3.1 for details on set of rules that apply when a multiplex is converted to a simplex.

Clause `WITH DROP MEMBERSHIP` – The `DROP MULTIPLEX SERVER` command fails with an error, when one or more logical server memberships exist for the multiplex server being dropped. Use the `WITH DROP MEMBERSHIP` clause to drop the logical server along with all of its memberships.

Clause `WITH DROP LOGICAL SERVER` – When dropping the last secondary server, the `DROP MULTIPLEX SERVER` command fails, when there are one or more user-defined logical servers. Use the `WITH DROP LOGICAL SERVER` clause to drop the last secondary server along with all user-defined logical servers.

Note: The `WITH DROP LOGICAL SERVER` clause is only valid when dropping the last secondary server. An error is reported otherwise.

Permissions

Must have DBA or MULTIPLEX ADMIN authority.
Database Options

On a multiplex, database options control connections, distributed query processing and multiplex inter-node communications.

DQP_ENABLED Option

Temporary database option `dqp_enabled` allows you to enable or disable DQP at the connection level.

Function

You can set the temporary database option `dqp_enabled` to OFF to disable DQP for the current connection. You can set the option to ON (the default value) to enable DQP for the current connection, but only when DQP is enabled for the user by that user's login policy for the logical server of the current connection.

Setting `dqp_enabled` to ON results in an error if DQP is disabled based upon the user's login policy:

```
Invalid setting for option 'dqp_enabled'
```

Note: Any changes you make to a user's login policy options affect new connections only. Login policy option settings for existing connections are based upon the time the connection was initially established.

Allowed Values

ON, OFF

Default

ON

MPX_AUTOEXCLUDE_TIMEOUT Option

Timeout for auto-excluding a secondary node on the coordinator node. 0 indicates that the nodes will not be auto-excluded. This option does not apply to the designated failover node.

Allowed Values

0 to 10080 minutes (1 week). Values must be exactly divisible by the `MPX_HEARTBEAT_FREQUENCY` setting in minutes. For example, if the `MPX_HEARTBEAT_FREQUENCY` setting is 120 (2 minutes), `MPX_AUTOEXCLUDE_TIMEOUT` must be divisible by 2.

Default

60 minutes
MPX_HEARTBEAT_FREQUENCY Option
Interval until the heartbeat thread wakes and cleans up the connection pool on the secondary node.

Allowed Values
2 seconds to 3600 seconds

Default
60 seconds

MPX_IDLE_CONNECTION_TIMEOUT Option
Time after which an unused connection in the connection pool on a secondary node will be closed.

Allowed Values
0 sec to no limit

Default
600 seconds

MPX_MAX_CONNECTION_POOL_SIZE Option
Maximum number of connections allowed in the connection pool on a secondary node.

Allowed Values
10 number

Default
1 to 1000

See also
- *Pooled Connections* on page 7

MPX_MAX_UNUSED_POOL_SIZE Option
Maximum number of unused connections in the connection pool on a secondary node.

Allowed Values
0 sec to no limit

Default
0 to maximum pool size
See also
• *Pooled Connections* on page 7

System Tables

Certain system tables support multiplex functionality.

ISYSIQINFO System Table

This table indicates the database characteristics as defined when the Sybase IQ database was created using *CREATE DATABASE*. It always contains only one row.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>last_full_backup</td>
<td>TIMESTAMP</td>
<td>The completion time of the most recent backup.</td>
</tr>
<tr>
<td>last_incr_backup</td>
<td>TIMESTAMP</td>
<td>The completion time of the most recent incremental backup.</td>
</tr>
<tr>
<td>create_time</td>
<td>TIMESTAMP NOT NULL</td>
<td>The date and time created.</td>
</tr>
<tr>
<td>update_time</td>
<td>TIMESTAMP NOT NULL</td>
<td>The date and time of the last update.</td>
</tr>
<tr>
<td>file_format_version</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The file format number of files for this database.</td>
</tr>
<tr>
<td>cat_format_version</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The catalog format number for this database.</td>
</tr>
<tr>
<td>sp_format_version</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The stored procedure format number for this database.</td>
</tr>
<tr>
<td>block_size</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The block size specified for the database.</td>
</tr>
<tr>
<td>chunk_size</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The number of blocks per chunk as determined by the block size and page size specified for the database.</td>
</tr>
<tr>
<td>file_format_date</td>
<td>CHAR(10) NOT NULL</td>
<td>The date when file format number was last changed.</td>
</tr>
<tr>
<td>dbsig</td>
<td>BINARY(136) NOT NULL</td>
<td>Used internally by catalog.</td>
</tr>
<tr>
<td>Column name</td>
<td>Column type</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>multiplex_name</td>
<td>CHAR(128) NULL</td>
<td>Used internally by catalog.</td>
</tr>
<tr>
<td>last_multiplex_mode</td>
<td>TINYINT NULL</td>
<td>The mode of the server that last opened the catalog read-write. One of the following values.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 0 – Single Node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1 – Reader.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2 – Coordinator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 3 – Writer.</td>
</tr>
</tbody>
</table>

Constraint: Primary key (create_time)

ISYSIQLOGICALSERVER System Table

ISYSIQLOGICALSERVER stores logical server and the correspondence between logical server and associated logical server policy information.

See *SYSIQLOGICALSERVER System View*.

ISYSIQLOGINPOLICYLSINFO System Table

ISYSIQLOGINPOLICYLSINFO stores the login policy logical server assignment information.

See *SYSIQLOGINPOLICYLSINFO System View*.

ISYSIQLSLOGINPOLICYOPTION System Table

ISYSIQLSLOGINPOLICYOPTION stores the login policy option values that have logical server level settings.

See *SYSIQLSLOGINPOLICYOPTION System View*.

ISYSIQLSMEMBER System Table

ISYSIQLSMEMBER stores the logical server membership information.

See *SYSIQLSMEMBER System View*.

ISYSIQLSPOLICY System Table

ISYSIQLSPOLICY stores logical server policies.

See *SYSIQLSPOLICY System View*.
ISYSIQLSPOLICYOPTION System Table
ISYSIQLSPOLICYOPTION stores the logical server policy options.
See *SYSIQLSPOLICYOPTION System View*.

ISYSIQMPXSERVER System Table
ISYSIQMPXSERVER stores membership properties and version status data for a given multiplex node.
See *SYSIQMPXSERVER System View*.

System Views
Certain system views support multiplex functionality.

SYSIQLOGICALSERVER System View
Presents a readable version of the ISYSIQLOGICALSERVER system table.
The ISYSIQLOGICALSERVER system table stores logical server information and associated logical server policy information.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the logical server.</td>
</tr>
<tr>
<td>ls_object_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The logical server object ID number.</td>
</tr>
<tr>
<td>ls_policy_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the logical server policy.</td>
</tr>
<tr>
<td>ls_name</td>
<td>CHAR(128) NOT NULL UNIQUE</td>
<td>The logical server name.</td>
</tr>
</tbody>
</table>

Constraints on underlying system table:
- Primary key(ls_id)
- object_id foreign key(ISYSOBJECT)
- ls_policy_id foreign key(ISYSIQLSPOLICY)

SYSIQLOGINPOLICYLSINFO System View
Presents a readable version of the table ISYSIQLOGINPOLICYLSINFO.
The ISYSIQLOGINPOLICYLSINFO system table stores the login policy logical server assignment information.
### Column name	Column type	Description
login_policy_id | UNSIGNED BIGINT NOT NULL | The ID number of the login policy.
ls_id | UNSIGNED BIGINT NOT NULL | The ID number of the logical server.

Constraints on underlying system table:
- Primary key(login_policy_id, ls_id)
- login_policy_id foreign key(ISYSLOGINPOLICY)
- ls_id foreign key(ISYSIQLOGICALSERVER)

SYSIQLSMEMBER System View

Presents a readable version of the table ISYSIQLSMEMBER.

ISYSIQLSMEMBER stores the logical servers and their corresponding multiplex servers.

### Column name	Column type	Description
ls_id | UNSIGNED BIGINT NOT NULL | The ID number of the logical server.
logical_membership_type | TINYINT NOT NULL | The type of the logical membership.
mpx_server_id | UNSIGNED INT NOT NULL | The ID number of the multiplex server.
membership_info | UNSIGNED INT NOT NULL | The membership information.

Constraints on underlying system table:
- Primary key(ls_id, logical_membership_id, mpx_server_id)
- ls_id foreign key(ISYSIQLOGICALSERVER)

For logical server memberships that are defined using the multiplex server name, the value of logical_membership_type is 0 and mpx_server_id is the server id of the multiplex server.

For the logical membership of the coordinator, mpx_server_id is 0 and logical_membership_type is 1.

SYSIQLSMEMBERS Consolidated System View

Presents logical server membership information from the ISYSIQLSMEMBERS system table in a readable format.
Column Table

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the logical server.</td>
</tr>
<tr>
<td>ls_name</td>
<td>CHAR(128) NOT NULL</td>
<td>The name of the logical server.</td>
</tr>
<tr>
<td>server_id</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The multiplex server identifier of the member, for the membership defined using server name, or 0, for the logical membership of the coordinator.</td>
</tr>
<tr>
<td>server_name</td>
<td>CHAR(128) NOT NULL</td>
<td>The multiplex server name of the member for the membership defined using the server name, or 'LOGICAL COORDINATOR' for the logical membership of the coordinator.</td>
</tr>
<tr>
<td>membership_type</td>
<td>TINYINT NOT NULL</td>
<td>0 for the membership defined using the server name, or 1 for the logical membership of the coordinator.</td>
</tr>
</tbody>
</table>

SYSIQLSLOGINPOLICIES System View

Presents a readable version of information for logical server assignments from the login policies.

This is a consolidated system view that shows information from SYSIQLOGICALSERVER, ISYSIQLOGINPOLICYLSINFO and ISYSLOGINPOLICY.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>Logical server identifier.</td>
</tr>
<tr>
<td>ls_name</td>
<td>CHAR(128)</td>
<td>Logical server name.</td>
</tr>
<tr>
<td>login_policy_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the login policy.</td>
</tr>
<tr>
<td>login_policy_name</td>
<td>char(128)</td>
<td>The name of the login policy.</td>
</tr>
</tbody>
</table>

SYSIQLSLOGINPOLICYOPTION System View

Presents a version of the table ISYSIQLSLOGINPOLICYOPTION in a readable format.

The ISYSIQLSLOGINPOLICYOPTION table stores the logical server level settings for login policy option values.
Column Description

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>login_policy_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the login policy.</td>
</tr>
<tr>
<td>ls_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>Logical server identifier.</td>
</tr>
<tr>
<td>login_option_name</td>
<td>CHAR(128) NOT NULL</td>
<td>The name of the login policy option.</td>
</tr>
<tr>
<td>login_option_value</td>
<td>LONG VARCHAR NOT NULL</td>
<td>The value of the login policy option.</td>
</tr>
</tbody>
</table>

Constraints on underlying system table:
- Primary key(login_policy_id, ls_id, login_option_name)
- login_policy_id foreign key(ISYSLOGINPOLICY)
- ls_id foreign key(ISYSIQLOGICALSERVER)

SYSIQLSPOLICY System View

Presents a version of the table ISYSIQLSPOLICY in a readable format.

The ISYSIQLSPOLICY system table stores the logical server policies.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls_policy_Id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the logical server policy.</td>
</tr>
<tr>
<td>ls_policy_name</td>
<td>CHAR(128) NOT NULL UNIQUE</td>
<td>The logical server policy name.</td>
</tr>
</tbody>
</table>

Constraints on underlying system table:
- Primary key(ls_policy_id)
- object_id foreign key(ISYSOBJECT)

SYSIQLSPOLICYOPTION System View

Presents a version of the table ISYSIQLSPOLICYOPTION in a readable format.

The ISYSIQLSPOLICYOPTION table stores the logical server policy options.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ls_policy_id</td>
<td>UNSIGNED BIGINT NOT NULL</td>
<td>The ID number of the login policy.</td>
</tr>
</tbody>
</table>
Column name | Column type | Description
--- | --- | ---
ls_policy_option_name | CHAR(128) NOT NULL | The logical server policy option name.
ls_policy_option_value | LONG VARCHAR NOT NULL | The logical server policy option value.

Constraints on underlying system table:
- Primary key(ls_policy_id, ls_policy_option_name)
- ls_policy_id foreign key(ISYSIQMPOLICY)

SYSIQMPXSERVER System View
Presents a readable version of the table SYSIQMPXSERVER. The ISYSIQMPXSERVER system table stores membership properties and version status data for the given multiplex node.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Column type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_id</td>
<td>UNSIGNED INT NOT NULL</td>
<td>The ID number of the server.</td>
</tr>
<tr>
<td>server_name</td>
<td>CHAR(128) NOT NULL</td>
<td>The server name. Must be case insensitive unique.</td>
</tr>
<tr>
<td>role</td>
<td>TINYINT NOT NULL</td>
<td>Coordinator, reader, or writer.</td>
</tr>
<tr>
<td>status</td>
<td>TINYINT NOT NULL</td>
<td>Excluded or included.</td>
</tr>
<tr>
<td>current_version</td>
<td>UNSIGNED BIGINT NULL</td>
<td>Current version ID of the server.</td>
</tr>
<tr>
<td>active_version</td>
<td>LONG BINARY NULL</td>
<td>The list of active versions on the server (encoded).</td>
</tr>
<tr>
<td>connection_info</td>
<td>LONG VARCHAR NULL</td>
<td>String containing host name and port pairs for public domain connections, delimited by semicolons.</td>
</tr>
<tr>
<td>db_path</td>
<td>LONG VARCHAR NOT NULL</td>
<td>Full path to the database file for the server.</td>
</tr>
<tr>
<td>private_connection_info</td>
<td>LONG VARCHAR NULL</td>
<td>String containing host name and port pairs for private network connections, delimited by semicolons.</td>
</tr>
</tbody>
</table>

Constraints on underlying system table:
Primary key(server_id)

System Procedures

Certain system procedures have special syntax or usage notes to support multiplex functionality.

Where syntax is not provided, syntax is common across simplex and multiplex servers and is documented in Reference: Building Blocks, Tables, and Procedures.

sp_iqcheckdb Procedure

Checks validity of the current database. Optionally corrects allocation problems for dbspaces or databases. On a multiplex coordinator node, dropleaks mode also detects leaked blocks, duplicate blocks, or extra blocks across the multiplex.

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

sp_iqconnection Procedure

Shows information about connections and versions, including which users are using temporary dbspace, which users are keeping versions alive, what the connections are doing inside Sybase IQ, connection status, database version status, and so on.

Syntax

```
sp_iqconnection [ connhandle ]
```

Usage

The input parameter connhandle is equal to the Number connection property and is the ID number of the connection. The connection_property system function returns the connection ID:

```
SELECT connection_property( 'Number' )
```

When called with an input parameter of a valid connhandle, sp_iqconnection returns the one row for that connection only.

Permissions

DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Description

sp_iqconnection returns a row for each active connection. The columns ConnHandle, Name, Userid, LastReqTime, ReqType, CommLink, NodeAddr, and LastIdle are the connection
properties Number, Name, Userid, LastReqTime, ReqType, CommLink, NodeAddr, and LastIdle respectively, and return the same values as the system function `sa_conn_info`. The additional columns return connection data from the Sybase IQ side of the Sybase IQ engine. Rows are ordered by ConnCreateTime.

The column MPXServerName stores information related to multiplex Inter-Node Communication (INC), as shown:

<table>
<thead>
<tr>
<th>Server where run</th>
<th>MPXServerName column content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplex server</td>
<td>NULL (All connections are local/user connections.)</td>
</tr>
<tr>
<td>Multiplex coordinator</td>
<td>• NULL for local/user connections</td>
</tr>
<tr>
<td></td>
<td>• Contains value of secondary node’s server name (source of connection) for every INC connection (either on-demand or dedicated heartbeat connection.)</td>
</tr>
<tr>
<td>Multiplex secondary</td>
<td>• NULL for local/user connections</td>
</tr>
<tr>
<td></td>
<td>• Contains value of coordinator’s server name (source of connection).</td>
</tr>
</tbody>
</table>

In Java applications, specify Sybase IQ-specific connection properties from TDS clients in the RemotePWD field. This example, where `myconnection` becomes the IQ connection name, shows how to specify IQ specific connection parameters:

```java
p.put("RemotePWD", ",", CON=myconnection");
```

See *SQL Anywhere Server – Programming*.

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConnHandle</td>
<td>The ID number of the connection.</td>
</tr>
<tr>
<td>Name</td>
<td>The name of the server.</td>
</tr>
<tr>
<td>Userid</td>
<td>The user ID for the connection.</td>
</tr>
<tr>
<td>LastReqTime</td>
<td>The time at which the last request for the specified connection started.</td>
</tr>
<tr>
<td>ReqType</td>
<td>A string for the type of the last request.</td>
</tr>
<tr>
<td>Column name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>IQCmdType</td>
<td>The current command executing on the Sybase IQ side, if any. The command type reflects commands defined at the implementation level of the engine. These commands consist of transaction commands, DDL and DML commands for data in the IQ store, internal IQ cursor commands, and special control commands such as OPEN and CLOSE DB, BACKUP, RESTORE, and others.</td>
</tr>
<tr>
<td>LastIQCmdTime</td>
<td>The time the last IQ command started or completed on the IQ side of the Sybase IQ engine on this connection.</td>
</tr>
<tr>
<td>IQCursors</td>
<td>The number of cursors open in the IQ store on this connection.</td>
</tr>
<tr>
<td>LowestIQCursorState</td>
<td>The IQ cursor state, if any. If multiple cursors exist on the connection, the state displayed is the lowest cursor state of all the cursors; that is, the furthest from completion. Cursor state reflects internal Sybase IQ implementation detail and is subject to change in the future. For this version, cursor states are: NONE, INITIALIZED, PARSED, DESCRIBED, COSTED, PREPARED, EXECUTED, FETCHING, END_OF_DATA, CLOSED and COMPLETED. As suggested by the names, cursor state changes at the end of the operation. A state of PREPARED, for example, indicates that the cursor is executing.</td>
</tr>
<tr>
<td>IQthreads</td>
<td>The number of Sybase IQ threads currently assigned to the connection. Some threads may be assigned but idle. This column can help you determine which connections are using the most resources.</td>
</tr>
<tr>
<td>TxnID</td>
<td>The transaction ID of the current transaction on the connection. This is the same as the transaction ID displayed in the .iqmsg file by the BeginTxn, CmtTxn, and PostCmtTxn messages, as well as the Txn ID Seq logged when the database is opened.</td>
</tr>
<tr>
<td>ConnCreateTime</td>
<td>The time the connection was created.</td>
</tr>
<tr>
<td>TempTableSpaceKB</td>
<td>The number of kilobytes of IQ temporary store space in use by this connection for data stored in IQ temp tables.</td>
</tr>
<tr>
<td>TempWorkSpaceKB</td>
<td>The number of kilobytes of IQ temporary store space in use by this connection for working space such as sorts, hashes, and temporary bitmaps. Space used by bitmaps or other objects that are part of indexes on Sybase IQ temporary tables are reflected in TempTableSpaceKB.</td>
</tr>
<tr>
<td>IQConnID</td>
<td>The ten-digit connection ID displayed as part of all messages in the .iqmsg file. This is a monotonically increasing integer unique within a server session.</td>
</tr>
<tr>
<td>satoiq_count</td>
<td>An internal counter used to display the number of crossings from the SQL Anywhere side to the IQ side of the Sybase IQ engine. This might be occasionally useful in determining connection activity. Result sets are returned in buffers of rows and do not increment satoiq_count or iqtosa_count once per row.</td>
</tr>
<tr>
<td>Column name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>iqtosa_count</td>
<td>An internal counter used to display the number of crossings from the IQ side to the SQL Anywhere side of the Sybase IQ engine. This might be occasionally useful in determining connection activity.</td>
</tr>
<tr>
<td>CommLink</td>
<td>The communication link for the connection. This is one of the network protocols supported by Sybase IQ, or is local for a same-machine connection.</td>
</tr>
<tr>
<td>NodeAddr</td>
<td>The node for the client in a client/server connection.</td>
</tr>
<tr>
<td>LastIdle</td>
<td>The number of ticks between requests.</td>
</tr>
<tr>
<td>MPXServerName</td>
<td>If an INC connection, the varchar(128) value contains the name of the multiplex server where the INC connection originates. NULL if not an INC connection.</td>
</tr>
<tr>
<td>LSName</td>
<td>The logical server name of the connection. NULL if logical server context is unknown or not applicable.</td>
</tr>
</tbody>
</table>

Example

The following is an example of `sp_iqconnection` output:

<table>
<thead>
<tr>
<th>ConnHandle</th>
<th>Name</th>
<th>Userid</th>
<th>LastReqTime</th>
<th>ReqType</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>'SQL_DBC_100525210'</td>
<td>'DBA'</td>
<td>'2011-03-28 09:29:24.466'</td>
<td>'OPEN'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IQCmdType</th>
<th>LastIQCmdTime</th>
<th>IQCursors</th>
<th>LowestIQCursorState</th>
</tr>
</thead>
<tbody>
<tr>
<td>'IQUTILITYOPENCURSOR'</td>
<td>2011-03-28 09:29:24.0</td>
<td>0</td>
<td>'NONE'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IQthreads</th>
<th>TxnID</th>
<th>ConnCreateTime</th>
<th>TempTableSpaceKB</th>
<th>TempWorkSpaceKB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3352568</td>
<td>2011-03-28 09:29:20.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IQconnID</th>
<th>satoiq_count</th>
<th>iqtosa_count</th>
<th>CommLink</th>
<th>NodeAdd</th>
<th>LastIdle</th>
<th>MPXServerName</th>
<th>LSName</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>43</td>
<td>2</td>
<td>'local'</td>
<td></td>
<td>244</td>
<td>(NULL)</td>
<td>Finance_LS</td>
</tr>
</tbody>
</table>

sp_iqdbsize Procedure

If run on a multiplex database, the default parameter is **main**, which returns the size of the shared IQ store.

Permissions

DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.
sp_iqdbspace Procedure

The `sp_iqdbspace` procedure displays NA (not available) in the Usage column for the IQ dbspace only when run against a secondary node in a multiplex configuration.

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

sp_iqfile Procedure

The `sp_iqfile` procedure displays NA (not available) in the Usage column for the file of the IQ dbspace only when run against a secondary node in a multiplex configuration.

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

sp_iqindexinfo Procedure

By default in a multiplex database, `sp_iqindexinfo` displays information about the shared IQ store on a secondary server. If individual tables or indexes are specified, then the store to display is selected automatically.

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

sp_iqmpxincconnpoolinfo Procedure

If run on the coordinator node, displays INC connection pool status for every node. If executed on a secondary node, displays INC connection pool status for just the current node.

Syntax

```
sp_iqmpxincconnpoolinfo
```

Usage
If the procedure is run on the coordinator and a secondary node is not responding or timed out, the result set omits the row for that node, because this data cannot be accessed unless that node is running.

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.
Description

The `sp_iqmpxincconnpoolinfo` procedure returns:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_id</td>
<td>unsigned int</td>
<td>Identifier for the server</td>
</tr>
<tr>
<td>server_name</td>
<td>char(128)</td>
<td>Name of the server</td>
</tr>
<tr>
<td>current_pool_size</td>
<td>unsigned int</td>
<td>Current size of connection pool</td>
</tr>
<tr>
<td>idle_connection_count</td>
<td>unsigned int</td>
<td>Number of idle connections in the pool</td>
</tr>
<tr>
<td>connections_in_use</td>
<td>unsigned int</td>
<td>Number of connections in use</td>
</tr>
</tbody>
</table>

Example

This example shows sample output of `sp_iqmpxincconnpoolinfo`:

```
server_id,server_name,current_pool_size,
idle_connection_count,connections_in_use
2,'r2_dbsrv90210',0,0,0
3,'w3_dbsrv90210',0,0,0
```

sp_iqmpxfilestatus Procedure

If run on the coordinator node, displays file status for coordinator and for every shared dbspace file on every included secondary node. If executed on a secondary node, displays file status for only the current node.

Syntax

```
sp_iqmpxfilestatus
```

Permissions

Must have DBA, MULTIPLEX ADMIN, or SPACE ADMIN authority. Users without these authorities must be granted EXECUTE permission to run the stored procedure.

Description

`sp_iqmpxfilestatus` returns:
Table 21. sp_iqmpxfilestatus columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServerID</td>
<td>unsigned int</td>
<td>Identifier for the multiplex server, from SYSIQMPXINFO</td>
</tr>
<tr>
<td>DBSpaceName</td>
<td>char(128)</td>
<td>Dbspace from which the space is reserved</td>
</tr>
<tr>
<td>FileName</td>
<td>char(128)</td>
<td>Logical file name of the dbspace file</td>
</tr>
<tr>
<td>FileStatus</td>
<td>char(2)</td>
<td>Dbspace file status:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VALID – file path and permissions are correct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INVALID_PATH – path name not accessible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INVALID_PERM – file permissions are incorrect</td>
</tr>
</tbody>
</table>

Example

This example shows sample output of **sp_iqmpxfilestatus**:

```plaintext
server_id,server_name,DBSpace_name,FileName,FileStatus
1,'mpx2422_m','IQ_SYSTEM_MAIN','IQ_SYSTEM_MAIN','VALID'
1,'mpx2422_m','mpx_main1','mpx_main1','VALID'
1,'mpx2422_m','IQ_SHARED_TEMP','sharedfile_dba','VALID'
1,'mpx2422_m','IQ_SHARED_TEMP','sharedfile_dba1','VALID'
2,'mpx2422_w1','IQ_SYSTEM_MAIN','IQ_SYSTEM_MAIN','VALID'
2,'mpx2422_w1','mpx_main1','mpx_main1','VALID'
2,'mpx2422_w1','IQ_SHARED_TEMP','sharedfile_dba','VALID'
2,'mpx2422_w1','IQ_SHARED_TEMP','sharedfile_dba1','VALID'
3,'mpx2422_r1','IQ_SYSTEM_MAIN','IQ_SYSTEM_MAIN','VALID'
3,'mpx2422_r1','mpx_main1','mpx_main1','VALID'
3,'mpx2422_r1','IQ_SHARED_TEMP','sharedfile_dba','VALID'
3,'mpx2422_r1','IQ_SHARED_TEMP','sharedfile_dba1','VALID'
```

sp_iqmpxincheartbeatinfo Procedure

If run on the coordinator node, displays INC heartbeat status for every node. If executed on a secondary node, displays INC heartbeat status for just the current node.

Syntax

```
sp_iqmpxincheartbeatinfo
```

Permissions

DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.
Description

The `sp_iqmpxincheartbeatinfo` procedure returns the following:

Table 22. sp_iqmpxincheartbeatinfo columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_id</td>
<td>unsigned int</td>
<td>Identifier for the server</td>
<td></td>
</tr>
<tr>
<td>server_name</td>
<td>char(128)</td>
<td>Name of the server</td>
<td></td>
</tr>
<tr>
<td>last_positive_hb</td>
<td>TIMESTAMP</td>
<td>Date/time of last successful heartbeat ping</td>
<td>DD:MM:YYYY:HH:MM:SS</td>
</tr>
<tr>
<td>time_not_responding</td>
<td>TIME</td>
<td>Time since last successful heartbeat ping</td>
<td>HH:MM:SS</td>
</tr>
<tr>
<td>time_until_timeout</td>
<td>TIME</td>
<td>If a node is not responding, the time left until node is declared offline.</td>
<td></td>
</tr>
</tbody>
</table>

Examples

This example shows sample output of `sp_iqmpxincheartbeatinfo`:

```sql
server_id, server_name, last_positive_hb,
time_not_responding, time_until_timeout
2,'r2_dbsrv90210',2008-11-17 15:48:42.0,00:00:00,00:00:00
3,'w3_dbsrv90210',2008-11-17 15:48:42.0,00:00:00,00:00:00
```

If the elapsed time exceeds 24 hours, Sybase IQ returns `sp_iqmpxincheartbeatinfo` output like the following:

```sql
server_id, server_name, last_positive_hb,
time_not_responding, time_until_timeout
2,'r2_mpx_cr_srv',Jan 14 2010 11:57AM,11:59PM,11:59PM
3,'w4_mpx_cr_srv',Jan 14 2010 11:57AM,11:59PM,11:59PM
```

(2 rows affected)

A value of 11:59PM in the `time_not_responding` and `time_until_timeout` columns means that the time has crossed the 24-hour limit.

sp_iqmpxininfo Procedure

Returns a row for every node in the multiplex. Can be run from any multiplex node.

Note: Users with RESOURCE authority are not permitted to execute this stored procedure unless granted EXECUTE permission by a user with DBA authority or by a user with PERMS ADMIN authority.
Syntax

sp_iqmpxinfo

Permissions

DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Description

The sp_iqmpxinfo procedure returns the following:

<table>
<thead>
<tr>
<th>Column name</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_id</td>
<td>unsigned int</td>
<td>Identifier for the server for which information appears</td>
</tr>
<tr>
<td>server_name</td>
<td>char(128)</td>
<td>Name of the server</td>
</tr>
<tr>
<td>connection_info</td>
<td>long varchar</td>
<td>A formatted string containing the host/port portion of the connection string used for TCP/IP connections between multiplex servers.</td>
</tr>
<tr>
<td>db_path</td>
<td>long varchar</td>
<td>Full database path</td>
</tr>
<tr>
<td>role</td>
<td>char(16)</td>
<td>'coordinator'</td>
</tr>
<tr>
<td>status</td>
<td>char(8)</td>
<td>'included'</td>
</tr>
<tr>
<td>mpx_mode</td>
<td>char(16)</td>
<td>'single'</td>
</tr>
<tr>
<td>inc_state</td>
<td>char(16)</td>
<td>'active'</td>
</tr>
<tr>
<td>coordinator_failover</td>
<td>char(128)</td>
<td>Name of the failover server</td>
</tr>
<tr>
<td>current_version</td>
<td>unsigned bigint</td>
<td>Decimal-formatted version ID</td>
</tr>
<tr>
<td>active_versions</td>
<td>long varchar</td>
<td>Comma-separated list of decimal formatted version IDs.</td>
</tr>
<tr>
<td>private_connection_info</td>
<td>long varchar</td>
<td>A formatted string containing the host/port portion of the connection string used for private TCP/IP connections between multiplex servers.</td>
</tr>
<tr>
<td>mipc_priv_state</td>
<td>char(16)</td>
<td>'active' – MIPC connection to this node is active over the private interconnect</td>
</tr>
<tr>
<td>Column name</td>
<td>Data type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>mipc_public_state</td>
<td>char(16)</td>
<td>'active' – MIPC connection to this node is active over the public interconnect.</td>
</tr>
</tbody>
</table>

Example

Sample output of `sp_iqmpxinfo` follows:

```
server_id,server_name,connection_info,db_path,role,
status,mpx_mode,inc_state,coordinator_failover,
current_version,active_versions,private_connection_info,mipc_priv_state,mipc_public_state


2,'IQ_mpx2','host=system3:13625', '/system3/users/devices/s16900269/iqmpx_2/wk0001.db','writer','included','writer','active','IQ_mpx20', 'not responding','active'

3,'IQ_mpx3','host=system3:13630/system3/users/devices/s16900269/iqmpx_3/mpx1.db','reader','included','unknown','timed out','IQ_mpx20','not responding','not responding'
```

See also

- *Checking Server Status in Sybase Central* on page 22
- *Designated Failover Node* on page 37
- *Designating Failover Node with Sybase Central* on page 33
- *Designating Failover Node with Interactive SQL* on page 20
- *Checking Server Status in Interactive SQL* on page 17

sp_iqmpxvalidate Procedure

Checks multiplex configuration for inconsistencies.

Syntax

```
call dbo.sp_iqmpxvalidate( 'show_msgs' )
```
Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Description
Executes multiple checks on tables SYS.SYSIQDBFILE and other multiplex events and stored procedures. May run on any server. Returns a severity result to the caller; values are:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No errors detected</td>
</tr>
<tr>
<td>1</td>
<td>Dynamic state is not as expected.</td>
</tr>
<tr>
<td>2</td>
<td>Nonfatal configuration error; for example, multiplex operation impaired</td>
</tr>
<tr>
<td>3</td>
<td>Fatal configuration problem; for example, one or more servers might not start</td>
</tr>
</tbody>
</table>

If called interactively, also returns a table of the errors found, if any, unless the calling parameter is not 'Y'.

Each error indicates its severity. If there are no errors, the procedure returns No errors detected.

sp_iqmpxversioninfo Procedure
Shows the current version information for this server, including server type (write server, query server, single-node mode) and synchronization status.

Syntax
sp_iqmpxversioninfo ()

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Description

Table 24. sp_iqmpxversioninfo columns returned

<table>
<thead>
<tr>
<th>Column</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CatalogID</td>
<td>unsigned bigint</td>
<td>Catalog version on this server</td>
</tr>
<tr>
<td>VersionID</td>
<td>unsigned bigint</td>
<td>Latest version available on this server</td>
</tr>
<tr>
<td>OAVID</td>
<td>unsigned bigint</td>
<td>Oldest active version on this server</td>
</tr>
</tbody>
</table>
Column Data type Description

<table>
<thead>
<tr>
<th>Column</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServerType</td>
<td>char(1)</td>
<td>Type of server: “C” (Coordinator), “W” (Write Server) or “Q” (Query Server)</td>
</tr>
<tr>
<td>CatalogSync</td>
<td>char(1)</td>
<td>Catalog synchronization: “T” (synchronized) or “F” (not synchronized)</td>
</tr>
<tr>
<td>WCatalogID</td>
<td>unsigned bigint</td>
<td>Catalog version on the write server</td>
</tr>
<tr>
<td>WVersionID</td>
<td>unsigned bigint</td>
<td>Latest version available on the write server</td>
</tr>
</tbody>
</table>

sp_iqsharedtempdistrib Procedure

Shows the current shared temp space usage distribution. If run from the coordinator node displays share temp space distribution for all nodes. If run from a secondary node displays shared temp space usage for that node.

Shared temporary space is reserved for each node in the multiplex on demand. Space is reserved for a node in an allocation unit. Nodes can have multiple allocation units reserved based on their dynamic space demands. Allocation units are leased to allow nodes to use more space as needed and return the space to a global pool when not needed. Allocation units expire when space usage decreases and their lease time ends, or when a server shuts down.

Syntax

```sql
sp_iqsharedtempdistrib()
```

Permissions

DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Description

<table>
<thead>
<tr>
<th>Column</th>
<th>Data type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ServerID</td>
<td>unsigned bigint</td>
<td>Server ID of the multiplex server, from SYSIQMPXINFO</td>
</tr>
<tr>
<td>DBSpaceName</td>
<td>char(128)</td>
<td>Name of the dbspace from which space is reserved</td>
</tr>
<tr>
<td>Column</td>
<td>Data type</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>UnitType</td>
<td>char(10)</td>
<td>Type of allocation unit. Valid values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Active – currently reserved and in use by the node.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Expired – reserved for the node but are in transition back to the global space pool.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quarantined – reserved for the node but quarantined due to node failure.</td>
</tr>
<tr>
<td>VersionID</td>
<td>unsigned bigint</td>
<td>Version ID of the unit. For active units, the version when the unit was reserved for the node. For expired units, the version when the unit was expired. For quarantined units, the version when the unit was quarantined.</td>
</tr>
<tr>
<td>NBlocks</td>
<td>unsigned bigint</td>
<td>Number of outstanding blocks in the unit</td>
</tr>
</tbody>
</table>

sp_iqspaceinfo Procedure

If run on a multiplex database, the default parameter is `main`, which returns the size of the shared IQ store.

If you do not supply a parameter, this procedure returns no results unless you have at least one user-created object, such as a table.

Permissions

DBA authority required. Users without DBA authority must be granted `EXECUTE` permission to run the stored procedure.

sp_iqspaceused Procedure

If run on a multiplex database, this procedure applies to the server on which it runs. Also returns space used on IQ_SHARED_TEMP.

For complete syntax and example, see *Reference: Building Blocks*.
Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

sp_iqstatus Procedure
On a secondary server in a multiplex, this procedure also lists information about the shared IQ store and IQ temporary store.

If sp_iqstatus shows a high percentage of main blocks in use on a multiplex server, run sp_iqversionuse to find out which versions are being used and the amount of space that can be recovered by releasing versions.

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

sp_iqtransaction Procedure
Shows information about transactions and versions.

Syntax
sp_iqtransaction

Permissions
DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Description
sp_iqtransaction returns a row for each transaction control block in the Sybase IQ transaction manager. The columns Name, Userid, and ConnHandle are the connection properties Name, Userid, and Number, respectively. Rows are ordered by TxnID.

The sp_iqtransaction output does not contain rows for connections that do not have a transaction started. To see all connections, use sp_iqconnection.

Note: Although you can use sp_iqtransaction to identify users who are blocking other users from writing to a table, sp_iqlocks is a better choice for this purpose.

Table 25. sp_iqtransaction columns

<table>
<thead>
<tr>
<th>Column name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the server.</td>
</tr>
<tr>
<td>Userid</td>
<td>The user ID for the connection.</td>
</tr>
<tr>
<td>Column name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TxnID</td>
<td>The transaction ID of this transaction control block. The transaction ID is assigned during begin transaction. This is the same as the transaction ID displayed in the <code>.iqmsg</code> file by the BeginTxn, CmtTxn and PostCmtTxn messages as well as the Txn ID Seq logged when the database is opened.</td>
</tr>
<tr>
<td>CmtID</td>
<td>The ID assigned by the transaction manager when the transaction commits. It is zero for active transactions.</td>
</tr>
<tr>
<td>VersionID</td>
<td>In simplex databases, the VersionID is the same as the TxnID. For the multiplex coordinator, the VersionID is the same as the TxnID of the active transaction and VersionID is the same as the CmtID of a committed transaction. In multiplex secondary servers, the VersionID is the CmtID of the transaction that created the database version on the multiplex coordinator. It is used internally by the Sybase IQ in-memory catalog and the IQ transaction manager to uniquely identify a database version to all nodes within a multiplex database.</td>
</tr>
<tr>
<td>State</td>
<td>The state of the transaction control block. This variable reflects internal Sybase IQ implementation detail and is subject to change in the future. At the time of this writing, transaction states are NONE, ACTIVE, ROLLING_BACK, ROLLED_BACK, COMMITTING, COMMITTED, and APPLIED.</td>
</tr>
<tr>
<td>ConnHandle</td>
<td>The ID number of the connection.</td>
</tr>
<tr>
<td>IQConnID</td>
<td>The ten-digit connection ID displayed as part of all messages in the <code>.iqmsg</code> file. This is a monotonically increasing integer unique within a server session.</td>
</tr>
<tr>
<td>MainTableKBCr</td>
<td>The number of kilobytes of IQ store space created by this transaction.</td>
</tr>
<tr>
<td>MainTableKBDr</td>
<td>The number of kilobytes of IQ store space dropped by this transaction, but which persist on disk in the store because the space is visible in other database versions or other savepoints of this transaction.</td>
</tr>
<tr>
<td>TempTableKBCr</td>
<td>The number of kilobytes of IQ temporary store space created by this transaction for storage of IQ temporary table data.</td>
</tr>
<tr>
<td>TempTableKBDr</td>
<td>The number of kilobytes of IQ temporary table space dropped by this transaction, but which persist on disk in the IQ temporary store because the space is visible to IQ cursors or is owned by other savepoints of this transaction.</td>
</tr>
<tr>
<td>Column name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>TempWorkSpaceKB</td>
<td>For ACTIVE transactions, this is a snapshot of the work space in use at this instant by this transaction, such as sorts, hashes, and temporary bitmaps. The number varies depending on when you run <code>sp_iqtransaction</code>. For example, the query engine might create 60MB in the temporary cache but release most of it quickly, even though query processing continues. If you run <code>sp_iqtransaction</code> after the query finishes, this column shows a much smaller number. When the transaction is no longer active, this column is zero. For ACTIVE transactions, this column is the same as the TempWorkSpaceKB column of <code>sp_iqconnection</code>.</td>
</tr>
<tr>
<td>TxnCreateTime</td>
<td>The time the transaction began. All Sybase IQ transactions begin implicitly as soon as an active connection is established or when the previous transaction commits or rolls back.</td>
</tr>
<tr>
<td>CursorCount</td>
<td>The number of open Sybase IQ cursors that reference this transaction control block. If the transaction is ACTIVE, it indicates the number of open cursors created within the transaction. If the transaction is COMMITTED, it indicates the number of HOLD cursors that reference a database version owned by this transaction control block.</td>
</tr>
<tr>
<td>SpCount</td>
<td>The number of savepoint structures that exist within the transaction control block. Savepoints may be created and released implicitly. Therefore, this number does not indicate the number of user-created savepoints within the transaction.</td>
</tr>
<tr>
<td>SpNumber</td>
<td>The active savepoint number of the transaction. This is an implementation detail and might not reflect a user-created savepoint.</td>
</tr>
<tr>
<td>MPXServerName</td>
<td>The value indicates if an active transaction is from an internode communication (INC) connection. If from INC connection, the value is the name of the multiplex server where the transaction originates. NULL if not from an INC connection. Always NULL if the transaction is not active.</td>
</tr>
<tr>
<td>GlobalTxnID</td>
<td>The value indicates the global transaction ID associated with the current transaction. Zero if there is no associated global transaction.</td>
</tr>
</tbody>
</table>

Example

Here is an example of `sp_iqtransaction` output:

```
Name,Userid,TxnID,CmtID,VersionID,State,ConnHandle,IQConnID,MainTableKBCr,MainTableKBDr,TempTableKBCr,TempTableKBDr,TempWorkSpaceKB,TxnCreateTime,CursorCount,SpCount,SpNumber,MPXServerName,GlobalTxnID

'IQ_MPX_SERVER_H','dbo',49878,49881,49881,'COMMITTED',9,23198,152,152,0,0,0,'2008-11-18 13:15:00.015',0,0,0,,0
```
sp_iqversionuse Procedure

Shows which versions of servers are in use and by which users.

The procedure produces a row for each user of a version. Run sp_iqversionuse first on the coordinator to determine which versions should be released and the amount of space in KB to be released when the version is no longer in use. Connection IDs are displayed in the IQConn column for users connected to the coordinator. Version usage due to secondary servers is displayed as the secondary server name with connection ID 0.

Run sp_iqversionuse on multiplex secondary servers to determine individual connections to secondary servers. Users from other servers are not displayed on a secondary server.

Permissions

DBA authority required. Users without DBA authority must be granted EXECUTE permission to run the stored procedure.

Example

Output from sp_iqversionuse differs on coordinator and secondary servers.

In this example, the oldest version 42648 is in use by connection 108 on the coordinator (mpxw). Committing or rolling back the transaction on connection 108 releases 7.9MB of space. Version 42686 is in use by secondary server (mpxq) according to output from the coordinator. Using the secondary server output, the actual connection is connection 31. The actual amount of space returned from releasing version 42686 depends on whether 42648 is released first.

WasReported is 0 for versions 42715 and 42728 on the coordinator because these are new versions that have not yet been replicated by SQL Remote. Since version 42728 does not appear on the secondary server output, it has not yet been used by the secondary server.

The following output is returned when sp_iqversionuse executes on the coordinator mpxw:

call dbo.sp_iqversionuse
Startup and Database Administration Utilities

Certain command-line utilities have multiplex syntax or restrictions.

For syntax common across multiplex and simplex servers, see the *Utility Guide*.

Backup Utility (dbbackup)

The `dbbackup` utility truncates the database name to 70 characters and creates a target file with a truncated name. Sybase IQ uses `dbbackup` when synchronizing secondary servers. Due to the `dbbackup` restrictions, database names must be less than 70 characters.

Server Startup Utility (start_iq)

Run `start_iq` at the command line to customize your server startup.

Use server startup switches with the `start_iq` command to configure Sybase IQ multiplex servers at startup.
Table 26. Server startup switches

<table>
<thead>
<tr>
<th>Startup switch</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-iqmpx_failover</td>
<td>1</td>
<td>Initiates multiplex coordinator failover to establish the designated failover secondary node as the new coordinator. Starting the coordinator with this option has no effect.</td>
</tr>
<tr>
<td>-iqmpx_ov</td>
<td>1</td>
<td>Performs multiplex configuration override for the current node. Used to change node properties during startup in the event that a node's location or other property has changed.</td>
</tr>
<tr>
<td>-iqmpx_sn</td>
<td>1</td>
<td>Runs the current multiplex node in single-node mode. Use single-node mode only to fix problems with the multiplex configuration. You must shut down all other nodes in the multiplex. Sybase recommends that you use single-node mode only on the coordinator.</td>
</tr>
<tr>
<td>-iqmpx_reclaimwriter-freelist</td>
<td>server name</td>
<td>This option applies only while restarting a coordinator node. The coordinator forcefully reclaims the free list of the writer node identified by the server name. Use this switch only when a writer fails and cannot be restarted.</td>
</tr>
<tr>
<td>-iqmsgnum num</td>
<td>0-64 (inclusive)</td>
<td>Specifies the number of message log archives of the old message log maintained by the server. Default value is 0, which means that messages are wrapped in the main message log file. Takes effect only if -iqmsgsz or the IQMsgMaxSize server property is nonzero. The IQMsgNumFiles server property corresponds to -iqmsgnum and takes precedence over the value of -iqmsgnum. If the value is not set, the default minimum pool size is MIN (MAX (4, number of cores/4), mipcmaxt (if set)).</td>
</tr>
<tr>
<td>-iqmsgsz size</td>
<td>integers 0-2047 inclusive, in MB.</td>
<td>Limits the maximum size of the message log. The default value is 0, which specifies no limit on the size of the message file.</td>
</tr>
<tr>
<td>-mipcmin size</td>
<td>integers 0-256 inclusive</td>
<td>Specifies the minimum number of threads allowed in the shared thread pool for MIPC request handling. Each new MIPC server connection adds two threads to the pool. The value of -mipcmin defaults to 0 and cannot exceed the -mipcmaxt value. Set this value only if advised to do so by Sybase Technical Support. If the value is not set, the default minimum pool size is MIN (MAX (4, number of cores/4), mipcmaxt (if set)).</td>
</tr>
<tr>
<td>Startup switch</td>
<td>Values</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>-mipcmaxt size</td>
<td>integers 0-256 inclusive</td>
<td>Specifies the maximum number of threads allowed in the shared thread pool for MIPC request handling. Each new MIPC server connection adds two threads to the pool. The value of -mipcmaxt defaults to 0 and must exceed the -mipcmint value. Set this value only if advised to do so by Sybase Technical Support. If the value is not set, the default maximum pool size is MAX (number of cores, mipcmint).</td>
</tr>
</tbody>
</table>

For additional switches, see *Sybase IQ Utility Guide > start_iq Database Server Startup Utility > start_iq Server Options*.

Note: The -iqmc and -iqtc switches allow different cache sizes for each node in a multiplex, but this may have adverse affects. For example, if a node worker is configured with a much smaller cache than the leader, hash joins on the leader will operate in a paging mode that disallows parallelism.
Index

-n switch 31

A
absolute paths 6
accessing shared disks on UNIX 6
accessing shared disks on Windows 6
adding
text configuration object 58–60, 63
adding space to IQ_SYSTEM_MAIN 49
administrative scripts
automatic job scheduling 29
generating 29
using 29
allocation units 123
ALTER DBSPACE statement
element 14
ALTER LOGICAL SERVER statement
syntax 89
ALTER LOGIN POLICY statement
syntax 90
ALTER LS POLICY statement
syntax 96
ALTER MULTIPLEX RENAME statement 96
ALTER MULTIPLEX SERVER statement 97
automatic shutdown 33
applications
startup parameters for multiplex 17
availability
monitoring 34

B
backup utility 129
block size
in system tables 105
browsing
disabling on IQ Agent on UNIX 27

C
cache statistics 77
Catalog format number 105
catalog store
backup 83
changing database file path 32
changing multiplex server settings
permissions 34
COMMENT ON LOGICAL SERVER statement 98
communication infrastructure 6
Configure Collection Rates dialog 74
connection statistics 79
connections
establishing 90
logical servers 91
maximum 21
connectivity
multiplex 7
converting simplex to multiplex 15
coordinator
converting simplex to multiplex 13
creating 13, 15
functions of 4
out of space 49
read-only backups 88
replacing 36
shared temporary store usage 123
unable to start 49
CPU usage statistics 76
CREATE DBSPACE statement 14
CREATE LOGICAL SERVER statement 99
CREATE MULTIPLEX SERVER statement 100
CREATE TEXT CONFIGURATION 58–60, 63
creating
text configuration object 58–60, 63
creating servers
permissions 34

database options
multiplex 103
databases
activating multiplex capability 13, 15
block size in system tables 105
changing file path 32
creation time 105
file format 105
name length restriction 129

dbbackup 129
dbfile
 read-only 48

dbfiles
 error opening DBFILE message 48
 paths not visible 48

dbspaces
 requirements 11
 storage devices 11
 usage statistics 81

deleting servers 29
 permissions 34

distributed query processing
 performance 68

DML commands
 running in multiplex 42

DML operations
 tables in join indexes 43

DQP_ENABLED option 103

DROP LOGICAL SERVER statement 101

DROP MULTIPLEX SERVER statement 102

dropping
 servers 29

dynamic configuration 4

dynamic performance monitor 74

E

Environment variables
 IQAGENTNOBROWSE 27
 excluding multiplex servers 33
 excluding servers 29, 33
 SQL 20
 Sybase Central 33

F

failover 36, 38
 using Sybase Central 38
 using Sybase Control Center 39

failover node
 designating 33

file format 105

file path
 changing 32
 changing on IQ_SYSTEM_MAIN 48

files
 adding to IQ_SYSTEM_MAIN 49

H

heartbeat connections 7

heterogeneous multiplex 12

historical monitoring 34

host
 changing 33

I

including multiplex servers 33

including servers 29
 SQL 20
 Sybase Central 33

Inter-node Communication 6

interconnection
 private 7

IQ Agent
 configuring 23
 disabling remote browsing on UNIX 27
 host alias 27
 host name 27
 purpose 23
 running 23

IQ Agent Windows Service
 installing 27
 uninstalling 26

IQ main store
 shared 12

IQ store
 backup 83

IQ_SHARED_TEMP
 adding space 51
 raw device requirement 11

IQ_SYSTEM_MAIN
 adding files 48
 adding space 49
 changing file path 48
 out of space 49
 raw device requirement 11

IQ_SYSTEM_TEMP
 secondary servers 18, 32

IQAGENTNOBROWSE environment variable 27

IQLOGDIR15 environment variable 24

iqmsgnum startup switch 130

iqmsgsiz startup switch 130

ISYSIQLOGICALSERVER system table 106

ISYSIQLOGINPOLICYYSINFO system table 106

J

join indexes 43
L
leader nodes 67
LOCK TABLE statement 45
logical server
 configuration 106, 107
 membership information 106
 policies 106
 policy options 107
logical server login policy options
 system tables 109
logical server policies
 altering 96
 system tables 110
logical server policy
 system tables 107
logical server policy options
 system tables 110
logical servers
 altering 89
 connections 91
 Sybase Control Center 61
 system tables 107, 108
login policies
 altering 90
 changing 92
 logical server assignments 107, 109
login policy
 system tables 106

M
membership
 logical servers 108
memory usage statistics 77
message log
 iqmsgnum server option 130
 iqmsgsz server option 130
 specifying number of archives 130
 specifying size 130
MIPC 7, 67
monitoring
 role 71
 transaction status 74
monitoring performance 34
monitoring status 71
MPX.AUTOEXCLUDE.TIMEOUT option 103
MPX.HEARTBEAT_FREQUENCY option 104
MPX_IDLE_CONNECTION_TIMEOUT option 104
MPX_MAX_CONNECTION_POOL_SIZE option 104
MPX_MAX_UNUSED_POOL_SIZE option 104
MPXServerName column 113
multiplex
 adding space 49
 changing database file path 32
 changing server host 33
 changing server port 33
 changing server role 33
 check configuration 121
 coordinator 4
 database options 103
 DDL commands 43
 DML commands 42
 dynamic collisions 53
 dynamic configuration 4
 excluding servers 33
 graphical view 71
 heartbeat connections 7
 heterogeneous 12
 including servers 33
 Inter-node Communication 6
 logical server membership 108
 mixed version 12
 performance monitor 74
 pooled connections 7
 prerequisites 11
 printing topology 72
 renaming 96
 replacing coordinator 36
 secondary node 5
 shared Windows disks 6
 showing version information 122
 SQL statements 89
 start_iq parameters 17
 starting Sybase Central 28
 static configuration 4
 system procedures 112
 system tables 105
 topology view 71
 updating topology view 72
 viewing topology 71
MULTIPLEX ADMIN authority
 about 34
 multiplex environment incorrect error 18, 32
 multiplex interprocess communication 7
multiplex logical servers
 system tables 106, 107
multiplex login policies
 system tables 106
multiplex membership properties
 system tables 107
multiplex servers
 renaming 18, 32
 starting 22
 synchronizing 30
multiplexes
 name storage 96

N
network
 redundant 7
network statistics 82
node
 replacing coordinator 36

O
option
 DQP_ENABLED 103
 MPX_AUTOEXCLUDE_TIMEOUT 103
 MPX_HEARTBEAT_FREQUENCY 104
 MPX_IDLE_CONNECTION_TIMEOUT 104
 MPX_MAX_CONNECTION_POOL_SIZE 104
 MPX_MAX_UNUSED_POOL_SIZE 104
options
 logical server login policies 109
 login policies 92, 110
out of space 49

P
paths
 absolute 6
performance
 dynamic monitor 74
 monitoring 34
performance monitor
 2-D bar chart 75
 3-D bar chart 75
 customizing chart 75
 customizing statistics 74, 75
multiplex level 74
 printing chart 75
 saving chart 75
server level 74
 statistics monitored 76
 switching chart view 75
time-series view 75
permissions
 MULTIPLEX ADMIN authority 34
policies
 logical servers 110
pooled connections 7
port
 changing 33
prerequisites
 multiplex creation 11

Q
queries
 performance 68
query portions 68

R
raw devices
 accessing 6
 requirements 11
read-only selective restore 88
remote file browsing
 disabling on UNIX 27
renaming multiplex servers 18, 32
renaming the multiplex
 permissions 34
 replacing the coordinator 36
request statistics 80
requests
 setting start_iq parameter 17
RESOURCE authority 17
restoring
 read-only backups 88
 restoring the multiplex 84, 86
role
 monitoring 71
roles
 changing 33
root logical server policy 96
S

secondary nodes
 shutdown message 48
secondary server
 shared temporary store usage 123
secondary servers
 creating 13, 15
selective restore operations 88
server settings
 permissions 34
server startup switches
 iqmpx_failover 129
 iqmpx_ov 129
 iqmpx_reclaimwriterfreelist 129
 iqmpx_sn 129
servers
 altering multiplex 97
 changing role 33
 creating logical 99
 deleting 29
 deleting logical 101
 dropping 29
 enabling for multiplex 13, 15
 excluding 29, 33
 failover 36
 including 29, 33
 logical 98
 monitoring performance 74
 multiplex 22
 properties 29
 renaming 18, 32
 restoring 84, 86
 starting 29
 startup parameters 17
 state in topology view 73
 status in topology view 74
 stopping 29
Servers tab 22
shared dbspaces
 ALTER DBSPACE statement
 restriction 46
 CREATE DBSPACE statement
 restriction 46
dbspaces
 updating in multiplex 46
 DROP DBSPACE statement
 restriction 46
files
 dropping 46

multiplex
 updating dbspaces 46
 permission denied error 46
 sp_iqdbspace procedure 46
 system procedures
 sp_iqdbspace 46
 update restrictions 46
 updating multiplex dbspaces 46
shared disk array 12
shared disks
 accessing 6
shared temporary stores
 showing usage distribution 123
shell scripts
 administrative 29
soft links 6
sp_iqcheckdb system procedure 112
sp_iqconnection system procedure 112
sp_iqdbname system procedure 115
sp_iqdbsize system procedure 116
sp_iqemptyfile procedure 48
sp_iqfile system procedure 46, 116
sp_iqindexinfo system procedure 116
sp_iqmpxfilestatus system procedure 117
sp_iqmpxinconnpoolinfo stored procedure 116
sp_iqmpxincheartbeatinfo stored procedure 118
sp_iqmpxinfo stored procedure 119
sp_iqmpxvalidate system procedure 18, 32, 121
sp_iqmpxversioninfo system procedure 122
sp_iqsharedtempdistrib system procedure 123
sp_iqspaceinfo system procedure 124
sp_iqspaceused system procedure 124
sp_iqstatus system procedure 125
sp_iqtransaction system procedure 125
sp_iqversionuse system procedure 128
SQL statements 89
start_iq parameters
 multiplex 17
starting multiplexes 22
statistics
 collection rates 74
 dynamic 74
status
 checking 22
 monitoring 71
store I/O statistics 81
stored procedures
 format number 105
 granting permissions to execute 35
sp_iqmpxincconnpoolinfo 116
sp_iqmpxincheartbeatinfo 118
sp_iqmpxinfo 119
stores
 devices supported 11
summary 116, 118, 119
Sybase Central
 starting 28
 topology view 71
Sybase Control Center 34
 logical servers 61
symbolic links 83
synchronizing the multiplex 30
system procedures
 sp_iqconnection 112
 sp_iqdbspace 116
 sp_iqfile 46, 116
 sp_iqmpxfilestatus 117
 sp_iqmpxincconnpoolinfo 116
 sp_iqmpxincheartbeatinfo 118
 sp_iqmpxinfo 119
 sp_iqtransaction 125
system tables
 ISYSIQLOGICALSERVER 106, 107
 ISYSIQLOGINPOLICYSINFO 106, 107
 ISYSIQLSLOGINPOLICIES 109
 ISYSIQLSLOGINPOLICYOPTION 106, 109
 ISYSIQLSMEMBER 106, 108
 ISYSIQLSMEMBERS 108
 ISYSIQSPOLICY 106, 110
 ISYSIQSPOLICYOPTION 107, 110
 ISYSIQMPXSERVER 107
 SYSIQINFO 105
system views
 SYSIQLOGICALSERVER 107
 SYSIQLOGINPOLICYSINFO 107
 SYSIQLSLOGINPOLICIES 109
 SYSIQLSLOGINPOLICYOPTION 109
 SYSIQLSMEMBER 108
 SYSIQLSMEMBERS 108
 SYSIQSPOLICY 110
 SYSIQSPOLICYOPTION 110
 SYSIQMPXSERVER 111

T
tables
 in join indexes 43
text configuration object
 creating 58–60, 63
thread statistics 79
topology view 71
 updating 72
transaction statistics 80
transaction status
 monitoring 74

U
UNIX
 accessing shared disks 6
user connections 21

V
version status
 system tables 107
virtual backup 83
virtual machines 12

W
Windows
 accessing shared disks 6
worker nodes 67
workload
 distributing 67